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ABSTRACT 

 

 

 

PHENOTYPIC CHARACTERIZATION OF PNPASE IN C. ELEGANS 

 

By Laura Lambert, B.S., M.A.T. 

 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science 

at Virginia Commonwealth University  

 

Virginia Commonwealth University, 2014 

 

Major Director: Rita Shiang 

Associate Professor, Department of Human and Molecular Genetics 

 

 

The multifunctional exoribonuclease protein PNPase is implicated as a potential target for cancer 

therapy as well as causing mitochondrial disorders in humans, but there has yet to be a whole 

animal knockdown model created.  In this study, C. elegans was used to investigate the effect of 

knocking down pnpt-1, the gene that encodes PNPase.  It was discovered that pnpt-1 knockdown 

significantly extends lifespan via an increase in superoxide production similar to other known 

mitochondrial lifespan extension pathways.  Additionally, mitochondrial networks, size and 

respiration are affected indication of other mitochondrial dysfunction.. 

PNPase is also known to transport small RNAs into the mitochondria which in turn can affect 

mitochondria RNA splicing and translation of proteins involved in respiration. Further 

investigation showed a significant accumulation of polycistronic mitochondrial transcripts in 

knockdown animals.  Lastly, this model has shown that PNPase knockdown is functionally 

comparable across species and is a viable model for future studies. 
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CHAPTER 1: INTRODUCTION 

 

I. PNPase 

PNPase, encoded by the gene PNPT1, is a highly conserved, nuclear-encoded 3’-5’ 

exoribonuclease that localizes to the inner membrane space of the mitochondria as well as 

showing locations in the cytosol (Piwowarski et al, 2003; Chen et al, 2006; Leszczyniecka et al, 

2002; Sarkar and Fisher, 2006).  PNPT1 maps to 2p15-2p16.1 in humans, spanning 60 kb and 

containing 28 exons (Leszczyniecka et. al., 2003).  hPNPase
old-35

 (human PNPase) was first 

discovered as an upregulated gene in an overlapping pathway screen intended to identify genes 

that were co-regulated in senescent progeroid fibroblasts and terminally differentiated HO-1 

human melanoma cells (Leszczyniecka et al., 2002).  In this screen, there were 75 genes 

identified and designated old-1 through old-75.  old-35 was identified as showing significant 

homology to PNPase from other species, and thus labeled as human PNPase, or hPNPase
old-35

 

(Leszczyniecka et. al., 2002).  This multi-functional enzyme has been shown to have a role in 

specifically degrading c-myc mRNA (Sarkar et al., 2003; Sarkar et. al., 2005), miR-221, miR-

222, and miR-106b (Das et. al., 2010), and regulating translocation of small RNAs into the 

mitochondria, such as MRP (mitochondrial RNA processing), 5S rRNA, and RNase P (Wang et 

al., 2010; Wang et al., 2012).  At the transcriptional level, it has been found to be induced by 

type I interferons (IFN-α and β).  An IFN-stimulated response element (ISRE) was identified in 
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the promoter of hPNPase
old-35

, and mutating this site eliminated induction of gene expression 

(Leszczyniecka et al., 2003).   

II. PNPase Structure 

PNPase is an evolutionarily conserved protein and is found in the majority of organisms from 

bacteria and plants to humans with the exception of fungi, trypanosomoes and the entire domain 

Archaea (Sarkar and Fisher, 2006).  PNPase in bacteria, humans, and plants have five conserved 

motifs: two RNase PH (RPH) domains at the amino terminal separated by an α-helix unique to 

PNPase and two C-terminal RNA binding domains (RBD) (KH and S1) (Figure 1A) (Symmons 

et al 2000; Leszczyniecka et al 2002; Raijmakers et al 2002; Symmons et al 2002; Leszczyniecka 

et al 2004).  PNPase in C. elegans has the two RPH domains and the two C-terminal RBD but 

lacks the α-helix (Figure 1B).  Plants contain an N-terminal chloroplast-transit peptide (cTP) or a 

mitochondrial-targeting sequence (MTS), while other organisms contain only the N-terminal 

MTS.  Deletion studies in bacteria have shown that deletion of either the RBD, KH or S1 

domains will reduce the specific activity of PNPase by 19-fold (KH) or 50-fold (S1).  Deletion of 

both domains reduces activity to 1% (Stickney et al., 2005).   

In humans, the PNPase protein is 783 amino acids long, with a weight of approximately 

86 kDa.  In its primary location, the mitochondria, it assembles into a homotrimer or a dimer of 

two homotrimers (Piwowarski et. al., 2003; Rainey et. al., 2006).  When attempting to determine 

the minimum active region, mutation analysis showed that both RPH domains have equal 

enzymatic activity, and the presence of either one is sufficient for complete enzymatic activity.  

Additionally, hPNPase maintains enzymatic activity even when both RBDs have been deleted, 

indicating that the RPH domains may play a role in RNA binding in humans (Sarkar et. al., 

2005). 
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A: 

 

B: 

 

Figure 1: Structure of PNPase
 
A) In humans, there are 2 RNase PH (RPH) domains separated 

by an alpha-helix specific to PNPase followed by two RNA binding domains: KH and S1.  B. 

Structure of PNPase in C. elegans: the two RPH domains are present as are the two RNA binding 

domains.  The intervening alpha helix absent. (www.ncbi.nlm.nih.gov) 

III. PNPase Localization 

The MTS at the amino terminus of human PNPase localizes it to the mitochondria 

(Piwowarski et. al., 2003).  Subfractionation studies further localized PNPase to the 

mitochondrial inner membrane space, specifically as an inner membrane bound peripheral 

protein (Chen et. al., 2006).  PNPase is imported to the inner membrane space via an i-AAA 

protease Yme-1 dependent mechanism (Rainey et. al., 2006).  Further studies have shown that 

hPNPase
old-35

 also localizes to the cytoplasm where it can degrade specific mRNA and miRNAs 

(Leszczyniecka et. al., 2002; Sarker et. al., 2003; Chen et. al., 2006; Das et. al., 2010).   

IV. Functional Studies of hPNPase
old-35

 

a. Knockdown Studies 

In vivo studies have indicated that total knockout of Pnpt1 in mice is embryonic lethal, 

showing its importance in development.  A targeted liver knockout results in a decrease in the 

activity of the respiratory chain as well as causing disordered, circular, and smooth 

mitochondrial cristae (Wang et al., 2010). Additionally, PNPase knockdown in a melanoma cell 

line HEK-293T results in filamentous and granular mitochondria, a decrease in membrane 



 

 

4 

potential, and a decrease in the enzymatic activity of the respiratory complexes (Chen et al., 

2006).   

b. Overexpression Studies 

Overexpression studies with hPNPase
old-35

 in HO-1 cells was performed in two different 

ways in order to investigate the mechanism of growth inhibition:  slow and sustained 

overexpression via a low multiplicity of an adenoviral vector and rapid overexpression via a high 

multiplicity of an adenoviral vector.  The results showed that there were different phenotypes for 

each method of overexpression.  Slow and sustained overexpression, initiated to determine the 

mechanism behind inhibition of colony formation seen in HO-1 cells, resulted in growth 

inhibition and induction of a senescent-like phenotype, which ultimately resulted in apoptosis.  

Analysis of the cell cycle of these cells indicated that there was an initial G1/S or G2/M arrest 

followed by apoptosis (Sarkar et. al., 2003; Sarkar et. al., 2005; Van Maerken et al., 2009).  

Conversely, rapid overexpression, investigated to further investigate the mechanism behind 

PNPase overexpression induced growth arrest, promoted apoptosis without any accompanying 

cell-cycle changes (Sarkar et al., 2003).  

Further, slow and sustained overexpression downregulated c-myc mRNA and protein, a key 

mediator in the G1/S transition.  It was shown that c-myc overexpression will protect against cell 

death caused by overexpression of hPNPase
old-35 

(Sarkar et. al., 2003).  It is thought that 

hPNPase
old-35

 specifically recognizes c-myc mRNA via the 3’ UTR, as c-myc mRNA with no 

3’UTR was resistant to degradation by hPNPase
old-35

 (Sarkar et. al., 2003; Sarkar et. al., 2006).  

As no RNA-binding site has been identified in PNPase from any species, it is thought that 

secondary structure in RNA may be the determining factor in determining specificity (Sohki et. 

al., 2013).  Not only is c-myc specifically degraded, but it has been found that hPNPase
old-35
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overexpression specifically degrades certain mature miRNA species such as miR-221, miR-222, 

and miR-106b (Das et. al., 2010).  miR-221 is frequently overexpressed in a variety of human 

cancers, targeting a large set of602 genes involved in oncogenic pathways (Lupini et. al., 2013).  

miR-222 is additionally found to be upregulated in a variety of cancers and has been found to 

target MMP1 (metal metallic protease 1) and SOD2 (superoxide dismutase 2) (Liu et. al., 2009).  

Lastly, miR-106b has been found to target a number of tumor suppressor genes (Liu et. al., 

2014).  Given the role these miRNAs play in cancer progression, elevated hPNPase
old-35

 may 

prove to be an attractive anti-cancer target. 

 

V. PNPase in Mitochondria 

Given the localization of hPNPase
old-35

 in the mitochondria, there have been multiple studies 

initiated to determine if hPNPase
old-35

 plays a role in mitochondrial homeostasis.  Overexpression 

studies have indicated that the mitochondrial location of hPNPase
old-35

 plays a role in reactive 

oxygen species (ROS) induction (Sarkar et. al., 2004; Sarkar and Fisher, 2006).  A change in the 

mitochondria is observable in knockdown and knockout experiments.  Knockdown in HEK293T 

cells causes mitochondria to become filamentous and granular shaped, as well as decreasing 

membrane potential and reducing enzymatic activities of coupled respiratory complexes I and 

III, II and III, and the individual complexes IV and V.  Further, knockdown reduces ATP levels 

and causes lactate accumulation (Chen et. al., 2006).   

Additionally, hPNPase
old-35

 plays a role in importing small RNAs into the mitochondria, 

specifically RNase P RNA, MRP RNA, and 5S RNA.  RNase P is a ribozyme that cleaves 

precursor sequences from tRNA molecules.  MRP RNA is involved in the initiation of DNA 

replication in the mitochondria.  5S RNA is a small ribosomal RNA molecule, contributing to the 
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function of the large ribosomal subunit. hPNPase
old-35

 recognizes these RNAs via a specific 

stem-loop motif.  Importantly, the two roles PNPase plays are not dependent on one another:  

mutations affecting small RNA import do not affect its RNA processing role (Wang et. al., 2010; 

Wang et. al., 2011).  Figure 2 summarizes the multiple roles PNPase plays in the cell, as well as 

its multiple locations. 

 

Figure 2: Summary of PNPase roles and subcellular localization.  When in the cytoplasm, 

PNPase is involved in miR-221 and c-myc degredation, leading to growth arrest.  PNPase in the 

mitochondria is involved in mtRNA processing and small RNA import.  (Sohki et. al., 2013) 

VI. Human Diseases 

Recently, PNPase has been shown to be mutated in human hereditary hearing loss (von 

Ameln et. al., 2012) as well as in a family with myopathy, encephalopathy, and neuropathy 

(Vedrenne et. al., 2012), both disorders having the hallmarks of mitochondrial disorders.  These 

findings show that PNPase is important in mitochondrial function as well as senescence and 

terminal differentiation and thus has multiple functional roles.  Investigation into one family 
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revealed that the PNPase mutation resulted in a significant decrease in the 5S rRNA import, 

underlining its importance in 5S rRNA import into the mitochondria.  The affected individuals 

also had reduced mature MRP-RNA in their mitochondria, though they had normal levels of 

mtDNA content.  Further inquiry into the effect of decreased 5S rRNA import showed a 

reduction in the amount of COX subunits.  This particular family showed the importance of the 

small RNA import role PNPase plays, and if that is disrupted, the effects it can have on an 

organism (Vedrenne et. al., 2012).   In another family, a different PNPase mutation manifested as 

hereditary hearing loss.  It was determined that there was a decrease in the amount of RNase P 

imported into the mitochondria of these individuals, and while PNPase was not able to properly 

homotrimerize it was able to behave as a hypomorph.  As there was not the same severity of 

phenotype as seen in the other family, it is thought that due to the high energy needs of the inner 

ear, the hypomoph form of PNPase leading to the decrease in small RNA import negatively 

affected this tissue, though not others.  It was further hypothesized that variations in phenotypes 

will be seen in families with different functional deficits of PNPase, depending on the severity of 

the mutation (von Ameln et. al., 2012).  Cells have multiple mitochondria, and cells requiring a 

larger energy source, such as muscle cells, having more mitochondria than those that do not 

require as much energy (mature red blood cells have no mitochondria).  Each mitochondria has 

its own, circular, genome that shows similarity to the genome structure of bacteria, of which 

there are multiple copies within one mitochondria.  The fact that there are variable numbers of 

mitochondria within cells as well as a variable number of genomes within each mitochondria 

cause mitochondrial disorders to present with a wide variety of clinical symptoms. 
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VII. Mitochondria 

The mitochondria has long been identified as the location for cellular respiration.  This 

double-membraned organelle is the generator of ATP through the use of a series of respiratory 

complexes.  In addition to playing a role in energy metabolism, mitochondria also play a role in 

calcium signalingand is closely associated with the endoplasmic reticulum.  A certain level of 

Ca
2+

 is necessary to maintain homeostasis, though if Ca
2+

 levels increase beyond a certain 

threshold, the mitochondrial membrane potential will collapse, leading to apoptosis (Rizzuto et. 

al., 2009).  In addition to playing a role in Ca
2+

 signaling, mitochondria act as a Ca
2+

 reservoir, 

with Ca
2+

 being taken up into the matrix (Brighton and Hunt, 1974; Miller, 1998).  Mitochondria 

also play a role in non-calcium evoked apoptosis once the permeability of its membrane has 

increased due to a variety of apoptotic pathways.  The mitochondria will release caspase 

activators, deactivating proteins which inhibit apoptosis, as well as cytochrome c, which binds to 

Apaf-1 (apoptotic protease activating factor – 1) (Green, 1998; Fesik and Shi, 2001) 

These organelles are not static, but engage in fusion and division in response to cellular 

conditions.  In mammals, three GTPases in the outer membrane, Mfn1, Mfn2, and Opa1, are 

required for fusion (Martinou and Youle, 2011).  Fusion is triggered as a response to cellular 

stress (Tondera et. al., 2009; Gomes et. al., 2011; Rambold et. al., 2011).  Additionally, fusion 

can rescue mutations within the mitochondrial genome.  The rate of fission and fusion changes 

with differing metabolic demands.  Fusion is also enhanced under starvation conditions.  Fission 

is mediated by Drp1, a cytosolic dynamin family member, which forms spirals around the 

mitochondria which severs both membranes.  This process is critical for cells that are growing 

and dividing, in order to ensure adequate mitochondrial populations in daughter cells.  Fission is 

also used when mitochondria accumulate damage, and can sequester debris on one end of the 
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mitochondria.  Division occurs, and the mitochondria with the debris is autophagocized while the 

healthy one continues to perform its function in the cell (Youle and van der Bliek, 2012).    

A.  

B.  

Figure 3: Relation of fusion and fission.  The mitochondria in a cell are in a constant flux, and 

the rate of fission or fusion is dependent on a number of factors, including energy demand, 

cellular stress, and amount of damage in the mtDNA.  (Youle and van der Bliek, 2012) 

  

VIII. C. elegans 

Caenorhabditis elegans is a free-living soil nematode frequently used as a model organism 

for a variety of human diseases and processes.  The adult worm is approximately 1mm long with 

959 somatic cells, and is easily grown in a lab environment on a bacterial lawn.  These animals 

exist mainly as hermaphrodites (XX), though there is a less common male adult (XO) form.  

Their attractiveness as a model organism exist in their short life cycle of 3 days (Figure 4) and a 

life span (at 20
o
C) of around 3 weeks, small, fully sequenced genome, ease of growth, small size, 

and complete cell lineage mapping.  C. elegans remains transparent throughout its entire life 

cycle, enabling cell-level examination via differential interference contrast (DIC) microscopy 

(www.wormatlas.org).  Though anatomically simple, C. elegans can be used to study many 
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complex behaviors such as locomotion, foraging, feeding, defecation, egg laying, sensory 

responses, mating, social behavior, and learning (Rankin, 2002; de Bono, 2003).  However, there 

are certain drawbacks to using C. elegans as a model organism.  It is difficult to use molecular 

techniques to examine the effect of a manipulation on a specific tissue, combined with the fact 

that worms lack the specialized tissues found in higher organisms such as heart or liver (Van 

Raamsdonk and Hekimi, 2010).   

 

 

Figure 4: Lifecycle of C. elegans.  The lifecycle, including time spent in each larval stage as 

well as the sizes of each stage.  Generally, development to adulthood takes 3 days.  Eggs mature 

into the first larval stage, L1, approximately 10 hours after being formed.  If there is sufficient 

food, the L1 animal will proceed into 3 further larval stages: L2, L3, and L4.  After the L4 molt, 
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the young adult will begin to form oocytes.  If there is not sufficient food, the L1 larvae will 

proceed into a dauer stage, which can survive for nearly 4 months without food. 

(www.wormatalas.org; Introduction to C. elegans Anatomy) 

  

IX. PNPase in C. elegans 

C. elegans is a versatile model organism that was used for further study of PNPase.  There is 

a worm homolog of PNPT1, BE0003N10.1 (pnpt-1), consisting of 10 exons located on 

chromosome III.  This transcript was originally identified during an RNAi profiling of 

embryogenesis (Sonnichsen et. al., 2005).  A deletion mutant (tm1909) has also been 

characterized by a different group, with reported phenotypes of lethality and sterility.  However, 

in this mutant, pnpt-1 is not the only gene affected.  An upstream gene, chin-1, is also deleted, 

thus the gene responsible for the reported phenotypes is unknown.  C. elegans is particularly 

attractive model to study gene function due to the ease of knocking down gene expression via 

RNA interference (RNAi).  Given the previous results in mice showing embryonic lethality, 

knockdown allows for a low level of expression to avoid the lethality seen in other organisms.  

This is an exciting model of study, as it will give the first in vivo look at the knockdown of 

PNPase in a whole animal system.  Pilot studies knocking down PNPase in C. elegans identified 

longevity as an initially identified phenotype. 

 

X. Longevity Pathways 

Worms have been used in a number of aging studies, and it has been found that genes or 

interventions that extend the worm lifespan translate to other organisms, and vice-versa (Van 

Raamsdonk and Hekimi, 2010).  There are a number of known longevity pathways identified in 

C. elegans (Figure 5): 
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� Disruption of mitochondrial function (Yang and Hekimi, 2010) 

� Disruption of translation (Tacutu et. al., 2012) 

� Disruption of insulin signaling (Schaffitzel and Hertweck, 2006) 

� Caloric restriction (Schaffitzel and Hertweck, 2006) 

� Exposure to xenobiotics (Shore, 2012) 

 

Figure 5: C. elegans longevity pathways.  Blue indicates decreased activity of the 

pathway/process while orange indicates increased activity of the pathway/process leading to 

longevity (Schaffitzel and Hertweck, 2006).   

One of the best characterized networks influencing aging is the effect of insulin signaling, 

specifically the insulin growth factor 1 (IGF-1) system/signaling.  Inhibition of this pathway 

causes constitutive dauer formation (see Figure 4), leading to lifespan extension in adult animals.  

Animals containing mutations in the IGF-1 pathway show increased fat storage, defective egg-

laying, and high tolerance to a variety of stressors (Schaffitzel and Hertweck, 2006; Kenyon, 

2005; Kenyon et. al., 1993; Kimura et. al., 1997; Paradis and Ruvkun, 1998).   



 

 

13

The mitochondria are the major source of ROS in the cell, and as such, play a role in the 

length of the lifespan in C. elegans.  One mechanism to increase lifespan is to detoxify ROS, or 

to reduce the amount of ROS produced (Schaffitzel and Hertweck, 2006).  Another finding is 

that RNAi targeting of electron transport chain (ETC) complexes during larval development 

leads to a reduction in oxygen consumption and ATP levels, resulting in a longer lifespan (Dillin 

et. al., 2002; Lee et. al., 2003).  Interestingly, slight increases in ROS have also been found to 

increase lifespan, likely due to the activation of beneficial stress responses. (Yang and Hekimi, 

2010; Schulz et. al., 2007; Zarse et. al., 2012).   

Another source of lifespan extension lies in caloric restriction.  This mechanism is not 

specific to C. elegans; the lifespan of a number of organisms such as yeast, flies, and rodents can 

be extended up to 50% by reducing caloric intake (Schaffitzel and Hertweck, 2006).    The 

specific mechanisms, however, are not fully understood and are controversial.  Two hypotheses 

being investigated are that caloric restriction reduces the metabolic rate, and/or that caloric 

restriction reduces insulin/IGF-1 signaling (Bordone and Guarente, 2005; Walker et. al., 2005).   

As a worm ages, there are a variety of physiologic changes that occur, such as decreased 

pharyngeal pumping, decreased movement, cessation of reproduction, and muscle wasting 

(Collins et. al., 2008).  These changes are also observed in animals with an extended lifespan.  It 

has been shown that mitochondria are critical in energy metabolism, as well as the fact that 

mitochondrial function declines as an animal ages (Navarro and Boveris, 2007; Shigenaga et. al., 

1994).  It is possible that the deterioration of the mitochondria as the animal ages helps to cause 

some of the physiologic changes associated with aging.  There are a number of C. elegans 

mutants that are used to study the effect of mitochondrial function on lifespan.  mev-1, and gas-1 

are two mutants that shorten lifespan when mutated (causing hypersensitivity to oxygen and 
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superoxides), while clk-1, isp-1, lrs-2, and nuo-6 extend lifespan when mutated, likely due to a 

decrease in oxygen consumption, slight overall ROS or the superoxide anion increase, and 

slower growth (Ishii et. al., 1998; Kayser et. al., 2001; Wong et. al., 1995; Feng et. al., 2001; Lee 

et. al., 2003; Yang and Hekimi, 2010).   

 

XI. ROS 

Reactive Oxygen Species (ROS) are generated when oxygen is reduced, and include 

hydrogen peroxide, hydroxyl radical, and superoxide.  Complex III of the respiratory chain is 

capable of releasing superoxides into the intermembrane space of the mitochondria.  Large 

increases in ROS can cause damage to proteins, lipids, and DNA.  However, a low increase can 

activate signaling pathways leading to proliferation and transcription (Trachootham et. al., 2008; 

Droge, 2002; Thannickal and Fanburg, 2000).  Cellular respiration is a major source of ROS in 

cells, and it has been well documented that ROS are upregulated in tumors and can lead to 

induction of signaling networks causing tumorigenesis and metastasis (Weinberg and Chandel, 

2009).  A variety of mechanisms exist to counteract the effect of superoxides, namely superoxide 

dismutases (SODs).  SODs convert the superoxide into hydrogen peroxide, which will then be 

eliminated by a variety of other peroxidases and peroxiredoxins (Sena and Chandel, 2012).    

Recent studies have shown that a slight increase in ROS, rather than being harmful, will activate 

beneficial stress responses in animals extending their lifespan (Schulz et. al., 2007; Zarse et. al., 

2012).   
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Chapter 2: Materials and Methods 

 

 

C. elegans culture and maintenance 

C. elegans were grown on NGM plates seeded with 100 uL OP50 bacteria and maintained at 20
o 

C.  Worm plates were chunked once a week for strain maintenance or every 3 days to prepare for 

experiments.  For RNAi experiments, the mutant strain CF3152 (rrf-3 (pk1426)) was used, 

unless otherwise indicated.   

 

Bleaching of adult C. elegans 

When plates of worms became contaminated with mold or bacteria, it became necessary to 

bleach the worms and transfer them to a new plate.  A bleach solution was made using 30% 

bleach and 0.6 N KOH and filter sterilized.  On a fresh NGM + OP50 plate, a 20 uL spot of the 

bleach solution was placed along the edge of the plate.  Between 5 and 10 gravid contaminated 

animals were picked directly into the bleach solution spot.  The bleach solution will cause the 

animals to lay all eggs.  Incubate the plate at 20
o 
C, face up, overnight.  The following day, L1 

larvae are transferred to a new plate. 
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Generation of RNAi clone 

An RNAi clone was generated by amplifying a 558 base pair region 5’ of exon 1 to within exon 

3 of the wPNPase gene, BE0003N10.1.  (wPNPase 5’, Ex3 primers, see table 1) from genomic 

DNA.  The fragment was cloned into the EcoRV site of the pBSKS+ vector that had been t-tailed 

and transformed into DH5α cells.  This fragment was then subcloned into the IPTG-inducible 

L4440 expression vector using HindIII and XhoI enzymes, and transformed into HT115 cells for 

use in RNAi experiments. 

 

RNAi 

RNAi was distributed via feeding of bacteria expressing dsRNA.  dsRNA expression was 

induced by first growing overnight cultures at 37
o 

C of each bacteria in LB+ampicillin (final 

concentration of 100 ng/ul).  The overnight cultures were then diluted 1:100 in fresh 

LB+ampicillin (final concentration of 100 ng/ul) and incubated in a 37
o 
C shaker (225 rpm) for 3 

hours.  IPTG is added to a final concentration of 0.4 mM and returned to the 37
o 
C shaker for 2 

hours.  Additional ampicillin is added to a final concentration of 100 ng/uL, and a second dose of 

IPTG is added to a final concentration of 0.4 mM.  Plates are then seeded with 100 uL per 6 cm 

plate or 750 uL per 10 cm plate. 

 

Extracting DNA from C. elegans 
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Adult worms were picked into 20 uL of worm lysis buffer (WLB) with freshly added proteinase 

K at a concentration of 60 ng/uL.  The worm solution was frozen at -80
o 
C for 10-15 minutes, 

and then incubated at 65
o 

C for 60 minutes.  A 15 minute incubation at 95
o 
C is used to inactivate 

the proteinase K.  DNA is stored at -20
o 
C.  WLB consists of: 10 mM TRIS (pH 8.0), 50 mM 

KCl, 2.5 mM MgCl2, 0.45% Tween 20, 0.45% NP-40, 0.05% gelatin. 

 

Extracting RNA from C. elegans 

Worms from 15-20 6 cm plates were washed off with M9 and gathered in a 15 mL conical tube.  

The worms were pelleted at 1000 rpm for 5 minutes, and the supernatant discarded.  Worms 

were washed 3 more times in this manner, using 5 mL M9 for each wash.  After the last 

supernatant was removed, 200 uL Trizol reagent was added.  Worms were then freeze-cracked:  

alternating 20 seconds in liquid nitrogen followed by 1 minute thaw at 37
o 
C, repeated 

approximately 10 times.  The trizol/worm mixture was transferred to a 1.5 mL tube, and 200 uL 

chloroform added.  This was spun at 13,000 rpm at 4
o 
C for 15 minutes.  The clear fraction was 

transferred to a new 1.5 mL tube, and an equal volume of 70% isopropanol was added.  The 

Qiagen RNA prep kit was used from this point forward, following the manufacturer’s 

instructions.  RNA was either used for downstream procedures or stored at -80
o 
C.  

 

Generating cDNA from C. elegans 

In a 0.7 mL tube the following was added:  1 ug RNA, 100 ng oligo primer, 100 ng random 

primer, and DEPC H20 to 12 uL.  This was incubated at 70
o 
C for 10 minutes.  A mix of 1X 

MMLV RT buffer, 10 mM DTT, 1 mM dNTPs, 10 units RNasein (Promega), and 200 units 
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MMLV RT was added, and incubated at 37
o
C for one hour, followed by an incubation at 95

o 
C 

for 5 minutes.  The resulting cDNA was then used for downstream applications or stored at -20
o 

C. 

 

PCR  

PCRs were performed with the primers as indicated in Table 1.  The PCR was run as follows: 

1.5’ 94
o
 – [30” 94

o
 – 30” annealing temperature – 30” 72

o
]x30 – 7’ 72

o
.  PCRs were used for 

verification of primers prior to use in qPCR reactions, to generate RNAi clones, to generate the 

U6 guide RNA vector for use in CRISPR/Cas9 site directed mutagenesis, and to verify the 

presence of a mutation.  PCRs were run at a total volume of 6.25 uL for verification purposes, 

and 25 uL when products would be used for downstream purposes, such as cloning or 

sequencing. 

Table 1: Primer sequences and uses 

Primer name Sequence Notes 

U6 F 

[GATTAGACCACTTTTACCCGG]GTTTT

AGAGCTAGAAATAGCAAGT 

[] is guide RNA, rest is U6 vector 

sequence 

U6 R CAAACATTTAGATTTGCAATTC 

Reverse primer to generate guide 

RNA vector for CRISPR/Cas9 

pnpt1 deletion 

confirmation F ACCGTCAGCGTCAGCAATTG 

To test for mutation from 

CRISPR/Cas9 site-directed 

mutagenesis 

pnpt1 deletion 

confirmation R TTACCTGAGTTTCATAGGAATTT 

To test for mutation from 

CRISPR/Cas9 site-directed 

mutagenesis 

w act-2 F ATCGTCCTCGACTCTGGAGATG worm actin; as a loading control 

w act-2 R TCACGTCCAGCCAAGTCAAG worm actin; as a loading control 

fzo-1 F TTTGTGTCGATGTCCCTGCT qPCR 

fzo-1 R GAATCGGAACTCGAGGTCTT qPCR 

wPNPase 5’F AAGTGCCAGCGATCGAGACA Generating knockdown clone 
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wPNPase ex3R CGTTGTCTCCGAATGAAGCA Generating knockdown clone 

COIII R  TATGCATACCTTGAAAGTCT 

qPCR testing for polycistronic 

transcripts 

COIII component 

R ATAATCACACTACTTCAACA qPCR testing for total mtDNA 

COIII component 

F AGACTTTCAAGGTATGCATA qPCR testing for total mtDNA 

ctb-1 F AAGATGACTAGGTCAATGCA 

qPCR testing for polycistronic 

transcripts 

wPNPase ex9 F ATGATGAATGATGTGCTCGA qPCR 

wPNPase ex10R GGATTCAGGCTTAGGTGGTT qPCR 

  

Table 2: Primer pairs and annealing temperature 

Primer pair Annealing temperature (
o
C) 

U6F/U6R 50 

pnpt1 deletion confirmation F/R 52 

w act-2 F/R 60 

fzo-1 F/R 52 

ctb-1 F/COIIIR 60 

wPNPase ex9F/ex10R 60 

wPNPase 5'F/wPNPase ex3R 55 

COIII component F/R 57 

 

qPCR 

qPCRs were performed at 60
o
 annealing temperature unless otherwise indicated (Table 2).  1X 

SYBR Green mix (Life Technologies) was used in conjunction with the primers at a final 

concentration of 0.94 pmol/ul (Table 1) and cDNA diluted 1:16 in a 20 uL single reaction.  

Reactions were run in triplicate in a 96 well plate, with a standard curve generated for each 

primer set, with dilutions made at 1:4, 1:8, 1:16, 1:32, and 1:64.  Standard curves used control 



 

 

20

(L4440) cDNA.  This standard curve was then used to generate quantities in the experimental 

wells and degree of knockdown calculated via the following equation:  
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Egg laying assays 

Worms for egg laying assays were age-matched by picking L4 worms onto NGM + carbenicillin 

plates containing L4440 or Ex3 bacteria and allowed to mature into adults and lay eggs, about 24 

hours.  The following day, adult worms were removed from the plates and the eggs allowed to 

mature into adults over the next 3 days.  These adults were then used to perform the egg laying 

assay.  One adult worm was picked onto each of ten 2.5 cm NGM + carbenicillin plates.  Worms 

were left on plates for a total of 12 hours, and then removed and eggs counted.  A one-way 

analysis and t-test was performed with the JMP program. 

 

Lifespan Assays 

Lifespan assays were performed using CF3152 worms unless otherwise noted, with the indicated 

bacteria for RNAi.  Lifespan assays combining mutant worms with RNAi used MQ887 (isp-1; 

mutation in iron sulfur protein in complex III), MQ1333 (nuo-6; mutation in NUDFB4 in 

complex I), or CB4876 (clk-1; mutation in ubiquinone synthesis pathway) strains with the 

indicated bacteria.  Approximately 10 L4 worms were picked onto four 6 cm plates with one of 

each of the respective bacteria and allowed to mature into adults, and lay eggs; a period lasting 

24 hours.  The following day, adult worms were removed from the plates, and the eggs allowed 

to mature into adults.  120 adults were picked onto a large plate and the assay initiated at day 0.  
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Worms were transferred daily or every other day during the duration of the egg laying period, or 

approximately 2 weeks.  Once the egg-laying period ceased, worms were allowed to remain on 

the same plate provided sufficient food was present.  Worms were considered deceased when a 

gentle prod with the end of a pick did not cause any movement.  If a worm died due to other 

causes, such as bagging, exploding, or becoming desiccated on the wall, they were considered 

censored and not included in the statistical analysis.  Each experiment was performed with three 

biological trials.  Survival analysis was performed using the JMP program, a Kaplan meier 

survival curve generated, and the Wilcoxon score used to determine significance.   

 

Adult-initiation Lifespan Assays 

Lifespans were performed with CF3152 worms that did not develop with RNAi-mediated 

knockdown.  To age-match worms, approximately 10 L4 worms were picked onto four 6 cm 

NGM plates with OP50 bacteria and allowed to mature into adults, and lay eggs, a period of 24 

hours.  The following day, adult worms were removed from the plates, and the eggs allowed to 

mature into adults over the next 3 days.  120 adults were picked onto a large NGM + 

carbenicillin plate with RNAi bacteria (control L4440 or knockdown Ex3) and the assay initiated 

at day 0.  Lifespans were conducted as stated above. 

 

PQ and NAC Lifespan Assays 

Paraquat (PQ) plates were prepared by adding PQ to NGM + carbenicillin plates at a final 

concentration of 0.05 mM.  NAC plates were prepared by adding NAC to NGM + carbenicillin 

plates at a final concentration of 10 mM.  Lifespan assays were performed using CF3152 worms, 
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with the indicated bacteria for RNAi.  L4 worms were picked onto four large plates with one of 

each of the respective bacteria as well as one of each of the plate treatments [L4440 + 

NGM/carb, L4440 + NGM/carb/PQ, L4440 + NGM/carb/NAC, Ex3 + NGM/carb, Ex3 + 

NGM/carb/PQ, and Ex3 + NGM/carb/NAC] and allowed to mature into adults, and lay eggs, a 

period lasting 24 hours. The following day, adult worms were removed from the plates, and the 

eggs allowed to mature into adults over the following 3 days.  120 adults were picked onto a 

large plate and the assay initiated at day 0.  Lifespans were conducted as previously stated. 

 

ROS Assay 

Approximately 10 L4 worms were picked onto control (L4440) or knockdown (Ex3) bacteria 

and allowed to mature and lay eggs; a period lasting 24 hours.  Adults were removed from the 

plates the next day.  Eggs were allowed to mature into adults over the next three days.  Plates 

were washed with M9, and worms were rinsed 3x with M9 to remove bacteria.  A 96 well plate 

was prepared per AmplexRed (Life Technologies) manufacturer’s instructions, and 

approximately 50 adult worms were aliquoted into each well.  An absorbance reading was taken 

at 540 nm, and an average taken.  The readings from knockdown and control animals were 

compared using a t-test. 

 

Visualization of Mitochondrial Network 

L4 worms were picked onto control (L4440) or knockdown (Ex3) bacteria and allowed to mature 

and lay eggs for 24 hours.  Adults were removed from the plates the next day.  Eggs were 

allowed to mature into adults over the next 3 days.  Mitotracker Red was used to stain live 
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worms; the stain was diluted according to manufacturer’s instructions, and 50 uL aliquoted into 

microfuge tubes.  Twenty live adult worms were picked into each well, and allowed to incubate 

for 30 minutes at room temperature.  Worms were rinsed in M9 before being mounted on a 10% 

agar pad on a slide.  Agar pads were generated by placing a 20 uL drop of liquid agar on a slide 

and then placing a second slide on top of the drop, flattening it.  The second slide was removed 

after the agar had solidified; usually after one or two minutes.  Slides were imaged on an 

LSM700 confocal microscope at 200X magnification.  Mitochondrial  networks were quantified 

using ImageJ software.  Microscopy was performed at the VCU Department of Anatomy and 

Neurobiology Microscopy Facility, supported, in part, with funding from the NIH-NINDS 

Center core grant (5P30NS047463). 

 

Imaging of Mitochondria 

L4 worms were picked onto control (L4440) or knockdown (Ex3) bacteria and allowed to mature 

and lay eggs.  Adults were removed from the plates the next day.  Eggs were allowed to mature 

into adults.  Plates were washed with M9 to gather worms, and the worms were washed 3X to 

remove traces of bacteria.  Whole worms were then fixed in 1% paraformaldehyde and 2.5% 

glutaraldehyde in 0.05 M sodium cacodylate buffer with 0.1 M sucrose for 3-4 days, followed by 

a post fix of 2% osmium tetroxide in 0.1 M sodium cacodylate buffer, embedded in resin (Embed 

812 embedding resin [Electron Microscopy Sciences]), and slices taken for imaging with a TEM.  

Images showing a cross-section in the pharyngeal region were chosen for further analysis, 

looking at the size and location of mitochondria, with area measured as the longest axis by the 

shortest axis.  Fixing, resin embedding, and TEM microscopy were performed by the VCU 
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Department of Anatomy and Neurobiology Microscopy Facility, supported, in part, with funding 

from the NIH-NINDS Center core grant (5P30NS047463). 

 

NAD+/NADH Assay 

The BioAssay Systems EnzyChrom NAD+/NADH Assay kit was used to measure respiration in 

C. elegans.  Whole animals were used in this assay.  They were initially freeze-cracked by 

alternating 20 seconds in liquid nitrogen followed by a 1 minute thaw at 37
o 

C, repeated 10 

times.  Worms were then homogenized using a pestle in 1.5 mL tubes with appropriate buffers, 

as recommended by manufacturer’s instructions.  A calibration curve was also created following 

manufacturer’s instructions.  The optical density (OD) was measured at time point 0 and after a 

15 minute incubation at room temperature at 565nm.  The NAD(H) ratio was calculated using 

the provided equation:  �������� �  
∆���� !"#$∆��%"�&'

()*+, �-./0�
 1 2  �34� where n is the dilution 

factor, if used. 

 

Creation of PNPase mutants 

The CRISPR/Cas 9 system was used to create deletions in a targeted area of PNPase.  A 20 

nucleotide guide RNA sequence was cloned via the Q5 site directed mutagenesis kit (NEB) in a 

10 ul reaction into the PU6::unc-119_sgRNA vector (addgene) (see table 1 for primer 

sequences).  The Gibson assembly kit (NEB) was used following manufacturer’s instructions to 

re-circularize the vector.  Peft-3::cas9-SV40_NLS::tbb-2 3’UTR (addgene) was used as the Cas9 

vector, and mCherry was used as an injection marker.  Dr. Laura Mathies performed the 
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injections into the gonad of N2 wildtype worms.  Worms were allowed to recover overnight from 

the injections, and then individually picked onto NGM + OP50 6 cm plates and their progeny 

scored.  Any L1 larvae that fluoresced were individually picked onto NGM + OP50 6 cm plates 

and allowed to grow to starvation.  An aliquot of these worms was taken for DNA extraction and 

subsequent sequencing. 

 

 

 

Chapter 3: Results 

 

Generation of a PNPase knockdown clone in C. elegans 

Previous experiments in whole-animal models using PNPase knockout identified it as a gene 

vital to embryonic development in mice.  Later knockout experiments were limited to a targeted 

liver knockout, which proved to be compatible with life (Wang et. al., 2010).  In the C. elegans 

model, an RNAi approach was decided upon (as described in Chapter 2), especially after 

evaluation of an available deletion mutant demonstrated that two genes were interrupted rather 

than just PNPase. 

An RNAi clone was generated, called Ex3 and spanning the region 5’ to exon 1 through exon 3, 

and evaluated for efficacy in knocking down PNPase.  It was found that knockdown animals had 

an average of 63% reduction of mRNA and a 58% reduction in protein levels (Figure 6).   

 

 



 

Figure 6:  Validation of PNPase

63% knockdown of mRNA.Three biological replicates were performed 

B.  Western blot indicating a 58% reduction in protein levels.  HO

positive control, and no sample was loaded in the second lane  

Characterization of Fertility and Fecundity of PNPase knockdown in 

The deletion mutant had two phenotypes associated with it: lethality and sterility.  As 

knockdown worms were viable and laying

phenotypes would be reproduced in this system.  However, we did wish to verify that there was 

not a difference in fecundity in knockdown worms when compared to control.  Assays to 

quantify the number of eggs laid by an animal were also performed to determine if differences in 
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Three biological replicates were performed , and an average taken.  

B.  Western blot indicating a 58% reduction in protein levels.  HO-1 cell lysate served as the 

trol, and no sample was loaded in the second lane   

Characterization of Fertility and Fecundity of PNPase knockdown in C. elegans

The deletion mutant had two phenotypes associated with it: lethality and sterility.  As 

knockdown worms were viable and laying eggs, it was unlikely that either of these two 

phenotypes would be reproduced in this system.  However, we did wish to verify that there was 

not a difference in fecundity in knockdown worms when compared to control.  Assays to 

laid by an animal were also performed to determine if differences in 
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PCR results indicating an average of 

, and an average taken.  

1 cell lysate served as the 

C. elegans 

The deletion mutant had two phenotypes associated with it: lethality and sterility.  As 

eggs, it was unlikely that either of these two 

phenotypes would be reproduced in this system.  However, we did wish to verify that there was 

not a difference in fecundity in knockdown worms when compared to control.  Assays to 

laid by an animal were also performed to determine if differences in 



 

 

27

fecundity is observed.  Neither fertility nor fecundity was found to be affected in the knockdown 

animals (Figure 7).   

 

 

 

Figure 7: PNPase knockdown does not affect egg laying.   Images showing three trials 

indicating no significant difference in the number of eggs laid between knockdown (Ex3) or 

control (L4440) animals.  Each dot represents egg count of one animal; n=10 for each group in 

each trial.   P-values 0.005, 0.32, 0.31. 

Characterization of Lifespan of PNPase knockdown in C. elegans 

Further investigation into any potential phenotype associated with PNPase knockdown in C. 

elegans led us to evaluate if knockdown had any effect on the lifespan.  As mentioned, there are 

well characterized mitochondrial mutants that exhibit lifespan extension or reduction.  Given the 

location of PNPase in the mitochondria, we hypothesized that knockdown would affect lifespan.  

It was found that lifespan in animals with reduced PNPase was modestly but significantly 

extended (Figure 8, Table 3)  Variability in the differences in mean lifespans between each trial 

are likely due to variability in knockdown efficacy. 
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A:      B: 

      

C: 

 

Figure 8: PNPase knockdown extends lifespan in C. elegans.  A-C are three independent trials 

of lifespan analyses.  Knockdown animals (Ex3) have an increase in lifespan when compared to 

control animals (L4440)  

Table 3: Mean lifespans and p-values for trials A-C as seen in Figure 8 

Trial Mean lifespan p-value 

A: 

L4440 14 days 0.035 

A: Ex3 19 days 

B: 

L4440 17.3 days 0.0092 

B: Ex3 19.1 days 

C: 

L4440 23.8 days <0.0001 

C: Ex3 34.7 days 

 

In the initial model, worms were exposed to PNPase knockdown from the time prior to oocyte 

formation through death.  We wanted to determine if this long-term exposure was necessary to 
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see the lifespan extension effect, or if adult initiation of PNPase knockdown would result in 

lifespan extension as well.  It was determined after multiple trials indicating opposing results or 

no difference in lifespan that adult initiation of PNPase knockdown show inconsistent results, 

indicating that to observe consistent lifespan extension with PNPase knockdown, there must be 

knockdown throughout development (Figure 9, Table 4). 

A:      B: 

       

C:      D: 

       

Figure 9: Adult initiation of RNAi produces inconsistent results. Lifespan was extended in 

control, knockdown, or neither group in different trials. 
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Table 4: Mean lifespans and p-values for trials A-D in Figure 9. 

Trial Mean lifespan p-value 

A: L4440 16.3 days 0.0006 

A: Ex3 19.3 days 

B: L4440 19.49 days 0.039 

B: Ex3 17.47 days 

C: L4440 17.37 days <0.0001 

C: Ex3 13.4 days 

D: L4440 20 days 0.88 

D: Ex3 20 days 

 

PNPase knockdown acts to extend lifespan in a similar manner as Complex I and Complex 

III mutants 

Due to one of the reported locations of PNPase as being the mitochondria, lifespan extension 

pathways involving the mitochondria were queried.  Three previously studied mutants, nuo-6, 

isp-1, and clk-1, coding for NUDFB4 (a conserved subunit in Complex I), iron sulfur protein in 

Complex III, and clock abnormal protein 1 encoding the enzyme demethoxyubiquinone mono-

oxygenase, respectively, were fed pnpt-1 RNAi to create PNPase knockdown animals harboring 

mutations in genes important in mitochondrial function.  If the mutant genes and pnpt-1 are 

acting in different lifespan extension pathways, it is expected that there would be further lifespan 

extension in the mutant/knockdown animals.  Conversely, if the mutant genes and pnpt-1 are 

acting in the same lifespan extension pathway, it is expected that there will not be any further 

lifespan extension seen.  Lifespan experiments with these animals were performed, and it was 

found that the combination of the nuo-6 mutant with pnpt-1 RNAi and the isp-1 mutant with 

pnpt-1 RNAi did not further extend lifespan.  However, the combination of the clk-1 mutant with 

pnpt-1 RNAi did have an extended lifespan when compared to clk-1 mutant animals fed with 

vector only bacteria.  These results indicate that PNPase knockdown increases lifespan in a 
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similar manner to the nuo-6 and isp-1 mutants but via a different pathway than the clk-1 mutant 

(Figure 10, A-C, Tables 5-7). 

A: 

     

 

 

 

B: 
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C: 

     

 

Figure 10: Combining PNPase knockdown with three mitochondrial mutants reveals 

selectivity in lifespan extension pathway  A)  isp-1 mutant animals on RNAi or control 

bacteria.  B)  clk-1 mutant animals on RNAi or control bacteria.  C) nuo-6 mutant animals on 

RNAi or control bacteria.   
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Table 5:  Mean lifespans and p-values for isp-1 mutant animals on RNAi or control bacteria, 

corresponding to Figure 10A 

Trial: isp-1 Mean lifespan p-value 

A: L4440 21.7 days 0.18 

A: Ex3 23.8 days 

B: L4440 14.3 days 0.28 

B: Ex3 16 days 

C: L4440 19 days 0.49 

C: Ex3 17.1 days 

 

Table 6:  Mean lifespans and p-values for clk-1 mutant animals on RNAi or control bacteria, 

corresponding to Figure 10B 

Trial: clk-1 Mean lifespan p-value 

A: L4440 17 days 0.012 

A: Ex3 19.64 days 

B: L4440 14.68 days 0.2 

B: Ex3 18.1 days 

C: L4440 19.1 days 0.0012 

C: Ex3 17.5 days 

 

Table 7:  Mean lifespans and p-values for nuo-6 mutant animals on RNAi or control bacteria, 

corresponding to Figure 10C 

Trial: nuo-6 Mean lifespan p-value 

A: L4440 18.79 days 0.33 

A: Ex3 19.89 days 

B: L4440 16.1 days 0.9 

B: Ex3 16.8 days 

C: L4440 18.79 days 0.32 

C: Ex3 19.89 days 

 

 

PNPase knockdown extends lifespan by increasing ROS 

ROS are derived from superoxide, which is generated when oxygen is reduced by one electron.  

Complex III of the respiratory chain is capable of releasing superoxides into the intermembrane 

space of the mitochondria.  A variety of mechanisms exist to counteract the effect of 
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superoxides, namely superoxide dismutases (SODs).  SODs convert the superoxide into 

hydrogen peroxide, which will then be eliminated by a variety of other peroxidases and 

peroxiredoxins (Sena and Chandel, 2012).   Recent studies have shown that a slight increase in 

ROS will activate beneficial stress responses in animals, causing an extension in lifespan (Schulz 

et. al, 2007; Zarse et al., 2012).  Mitochondrial mutants, such as nuo-6 and isp-1, exhibit 

extension in lifespan (Yang and Hekimi, 2010).  A mutation in clk-1, an enzyme required for 

synthesis of ubiquinone, has also been shown to extend lifespan, though through an unrelated 

pathway.  clk-1 animals have enhanced ROS levels, but normal superoxide generation (Yang and 

Hekimi, 2010). 

 

To determine if PNPase knockdown extends lifespan via an increase in ROS, pnpt-1 RNAi was 

used in conjunction with either the superoxide generator paraquat (PQ) or the antioxidant NAC.  

While the PQ concentration used (0.05mM) was sufficient to extend the lifespan of control 

animals to that of pnpt-1 knockdown animals, it did not cause a further extension of lifespan in 

the pnpt-1 knockdown animals (Figure 12).  This would suggest that the lifespan extension in 

pnpt-1 knockdown animals is caused by an increase in superoxides and that additional increase 

will not cause further increase in lifespan.  Alternatively, NAC reduces the amount of ROS.  

pnpt-1 knockdown animals in the presence of NAC had a reduction in lifespan to that of the 

control animals.  These results also indicate that ROS plays a role in pnpt-1 knockdown lifespan 

extension. 

 

A:             B: 



 

 

35

          

 

C:     D: 

 

  
Figure 11: PQ does not further extend lifespan in knockdown animals Lifespans performed 

with pnpt-1 RNAi worms and empty vector control on plates containing paraquat (0.05mM).  

Controls (“Ex3 control” and “L4440” in the figure legends of A-C and “L4440” in D) were 

grown on NGM plates.  D was an additional trial performed to include further controls, and 

performed only once. 

 

 

 

 

 

 

Table 8: Mean lifespans and p-values of worms exposed to paraquat corresponding to Figure 11, 

A-D 

Trial Mean lifespan p-value 

A: L4440 - PQ 19.1 days 0.53 

A: Ex3 - PQ 19.8 days 

A: Ex3 control 19.7 days 

B: L4440 - PQ 22.7 days 0.06 

B: Ex3 - PQ 20.1 days 
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B: Ex3 control 22 days 

C: L4440 - PQ 21.8 days 0.14 

C: Ex3 - PQ 19.5 days 

C: Ex3 control 21.6 days 

D: L4440 -NGM 14 days <0.0001 

D: Ex3 - PQ 19.5 days 

D: L4440 - PQ 21 days 

 

A:      B: 

      

C:      D: 

         

Figure 12: NAC abolishes lifespan extension seen in knockdown animals. Three trials of 

lifespan performed with pnpt-1 RNAi worms and empty vector control on plates containing 

NAC (10mM).   Panel D was an additional trial with further controls, and performed only once. 

Table 9: Mean lifespans and p-values of worms exposed to NAC corresponding to Figure 12, A-

D 

Trial Mean lifespan p-value 

A: L4440 17.3 0.45 

A: Ex3 16.7 

B: L4440 16.3 0.54 

B: Ex3 17.3 

C: L4440 15.6 0.79 

C: Ex3 15.7 
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D: L4440  15.6 0.0006 

D: Ex3 - NAC 15.7 

D: Ex3-NGM 19 

 

 

We wanted to quantify the degree to which knockdown animals had in increase in ROS 

production, and to determine if it was indeed a measurable amount.  The amount of ROS 

production in the animals was quantified using AmplexRed kit and measuring the ABS of each 

group (See Chapter 2).   It was found that the pnpt-1 knockdown animals had significantly higher 

ROS production when compared to control animals, as indicated by a color change and 

corresponding increase in ABS (Figure 13).  This indicates that pnpt-1 knockdown increases 

ROS production in a significant amount. 

 

 

Figure 13: PNPase knockdown increases ROS production.  pnpt-1 knockdown increases ROS 

production when compared to control over 3 trials. p-value = 0.04 

 

PNPase knockdown affects respiration 

To determine if PNPase knockdown has an effect on respiration, as stated in prior knockdown 

studies, we used the NAD+/NADH ratio as a measure of respiration.  Using the EnzyChrom 
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NAD+/NADH Assay kit by BioAssay Systems, a ratio of NAD+ to NADH was generated in 

knockdown and control animals, and it was found that knockdown animals had a larger ratio 

(6.833) than control animals (5.129), indicating more respiration in knockdown animals (Figure 

14).  However, if the raw data are examined, there is an order of magnitude difference between 

the knockdown and control animals in the levels of NAD+ and NADH, with the reduction seen 

in knockdown animals.  These results are further confounded by the fact that the NAD+/NADH 

ratio and the number and size of the mitochondria are inversely related, unlike our previous 

mitochondrial data which indicated that knockdown animals have larger or more numerous 

mitochondria. 

                           

 

Figure14:  PNPase knockdown increases the NAD+/NADH ratio.  The ratio of NAD+/NADH 

as determined in L4440 control animals was 5.129, compared to Ex3 knockdown animals at 

6.833. 

PNPase knockdown increases mitochondrial network 

To further elucidate the mechanism of lifespan extension and the increase in ROS, we focused on 

the integrity of mitochondria in these animals.  The mitochondrial network was first visualized as 

a preliminary look at the mitochondria and mitochondrial dynamics.  A mitochondrial network is 

formed as mitochondria divide and fuse, forming an interconnected network.  The network 
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dissolves during apoptosis, which yields numerous small mitochondria (Youle et. al., 2008).  

Visualization of the mitochondrial network was performed by staining live worms with 

MitoTracker Red (Figure 15).  The network was quantified using ImageJ software and it was 

observed that pnpt-1 knockdown animals had a significantly increased network (68.18%) when 

compared to control animals (38.32%). 

 

 

 

 

A: 

 

B: 
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Figure 15:  PNPase knockdown increases the mitochondrial network.  A & B) Imaging of 

mitochondrial network via MitoTracker.  Control (A) had a network (% of the signal in the ROI 

that is above threshold) of 38.32% and knockdown (B) had a network of 68.18%, with a p-value 

of 0.011.   

 

PNPase knockdown does not affect cristae structure 

The structure of the mitochondria was also examined in whole animal slices under TEM.  

Interestingly, pnpt-1 knockdown animals had significantly larger mitochondria when compared 

to control animals (Figure 16 A&B).  Mitochondria were measured along the longest and 

shortest axis, and the average area of control mitochondria was 0.32 um
2
 whereas the average 

area of knockdown was significantly larger at 0.75 um
2
 (p-value 0.008).  The cristae were also 

examined in the pnpt-1 knockdown animals and it was determined that there was no observable 

difference in the cristae structure or organization when compared to control animals (Figure 16 

C&D). 

  

A: Images from control animals 



 

B: Images from knockdown animals

 

 

 

 

 

C: 

   

B: Images from knockdown animals 
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D: 

 

Figure 16: Knockdown affects mitochondria size but not cristae structure  A & B) TEM 

images of mitochondria from control (A) and knockdown animals (B), 10000X.  Knockdown 

animals had significantly larger mitochondria, p-value 0.008.  C & D) TEM images of 

mitochondria from control (C) and knockdown (D) animals, 60000X.  Examination of the cristae 

did not show any difference.  Red arrows indicate mitochondria. 

 

PNPase knockdown increases the amount of polycistronic mitochondrial transcripts 

 

The mitochondrial genome is a circular piece of DNA that is transcribed in one long 

polycistronic transcript and later processing is necessary to separate individual RNAs (Figure 

17).  RNase P is one enzyme responsible for this processing, specifically the excising of 

intervening tRNAs.  As PNPase is involved in the import of RNase P RNA, we wanted to 

investigate if there was an effect on the mitochondrial transcript in knockdown animals.  The 
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amount of polycistronic transcripts was quantified at the junction of ctb-1 and COIII.  The 

amount of polycistronic transcript and total transcript was determined via qPCR, and it was 

found that there was 66 times more polycistronic transcripts in the knockdown animals when 

compared to control, indicating that the mitochondrial transcript is not being properly spliced 

(Figure 18).   

 

Figure 17:  Locations of genes and tRNAs in the C. elegans mitochondrial genome. The C. 

elegans mitochondrial genome, indicating the locations of genes as well as intervening tRNAs 

(bubbles).  The mitochondrial genes are transcribed as a polycistronic transcript and later cut. 

(www.wormbook.org) 
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Figure 18:  PNPase knockdown increases polycistronic transcripts.  Knockdown(Ex3) 

animals have 66 times more polycistronic transcripts when compared to control (L4440).  The 

graph represents a single trial. 

 

PNPase knockdown increases fzo-1 

Another target of ROS are the mitochondrial fusion proteins mfn 1 and mfn 2 in humans.  An 

increase in ROS increases the expression of these proteins, leading to an increase in 

mitochondrial fusion.  mfn2, mitofusion-2, is a GTPase located in the outer membrane of the 

mitochondria that, along with mfn1, is essential for mitochondrial fusion.  Mouse cells lacking 

mfn1 and 2 showed a decrease in membrane potential as well as a reduced oxidative 

phosphorylation (OXPHOS) (Chen et. al., 2005).   Levels of fzo-1 mRNA, the worm homolog of 

mfn2, were evaluated to determine if knockdown of PNPase was increasing fzo-1 expression and 

potentially linking the increase in ROS to the increase in mitochondrial size.  An increase in 

mitochondrial fusion would cause larger mitochondria. Investigation into fzo-1 showed that there 

was an increase in the amount of transcript in knockdown animals (Figure 19).   
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Figure 19: PNPase knockdown increases fzo-1 expression.   fzo-1 expression is increased two-

fold in knockdown (Ex3) animals when compared to control (L4440).  The graph represents a 

single trial. 

 

Generation of PNPase mutant strains 

The CRISPR/Cas9 system was used to generate targeted deletions in PNPase (see Table 1 for 

primer sequences).  Of 14 injected worms, 9 individual strains were recovered that had the 

potential for carrying the mutation.  These were sent for sequencing, and it was determined that 3 

strains had single base pair deletions, two of which (6 and 9) resulted in a frameshift and a 

premature stop codon.  Strain two had a single base pair deletion resulting in a frameshift 

mutation and early stop codon.  Two strains (strain 6 and 9) had identical deletions while strain 2 

had a different deletion (Figure 20).     
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Figure 20: Deletion strains.  Clones 6 and 9 had identical deletions, resulting in a frameshift 

and early stop codon.  Clone 2 had a different deletion, also resulting in a frameshift seven 

nucleotides 3’ of the clone 6 and 9 deletion and an early stop codon. 

Overall, we determined that knocking down PNPase in the C. elegans model is not lethal, 

leading to the creation of a whole-animal model that allows for systemic characterization of 

PNPase knockdown.  We determined that knockdown increases lifespan via an increase in ROS 

production.  Additionally, we quantified the amount of ROS being produced by the knockdown 

animals.  Investigation into mitochondrial networks and morphology showed that knockdown 

animals have an increased mitochondrial network as well as larger mitochondria.  However, we 

did not find that knockdown animals had disordered cristae, as has been reported in other 

organisms.  Interestingly, we found that the NAD+/NADH ratio is higher in knockdown animals, 

which would seem to conflict with our other results.  This finding needs to be further 

investigated.  We further looked into the possibility of accumulation of polycistronic transcripts 

in the mitochondria as a result of decreased RNase P import, and found that there was a large 
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increase in the amount of polycistronic transcripts in knockdown animals.  Moreover, we found 

that there was an increase in the amount of fzo-1, a ROS-induced protein responsible for 

mitochondrial fusion, and potentially linking PNPase knockdown with the increased 

mitochondrial size observed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

48

 

 

 

 

 

Chapter 4: Discussion 

 

PNPase knockdown in C. elegans increases lifepan  

This study was undertaken in an attempt to determine the effect of knocking down 

PNPase on a whole animal.  Previous experiments performed in mice proved that a whole animal 

knockout was embryonic lethal, indicating that PNPase was necessary during the course of 

mammalian development (Wang et. al., 2010).  Using C. elegans allowed us to use RNAi to 

knockdown the gene, still allowing for a low level of expression in the event that PNPase was 

also necessary to development in lower organisms.  Confirming our results with a deletion 

mutant would answer the question of whether PNPase is necessary for C. elegans development.  

Additionally, the use of a deletion mutant will aid in eliminating the variability in lifespan 

extension seen in the knockdown model, with differences in means ranging from 2 to 11 days.  

During the course of our investigation into phenotypes created by knocking down this enzyme in 

C. elegans, it was discovered that knockdown significantly extends lifespan when the 

knockdown is present starting at oocyte formation.  However, only initiating knockdown once 

animals reach adulthood was not sufficient to cause a repeatable phenotype.  Adult-initiation 

lifespans showed a wide variety in results, indicating the probability that initiating knockdown 

only during adulthood does not produce consistent effects as well as indicating the likelihood 

that the mechanism causing the increase in lifespan is present starting at an early stage in 

development.  Further investigation into exact timing of knockdown may prove to be insightful, 
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as it would help determine exactly at what point in development knockdown has to be present 

from in order to cause lifespan extension.  

Of further interest in this lifespan extension would be an investigation into miRNA 

levels.  miRNAs that are traditionally degraded by PNPase would have higher levels in the 

knockdown model, and may also play a role in the lifespan extension observed.  Investigating 

miRNA levels via a microarray may lead to targets to investigate.  

 

 

PNPase knockdown increases ROS production 

To determine the potential cause of lifespan extension, we utilized three mitochondrial 

mutants in combination with knockdown RNAi.  Due to one of the locations of PNPase being 

reported as the mitochondria, we focused on lifespan extension pathways involving 

mitochondrial mutants.  In previous studies, nuo-6 and isp-1 mutants have increased superoxide 

anion generation but not an increase in overall ROS whereas clk-1 mutants have an increase in 

overall ROS but not the superoxide anion.  In the nuo-6 and isp-1 mutants, it is thought that the 

increase in superoxide can trigger mechanisms that slow down aging at the level of gene 

expression.  Alternatively, the lifespan extension of the clk-1 mutants is not entirely worked out.  

clk-1 mutants have impaired ubiquinone synthesis, which can affect a variety of cellular 

processes, as ubiquinone is found in all membranes as well as being a pro-oxidant and an anti-

oxidant (Yang and Hekimi, 2010).   

Additionally, application of NAC, an anti-oxidant on all types of ROS, abolishes lifespan 

extension seen in nuo-6 and isp-1 mutants but has no effect on the extension seen in clk-1 

mutants, indicating that ROS metabolism is not important to the increased lifespan in clk-1 
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mutant animals, as even in the presence of NAC their lifespan remains increased.  Further, PQ 

application significantly extended the lifespan of clk-1 mutant animals while not affecting that of 

nuo-6 and isp-1 animals, underlining the difference in superoxide levels between the two groups 

(Yang and Hekimi, 2010).   

It was found that the lifespan extension in PNPase knockdown animals modeled that of 

nuo-6 and isp-1 mutants, indicating a probable OXPHOS and/or superoxide production link.  It 

did not, however, follow the same pattern as the clk-1 mutant, which, given its different behavior 

from that of the other mutants, is not surprising.  This is a novel phenotype associated with this 

gene, and is worthy of further investigation.   

To delve further into the ROS production question, we used the superoxide generator 

paraquat (PQ) as well as the antioxidant NAC to determine if combining these with PNPase 

knockdown would have any effect on the lifespan extension being observed.  It was determined 

that the presence of PQ did not cause any further extension of lifespan in knockdown animals, 

though it was shown to increase the lifespan of control animals.  Additionally, application of 

NAC reduced the lifespan of knockdown animals to that of control animals, while having no 

effect on control animals.   

Additionally, the amount of ROS produced by knockdown and control animals was 

quantified, in order to determine the degree to which ROS, specifically superoxide, was 

increased in knockdown animals and it was found that knockdown animals were producing 

nearly 50% more superoxide than control animals.  The assay used measured superoxides via its 

conversion to hydrogen peroxide.  Combining these two results, it is probable that the lifespan 

extension seen in knockdown animals is being caused, at least in part, by an increase in 

superoxide production.  While it has generally been held that an increase in ROS is detrimental 
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to an organism, recent studies have shown that a slight increase in ROS, rather than being 

harmful, will activate beneficial stress responses in animals extending their lifespan (Schulz et. 

al., 2007; Zarse et. al., 2012).  This appears to be happening in knockdown animals, as lifespan 

extension is being caused by an increase in superoxide.  Measuring the overall ROS would also 

be informative, as there are many types of ROS in cells.  If one type of ROS is being increased, 

but there is not an overall increase in ROS, then that would indicate other types of ROS are being 

simultaneously decreased.  However, if there is an overall increase in ROS, then there is no 

compensation for the increase of one type.  In our model, there is an increase in superoxide.  I 

would expect that there is not an increase in overall ROS in our model, indicating that other 

types of ROS would be decreased.      

Of interest would be to determine if increasing other ROS will also cause an increase in 

lifespan, or if the increase being seen is due solely to superoxide increase.  Exposing animals to 

other common ROS, including hydrogen peroxide, hydroxyl radicals, peroxide, and hydroxyl 

ions, will identify if other ROS are able to increase lifespan in a similar manner as superoxide.   

Further investigation into the stress responses of C. elegans may help to link knockdown, 

increase in ROS, and extended lifespan.  Knockdown of PNPase could be causing a stress 

response in C. elegans, which in turn is triggering the increase in ROS and subsequent lifespan 

extension.  Of particular interest would be the effect of PNPase knockdown on the oxidative 

stress pathway, with the measurement of dopamine levels an indicator.  High levels of ROS 

trigger the oxidative stress pathway, and it has been shown that ROS induction can lead to 

reduced dopamine levels (Rodriguez et. al., 2013).  Another pathway of interest would be the 

hypoxic stress pathway, which has also been associated with oxidative stress.  Measuring the 
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levels of HIF-1 would indicate whether or not this pathway is being activated as a response to 

PNPase knockdown (Rodriguez et. al., 2013).   

 

 

PNPase knockdown increases the NAD+/NADH ratio 

To investigate the effect of PNPase knockdown on respiration, we measured the 

NAD+/NADH ratio and found that knockdown animals actually had a higher ratio when 

compared to control animals.  While the NAD+/NADH ratio can be affected at different points in 

the reaction pathway (changing pyruvate to lactate, for example), of immediate relevancy is the 

fact that Complex I of the respiratory chain is where NADH is reduced to NAD+.  This is one of 

the complexes examined in this study, with the use of the nuo-6 mutant.  Interestingly, an 

elevated NAD+/NADH ratio has been found to decrease mitochondrial content, increase 

autophagy, and induce mitochondrial fragmentation (Jang et. al., 2012).  NAD+ also activates 

SIRT1, which may promote cell cycle progression and longevity (Giannakou et. al., 2004).   

Our results seem to be in opposition to our other findings, as the NAD+/NADH ratio is 

inversely related to mitochondrial number and size.  We have found that knockdown animals 

have increased mitochondria and a greater mitochondrial network, yet are also showing an 

increased NAD+/NADH ratio.  Combining these data will require further investigation to paint a 

complete picture.  However, if the absolute numbers are investigated, we find an order of 

magnitude difference between the knockdown and control in the levels of NAD+ and NADH 

(NADH levels of 0.71 in the control compared to 0.069 in the knockdown, for example), a great 

reduction observed in knockdown animals.  This, too, may be worthy of further investigation, as 

the ratio itself may not be telling the full story and the absolute amount of respiration may affect 
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mitochondria function and its effect on lifespan.  Additionally, being able to directly measure 

respiration via a Clark electrode, which measures mitochondrial oxygen consumption, would be 

beneficial to further evaluate this data.  

 

 

PNPase knockdown affects mitochondrial network, morphology, and distribution 

Prior work done in C. elegans has indicated that mitochondrial defects result in a denser 

mitochondrial network (Lee et. al., 2003).  We tested the mitochondrial network, as well as 

imaging the individual mitochondria of knockdown animals and found that there was an increase 

in network in the knockdown animals when compared to control.  Further, knockdown animals 

had larger mitochondria when compared to the control animals, indicating a possible 

dysregulation of the fusion/fission rate of the mitochondria.  fzo-1, the worm homolog of mfn-2, 

is upregulated by ROS, causing increased mitochondrial fusion (Robb et. al., 2013).  Our 

findings of increased fzo-1 indicate a potential mechanism for the observed increase in 

mitochondrial network and dysmorphic mitochondria.   

Mitochondria are constantly dividing and fusing together, which help to fine-tune cellular 

processes including ROS and ATP production (Archer, 2013).  Fusion has also been shown to 

assist in alleviating cellular stress by causing the contents of damaged and undamaged 

mitochondria to mix (Youle, 2012).  Given the findings of filamentous and granular 

mitochondria, a decrease in membrane potential, and a decrease in the enzymatic activity of the 

respiratory complexes in HEK-293T cells as well as our findings of an increase in ROS 

production, an increase in the fusion rate may be expected in knockdown animals as a way of 

attempting to relieve the cellular stress caused by these alterations (Chen et al., 2006).  Further, 
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there is a growing body of evidence implicating disordered mitochondrial dynamics can 

contribute to complex diseases, including cancer and neurodegeneration.  Cancer cells have 

shown increased mitochondrial fragmentation, implicating the protein responsible for fission, 

drp1, as a potential cancer biomarker.  Investigation into heritable neurodegenerative conditions 

indicates that an increase in the fission rate, and a corresponding decrease in the fusion rate, can 

be harmful to neurons.  Heritable juvenile parkinsonism, for example, has a mutation in the 

PINK1-parkin pathway, which normally functions to reduce mitochondrial oxidative stress, 

prevent fission, maintain membrane potential, and maintain a fused mitochondrial network 

(Archer, 2013).   

While knockdown of PNPase has not yet been associated with a cancer phenotype, 

mutations in the gene in humans cause phenotypes mirroring that of mitochondrial disorders, 

which come with a complex set of presentations, neuropathy and hearing loss among them.  

Research into both these families has underscored the importance of PNPase in the import of 

small RNAs in mitochondrial function, though it may be interesting to investigate the 

mitochondrial dynamics of these individuals to determine if there is any additional mechanistic 

explanations (Vedrenne et. al., 2012; Ameln et. al., 2012).   

 

 

PNPase knockdown increases mitochondrial polycistronic transcript accumulation 

The downstream effects that knockdown of PNPase has, such as an increase in ROS, and 

the effect it has on mitochondrial fusion, can indicate potential therapeutic targets not only for 

the human disease associated with PNPT1 mutation but also cancer. We also showed that 

PNPase knockdown causes an accumulation of polycistronic transcripts in the mitochondria. 
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 This has two implications, either or both of which may play a role in the increase in ROS, and 

consequently the increase in lifespan, in knockdown animals.  First, an accumulation of 

polycistronic transcripts is rendering unavailable a number of mitochondrial-encoded subunits of 

the respiratory complexes, affecting each one with the exception of Complex II.  This could 

affect the availability of subunits  to form  respiratory complexes, and therefore causing the 

complexes to “leak” ROS as well as affecting their efficiency resulting in  the decrease in 

membrane potential seen previously (Chen et. al., 2006).   

A western blot can be used to quantify the components in the respiratory complexes.  

Specific antibodies would be necessary, and while this would not tell if the complexes 

themselves are being formed properly, it will be possible to determine if less RNA corresponds 

to less protein.  Further, to determine if a decrease in respiratory complexes is interrupting 

respiration, the mutants nuo-6 (Complex I mutation) and isp-1 (Complex III mutation) can be 

used.  Measuring the respiration in these mutants would show the effect these mutations have on 

respiration.     

A second implication is that the tRNAs are also not being excised resulting in less tRNAs 

available for protein translation.  This lack of available tRNAs may lead to fewer mitochondrial 

proteins being translated, among them subunits of the respiratory complexes.  As a lack of 

tRNAs would affect more than just the subunits of the respiratory complexes, and have a broader 

effect, this may explain why knockdown not only causes a decrease in membrane potential, but 

also dysmorphic mitochondria.  Teasing apart these two possibilities would be worthy of further 

investigation, though it is likely that they both contribute to the phenotypes being observed in 

knockdown studies.   
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Conclusions 

Our studies have shown that a decrease in the amount of PNPase causes an increase in 

lifespan via increased ROS production.  We have also shown that knockdown causes alteration 

in the fission/fusion ratio of the mitochondria, though we did not find disordered cristae reported 

by other groups.  It is possible that this is due to the fact that we are looking in the whole animal 

as opposed to cells, allowing for the action of other pathways and recovery mechanisms.    

Further studies are required to fully elucidate the mechanism of increased ROS 

production in knockdown animals, as well as the impact of the reduction in respiratory chain 

subunits.  It would be interesting to determine if the subunits are being formed properly in lower 

numbers, or if they are unable to be formed.  One way to approach this would be via a western 

blot analysis, with appropriate, specific antibodies.  This would give information on the ratio of 

the subunits, as well as relative subunit levels across groups.  To specifically determine subunit 

structure, protein crystallization would need to be carried out on extracted mitochondria.  

Further, determining if the accumulation of polycistronic transcripts is causing ROS to “leak” or 

if ROS levels are increased as a stress response would be enlightening.  Looking into levels of 

dopamine and HIF-1 would help to determine if animals are exhibiting an oxidative and/or 

hypoxic stress response.  Combining these insights with those gained by determining if 

appropriate levels of the respiratory complex subunits are being formed will help further the 

understanding of these phenotypes.  Further studies can be done on C. elegans PNPase mutants 

generated via the CRISPR/Cas9 system.  These mutants will allow for studies to be performed 

where there is no PNPase, or where PNPase is truncated.  This would be in contrast to the 

knockdown studies, where there is full-length PNPase present, though at lower levels than in 
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wild-type animals.  These insights can provide further information to the causes and suggest 

potential treatments for the human mitochondrial disorders caused by mutations in pnpt1.  The C. 

elegans model would additionally be an attractive model for initial testing of genetic therapies 

for these human mitochondrial disorders, though further investigations would need to be 

performed in higher organisms.   

 

Given all our data, the following hypothetical model (Figure 21) has been proposed to 

explain the downstream results of PNPase knockdown in the C. elegans model system.  To 

summarize, reduction in PNPase in C. elegans is causing a decrease in RNase P which in turn 

causes an accumulation of mitochondrial polycistronic transcripts.  This decreases the available 

tRNA as well as decreasing the amount of OXPHOS complexes, which interrupts OXPHOS and 

increases ROS production in the form of superoxides, increasing the lifespan of the animal as 

well as increasing fzo-1 expression. 

The split in the model is due to the fact that teasing apart these two possibilities, decrease 

in available tRNA and decrease in OXPHOS complexes, and their effect on interrupted 

OXPHOS is unlikely.  However, it is possible to determine if there is a decrease in the amount of 

tRNA available via qPCR on extracted mitochondria.  The amount of OXPHOS complexes can 

also be tested via crystallization.  It is also possible to test the levels of individual components of 

the OXPHOS complexes via specific western blots.   

While OXPHOS has been measured indirectly via the NAD+/NADH ratio, further 

investigation using a Clark oxygen chamber would give a more accurate picture of respiration in 

knockdown animals.  The increase in ROS has been shown to increase lifespan in knockdown 

animals, and knockdown animals have an increase in fzo-1.  To determine if these are 
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independent results of an increase in ROS, overexpressing fzo-1 in wildtype animals would show 

if an increase in fzo-1 without a corresponding increase in ROS is capable of increasing lifespan.   

 

 

Figure 21:  Proposed mechanism for the downstream actions of knockdown of pnpt-1 in C. 

elegans.  It is thought that the decrease in PNPase, and resulting decrease in RNase P, is causing 

an accumulation of mitochondrial polycistronic transcripts in the mitochondria.  This 

accumulation has two different implications:  there is a decrease in the amount of tRNAs 

available, as they are not being excised from the mitochondrial genome as well as causing a 

decrease in the OXPHOS complexes.  This, in turn, interrupts OXPHOS and increases ROS in 

the form of superoxides, which, in C. elegans, increases lifespan and increases fzo-1 expression. 
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APPENDIX:  Supplementary Protocols 

Transformation:  Thaw competent cells on ice while chilling a 1.5 mL tube.  Aliquot 50 uL 

cells into chilled tubes; add 5 uL ligation mix to cells.  Incubate on ice, 30 minutes.  Heat-shock 

at 42
o
C for 60 seconds.  Incubate on ice, 2 minutes.  Add 0.95 mL room temperature LB and 

shake at 225 rpm for 1 hour at 37 
o
C.  Plate on selective plates. 

Pouring NGM plates:  In a 1L flask, mix 3 g NaCl, 17 g BactoAgar, and 2.5 g BactoPeptone. 

Add 975 ml H2O.  Autoclave.  Allow to cool for ~30 minutes.  Add 1 ml 1 M CaCl2, 1 ml 5 

mg/ml cholesterol in ethanol, 1 ml 1 M MgSO4 and 25 ml 1 M KPO4. Swirl to mix.  Using a 

pump or pipette, dispense NGM solution into sterile plates; 10 mL in a 6 cm plate. 

Pouring NGM+Carbenicillin plates:  As above.  Add 100mg carbenicillin prior to pouring. 
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