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DNA double-strand breaks containing unligatable termini are potent cytotoxic lesions leading to 

cell death or growth arrest. Artemis, which is associated with the Non-Homologous End Joining 



 

(NHEJ) pathway, is the major end processing nuclease that resolves unligatable termini, especially 

the 3′ blocks, by nucleolytic trimming. Tyrosyl-DNA Phosphodiesterase 1 (TDP1) is an enzyme 

which is biochemically competent in 3′-phosphoglycolate processing. The purpose of this study is 

to investigate if TDP1 is an end-processing enzyme involved in the NHEJ pathway. Clonogenic 

Survival assays using shRNA-mediated TDP1 knockdown and Artemis knockout (Artemis-/-) in 

HCT116 cells showed increased sensitivity to Neocarzinostatin (NCS) and Calicheamicin, 

radiomimetic drugs that produce 3′-phosphoglycolate-terminated double-strand breaks. Thus, a 

cell line with combined deficiency in Artemis and TDP1 was generated by infecting Artemis-/- 

single mutants with a lentivirus expressing a TDP1 shRNA. Positive clones were screened for 

maximum TDP1 knockdown which was found to be 10X. Clonogenic survival assays carried out 

on shTDP1 & Artemis-/- single mutants and the Artemis-/-.shTDP1 double mutants showed 

similar sensitivity to Calicheamicin and NCS. Immunofluorescence studies on Art-/- and Art-/-

.shTDP1 mutants also showed a similar increase in persistent 53BP1 foci, a measure of DNA 

damage, after treatment with NCS. Cell cycle analysis studies showed all these mutants arrest in 

G1 phase of the cell cycle  after treatment with NCS. Thus, taken all together, surprisingly, these 

experiments suggest that TDP1 functions are epistatic with Artemis in the NHEJ pathway for 

repair of Calicheamicin- and NCS-mediated DNA damage.
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1. INTRODUCTION 

 

 

 

 

The genome of an organism is under constant threat from various sources that may result in 

genomic instability. These endogenous as well as exogenous sources of cellular damage are 

extremely harmful and undermine the genomic integrity resulting in massive amounts of DNA 

lesions of various types every day in every organism. Endogenous DNA damage may come from 

intracellular production of reactive oxygen species (ROS); from normal metabolic byproducts; 

especially from the process of oxidative deamination, also from V(D)J recombination as well as 

some replication errors. There are five main types of DNA lesions due to endogenous cellular 

processes: oxidation of bases (e.g. 8-oxoG), alkylation of bases (e.g. methylation), hydrolysis of 

bases (e g. deamination, depurination), bulky adduct formation and mismatch of bases (due to 

errors in DNA replication) (De Bont & van Larebeke, 2004). Exogenous DNA damage may result 

from: exposure to ultraviolet light B (UV-B light causes crosslinking creating pyrimidine dimers, 

called direct DNA damage; UV-A light creates mostly free radicals), thermal disruption (causes 

increased rate of depurination and single-strand breaks), industrial chemicals (e.g. hydrogen 

peroxide, polycyclic aromatic hydrocarbons), or exposure of ionizing radiation (causes bases 

oxidation, single-strand breaks and double-strand breaks) (Langer et al., 1975). Base damage and 

SSBs can subsequently
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lead to DSBs when encountered by DNA replication or transcriptional machinery (Branzei & 

Foiani, 2007; Mahajan et al., 2002). Two-hundred million gamma rays pass through each of us 

every hour due to the natural decay of the radionuclides occurring in the earth (Lieber at al. 2003). 

Of all the different types of lesions encountered by a cell, the most potent cytotoxic lesions are 

DNA Double-Strand Breaks (DSBs). DSBs are formed due to a variety of endogenous sources 

including immunological process such as V(D)J recombination (a process which involved genetic 

rearrangements for the maturation of B- and T-lymphocytes), imperfect topoisomerase reactions 

and oxidative stress along with a few exogenous sources like ionizing radiation and radiomimetic 

drugs (Povirk, 2013). If left unrepaired, these DSBs may result in chromosomal aberrations leading 

to tumorigenesis or cell death. Thus, in order to survive this constant assault on their genome and 

to preserve the genomic integrity in the progeny, cells have evolved two DSB repair pathways 

which are quite different from each other, Non-Homologous End Joining (NHEJ) and Homologous 

Recombination (HR).  

NHEJ is the principal pathway for repair of these DSBs and mediates direct re-ligation of the 

damaged DNA strands after end-processing. Thus, unlike HR, it does not require a homologous 

template for its repair and hence is not restricted to a particular phase of the cell cycle. It is active 

throughout the cell cycle unlike HR, which is active only in the late S and G2 phase. In fact, NHEJ 

is the only DSB repair pathway active in G1 phase when HR is absent. As NHEJ does not require 

a template for repair, it may induce a few errors during the repair process often characterized by 

the loss of a few nucleotides whereas HR is typically an error free repair mechanism. The most 

interesting aspect of NHEJ is its ability to accept a diversity of substrates and convert them to 

joined products. This demands a great flexibility in mechanical interaction of involved proteins to 

accept a plethora of different substrates that are generally produced following exposure to free 
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radicals. Reactive oxygen species can interact with DNA to produce multiply damaged sites with 

different lengths of overhangs, end termini blocked with oxidation products and several types of 

base damage, most commonly 8-oxoguanine and thymine glycols. These variously modified 

overhangs are joined by NHEJ regardless of the sequence, overhang length or DNA end products. 

 

1.1 Non-Homologous End Joining (NHEJ):  

The process of NHEJ could be divided into 4 general steps: 1) The broken ends of the DNA 

molecule are captured, 2) the two broken DNA ends brought together through the formation of a 

molecular bridge, 3) Processing of the broken DNA ends and 4) subsequent ligation of the DNA 

ends followed by the disassembly of the NHEJ complex. Although, the process looks deceitfully 

simple, in actuality, it is an incredibly intricate, orchestrated process involving a variety of proteins 

performing highly specific functions in order to achieve the aim of repairing deleterious DSBs.  

The process of NHEJ begins with the recruitment of Ku at the double-strand break site (Mari et al. 

2006, Davis & Chen 2013, Lieber et al. 2003). Ku is a heterodimer comprising of two subunits, 

Ku70 and Ku80. Ku is highly abundant in cells with 4-5 X 105 molecules of Ku per cell and it has 

an extraordinarily high affinity for DNA ends with equilibrium constant of around 5 X 10-10 M 

allowing it to immediately localize to DSBs. (Lieber et al. 2003) X-Ray Crystallography studies 

have revealed that the structure of Ku is ring-shaped which fits the DNA perfectly inside it, 

allowing it to slide onto the DNA strands. Studies have also revealed that Ku binds to the 

Phosphodiester backbone of the DNA instead of the bases, indicating that the binding is not 

sequence-specific. Recruitment of Ku also has been linked with aligning of the DNA strands, 

maintaining their stability and protecting them from non-specific degradation. Once Ku has been 

recruited to the DSB site, the DNA-Ku complex acts as a scaffold to recruit the DNA Protein 
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Kinase catalytic subunit (DNA-PKcs) at the break site. Atomic force Microscopy studies show 

that DNA-PKcs molecules on each end of a DSB form a bridge between the two ends (Lieber et 

al. 2003) ultimately leading to the formation of a synaptic complex involving DNA ends, Ku and 

DNA-PKcs. The presence of unphosphorylated DNA-PKcs prevents the end-processing and 

ligation of DNA ends thereby protecting them from premature degradation. Auto-phosphorylation 

of DNA-PKcs results in the DNA ends being accessible to the end-processing enzymes and ligases.  

Different types of DSB lesions are generated in response to ionizing radiation. The majority of 

these lesions are unligatable and as such have to be processed before the ends can be ligated 

together. Many enzymes have been implicated to perform these roles of resection of DNA ends 

and removal of 3ʹ- and 5ʹ- blocks in order to make the ends ligatable. Artemis nuclease is the most 

studied end-processing enzyme involved in resection of single-strand overhangs. Artemis has 

intrinsic 5ʹ exonuclease activity in the absence of DNA-PKcs (Bunting & Nussenzweig, 2013). 

Artemis is phosphorylated by DNA-PKcs and Artemis-DNA-PKcs complex can act as an 

endonuclease at 3ʹ and 5ʹ overhangs (Lieber et al. 2003). A large number of end-processing 

enzymes have been shown to remove 3ʹ- and 5ʹ- blocks from the DNA ends. Some of these blocks 

and the enzymes involved in processing of those blocks include 3ʹ-phosphates and 5ʹ-hydroxyls 

which are processed by Polynucleotide Kinase Phosphatase (PNKP), 3ʹ-phosphoglycolates 

removed by TDP1, APE1 and Artemis (Bunting & Nussenzweig, 2013).  

The final stage in the repair of DSBs through the NHEJ pathway involves gap filling followed by 

ligation of the DNA ends that have been aligned, tethered and processed by making them ligatable. 

DNA polymerases µ and λ can bind to the KU-DNA-PK complexes by their BRCT domains 

located in the N-terminal portion of the polymerases carrying out DNA strand synthesis (Weterings 

& Chen, 2008). The enzyme involved in the ligation of these ends is DNA Ligase IV, the principal 
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ligase required for NHEJ. It forms a complex with two proteins, X-ray Cross Complementing 

Protein 4 (XRCC4) and XRCC4-like factor (XLF) and its activity is enhanced in the presence of 

XRCC4 and XLF (Lees-Miller, S., & Meek, K. 2003).  

 

Figure 1- Non-Homologous End Joining (NHEJ) 

Ku binds to DNA ends and recruits DNA-PKcs, the XRCC4 / DNA ligase IV complex, and 

XLF. Synapsis of two DSB ends triggers DNA-PKcs autophosphorylation. The ends formed 

following DNA damage are unligatable which are here referred to as 5′- and 3′-terminal blocks. 

DNA-PKcs autophosphorylation-mediated resolution of these blocks by various end-processing 

enzymes leads to the production of ligatable ends allowing gap filling by polymerase λ, and 

finally ligation by DNA ligase IV. Numbers 1-4 show various stages at which end-processing 

could occur. (Povirk, L.F. 2012) 
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1.2 Tyrosyl-DNA Phosphodiesterase 1 (TDP1): 

During DNA replication, the movement of the replication fork resulting in local unwinding of the 

DNA causes supercoiling ahead of the replication fork. Topoisomerase I helps relax these 

supercoils in the DNA by transiently cleaving one of the DNA strands via a nucleophilic attack by 

its Tyrosine-723 amino acid residue on the phosphodiester backbone, unwinding it through the 

other strand. A second transesterification reaction leads to the religation of the DNA strands to 

release Topoisomerase I (Pommier, Y. et al 2014). In a few rare cases, however, Topoisomerase I 

becomes covalently attached to the DNA leading to the formation of irreversible TopI-DNA 

cleavage complexes which are highly cytotoxic. In 1998, Yang and his colleagues discovered an 

enzyme from the crude extracts of budding yeast S. cerevisiae which specifically cleaved the 

chemical bond that joined the active site tyrosine of Topoisomerase I to the 3ʹ end of DNA (Yang 

et.al 1998). Tyrosyl-DNA phosphodiesterase 1 (TDP1) is an enzyme which removes the peptide 

fragments linked through tyrosine to the 3ʹ end of DNA in these Topoisomerase I-mediated breaks 

(Das et al., 2009). 

 

Structure:  

TDP1 is a 68 KDa protein with 608 amino acid residues consisting of two domains. Mutational 

analysis of the active site residues of human TDP1 show that TDP1 is a member of the 

phospholipase D superfamily and reveal some important structural features of the protein (Interthal 

et al. 2001).  The N-terminal region of the molecule is very poorly conserved among species and 

is unimportant for the activity of TDP1 in-vitro (Interthal et al. 2001). Deletion of the first 108 

amino acid residues did not affect the catalytic activity of TDP1 (Davies at al. 2002). However, 

in-vivo it may play a role in TDP1 stability and its recruitment. TDP1 differs slightly from other 
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members of the PLD family as it contains two catalytic HKN motifs (H263K265N283 and 

H493K495N516) in contrast to the others that harbor the characteristic HKD motifs. (Pommier, Y. et 

al 2014).  

These two HKN segments interact together to form a single functional active site which is narrow 

and positively charged in order to accommodate the negatively charged DNA backbone.  

Although TDP1 does not require the presence of a cofactor, the catalytic mechanism of TDP1 

which is two-step process involves a complex chemical interplay. The initial step involves a 

nucleophilic attack by the imidazole N2 atom of the active site Histidine (H263) residue on the 

DNA-Top1 phosphotyrosyl bond.  The other active site Histidine (H493) residue acts as a general 

acid to donate a proton to the leaving Tyrosyl moiety. This covalent intermediate phosphoamide 

bond formed between H263 and the 3ʹ-phosphate of the DNA is the characteristic phosphohistidine 

intermediate formed by the members of the PLD superfamily. In the second step, the other active 

site Histidine (H493) residue acts as a general base and makes a nucleophilic attack on a 

neighbouring water molecule thereby activating it. This activated water molecule subsequently 

hydrolyses the phosphohistidine intermediate and thus releases the DNA molecule from the 

enzyme. This mechanism leaves a 3ʹ-phosphate group on the DNA which is further acted upon by 

Polynucleotide Kinase Phosphatase (PNKP) to generate a 3ʹ-hydroxyl group (Pommier, Y. et al 

2014). A homozygous mutation in TDP1 (A1478G) which results in the substitution of the H493 

residue with an Arginine residue has been linked to a rare, autosomal recessive genetic disorder, 

Spinocerebellar Ataxia with Axonal Neuropathy (SCAN1). This substitution of the Histidine to an 

Arginine is thought to disrupt the active site of the enzyme, thus preventing the dissociation of the 

phosphohistidine intermediate and thereby failing to ligate the single-strand break generated in the 

DNA. (Takashima, H. et al 2002) 
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Figure 2 - TDP1 catalytic activity 

A. Nitrogen on H263 makes a nucleophilic attack on the 3ʹ-phosphate of the DNA linked to 

Topo I. B. This leads to the formation of a TDP1-DNA complex. C. H493 of TDP1 

makes a nucleophilic attack on a water molecule in the active site of TDP1 which leads to 

D. the release of the DNA molecule with a 3ʹ-phosphate from TDP1. E. In patients with 

SCAN1, H493 is mutated to R493 which cannot make the nucleophilic attack on the 

water molecule thus leading to unresolved TDP1-DNA complexes. (Pommier, Y. et al 

2014) 
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Function 

TDP1 was first identified as an enzyme in yeast cell extracts involved in the in-vitro hydrolysis of 

the 3ʹ-phosphotyrosyl moiety containing substrate. The fact that TDP1 can resolve the tyrosine 

peptide fragments from the 3ʹ-end of DNA in Top1 cleavage complexes is well documented. 

Although TDP1 cannot remove native Top1 linked to the DNA, it can hydrolyze peptides formed 

due to degradation or denaturation of Top1 (Pommier et al 2014). Around 50% of the breaks 

generated by ionising radiation contain 3ʹ-phosphoglycolates at the ends. 3ʹ-Phosphoglycolates are 

also formed in response to free radical mediated DNA breaks (Zhou et al. 2009) and are present at 

the double-strand break ends generated by the action of radiomimetic drugs like Calicheamicin, 

Neocarzinostatin (NCS) and bleomycin (Chaudhry et al. 1999).  Whole-cell extracts containing 

TDP1 were shown to catalyze the conversion of 3ʹ-PG moieties to 3ʹ-phosphates on both single-

strand breaks as well as 3ʹ overhangs of double-strand breaks. SCAN1 cells deficient in TDP1 

which have an inactivating mutation in the TDP1 active site Histidine residue were unable to 

process the substrates harboring 3ʹ-PG moieties and this function was rescued by complementing 

the cells with recombinant TDP1 (Zhou et al. 2009). Apart from these blocks, TDP1 hydrolyses 

many other adducts that block the 3ʹ end of the DNA including AP sites and 3ʹ-dRP ends. (Murai 

et al. 2012)  
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The hydroxyl of tyrosine (Y723) of TopoI makes a nucleophilic attack on the phosphate of the 

DNA phosphodiester backbone thereby covalently linking itself with the 3ʹ-phosphate of DNA. 

TDP1 releases the Tyrosyl moiety leaving a 3ʹ-phosphate and a 5ʹ-hydroxyl on the DNA. 

Polynucleotide Kinase Phosphatase (PNKP) will then convert the ends to 3ʹ-hydroxyl and 5ʹ-

phosphate. (Debéthune, 2002) 

 

  

Figure 3 - Resolving TopI cleavage complexes by TDP1 and PNKP 
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1.3 Artemis: 

Moshous and colleagues, first described a novel protein that was found to be involved in V(D)J 

recombination, while looking for a gene coding for a factor defective in human radiosensitive - 

severe combined immunodeficiency (RS-SCID), a disease which harbors symptoms of increased 

sensitivity to ionizing radiation (Li et al., 2002). In classical Greek mythology, Artemis was the 

goddess of protecting young children and as this condition was lethal within the first year of life 

of young children, the protein was named Artemis.  

The gene encoding Artemis is DNA Cross-Link Repair 1C (DCLRE1C). Athabascan SCID or RS-

SCID is a highly rare, autosomal recessive inherited disease which is characterized by early onset 

of severe opportunistic infections with severe oral and genital ulcers. Affected children generally 

die from these infections within six months without a bone-marrow transplant (Li et al, 2002). A 

unique, nonsense mutation in the DCLRE1C gene leading to the truncation of the protein product 

was also shown to cause SCID in Athabascan-speaking Native Americans (Li et al, 1998, Moshous 

et al, 2003). 

 

Structure: 

Artemis is a 78 kDa protein, coded from the short arm of chromosome 10, belonging to the metallo-

β-lactamase family and consisting of 692 amino acids. Two domains in its N-terminus, a metallo-

β-lactamase domain, spanning amino acids 1-155 and a β-CASP domain spanning amino acids 

156-385, have been shown to be important for the catalytic activity of Artemis. The β-CASP 

domain is highly conserved in other proteins belonging to the same family that specifically act on 

nucleic acids. Like all proteins belonging to metallo-β-lactamase superfamily, Artemis also needs 

divalent cations, specifically Mg+2, to be catalytically active (Pannicke et al. 2004). The active site 
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of Artemis contains 4 Histidine residues and 5 Aspartic acid residues which are highly conserved 

between Artemis and other metallo-β-lactamase proteins. These active site histidines and 

aspartates are thought to co-ordinate metal ions for a nucleolytic attack onto the DNA (Pannicke 

et al. 2004). The N-terminal region of Artemis is the catalytic region for the Artemis protein. The 

regulatory C-terminal region has been shown to be important for the interaction with DNA-PKcs. 

DNA-PKcs phosphorylates Artemis in its C-terminal region and causes a conformational change 

resulting in its activation.  

 

Function 

Artemis is the nuclease required for the resolution of the hairpin intermediates during the process 

of V(D)J recombination. In vitro studies have shown that DNA-PK phosphorylates Artemis and 

activates its hairpin loop opening function as cells deficient in DNA-PK fail to cleave the hairpin 

loop (Goodarzi et al., 2006). Artemis has an innate 5ʹ to 3ʹ exonuclease activity which is specific 

to single-strand DNA. However, upon phosphorylation by DNA-PK, its endonuclease function is 

activated (Kurosawa & Adachi, 2010).  

Cells deficient in NHEJ proteins including DNA-PK show intensive radiosensitivity as do 

Artemis-defective cells, thus giving evidence to the requirement of Artemis in the NHEJ pathway 

for the repair of DSBs. Ionizing radiation, and radiomimetic drugs like Neocarzinostatin (NCS) 

create chemically modified, unligatable DSB ends, e.g. 3ʹ-phosphates and 3ʹ-phosphoglycolates. 

As Artemis-deficient cells are sensitive to IR, it was postulated that Artemis could mediate the 

end-processing of these chemically modified termini. Indeed, biochemical analysis have shown 

that Artemis in association with DNA-PKcs can convert such unligatable ends to a form that is 

appropriate for ligation with a minimal loss of the terminal nucleotides (Kurosawa & Adachi, 
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2010. Generation of blunt ends or 3ʹ overhangs of around 2-4 bases by the Artemis/ DNA-PKcs 

complex have further strengthened its role as an end processing enzyme in NHEJ.  

Apart from its end-processing function, Artemis also plays a role in DNA damage signaling. ATM 

and Artemis deficient cells exhibit similar radiosensitivity and thus it was proposed that Artemis 

and ATM function in a common pathway (Riballo et al. 2004). Several studies on the role of 

Artemis in cell cycle progression have been carried out since then. Contrasting conclusions have 

been presented on its role in G2/M cell cycle checkpoint wherein one group reported a normal 

functional G2/M checkpoint in response to IR in Artemis deficient cells, thus revealing a prolonged 

G2/M arrest (Zhang X, et al 2004) while another group showed that Artemis deficient cells exhibit 

a defective recovery from this checkpoint which demonstrates that Artemis was required for G2/M 

arrest post IR treatment (Geng, Zhang, Zheng & Legerski, 2007). ATM hyperphosphorylates 

Artemis in response to IR treatment and thus ATM is required for Artemis-dependent processing 

of damaged DNA ends. ATM, however, is not required for V(D)J recombination activity of 

Artemis as A-T cells deficient in ATM are proficient in V(D)J recombination.  

 

1.4 Ionizing radiation 

The energy transmitted via X-rays, gamma rays, beta particles (high-speed electrons), alpha 

particles (the nucleus of the helium atom), neutrons, protons, and other heavy ions is defined as 

ionizing radiation. X rays and gamma rays are electromagnetic waves like light, but their energy 

is much higher than that of light. (Han W, 2010) 

Ionizing radiation involve high energy particles travelling at an expeditious speed. When IR bumps 

onto molecules in the cell, it transfers its energy onto the electrons of that atom, thereby causing 

the release of the electrons from the atom and ultimately leading to the production of radicals. 
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Ionizing radiation (IR) interacts critically with a variety of biomolecules in the cell but the most 

harmful effects are as a result of triggering DNA damage. This damage can be direct when IR 

targets DNA directly causing damage to the phosphodiester backbone or indirect when radiation 

interacts with other molecules in the cell like water, leading to the production of a large number of 

free-radical species, including activated oxygen radicals, that may result in critical damage to 

targets within their diffusion distance. The damage inflicted by IR involve single-strand breaks, 

double-strand breaks, base damage and crosslink formation between DNA and proteins leading to 

stalled tertiary structures (Su, 2010). SSBs and DSBs are produced in different proportions in the 

cell. While there are 1000 SSBs estimated for a Gy of radiation, about 40 DSBs occur per diploid 

cell per Gy. (Ward, 1990) 

 

1.5 Radiomimetic Agents 

The idea of treating cancer through chemotherapy brought forth many anti-tumor antibiotics that 

target the DNA by inducing DNA damage (Dedon & Goldberg, 1992). These chemical agents 

induce free-radical based single- as well as double-strand breaks in the DNA molecule by attacking 

the deoxyribose moieties in the DNA phosphodiester backbone. Since their effects mimic that of 

ionizing radiation, these chemotherapeutic agents are termed as radiomimetic drugs. Although the 

action of these radiomimetic agents is highly specific, forming lesions which represent a subset of 

the lesions generated due to IR, the effect of IR and radiomimetic agents on cells is surprisingly 

similar.  

Significant work has been published on some radiomimetic drugs like Bleomycin, 

Neocarzinostatin and Calicheamicin. Bleomycins are a family of glycopeptides first isolated from 

Streptomyces verticillus by Umezawa and colleagues in 1966 (Umezawa et al 1966). Since their 
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discovery, the bleomycins have been an important component in a number of combination 

chemotherapy protocols against testicular cancer (Einhorn, 2002) and certain types of lymphoma 

(Bayer et al 1992; Chen & Stubbe, 2005) 

Neocarzinostatin and Calicheamicin are compounds which belong to the bicyclic enediyne family 

of anti-tumor antibiotics and are amongst the most studied of the radiomimetic drugs. These agents 

have a 10-membered characteristic unsaturated core containing two acetylenic groups conjugated 

to a double bond. These drugs are unique for their potential to produce sequence-specific double-

stranded lesions which transpire due to the action of carbon-centered radicals of a single drug 

molecule (Dedon & Goldberg, 1992). Treatment of DNA with NCS in the presence of glutathione 

led to formation of double-strand breaks in a very high proportion with the ratio of single-strand 

lesions: double-strand lesions being around 2:1. The reaction of DNA with Calicheamicin was 

even more potent producing single-strand lesions: double-strand lesion ratio of around 1:20. 

(Chaudhry et al. 1999) 

Both bleomycin and the enediyne neocarzinostatin (NCS) are potent clastogens, and they can also 

induce, in various systems, base substitutions small deletions and large-scale gene rearrangements, 

with reasonable efficiencies. That these mutations seem to so rarely result in carcinogenesis is 

certainly one of the most intriguing aspects of the genetic toxicology of these agents (Povirk, 

1996). 

 

Neocarzinostatin (NCS) 

NCS was the first of the bicyclic enediyne antibiotics that was discovered. It was isolated from the 

bacterial species Streptomyces carzinostaticus. It was recognized as a simple antitumor antibiotic 

protein competent in inhibiting DNA synthesis and inducing the degradation of DNA in cells. 
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However, only 15 years after its discovery it was realized that the true biological function of NCS 

was not due to the protein but rather to a previously unrecognized tightly, but non-covalently, 

bound labile non-protein chromophore (NCS-Chrom). The apoprotein contains a hydrophobic 

cleft where NCS-Chrom is believed to reside and is protected from degradation. The structure of 

NCS can be divided into 3 domains, the naphthoate region which serves as the DNA binding 

domain, the enediyne core which form the DNA-damaging machinery and cyclic carbonate 

structure responsible for uptake of the drug in the cells (Dedon, P., & Goldberg, I. 1992).   

The interaction of NCS with DNA has been extensively characterised. The drug binds to the DNA 

in a two-step process involving external binding followed by the intercalation of the chromophore. 

Electric dichroism studies have shown that the naphthoate acts as a classic intercalator, orienting 

itself parallel to the DNA bases which causes a distortion of the DNA helix (Dasgupta & Goldberg, 

1985; Povirk, 1996) This leads to the positioning of the active enediyne portion of the NCS-

chromophore in the minor groove of the DNA molecule with favourable electrostatic interactions 

between the positively charged amino sugar in NCS and the negatively charged Phosphodiester 

backbone. This binding of the drug in the minor groove is evident from 2 sources: Modification of 

the major groove did not alter the binding constant of NCS whereas Netropsin and distamycin, two 

minor groove binding agents competed with NCS for binding to DNA (Dasgupta and Goldberg, 

1985) 
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Figure 4 - Mechanism of Action of NCS and the typical DSB ends formed 

NCS-mediated hydrogen atom abstraction can take place from 1ʹ, 4ʹ or 5ʹ carbon of the 

deoxyribose sugar.  5ʹ-H abstraction followed by oxidation leads to the production of 3ʹ-

phosphate and a nucleoside 5ʹ-aldehyde in presence of thiols whereas in absence of thiols, 3ʹ-

formyl-phopshate and 5ʹ-phosphate are formed. 1ʹ-H abstraction leads to the formation of an 

abasic site and a 2-deoxyribonolactone. 4ʹ-H abstraction, in the presence of thiols, leads to the 

formation of a 4ʹ-hydroxylated abasic site whereas in the absence of thiols, 3ʹ-phosphoglycolate 

and a 5ʹ-phosphate are formed with the release of the base propenal (Dedon & Goldberg, 1992).
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 Mechanism of Action: 

The mechanism of action of NCS and the damage caused by it is highly complex. NCS-mediated 

DNA damage results in the formation of single as well as double-strand breaks. Similar to all 

radiomimetic drugs, its mechanism of action is based on the hydrogen atom abstraction 

principally at the 1st, 4th and 5th carbon of the deoxyribose sugar leading to its oxidation (Povirk 

and Steighner. 1989). The identity of these hydrogen atoms abstracted have been verified using 

isotope labelling studies (Dedon & Goldberg, 1992).  Abstraction of the hydrogen from the C-5ʹ 

end is the characteristic trait of the enediyne compounds resulting in the formation of a 3ʹ-

phosphate and a 5ʹ-aldehyde molecule at the DNA terminus (Kappen et al., 1982). A small subset 

of breaks also involves 3ʹ- and 5ʹ- phosphates at the termini as well. This hydrogen abstraction 

from the 5th carbon of the deoxyribose sugar followed by the incorporation of oxygen into the 

aldehyde leads to the production of single-strand breaks in the DNA strands.  

In contrast to the above mechanism, hydrogen abstraction from both C-1ʹ and C-4ʹ leads to the 

formation of bi-stranded lesions. Elimination of the C-1ʹ hydrogen by NCS mainly results in the 

formation of an abasic site in the form of 2ʹ-deoxyribonolactone. This species is quite unstable in 

alkali and ultimately leads to the formation of a strand break with 3ʹ- and 5ʹ-phosphate termini. 

(Povirk and Houlgrave, 1988; Povirk et al. 1988). NCS-mediated attack at C-4ʹ adds oxygen at 

C-4ʹ ultimately leading to the production of strand breaks with ends containing 3ʹ-

phosphoglycolates and 5ʹ-phosphates with the formation of a base, propenal (Chaudhry et al, 

1999). 
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Figure 5 - Structures of Enediyne antitumor antibiotics: Calcheamicin γ1 and 

Neocarzinostatin (Dedon & Goldberg, 1992). 

   

 

 

  



 

20 
 

 

Figure 6 - Models of NCS-induced bi-stranded lesions 

NCS has been shown to produce two types of bistranded lesions: A. At the AGC.GCT sequence 

in Fig. 6 (A), C1ʹ-hydrogen abstraction at the C of AGC along with the C5ʹ-hydrogen abstraction 

at the T residue of the complementary strand leading to the formation of an abasic site instead of 

the C residue and a 3ʹ-phosphate on the other strand. B. At the AGT.ACT sequence, bistranded 

lesions consists of mainly C4ʹ -hydrogen abstraction at the T of AGT, as suggested by the 

presence of 3ʹ-phosphoglycolate residues and 4ʹ -hydroxylated abasic sites, and C5ʹ-aldehyde at 

the T of ACT (Dedon & Goldberg, 1992).  
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Calicheamicin 

The calicheamicins are produced by the fermentation of Micromonospora echinospora ssp 

calichensis, a bacterium isolated from a chalky, or caliche, soil sample collected in Texas. They 

were discovered in the mid- 1980s in a fermentation products screening program through the use 

of the biochemical induction assay (BIA), which utilized a genetically engineered strain of 

Escherichia coli to detect DNA damaging agents (Lee et al 1991). 

Calicheamicin and Esperamicin lack intercalating moieties and thus bind to DNA by other means 

than NCS. The carbohydrate side chains of Calicheamicin serve as a DNA binding domain. The 

DNA damaging element present in Calicheamicin is similar to NCS consisting of a highly strained 

ring system with a pair of triply unsaturated carbon bonds surrounding a carbon-carbon double 

bond (Lee et al 1991). 

The nature of DNA damage instigated by Calicheamicin has not been as extensively studied as 

some of the other enediynes like NCS. However, it is known to produce both single- as well as 

double-strand lesions with an astoundingly high proportion of double-strand lesions (Dedon & 

Goldberg, 1992). 

 

1.5 Epistasis: 

Cells are under constant abuse from the environment and undergo tremendous amount of DNA 

damage and as such have evolved important repair pathways in order to repair the damage. One of 

the principal question in the field of DNA damage is to understand which of these DNA repair 

proteins (enzymes) function together in a common, specific DNA repair pathway. Modern genetic 

approaches have enabled researchers to answer these questions through a variety of means. One 

way is to create a mutant strain absent in individual repair proteins and to observe the phenotypic 
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effect of the mutation. Subsequent generation of double mutants would lead us to observe if the 

system behaves in a similar way or if the phenotype worsens.  

If the phenotype of the double mutants is not worse than that of the single mutants, the two repair 

proteins are said to exhibit an epistatic relationship with each other. In the simplest mechanistic 

model, such epistasis suggests that the proteins each perform different essential function in the 

same repair pathway. On the other hand, if the double mutants manifest a worsened phenotype as 

compared to the single mutants, they are thought to be synthetically lethal or synergistic. 

Mechanistically, this is the result expected if the two proteins are a part of two alternative pathways 

of resolving the same DNA lesion.  

 

1.6 Specific Purpose:  

Artemis and TDP1 are alternative end processing enzymes involved in DNA repair. shRNA 

mediated knockdown of TDP1 and Artemis knockout results in sensitivity to NCS and 

Calicheamicin, drugs that produce 3ʹ-phosphoglycolate-terminated double-strand breaks. In order 

to further explore the role of TDP1 in NHEJ and its possible interplay with Artemis, an HCT116 

derivative cell line double deficient in Artemis and TDP1 was created followed by the assessment 

of growth rates, cell cycle profiles, DNA repair ability and survival of these cell lines in response 

to radiomimetic agents.  
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2. MATERIALS AND METHODS 

 

 

 

 

2.1 Cell Lines and Cell culture 

The tumour cell lines used in this study were human colon adenocarcinoma cell line HCT116 and 

its derivative cell lines involving knockdown of TDP1 (HCT116 shTDP1), knockout of Artemis 

(HCT116 Art-/-) (obtained from Dr. Eric A. Hendrickson, University of Minnesota) and a 

combined deficiency exhibiting knockout of Artemis and knockdown of TDP1 (HCT116 Art-/-

.shTDP1). All cell lines were cultured in 10cm dishes, in 10 mL Roswell Park Memorial Institute 

(RPMI) 1640 medium (GIBCO) with 10% Fetal Bovine Serum (FBS) and 1X 

Penicillin/Streptomycin which was referred to as complete medium and maintained at 37°C in 5% 

CO2 atmosphere. After the cells had attained around 85-90% confluency, they were harvested in 

complete medium with 10% DMSO in a total volume of 1mL in cryogenic vials. These cryogenic 

vials were frozen slowly at -80°C for one day and then transferred to liquid nitrogen where it was 

stored for long periods at -196°C. A new vial of every cell line was thawed for each experiment.
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2.2 Knockdown of TDP1  

For the expression of TDP1 shRNA, we used the pLSLPw lentiviral vector, a distant relative of 

the pLV vector that contains an RNA polymerase III-driven H1 RNA promoter controlling the 

expression of a hairpin shRNA transcript and harbors the puromycin N-acetyl transferase (pac) 

gene which confers resistance to the antibiotic puromycin. (See Supplemental Material from 

Budanov et al., 2004) 

The phosphorylated oligomers GATCCGGTGATAAGCGAGAGGCTAACTTCCTGTCAT 

TAGCCTCTCGCTTATCACTTTTTG and AATTCAAAAAGTGATAAGCGAGAGGCTA 

ATGACAGGAAGTTAGCCTGTCGCTTATGACCG were annealed and cloned into the BamHI 

and EcoRI sites of the dephosphorylated vector, pLSLPw. This vector expresses a hairpin that 

targets the sequence GUGAUAAGCGAGAGGCUA (bases 20300-20319 in exon 6 of the TDP1 

gene, GenBank #NG009164). (See Supplemental Material from Akopiants et al., 2014). The vector 

was co-transfected along with packaging plasmids pLP1, pLP2 and pLP-VSVG into HEK293T 

cells with Lipofectamine 2000 (Invitrogen). Medium containing packaged lentivirus was collected 

48 hour post tranfection and was centrifuged for 5 min at 1200 rpm at room temperature. The 

supernatant was filtered through 0.45µm filter (Novagen), followed by ultracentrifugation of the 

sample at 20,000 rpm for 2.5 hour at 4°C in a SW28 rotor (Beckman). Resulting viral pellets were 

resuspended with 200µL of Hanks balanced salt solution and stored in 10µL aliquots at -80°C.  

HCT116 and HCT116 Art-/- cells were seeded in 25cm dishes and incubated for 24 hour. Once 

they had attained around 80% confluency, they were infected with 5µL of concentrated lentivirus 

with 4µg/mL polybrene in 1mL medium without serum for 8 hour, then fed with fresh medium 

and incubated for 48 hour. Cells were then selected in 0.8µg/mL Puromycin for 96 hours. Cells 

were expanded under selection to produce cryogenic stocks. Genomic DNA was isolated from 1 
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million cells using the QIAGEN DNeasy Blood and Tissue Kit in order to genotypically screen 

these cells for stable integration of the Puromycin N-Acetyl Transferase (Pac) gene. Genomic 

DNA (100ng/µL) was used as template to amplify the gene by Polymerase Chain Reaction (PCR). 

The primers used were: Forward: 5ʹ-CGAGTACAAGCCCACGGT-3ʹ, Reverse: 5ʹ-

AGACCCTTGCCCTGGTG-3ʹ (synthesised by IDT) with initial denaturation at 94°C for 6 min 

followed by cycles of denaturation at 94°C for 10 sec, annealing at 54°C for 20 sec and extension 

at 72°C for 30 sec for 35 cycles, followed by a final extension step at 72°C for 7 min. Following 

PCR amplification, samples were separated on 1% agarose gel to confirm the presence of the gene. 

 

2.3 Selection of clones:   

From the puromycin-selected cells, 5 cells were seeded in 15mL complete medium in 15 cm dishes 

and the cells were made to form colonies over a period of 14 days. Following colony formation, 

the medium was removed and the colonies were washed with 5mL of PBS. A sterile ring was 

placed on top of the colonies and 70µL trypsin was added in each ring to dissociate the cells. The 

trypsinized cells were sub-cultured into individual 10 cm dishes to obtain individual clones. From 

the puromycin-selected cells, 13 clones were obtained by this method in order to obtain a 

homozygous population of these cells. 

 

2.4 TDP1 Activity Assay 

The enzymatic activity of TDP1 in the individual clones was assayed to identify the clones with 

maximum TDP1 knockdown. A 5ʹ-Cy5-labelled 18-base oligonucleotide with the sequence 

TCCGTTGAAGCCTGCTTT with a Tyrosine residue covalently linked to its 3ʹ -end, purchased 

from Midland Certified Reagent, Midland, TX was used as a substrate in this enzyme assay (Yang, 
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S. et al 1996). Whole-cell extracts were prepared by harvesting one million cells and lysing them 

using 100 µL of KV Lysis Buffer (10mM HEPES at pH 7.8, 60mM KCl, 1mM EDTA, 0.5% NP-

40) in presence of 0.5 mM serine protease inhibitor phenylmethanesulfonyl fluoride (PMSF) plus 

(1mM NaVO4, 1µg/mL leupeptin, 1µg/mL aprotinin and 1µg/mL pepstatin) which is commonly 

used in the production of cell lysates. The lysed cells were placed on ice for 5 min and then 

centrifuged at 13000 rpm for 5 min at 4°C. The supernatant, obtained as cell extract, was collected 

in different tubes. The extracts from the control cells (HCT116 Art-/-) were serially diluted 1, 25, 

125, 625, 3025 times while the mutant HCT116 Art-/-.shTDP1 cell extracts were diluted 1, 5, 25, 

125, 625 times in Pouliot dilution buffer (50mM Tris at pH 8.0, 5nM DTT, 100 mM NaCl, 5mM 

EDTA, 10% glycerol, 500µg/mL BSA). The substrate was added at a final concentration of 4pM 

to the diluted tubes to a total volume of 5µL and the reaction performed at 37°C for 1 hour in 1X 

Kedar Buffer (60mM K-acetate, 10mM Mg-acetate, 50mM Triethanolamine-HAc pH 7.5, 2mM 

ATP, 1mM DTT). This was followed by quenching of the reaction at 95°C for 1 min. SGLS (5µL) 

(98% Formamide, 20µM EDTA, Bromophenol Blue) was added in every sample. The samples 

were then analysed by Polyacrylamide Gel electrophoresis.  

Total Protein in these whole-cell extracts was estimated by Bradford’s Assay (Bradford, M. 1976). 

Standard protein used was 2mg/mL BSA to obtain the standard curve.  

 

2.5 Polyacrylamide Gel Electrophoresis 

Denaturing polyacrylamide gels with acrylamide: bisacrylamide ratio of 20:1 and Urea at a final 

concentration of 8M were used for separation of the oligonucleotide substrate with and without 

the Tyrosyl attached to its 3ʹ -end. The gel dimensions were 33cm X 38cm X 0.1cm. Urea was 

dissolved into the mixture before adding 0.075% ammonium persulfate and 0.0625% TEMED (N’, 
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N’, N’, N’-tetramethylethylene diamine). The gel was allowed to set for around 1 hour, following 

which the samples were loaded into the wells of the gel and electrophoresed at constant power of 

60W for around 4 hours in 1X TBE buffer (10X stock solution: 108 g of Tris base, 55g of boric 

acid, 9.3g of disodium EDTA in 1L Distilled water). The gel was wrapped in saran wrap following 

electrophoresis and scanned on a Typhoon 9410 Variable Mode Imager in Fluorescence 

Acquisition mode with 670BP 30 Cy5 Emission filter using a Red (633) laser at photomultiplier 

tube voltage of 800 V.   

 

2.6 Clonogenic Survival Assay 

All the four cell lines were harvested from exponentially growing cultures. They were counted 

using a hemocytometer and plated in 60 mm dishes in 4mL complete medium ranging from 

300/plate to 10000/plate. After 16 hours, the cells were treated with 0.25, 0.5, 1 or 2nM NCS (stock 

concentration 2µM diluted in 20mM sodium citrate at pH 4.0) for 6 hours. For the experiments in 

which Calicheamicin was used as a radiomimetic agent, the cells were treated with 0.3, 0.6, 1.2 or 

2.4pM (stock concentration 20µM Calicheamicin diluted to 1µM in 50% Ethanol, further diluted 

in PBS to obtain final working concentration of 1.2nM) for 24 hours. Following treatment, the 

medium was removed, cells washed with PBS and allowed to form colonies in complete medium 

for a period of 9 - 13 days. Following this, the medium was removed and colonies were washed 

with 5 mL PBS. They were later fixed in 100% Methanol for 10 min, stained with 0.5% Crystal 

Violet for 10 min and washed with distilled water. The plates were allowed to air-dry and the 

colonies were counted manually. Plating Efficiency (PE) was defined as the number of colonies 

counted/ the number of cells seeded. The survival fraction (SF) of untreated cells was defined as 

100. SF was calculated as PE treated/ PE untreated * 100.  
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2.7 Immunofluorescence Microscopy 

All four cell lines were counted using a hemocytometer and 15000 cells were grown on 4-well 

chamber slides (Nunc lab tek). After attachment, the cells were serum starved for 48 hours, 

following which they were either immediately processed; treated with 4nM NCS for 1 hour and 

then processed or treated with 4nM NCS for 1 hour and then allowed to repair the damage by 

releasing in serum for 8 hours prior to processing. After the treatments, the medium was removed 

and the cells were washed twice with phosphate-buffered saline (PBS). Cells were immediately 

fixed with 3% paraformaldehyde for 15 min at room temperature. The excess of paraformaldehyde 

was washed away with PBS and then the fixed cells were permeabilized with a permeabilizing 

solution (0.5% Triton X-100 in PBS) for 10 min. After washing away the excess of permeabilizing 

solution, cells were then treated with Blocking solution (5% FBS in PBS) for 2 hours at room 

temperature. The blocking solution was removed and they were then incubated with 0.3mL of anti-

53BP1 mouse primary antibody (a gift of Dr. David Gewirtz, Virginia Commonwealth University, 

originally from Dr. Thanos Halazonetis, University of Geneva) at 1:250 dilution overnight at 4°C. 

After washing 4 times with PBS for 15 min, the cells were incubated for 3 hour with 0.3 mL 

secondary goat anti-mouse Alexa Fluor 488 antibody (Life Technologies) at 1:500 dilution at room 

temperature. The excess antibodies were washed with PBS and then the cells were fixed with 3% 

formaldehyde. The nuclei were counterstained with VECTASHIELD Mounting medium with 1.5 

µg/mL 4ʹ -6-diamidino-2-phenylindole (DAPI) (Vector Laboratories Catalog # H-1200) having a 

refractive index of 1.45. Immunofluorescence was observed with the Zeiss LSM700 Confocal 

Laser Scanning Microscope and confocal images were obtained using a 430-nm diode laser with 

a 605-nm band pass filter (DAPI), a 510-nm laser with a 530-nm band pass filter (Alexa Fluor 



 

29 
 

488). Foci from around 100 cells were counted manually for each condition in 3-4 different 

experiments for each cell line. 

 

2.8 Cell Cycle Analysis by Flow Cytometry 

All the four cell lines were seeded at a density of 5 × 105 cells/ dish in 100mm tissue culture dishes 

and cultured in complete medium. After 24 hours, the medium was removed and cells were 

synchronised by serum starving them in medium containing 0.5% FBS for 96 hours. Cells were 

either treated or not treated with 4nM NCS for 1 hour. Following treatment, the medium was 

changed, cells were washed with PBS and released in serum for different time points including 10, 

12 and 14 hours. At the prescribed time points, the medium was removed, cells were washed with 

PBS twice and trypsinized. 1.5 X 106 cells were then counted using a hemocytometer and 

centrifuged at 800 rpm for 5 min. The pellets were resuspended in 1.5 mL Propidium Iodide (PI) 

solution (3.8mM Sodium Citrate, 0.05mg/mL PI, 0.1% Triton X-100).  10µL of RNase B at a final 

concentration of 7000units/mL was added to the above solution. The samples were stored 

overnight in dark at 4°C in 5mL Polystyrene Round-Bottom Tube with Cell-Strainer Cap (Fisher 

Scientific). Cells were processed for Flow Cytometry analysis after either 24 hours of culture, 96 

hours of serum starvation or at the mentioned time points with or without the drug treatment. Cell 

Cycle Analysis was performed using a Becton Dickinson (San Jose, CA) FACS Canto II flow 

cytometer. The argon ion laser set at 488 nm was used as an excitation source. Cells having DNA 

content 2N were designated as being in the G1 phase of the cell cycle, those having 4N were 

designated as being in the G2 phase while the cells showing intermediate DNA content between 

2N and 4N were designated as S-phase cells. Ten thousand events were acquired for each sample 

and the data obtained was analysed using the Modfit LT software.  
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2.9 Statistics: 

Error bars represent standard error of mean (S.E.M) for at least 4 independent experiments. 

Graphical analysis was performed using SigmaPlot 12.5 statistical software. Unpaired two-tailed 

t-tests were performed using GraphPad QuickCals software.  
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3. RESULTS 

 

 

 

 

3.1 Generation of a derivative cell line with double deficiency in Artemis and TDP1: 

In order to understand the relationship between Artemis and TDP1, we created human colon 

adenocarcinoma HCT116 derivative cell lines with a double deficiency in Artemis and TDP1. 

HCT116 cells deficient in Artemis (HCT116 Art-/-) were obtained as a generous gift from Dr. Eric 

A. Hendrickson, University of Minnesota. These HCT116 Art-/- cells were infected with a 

lentivirus expressing a TDP1 shRNA. This TDP1 shRNA was cloned into the BamHI and EcoRI 

sites of the transfer plasmid pLSLPw (Fig. 7)  which also harbours the Puromycin N-Acetyl 

transferase (pac) gene which confers resistance to the antibiotic Puromycin (Sánchez-Puig & 

Blasco, 2000). Human cells are naturally devoid of this gene and thus are sensitive to Puromycin. 

Successful lentiviral integration was confirmed by culturing the infected cells in RPMI medium 

with 0.8µg/mL Puromycin for 4 days. The cells that had undergone this puromycin selection were 

further confirmed by performing a genotype analysis. Genomic DNA was extracted from 1×106 

cells and was used as a template in a Polymerase Chain Reaction in order to amplify the pac gene. 

Genomic DNA from HCT116 WT cells, which were not infected with the lentivirus, was used as 

a negative control. A plasmid pTripz Tdp harboring the pac gene was used as a positive control. 

The band size obtained was about 550 bp which corresponds to the size of the pac gene on the 

plasmid pLSLPw (puro) (Fig 8).   
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Dilution cloning was performed on these selected cells in order to obtain individual clones. 13 

clones were obtained following dilution cloning which were further assayed to analyse the clones 

with the maximum amount of knockdown of TDP1 expression.  
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Figure 7 - Transfer plasmid pLSLPw 

The shTDP1 construct was cloned into the BamHI and EcoRI sites seen at the bottom. The vector 

also carries a Puromycin N-Acetyl transferase (pac) gene seen here as puro on the right which 

confers resistance to the antibiotic puromycin. Successfully infected cells were rendered resistant 

to puromycin and thus were selected in medium containing 0.8µg/mL puromycin.  
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Genomic DNA was isolated from 1 million cells of different derivative HCT116 cell lines as 

mentioned below: 

Lane 1: DNA Hyperladder I (Bioline). Lane 2: HCT116 Art-/- cells transfected with the lentivirus 

carrying the shTDP1 construct. Lane 3: Negative control: Genomic DNA extracted from HCT116 

WT cells and amplified using the same conditions. Lane 4: HCT116 cells infected with a lentivirus 

carrying another vector pTripz Tdp containing a pac gene was used as a positive control. Lane 5: 

Plasmid pTripz Tdp. 

 

2 3 4 5 1 

600bp 

400bp 

Figure 8 - Genotypic confirmation of lentiviral integration 
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3.2 TDP1 Activity Assay: 

During DNA replication, Topoisomerase I, through its Tyrosyl 723 residue, forms rare covalent 

complexes with the DNA which are referred to as Top1 cleavage complexes. TDP1 is the only 

enzyme known to remove these phosphotyrosyl residues from the 3ʹ-end of the DNA. This attribute 

of TDP1 was utilised in order to assess the amount of knockdown achieved in the HCT116 Art-/-

.shTDP1 individual clones by performing a TDP1 activity assay. Serially diluted whole-cell 

extracts from Art-/- and Art-/-.shTDP1 cells were incubated with an 18-base oligonucleotide 

containing a phosphotyrosyl moiety at the 3ʹ-end. Extracts from cells expressing TDP1 would 

cleave the 3ʹ-tyrosyl residue from the 18-base oligonucleotide substrate and form a product having 

a lower molecular weight than the substrate which would, migrate faster on a gel whereas extracts 

deficient in TDP1 would fail to cleave the 3ʹ-tyrosyl residue on the substrate and thus the high 

molecular weight substrate migrate slower giving rise to a band above the band of the product. 

Fig. 9 shows the p-Tyr processing ability of 3 of the 13 double deficient clones. This activity of 

the clones was drastically hampered as compared to the Art-/- single mutant control cells. Table 1 

shows the amount of knockdown achieved in all the double deficient clones with respect to the 

HCT116 Art-/- single mutant control cells. TDP1 activity titrations indicated a 12-fold decrease in 

the p-Tyr processing ability of Clone #7 thus manifesting the highest knockdown of TDP1 

expression among all the other clones.  

Bradford’s assay was used to estimate total protein concentration in the whole-cell extracts. A 

standard curve was obtained by using 2mg/mL BSA. The extract concentrations of the control cell 

line (HCT116 Art-/-) and all the individual clones were in a similar range as can be seen from 

Table 1.   
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Figure 9 - TDP1 Activity Assay 

Whole-cell extracts from HCT116 Art-/- cells and HCT116 Art-/-.shTDP1 individual clones were 

incubated with the 18-base 3ʹ-tyrosyl linked oligonucleotide substrate at 37°C for 1 hr. The 

reaction was quenched at 95°C for 1 min and the samples were analysed on a 20% denaturing 

Polyacrylamide gel. The extracts and their dilution factors have been labelled. In the unprocessed 

substrate sample, the substrate was incubated with distilled water instead of cell extract and the 

reaction was performed in the same way as the other samples.  
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Figure 10 - Standard curve for estimating total protein concentration in cell extracts 

R2 value was obtained by regression analysis which was equal to 0.9824.  

 

 

 

 

 

 

 

R2 = 0.9824 

y = 0.039x 
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Figure 11 - Estimation of TDP1 Knockdown in HCT116 Art-/-.shTDP1 individual clones 

Three out of the 13 clones are shown. Graph indicates p-Tyr processing (%) vs. concentration of 

extract in µg/mL.  
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Table 1 - Amount of Knockdown achieved in the HCT116 Art-/-.shTDP1 clones 

Samples TDP1 Knockdown (times Art-/-) 

HCT116 Art-/- - 

HCT116 Art-/-. shTDP1 #1 1.44 

HCT116 Art-/-. shTDP1 #2 6.92 

HCT116 Art-/-. shTDP1 #3 5.25 

HCT116 Art-/-. shTDP1 #4 6.3 

HCT116 Art-/-. shTDP1 #5 6.3 

HCT116 Art-/-. shTDP1 #6 5.75 

HCT116 Art-/-. shTDP1 #7 12 

HCT116 Art-/-. shTDP1 #8 11 

HCT116 Art-/-. shTDP1 #9 2 

HCT116 Art-/-. shTDP1 #10 1.4 

HCT116 Art-/-. shTDP1 #11 3.7 

HCT116 Art-/-. shTDP1 #12 4.2 

HCT116 Art-/-. shTDP1 #13 8 
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3.3 Deficiency of Artemis and TDP1 causes an additive decrease in the growth rate  

A cell is an intricate network with all processes working in concert to help it survive and grow. 

Thus, defect in some of these processes would compromise the overall growth of the cells. In order 

to observe if the above fact was applicable to our study, we performed a growth rate analysis of 

all the four cell lines. 1 × 105 cells were seeded in 6-well plates in 3mL complete medium. Cell 

counts after trypsinization were obtained using a hemocytometer for a period of 1 week.  

As seen in Figure 12, the WT cells showed an exceptionally fast growth rate with a doubling time 

of around 14 hours. Artemis-deficient cells did not show a marked retardation in growth initially 

however, the sluggish growth rate was prevalent after a period of 6 days. The TDP1 deficient cells 

showed an opposite phenotype with retardation in growth initially followed by an increase in the 

growth rate around 6 days. The double mutant cells deficient in both Artemis and TDP1 showed 

prominent delay in growth with a doubling time of around 28-30 hours. 
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1 × 105 cells were seeded in 6-well plates in 3mL complete medium on day 0. Cells were counted 

using a hemocytometer on days 2, 4 and 6. The above graph shows the number of cells in million 

versus number of days. 

 

 

 

 

Figure 12 - Differential growth rate of all the cell lines 
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3.4 Surprisingly, Artemis and TDP1 exhibit an epistatic relationship with each other: 

TDP1 and Artemis are end processing enzymes involved in the removal of various 3ʹ- and 5ʹ-

blocks. We wanted to investigate whether TDP1 and Artemis are alternative end processing 

enzymes functioning in the same pathway. Thus, in that effect, we carried out a pilot experiment 

in which a Clonogenic Survival Assay was performed on HCT116 Art-/- and HCT116 Art-/-

shTDP1 #7 derivative cell lines.  

Cells within a range of 300 – 10000 were plated in 6cm dishes. After 24 hours, the cells were 

treated with Calicheamicin, a radiomimetic drug which produces DSBs with 3ʹ-phosphoglycolates 

ends, within a concentration range of 0pM - 2.4pM for 24 hours. The drug was removed and the 

cells were allowed to form colonies for a period of 12 days. Colonies were then fixed, stained and 

counted manually with a minimum of 50 cells constituting a colony. As seen in Fig. 13, 

surprisingly, there was no difference in sensitivities of the Art-/- single mutants as well as the Art-

/-.shTDP1 #7 double mutants in response to Calicheamicin. Both cell lines showed similar 

percentage of survival indicating that Artemis and TDP1 could play a role in the same pathway 

and that TDP1 and Artemis exhibit an epistatic relationship. We wanted to further bolster this fact 

and confirm the epistatic relationship between Artemis and TDP1. To that effect, we performed 

Clonogenic Survival Assays with all the four cell lines, HCT116 WT and its derivative single 

mutants cell lines Art-/-, shTDP1 and the double mutant cell line Art-/-.shTDP1 in response to 

Neocarzinostatin, another radiomimetic drug that produces DSBs with 3ʹ-phosphoglycolate ends. 

Fig 14 shows the sensitivity of these cell lines as percentage of cell survival after treating the cells 

with concentration of NCS ranging from 0nM – 2nM. Table 2 shows the p-values by comparing 

all cell lines with each other for all the concentrations of NCS. As it can be seen from Fig 14 and 

Table 2, the mutant cell lines Art-/-, shTDP1 as wells as Art-/-.shTDP1 show marked sensitivity 
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to NCS as compared to WT cell line. Also, the sensitivity of the WT cells for NCS was significantly 

different from that of the mutant cells as WT cells showed higher survival percentage compared 

to the mutant cells. The sensitivity of the all the mutant cells was found to be remarkably the same 

at all concentrations of NCS. These results further validate the idea of an epistatic relationship 

between Artemis and TDP1.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

44 
 

 

Figure 13 - Clonogenic Survival Assay with Calicheamicin 

Artemis -/- and Artemis -/-.shTDP1 cell lines mentioned in the figure were seeded at different 

densities from 300/ dish to 10000/ dish in 60mm dishes. Following attachment, cells were treated 

with Calicheamicin within a concentration range of 0pM – 2.4pM for 6 hours. The drug was 

washed away and colonies were allowed to form for a period of 12 days. Colonies were later fixed 

with 100% methanol, stained with 0.5% Crystal Violet and colonies with minimum 50 cells were 

counted manually.  
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Figure 14 - Clonogenic Survival Assay with NCS 

All the four cell lines mentioned in the figure were seeded at different densities from 300/ dish to 

10000/ dish in 60mm dishes. Following attachment, cells were treated with NCS within a 

concentration range of 0nM – 2nM for 6 hours. The drug was washed away and colonies were 

allowed to form for a period of 12 days. Colonies were later fixed with 100% methanol, stained 

with 0.5% Crystal Violet and colonies with minimum 50 cells were counted manually. Error bars 

indicate S.E.M for 5 different experiments.  
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Table 2 - Significance Table 

Table indicates p-values for all the four cell lines at all the different concentrations of NCS. 

Unpaired t-tests were carried out using GraphPad QuickCalcs software. Sensitivity of WT cells to 

NCS was found to be significantly different compared to all the mutant cell lines whereas the 

sensitivity of all the mutant cells to NCS showed no significant difference when compared with 

each other.  

Cell Lines P (0.25nM) P (at 0.5nM) P (at 1nM) P (at 2nM) 

WT vs shTDP1 - 0.11 0.0064 0.0067 

WT vs Art-/- - 0.02 0.0037 0.0483 

WT vs Art-/-shTDP1 - 0.055 0.002 0.015 

shTDP1 vs Art-/- 0.16 0.63 0.76 0.308 

shTDP1 vs Art-/-shTDP1 0.056 0.558 0.89 0.627 

Art-/- vs Art-/-shTDP1 0.257 0.766 0.48 0.47 
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3.5 Art-/- and Art-/-.shTDP1 cells show a similar increase in persistent 53BP1 foci: 

In order to evaluate the role of Artemis and TDP1 in DSB repair, 53BP1 foci were quantified as a 

measure of residual DNA DSBs in all the four cell lines following NCS treatment. 53BP1 is a 

well-established and sensitive marker that relocates to multiple nuclear foci within minutes after 

exposure of cells to IR, co-localizes with known DNA damage response proteins like γ-H2AX and 

becomes hyperphosphorylated in response to IR (Ward, I. et al 2003) and radiomimetic drugs. It 

is general accepted that each 53BP1 focus represents an unrepaired DSB. 

This 53BP1 Assay was performed using non-replicating G0/G1 cells to avoid spontaneous focus 

formation at stalled replication forks. The number of foci seen without drug treatment was similar 

in all the cell lines. The NCS treated samples showed a dramatic increase in the number of foci 

obtained and this increase was consistent with every cell line. As seen on Fig. 15 and 16, following 

8 hours of repair, the WT cells showed a radical decrease in the number of foci as compared to the 

Art-/- and Art-/-.shTDP1 #7 cells. Thus there seems to be a clear repair defect in cells deficient in 

Artemis but deficiency of TDP1 in addition does not make the defect any more severe. Also, 

although the cells deficient in shTDP1 themselves may have a slight repair defect, it was not 

statistically significant.  
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For the treated samples, 4nM NCS was added for 1 hour followed by processing of the cells either 

immediately or following 8 hours of repair. Mouse Anti-53BP1 primary antibody diluted at 1:250 

in casein blocker and Goat anti-mouse secondary antibody (Alexa Fluor 488) at 1:500 dilution 

were used. Nuclei were counterstained with DAPI. 

Untreated  

4nM NCS 

(1 hour) 

4nM NCS 

(1 hour) + 

8 hr repair 

HCT116 Art-/-.shTDP1#7 HCT116 Art-/- 

Figure 15 - Confocal images showing Nuclei (blue) and 53BP1 foci (green) 
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53BP1 focus assay was performed after 4nM NCS treatment. The panel displays number of foci 

formed per cell versus the different cell lines under different conditions. Error bars indicate S.E.M 

(n=3). After 8 hours of repair, p=0.03073 for WT vs Art-/- and p=0.006 for WT vs Art-/-

.shTDP1#7. 

Table 3 - Average number of Foci/ cell for different conditions 

 Untreated 

4nM NCS 

(1 hour) 

4nM NCS (1 hour) 

+ 8 hour repair 

HCT116 WT 0.58 14.17 3.78 

HCT116 shTDP1 0.94 14.48 4.92 

HCT116 Art-/- 1.05 15.38 7.53 

HCT116 Art-/-.shTDP1 #7 0.83 17.17 8.46 

* 

* 

Figure 16 - Graphical Representation of 53BP1 focus formation assay 
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3.5 Deficiency of TDP1 enhances arrest in G1 phase in NCS-treated HCT116 cells. 

TDP1 deficient cells showed a repair defect by 53BP1 that was not statistically significant.  Since 

HCT116 are p53-proficient, they should show an ATM-meditated G1 block in response to DSBs.  

Therefore, if deficiency of TDP1 causes a DSB repair defect (due to less efficient PG removal) for 

NCS-induced DSBs, then the TDP1 deficient cells should show a greater G1 block from NCS than 

WT cells. In order to test this hypothesis, cell cycle analysis studies were performed.  

An initial mapping experiment showing the basic cell cycle profiles of all the cell lines was carried 

out. All four cell lines were seeded at a density of 5×105 cells per 100mm dish. Cells were 

synchronised in G0/G1 phase of the cell cycle by culturing them in low serum medium (0.5% FBS) 

for 96 hours. As shown in Fig 17, around 65%-70% of the cell population was synchronised in G1 

phase. Cells were released into serum and harvested at different time points in order to map their 

progression into S- and G2-phases. All cell lines were observed to progress in S-phase at around 

12 hours after releasing into serum. 

Once the progression of all the cell lines into S-phase was mapped, the cells were treated with 4nM 

NCS for 1 hour following serum starvation, released into serum and harvested at different time 

points. Fig 18 and 19 show the cell cycle profiles of all the four cell lines at different time points 

namely 24 hour control, 96 hour serum starved, and the 10, 12 and 14 hour release into serum with 

and without NCS treatment. Interestingly, as can be seen on Fig. 18 and 19, all the mutant cells 

showed a considerable lag in progression from G1- to S-phase after NCS treatment as compared 

to the WT cells. The enhanced G1 block in cells deficient in TDP1 at the 12 hour and the 14 hour 

time-points confirms the DSB repair defect in these cells. Artemis-deficient cells also show a 

similar enhanced G1 block in response to NCS treatment at the 12- and 14-hour time points. These 
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results demonstrate a similar epistasis between Artemis and TDP1 as seen with the clonogenic 

survival assay 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cells were serum starved for 96 hours, released serum and harvested at the time points 

mentioned above. All cell lines show a consistent profile with progression into S-phase observed 

at around 12 hours.  

Figure 17 - Cell cycle analysis to map S-phase progression 

WT shTDP1 Art-/- Art-/-shTDP1 

96 hr ss 

24 hr 

96 hr ss + 

8 hr serum 

96 hr ss + 

12 hr serum 

96 hr ss + 

16 hr serum 
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5 × 105 cells were seeded in 100mm dishes and serum starved for 96 hours followed by the 

treatments mentioned in the figure. Analysis was performed on BD FACS calibre flow 

cytometer.  

 

 

Figure 18 - Cell cycle analysis after NCS treatment for controls and 10 hour 
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5 × 105 cells were seeded in 100mm dishes and serum starved for 96 hours followed by the 

treatments mentioned in the figure. Analysis was performed on BD FACS calibre flow 

cytometer.  

 

Figure 19 - Cell cycle Analysis following NCS treatment for 12 and 14 hours 
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Table 4 – Percentage of Cell Population in G1, S and G2 phases 

  G1-phase S-phase G2-phase 

WT 

24 hour control 34.1 40.3 25.5 

96 hour serum starved (ss) 66.1 16.5 17.4 

96 hr ss + NCS + 10 hr serum 57.3 16.3 26.4 

96 hr ss + NCS + 12 hr serum 40.1 29.4 30.5 

96 hr ss + NCS + 14 hr serum 19.3 45.9 34.8 

shTDP1 

24 hour control 36.1 40.2 23.7 

96 hour serum starved (ss) 65.7 23.9 10.3 

96 hr ss + NCS + 10 hr serum 57.9 14.1 27.9 

96 hr ss + NCS + 12 hr serum 48.1 15.1 36.8 

96 hr ss + NCS + 14 hr serum 27.4 33.3 39.3 

Art-/- 

24 hour control 34.8 43.4 21.8 

96 hour serum starved (ss) 67.7 21.5 10.9 

96 hr ss + NCS + 10 hr serum 58.5 10.6 30.8 

96 hr ss + NCS + 12 hr serum 41.4 18.8 39.8 

96 hr ss + NCS + 14 hr serum 48.2 19.8 31.9 

Art-/-shTDP1 

24 hour control 28.6 46.6 24.7 

96 hour serum starved (ss) 75.9 15.3 8.8 

96 hr ss + NCS + 10 hr serum 67.8 11.7 20.4 

96 hr ss + NCS + 12 hr serum 52.1 22.3 25.7 

96 hr ss + NCS + 14 hr serum 40.1 33.9 25.9 
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4. DISCUSSION, CONCLUSIONS AND FUTURE STUDIES 

 

 

 

 

Potent cytotoxic DNA damaging agents have been the cornerstone of cancer treatment as few 

therapies have been successful against targets of growth signalling in cells (Rieder et al, 2011, 

Bianco et al, 2006, Anastas & Moon, 2012). Ionising radiation (Hutchinson, F. 1985), free radicals 

(Cadet et al, 2012) and radiomimetic drugs (Dedon & Goldberg, 1992) kill tumour cells by 

inducing double-strand breaks (DSBs) containing unligatable termini like 3ʹ-phosphoglycolates 

(Zhou et al. 2005). The two different radiomimetic agents used in this thesis study viz. 

Calicheamicin and Neocarzinostatin, generate different types of 3ʹ-PG terminated DNA double-

strand breaks. NCS-induced DSBs have at one end a 5ʹ-phosphate and a 3ʹ-phosphate on a 2-base 

3ʹ-overhang. The opposite end has a 5ʹ-aldehyde and either a 3ʹ-PG or a 3ʹ-phosphate on a one-

base 3ʹ-overhang (Povirk, 1996, Dedon & Goldberg, 1992). Calicheamicin produces an 

astonishingly high ratio of DSBs to SSBs with damaged products showing the presence of 3ʹ-PG 

like residues and 5ʹ-aldehyde-ended DNA fragments (Zein et al, 1988).  

The sensitivity of tumour cells to these agents is strongly dependent on the efficiency of the repair 

of these DSBs by the tumour cells. Non-Homologous End Joining (NHEJ) is the pathway of choice 
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by which the DSBs are repaired, apart from Homologous Recombination Repair (HRR), and 

is prevalent throughout the cell cycle, predominantly in G1 phase (Guirouilh-Barbat et al., 

2004). The end groups produced as a result of NCS or Calicheamicin treatment can block the 

activity of various DNA repair proteins including DNA Ligase IV and DNA Polymerases. 

Thus, in order to efficiently repair damage, it is essential that these end lesions be removed. 

Artemis and TDP1 are such end-processing enzymes involved in the repair of DSBs.  

Artemis was originally identified as the gene which codes for a V(D)J recombination/ DNA 

repair factor belonging to the metallo-β-lactamase family of proteins. It was later found out 

that Artemis is the principal nuclease involved in NHEJ which predominantly resolves these 

unligatable termini, especially the 3ʹ blocks, by nucleolytic trimming in order to obtain 

juxtaposable ends that can be annealed and finally ligated (Povirk, 2013). Artemis-null cells 

displayed increased sensitivity to a potent Top II inhibitor, etoposide (Kurosawa et al., 2008). 

It is known that DNA Ligase IV is able to ligate incompatible DNA ends containing 3ʹ 

overhangs of 2-4 bases (Ma et al, 2002) and thus it was believed that Artemis plays a role in 

NHEJ only when the ends have to be processed before ligation.  Some studies have suggested 

an epistatic interaction of Artemis with ATM in promoting radiosurvival and DSB repair, even 

in growth-arrested cells which ideally would not be subject to effects with respect to changes 

in cell cycle.  

Tyrosyl-DNA phosphodiesterase 1 (TDP1) is an enzyme which removes the peptide fragments 

linked through tyrosine to the 3ʹ end of DNA in these Topoisomerase 1-mediated breaks (Das 

et al., 2009). A hereditary homozygous mutation at the active site of TDP1 has been shown to 

be the cause of Spinocerebellar Ataxia with Axonal Neuropathy (SCAN1) (Takashima et al. 

2002). TDP1 is also known to be involved in 3ʹ-phosphoglycolate processing. Previous studies 

from the lab have shown that whole-cell extracts from SCAN1 cells have a deficiency in 

processing of protruding 3ʹ-phosphoglycolate termini to 3ʹ-phosphates, both on single-strand 
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as well as double-strand breaks (Zhou et al. 2005). This deficiency of the mutant TDP1 in 

SCAN1 cells compared to the wild type TDP1 is attributed to the long half-life of mutant TDP1 

covalently linked to DNA as compared to the Wild-type which has infinitesimally short half-

life (Das et al., 2009).  

This thesis investigates whether TDP1 and Artemis are alternative end-processing enzymes in 

NHEJ and if they reveal any epistasis with each other in response to NCS-mediated DNA 

double-strand breaks containing modified 3ʹ-phosphoglycolate ends. Both shRNA-mediated 

knockdown of TDP1 and knockout of Artemis result in sensitivity to Neocarzinostatin (NCS) 

and Calicheamicin, radiomimetic drugs that produce 3ʹ-phosphoglycolate terminated double-

strand breaks. In that effect, we produced a cell line with combined deficiency in Artemis and 

TDP1. To generate such a cell line, Art-/- HCT116 colon carcinoma cells were infected with a 

Lentivirus expressing a TDP1 shRNA. Clones were selected in puromycin, and screened for 

stable integration of the puromycin N-acetyltransferase (pac) gene. Positive clones were 

screened for maximum TDP1 knockdown which was found to be around 12 times.  

We wanted to examine the phenotypic implications of the deficiency of these two repair 

proteins in HCT116 cell line. Several studies have shown that cells lacking important DNA 

repair proteins grow slower as compared to their proficient counterparts (Frank et al., 2000, 

Van Nguyen et al, 2007). Cells deficient in Ligase IV, the principal ligase involved in NHEJ, 

and Rad54, an HR protein, individually experienced growth cessation relative to wild type 

control cells. Double deficient RL cells (Rad54-/- and LigIV-/-) were even more severely 

compromised for growth (Mills, 2004). In order to observe if this effect extends to our study, 

we performed a growth curve experiment in order to observe if deficiency of Artemis and TDP1 

cause the cells to grow slower. Our results indicated that the double mutants had a marked 

growth retardation phenotype as compared to the cells proficient in these proteins thus 

coinciding with the previous studies. Cells have evolved cell cycle checkpoints in order to 
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prevent the daughter cells from receiving a damaged copy of the genome from the parent cell. 

Activation of specific checkpoints causes the cells to arrest in those specific phases of the cell 

cycle, repair the damage inflicted on the genome followed by resumption of the cell cycle 

allowing the cell to progress through the phases and ultimately divide. This could be an 

interesting hypothesis for the slower growth rate of the cells as these repair deficient cells 

would activate the checkpoints in order to prevent the damage from passing on to the next 

generation of cells. 

Epistasis studies have helped scientists to elucidate whether two proteins are functional in a 

particular DNA repair pathway (Glassner & Mortimer, 1994, Symington, 2002, Jensen et al, 

2013). If deficiency of one protein renders the cells sensitive to particular DNA damaging 

agents, however, eliminating another protein from these cells does not further sensitize them 

to the treatment, it would implicate the presence of these two proteins in the same pathway, 

albeit performing different roles in it (Ishii & Inoue, 1989). On the other hand, if the two 

proteins have similar functional roles, then in cells subjected to DNA damage, deficiency of 

both the proteins would be synthetically lethal meaning the cells would demonstrate a higher 

sensitivity as compared to the single mutant cells.  

We carried out clonogenic survival assays on these derivative HCT116 cell lines namely wild 

type, shTDP1, Art-/- and Art-/-.shTDP1 to see if Artemis and TDP1 are alternative end 

trimming enzymes or they are involved in the same pathway. The result was extremely 

surprising as these experiments demonstrate that Artemis and TDP1 are epistatic in their 

function in promoting cell survival following induction of NCS- and Calicheamicin-mediated 

double-strand breaks. In other words, the sensitivity of Artemis or TDP1 deficient cells to these 

agents was no less than the sensitivity of the cells having a combined deficiency of Artemis 

and TDP1. Immunofluorescence studies were also performed on these derivative cell lines to 

check for the ability of the cells to repair NCS-mediated DSBs. 53BP1 is one of the earliest 
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signalling molecules to get activated following DNA damage and is recruited to the site of the 

damage (Panier & Boulton, 2013). By tracing the accumulation of 53BP1 protein at the site of 

chromatin damage as sub-nuclear foci using a Confocal Microscope at different time points, 

one can assess the ability of the cells in repair of the damaged chromatin. This study has shown 

a similar increase in persistent 53BP1 foci in the Art-/- and the double mutant Art-/-.shTDP1 

#7 cell lines thus proving the point above that shTDP1 does not make the deficiency any more 

severe. It was interesting to note that the size of a focus was small immediately after NCS 

treatment but then increased during the repair period. As the cell encounters damage, a large 

number of proteins get dispersed throughout the genome at the damaged areas thus reducing 

the size of an individual focus. Following repair, these proteins would either be degraded by 

ubiquitination or migrate to other unrepaired areas in the genome.   

The epistatic relationship between Artemis and TDP1 could also implicate these two proteins 

performing secondary roles in the NHEJ pathway apart from their primary function which is 

end-processing. Indeed, recently a group has revealed novel interesting associations of TDP1 

with core NHEJ proteins. TDP1 interacts and binds directly to XLF and Ku 70/80 (Heo et al., 

2015). TDP1 also promoted DNA binding by Ku and XLF apart from participating in 

multiprotein-DNA complexes with XLF and Ku70/80. As Ku 70/80 and XLF are known to be 

some of the earliest proteins recruited to the double-strand break site, TDP1 is also suggested 

to be recruited in the early stages of NHEJ even prior to DNA-PKcs. The obstacle of DNA-

PKcs blocking the ends preventing premature access to end-processing enzymes would be 

bypassed by this early recruitment of TDP1 at the break site which can then carry out its 

function of resolving exposed 3ʹ-ends to generate 3ʹ-phosphates (Heo et al., 2015). 

DNA Ligase IV is a part of the Ligase IV complex in NHEJ containing XRCC4/XLF/Ligase 

IV which is absolutely required for end-joining. Several studies have found that Ligase IV 

deficient cells were extremely sensitive to ionizing radiation (Grawunder et al, 1998).  DT40 
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Chicken lymphocytes lacking Ligase IV (LigIV-/-) showed marked sensitivity to X-rays and 

bleomycin (Adachi, et al 2001). Ligase IV and TDP1 cells show severe growth retardation as 

compared to the WT, TDP1 deficient and even Artemis and TDP1 double deficient cells. In 

the future, we wish to answer the question whether the sensitivity of TDP1 is due to impaired 

NHEJ by performing a clonogenic survival assay with cells double deficient in Ligase IV and 

TDP1.  

Poly (ADP-ribose) Polymerases are recruited to the DNA damage sites and attach poly (ADP-

ribose) (PAR) chains to various proteins including themselves and chromatin (Guillot et al., 

2014). In fact, PARP1-deficient cells were highly sensitive to camptothecin, an anti-cancer 

drug that trap Top1 cleavage complexes (Das et al., 2014). PARP and TDP1 have been shown 

to be epistatic for the repair of the Top1 cleavage complexes and that TDP1 PARylation 

enhances its recruitment to DNA damage sites without interfering with TDP1 catalytic activity 

(Das et al., 2014). We would, in the future, seek to explore this possibility of involvement of 

PARP1 in repair of NCS/ Calicheamicin-mediate lesions by TDP1 by the action of Olaparib, a 

PARP1 inhibitor (Murai et al, 2014). 

Another surprising observation was the statistically insignificant repair deficiency in the 

shTDP1 cells in the 53BP1 focus assay, as compared to the significant difference in their 

survival ability in the clonogenic survival assays in response to DNA damage by NCS. This 

behaviour of cells could be explained by the hypothesis that the survival assays were carried 

out on unsynchronised cells. TDP1 lethality in S-phase is attributed to the accumulation of 

unresolved Top1 cleavage complexes during DNA replication. When a replication fork is 

progressing towards these stalled Top1 cc, the extension of the leading strand is terminated 

with replication fork run-off resulting in the conversion of the SSBs into DSBs following a 

round of DNA replication (Tsao et al, 1993, Strumberg, et al. 2000). In addition, when cells 

are treated with a DNA damaging agent like NCS, an exponential increase in strand breaks 
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would further enhance the sensitivity of the cells thus attributing to the phenotype observed in 

the clonogenic survival assays. The 53BP1 assay, on the other hand, was performed on serum-

starved cells synchronised in G1 phase. This would almost eliminate the formation of DSBs 

from Top1 cleavage complexes or from NCS-induced single-strand breaks in these cells and 

thus the deficiency is attributed entirely to the DSBs formed as a result of NCS treatment. In 

this case, Artemis would be sufficient to process the ends formed as a result of the NCS-

mediated damage and thus this would explain the slight, but statistically insignificant, repair 

deficiency observed in the 53BP1 Assay.  

TDP1, as mentioned above, has been known to play a major role in resolution of Top1 mediated 

breaks during replication. Replication forks can collide with single-strand breaks leading to the 

formation of potentially hazardous double-strand breaks. As the 53BP1 assay showed 

insignificant repair deficiency in the TDP1 knockdown cells when they were synchronised in 

the G1 phase, we would like to investigate whether the sensitivity of shTDP1 mutant cells is 

replication dependent. In other words, does deficiency of TDP1 prevent the repair of Top1-

mediated SSBs which could be later converted to harmful DSBs? Aphidicolin is DNA 

replication inhibitor, which primarily acts on DNA polymerase Alpha while also competing 

with dCTP incorporation (Krokan, Wist & Krokan, 1981). Inhibiting replication will prevent 

the conversion of SSBs to DSBs and thus shTDP1 cells should be no less sensitive than those 

cells containing functional TDP1. Consequently, a result similar to the 53BP1 assay would be 

expected. 

Several studies have associated TDP1 with DNA damage response. It was observed that ATM 

and DNA-PK both can regulate TDP1 through phosphorylation of serine 81 in response to 

DSBs associated with the trapping of Top1-DNA complexes and IR. Cells deficient in TDP1 

or harbouring a TDP1S81A phosphomutant show enhanced formation of DSBs. (Das, B. et al 

2009). However, no group has till yet studied the function of TDP1 in cell cycle progression in 
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HCT116 cells. The role of Artemis in cell cycle progression is well studied as groups have 

come up with contrasting conclusions. Jeggo and colleagues have shown that cells deficient in 

Artemis exhibit a prolonged G2/M arrest following IR irradiation (Kurosawa & Adachi, 2010) 

while Legerski and group have presented data showing that Artemis was required for G2/M 

arrest as knockdown of Artemis resulted in an accelerated release from the IR-induced G2/M 

checkpoint (Geng et al, 2007). In order to further understand the phenotypic implications of 

Artemis and TDP1 deficient cells on cell cycle progression, we performed cell cycle profile 

analysis studies on all the four cell lines in response to NCS-mediated DNA DSB formation. 

A mapping experiment performed initially gave an indication of the time the cells require to 

progress through the cell cycle. All the cell lines showed a consistent G1/S progression without 

NCS treatment. However, on treating the cells with NCS, TDP1-deficient cells show a 

substantial retardation in the progression from G1 to S-phase. This phenotype could be 

attributed to the fact that TDP1 is an early NHEJ protein interacting with Ku 70/80 and XLF 

apart from carrying out end-processing functions. NCS-treated cells suffer damage in the form 

of DSBs, which have to be repaired prior to entry into S-phase. In that case, TDP1 deficiency 

would prevent the cells from exiting the G1 phase as inefficient NHEJ would allow residual 

damage to persist which, only once repaired, would allow the cells progress into S-phase.  

Another interesting observation was the extensive decrease in the cell population of the double 

mutants in the G2 phase as compared to all the other cell lines. This behaviour could be 

explained with keeping the end-processing roles of Artemis and TDP1 in mind. Artemis is a 

known NHEJ end-trimming nuclease while several studies have implicated the role of TDP1 

in NHEJ as an end-processing enzyme. TDP1 deficiency is also lethal in S-phase as the 

unresolved Top1cc accumulate. In that case, deficiency of Artemis and TDP1, would thus 

prevent cells from entering the G2 phase. Another hypothetical reason behind this decrease in 

the G2 cell population could be assigned to the cycling of the cells from the G2 phase back into 
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G1. These cells that have escaped the checkpoints in the initial cell cycle would accumulate 

excessive damage and after cycling back into the G1 phase, would accumulate there, thus 

decreasing the population of cells in G2. This theory can be examined by performing cell cycle 

experiments with the addition of Nocodazole which would prevent the cells from cycling back 

into G1 (Rosner, Schipany & Hengstschläger, 2013).  

In conclusion, we have observed that TDP1 and Artemis do not exhibit synthetic lethality but 

manifest and epistatic relationship with each other. Numerous small 53BP1 foci were formed 

corresponding to DSBs following NCS treatment. As the cell repairs the damage, the foci 

become less numerous but some are still visible after 8 hours of repair and increase in size 

during that time, suggesting that repair proteins continue to accumulate at the sites of persistent 

DSBs. As observed from the cell cycle studies, enhanced G1 block in response to NCS in 

shTDP1 cells suggests that TDP1 is an important protein for DSB repair, presumably by NHEJ, 

in the G1 phase of the cell cycle, deficiency of which causes the cells to arrest in G1 phase.  
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