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 Capillarity is a physical phenomenon that acts as a driving force in the displacement of 

one fluid by another within a porous medium.  This mechanism operates on the micro and 

nanoscale, and is responsible for countless observable events.  This can include applications such 

as absorption in various hygiene products, self-cleaning surfaces such as water beading up and 

rolling off a specially-coated windshield, anti-icing, and water management in fuel cells, among 

many others. 

 

The most significant research into capillarity has occurred within the last century or so.  

Traditional formulations for fluid absorption include the Lucas–Washburn model for porous 

media, which is a 1-D model that reduces a porous medium to a series of capillary tubes of some 

educated equivalent radius.  The Richards equation allows for modeling fluid saturation as a 

function of time and space, but requires additional information on capillary pressure as a 



 
 

 
 

function of saturation (pc(S)) in order to solve for absorption.  In both approaches, the surface 

can only possess one fluid affinity.  This thesis focuses on developing capillary models necessary 

for predicting fluid absorption and repulsion in fibrous media.  Some of the work entails utilizing 

approximations based on pore space available to the fluid, which allows for capillary pressure 

simulation in media with arbitrary fiber orientation.  This thesis also presents models for tracking 

the fluid interface in fibrous media and coatings with simpler geometries such as horizontally 

and vertically aligned fibers and orthogonal fiber layers.  This method hinges on solving for the 

true fluid interface shape between the fibers based on the balance of forces across it, ensuring the 

accurate location and total content of fluid in the medium, and therefore accurate pc(S).  Using 

this approach also allows, for the first time, fibers of different fluid affinities to exist in the same 

structure, to examine their combined influence on fluid behavior.  The models in this thesis focus 

mainly on absorbent fabrics and superhydrophobic coatings, but can be easily expanded for use 

in other applications such as water filtration from fuel, fluid transport and storage in 

microchannels, polymer impregnation in fiber-reinforced composite materials, among countless 

others. 
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Chapter 1: Overall Objectives of This Thesis 
 

 This thesis primarily focuses on the phenomenon of capillarity and capillary pressure, 

and always as it pertains to various fibrous configurations.  The earliest capillary models 

chronologically involve the Full Morphology method, which focuses on relations between 

capillary pressure and fluid content in a given structure, but do so using a mathematical 

approximation that negates calculating meniscus shape or allowing multiple wettabilities in a 

single structure.  Simulations performed using this method, however, provide a benchmark, a 

context in which subsequent models and derivation can be considered and compared.  The true 

novelty of the work is in the development of models that produce the true shape of the water–air 

interface within a fibrous structure, and facilitate characterizing additional information about the 

system.  

  

 Chapter 2 will provide a background for capillarity as a phenomenon, and give an 

overview of the two primary approaches for modeling absorption in fibrous media.  We will also 

examine applications in which capillarity resulting in the repelling of fluids is beneficial, with 

particular emphasis on fibrous superhydrophobic coatings.  Other applications for repulsion will 

also be discussed, such as oil–water filtration coatings, gas diffusion layers in fuel cells, and 

Laplace barriers in microchannels. 
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Chapter 3 will focus on capillarity models developed for absorption.  We will begin with 

models for capillary height rise in a tube, which will establish some initial information for 

analytical force balance expressions that will apply to more complicated models.  We will then 

benchmark several numerical approaches for determining interface curvature with our analytical 

expressions.  From there, we will consider height rise in vertically arranged fiber bundles, 

introducing an analytical expression for overall height rise, as well as a numerical model for 

determining meniscus shape for randomly placed vertical fiber bundles containing multiple 

wettabilities (i.e., contact angles).  We will then review our strategies for capillary flows 

perpendicular to fibers in a medium, first discussing the Full Morphology (FM) method, and then 

moving on to an approach based on the balance of forces of a fluid interface working its way 

through horizontal parallel fibers.  Like the vertical fibers, this model yields the true interface 

shape, and can accommodate multiple contact angles in a single medium. 

 

Chapter 4 will entail our application of one of our capillarity models to solve the 

Richards Equation on the macroscale for thin fibrous wipes.  We will explain modeling 

permeability (another contributor to the nonlinearity of the Richards equation), then show a 

series of models for absorption and drainage, emphasizing effects of fiber orientation and the 

hydrophilicity of the dry surface.   

 

 Chapter 5 will examine our models for characterizing fibrous superhydrophobic coatings.  

We will begin by summarizing several force balance equations for the simple case of parallel 

fibers.  We will then examine the disparity between force balance and FM results for this simple 

case for varying fiber spacings and contact angles.  From there, we will present the results of a 
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series of FM simulations to establish critical pressure as it relates to microstructure properties.  

We will do this for randomly layered coatings and orthogonally layered coatings.  From there, 

we will examine a model that determines critical pressure by calculating the minimum-energy 

shape of the fluid interface in an orthogonally layered coating, as well as establishing wetted area 

(which contributes to effectiveness of drag force reduction).  As with the meniscus shape-based 

absorption models, this approach can also facilitate multiple contact angles in a single structure, 

so this effect will be examined as well.  We will take a brief look at the extension of our 

orthogonal coating structures to the context of aerosol filtration, establishing observed properties 

unique to coatings of this design.  These properties make such a nanofibrous structure useful as 

an additional filter coating applied downstream of a filter medium with larger fibers. 

 

Finally, we will close with our overall conclusions in Chapter 6, as well as with 

recommendations for future extensions of this work. 
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Chapter 2  

Capillarity in Fibrous Media: Background Information 

 

Capillarity is the physical mechanism by which two immiscible fluids establish 

conditions (i.e., shape and position of the deformable interface between them) that minimize 

surface energy (de Gennes et al., 2004).  The surface tension over the interface in, for example, a 

droplet in midair causes the droplet to conform to a spherical shape within the constraints of 

forces such as air resistance and gravity.  In the application of porous media, this mechanism 

always involves a solid surface. The chemistry of the surface is typically such that it has an 

affinity for one of the two fluids over the other.  Sticking for now  with the example of the two 

fluids being water and air, the difference in the solid–fluid surface tension when the fluid is air 

versus when it is water causes a droplet on a flat surface to conform to a contact angle θ with the 

surface, as is shown in Figure 2.1 (Dullien, 1992).  Figure 2.1a illustrates the balance of surface 

tension forces on the contact line where the three phases meet (point A in the two-dimensional 

figure).  The balance of the three forces yields the contact angle θ the droplet makes with the 

surface, given by the Young equation (Dullien, 1992): 

 coslg sg slσ θ σ σ= −          (2.1) 

where the subscripts s, l, and g stand for solid, liquid, and gas, respectively.  This contact angle 

property is exploited through various mechanisms which will be discussed in this introduction.  

As can be seen in Figures 2.1b and 2.1c, the overall characteristic of whether a surface can be 
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regarded as hydrophilic (prefers and retains water) or hydrophobic (repels water) simply comes 

down to whether θ is greater than or less than 90°. 

 

 

Figure 2.1: (a) Illustration of the balance of forces between the three surface tension forces along the ring where 
three phases meet (shown as point A in two dimensions) for a droplet on a flat surface.  (b) Droplet on a hydrophilic 
surface (θ < 90°) .  (c) Droplet on a hydrophobic surface (θ > 90°).  
 

 Depending on the hydrophilicity or hydrophobicity, porous media and coatings 

comprised of a given material can be used in a number of applications, so long as the size scale 

of the working components of the medium (e.g., wicks, posts, grooves, fibers, etc.) is on an order 

of magnitude sufficient for surface tension forces to be a relevant factor.  In the event that a dry 

hydrophilic material comes into contact with a reservoir of water, it will spontaneously absorb 

the water via capillary forces, displacing the non-wetting air.  In a capillary tube, such as those 

shown in Figure 2.2, the capillary forces acting around the interior ring of the tube draw a partial 

vacuum in the liquid at the top of the front (Masoodi and Pillai, 2013), drawing the liquid into 

the tube until the weight of the liquid in the column matches the drawing force of the tube.  The 

pressure difference across the spherical meniscus inside the tube (capillary pressure pc) is given 

by the well-known Young–Laplace equation: 

Hydrophobic   θ > 90

θ

Hydrophilic   θ < 90

θ

σsg

σlg

σslθ

a)

b) c)

A
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 2 cos
c

cap

p
r

σ θ
=           (2.2) 

where rcap is equal to the radius of the tube. 

 

Figure 2.2: Absorption of liquid into a series of tubes via capillary forces.1 

 

This fundamental mechanism is the driving force behind much of the material covered in 

this thesis, and a number of predictive models for understanding the role of capillarity different 

applications will be explored.   

 

 

2.1 Applications and Models: Absorption 

Lucas–Washburn Models 

The oldest models were applied to absorption into porous media.  It is the most broadly 

applicable use for the understanding of capillarity, applying heavily in soil science and petroleum 

engineering, and in fibrous media extending to wipes, diapers, sanitary patches, among many 
                                                 
1 Image from http://fphoto.photoshelter.com/image/I000096KKIQwJAGc  
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other things.  Vertical fluid rise z in a capillary tube of fixed diameter dcap was the first 

quantifiable experiment involving capillarity, resulting in what later became known as Jurin’s 

law (Jurin, 1719): 

 
24 cos

cap

az
d

θ
=           (2.3) 

where /a gσ ρ=  is equal to capillary length scale. ρ and g represent surface tension, density, 

and gravitational acceleration, respectively. The effect of capillarity is significant when dcap is 

less than capillary length a (Ponomarenko et al., 2011). It is easily seen that this equation is 

simply Equation 2.2 with hydrostatic pressure equal to capillary pressure.  The oldest dynamic 

formula using capillarity that is still used today is the Lucas–Washburn model for absorption, 

derived from 1-D Poiseuille flow in a vertical capillary tube (Lucas, 1920; Washburn, 1921; 

Hollies et al., 1957; Miller and Jansen, 1982; Hodgson and Berg, 1987; Zhmud et al., 2000; 

Mullins et al., 2007): 

2

2 cos 8

cap cap

z dzgz
r r dt

σ θ μρ= +          (2.4) 

Some researchers have in recent years also taken inertia into consideration for a dynamic model, 

in which case Equation (2.4) instead becomes (Fries and Dreyer, 2008a and b; Ben Amara and 

Ben Nasrallah, 2011; Masoodi et al., 2013): 

2

2 cos 8 ( )

cap cap

d zzgz zz
r r dt

σ θ μρ ρ= + +        (2.5) 

 

In either case, Equations (2.4) and (2.5) simplify to Equation (2.3) when a steady-state condition 

is reached.  The simple geometry of the vertical capillarity has formed the basis of many 

empirical and theoretical representations of capillarity.  Many researchers have taken to 
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simplifying the complex internals of a porous medium by representing them as bundles of 

parallel capillary tubes with some effective radius determined empirically (Dullien, 1992).  The 

same basis for derivation was later revisited by Marmur (1988), in which a model for predicting 

the radial horizontal spread of a fluid from an infinite reservoir of radius r0 was developed, and 

later validated for spread in sheet papers (Danino and Marmur, 1994). A modified form of 

Marmur’s equation was then presented in Hyvaluoma et al. (2006) as 

 
2

2
0 0 0

cos1 1ln
2 2 12

cap capdr r t
r r r

σ θ
μ

⎛ ⎞ ⎛ ⎞
− + =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
       (2.5) 

Additional similar relations for radial spread have also been developed and validated on similar 

bases (Danino and Marmur, 1994; Conrath et al., 2010).  Equation 2.5, or any such equation 

derived based on a capillary-tube representation of a multi-component fibrous medium (medium 

having more than one fiber diameter and/or wall-contact angle), requires single numeric values 

for the diameter dcap and contact angle θcap of the representative capillary tube.  

 

 These models, collectively referred to in this work as Lucas–Washburn (LW) approaches, 

all hinge upon the simplifying act of reducing the porous medium under consideration to one or 

more capillary tubes, dismissing the actual morphology of the medium and the fluid’s actual 

behavior in such a medium.  Moreover, the focus of these approaches on the location of a distinct 

liquid front prevents one from considering partially-saturated regions in a medium, and its 

derivation limits it to applicability in one dimension only.  Nonetheless, the model has had utility 

in quantifying a problem as complicated as porous geometries, as demonstrated in the above 

works, among many others.  One of the first models discussed in the next chapter will be a 

vertical height rise model in the same vein as the LW models, but will leave the geometry of the 
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fibers intact, modeling capillarity in aligned fiber tows.  The results of this approach can then be 

tailored to the models discussed above, such as establishing dcap and θcap in Equation 2.5. 

 

The Richards Equation 

 An alternative approach to LW models is the Richards equation (Richards, 1931).  Rather 

than fixating on a location of a single liquid front, the Richards equation expresses saturation S 

(i.e., the ratio of absorbed fluid volume to total pore volume) as a function of time and space, 

modeling the domain on the macroscale as a homogeneous zone with uniform properties—

properties arrived upon through the use of additional microscale correlations.  Deriving the 

Richards equation begins with the 3-D unsteady continuity equation: 

 0S u v w
t x y z

∂ ∂ ∂ ∂
Φ + + + =

∂ ∂ ∂ ∂
        (2.7) 

where ε is equal to the solid volume fraction (SVF) of the medium.  The velocity terms can be 

substituted using Darcy’s Law (Jaganathan et al., 2009): 

 
( ) ( )ij c

i
j

k S p Su
xμ

∂
= −

∂
         (2.8) 

where kij(S) is equal to permeability of the medium (described in greater detail later in this 

thesis), a second-order tensor whose off-diagonal terms have been found to be negligible (Ashari 

and Tafreshi, 2009), and μ is equal to viscosity.  Substituting into Equation 2.7 and applying the 

chain rule to pc(S), the Richards equation is thus given as 

 
( ) ( )

( )

1

0

c c
xx yy

c
zz

p pS S Sk S k S
t x S x y S y

p Sk S
z S z

μ
⎛ ⎛ ⎞∂ ∂∂ ∂ ∂ ∂ ∂⎛ ⎞Φ − +⎜ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝

∂ ⎞∂ ∂⎛ ⎞+ =⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎠

    (2.9) 
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The full equation is highly nonlinear, with capillary pressure and permeability both being 

functions of S themselves.  The result is a solution that allows for partially saturated regions to 

exist inside the domain, and can facilitate spread and transport in multiple dimensions, as will be 

shown later.  Figure 2.3a shows a contour plot for the final solution for height rise in a vertically 

hung strip of fabric (from Jaganathan et al., 2009).  Figure 2.3a shows an example using the 

Richards equation to solve for vertical height rise of mineral oil in fabric sheets over time.  The 

solution is plotted along with the results of three experiments performed in conjunction with it.  

Accounting for gravity and simplifying to absorption in one dimension, Equation 2.9 becomes 

 ( )1 ( )sin 0c
zz zz

pS Sk S gk S
t z S z

ρ β
μ
⎛ ∂ ⎞∂ ∂ ∂⎛ ⎞Φ − + =⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

    (2.10) 

where β is equal to the inclination angle of the fabric (90° being vertical).  Figure 2.3b shows 

how the distribution of the partially saturated region in a sample at equilibrium changes with 

inclination angle β, indicating the decrease in overall wetted length and in the size of the partially 

saturated region.   
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Figure 2.3: (a) Contour plot showing the solution of the one-dimensional Richards equation with gravity (2.10) for 
vertical height rise in fabric samples from the work of Jaganathan et al. (2009).  (b) Height rise with respect to time 
for three experiments (symbols) and the numerical solution of Equation 2.9 (solid line), β = 90°.  (c) Effect of angle 
β on overall height rise and size of partially saturated region. 
 

 

 

0 10 20 30 40 50
Time (sec)

0

2

4

6

8

10

12

14

16

18

20

W
et

te
d

Le
ng

th
(m

m
)

Experiment 1
Experiment 2
Experiment 3
Numerical Solution (Eqn.18)

b)

0 10 20 30 40 50 60
Distance from Datum Line (mm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sa
tu

ra
tio

n

Sin 30
Sin 45
Sin 60
Sin 90

Angle of Inclination

c)

w
et

te
d 

le
ng

th

fu
lly

 sa
tu

ra
te

d

pa
rti

al
ly

 sa
tu

ra
te

d
fu

lly
 d

ry

a)



 
 

12 
 

2.2 Applications and Models: Repulsion 

Superhydrophobic Coatings and Surfaces 

The models introduced thus far have focused on absorption.  A surface that possesses a 

contact angle greater than 90° (hydrophobic) results in behaviors that lend themselves to other 

intriguing applications.  An area of particular interest this thesis will focus on is 

superhydrophobic surfaces.  Superhydrophobicity is typically the combination of two effects: an 

inherent hydrophobicity of the surface as described above, and an additional surface roughness 

on the micro or nanoscale which facilitates the trapping of air beneath a drop of water in the 

spaces between microridges.  These effects combine to endow an apparent contact angle (i.e., an 

observed contact angle regardless of surface topography) greater than 150°. 

 

This phenomenon was first observed in nature (like so many phenomena that find their 

way into engineering application), utilized by a number of plants and animals for various 

purposes.  The most famous example is that of the lotus leaf, whose leaves possess a 

characteristic superhydrophobicity owed to a combination of epidermal roughness and an 

epicuticular wax coating (Samaha et al., 2012; Koch et al., 2009; Barthlott and Neinhuis, 1997).  

The lotus uses superhydrophobicity for self-cleaning, as an incoming drop will easily roll off the 

leaf, taking with it any particulate debris in its path.  This maximizes the available surface area 

on the leaf for photosynthesis. Other examples include the water strider using 

superhydrophobicity to walk on water, and the diving bell spider using the phenomenon to live 

its entire life underwater (Seymour and Hetz, 2011). 
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Among the first uses considered for superhydrophobic surfaces and coatings were self-

cleaning for such applications as clothing and car windshields, using the same principles as the 

lotus. Another interesting application is anti-icing for aircraft.  Ice cannot accumulate on the 

exterior of an airplane if water cannot adhere to the surface to begin with.  This application has 

also been extended to wind turbines, as the accumulation of ice on the blades causes a 

considerable reduction in their efficiency (Alizadeh, et al., 2012).  However, more recently, the 

use of superhydrophobic coatings for submersible applications has become a subject of 

considerable interest (Samaha et al., 2012), and is the main application studied in this thesis.  

Patel et al. (2013) and Patel and Chase (2014) also investigated the applicability of 

superhydrophobic electrospun fibrous membranes for use in water droplet separation from diesel 

fuel flows, as opposed to simply producing slip flow along a channel wall.  Water droplets in the 

fuel would be caught by the capillary properties of the fibers, removing them from the flow.   

 

To achieve the necessary surface roughness synthetically, a number of techniques have 

been developed in the last decade or so.  Most engineered superhydrophobic surfaces to date are 

comprised of micro-fabricated posts or grooves. Figure 2.4a shows a series of SEM images of 

surfaces comprised of ordered posts from the work of Lee et al. (2008).  By varying post 

diameter while keeping pitch (center-to-center distance between posts) constant, the authors were 

able to determine the gas fraction for each substrate (shown in the corner of each image), and 

subsequently measure the slip effect for each case using a rheometer.  Maynes et al. (2007) 

performed a similar study in which micro-channels were aligned parallel to a passing laminar 

flow (shown in Figure 2.4b).  The ordered nature of these micro-engineered surfaces lends itself 

to the devising of analytical functions for meniscus stability based on the balance of forces 
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between the air–water interfaces between the microstructures.  These expressions can then be 

used to compare against numerical and experimental data, as the authors of these works have 

done.  A disadvantage to this manufacturing method is that producing such surfaces and coatings 

on a large scale is time-consuming, expensive, and impractical when considering the necessity of 

conforming the surfaces to arbitrary shapes.   

 

 
Figure 2.4: (a) Examples of superhydrophobic surfaces comprised of evenly distributed, microfabricated posts 
under an SEM from the work of Lee et al. (2008).  The pitch for all surfaces shown is 50 µm.  Percentages denote 
the gas fraction for each case. (b) SEM image of a surface comprised of microfabricated grooves from the work of 
Maynes et al., (2007).  The grooves are 15 µm deep and 30 µm wide, while the ridges have a width of 10 µm. 
 

Recent studies have shown that superhydrophobic coatings can also be produced using 

polymeric nanofibers manufactured via electrospinning (Ma et al., 2005, 2008). Electrospinning 

is more cost effective than microfabrication, and can better conform to surfaces with arbitrary 

a)

b)
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shapes. With electrospinning, however, one has less control over the coating microstructure. 

Different methods of electrospinning can produce fibrous coatings with varying degrees of order 

and controllability in how fibers are laid down. Nanofibers produced via electrospinning often 

have random in-plane orientations, owing to the unstable whipping of the polymer filament as it 

is released from the Taylor cone (Yarin et al., 2001; Reneker and Yarin, 2008).   

 

In a typical electrospinning process, a DC electric field is applied to a polymer solution 

contained within a capillary needle. Such a field exerts a force on the polymer solution, 

distorting the fluid surface at the tip of the injection needle into a characteristic Taylor cone, 

caused by the balance between surface tension and the applied electric force. When the electric 

force on the liquid exceeds a critical limit, a jet of charged liquid emerges from the tip of the 

Taylor cone, and if the solution contains a polymer solute, continuous polymer nanofibers can be 

produced with diameters well below 1 µm. However, in a electrospun fiber mat, the electrically 

charged fibrous output from the capillary needle swings and spirals wildly due to Coulombic 

self-repulsion, leading to loops in the deposited fiber diameters on the order of several 

millimeters.  Figure 2.5a shows a typical electrospun nanofiber coating from the work of Uecker 

et al. (2010).  Such a coating possess the roughness necessary on the nanoscale to facilitate 

superhydrophobicity on the substrate to which the coating is applied. 
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Figure 2.5: (a) SEM image of randomly laid nanofibrous coating fabricated using electrospinning (from the work of 
Uecker et al., 2010).  (b) SEM image of orthogonally laid electrospun coating.2 
 

 

Recent advances in the area of electrospinning have allowed for minimizing or 

counteracting the effect of Coulombic self-repulsion production of coatings with controlled 

spacing and orientation in its fibers, enough even to produce coatings with layers laid 

orthogonally to one another  (Kessick and Tepper, 2003, 2004 and 2006; Levit and Tepper, 2004; 

Sarkar et al.,2007, among many others), as shown in Figure 2.5b.  A superhydrophobic coating 

comprised of electrospun nanofibers can potentially generate drag-reduction and pressure-

tolerance performance characteristics similar to those of microfabricated posts and ridges, but at 

a much lower cost. To encourage the desired inter-fiber voids within the medium, one can 

                                                 
2 Image from http://www.nasa.gov/centers/langley/business/tg-img-fibermats.html. 
 

a)

b)
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produce coatings with bimodal fiber-diameter distributions if desired. Generally speaking, the 

coarse fibers in such coatings would help to provide the required porosity and thickness, whereas 

fine fibers would control the pore size. 

 

A water–air system on a superhydrophobic surface is typically regarded as being in one 

of two states, illustrated in Figure 2.6.  In the Cassie state, a volume air is trapped below the 

water droplet, which rests on the top of the coating (Cassie and Baxter, 1944).  The reduced 

water–solid contact area results in the desired free-slip condition which would reduce skin-

friction drag.  The second state, the Wenzel state, is when the water has penetrated into the 

coating and displaced the trapped air (Wenzel, 1936).  In this state, the free-slip condition has 

vanished, as the coating itself is now submerged in the flow.  Coating failure is defined simply as 

the transition from the Cassie state to the Wenzel state. Models and experiments for 

superhydrophobic coatings are often concerned with two primary pieces of information (among 

some others): the critical pressure, the pressure beyond which a meniscus fails simply due to 

applied forces overcoming capillary forces; and longevity, the time required for trapped air to 

diffuse into the water and cause coating failure.   
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Figure 2.6: Side view illustrating the two primary quasi-static water–surface interface states on a superhydrophobic 
surface, in this case comprised of ordered, microfabricated posts.   
 

The work presented in this thesis is focused on studying the effect of the microstructure 

on critical pressure, and therefore its resistance against hydrostatic pressures. We will first 

examine this using the Full Morphology approach—a method also applied to find pc(S) in our 

Richards equation model introduced earlier.  This method, however, while useful for establishing 

relations for media with fibers of any arbitrary orientation, does so at the expense of a true shape 

for the air–water interface in our coatings.  Were the true meniscus shape calculated, one could 

also calculate the exact solid area in contact with water (the area causing friction due to the no-

slip boundary) and predict the drag reduction percentage brought about by the coating. Emami et 

al. (2011, 2012) developed several models capable of determining meniscus shape for surfaces 

comprised of posts and thin fibrous coatings (i.e., one or two layers thick).   We therefore also 

present in this thesis an alternative method that can be applied to orthogonally oriented coatings, 

in which the true meniscus shape is calculated, thus providing both failure pressure and 

maximum water contact area.  The model is based on solving for the interface shape that 

minimizes surface energy.  Moreover, this model can be applied to coatings comprised of 
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multiple fiber types (i.e., contact angles).  Both methods will be elaborated upon in subsequent 

chapters. 

 

Additional Potential Applications 

The work to follow in this thesis focuses particularly on fibrous media and coatings, but 

could easily be tailored to a number of other phenomena in which capillarity plays a central role.  

In microfluidics, microposts can be added to thin flat microchannels to induce and control fluid 

transport in microchannels (Saha et al., 2009).  In the work of Kreit et al. (2010) and Schultz et 

al. (2014), the authors used arranged pillars in thin mircochannels to act as Laplace barriers in 

electrowetting.  As is shown in Figure 2.7, a charge is applied to an electrode to provide the 

motive force to conform a fluid to some intended geometry within the channel, and then the 

hydrophobic pillars within channel keep the fluid in the given geometry via capillary forces after 

the voltage is removed.  The posts can also be spaced differently in different regions to help 

govern fluid shape as is also shown in Kreit et al. (2010), but different hydrophobicities to 

evenly spaced posts could also accomplish it.  The capillarity models established here can easily 

be applied to help predict interface shape and pressure tolerance for such cases.   
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Figure 2.7: (a) Conceptualization of electrowetting in a microchannel without Laplace barriers.  (b) 
Conceptualization of electrowetting in a microchannel with Laplace barriers. (c) Experimental demonstration of 
electrowetting with Laplace barriers.  Image is from the work of Kreit et al. (2010). 

 

 

 Quantifying capillarity is also essential in anticipating the gas diffusion layer (GDL) for 

polymer electrolyte membrane (PEM) fuel cells (also known as proton exchange membrane fuel 

cells). Numerous recent studies have revealed the importance of the GDL’s fibrous 

microstructure and wettability (i.e., capillarity) on moisture management in PEM fuel cells (e.g., 
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Litster et al., 2005; Zhou and Wu, 2010; Hao and Cheng, 2010; Caulk and Baker, 2011).  Figure 

2.8 is the result of a lattice Botlzmann simulation of a 3-D reconstruction of the GDL of a fuel 

cell from the work of Hao and Cheng (2010).  Four stages of water accumulation and penetration 

are shown (for different times).  The accumulation of water on one side of the cell results in an 

intruding fluid front working its way through the fibrous web.   While some hydration is good for 

proton conductivity, too much water can block the transport of reaction gases (Tuber et al., 

2003).  The lattice Boltzmann method, while an accurate modeling strategy, is computationally 

expensive, requiring a fully realized three-dimensional mesh of the fibers and surrounding space.  

One of the models presented in this thesis (Section 5.2) could be modified to this application, and 

would only require modeling of the air–water interface itself.   Capillarity in fibrous materials 

has also been the subject of extensive research in fiber-reinforced composite materials.  Such 

materials as thermoplastics are made up of fibers, sometimes ordered and sometimes randomly 

arranged, that are impregnated with a liquid resin that subsequently solidifies, adding rigidity and 

mechanical strength (e.g., Bayramli and Powell, 1990; Kaptay, 2008; Simcek et al., 2009 among 

many others).  The impregnation process is a balance between capillary forces and viscous 

forces.  Essentially, most any conceivable application which utilizes capillary forces that would 

benefit from specific knowledge of interface shape, position, and behavior could have the models 

presented in this thesis extended for use in that context. 
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Figure 2.8: Lattice Boltzmann simulation of water accumulation and penetration in the gas diffusion layer of a PEM 
fuel cell shown at four different times (0.75s, 0.95s, 1.05s, and 1.2s, respectively) from the work of Hao and Cheng 
(2010). 
 

Finally, fiber coatings with orthogonally laid layers also have utility in the field of 

aerosol filtration, and have some unique properties in that application.  These coatings can serve 

as a nano-sieve designed and placed on the downstream side of a conventional nonwoven fibrous 

filter to enhance its performance (i.e., collection efficiency for a given pressure drop). This thesis 

will also briefly report on an analysis of the performance characteristics of these thin coatings to 

guide the fabrication process in terms of their microstructural properties, much in the same vein 

as for a superhydrophobic coating. In particular, there is a correlation we have found such that, 

for coatings comprised of a given fiber size, there exists a corresponding particle size for which 

the coating’s performance becomes independent of variations in fiber-to-fiber spacing (i.e., 

coating’s non-homogeneity).  
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Chapter 3 

Capillary Models for Fluid Transport in Fibrous Media3 

 

3.1 Fluid Height in a Vertical Capillary Tube 

Analytic Expressions from Balance of Forces across the Interface 

Equation 2.3 is simply a balance of forces in a vertical cylindrical capillary tube, as shown in 

Figure 3.1.  The capillary force around the wall at the air–water meniscus of the tube is balanced 

by the weight of the column of water raised into the tube.  This system assumes that air pressure 

is the same inside and outside the tube (i.e., the tube and reservoir are open to atmosphere).  For 

any medium in which capillarity applies and the geometry of the system is fixed in the z 

direction, the balance of forces for vertical height rise can be expressed as 

 cosA gz Cρ σ θ=          (3.1) 

where the left side represents the downward force due to gravity, and the right side the capillary 

forces drawing the meniscus upward.  Since C and A in this case are merely the circumference 

and cross-sectional area inside the tube, Equation 3.1 simplifies to the equation for Jurin’s 

height—Equation 2.3.  

                                                 
3 Some of the contents of this chapter appears in the following publications: 

• T.M. Bucher and H.V. Tafreshi, "On applications and limitations of one-dimensional capillary formulations 
for media with heterogeneous wettability," Applied Physics Letters 102, 241606 (2013). 

• T.M. Bucher and H.V.Tafreshi, "Modeling air–water interface in disordered fibrous media with 
heterogeneous wettabilities," Colloids and Surfaces A: Physiochemical and Engineering Aspects 461, 323–
335 (2014) 
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This simple case serves as the starting point against which several methods are discussed 

in this thesis for predicting meniscus height and shape.  These methods are respectively 

described in the following three subsections. 

 

 

Figure 3.1: Free body diagram of the forces balancing the vertical height rise of liquid in a cylindrical capillary 
tube. 
 

 

Simulation of Height Rise via the Volume of Fluid Method 

First, we developed a model for meniscus height and shape based on solving the Navier–

Stokes equations in the finite volume environment.  We use the Volume of Fluid (VOF) method 

to define regions within a computational domain that are initially comprised of water (the rest 

being air), and we allow the defined surface and body forces to reconfigure the two fluids into 

their equilibrium state.  During the solution, mass is conserved by allowing each computational 

cell to have a volume fraction to represent partial water and air content at the location of the 

interface.  The method is similar to the Marker and Cell method, in which case discretized 

computational cells are either dry or (if containing even one “marker particle” for the other 
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phase) wet (McKee et al., 2008).  However, the absolute wet-or-dry cell classification leads to 

mass conservation issues requiring refining and adapting the mesh near the fluid interface.  

Marker and Cell also has computational expense comparable to VOF.  Due to VOF’s 

computational expense in a fully three-dimensional space, for this task, we take advantage of the 

simplicity of this particular problem, and model a 2-D axisymmetric plane.  The initial 

configuration of the system is shown in Figure 3.2 below. The central axis of rotation is on the 

right boundary of the domain.  Thus, the thin region on the right represents the capillary tube, 

while the area outside is the reservoir.  The blue and red regions are air and water, respectively.  

The tube has an inside radius of 2 mm, and a contact angle of 40°.  The outside surface of the 

tube is neutral to air and water.  Applying these parameters to Equation 2.3 yields a final height 

of 5.7 mm.  This final height is applied to the VOF model as a height difference between the 

water level inside and outside the tube.   

 

Figure 3.2: 2-D axisymmetric VOF simulation of vertical height rise inside a capillary tube with a radius of 2 mm 
and a water contact angle of 40°.  Figures (a) and (b) represent the initial and final conditions of the system, 
respectively. 
 

a) b)
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To measure height inside the domain in Figure 3.2, we developed a C++ subroutine or 

user-defined function (UDF) that reads the height inside and outside the tube and subtracts the 

difference between them.  An additional consideration must be made, however.  It can be easily 

seen in Figure 3.2 that the meniscus inside the tube is not a flat height, but rather has a spherical 

curvature.  The height given by Equation 2.3 corresponds to the equivalent height of a flat 

cylinder inside the tube that has the same volume as the meniscus in our model.  To obtain this 

equivalent height, our UDF first measures the minimum height of the meniscus zmin.  It then adds 

the result of the following equation to that height: 

  ( )( ) ( )( )3 2
3

2 1cos 90 cos 90
cos 3 3add

rz θ θ
θ
⎛ ⎞= − − − +⎜ ⎟
⎝ ⎠

    (3.2) 

It can be shown that Equation 3.2 gives the volume of the meniscus above zmin, and divides it by 

the area of the tube, yielding the height of a fictitious cylinder with the same volume as the 

meniscus.  Thus, min addz z z= +  is the height returned by the UDF, and is the singular height 

Equation 2.3 predicts.   

 

Starting with the initial configuration shown in Figure 3.2a, we performed a dynamic simulation 

in which the system is allowed to equilibrate on its own, and compared it with Equation 2.5, 

which was solved using a fourth-order Runge–Kutta method (Mosoodi et al., 2013).  The result 

is shown in Figure 3.3, along with the steady-state Jurin’s height as a reference.  The two curves 

show very strong agreement.  Our model dampens more quickly, but Equation 2.5 assumes an 

infinite reservoir, whereas our model has a finite reservoir, the feedback oscillations of which 

dampen the oscillations inside the tube.  This dampening is also consistent with experimental 

comparisons in the literature (Masoodi et al., 2013). 
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Figure 3.3: Comparison of meniscus rise and settling time between our VOF model and the prediction from 
Equation 2.5.  The steady-state Jurin solution from Equation 2.3 is also shown.  The capillary tube has a radius of 2 
mm and a contact angle of 40°. 
  

 

While solving for meniscus shape and height via the VOF simulation has shown strong 

agreement in simple cases, using it in any other more complicated case can be prohibitively 

computationally expensive.  To address this problem to some degree, we have used the simple 

case studied in this section to develop a methodology for circumventing the need to generate the 

full capillary tube and reservoir, and instead modeling only a small window where the meniscus 

exists.  At the inlet to the window, a pressure boundary is applied that corresponds to the 

appropriate hydrostatic pressure for the remainder of the tube not modeled.  The UDF previously 

written to measure meniscus height is modified to now apply the necessary pressure at the 

boundary, which can be expressed as: 

 ( )in min addP g z z Bρ= − + +         (3.3) 
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Figure 3.4 below illustrates this simplified simulation domain and the height components for the 

pressure boundary.  With this method, of course, one can only predict final meniscus height and 

shape, not the time it takes to reach it. 

 

 

Figure 3.4: Conceptual illustration of modeling a small window of the full capillary tube domain and reservoir.  
Pressure boundary applied at the inlet is due to the height of the fluid inside the window and the height of the 
column below it. 
 

The same process of simulating a window with the appropriate pressure boundary was 

also performed for the case of a hydrophobic tube (θ = 140° instead of 40°), in which final liquid 

height inside the tube is lower than that of the reservoir.  The illustrations are not shown for the 

sake of brevity.  Table 3.1 shows a comparison of the final heights for hydrophilic and 

hydrophobic tubes with Jurin’s height, both for a full domain with a reservoir and for our 

simplified window model.  While this model has shown utility for simple dynamic cases like the 

one shown, computational domains will quickly become too complex for this method to continue 

to be practical to use.  We therefore turn to the methods described ahead. 

minz

z

B
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0z =
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Table 3.1: Comparison of final meniscus height predictions for hydrophilic and hydrophobic capillaries compared 
with their respective predictions from Equation 2.3.  Both the full simulation domain with a reservoir and the 
simplified window model were tested.  Tube has a radius of 2 mm. 

  

 

Simulation of Height Rise by Minimizing Interfacial Energy 

If all that is needed is the final steady-state shape and position of the air–water interface 

in a tube, then there are several other methods one can use that are not as computationally 

expensive as the dynamic VOF method.  So far, we have examined vertical height rise in a tube 

only through conservation of momentum.  One can also view this problem from the perspective 

of minimizing the energy across the interface, energy due to gravity, surface tension, and the 

tube’s affinity for the liquid, which all contribute to the interface taking a shape with a curvature 

that keeps these vying energies at a minimum state (de Gennes et al., 2004).   

 

To model the meniscus in a tube in this fashion, we employ the Surface Evolver code, an 

open source code developed by Ken Brakke at Susquehanna University to predict the shape of a 

liquid interface in response to any given contributions to its surface energy (Brakke, 1996; Brakke 

and Morgan, 2002).  This model is three-dimensional, and employs the finite element method to 

solve for the energy equation, refining the surface’s shape and position after each iteration in 

order to reduce its energy.  Figure 3.5 below shows the final shape and position of the meniscus 

for the same vertical capillary.  Only the interface itself is explicitly modeled.  A wireframe of 

Equation 2.3 Full Domain 
with Reservoir % Error Window Only % Error

θ = 40 5.691 5.576 2.02 5.558 1.95

θ = 140 -5.691 -5.477 3.76 -5.358 5.85
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the tube is shown for illustration purposes.  The influence of the tube wall on the tube wall is 

accounted for in the form of a boundary condition that expresses energy through the integral  

cosdE dAσ θ= ∫∫            (3.4) 

where dA∫∫  represents the surface area of the tube interior below the water column (in this case).   

 

Figure 3.5: Final meniscus shape and height in a vertical capillary tube as predicted by surface energy minimization 
via the Surface Evolver code.  Tube has a radius of 2 mm and a water contact angle of 40°.  
 

 

As can be seen in Figure 3.5, the area-averaged height of the meniscus is 5.690 mm, 

about 0.02% error with Equation 2.3, showing near-perfect agreement with analytical force 

balance predictions.  This agreement can be made stronger by refining the mesh to a higher 

density, but it comes at the expense of computation time.  It should also be noted that this 

method required only several minutes to complete on a conventional desktop computer.  Solving 

the system using VOF in a 2-D axisymmetric simulation domain required several days for the 

simplified window model, and over one week for the full domain with a reservoir. 

Δz = 0.89 mm

= 5.690 mmz
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Simulation of Height Rise by Solving for Interfacial Curvature 
 
The third numerical method for height rise uses Equation 2.3, but expanded into a more 

general form to solve for local meniscus height as a function of x and y.  This more general form 

is given as   

 ( ) ( )2 ˆ,F x y a n= ∇ ⋅          (3.5) 

where ( ),F x y  is the local height of the meniscus, and n̂  is its unit normal vector. Defining the 

level set function ( ) ( ), , ,G x y z F x y z= −  for which G = 0 along the meniscus, we obtain the 

unit normal vector as ˆ /n G G= ∇ ∇ , and Equation 3.5 becomes: 

 ( ) ( ) ( )( )3/22 2 2 2 21 1 1 2x y y xx x yy x y xyF F F a F F F F F F F+ + = + + + −    (3.6) 

where the subscripts of x and y represent respective partial derivates of ( ),F x y . A similar 

equation was also derived for meniscus shape in Pozrikidis (2010).  This equation is solved in 

finite element space using the gradient descent method (the FlexPDE software from 

PDESolutions Inc.), with a boundary condition along the tube given by cotF θ∇ = .  Expressing 

Equation 2.3 in the form of Equation 3.6 has the advantage of being applicable for any geometry 

with constant cross-sectional area, not just a tube.  Figure 3.6 below shows the solution of the 

same case as in the previous two subsections given by the solution of Equation 3.6.  The area-

weighted average height is equal to 5.642 mm, again, showing very good agreement with the 

prediction on Equation 2.3.  A weakness of this method, however, is that Equation 3.6 requires 

the geometry to have a constant cross-sectional area, i.e., one that does not change in the z-

direction. 
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Figure 3.6: Meniscus height (mm) inside a vertical capillary tube as a function of x and y found by solving Equation 
3.6.  The tube has a radius of 2 mm and a water contact angle of 40°.   
 

 

In this section, we have established three different solution methodologies that will be used at 

different points in the remainder of this thesis.  Here, we have benchmarked the methods against 

the simple case of height rise in a vertical tube, a case with a simple analytic solution, and found 

all three to be in good agreement.  These methods will be used again, in part or as a whole, and 

comparison with analytical expressions as well as with each other will be performed wherever 

possible. 

 

3.2 Capillary Pressure for Fluid Transport Parallel to Fibers 

Fiber Arrays with Uniformly Distributed Properties 

At this point, we add a level of complexity to the analysis of capillarity that has only been 

considered by our group: explicitly modeling more than one fiber wettability (i.e., contact angle) 

in a single medium.  We use the subject of capillary height rise to initially examine this, this time 

for the case of vertically-oriented parallel fiber bundles.  We start with this geometry in order to 
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remove the complication of varying cross-sectional area for the moment, and isolate the effect of 

bi-component fiber composition.  Recall from Chapter 2 that relations exist that can apply 

capillary pressure to dynamic models (see Equations 2.4 and 2.5 for example) when capillary 

information is represented as if from a single vertical capillary tube (Washburn, 1921; Fries and 

Dreyer, 2008 a and b, Marmur, 1987, Hyvaluoma et al., 2006).  We will show through the 

balance of forces and accompanying numerical data that a system of vertical parallel fiber 

bundles comprised of dissimilar fibers can be converted into a fictitious capillary tube with 

properties corresponding to those of the given fiber bundle.   

 

Figure 3.7 shows a free-body diagram of the forces around a single fiber that lies in an 

array of parallel fibers.  Steady-state height rise z of such a system can be expressed as a function 

of other relevant system parameters: 

 ( )1 2 1 2 1 2, , ,..., , ,..., , ,...z f d d n nε θ θ=        (3.7) 

Considering the 2×2 unit cell shown on the top right of Figure 3.7, the force balance of Equation 

3.1 can be adapted not only to such a domain where only one fiber type (and size) exists, but also 

when two or more fiber types exist.  Expressing Equation 3.1 accordingly in terms of Equation 

3.7 when two types of fibers are in the domain, one obtains: 

 
( )
( )( )

1 1 1 2 2 2
2 2

1 1 2 2

4 cos cos
1/ 1

n d n d
z

g n d n d
σ θ θ
ρ ε

+
=

− +
       (3.8) 

It is worth mentioning that Princen (1969) performed force-balance analysis on vertical parallel 

cylinders, and Equation 3.8 simplifies to the relation developed in that work when only one fiber 

type exists in the domain.  Rearranging Equations 2.3 and 3.8, one obtains 

 ( )
( )( )

1 1 1 2 2 2
2 2

1 1 2 2

cos cos cos
1 / 1

cap

cap

n d n d
d n d n d
θ θ θ

ε
+

=
− +

        (3.9) 
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Examining Equation 3.9 reveals that this equation is in fact comprised of two more familiar 

equations, a weighted averaging of cosines of the two contact angles for the cosine of equivalent 

contact angle capθ , and the classical hydraulic diameter for equivalent capillary diameter capd , 

i.e.,  

1 1 2 2
1 2

1 1 2 2 1 1 2 2

cos cos coscap
n d n d

n d n d n d n d
θ θ θ= +

+ +
      (3.10) 

2 2
1 1 2 2

1 1 2 2

14 1cap
n d n dAd

C n d n dε
+⎛ ⎞= = −⎜ ⎟ +⎝ ⎠

        (3.11) 

 

 

Figure 3.7: Free-body diagram of the forces acting along a fiber in a vertical array of parallel fibers.  The top right 
shows an overhead view of a 2×2 unit cell of fibers. 
 

 

One therefore can use Equations 3.10 and 3.11 together with Equation 2.3 to predict a 

fluid’s height rise, or Equation 2.5 (among others) to predict a fluid’s radial horizontal spread in 

multi-component media.  We model this relation first using Equation 3.6, which, recall, is the 

generalized Young–Laplace equation that solves for local meniscus height.  The boundary 
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condition around the fibers is cot
fib

F θ∇ = , and periodic boundary conditions are assigned to 

the lateral sides of the domain.  We obtain an average height rise from the solution of Equation 

3.6 by taking the integral of local height over the domain (equal to volume) and dividing it by 

cross-sectional area. 

 

Aside from the ordered 2×2 unit cells, we have also compared the solution of Equation 

3.6 with that of Equation 3.8 for fiber bundles with random fiber placement and two sets of fiber 

properties homogeneously distributed.   For such random-fiber structures, the domains are larger 

for improved statistical relevance, and a minimum inter-fiber distance of / 3fd is enforced in 

order to avoid additional capillary effects that occur in corners with small angles (Ponomarenko 

et al., 2011; Weislogel, 2012).  Figure 3.8 shows an example of local height values obtained 

from solving Equation 3.6, in which a medium with ε = 0.15 and df = 10 µm is considered. The 

structure also has a bimodal contact-angle distribution with half the fibers having θ1 = 45°, and 

the other half θ2 = 85°. The z-axis in the contour plot shows local height in mm. We have 

compared predictions of an ensemble of 1-D and 2-D force-balance calculations for media with 

SVFs from 5–15%, fiber diameters from 5–25 µm, and contact angles from 25°–85°, allowing 

both for unimodal and bimodal fiber size and component distributions. We observed good 

agreement (within 10% margin of error) between the meniscus height of Equation 2.3 and the 

average meniscus height of Equation 3.6 for all microstructure property combinations 

considered.  We performed our calculations not only on unit cells (Figure 3.7), but also on larger 

domains, in which a greater number of fibers are distributed randomly (Figure 3.8a).  
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Figure 3.8: (a) Sample computational domain with random fiber spacing. ε = 0.15, df = 10 µm, θ1 = 45° (red fibers) 
and θ2 = 85° (blue fibers); (b) contour plot of local meniscus height (mm). Equation 3.1 predicts height rise of 208.5 
mm for this medium, about 5% difference from Equation 3.6.  
 

 

In Figure 3.9, we illustrate the overall effect of bimodality on capillarity, plotting height 

rise as a function of number fraction of coarse fibers nc. For all structures, we considered an SVF  

10% and a fine fiber diameter of 10 µm (the parameter Rcf refers to the size ratio between coarse 

and fine fibers). It can be seen that capillarity reduces sharply with the introduction of larger 

fibers, and more so the larger the coarse fibers. This is because with the available solid volume 

being consolidated into fewer larger fibers, the capillary force is left with less solid surface area 

over which to act. This is also the case for structures containing only one larger fiber size (Figure 

3.9 when nc = 1). 
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Figure 3.9: Capillary height rise as a function of coarse fiber fraction nc. Solutions for both 1-D average height 
(Equation 3.8) and average 2-D height F (Equation 3.6) are shown. For all structures, SVF = 0.1, df = 10 µm, and θ 
= 50°. Rcf is the size ratio between coarse and fine fibers. 
 

 

Fiber Arrays with Non-Uniformly-Distributed Properties 

The agreement of Equation 3.6 using this method with analytical predictions becomes 

strained, however, when a structure is produced in which the distribution of its two property sets 

is not uniform. Such a case is shown in Figure 3.10 below.  The figure shows a 7×7 array of 

parallel fibers in which the fibers lining the outside are hydrophilic by a given degree, and the 

twenty-five inside fibers are hydrophobic by the same degree.  Symmetry boundaries line the 

domain borders.  The result, while near zero height rise relative to results in the other cases 

shown, is not in as close agreement with Equation 3.8 as the homogeneous cases, and fluctuates 

when varying mesh density.    
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Figure 3.10: Contour plot of solution of Equation 3.6 for local height (in mm) for a square 7×7 array of fibers in 
which fibers with θ1 = 60° line the boundaries of the structure, and those with θ2= 120° are clustered in the middle. 
Conceptual layout to the right of the plot is colored with red and blue fibers for θ1 = 60°, and θ2 = 120°, respectively.  
The array has a SVF of 0.1, and a unimodal fiber diameter of 10 µm. 

 

 

To examine the disparity of Equation 3.6 more closely, we revisit the method of solving 

for meniscus shape and position via minimization of energy across it.  Figure 3.11 shows the 

equilibrium meniscus shape obtained via this method.  As can be seen, the meniscus roughly 

formed the same shape for both methods, with a top-to-bottom height difference of about 0.1 

mm.  The area-averaged height can be obtained by reading the total volume of the column and 

dividing by the cross-sectional area of the array.  Doing so yields an average height of -3.528 

mm.  Solving Equation 3.6 for this domain would give a height of -3.369 mm, less than 5% error 

between results.   
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Figure 3.11: Equilibrium meniscus shape and position for the structure from Figure 3.10 solved through 
minimization of interfacial energy.  Area-averaged meniscus height is equal to -3.528 mm, less than 5% error with 
Equation 3.1.  The array has a SVF of 0.1, and a unimodal fiber diameter of 10 µm.  The outside fibers have a water 
contact angle of 60°, and the inside fibers a water contact angle of 120°. 
 
 

The energy minimization method shows close agreement with analytical predictions even 

for structures with non-uniform properties.   

 

 

3.3 Fluid Transport Perpendicular to Fibers: The Full Morphology 

Method 

 Our earliest work involving water intrusion simulations is performed using the Full 

Morphology (FM) method, first developed by Hazlett (1995) and later used by Hilpert and Miller 

(2001) and Becker et al., (2008).  The FM method is a voxel-based approach. A voxel is the 

smallest unit of resolution within a given simulation domain, and is recognized as being fully 

occupied by one of three possible domain constituents: a solid fiber (blue in Figure 3.12), 

wetting phase (clear in Figure 3.12), or non-wetting phase (red in Figure 3.12).  In the FM 

20 µm
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method, a quasi-static distribution of liquid and gas (water and air in the present work) is 

calculated in a 3-D domain at incremental capillary pressure values. When calculations are 

carried out for an adequate range of capillary pressures, a relation between capillary pressure and 

liquid (or gas) saturation is obtained. The FM method uses a sphere-caging algorithm, and has 

also been used for calculation of pressure–saturation relationships in fibrous media with different 

microstructures (Jaganathan et al., 2009; Ashari and Tafreshi, 2009b), as will also be shown later 

in this thesis.  

 

The algorithm begins by considering one face of a given cubic domain as the non-wetting 

reservoir (the top face in Figure 3.12).  For each incremental pressure rise in the non-wetting 

reservoir, the FM algorithm determines a minimum pore radius (i.e., sphere radius rsph) using the 

Young–Laplace equation (Equation 2.2), and examines every voxel in the domain for two 

conditions: one, a voxel is not occupied by a fiber, along with every voxel around it within a 

distance of rsph; two, an unbroken path exists between that voxel and the reservoir face into 

which other spheres of at radius rsph can fit in the same manner.  If these two conditions are met, 

then a sphere is placed in the domain with that voxel as its center, with a radius equal to the 

distance between the voxel and the nearest solid fiber. A sphere must be connected via other 

spheres to the reservoir. The overlying spheres form the non-wetting fluid continuum in the 

domain. This process is repeated for every following pressure increment, with a smaller rsph used 

each time pressure is raised. Obviously, as is the case in an actual fluid drainage experiment, the 

non-wetting phase can only penetrate into a porous medium as deeply as the most constrictive 

spaces therein—the size and distribution of which being a function of the coating’s 

microstructure—allow (the famous ink-bottle effect) (Jaganathan et al., 2008b).  The FM method 
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is implemented in the GeoDict code developed by the Fraunhofer Institute ITWM, Germany, and 

is used for the simulations presented here.  

 

Figure 3.12: A visualization of the Full Morphology simulation method at four different corresponding capillary 
pressures. Corresponding pressures are: (a) 2949.15 Pa, (b) 3411.75 Pa, (c) 3866.65 Pa, and (d) 4046.5 Pa.  The 
fibrous medium shown has a solid volume fraction of 0.1, fiber diameter of 10 µm, and a thickness of 480 µm. 

 

 

Figure 3.12 illustrates different stages of water intrusion simulation corresponding to four 

different applied pressures. The spheres are overlaid with one another to form a virtual fluid 

continuum within the medium. Even if larger spaces exist inside the medium, the non-wetting 

front will not be able to reach them if a prohibitively tight space must first be cleared. When no 

more spheres of the prescribed radius can be fitted into the available domain, non-wetting-phase 

saturation is then calculated based on the volume of space thus occupied. The process is repeated 

using a smaller sphere radius, corresponding to the next ascending input capillary pressure value.  
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This method provides a means of relating capillary pressure to fluid content, but its use of 

spheres with radius dictated by Equation 2.2 means that the method is only an approximation of 

the pressure required to force a non-wetting phase to penetrate into a fibrous structure. However, 

it is the only useable streamlined approach for doing so, and is the only computationally 

reasonable method available for randomly oriented fibrous media.  It cannot be used to 

investigate the exact shape of the air–water interface, and, due to its simplified use of Equation 

2.2, can only represent fibers of a single fluid affinity (contact angle) in a single structure.  

 

 While the FM method is typically executed from the direction of drainage (beginning 

with a fully saturated medium and pressurizing with the non-wetting phase), the results can also 

be applied to absorption, as the vacuum drawn in the wetting phase at the fluid front equal to the 

capillary pressure applied for drainage.  Figure 3.13 shows the effect of SVF and fiber diameter 

on pc(S).  It can be seen in Figure 3.13a that capillary pressure is stronger (more negative) when 

SVF is higher (i.e., lower porosity, and therefore tighter spaces for higher capillarity), and in 

Figure 3.13b we see that capillarity is stronger when the fibers are smaller (i.e., greater surface 

are for given solid volume, concurs with force balance analyses in Chapter 2). 
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Figure 3.13: Capillary pressure versus saturation using the FM method for modeled virtual fibrous media with 
dimensions of 1500×1500×1000µm: (a) varying SVF while fiber diameter is held at 15µm, (b) varying fiber 
diameter while SVF is held at 10%. The surface tension and wetting-phase contact angle used are equal to 0.7275 
N/m and 80 degrees, respectively, for both plots. 
 

 

The FM approach is useful for predicting the effect of microstructure on capillary 

pressure in fibrous media of arbitrary configuration.  However, being able to predict the exact 

shape of the air–water interface would still be desirable, but requires a different modeling 

technique such as that of Lobaton et al. (2007) and Pozrikidis (2010), who have established 

meniscus shape models for simple cases with ordered geometry based on the constant-mean-

curvature concept, which is difficult to apply to 3-D disordered fibrous surfaces.  In the next 

section we will elaborate on a model we have since developed for unidirectional fiber bundles. 

 

3.4 Horizontal Parallel Fibers with Heterogeneous Wettability 

In the concern of devising a capillary pressure model that takes into account the forces in 

play, meniscus shape, and effect of multiple wettabilities in a single fibrous structure, we have 
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developed a new simulation method founded on the basis of analytical equations derived from 

the balance of forces acting on an air–water interface between two fibers. The novelty of the 

method in this section is: 1) it is computationally fast, and 2) it can be used to calculate the 

pressure required for a fluid to penetrate into fibrous media comprised of fibers with dissimilar 

wettabilities or diameters. These capabilities allow one to conduct computationally affordable 

parameter studies for media with varying properties to construct easy-to-use correlations for 

capillary pressure, or custom-design the microstructure of a capillaric system to meet the needs 

of its specific application (e.g., GDL in fuel cells, microchannels containing hydrophobic or 

hydrophilic microposts, superhydrophobic fibrous coatings for self-cleaning, or hygiene products 

among many others). The major, perhaps only, limitation of the analytical simulation methods 

proposed here is that it considers a 2-D representation for the fibrous media (most accurate for 

fluid penetration into fiber bundles).  

 

We will first explain the equations for calculating the position and curvature of a 

meniscus between two dissimilar fibers. Then we will explain how our algorithm produces an 

air–water interface in a disordered medium and calculates saturation. We will then expand on the 

capillary pressure–saturation relationship which began in the last section, establishing the 

necessary constraints on domain size to ensure statistical confidence, and comparing the results 

of our simulations with correlations in the literature. This will be followed by a parameter study 

performed for various microstructure properties but with uniform wettability before we finally 

explore the effects of heterogeneity in the media’s wettability. We will finish this section with an 

easy-to-use expression for converting the capillary pressure–saturation obtained for a 

heterogeneous fluid–solid system to another.  
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Balance of Forces over Air–Water Interface between Two Fibers 

We begin by considering a stable meniscus between two parallel fibers, the fibers each 

having their own unique contact angle (see Figure 3.14a). This meniscus is obtained by applying 

a capillary pressure pc to the non-wetting phase (air in this case) above the fibers, and possesses a 

constant mean curvature mr  given by the Young–Laplace equation simplified for the case of 

parallel walls:  

 m
c

r
p
σ

=           (3.13)  

Recall σ is equal to surface tension.  The applied pressure is balanced by surface tension forces 

acting along the fibers: 

 ( )1 2 1 1 2 2( sin sin ) cos(3 / 2 ) cos(3 / 2 )nw nw
c f f fp L s r r Lα α σ π α θ π α θ− − = − − + − −  (3.14) 

Where the left-hand side is the product of pressure and cross-sectional area between the fibers, 

and the right-hand side is the z-component of the surface tension force times the interface contact 

perimeter—i.e., two parallel fibers of length L (see Figure 3.14 for remaining terms). 

Rearranging, cancelling L, and substituting a more convenient trigonometric expression, we 

obtain 

 
( )

1 1 2 2

1 2

sin( ) sin( )
sin sin

nw nw

c
f f

p
s r
α θ α θσ

α α
+ + +

= −
− +

       (3.15) 
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Figure 3.14: (a) A free body diagram illustrating the balance of forces across a stable meniscus between two parallel 
fibers with different contact angles; (b) illustration of the means by which one can geometrically determine the 
location of the meniscus in relation to the two surrounding fibers by considering the meniscus as an arc in a circle of 
radius rm.  

 

The physics of the system is similar to that of a meniscus across posts or fibers on a 

superhydrophobic surface (Emami et al., 2011a, 2011b, 2012), but with the wetting and non-

wetting fluids reversed. The angles 1α  and 2α  are not known explicitly, and Equation 3.15 alone 

is not sufficient to obtain them. However, the constant mean-curvature principle (Equation 3.13) 
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establishes a geometric relationship between 1α  and 2α , i.e., a fictitious circle with radius mr

between the fibers (along which the stable meniscus would be an arc) intersects each of the two 

fibers so as to satisfy the contact angles 1
nwθ and 2

nwθ (see Figure 3.14b). The geometry of the air–

water interface at equilibrium results in the formation of three triangles between the fibers and 

the fictitious circle: one with the centers of the fibers and the circle as its vertices, and one 

between each fiber and the center of the circle, the third vertex of each being the point where the 

two adjoining circles intersect. Of the sides and angles labeled in Figure 3.14b, fs , fr , and mr are 

known. It is also known that the two angles in the diagram where fr  and mr meet for each pair of 

fibers are equal to 1
nwθ and 2

nwθ , respectively. Using the law of cosines, one can determine the 

value of all the remaining unknowns: 

 2 2
1 12 cos nw

f m f ms r r r r θ= + −         (3.16a) 

 2 2
2 22 cos nw

f m f ms r r r r θ= + −         (3.16b) 
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        (3.17a) 
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        (3.17b) 

With the coordinates of the center of the fictitious circle known (Equations 3.16a–3.17b), 1α  and 

2α  can be determined, and then inserted back into Equation 3.15 to verify that they indeed 

satisfy the balance of forces (i.e., this meniscus can physically exist). In all cases performed for 

this work, 1α  and 2α  satisfy Equation 3.15. 
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While Equation 3.15 must be used in conjunction with Equations 3.16a–3.17b to find the 

meniscus shape at an arbitrary capillary pressure cp , this equation alone can be used to calculate 

the maximum pressure *
cp  at which a stable air–water interface can exist, the so-called critical 

pressure, as will be discussed in Chapter 5. This is done by solving the system of equations given 

below for 1α  and 2α , and consequently, *
cp . 

 
( )
( ) ( )*

1 1 1 1 2 2
1 2

1 1 2 1 2
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sin sin (sin sin )
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Thus, before attempting to calculate the shape of a meniscus between two fibers with arbitrary 

properties, we can establish whether or not a stable meniscus can exist at the given pressure in 

the first place, as well as predict where and at what pressure the interface from an earlier pressure 

input will break more deeply into the medium.  

  

Interface Tracking Algorithm for Disordered Media 

With the equations for the meniscus shape between two fibers in hand, in this section we 

present our algorithm for establishing an interface across an entire domain consisting of multiple 

fibers arranged arbitrarily. 

 

 Random fibers are generated until the desired solid volume fraction (SVF) is reached. 

Figure 3.15 illustrates a sample structure with an SVF of ε = 0.2 and a fiber diameter fd = 10 

µm. The fibers can possess one of two (or more if desired) contact angles with a given percent 

population of each. The current study only considers bi-component fibrous media for the sake of 
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brevity, but the model can be applied to consider any degree of fiber diversity. Periodic boundary 

conditions (PBCs) are placed on the left and right side of the domain, i.e., any fiber that crosses 

one of these boundaries is continued across the other boundary. PBCs allow our computational 

domain to act as a representative area element in a much larger structure. The PBC also applies 

for the menisci that will be generated, as an interface that crosses the boundary will continue on 

the other side of the domain without interruption. In addition, a minimum space between the 

fibers is enforced (one tenth of fiber diameter), in order to prevent direct fiber-to-fiber contact 

and its associated complications. Obviously, fibers in a tow are not perfectly parallel, i.e., there 

are regions with fiber crossovers. However, in the absence of quantitative information about the 

frequency of occurrence and the area of each crossover (fiber-to-fiber angle at crossovers) the 

effects of such irregularities cannot be quantified either computationally or even experimentally. 

The effects of such irregularities thus have to be treated like statistical uncertainty or noise added 

to the performance obtained for more idealized structures.  
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Figure 3.15: Typical simulation domain and boundary conditions for our random fiber spacing model. 
 

 

Given a computational domain with established microstructural parameters, we can 

describe the motivation behind our interface-locating algorithm as follows: in a fibrous medium 

configured as defined, if a stable and unbroken interface can exist somewhere within the 

structure at a given applied pressure, then that interface would follow a path beginning and 

ending across the same point along the periodic boundary, and would exist across the closest 

periodic boundary to the penetrating fluid (as close to the top of the domain as possible). With 

this driving principle, it is then possible to represent such an interface by building a bridge across 

the domain comprised of a series of interlinked menisci, starting from one side of the domain and 

ending up at the other, each one satisfying Equation 3.15, and with each shape calculated using 

the method described along with Figure 3.14.  
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Figure 3.16 shows a flowchart for the general overview of the algorithm. To determine a 

starting point, every pair of fibers for which each fiber is on the opposite side of the boundary 

from the other is recorded. Equation 3.15 and Equations 3.18a and 3.18b are then used to 

confirm whether or not a stable meniscus can exist between each pair at the given input pressure. 

Of the pairs that remain, they are sorted in descending order based on the y-intercept of fs

between each pair. For the first pair of fibers on the list, a tentative meniscus shape is calculated. 

The algorithm then performs a check to make sure no other fiber intersects with the meniscus 

that was just drawn. If a fiber is in the way, then the meniscus is recalculated to meet with the 

intersecting fiber—but the meniscus still sits across the periodic boundary. This meniscus is then 

saved as the first in a series of menisci, each continuing from the previous one. From here, the 

second fiber from our first meniscus is used as the starting fiber of the next meniscus.  
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Figure 3.16: Flowchart for the general operation of our interface search algorithm. 
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Every subsequent meniscus in the series is determined via an algorithm perhaps best 

described as “unfolding”. Consider Figure 3.17, wherein fiber 1 is where the last meniscus ended 

and where the next meniscus will begin. Fibers around fiber 1 are listed as candidates for the 

next meniscus, and sorted in ascending order by the angle their positions make with the previous 

meniscus—hence the description of unfolding. In Figure 3.17a, it can be seen that fiber 2 is the 

first fiber our unfolding convention considers. However, the next action taken by the algorithm is 

to calculate *
cp  between fibers 1 and 2 using Equations 3.15, 3.18a, and 3.18b, and it is given in 

this example that the distance of fiber 2 results in a *
cp  less than our input pressure, so a meniscus 

cannot exist there. Thus fiber 2 is discarded, and the next candidate on the list is considered: 

fiber 3 (see Figure 3.17b). Fiber 3 passes the test of Equation 3.15, so a tentative meniscus is 

calculated between fibers 1 and 3. Once this new meniscus is drawn, an additional check is 

performed to ensure that it does not intersect with another fiber, and as can be seen in Figure 

3.17b, a meniscus extending to fiber 3 fails this check. The meniscus is then recalculated to meet 

with fiber 4, as is shown in Figure 3.17c. The previous checks are performed again, and this 

meniscus is saved as the next one in the series, having passed all checks.  

 

This process repeats, unfolding menisci in succession. If the unfolding meniscus crosses a 

periodic boundary, then its information is carried over to the other side of the domain, and the 

unfolding continues on that side. If the path the algorithm takes is a valid solution for a 

continuous interface in the given domain, then it will eventually arrive back at the original 

meniscus that started the path, at which point the code will stop and present the plotted interface. 

The algorithm is given 500 iterations to arrive back at the first meniscus. If it fails to do so, then 

it is assumed that the path the interface is taking is incorrect (i.e., the first meniscus across the 
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boundary was the wrong place to start). The entire interface is thus discarded, and the entire 

process begins again using the next pair of boundary-crossing fibers on the list as its starting 

point.  

 

 

Figure 3.17: Illustration of the procedure followed by our code in determining the location of the next meniscus in 
the series of menisci that comprise the interface. New meniscus begins at fiber 1. (a) Algorithm first considers fiber 
2, but fails *

cp  test. (b) Algorithm next considers fiber 3, but the resulting meniscus intersects with fiber 4. (c) 
Meniscus is drawn using fiber 4; fiber 4 passes the previous tests. 
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It is possible for the unfolding interface to arrive back at its starting point via periodic 

boundaries, and never actually extend from one side of the domain to the other. This is an 

indication that the main interface has broken through the medium in such a way as to trap that 

volume of water between its constituent fibers and isolate it from the main interface, resulting in 

an “island” or a pocket of trapped water in the final solution. Due to such inevitabilities, our 

model is designed to carry information over from one simulation pass to the next. That is, when a 

new higher pressure is input, the algorithm remembers where the interface was the last time, and 

uses that as a starting point rather than starting from scratch. Moreover, in the event that a given 

pressure resulted in an island on the first attempt to solve for it, the same pressure can simply be 

run again. The island is saved from the last run, and the search for the complete interface 

resumes below it.  

 

Our algorithm is also designed to take the formation of such islands into account within 

the domain, not just across the boundaries. In the unfolding of menisci, it is possible for two 

stable menisci to be generated that share one or both fibers, and it is also possible that the two 

calculated menisci actually cross one another’s path (see Figure 3.18a). This is interpreted here 

as a situation in which two separate regions of a penetrating non-wetting phase have met each 

other inside the medium, and is assumed that the two regions would coalesce across that set of 

fibers, isolating any remaining wetting phase encapsulated by them. Thus, when two menisci 

cross in our model, they are marked and eliminated, and the resulting islands are saved in their 

current shape for all subsequent input pressures (being isolated from the wetting reservoir, the 

islands are now incompressible). Figure 3.18a shows a sequence of menisci, numbered in the 

order in which they were created. Menisci 2 and 5 share the same two fibers and overlap one 
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another in the top image. The elimination of these menisci results in the formation of an island in 

the bottom image comprised of menisci 3 and 4. In Figure 3.18b, meniscus 2 and meniscus 5 

cross in a similar manner, but share only one fiber (not both). When this occurs, the two menisci 

are likewise eliminated and an island is created, but the structure must be re-evaluated at the 

same pressure to calculate a new third meniscus in order to complete the interface (meniscus 9 in 

the bottom image). Thus, as pressure increases, we track not only the progress of the interface 

through the structure, but also where regions of wetting phase break off and become trapped. 

Eventually, when the pressure has been raised high enough for the interface to break through to 

the other side of the domain, the solution to our model will be comprised entirely of these 

islands, and the final breakthrough pressure can be recorded. 
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Figure 3.18: Two possible events in the interface search algorithm and how they are solved. (a) Two menisci 
unfolding in opposite directions cross one another (menisci 2 and 5). They are eliminated from the domain, and the 
isolated portion becomes an island. (b) Two menisci (menisci 2 and 5) share one fiber, and cross one another as they 
unfold about that fiber. The menisci are eliminated, the subsequent isolated portion becomes an island, and the 
interface is recalculated to create a new third meniscus that bypasses the fiber the other two menisci shared 
(meniscus 9). 
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Figure 3.19 is an illustration of the steps behind reading the saturation in a structure once 

the interface information is known. The structure has an SVF of 0.15 and a fiber diameter of 10 

µm, and all fibers have a wetting-phase contact angle θ equal to 60°. The applied pressure from 

the top is 5.7 kPa. As can be seen in Figure 3.19a, at this pressure, the non-wetting front has 

penetrated deeply into the structure, and a small amount of water remains trapped and separated 

from the main interface.  

 

With the location and shape of the interface known, along with any trapped pockets of 

water, wetting-phase saturation S  is calculated. Doing so for a range of pressures will establish 

the relation ( )cp S for the entire structure. We accomplish this by discretizing the domain into 

grid elements. Inside each element, only water, air, or a fiber can exist. For the given structure, 

our grid size is 4 µm × 4 µm (grid dependence is negligible at a size of one half fiber diameter or 

less). It bears mentioning that the Full Morphology method described earlier in this chapter also 

discretizes the domain, but it does so as part of the solution calculation itself.  The discretization 

described in this section is simply for measuring saturation after the solution is reached.  The 

solution itself in this method does not require it.  Continuing, once discretized, broad regions of 

the domain are then divided into polygonal regions, the boundaries of which are based on the 

main interface and any existing islands. In Figure 3.19b, two polygonal regions have been drawn 

over the interface information (dashed lines). The main interface, not a closed shape, is made 

into a completed polygon by enclosing the remainder of the domain beneath it in three additional 

sides drawn around the boundaries. From there, we assign a value of 1 or 0 for wet and dry 

respectively to each grid element based on whether it exists inside or outside one of the polygons 

(grid points inside fibers are assigned a value of 1,000). If the interface crosses the periodic 
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boundaries several times before completing itself, but does not form islands, then each region 

that begins and ends on the same boundary is made into its own polygon, closed off along the 

periodic boundary it encloses. Also, in some more interesting cases, a meandering interface path 

can cross the boundaries enough times to result in polygons inside of other polygons (lateral 

fingering that results in intertwined wet and dry regions crossing the periodic boundary). When 

this occurs, the phase of the associated grid element is made opposite each time it is recognized 

to be inside an additional polygon (i.e., being inside a second polygon means the grid point is 

dry). 

 

This polygon method for grouping regions of water or air content is useful for covering 

large areas of the domain, but does not account for the curvatures of the individual menisci. We 

therefore refine the phase analysis by identifying grid points that are inside a polygon, but near 

its edge, and are within the radius of curvature for the corresponding meniscus that is the true 

fluid boundary. The edges of the interface are thus refined to reflect the curvature of the menisci 

to the accuracy our grid density allows. Our final result is an array of numbers which can be used 

to calculate wetting-phase saturation. One must simply divide the number of cells equal to 1 by 

the number of cells equal to either 0 or 1. Figure 3.19c shows the fibers and the water region our 

simulation domain with color filled in to better illustrate the final result of the calculation. The 

corresponding saturation shown is S = 0.70. 
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Figure 3.19: Evolution of the process of calculating fluid saturation in a given computational domain. (a) The 
completed interface shape and location are shown after the search algorithm is complete. (b) The primary interface 
and any isolated regions of a given phase are enclosed in polygonal zones. Areas inside the polygons are taken to 
contain water. Areas outside are taken to contain air. The model then analyses the curvature of the individual 
menisci to correct the saturation map to their actual shape. (c) The completed interface filled in with color for 
clarity. White is air, blue is water, black is a fiber. 

a)

c)

b)
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Figures 3.20a through 3.20i show an example of the results obtained from our simulation 

method for a fibrous structure with an SVF of 0.15 and fiber diameter of 10 µm, and a contact 

angle of 35° for half the fibers (black in the figure), and 65° for the other half (red in the figure). 

Various stages of air (white) penetration and displacement of water (blue) are shown over a 

progression of increasing capillary pressures. As can be seen in Figure 3.20a, initially, a simple 

interface separates a continuous region of air from a single continuous region of water. As 

pressure rises, as in Figure 3.20b, air is now able to penetrate more deeply into the structure. Air 

has broken into the structure in several places, fingering through the available space. Two of 

these fingers have met each other internally and trapped off a volume of water, resulting in the 

first island. In Figure 3.20d, air has managed to tunnel through and under a large region of water, 

cutting it off from the water reservoir. Thus, what was once the main interface has broken off 

into a large island that cuts across the periodic boundary. As a result, at this pressure, the 

algorithm must be performed a second time to locate the new interface. It can also be observed 

across Figures 3.20d and 3.20e, as well as across 3.20g and 3.20h, that the minimal change in 

interface shape brings clarity to the continuity of the interface across the periodic boundaries, as 

periodic counterparts are seen together across adjacent images, appearing much like a continuous 

shape. The interface tracking process repeats over the remaining pressure values, resulting in a 

more deeply tunneling interface and the formation of new islands, until finally in Figure 3.20i, 

air has penetrated through to the other side, leaving a group of islands behind. It bears 

mentioning that in the case of an experimental fiber bundle, pressure could continue to be 

increased, resulting in airflow disrupting the islands and further reducing saturation.  However, 

doing so computationally would require including air flow through the structure. This would 

require solving the Navier–Stokes equations, which becomes a very different and much more 
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formidable undertaking. Thus, initial air breakthrough to the other side of the domain is the 

highest pressure we can report.  This final saturation for any given structure is in a range of 

approximately 0.05 to 0.3 for all microstructure and wettability combinations (even among the 

five structures for a single case), suggesting that the randomness in fiber placement of the given 

structures has a greater influence on the value of breakthrough saturation than the properties we 

are studying. 
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Figure 3.20: Various stages of air (white) penetration into and water (blue) displacement out of a fibrous structure 
with ε  = 0.15, fd  = 10 µm, 1θ  = 65° (black), and 2θ  = 35° (red), with equal number of each fiber type. Beneath 
each image is its corresponding capillary pressure and saturation. 

a)   pc = 5.7 kPa, S = 0.96 b)   pc = 6.6 kPa, S = 0.86 c) pc = 6.9kPa, S = 0.81

d) pc = 7 kPa, S = 0.67 e)    pc = 7.5 kPa, S = 0.65 f)   pc = 8.1 kPa, S = 0.58

g) pc = 8.2 kPa, S = 0.48 h)   pc = 8.9 kPa, S = 0.43 i)   pc = 8.95 kPa, S = 0.30
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Capillary Pressure–Saturation Relationship 

Having established the foundation for calculating saturation in a medium, it is now 

possible to investigate the overall relationship between capillary pressure and saturation. This 

relationship will be explored over a range of possible microstructure properties. However, the 

size of the overall domain for each structure, both in width and in thickness, must be chosen 

carefully so as to ensure that they are large enough to represent a homogeneous fibrous medium 

and to minimize statistical variation in the results, but small enough to minimize the 

computational resources necessary to obtain the results. Thus, before beginning a parameter 

study in earnest, we establish a minimum domain width and thickness (in relation to the intended 

fiber diameter of the simulations) that must be maintained. We do this by generating an ensemble 

of structures of varying width and thickness, all with an SVF of 0.05 and a fiber diameter of 15 

µm (i.e., the smallest SVF and largest fiber diameter intended for our study). This ensures that a 

given domain will have the fewest total solid objects over which an interface can be formed. 

Thus, if domain size independence is obtained for these structures, then it is assured for all 

subsequent structures. Finally, for each property set we consider, an ensemble of five structures 

is generated, to further reduce statistical uncertainty. 

 

In Figure 3.21a, capillary pressure versus saturation is plotted for a collection of 

structures for which thickness of the domain is held constant at 1000 µm, while the width is 

varied. Each group of data points are the combined results of five structures with a given set of 

dimensions. As can be seen, dependence on domain width becomes negligible in the 

neighborhood of the data for a width W = 50df (750 µm for this fiber size) with no appreciable 

variation in results beyond that. The data points for W = 50df are filled in with gray color for 
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clarity. Figure 3.21b shows the data from a similar test in which thickness is varied, but width is 

held constant at 750 µm. In this case, results lose their dependence on thickness for T = 67df or 

more. Like in Figure 3.21a, the data points for T = 67df are filled in for clarity. Thus, a domain 

conforming to these limits is assured to minimize anomalies in the data caused by insufficient 

size.  

 

The relationship between capillary pressure and saturation in porous media in general has 

been a subject of study for decades, and as such, a number of equations to express it have been 

presented in the literature over that time. We consider several such relations to describe the 

trends found in our results in a manner so as to mathematically generalize them, to broaden their 

applicability beyond the need for simulation for future structures that fit within a range of 

properties.  

 

We consider three relations found in the literature: those of Leverett (1941), Havarkamp 

et al. (1977), and Van Genuchten (1980), given here, respectively, as 

 3 2
1 2 3 4Levp a S a S a S a= + + +         (3.19) 

 ( )1/1 1 Havb

Hav Havp C S −= −         (3.20) 

 ( )1// (1 ) 1 Gen
Gen Gen

bb b
Gen Genp C S −= −        (3.21) 
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Figure 3.21: (a) Capillary pressure–saturation results for domains varying in width W  (T is held constant at 1000 
µm). fdW 50= (750 µm in this case) is observed to be the minimum domain width upon which size dependence is 
achieved, and its corresponding symbol is filled in for clarity. (b) Capillary pressure–saturation results for domains 
varying in thickness T  (W is held constant at 750 µm). fdT 67= (1000 µm in this case) is observed to be the 
minimum domain thickness upon which size independence is established, and its corresponding symbol is filled in 
for clarity. For all structures, ε  = 0.05, fd  = 15 µm, and 1θ  = 2θ  = 60°.  

 

 Figure 3.22 shows a sample curve fit of Equations 3.19 through 3.21 to data for a set of 

structures with an SVF of 0.15, a fiber diameter of 10 µm, and an equal distribution of fibers 
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with a contact angle of 80° and 20°. With the figure content reduced to showing only one data 

set, the overall trend of pc(S) is more easily seen. For lower pressures, saturation begins close to 

1. As pressure is increased, the non-wetting phase is able to penetrate through more restrictive 

spaces. French toast.  The rapid transition from saturation near 1 to near 0 indicates that pressure 

is sufficient for the air to clear most of the remaining inter-fiber spaces in the structure, finally 

breaking thorough to the other side. The three relations fitted to the data follow it very well. 

However, Equation 3.19 (Leverett, 1941), being a simple cubic function, shows a trend in 

pressure that is not true to the physics of what is happening inside the structure, as the rise in 

pressure is monotonic and does not dip to a lower value in an intermediate level of saturation. 

The remaining two relations follow our data well while maintaining a monotonic trend, and they 

also agree very closely with each other—which can be expected, given the similar form of the 

two equations. Thus, the remainder of this paper will focus only on Equations 3.20 and 3.21, the 

relations of Haverkamp et al. (1977) and Van Genuchten (1980).  

 

 Note that Equation 3.15 can be used to characterize the failure pressure beyond which a 

meniscus between two fibers would break based on the balance of forces across the interface. 

Equation 3.15 would apply to the entire domain if the structure contained fibers perfectly spaced 

from one another in a square array. Such a structure could be represented by a single unit cell, as 

it still technically has the same microstructure properties as the larger structure. However, such a 

structure would have a single critical pressure beyond which the entire domain goes from fully 

wet to fully dry. Structures in which fiber placement is random possess channels through which 

an interface could penetrate at pressures significantly lower than that of a perfectly ordered 

structure, and do so in a manner to produce a pressure range over which the domain transitions to 
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lower saturation, following Equations 3.20 and 3.21. This is the case for randomly spaced 

structures, and thus, these spaces need to be explicitly modeled in order to capture the existing 

pore-size distribution. While the observation of lower breakthrough pressure is somewhat 

intuitive, it will set the stage for a more significant relation that will be explored later in this 

section. 

 

 

Figure 3.22: Sample curve fit of our data to three different correlations in the literature. Simulation data is a 
collection of points from five structures, all with ε  = 0.15, fd  = 10 µm, 1θ  = 20°, and 2θ  = 80°. 

 

 

Effect of Microstructure on Capillary Pressure 

In this section, we examine how the capillary pressure–saturation relationship depends on 

the microstructural parameters of a fibrous medium (i.e., the coefficients in Equations 3.20 and 

3.21) over a range of relevant SVFs and fiber diameters. For these simulations, our structures 

adhere to the domain size requirements given in Figure 3.21. In Figure 3.23a, one can observe a 
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sample of the qualitative difference in the structures and their respective interfaces as SVF is 

varied. These four structures, all samples drawn from the battery of structures used in the 

parameter study, possess a fiber diameter of 10 µm and a wetting contact angle of 60° (results for 

5 µm and 15 µm fiber diameters behave similarly, and are not shown for brevity). Beneath each 

structure shown are the SVF, pressure, and saturation for each case, illustrating the relative 

increase in the necessary pressure to allow the interface to penetrate as deeply as it does.  

 

 

Figure 3.23: (a) Sample of interface tracking results for four structures with corresponding SVF, capillary pressure, 
and saturation shown below each image. For all structures, fd  = 10 µm, and 1θ  = 2θ = 60°. (b) Coefficient C in 

Equations 3.20 and 3.21 for various SVF–fiber diameter combinations. (c) Exponent b  in Equations 3.20 and 3.21 
for various SVF–fiber diameter combinations. For Figures b and c, 1θ  = 2θ  = 60°.  

ε = 0.05, pc = 7 kPa
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Figures 3.23b and 3.23c show the coefficients C and b, respectively, in Equations 3.20 

and 3.21 for SVFs in the range of 0.05 to 0.2, and fiber diameters in the range of 5 µm to 15 µm. 

A clear trend can be seen in Figure 3.23b that relates SVF and fiber diameter to the coefficient C. 

This coefficient has units of kPa, and serves as a multiplier, scaling pc(S) to the appropriate level 

for the corresponding structure. Thus, the effect of microstructure on C closely corresponds to 

the effect on pc(S) itself. That is, a higher SVF results in a higher required pressure due to solid 

fibers taking up more space in the domain, resulting in more constrictive pores, and higher 

capillary forces due to increased surface area in contact with the water. A higher fiber diameter 

results in a lower required pressure for the same reason: the given SVF is consolidated into fewer 

large fibers, reducing surface area and opening pores. Figure 3.23c does not show a strong 

functional relationship between microstructure and the coefficient b. This behavior is consistent 

with the work of Ashari and Tafreshi (2009b). Recalling the pc–S plot in Figure 3.22, the 

coefficient b merely controls the slope of the transition region over which saturation shifts from 

1 toward 0, pivoting about the center of the curve and giving it a flatter profile with increasing 

values of b.  

 

Effects of Heterogeneity in Fibers’ Wettabilities  

Following our study on the effects of microstructure geometry, we examine the effects on 

capillary pressure when considering various contact angle combinations. For the data shown in 

Figure 3.24, another series of structures were generated, all with an SVF of 0.15 and a fiber 

diameter of 10 µm. We consider two contact angles: θ1 = 20° (black fibers in Figure 3.24a) and 
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θ2 = 80° (red fibers in Figure 3.24a), where 2n is defined as the number fraction of fibers within 

the structure with a contact angle of 80°. For the purposes of this work, we limit our study to the 

effect of multiple contact angles in a single structure, and leave both fiber types the same size as 

one another, allowing us to examine the effect of wettability itself. Allowing multiple fiber sizes 

at this point would introduce a number of additional variables to consider, masking necessary 

fundamental conclusions crucial to this work. Figure 3.24a shows an example of our results 

obtained for the effects of population contribution on fluid transport in bi-component fibrous 

media. All five structures have the same pressure applied to them (7 kPa), and it can be clearly 

seen that the presence of more fibers with weaker hydrophilicity allows the interface to penetrate 

more deeply into each respective structure, breaking through outright for the case of 2n  = 1. 
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Figure 3.24: (a) Sample of interface tracking results for five structures with corresponding 2n  and saturation shown 

below each image. (b) Capillary pressure–saturation results for structures varying in 2n . (c) Coefficient C  in 

Equations 3.20 and 3.21 for different values of 2n  (main plot), and exponent b for different values of 2n  (inset 

plot). All structures have an SVF ε  = 0.15 and fd  = 10 µm. 

 

 

Figure 3.24b shows the capillary pressure–saturation relationship for this group of 

structures, and the influence of the proportion of the two types of fibers in the domain can be 

clearly observed. Figure 3.24c shows the corresponding coefficients for Equations 3.20 and 3.21. 

As was the case for the single-contact-angle parameter study in the previous section, the 
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coefficient C  depends heavily and predictably on the properties of the fibers, and has an almost-

linear relationship with 2n . The exponent b (shown in the inset to Figure 3.24c) changes very 

little with respect to variations in 2n . Thus, from Figure 3.24c, we can observe an opportunity to 

relate fibrous structures to one another that have similar microstructure but different wettabilities 

through the coefficient C  Figure 3.24c, we see that such a relation can ignore changes in the 

exponent b , as they are negligibly small. To formulate this relation, first recall the Young–

Laplace equation (Equation 2.2), reiterated here for convenience as 

2 cos
c

sph

p
r

σ θ
=           (3.22)   

where sphr  is equal to the radius of a cylindrical capillary tube. Inspired by the Young–Laplace 

equation relating the capillary pressure to a geometric parameter (pore radius) and a 

characteristic parameter describing the wetting forces of the air–water–solid system ( cosσ θ ), 

one can propose ways to analytically produce a capillary pressure–saturation relationship for a 

system using relationships previously obtained for systems with similar geometric parameters 

but different wetting properties (contact angles and contact angle distribution). Using the force 

balance equation (Equation 3.15), one can develop a conversion expression for the critical 

pressure of a system of fluid and fibers with arbitrary surface tension and contact angles of σ , 1θ

, and 2θ  in terms of a known capillary pressure relationship obtained for a geometrically similar 

(not necessarily identical, but rather statistically similar) fluid–fiber system of with surface 

tension and contact angles of refσ , 1
refθ , and 2

refθ : 

1 2* * 1 1 2 2
, ,

1 1 2 2 1 2

2 (sin sin )sin( ) sin( )
sin( ) sin( ) 2 (sin sin )

ref ref ref refnw nw
f fref

c c ref ref nw ref ref nw ref ref ref
f f

s d
p p

s d
α αα θ α θσ

σ α θ α θ α α
− −+ + +

=
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where ref
fs is taken as the center-to-center distance between any two adjacent fibers in a perfectly 

ordered structure: 

 
2

ref
fref

f

d
s π

ε
=           (3.24) 

The terms iα  and ref
iα  will need to be determined using Equations 3.18a and 3.18b using their 

respective fluid information. As described earlier, Equation 3.15 is only applicable across an 

entire domain if the fibers in the domain are all equally spaced. Otherwise, Equation 3.15 is 

taken on a case-by-case basis between any two fibers locally. However, when forming the ratio 

shown in Equation 3.23, we have found that the ratio holds true even in structures with random 

fiber placement. As defined earlier, the coefficient C in Equations 3.20 and 3.22 is the scaling 

factor, adjusting the height of the associated curve to match it with the associated data. Our 

results show that for structures with the same SVF and fiber diameter, but varying in the contact 

angles of their fibers, the ratio of the coefficient C between the two structures is equal to the ratio 

in Equation 3.23 Thus, we have the relation 

1 21 1 2 2
, ,

1 1 2 2 1 2

2 (sin sin )sin( ) sin( )
sin( ) sin( ) 2 (sin sin )

ref ref ref refnw nw
f fref

ref ref nw rf ref nw ref ref ref
f f

s d
C C

s d
α αα θ α θσ

σ α θ α θ α α
− −+ + +

=
+ + + − −

 (3.25) 

 

Using Equation 3.25, the data given in Figure 3.23 can be converted to give the necessary 

C for Equations 3.20 and 3.21 for other combinations of fiber contact angles. Figure 3.25 shows 

a comparison between simulation data and Equation 3.25 for the same structures as were used in 

Figure 3.24. Data for 2n  = 0 is used for refC . The remaining pairs of curves for 2n  = 0.5 and 2n  

= 1 show almost perfect agreement between data and the analytic prediction. This result makes 

sense, as our force balance equation (Equation 3.15) is the basis on which local menisci form the 
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main interface in the structure, and the average pore size for a random structure is the same as for 

an ordered one (only with a wider standard deviation). This behavior has been confirmed for 

other SVF–fiber diameter–contact angle combinations as well (not shown for brevity).  

It is worth mentioning that the idea of constructing such a conversion expression as Equation 

3.25 for using an existing set of capillary pressure data for another system with a different 

wettability has also been used in the work of Gostick et al. (2006) and Ashari and Tafreshi 

(2009b). However, their expressions being developed based on the very basic Laplace equation 

(relevant to a cylindrical pore with a given contact angle), cannot be used for systems comprised 

of more than one fiber contact angle. For completeness the conversion expression given by these 

authors is written using our notation and given in Equation 3.26: 

cos
cos

ref
c c ref refp p σ θ

σ θ
=

 
         (3.26) 

Predictions of this conversion expression when applied to our capillary pressure–saturation 

relationship obtained for systems comprised parallel fibers (or highly directional fibers) with 

identical contact angles results in over-predictions by about 500% (not shown for the sake of 

brevity). From these results, we believe that data conversions based on Equations 3.26 and 3.25 

serve as the bounding cases for pc(S) in a fibrous medium, and that in a structure with high 

directionality but not parallel fibers, the true pc(S) relation lies between these two relations. 

While Equation 3.25 can only explicitly perform this conversion when the fibers are either all 

one contact angle or equal proportions of each, Figure 3.24c shows that C  for intermediate 

number fractions may simply be linearly interpolated. Figures 3.24c and 3.25 also further 

confirm that changes in the exponent b  for Equations 3.20 and 3.21 do not change appreciably 

when contact angle is varied, so the values from Figure 3.23c can still be used as they are.  
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Figure 3.25: Comparison of simulation data (solid lines) with analytical prediction based on using Equation 3.25 to 
convert data from 2n  = 0 to predictions at 2n  = 0.5 and 2n  = 1 (dashed lines).  

 

 

3.5 Chapter Conclusions 

In this chapter, we have gone over a number of capillary models all aimed at explicitly 

capturing the water–air capillary behavior in a fibrous medium on the scale of the fibers.  Once 

establishing a general analytical relationship in the form of Equation 3.1, we first established 

several methods in the simple context of fluid height rise in a vertical capillary tube in Section 

3.1.  The VOF method, while useful for capturing height rise over time, quickly becomes 

prohibitively computationally expensive when considered for 3-D fibrous domains.  All 

remaining models focus on the final steady-state solution of the interface, and not the dynamics.  

We then established a modeling method based on only simulating the fluid interface, and solving 

for the minimum-energy shape of the interface in the finite element environment.  This method 

showed good agreement with analytical force balance predictions, and showed computational 

utility, allowing for modeling in subsequent cases, some of which have still yet to be discussed 

S

p c
(k

Pa
)

0.2 0.4 0.6 0.8 10

3

6

9

12

n2 = 1, simulation curve fit
n2 = 1, Equation 3.25
n2 = 0.5, simulation curve fit
n2 = 0.5, Equation 3.25
n2 = 0



 
 

77 
 

as of this chapter.  Finally, we introduced a method based on solving the partial differential 

equation for interface shape (Equation 3.6) derived from the generalized Young–Laplace 

equation.   This method also showed good agreement with Jurin’s height predictions.   

 

In Section 3.2, we introduced a more detailed force balance equation for fluid height rise 

in vertical parallel fibers (Equation 3.8) which allows for multiple fiber sizes and wettabilities in 

the same structure, and also derived formulations for equivalent contact angle and capillary 

diameter for use in standard 1-D Lucas–Washburn-based models established in the literature 

(Equations 3.10 and 3.11).  We then applied two of our numerical simulation methods from 

Section 3.1 to vertical parallel fibers.  Our interface curvature solution method (Equation 3.6) 

showed good agreement for fiber bundles with homogeneous distribution of properties (i.e., one 

type of fibers, or two types in ordered or random arrangement, evenly distributed).  When fiber 

types are clustered as shown for example in Figure 3.10, this method no longer manages to 

match with analytical predictions.  However, solving for interface shape based on minimizing 

surface energy (Figure 3.11), which is only slightly more computationally expensive, continues 

to agree with predictions.   

 

When fluid transport into fibrous media is normal to fiber orientation instead of parallel, 

other methods must be employed to study the effect of microstructure and wettability on 

capillary pressure, due to cross-sectional area no longer being constant through the medium.  In 

Section 3.3 we establish the Full Morphology simulation method, which discretizes a fibrous 

domain and uses the Young–Laplace equation (Equation 2.2) as a basis for a sphere-caging 

algorithm for fluid penetration into the structure.  This technique, while an educated 
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approximation, has the advantage of being applicable in fibrous systems with any arbitrary 

orientation.  However, only one fluid affinity (contact angle) can exist in the domain.  This 

method will appear in more detail in subsequent chapters.   

 

Finally, in Section 3.4, we presented a novel methodology for modeling the relationship 

between capillary pressure and saturation in unidirectional fibrous media which are free to 

possess multiple contact angles. This model uses the balance of forces for a meniscus between 

two parallel fibers (Equation 3.15) to track the progression of the air–water interface with a given 

medium, as well as the formation of pockets of trapped water cut off from the main interface. 

The method, while limited to fibers with unidirectional orientation, is intended to address 

limitations to the classical Young–Laplace equation-based capillarity modeling in high-porosity 

anisotropic media, so as to provide guidance for producing controlled meia in applications such 

as absorbent materials, PEM fuel cells, and microchannels that employ posts and cylinders as 

flow enhancers or Laplace barriers. Our results established the influence of structural properties 

(i.e., porosity and fiber diameter) on capillary pressure and are discussed in context of the well-

known empirical correlations of Havarkamp et al. (1977) and Van Genuchten (1980).  

Furthermore, interested in quantifying the rate of fluid transport in fibrous microstructures, we 

have examined the effect of having two contact angles present in a single medium, with varying 

degrees of representation of both fiber types, and developed a force balance-based conversion 

equation that allows data from one contact angle combination to apply to structures with any 

contact angle combinations. This conversion equation negates the use of further simulations, 

allowing the data and equations presented here to be the only tools necessary to characterize the 

relationship between capillarity and saturation in applications of that type. 
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The models presented in this chapter, aside from the novelty they present on their own,  

form the basic framework for capillary pressure work done in the remainder of this thesis, with 

many appearing again. 
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Chapter 4 

The Richards Equation for Fluid Transport in Fibrous Media4 

 

 In this chapter, we will take a more detailed look at the use of the Richards equation for 

use in 2-D and 3-D absorption and drainage applications.  The equation is performed on the 

macroscale in homogeneous domains, with saturation as a function of time and space 

representing the position of the fluid in the medium.  The equation, being nonlinear, depends 

partially on capillary pressure correlations that apply to the medium’s microstructure.  These 

correlations can be provided by one of the models described in the last chapter as appropriate. 

 

4.1 Saturated and Relative Permeability 

The FM–Stokes Simulation Method 

Permeability is the other nonlinear term in the Richards equation, and refers to the 

mechanical ease with which a fluid can enter a porous medium.  While capillary pressure is a 

measure of the force that draws in or repels a given fluid, permeability characterizes the 

                                                 
4 Some of the contents of this chapter appears in the following publications: 
 

• H.V. Tafreshi, T.M. Bucher, "Modeling Fluid absorption in anisotropic fibrous porous media" in Pillai, K.M., and 
Masoodi, R. (Eds.) Wicking in Porous Materials:Traditional and Modern Modeling Approaches, pp. 131–159, 
Publisher: Taylor and Francis/CRC (2012) 

• Ashari, T.M. Bucher, H.V. Tafreshi, "Modeling motion-induced fluid release from partially-saturated fibrous media 
onto surfaces with different hydrophilicity," International Journal of Heat and Fluid Flow 382 (5), 1076–1081 (2011) 

• Ashari, T.M. Bucher, H.V. Tafreshi, M.A. Tahir, M.S.A. Rahman, "Modeling fluid spread in thin fibrous sheets: effect 
of fiber orientation," International Journal of Heat & Mass Transfer 53, 1750 (2010) 
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resistance of the path the fluid must take.  Permeability in a fibrous medium can be predicted by 

solving the continuity and Navier–Stokes equations in the pore space between the fibers: 

0u∇⋅ =           (4.1) 

2u u p u
t

ρ μ∂⎛ ⎞+ ⋅∇ = −∇ + ∇⎜ ⎟∂⎝ ⎠
       (4.2) 

where u  is the point-wise velocity, and ρ  and μ  are density and viscosity, respectively.  

Pressure gradient p∇  in this case is the local or point-wise pressure gradient.  As Re 1<<  in the 

case of absorption, the inertia term in Equation (4.2) may be neglected, hence the momentum 

equation simplifies to the Stokes equation, given as 

2p uμ∇ = ∇           (4.3) 

Viscous flow through a fibrous medium can also be characterized using Darcy’s law (Mao & 

Russell, 2003), which states 

 ( )k S
u p

μ
= − ∇          (4.4) 

where u  and p∇  are the respective volume-averaged wetting phase velocity and pressure over a 

representative elementary volume, and ( )k S  is the medium’s permeability, a second-order 

tensor in units of m2 which relates pressure gradient and fluid velocity.  

 

It is by using Equations 4.3 and 4.4 that permeability through a medium for a given 

saturation can be ascertained. The FM–Stokes method, as the name implies, uses the FM method 

introduced in the Section 3.2, and establishes a given quasi-static saturation for the analyzed 

medium, and then solves the Stokes and Darcy equations for flow in the x-, y-, and z-directions in 

order to develop a relation between permeability and saturation.  By solving for flow in all three 
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directions with accompanying pressure gradients in all three directions, one obtains the nine 

permeability elements in the tensor. The method assumes that flow between the wetting and non-

wetting phases can be decoupled, with one phase not becoming entrained in the other. This 

allows the system to be treated as a pair of single-phase flow problems, with each level of 

saturation essentially behaving as a separate medium.  As wetting phase permeability is of 

interest, the method treats the non-wetting phase as a solid, with a no-slip boundary condition at 

the fluid interface. 

 

The permeability term ( )k S  can be further resolved into single-phase and relative 

components, shown as 

( ) ( )s r
ijk S k k S= ⋅          (4.5) 

( )rk S  is relative permeability, a value between 0 and 1 that represents permeability normalized 

against that of complete saturation. A second-order tensor, permeability for any level of 

saturation requires nine values to be fully expressed in 3-D (four in 2-D). Several studies in the 

literature showed that when the flow directions are the same as the principle directions of the 

medium, this tensor is almost symmetric, with the off-diagonal terms being negligibly smaller 

than the diagonal elements. Thus, ( )xxk S , ( )yyk S , and ( )zzk S become the only terms of interest 

(Jaganathan et al., 2008d). 

 

Figure 4.1 is an overhead view of a set of three virtual sample media which will help to 

illustrate the effect of fiber orientation on permeability (and overall fluid spread to come).   

Three families of fiber orientations are shown, all layered with no through-plane orientation: 

near-isotropic (nearly random), machine directioned or MD-oriented, and unidirectional fibrous 
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structures. The structures have an SVF of 10%, a fiber diameter of 15 µm, and a contact angle of 

60°.   Figure 4.2 shows the results of relative permeability calculations using the FM–Stokes 

method.  Each simulation was conducted for an ensemble of five statistically identical fibrous 

structures. Note that the relative permeability values are always smaller than unity, as the 

permeability values are normalized by the fully-saturated permeability values, s
ijk . Inset with 

each plot is the functional relationship between r
iik  and S.  For the near-isotropic, MD-oriented, 

and unidirectional structures, we obtained the following respective values:  

 

10 12

12 10

2.00 10 1.77 10
2.02 10 1.39 10

s s
xx xy
s s
yx yy

k k
k k

− −

− −

⎛ ⎞= × = ×
⎜ ⎟⎜ ⎟= × = ×⎝ ⎠

, 
10 12

12 10

2.57 10 3.39 10
5.22 10 1.25 10

s s
xx xy
s s
yx yy

k k
k k

− −

− −

⎛ ⎞= × = ×
⎜ ⎟⎜ ⎟= × = ×⎝ ⎠

, and 

10 14

14 10

3.77 10 1.46 10
2.94 10 1.35 10

s s
xx xy
s s
yx yy

k k
k k

− −

− −

⎛ ⎞= × = ×
⎜ ⎟⎜ ⎟= × = ×⎝ ⎠

. As the numbers show, the off-diagonal values for 

permeability are quite negligible compared to the diagonal elements.  It can also be seen that as 

the fibers’ orientation tends to favor the x-direction over the y-direction, the magnitude of s
xxk  

becomes increasingly distant from s
yyk , foreshadowing a preference in spread in the x-direction in 

the eventual solution of the Richards equation on the macroscale. 
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Figure 4.1: Top view of some of the 3-D microstructures used in this study; a) an example of a medium with 
random fibrous structure, b) an example of a medium with MD-oriented (somewhat oriented) fibers, and c) an 
example of a medium with unidirectional fibers.  
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Relative permeability ( )rk S  has also been studied in the past few decades. A widely 

used power-law relation between relative permeability and saturation is that of Brooks and Corey 

(1964), which can be seen inset with each plot in Figure 4.2, and is given as 

rk Sκ=           (4.6) 

with (2 3 ) /κ λ λ= + . The pore size distribution index λ  tends to infinity for media containing a 

single pore size (κ=3). This index tends to smaller values for non-uniform media with a wider 

pore-size distribution. Most porous media have an n coefficient of 4. The results from Figure 4.1 

fall around the range of 3 to 4. The above correlation was originally developed for soil 

applications, but was later used for fibrous media by Landeryou et al. (2005) and Mao (2009). In 

their work, they define a correlation for total permeability ( )k S  in a given direction as  

 ( ) 3sk S k S=           (4.7) 

where the exponent 3 is essentially in agreement with the work of Brooks and Corey (1968). 

Ashari and Tafreshi (2009b) performed a number of numerical permeability analyses on modeled 

layered fibrous media with varying degrees of in-plane anisotropy using the FM–Stokes method. 

They found, via curve fitting, that in all cases tested, the n  exponent in Equation 4.6 was in the 

neighborhood of 3 or 4. Ashari and Tafreshi (2009b) also observed through a series of FM–

Stokes analyses that relative permeability is not influenced appreciably by SVF in range of 

parameters typical of fibrous media. 

  

Landeryou et al. (2005) also suggested that there exists a “percolation threshold” at a 

saturation of about S = 0.4 below which total permeability drops rapidly, resulting in a sharper, 

more distinct fluid front in an experiment with fibrous media. Why this occurs can simply be due 

to the wetting fluid breaking up and losing its continuity at such low saturations, although the 
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numeric value of this threshold can be very different in fibrous sheets with different 

microstructures. While the Brooks and Corey relation does not directly capture this, the formula 

has been modified in some of the plots to come in this chapter when applied directly to 

numerical simulation by setting the n exponent to a larger value at saturations below 0.4. 

 

Analytical Expressions for Saturated Permeability 

Several analytic expressions for single-phase permeability s
ijk  as a function of SVF and 

fiber diameter can be found in the literature that can be used to circumvent computationally 

expensive numerical simulations in certain cases. One such correlation is the empirical function 

developed by Davies (1973), which applies specifically to through-plane (z-direction) 

permeability in layered fibrous media with random in-plane fiber orientation. The correlation is 

given as  

( )
2

3/2 316 1 56
s
zz

rk
ε ε

=
+

         (4.8) 

where r  is equal to the fiber radius, and ε  is equal to SVF. The Davies correlation has been 

used widely as a basis for comparison in a number of more recent numerical studies, and has 

shown close agreement for media with fiber diameters greater than a few micrometers (Tahir and 

Tafreshi, 2009; Hosseini and Tafreshi, 2010). 

 

Spielman and Goren (1968) developed a series of expressions that relate s
ijk  directly to 

SVF and fiber radius for two of the cases in Figure 4.1. The first is a 3-D isotropic medium in 

which fiber orientation is purely random in all three dimensions, in which case 

s s s s
xx yy zz isok k k k= = = , where x, y, and z refer to the machine direction, cross direction and 
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thickness direction (through-plane), respectively. Saturated permeability for such a medium in 

any direction is given by  

1

0

1 1 5
4 3 6

f

ss
isoiso

f f

s
iso

r
K

kk
r r

K
k

ε

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠= +
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

        (4.9) 

where 0K  and 1K  are zero- and first-order modified Bessel functions of the second kind.  Note 

that Equation 4.9 (and Equations 4.10 and 4.11 to follow) must be solved numerically. Layered 

fibrous media, the fibers of which have effectively no through-plane orientation, but random in-

plane orientation (Figure 4.1a), is another case to which Spielman and Goren’s relations apply. 

The relation for this configuration is given by 

1
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4 4 4

f
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r
K

kk
r r
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ε

⎛ ⎞
⎜ ⎟
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⎛ ⎞
⎜ ⎟
⎜ ⎟
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 (In-plane)      (4.10a) 
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⎛ ⎞
⎜ ⎟
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⎝ ⎠= +
⎛ ⎞
⎜ ⎟
⎜ ⎟
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 (Through-plane)     (4.10b) 

where s s
xx yyk k= , since such a geometry is isotropic in the in-plane directions.  

 

The third case to which the Spielman and Goren relations can be applied is that of a fibrous 

structure with disordered unidirectional fiber orientation. The correlation for the unidirectional 

geometry is 
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ε

⎛ ⎞
⎜ ⎟
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⎛ ⎞
⎜ ⎟
⎜ ⎟
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        (4.11) 

where the x-direction represents the direction along the fibers.  

 

Spielman and Goren (1968) did not develop a correlation for permeability in the 

directions perpendicular to fiber orientation ( s s
yy zzk k= in this case). Tahir and Tafreshi (2009) and 

Fotovati et al. (2010) performed series of flow simulations in a number of virtual fibrous 

structures to conclude that the through-plane permeability of a layered fibrous medium is not 

affected by the in-plane orientation of its fibers, which is consistent with the lack of a specific 

correlation for permeability perpendicular to the fibers in the case of unidirectional fibers.  

 

Ultimately, permeability is inversely related to SVF, as fluid penetration into a medium is 

a more tortuous process when more solid volume obstructs flow. Likewise, permeability being 

directly related to fiber diameter is intuitive. For a constant SVF, a larger fiber diameter 

consolidates the given solid mass into fewer fibers, thereby reducing the solid surface area in 

contact with the fluid, leading to less friction.  

 

Capillary Pressure: Full Morphology 

 To briefly recap, and to put it into the context of the results to follow, the particular 

method from Chapter 3 that was utilized for the capillary pressure relations for the Richards 

Equation were performed using the Full Morphology method.  Figure 4.2, for example, shows 
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the effect of fiber orientation on pc(S) for the same family of structures shown in Figure 4.1, 

fitted with a correlation from Landeryou et al. (2005): 

 ( )lnLan Lan Lanp C S b= +         (4.12) 

The media simulated for in Figure 4.3 are all layered, with fibers given no through-plane 

(parallel to flow) orientation.  Their in-plane (normal to flow) orientation varies between fully 

random, fully unidirectional in the x-direction, and a machined directionality (MD) favoring the 

x-direction.  As can be seen in the figure, capillary pressure is shown to be slightly stronger 

(more negative) when fiber orientation favors one direction over the other, with randomly 

oriented fibers showing the lowest capillarity. 

 

 

Figure 4.2: Capillary pressure versus saturation for virtual fibrous structures with an SVF of 10%, a fiber diameter 
of 10 µm, and a contact angle of 60°. 
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4.2 The Richards Equation 

 For convenience, the form of the Richards equation being solved in this section is 

restated here as 

 
( ) ( )

( )

1

0

c c
xx yy

c
zz

p pS S Sk S k S
t x S x y S y

p Sk S
z S z

μ
⎛ ⎛ ⎞∂ ∂∂ ∂ ∂ ∂ ∂⎛ ⎞Φ − +⎜ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝

∂ ⎞∂ ∂⎛ ⎞+ =⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎠    

   (4.13) 

The equation is solved in the finite element environment with the FlexPDE commercial code.  

The following two subsections will explain two different studies performed: one for absorption 

in thin fibrous sheets, and one for drainage from wet wipes. 

 

Effect of Fiber Orientation on Absorption 

 We first examine a solution of Equation 4.13 in two dimensions, in which the microscale 

information reviewed so far in this chapter is put toward a solution in the macroscale.  The 

meshed domain with associated boundary conditions is shown in Figure 4.4.  The material is 

assumed to be a thin 5cm × 5cm sheet with a SVF of 10% and a fiber diameter of 15 µm. Taking 

advantage of the existing symmetry, only one quarter of the sheet surface is considered for the 

calculations. A fully saturated (S = 1) source of infinite moisture is considered in the lower left-

hand corner of the domain. For the top and right boundaries, a Neumann (zero flux) boundary 

condition is considered. The two remaining boundaries were treated as symmetric boundaries.  

 



 
 

92 
 

 

Figure 4.4: Solution domain and its associated boundary conditions. 
 

Figure 4.5 shows the contour plots of saturation in the isotropic, MD-oriented, and 

unidirectional media at two different moments of t = 0.41 and 4.2 seconds. pc(S) for Equation 

4.13 in this case uses the results previously shown in Figure 4.3, obtained via curve fitting with 

Equation 4.12 (Landeryou et al., 2005). The coefficients for Equation 4.12 were found to be 

(CLan = 1261.4, bLan = -714), (CLan = 1415.99, bLan = -775.36), and (CLan = 1453.87, bLan = -

745.17) for isotropic, MD-oriented, and unidirectional sheets respectively.  Permeability kij(S) 

was determined using the FM–Stokes method described in Section 4.1, with the values 

accompanying Figure 4.2.  It can be seen that water spreads almost isotropically in the sheet with 

random fiber orientation, but penetrates much faster in the direction of the fibers in the media 

with oriented microstructures leading to elliptical spread patterns. The reason for this is that, as a 

wetting fluid enters a fibrous structure, it flows along the length of the fibers much more easily 

than past them, as it is the path of less resistance. If the majority of a material’s fibers are in the 

x-direction, then fluid flow through the medium will be more prevalent in the x-direction. The 
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difference in the values of single phase permeability in the x- and y-directions s
xxk  and s

yyk  for a 

given microstructure, reflects this behavior. s
xxk  and s

yyk values for sheets with nearly random 

orientation are close together, while s
xxk  for the MD-oriented and unidirectional media is greater 

than s
yyk  by a factor of 2, and a factor of 3 respectively.  

 

 To obtain more quantitative comparisons between fluid penetration in the above sheets, 

saturation values are plotted along the x = 0 and y = 0 lines (i.e., vertical and horizontal 

boundaries) for isotropic, MD-oriented, and unidirectional media at four different moments of 

time. Figure 4.6 illustrates these plots, with a target overlaid on each plot for the corresponding 

dimensionless x or y value of 0.65, and the corresponding time of 1.54 seconds into penetration.  

As can be seen, at t = 1.54 sec, saturation is S = 0.60, S = 0.68, and S = 0.84 at a normalized 

distance of 0.65 in the x-direction, and S = 0.45, S = 0.40, and S = 0.20 at the same distance in 

the y-direction, for our isotropic, MD-oriented, and unidirectional media, respectively. 

 

Finally, a comparison between the total amounts of water absorbed by the above media 

over time is presented in Figure 4.7. It can be seen that increasing the directionality of the fibers 

in a medium can help increase the rate of moisture uptake, as the rate is highest in the 

unidirectional and lowest in the isotropic media.  This is supported not only by permeability, but 

also by the capillary pressure coefficients from Equation 4.12. 
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Figure 4.5: Contour plots of saturation at t = 0.41 and 4.2 seconds for a) Near-isotropic, b) MD-oriented and c) 
Unidirectional structures. Different colors from red to blue represent different saturation values from one to zero, 
respectively. Coordinates are normalized by the sheet’s dimensions.  
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Figure 4.6: Saturation values along y = 0 and along x = 0 at different times of t = 9e-6, 0.11, 1.54, and 10 seconds) 
for a) Near-isotropic, b) MD-oriented, c) Unidirectional structures.  Coordinates are normalized by the sheet’s 
dimensions. Target corresponds to dimensionless distance of 6.5 in corresponding x or y, and time at 1.54 seconds. 
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Figure 4.7: Plot of liquid volume versus time for Near-isotropic, MD-oriented, and unidirectional media. Note that 
the reported values are for the domain size shown in Figure 4.5 (one quarter of the sheet).  
 

 

Calling back to Chapter 2, also compare our results with the analytical model of Marmur 

(1988)—Equation 2.5. Recall, that the simple relationship obtained by Marmur has also been 

used by Borhan and Rungta (1993) and Danino and Marmur (1994) for studying in-plane radial 

motion of fluids in paper. Note that Marmur’s model is developed for isotropic media. The 

assumptions employed in the work of Marmur are the same as those used in the standard Lucas–

Washburn model, and so do not consider the partially-saturated region of the media. For 

convenience, Equation 2.5 for the radial penetration of fluids in thin porous media is restated 

here as      
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where R is the radius of the wetted area (assumed to be fully-saturated), r0 is the radius of the 

liquid source, dcap is the average pore diameter inside the medium. Note that dcap is a parameter 

that cannot be directly measured or estimated. Here, using the information presented in Figure 
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4.7, we calculate a radius for an imaginary fully-saturated circular region in the media as a 

function of time (note that the values reported in Figure 4.7 are for one fourth of the sheet). 

Equation 4.14 was then fitted to our results, and a value for the average pore radius dcap was 

obtained to be about 40 µm (see Figure 4.8).  

 

 

Figure 4.8: Radius of an imaginary fully-saturated circular region is calculated from the results of Figure 4.5. The 
equation derived by Marmur (1988) is fitted to our results. 
 

Drainage from Wet Fibrous Wipes 

 This subsection examines an approach for fluid drainage that solves the Richards 

equation in one dimension, expressed here as: 

 ( ) 0fm
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Equation 4.16 simply groups all the microstructure and nonlinear terms into a single diffusive 

coefficient.  This model utilizes a special diffusive boundary condition in order to facilitate the 

transfer of fluid from the wipe to the surface.  Figure 4.9 illustrates what this means.  In Figure 

4.9a, the physical situation in question is displayed, in which a wet fibrous wipe moves across a 

dry impermeable surface.  Figure 4.9b illustrates the condition standing in its place within our 

model: a fictitious porous surface (initially dry) that provides a “saturation sink” to promote 

drainage from the wipe.   

 

 

Figure 4.9: (a) A schematic of the actual system showing release of fluid from a moving wet sheet onto a solid 
surface. (b) The boundary treatment used for our model, where the solid surface is replaced by a fictitious fluid-
absorbing porous layer. 
 

 

 The moisture content of this fictitious layer is periodically set to zero to resemble motion 

of the sheet on a dry surface. The resetting period is calculated from the length ℓ and speed Vw of 

the sheet: 

Fibrous thin sheet

Impermeable surface

Fibrous thin sheet

Imaginary permeable surface

Fluid convection

Fluid diffusion

Direction of motion

Direction of motiona)

b)
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w

t
V

Δ =             (4.17) 

This characteristic time essentially corresponds to the amount of time required for an 

experimental sheet to traverse its own length along a dry surface.  The rate of fluid infiltration in 

our fictitious porous layer is also calculated via the Richards equation (4.14) with a diffusive 

coefficient defined as (diffusivity of the fictitious layer denoted by the superscript fl) 

7.87 cosfl
zz s d wD k Vθ=          (4.18) 

where θs is the contact angle between liquid and solid surface, and kd is a constant to be found 

from experiment at a given speed (0.127 m/s here). For the interface between the fibrous sheet 

and our fictitious layer we consider equal saturation flux in the z-direction:  

−+ == ∂
∂

=
∂
∂

00 z

fl
zz

z

fm
zz z

SD
z
SD          (4.19) 

 

The fictitious layer should be so large that it always stays partially dry during the 

prescribed tΔ  time interval. For the other boundaries of the solution domain, we considered no-

flow boundary conditions ( / 0S n∂ ∂ = , where n is normal to the surface). The Richards equation 

is once again simulated using the FlexPDE code.  Figure 4.10a summarizes the simulation 

process in the form of a flowchart, with Figure 4.10b showing a sample progression of fluid 

transport from the wipe (initially red in the top image) to the porous surface layer (initially 

purple due to its dryness, and periodically reset).  As is shown, saturation in the fictitious layer is 

reset every Δt seconds, with saturation in the wipe retained.   
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Figure 4.10: (a) Flow chart of the simulation procedure. (b) Sample simulation domain demonstrating the diffusion 
of fluid from the wipe (red in the top image) into the fictitious porous layer (purple in the top image).  Surface 
saturation is periodically reset to zero as governed by Equation 4.17. 
 

As mentioned earlier, an empirical coefficient kd is required to adjust predictions of our 

numerical model. We therefore designed a computer controlled test rig that allows testing a wet 

sheet of nonwoven fabric on a designated large flat surface. Our test rig is comprised of a sheet 

holder connected to a mechanical arm that moves the holder on the flat surface. The holder is a 

rigid panel on which a relatively soft rubber pad is mounted. Partially-saturated fibrous sheets 

are then mounted on the rubber pad and tested on the surface (see Figure 4.11). Note that our test 

setup is designed in such a way that the distance between the sheet holder and the solid surface is 

controlled during the experiment, and therefore, weight of the system has no influence on the test 

results. We weigh our 0.2m×0.2m PET sheets before and after the tests using a sensitive scale 

Assign an initial saturation to sheet 
and a zero saturation to fictitious 
porous surface. 

Update saturation of sheet, 
and reset saturation of 
fictitious porous surface. 

Stop

desiredtt >

Run simulation for seconds to obtain 
sheet’s saturation.

tΔ

Yes

No

a) b)

Reset

Reset
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with 1 mg resolution to obtain the mass of the fluid released from the sheets. Our system is 

designed in such a way that the sheets only travel on dry surfaces. This has been achieved by 

defining a non-intersecting trajectory of path for the sheet holder on the test surface. Our setup 

allows moving the sheet holder with different speeds and in different directions. The solid 

surface considered for the tests was a smooth laminated plywood panel.  

 

 

Figure 4.11: A schematic illustration of the test procedure. 

 

The sheets are saturated by immersing them in our test fluid for 10 minutes. The extra 

fluid is then squeezed out of the sheets until a desired weight (corresponding to desired initial 

saturation) is reached with a margin of error generally less than 5%. To minimize statistical 

error, each test has been repeated five times.  

 

For the simulations, the PET fabric and the surface were measured to have contact angles 

equal to 74.5° and 40° respectively.  The PET wipes have an SVF of 7.6% and fiber diameter of 

12.6 µm.  Capillary pressure was determined using the Full Morphology method and fitted to the 

equation of Haverkamp et al. (1977), restated here as 

Wetted surface

Dry surface Fibrous sheet Robber pad
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( )1/1 1 Havb

Hav Havp C S −= −
      

  (4.20) 

with coefficients found to be CHav = 504.18 and bHav = 2.08.  Saturated permeability s
zzk  was 

obtained using the relations of Spielman and Goren (1968), i.e., Equation 4.10b.  Relative 

permeability ( )r
zzk S  is given by Equation 4.6, the relation from Brooks and Corey (1964), with n 

= 3.18 (Ashari and Tafreshi, 2009b).  Figure 4.12a shows a comparison between simulation and 

experiment for the PET wipes.  A value of 3.5×10-11 was fitted for Equation 4.18 using the data 

at V = 0.127 m/s.  This is the only speed at which simulations were fitted using experimental 

data.  Other tested velocities shown in Figure 4.12a are otherwise independent of one another, 

and show good agreement.  Figure 4.12b shows the response of this simulation method to 

changing the hydrophilicity of the surface.  The response is as one would expect, with no 

drainage when the surface is hydrophilic, and increasing drainage with increasing hydrophilicity.  

This effect was also confirmed experimentally, as is shown in Figure 4.12c.  The surface was 

replaced with wax paper, and the experiment was run at a speed of 0.296 m/s with and without it.  

There is an initial drop in fluid content for the wax paper due to unavoidable experimental errors, 

but subsequent drainage is almost nonexistent.   
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Figure 4.12: (a) Average saturation obtained from our simulations and compared with experiment for 
PET samples at different speeds. (b) Effect of surface hydrophilicity on the release performance of PET 
sheets at a speed of 0.127m/s. (c) Experimental comparison of drainage from PET sheets when surface is 
changed to wax paper (contact angle of 90°); wipe speed is 0.296 m/s. 
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4.3 Chapter Conclusions 

 In this chapter, we have reviewed the extension of one of the absorption capillary 

pressure models discussed in this thesis into simulating the Richards equation for fluid transport 

through porous media.  Being nonlinear, the Richards Equation requires capillary pressure and 

permeability information on the microscale (scale of the fibers themselves).  Once that 

information is provided, be it through simulation, analytic/empirical expressions, or a 

combination of the two, the Richards equation can be used to model fluid transport on the 

macroscale (scale of the fabric), expressing fluid saturation as a function of time and space.   

 

We then covered two models that utilize the Richards equation.  The first involved 

absorption, and established a relationship between fluid spread and fiber orientation.   The results 

show that in thin fibrous sheets, the anisotropic directionality of fluid spread favors the 

anisotropic directionality of the fibers in the wipe.  Moreover, the total fluid absorption in a 

given time is higher when the orientation of the fibers favors one direction over another.  

 

Finally, we examined a model for fluid drainage from wipes being moved across a dry 

surface.  The Richards equation was solved in the thickness direction only, and fluid drainage 

was facilitated by modeling the dry table as an absorbing porous surface.  To capture the 

continuing motion of the fabric, this fictitious surface has its saturation periodically reset to zero 

to allow continued drainage from the wipe as if it is continuing to move across a dry surface.  

This method was also compared against experiment using a test rig designed to move a wet wipe 

across a set path, and good agreement was observed. 
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Chapter 5 

Resistance of Fibrous Superhydrophobic Coatings to Hydrostatic 

Pressures5 

 This chapter will focus on two capillary pressure models for predicting the critical 

pressure (i.e., the pressure beyond which a superhydrophobic coating fails to withstand the 

pressure of the water penetrating into it) for electrospun fiber coatings.  First, we will revisit the 

Full Morphology (FM) method, used earlier in this thesis in the context of absorption, which will 

be tailored accordingly for this application.  In this study, we will examine unimidal and bimodal 

fiber diameter distributions, and also look at the effect of using orthogonally layered coatings 

instead of randomly laid coatings.  Figure 5.1 shows an example of an electrospun coating with 

orthogonal layering, the spacing of which can be more tightly controlled than a randomly-laid 

coating as discussed in Chapter 2, resulting in pore geometries with higher critical pressures and 

pressures easier to predict.  After our FM pressure study, we will revisit the technique of 

determining the shape of the air–water interface by minimizing surface energy established in 

Section 2.1, modifying it for fibrous superhydrophobic coatings.  Finally, having investigated the 

                                                 
5 Some of the contents of this chapter appears (or will appear) in the following publications: 
 

• T.M. Bucher., B. Emami, H.V. Tafreshi, M. Gad-el-Hak, G.C. Tepper, "Modeling resistance of nanofibrous 
superhydrophobic coatings to hydrostatic pressures: the role of microstructure," Physics of Fluids 24, 022109 (2012) 

• T.M. Bucher and H.V. Tafreshi, "Effect of wetting heterogeneity on capillarity of orthogonallylayered fibrous 
coatings," to be submitted 

• T.M. Bucher, H.V. Tafreshi, G.C. Tepper, "Modeling performance of thin fibrous coatings with orthogonally layered 
nanofibers for improved aerosol filtration," Powder Technology 249, 243–253 (2013) 
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unique properties of orthogonally laid electrospun fiber coatings, we will briefly a study 

examining their application for improved aerosol filtration.  

 

 

Figure 5.1: Example of an electrospun nanofiber coating with orthogonal layering, resulting in controlled 
parameters conductive to use as a superhydrophobic coating. 

 

 

5.1 Critical Pressure via Full Morphology Simulation 

Virtual Fibrous Structures 

To generate 3-D virtual models resembling the microstructure of an electrospun fibrous 

medium, we have developed a computer program to produce random and ordered fibrous 

structures with different fiber diameters, porosities, thicknesses, and orientations.  To better 

mimic the planar microstructure of electrospun fiberwebs, no through-plane orientation has been 

considered for the fibers.  Virtual fibrous structures are generated with random and orthogonal 

fiber orientations to emulate the coatings.  Note that material density of the electrospun fibers is 

4 µm
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assumed to be constant regardless of their diameters, as the choice of fiber density and its 

variations with diameter are of minor importance in our modeling.  

 

Figure 5.2a depicts a virtual bimodal fibrous structure with a random in-plane fiber 

orientation. Note that the fibers are allowed to overlap and cross through each other.  This is a 

simplification considered in our simulations with structures having random fiber orientations, 

which helps us circumvent some of the complexities involved in generating size-independent 

disordered fibrous domains, as reported in our previous publications (Maze et al., 2007a, 2007b). 

Allowing the fibers in each layer to cross through one another also helps us to better control the 

SVF of the virtual coatings.  Based on our previous experience with modeling transport 

properties of fibrous media, we believe that such a simplification has a negligible influence on 

the accuracy of the results and conclusions reported in this paper, especially when working with 

nanofibers (Tahir and Tafreshi, 2009; Hosseini and Tafreshi, 2010).  It is important to note that 

SVF is an implicit parameter in these coatings, representing the ratio of structure volume 

occupied by solid fibers to the total volume.  The term is arrived upon differently for random 

coatings and orthogonal coatings.  Recall that in experiment, randomly laid fibers form curly 

filaments when deposited on a flat substrate, stacked on top of one another with loop diameters 

(i.e., length scales) varying from the order of microns to the order millimeters.  Therefore, the 

simulation domain should be much larger than the length scale of the surface morphology; 

otherwise the SVF cannot be accurately predicted.  Unfortunately, with current computational 

power, our simulation domains must be much smaller than the few millimeters that would be 

necessary to cover the entire range when the fibers are as small as 100 nm (i.e., electrospun 

fibers).  Moreover, modeling such random curvatures and their effect on the system in intricate 
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detail is, in general, a computational task beyond the scope of this work, and for the sake of 

simplicity, we model the fibers as straight cylinders and allow them to interpenetrate, so that a 

desired SVF can be achieved on the scale of our simulations when modeling electrospun fibrous 

structures.  Experimentally, there is no way of knowing the SVF of a fiber mat prior to 

production.  This is because of the complicated loops and curves the fibers form, leading to a 

non-linear increase in the coating’s thickness with time (time being proportional, but not 

necessarily linearly, to deposited mass).  Therefore, the only way one can know the SVF of a 

random-laid coating is by characterizing its physical properties (e.g., weight per unit area, 

thickness …) after the coating is made.  In our model, once a fibrous structure is generated, its 

volume is descretized into voxels, and the voxels can only be filled (solid fiber) or empty (air or 

water).  The SVF is the ratio of the solid voxels to the total number of voxels, so there is no 

double-counting of the volume of overlapping cylinders.  Because fibers are allowed to overlap 

and assume orientations askew to the domain boundaries, changes in SVF are more incremental 

as fibers are added.  This allows the virtual random structures to be generated with an input SVF 

upon which to target. 

 

In the case of orthogonal fibrous structures, the fibers in a given layer all face either the 

x- or y-direction.  What one could consider to be the smallest divisible “unit layer” in a given 

sample of these structures would be two layers of fine fibers, and two layers of coarse fibers. 

Note that any given layer only consists of only one type of fiber. Given the greater control of 

fiber spacing and layering when creating orthogonal coatings, we separate the coarse and fine 

fibers into distinct layers in our orthogonal structures. In the interest of encouraging the first 

layer of the coating to act as the bottleneck for water intrusion, with fiber spacing as constrictive 
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as reasonably achievable, the outermost pair of layers in our orthogonal coatings is comprised of 

fine fibers. Since the fibers in each layer are parallel to each other, there are no concerns with 

fibers crossing through one another as there were for the random structures. As can be seen in 

Figure 5.2b, fibers in adjacent layers lie over and under those of their neighboring layers without 

interpenetrating, as one should expect. Here SVF does not have to be an input, as was the case 

for mats with overlapping fibers. In this case, SVF is an output of our structure generation 

algorithm based on fiber population and spacing, which is, of course, more realistic insofar as 

how one would estimate the SVF for a given fabricated coating.  
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Figure 5.2: Samples of our virtual, three dimensional, bimodal fibrous structures used in our numerical study, 
comprised either of: a) layered, randomly oriented fibers like those produced via electrospinning (SVF = 10%, df = 
100 nm, Rcf = 3, nc = 0.1, t =9.6 µm ) , or b) layered, orthogonally oriented fibers (SVF = 11.2%, df = 100 nm, Rcf 
= 3, nc = 0.1, t =9.6 µm).  
 
 

In Figure 5.2b, note also the semi-random placement of fibers within a layer. It is 

assumed that while maintaining significantly high order in layers is possible, it will not achieve 

a)

b)
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perfect fiber spacing across a given layer.  Therefore, we have decided to introduce an arbitrary 

degree of “noise” into an otherwise perfectly spaced structure, by allowing some limited 

randomness in fiber placement, while still restricting any fiber overlap.  For a given fiber, the 

maximum random distance δ it can be placed from its even-spacing position is determined by 

 

( )/
min ,  

2
s N d

dδ η
−

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

        (5.1) 

 

where s represents the in-plane size of the computational domain, N is equal to the number of 

fibers in the layer, and d represents fiber diameter (subscript c or f for coarse or fine fibers, 

respectively).  The term η is equal to 3.5 for coarse fibers, and 2.72 for fine fibers, and is applied 

as an upper arbitrary, but educated, limit on the magnitude of δ.  This upper limit is imposed in 

order to avoid generating virtual coatings with excessive non-homogeneity, which can lead to 

unnecessary statistical uncertainty in our simulation results.  These values correspond to the 

maximum spacing deviation in fiber placement in a structure with an SVF of 11.2%, a fine fiber 

diameter of 100 nm, a coarse fiber diameter of 500 nm, and coarse fiber number fraction nc of 

0.1, in which case adjacent fibers in a layer would be able to touch, but not overlap.  Any 

structure whose coarse and/or fine solutions to Equation 5.1 are greater than those prescribed for 

this given structure will be assigned the upper-limit value for their respectiveδ .  

 

 The relation between coarse or fine mass fraction cm  or fm  and their respective number 

fraction in a bimodal 3-D fibrous structure is given as (for more details see Tafreshi et al., 2009):  

2

2 2
c c

c
c c f f

n dm
n d n d
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+

         (5.2a)  
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+
          (5.2b) 

where fn and cn are, respectively, the number fraction of fine and coarse fibers, and cd and fd are 

coarse and fine fiber diameters.  While mass fraction is a more practical representation 

experimentally, number fraction is a more convenient input for our simulations, especially for 

the orthogonal structures, which are constructed based on number of fibers.  Nevertheless, one 

can be estimated from the other in most cases. In the case of the orthogonal structures number 

fraction can be determined using the rotational and translation speeds of the collector drum and 

polymer throughput, due to the controllability of fiber placement. 

 

Critical Pressure Modeling and Validation 

Capillary pressure of a hydrophobic porous material can be used to characterize its 

resistance against water intrusion. Previous works have shown that the relationship between 

capillary pressure and a medium’s saturation is dependent on the size distribution of the 

medium’s void spaces (Jaganathan et al., 2008 and 2009b; Ashari and Tafreshi, 2009b).  By 

increasing the hydrostatic pressure of water in which an air-filled hydrophobic material is 

submerged, water is able to pass into more constrictive spaces within the medium, thereby 

reducing the wetting-phase saturation. As the fluid interface boundary fully passes inside the 

coating, its superhydrophobicity diminishes, and thus its effectiveness is compromised.  

 

In general, the required pressure for penetration of a non-wetting fluid into a porous 

medium filled with a wetting fluid is governed by the Young–Laplace equation, stated here in the 

context of the non-wetting phase as 
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2 cos
c

cap

p
r

σ θ
= −          (5.3) 

where θ  the contact angle of the non-wetting phase (in this case, water) on a flat sheet made of 

the same material as the fibers, taken arbitrarily to be 120 degrees for the simulations reported in 

this study, and r  is of course the capillary radius.  Higher pressure allows the water to penetrate 

through more constrictive void spaces, displacing the wetting fluid.  

 

We will first present a force balance analysis to better examine the accuracy of our FM 

simulations, and to provide a comparison between the morphology-based and physics-based 

predictions.  The force balance method as it pertains to superhydrophobic coatings was first 

presented by Zheng et al. (2005) and later by Lee and Kim (2009), for characterizing 

superhydrophobic surfaces made up of microfabricated vertical posts.  These authors used a 

balance of forces to illustrate the interplay between the physical mechanisms that promote or 

inhibit meniscus instability.  The balance of forces can be tailored to apply to a meniscus formed 

between parallel horizontal cylinders.  This problem is slightly more complicated than the 

problem of vertical posts, as the cross-sectional area in the through-plane direction is not 

constant.  We consider a unit cell for a domain in which parallel cylinders are stacked in the 

thickness direction, with no space between the cylinders above and below.  Thus, the balance of 

forces for pressure, illustrated in Figure 5.3a, is expressed as  

cos((3 / 2) )
/ 2 sinFB

f f

p
s r

σ π θ α
α

− −
=

−
        (5.4) 

where cL  is the pitch or center-to-center distance between parallel cylinders, α  represents the 

angle made by the solid contact point of the meniscus with the peak of the surrounding cylinders, 
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and cr  is the radius of a cylinder. Notice that this equation bears a resemblance to Equation 3.15.  

It is indeed the same force balance equation across fibers, but with opposite sign (non-wetting 

phase in this chapter) and simplified to one fiber size and contact angle.  Critical pressure is 

determined by differentiating Equation 5.4 with respect to α , and setting this derivative equal to 

zero.  Equation 5.4 only represents critical pressure when the general α  has the specific critical 

value *α , which is determined numerically.  Note that *α is the value for α that maximizes the 

pressure.  Therefore, with the pitch defined in terms of SVF ( / (2 )f fL rπ ε= , where ε represents 

SVF), one obtains 

*
*

*

cos((3 / 2) )
( / (4 ) sin )FB

f

p
r

σ π θ α
π ε α

− −
=

−
       (5.5) 

The FM method uses Equation 5.3 to base the critical pressure threshold on the sphere with 

critical radius * / 2f fr s r= −  to fit precisely between two fibers (see Figure 5.3b).  Substituting 

into Equation (5.3) yields 

* 2 cos
( / (4 ) 1)FM

f

p
r

σ θ
π ε

= −
−

        (5.6)  

Figure 5.3c shows *α  as a function of SVF for three different contact angles. It can be seen that 

*α  , the equilibrium position of the air–water interface just before breakup, decreases with 

increasing contact angle.  This indicates that the interface breaks up at a location deeper inside 

the fibrous coating if the contact angle is lower.  Figure 5.3c also shows that *α increases by 

decreasing SVF of the coatings, which again indicates that the interface breakup takes place 

deeper inside the fibrous structure when the SVF is lower. 
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Figure 5.3: A visualization depicting the conceptual characterization of critical pressure for the case of ordered 
parallel fibers using the: a) force balance and b) FM approaches. The value of *α  associated with the force balance 
method is plotted (c) as a function of SVF for different contact angles.  
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Tuteja et al. (2008) developed an analytical model for superhydrophobic electrospun fiber mats, 

in which the fibers were considered to be parallel with one another and laid horizontally on a flat 

surface (one layer only) with a given fiber-to-fiber spacing.  These authors applied the balance of 

forces for their geometry to produce two design criteria: “robustness angle” *T  and “robustness 

height” *H .  The critical pressures associated with the robustness angle and robustness height are 

shown with *pθ  and *
Hp , where *pθ  is the pressure required to force an interface sagging angle 

equal to that of the equilibrium contact angle between the interface and solid wall (fibers), and 

*
Hp  is the pressure required for deflecting the air–water interface such that it dips into the pore 

space between two parallel fibers deep enough to touch the bottom flat surface:  

*
*

sinp
rθ

σ θ
=           (5.7) 

and  

*
*2

2 (1 cos ) f
H

r
p

r
σ θ−

=          (5.8) 

 

Figure 5.4a displays the critical pressure using each of the above four methods for a given fiber 

diameter and fluid contact angle as a function of SVF in a range relevant to electrospun fiber 

mats (1 to 20 %). It can be seen that good agreement exists between the predictions of the Full 

Morphology (FM) 
*
FMp , force balance (FB) 

*
FBp , and the robustness angle *pθ  equations, 

whereas the robustness height *
Hp  follows a different trend from the other relations. 
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To better investigate the behavior of the four models (Equations 5.5–5.8), we calculated

* * */FM FM FBR p p= , * * */ FBR p pθ θ= , and * * */H H FBR p p= and plotted them in Figure 5.4b–f versus 

contact angle and SVF.  The prediction of our force balance approach has been chosen as the 

reference for comparing the above models with one another, as it does not have any of the 

restricting assumptions that have been considered in the other models discussed here, and so is 

expected to be the most accurate among them all.  Figure 5.4b compares *
FMR , *Rθ  , and *

HR  with 

one another when the contact angle is held constant at 120°, but the SVF is varied, whereas 

Figure 5.4c provides a similar comparison when the contact angle is varied, but the SVF is held 

constant at 10%.  From Figures 5.4b and 5.4c, one can conclude that robustness height under-

predicts the actual critical pressure, until SVF approaches the neighborhood of 18%, beyond 

which it over-predicts critical pressure; the FM method is accurate only when the contact angle is 

around 120°; and the robustness angle method performs reasonably well when compared to the 

force balance method.   

 

To further study the degree of deviation of the FM, robustness angle, and robustness 

height methods from our general force balance method when SVF and contact angle are varied, 

surface contour plots of *
FMR , *Rθ , and *

HR  are shown in Figures 5.4d, 5.4e and 5.4f, respectively. 

As can be seen in Figure 5.4d, *
FMR  deviates quite significantly from the predictions of our 

general force balance method when the equilibrium contact angle is varied in a relevant range of 

hydrophobic surfaces (e.g., 90–140 degrees).  However, changing SVF does not seem to affect 

the predictions of the FM method, indicating that when the error associated with the FM method 

is determined for a given contact angle and SVF, one can confidently use this method with other 

SVFs as long as the material of the fibers (and, of course, the fluid) is not changed.  The 
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robustness angle method seems to perform acceptably well with regards to variations in contact 

angle and SVF (see Figure 5.4e).  The robustness height method seems to be least sensitive to 

variations in contact angle.  However, this method consistently under-predicts critical pressure in 

the typical range of SVF for fibrous materials. As mentioned before, predictions of the 

robustness height method seem to be accurate only if the SVF is in the neighborhood of 18%, 

and over-predict critical pressure thereafter. The inaccuracy in the predictions of the robustness 

height model is believed to originate from the model’s underlying assumption that a critical 

pressure is reached when the interface dips into the pore between two parallel fibers deeply 

enough to touch a bottom horizontal surface directly beneath those fibers. In other words, a 

stable air–water interface can exist even when the meniscus is deflected beyond what would be 

considered the bottom surface in the robustness height model.  It can be expected that as the SVF 

increases (fibers are closer together), the deflection of the meniscus becomes less significant, and 

the robustness height model approaches agreement with the other models.  Beyond ~18%, the 

meniscus would fail due to the force balance before sufficiently deflecting to touch any bottom 

surface, hence the over-prediction of robustness height.  It is also worth noting that in calculating 

the hydrostatic force exerted on the air–water interface, Tuteja et al. (2008) used the minimum 

gap between the surfaces of the two fibers *2r , instead of the distance between the fiber surfaces 

at the location where the interface is in contact with the fibers. This simplification can also affect 

the model’s prediction, especially at high SVFs.  

 



 
 

119 
 

 

Figure 5.4: a) Critical pressure as a function of SVF using four different methods: Full Morphology (FM), our force 
balance (FB), and the robustness angle and robustness height method of Tuteja et al., (2008) (Equations 5.5, 5.6, 5.7, 
and 5.8, respectively). b) The ratios *

FMR , *Rθ  , and *
HR  as a function of SVF. c) The ratios of *

FMR , *Rθ  , and *
HR  

as a function of contact angle. d–f) Surface contour plots of *
FMR  , *Rθ  , and *

HR  versus SVF and contact angle.  
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Beyond the simple case of parallel fibers with ordered in-plane arrangements (or vertical 

posts), no analytical method is available to predict the exact pressure at which the air–water 

interface failure takes place, leading to the departure of the surface from the Cassie state. Exact 

predictions of critical pressure require accurate predictions of the exact 3-D shape of the air–

water interface over a superhydrophobic surface. The FM method (purely geometric in nature) is 

a powerful, yet approximate, method that can be employed for studying the role of 

microstructure on the resistance of a superhydrophobic surface with disordered 3-D fibrous 

structures against elevated pressures.  This is especially true if the objective of the study is 

investigating the influence of each individual microstructural parameter on critical pressure, 

rather than the absolute values of the critical pressure itself, or the exact shape of the air–water 

interface. This method will be presented for orthogonal coatings in the next section. 

  

Capillary pressure in a disordered fibrous coating is a function of microstructural 

parameters of a fibrous coating as follows: 

( ), , , , ,c f cf cp f d R n Tε θ=         (5.9) 

where Rcf is the diameter ratio between coarse and fine fibers, and T is the coating thickness.  For 

the simulations conducted in domains with disordered fibrous structures, special care should be 

taken to ensure that the volume considered for the simulations is large enough to statistically 

represent a real fibrous coating, especially in the x- and y-directions, where symmetry boundary 

conditions are applied. Note that mirror-like symmetry boundary conditions (Neumann) are used 

in our FM simulations, with the constraint that the center of a sphere along a boundary must be 

inside the domain.  To eliminate any artifact that can be caused by the choice of symmetry 
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boundary condition, one should consider simulation domains as large as computationally 

possible, or until no edge effect can be detected in the simulation results (Hosseini and Tafreshi, 

2010; Ashari and Tafreshi, 2009).  It should also be noted that for a specific domain size and 

SVF, the finer the fiber diameter, the higher the population of the fibers in the simulation 

domain.  Increasing the population of the fibers improves the statistical reliability of the results. 

Nevertheless, with finite computational power, any simulations for a given set of parameters has 

to be repeated on an ensemble of different structures, statistically identical in terms of their 

structural properties (SVF, fiber diameter…), to ensure confidence and relevance in the data. The 

results presented in this section are averaged over an ensemble of no less than five structures. 

 

Figure 5.5 shows a series of capillary pressure–saturation curves for a statistical ensemble 

of randomly oriented bimodal fibrous coatings with an SVF of 10%, coarse and fine fiber 

diameters of 500 nm and 100 nm, respectively, and a coarse fiber number fraction of 0.1. The 

trend observed in these curves is typical of such relationships in most porous media. At 0cp =  

(atmospheric pressure), the coating is fully saturated with air, or 1S = . As pressure is 

incrementally increased, water begins to penetrate, reducing the wetting-phase (air) saturation, 

but only as far as the most constrictive spaces in the coating for that given pressure allow 

(Equation 5.3). As pressure is further raised, the limiting pore size for intrusion becomes smaller, 

and water penetrates further into the coating. Eventually, pressure is sufficiently high such that 

the majority of the inter-fiber spaces can no longer constrict intrusion. Thus, saturation suddenly 

shifts to a lower value. From here, wetting-phase saturation approaches zero asymptotically with 

rising pressure, as water works its way into the smallest of the remaining pockets. Figures 5.5a 

and 5.5b illustrate the effect of the size of the simulation domain for cubical structures varying 
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by side length s. Figure 5.5b is a magnification of the region in Figure 5.5a in which coating 

failure is expected. As can be seen in Figure 5.5b, for a statistically homogeneous structure with 

constant microstructural parameters within the range of our study, predicted capillary pressure 

values are independent of domain size beyond a cubic side length of s = 10 µm. A side length of 

24 µm is considered for the simulations reported here (with the exception of our thickness 

dependence study presented in association with Figure 5.7), to further minimize statistical errors. 

 

Also of great importance for conducting FM simulations free of artifacts is that the 

resolution of the domains is adequate such that the spheres’ interactions with the domain are not 

obscured by a poor choice of voxel size. In this regard, a group of fibrous structures was 

constructed with dimensions and parameters such that the exact same structure was built with 

five different voxel resolutions, with fine fiber diameter acting as the size reference. Figures 5.5c 

and 5.5d illustrate the results of this voxel-size test (5.5d is a magnification of 5.5c), with 

dependence negligible at voxel sizes of 0.33 fd  or less. For the simulation results presented in 

this paper, we used a characteristic voxel length of 0.2 fd . 

 



 
 

123 
 

 

Figure 5.5: Capillary pressure–saturation curves for randomly oriented, layered structures. (a) and (b) vary only in 
the size of their domain (cubes of side length s ); (c) and (d) vary only in their voxel resolution. Domain-size 
independence is acknowledged when breakthrough pressure, magnified for clarity in (b), no longer varies 
appreciably from one domain size to the next, taken as being greater than 10 µm. Voxel-size independence is 
acknowledged when critical pressure, magnified for clarity in (d), no longer varies appreciably from one voxel 
resolution to the next, taken as being when one voxel length is less than 0.33 fd . 

 

 

Table 5.1 comprises a list of default microstructure parameters for coatings with random 

and orthogonal fiber orientations (parameters not being varied for study will possess the values 
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shown in the table).  Predictions for structures modeled after randomly laid electrospun fibers 

and those for orthogonal coatings are divided out for ease of presentation.  

 

Table 5.1: Default coating microstructure properties used in our parameter study. Parameters not being varied for study will 
correspond to this table. 

  
 

 

Before elaborating on the results of our numerical simulations, it is important to establish 

a lucid definition for critical pressure, or failure pressure, in the context of our simulation 

method.  To the knowledge of this student, there is no universal definition for critical pressure—

the pressure above which the surface starts to depart from the Cassie state (whether or not it 

reaches the Wenzel state).  Note that drag reduction due to superhydrophobicity is the result of 

water being in contact with a reduced solid surface area.  We assume that drag reduction begins 

to diminish when water penetrates deep into the coating such that the first layer of the fibers is in 

the liquid phase.  When this happens, the fibers in the first layer act like external objects resisting 

against flow.  Figure 5.6 is an FM simulation of an oversimplified geometry to illustrate the 

above concept.  Notice in Figures 5.6a and 5.6b that while the menisci dip between the fibers of 

Randomly Oriented Orthogonally Oriented 

Dimensions (µm) 24 24 24 24 24 24

Solid volume fraction (%) 10.0 11.2

Coarse fiber diameter (nm) 500 500 

Fine fiber diameter (nm) 100 100

Coarse fiber number fraction 0.1 0.1

Surface tension (N/m) 0.07275 0.07275

Water contact angle (deg.) 120 120 
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the first layer, the air–water interface still passes above these fibers, with Figure 5.6b being the 

threshold for critical pressure.  Beyond the critical pressure (Figure 5.6c), the first layer is 

submerged, and the coating’s drag reduction is diminished.  Obviously, there is a possibility 

(especially for surfaces with random microstructures) that, due to non-uniformity in the coating’s 

thickness, a stable air–water interface prevails, even if the interface is actually more than one 

fiber diameter into the material in some local areas.  Thus, we define critical pressure based on 

the average water saturation over the entire coating corresponding to the value obtained by 

assuming that water is penetrated one fiber diameter deep into the medium.  

 

 

Figure 5.6: Conceptual illustration of different stages of water penetration into a coating surface, the dark region 
(red online) representing the intruding water front: a) water has not yet fully penetrated into the first layer, b) 
interface has reached the second layer, but has not yet submerged the first (critical pressure is the maximum pressure 
value for this condition), c) coating failure has occurred; the first layer of fibers is fully submerged. 
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Figures 5.7a and 5.7b illustrate a direct comparison between the performance of 

structures varying only in the orientation of their fibers, as well as their respective dependence on 

coating thickness.  Note that the range of thickness considered for this study allows the domain 

size in the z-direction to be less than the constraint of S = 10 µm stated in association with Figure 

5.5.  However, the dimensions in the x- and y- directions are held constant at 24 µm while the z-

direction is varied.  As a result, the population and size distribution of the inter-fiber spaces in a 

given layer are not affected by the structure simply having fewer layers.  The resulting curves are 

therefore free of the distortions characteristic of inadequate domain size that are visible in 

Figures 5.5a and 5.5b.  For Figure 5.7a, the fibers are laid orthogonally.  The high degree of 

order is reflected in the stepwise progression of fluid penetration, with critical pressure relatively 

independent of thickness.  The pressure at which that first layer becomes submerged is the same 

for all the coatings shown.  This is because the size of the spacing between the fibers does not 

vary significantly from one layer to the next, thus the first layer of fine fibers becomes the 

bottleneck for the coating.  The difference in saturation for each curve is due to the first layer of 

a coating comprising different percentages of the domain for varying thickness.  The stepwise 

fluid intrusion also allows for visual identification on the curve for the description applied in the 

above paragraph for critical pressure. 
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Figure 5.7: Capillary pressure–saturation curves for bimodal fibrous coatings of varying thickness comprised of: (a) 
orthogonally oriented fibers (SVF = 11.2%, df = 100 nm, Rcf = 3, nc = 0.1), b) randomly oriented fibers (SVF = 10%, 
df = 100 nm, Rcf = 3, nc = 0.1). The dotted cross through each plot is to better illustrate the cp value taken as the 
critical pressure for the respective coating type, once thickness independence has been established. Shaded circles in 
(b) correspond to critical pressure determined for coatings not yet thickness-independent. 

 

 

Figure 5.7b displays the capillary pressure–saturation relationship for coatings in which 

the fibers are randomly oriented.  The broader size distribution of the void spaces in the case of 
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randomly laid fibers attributes to the shape of the curves in Figure 5.7b, depicting a smooth, 

continuous intrusion process as pressure rises, as was observed in Figure 5.5.  A much greater 

dependence on thickness is also observed for capillary pressure in general, with dependence 

disappearing when the coating thickness is 24 µm or more, as the respective curves begin to fall 

on top of one another.  Beyond this thickness, we can assume the coating to be homogeneous in 

the thickness direction for the microstructural parameters considered. As mentioned earlier, we 

establish our critical pressure definition for random fibers as being the pressure at which the first 

layer of fibers becomes submerged in water.  In our simulations, we first obtain the minimum 

thickness required to produce a capillary pressure–saturation relationship independent of 

thickness (24 µm in the study reported here), and use this thickness for the remainder of our 

simulations. The saturation value corresponding to the first layer of the fibers in a 24-micron-

thick coating being submerged (here 0.995), is then used to obtain the critical pressure for 

simulations conducted for coatings with different microstructural parameters.  A vertical line is 

drawn for Figures 5.7a and 5.7b at this saturation level to accentuate the applicability of the 

clarity of the orthogonal coatings to the random.  

 

We also investigated the effect of thickness on our defined critical pressure for the 

random-fiber coatings.  The circles on the curves of Figure 5.7b represent the critical pressure 

values for the respective thicknesses corresponding to the equivalent saturation of a submerged 

first layer.  The inconsistency in their behavior is explained by the size distribution of the inter-

fiber spaces not being statistically consistent in coatings of such low thickness.  
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Randomly Oriented Fibers 

This subsection presents the results of our parameter study for coatings with random in-

plane fiber orientation. Figure 5.8 illustrates the dependence of critical pressure on each of the 

first four terms of Equation 5.9.  For better illustration and the sake of brevity, we present only 

the critical pressure values themselves, plotted against the varied properties. Note that the scale 

shown along the y-axis is the same for all plots, making the relative effect of each parameter over 

the others more clearly visible.  For Figure 5.8a, critical pressure increases with SVF. This result 

can be expected because, when all other microstructural parameters are held constant, a greater 

population of fibers in a given volume will result in smaller inter-fiber voids, thereby raising the 

necessary pressure to penetrate the coating.  

 

For Figure 5.8b, coarse and fine fiber diameter are both varied, but the ratio between 

them remains constant, illustrating the general dependence of pressure on the fibers’ size. 

Obviously, the smaller the fibers, the stronger will be the coating’s resistance to hydrostatic 

pressure. In Figure 5.8c, the diameter of the fine fibers is held constant, while the diameter of the 

coarse fibers is varied, in order to establish the effect of the diameter difference between the 

fibers used in the coating. In both the cases of Figures 5.8b and 5.8c, smaller fibers in a given 

domain will require more fibers to be present for the same SVF and thickness. This in turn 

results in the spaces between the fibers being more constrictive, yielding a higher critical 

pressure for the medium.  
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Figure 5.8: Critical pressure predictions for layered, randomly oriented electrospun media compared against 
variations in one of four microstructural parameters: (a) SVF, (b) fiber diameter (holding the diameter ratio between 
the two fiber sizes constant), (c) coarse-to-fine fiber diameter ratio (holding fine fiber diameter constant), and (d) 
coarse fiber number fraction.  
 

 

Figure 5.8d illustrates the effect on pressure response when the coarse fibers comprise 

more of the population in the domain. As can be seen, even for a low cn , such as 0.1, the critical 

pressure falls markedly with increasing cn .  This effect is accounted for by the same driving 
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principle as for Figures 5.8b and 5.8c.  A larger population of coarse fibers causes more of the 

given solid volume to be consolidated into fewer fibers, thereby opening the bottlenecks in the 

medium that would otherwise restrict water intrusion.  One may therefore be compelled to infer 

that a bimodal design would not be an optimal choice in a superhydrophobic coating. Note, 

however, that there are two mechanisms that cause a superhydrophobic surface to depart from 

the Cassie state: failure of the meniscus under excessive hydrostatic pressures (i.e., critical 

pressure), and dissolution of the entrapped air in water over time. The latter can be improved by 

storing more air in the pores of the coating.  Without larger fibers running through the medium to 

encourage the presence of voids therein, a smaller reserve volume of air would be taken with the 

coating upon submergence, reducing its lifespan against dissolution of air into the surrounding 

water (Samaha et al., 2011).  

 

Orthogonally Layered Fibers 

As was mentioned earlier, the high degree of order in the orthogonally layered structures 

results in more uniform and constrictive spaces between the fibers, facilitating a significant rise 

in failure pressure for the coatings compared to their randomly oriented counterparts.  However, 

this increased order also has several noteworthy effects on pressure dependence on other 

structural properties.  An additional effect to take into consideration is the accuracy of the 

electrospinning apparatus in laying down evenly spaced fibers in a given layer (the motivation 

for implementing Equation 5.1 in our simulation methodology).  Depending on how much the 

fibers in a layer are allowed to deviate from their would-be positions of even spacing in a 

structure of given properties, the bottleneck for water penetration into a coating may not be the 

first layer of fine fibers.  
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Figure 5.9 is an example illustrating this point for the case of a set of coatings with 

constant microstructural parameters, varying only in the magnitude of deviation permitted in 

fiber spacing.  When fibers are perfectly uniformly spaced, the bottleneck will invariably be the 

first layer of the coating.  When randomness in fiber spacing is permitted to a degree of half the 

solution of Equation 5.1, the most constrictive layer will still be one comprised of fine fibers, but 

it may not occur until the second layered pair of such fibers.  When fiber spacing fluctuates 

according to Equation 5.1, the first layer comprised of coarse fibers may also begin to contribute 

to the bottleneck effect, hence the increased stepwise progression shown for such a case in 

Figure 5.9.  Precisely at what levels of fluctuation the likelihood of the bottleneck begins to vary 

from one layer to another depends heavily on the fiber properties and populations for a given 

coating.  Figure 5.9 illustrates only the example case of a coating with parameters typical of our 

structures, and no general trends across all coatings should be inferred.  For the orthogonal 

coating results presented in this section, Equation 5.1 was used with upper limits placed on the 

magnitude of δ. 
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Figure 5.9: Example of capillary pressure–saturation curves for layered, orthogonally oriented structures with SVF 
= 11.2%, df = 100 nm, Rcf = 5, and nc = 0.1. The structures vary only in the magnitude of each fiber’s departure from 
‘perfectly ordered’, even spacing within a layer (Equation 5.1). 

 

 

Figure 5.10, like Figure 5.8, displays the effect of the first four parameters in the right 

hand side of Equation 5.9 on critical pressure, but for the case of orthogonal layers.  In 

generating these structures, unlike our random geometries, the rigid order in fiber orientation 

necessitates a different approach in characterizing their microstructural properties, in which cn  

and SVF are directly obtained based on number of fibers, as opposed to mass of fibers. 

Consequently, additional care was required to ensure that SVF would not vary more than one 

percent from its intended value as a result of the number of fibers in the domain.  This was done 

by selecting the data points to be tested for one parameter or another such as to produce 

structures that could retain the prescribed SVF while adjusting the other parameters.  Regarding 

the behavior of pressure for the orthogonal case, many of the plots demonstrate the same 

behavior as the random media, but at higher pressure values.  The presentation of Figure 5.10d 

varies slightly from its random counterpart in Figure 5.8d, as it does not contain information for 
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nc = 0 or 1. This is because, unlike the placement of fibers in our random media, which is 

inconsequential, fibers of different sizes are separated into layers, negating unimodal orthogonal 

structures for use as a direct comparison. Furthermore, no data is presented beyond nc = 0.5. The 

reasoning for this is that in such a scenario, fine fibers would no longer form the more 

constrictive layers within the medium, and the overall relaxing of the bottleneck effect makes 

such a region of operation unappealing, as can be seen in Figures 5.10a, 5.10b, and 5.10c. 
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Figure 5.10: Critical pressure predictions for layered, orthogonally oriented electrospun media compared against 
variations in one of four microstructural parameters: (a) SVF, (b) fiber diameter (holding the diameter ratio between 
the two fiber sizes constant), (c) coarse-to-fine fiber diameter ratio (holding fine fiber diameter constant), and (d) 
coarse fiber number fraction.  
 

 

Further Comparisons and Optimizations 

It is worth mentioning that the orthogonally oriented bimodal structures examined thus 

far have been arranged such that two adjacent layers would consist of one fiber diameter, and the 
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directions.  However, if fiber size were alternated with every layer, all fibers of a given diameter 

will face the same direction, with all fibers of the other size lying perpendicular to them.  Such 

an arrangement is expected to cause a different distribution in the size and spacing of the inter-

fiber voids. Furthermore, for a bimodal fibrous coating with constant microstructural 

characteristics, critical pressure may still vary based on which size fibers are laid as the outer 

layer.   

 

Having established the performance characteristics of the different methods, it is possible 

to use different permutations in design to optimize a coating’s performance and cost-

effectiveness.  To illustrate this, a numerical test was conducted on the performance of a hybrid 

bimodal structure representing an 8-micron-thick coating of orthogonal  fibers layered on top of 

randomly oriented fibers, which are easier and less time consuming to produce than their 

orthogonally laid counterpart. Figure 5.11 illustrates the effectiveness of the orthogonal layer as 

a bottleneck for the entire coating. When the random layer is on the outer surface, the critical 

pressure for the coating is 95 kPa , whereas critical pressure is 252 kPa with the orthogonal layer 

on the surface.  Regardless of which layer is on top, the resistance provided when the fluid 

interface front reaches the orthogonal layer is clearly distinguishable, as the dashed curve 

conforms to the solid curve.  Such a coating illustrates how this process can utilize the 

advantages sought in both fabrication methods, providing an abundant reserve air inventory, as 

well as an elevated resistance to hydrostatic pressure.  
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Figure 5.11: (a) An image of a hybrid coating, consisting of a 7.8-micron-thick layer of anisotropic-orthogonal 
fibers, and a 16.2-micron-thick layer of randomly oriented fibers, and (b) its capillary pressure–saturation curve, 
illustrating the difference in coating behavior depending on which layer is used as the top layer. The dashed crosses 
correspond to the critical pressure for each curve. 
 

 

 Our results show that for structures with the same solid volume fraction, coarse and fine 

fiber diameter, and coarse fiber population, varying only in the orientation of their fibers, the 

parametric controllability of orthogonally oriented coatings produced yields significantly higher 

resistance to water intrusion, due to their more ordered pore structure. The influence of the 
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particulars of a coating’s microstructure is such that, from the perspective of pressure tolerance, a 

lower volume of empty space—and more constrictive spaces where they exist—is advantageous. 

Our results show that this is best achieved through the production of coatings with comparatively 

low porosity, comprised predominantly, if not exclusively, of smaller fibers. However, more and 

larger inter-fiber gaps are still desirable for maintaining a reserve air volume for coating 

longevity.  In the next section, we will compare our Full Morphology results for orthogonal 

coatings with the surface energy minimization method first laid out in Section 3.1.  This method 

will also be expanded so that coatings with multiple fiber wettabilities can be considered. 

 

5.2 Critical Pressure via Minimizing Interface Energy 

In this thesis, we also develop a numerical strategy for modeling the fluid interface in 

orthogonally laid fiber coatings by solving for the minimum-energy shape of the meniscus using 

the Surface Evolver code, as introduced in Section 3.1 (Brakke, 1996; Brakke and Morgan, 2002).  

A conceptualization of our computational domain is shown in Figure 5.12a, representing a cell 

from a coating comprised of orthogonally layered fibers.  The domain consists of only four 

layers, but in actuality a coating could consist of any number of layers.  However, in the unit cell 

study in this work, only the first four layers are required, as a fluid interface could not penetrate 

more deeply unless the meniscus de-pins from the first layer, fully wetting it (i.e., water has 

penetrated the coating).  The domain has symmetry boundary conditions around the outer fibers, 

as shown in Figure 5.12b.  The fibers are color-coded by layer for illustration, with the first, 

second, third, and fourth layers being light blue, light red, dark blue, and dark red respectively.  s 

represents the center-to-center spacing between adjacent fibers in the same layer, as in previous 

chapters.  The layers have a staggered pattern, in order to better characterize the spaces through 
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which a meniscus would penetrate the coating, as it is very unlikely that fibers of one layer 

would be directly beneath the fibers two layers up.   

 

 

Figure 5.12: (a) Visualization of a region of an orthogonally layered electrospun fiber coating.  Four layers are 
modeled, and colored light blue, light red, dark blue, and dark red progressing into the coating.  (b) Overhead view 
of the simulation domain as a meniscus would penetrate in.  Symmetry boundaries outline the domain. 

 

 

The Surface Evolver code is able to solve for the minimum-energy shape for a closed 

volume such as a droplet on an arbitrary solid surface, or in our case, for an open interface 
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between one fluid above and another below.  The general form of the energy equation being 

integrated in the code can be expressed as (de Gennes et al., 2004) 

 coss i iE p dV dAσ θ= −∑∫∫∫ ∫∫        (5.10) 

where p is the applied pressure difference across the interface.  Like the FlexPDE software in 

Section 3.1, the Surface Evolver code solves Equation 5.10 using the gradient descent method.  

This pressure difference could be due to the hydrostatic pressure imposed on a submerged 

superhydrophobic coating, or the pressure drop across a submerged filter coating.  The 

summation refers to the energy contributed by the water-contact area of each fiber associated 

with the interface.  To ensure proper calculation of the fibers’ energy contribution, the integrand 

dAi must be derived for each fiber and applied explicitly in the code.  Figure 5.13a is a 

visualization of the appropriate wetted-area element for a fiber in a coating (the length of the 

fiber is aligned in the x-direction).  The positive z-direction is down into the coating with z = 0 at 

the top, and the air–water interface is symmetrically draped over the top of the fiber, pinned at 

angle α from the top of the fiber.  dA for the fiber is thus derived as 

 2 fdA r dxα=           (5.11) 

where through geometry 

 ( )1cos 1 / fZ rα −= −          (5.12) 

and   

2 fZ z nr= −           (5.13) 

with n being equal to the number of layers above the given fiber (n = 0 for the first layer).  If the 

fiber is oriented in the y-direction, then Equation 5.11 is integrated with respect to y instead of x.  
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A modification must also be made in the code for the calculation of the volume integral 

in Equation 5.10.  Figure 5.13b is given to help explain this, showing a cross section of a fiber 

and meniscus intersecting at point A, at an angle α from the top.  Without any correction, the 

contact line represented in 2-D by point A would be projected in a straight line to the xy-plane, 

ignoring the overlapping fiber and the excess water above the fiber.  To compensate for this, we 

write an additional volume integrand along each fiber boundary.  Three geometric regions are 

drawn with the fiber in Figure 5.13b: an overlapping circular sector and trapezoid (regions I and 

II, respectively), and a rectangle above the fiber (region III).  Our user-defined volume integrand 

is obtained by subtracting the area of region I, and adding the area of regions II and III (area 

occupied by both regions I and II cancel).  Using the convention of Equations 5.12 and 5.13, we 

have 

 
2

2 sin
2 2
f f

f f

r Z r
dV nr r dx

α
α

+⎛ ⎞
= − + +⎜ ⎟

⎝ ⎠
      (5.14) 

Again, Equation 5.14 is integrated with respect to y if the fiber is oriented in the y-direction.  

 

Thus for a given pressure the Surface Evolver code, enhanced with Equations 5.11 and 

5.14, solves for the minimum-energy shape of the air–water interface, reporting back the volume, 

meniscus depth, and wetted surface area of the fibers in contact with the water.   
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Figure 5.13: (a) Illustration of the energy contribution of a fiber as water comes into contact with it.  Wetted surface 
area as a function of z is explicitly derived and coded into the model.  (b) Illustration of the volume of a fiber and 
additional water that must be accounted for in the model.  Region I is deleted from the volume calculation.  Regions 
II and III are added.  Volume as a function of z is explicitly derived and coded into the model. 

 

 

Failure Criteria and Mesh Independence 

Figure 5.14a is a sample of the initial setup of the simulation domain.  The coating has a 

solid volume fraction (SVF) of 10% and a fiber diameter of 10 µm.  The red and blue fibers have 

a water contact angle of 130° and 100°, respectively. The initial setup has the meniscus in 

contact with all the associated fibers from the beginning of the simulation.  The same set of 

parameters could also be initiated with the meniscus in contact with fewer layers, (indeed, some 
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actually require fewer layers), resolving the interface shape would reveal that the meniscus dips 

sufficiently so as to make contact with additional layers.  Since boundary and contact conditions 

in our model cannot be added or removed once a simulation has begun, the correct number of 

layers for given conditions must be established before collecting data.  Figure 5.14b shows a 

typical simulation result.  As can be seen, the mesh has been refined accordingly, and at the 

given pressure of 4.60 kPa the water–air interface has deflected sufficiently so as to be in contact 

with four fiber layers without breaking off from the first layer.   

 

Figure 5.14: (a) Sample simulation domain in its initial condition before solving.  (b) Simulation domain after 
refining mesh density and solving for the minimum energy shape and wetted area.  

 

 

a)

b)
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In general, a superhydrophobic coating is regarded to have failed under hydrostatic 

pressure when the applied pressure is sufficiently high to overtake the capillary resistance of the 

coating.  For simple cases, such as a single row of parallel fibers, the critical pressure can be 

derived analytically.  Figure 5.15a shows a free body diagram of the balance of forces across a 

between two fibers at an arbitrary pressure p.  The equation for this is given here as 

 sin( )
/ 2 sinFB

f

p
s r
σ θ α

α
+

= −
−

        (5.15) 

This equation calls back to Equation 3.15 from earlier, and is indeed the same equation, but 

derived for a single contact angle in the context of hydrophobic applications instead of 

hydrophilic.  Such analytical expressions were also studied in Tuteja et al. (2008), among others.  

Determining the critical pressure is a matter of differentiating Equation 5.15 with respect to α 

setting it equal to zero, and solving for the critical angle α* that would result in critical pressure 

when substituted back into Equation 5.15.  Thus, critical pressure p* across a bank of parallel 

fibers, expressed in terms of SVF (s = πrf / 2ε), where ε is equal to SVF, becomes 

 
*

*
*

sin( )
( / (4 ) sin )FB

f

p
r

σ θ α
π ε α

+
= −

−
        (5.16) 

 

When additional layers are added, such as in orthogonally layered coatings, the capillary 

resistance of the coating becomes stronger, and the interface occupies different amounts of 

surface area on each fiber layer with which it is in contact.  Thus, the system becomes more 

difficult to characterize analytically.  This is compounded by another issue.  For a single set of 

parallel fibers as in Figure 5.15a, critical pressure represents a physical limitation of the system 

to accommodate a higher hydrostatic pressure without breaking outright.  Our models show that 

a meniscus that straddles across three or four layers of orthogonal fibers never reaches such a 
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mechanical breaking point before the meniscus itself deflects laterally so as to meet itself across 

the symmetry boundary.  At this point, in a physical system, the meniscus would coalesce with 

itself and break away from the first layer of fibers, neutralizing the superhydrophobic 

characteristics of the coating by submerging the first layer.  We therefore define the failure 

pressure in our simulations as the pressure just before this coalescing condition is reached.  

Figure 5.15b shows the same coating and meniscus from Figure 5.14b, but from a view that 

illustrates the failure condition.  Raising pressure 1–10 Pa higher would result in failure, as the 

model itself would also show, as it diverges in such a case.  Litster et al. (2006) suggested that 

the critical pressure a fluid interface passing through an orthogonally oriented coating could be 

analytically approximated using a modified Young–Laplace equation: 

 * 2 cos
Lit

f

p
s d
σ θ

=
−

         (5.17) 

where the gap is essentially treated as a capillary radius of sorts.  We compared equation *10 

with our model and with the force balance equation for parallel fibers above (5.16) for a coating 

with an SVF of 10%, fiber diameter of 10 µm, and a contact angle of 120°.  The two analytic 

expressions agreed well with one another, with Equations 5.16 and 5.17 giving pressures of 1.99 

kPa and 2.12 kPa, respectively, while modeling the system directly with the failure criterion 

shown in Figure 4b resulted in a critical pressure value of 4.8 kPa, more than twice that of the 

analytical approximations.  Recall, however, that fiber placement in a layer is staggered in 

relation to fibers two layers down.  If one uses a value of Lf/2 in Equation 5.17 to approximate 

the staggered layering, then the agreement of Equation *10 becomes much better, with a critical 

pressure of 4.97 kPa.  
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Figure 5.15: (a) Free body diagram of the balance of forces across the meniscus between two parallels fibers. (b) 
Side view of the air–water meniscus spread across four layers.  Meniscus (yellow) illustrates the failure criterion on 
which this section bases critical pressure.  Beyond the given pressure, it will swell across the symmetry boundary 
and water will fully envelop the first layer. 
 

Having established our criterion for failure for a coating, a criterion must also be 

established for the minimum mesh density required for a numerically accurate solution.  A 

uniform mesh is applied over the whole interface with triangular elements.  To establish mesh 

size independence, we examined a structure with the same SVF and fiber diameter as in Figure 

5.14, but with a contact angle of 120° assigned to all fibers.  In Figure 5.16 the resulting interface 

for an applied pressure of 4.80 kPa (p* for this configuration) is shown in the inset, with the 

dimensions w and h for meniscus width and depth.  The fibers are omitted from the image for 

clarity.  The plot itself for Figure 5.16 shows the resulting effect on w and h as a function of 

mesh density.  As can be seen, the change is negligible, with less than a 1% difference from the 
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coarsest mesh to the finest.  However, while mesh dependence is not an issue for the correct 

interface shape, structures with a higher fiber count result in smaller clearances for the meniscus 

to occupy where fibers intersect.  This can result in skewed elements that affect model stability.  

A minimum mesh density of eight grid points per fiber radius is sufficient to prevent this for all 

parameters tested. 

 

 

Figure 5.16: h and w normalized with fiber diameter as a function of number of grid points for fiber radius.  The 
inset image shows a sample interface at the coating’s critical pressure.  Fibers are made invisible for visualization.  
Dimensions h and w are measured for mesh independence study.   

 

 

Relations to Expand Applicability 

The results presented in this section examine the effect of various coating microstructure 

parameters on the critical pressure, wetted area fraction, and meniscus depth for each given case.  

Most of the simulations performed for the results shown involved structures with a fiber diameter 

of 10 µm.  However, the ordered nature of the coatings being studied results in a convenient 

property for the data presented.  Figure 5.17 shows a collection of results for p* over an SVF 
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range of 5% to 15% for square arrays with a contact angle of 120°.  Three fiber diameters are 

simulated: 5 µm, 10 µm, and 15 µm.  As can be seen in the figure, the pressure values have a 

clear linear relationship that shows perfectly—e.g., coatings with fibers three times smaller have 

a critical pressure three times higher for the same SVF.  The relationship between critical 

pressure results is equal to the inverse of the relationship between the chosen fiber diameters: 

 
*
2 1
*
1 2

p d
p d

=           (5.18) 

 

 

Figure 5.17: Critical pressure as a function of SVF for three different set of coatings varying by fiber diameter.  All 
coatings have a contact angle of 120°. 
 

 

This relationship is consistent with that given analytically in Equations 5.16 and 5.17 

above.  These coatings are layers of parallel fibers stacked on top of one another.  While p* itself 

is no longer as easily calculated, the linear inverse relationship between p* and fiber diameter 

still holds.  This means that, while are results are reported on the order of 10 µm, they can be 
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scaled to any order of magnitude in which assumptions regarding continuum and surface tension 

forces etc. still apply.  Along with critical pressure in this work, we will also report wetted area 

fraction Aw (dimensionless).  The nature of this value makes it independent of fiber diameter and 

therefore also consistently applicable across any size scale. 

 

A second relationship to point out is that, given that results are scalable to different length 

scales (i.e., fiber diameters), it is convenient to display results based on solid volume fraction 

(SVF) of the coatings and their layers.  This SVF property and the observed trends that 

accompany it are consistent across all length scales, whereas other more experimentally 

convenient systems of measurement such as fiber count and fiber spacing are not.  Converting 

from SVF ε to fiber spacing s can be derived geometrically as 

 
4

ds π
ε

=           (5.19) 

and fiber count is just the inverse of fiber spacing (adjusting from microns to millimeters if 

needed, of course).   

 

 

Effect of SVF and Contact Angle 

Coating failure typically occurs in one of two cases, depending primarily on fiber 

spacing.  Figures 5.18a and b illustrate these modes for coatings comprised 10-µm fibers and a 

contact angle of 120°.  The first is illustrated in Figure 5.18a, in which the meniscus is fully in 

contact with the first four layers of the coating, as the established failure criterion for the coating 

(the meniscus laterally swelling to just before the symmetry boundary) is reached before the 

meniscus comes into contact with the fifth layer.  Fiber coatings with lower SVFs (higher 
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spacing), regardless of size or hydrophobicity, exhibit the failure shown in Figure 5.18a. The 

condition shown in Figure 5.18b typically applies to coatings with an SVF of 12.5% or greater. It 

corresponds to the stable meniscus coming into contact only with the first three layers of the 

coating before reaching the symmetry boundary.  There is also the rare case where failure is 

taken as the pressure just before the meniscus contacts the fourth layer, having only reached 

three layers in depth.  This is because at the given spacing, the introduction of the fourth layer 

actually reduces the coating’s overall capillary resistance against the interface in this case.  

Simulating such an interface to investigate our failure criterion with four layers or only three 

layers shows that p* is actually lower for an interface in contact with four layers than it is for 

three.  This means, in reality, the coating will fail as soon as the interface touches the fourth layer 

of fibers without first reaching the stable configuration from Figure 5.18a.  This failure mode has 

been observed to happen for only one case in the data to follow, and had an SVF of 12.5% and 

contact-angle pairing of 130° for odd layers and 100° for even layers (shown in Figure 5.20).   

 

Figure 5.18c shows the corresponding critical pressure for fibrous coatings with a fiber 

diameter of 10 µm and a contact angle of 120°.  The coatings are arranged in a square array, with 

fiber spacing the same for layers oriented in the x- or y-direction.  As can be seen, critical 

pressure rises in a relatively linear fashion as SVF increases.  This linear rise is in spite of the 

number of layers in contact with the meniscus.  The interface is in contact with four layers for 

data points in the white region of the plot, and with only three layers for the gray region (region 

is for visualization and not intended to imply boundaries) In Figure 5.18e, the solid points show 

the behavior of wetted area fraction Aw of the coating, where Aw = 1 is equal to the surface area 

of the substrate as if the coating were not applied.  It can be seen that, while a more tightly 
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packed coating has a higher critical pressure for a given fiber size and contact angle, the desired 

slip effect would only amount to behavior fitting of a superhydrophobic coating if the solid–

water contact area is sufficiently less than it otherwise would be.  Aw, however, is independent of 

fiber size, and since critical pressure is observed to vary linearly with fiber diameter, a higher 

desired critical pressure can be achieved by using smaller fibers.   

  

 

Figure 5.18: (a) Meniscus is four layers deep before meeting symmetry boundary.  (c) Meniscus is only three layers 
deep before meeting symmetry boundary.  (c) Critical pressure and wetted area fraction as a function of SVF for 
fibers with equal spacing on all layers (white and gray regions represent failure over four or three layers, 
respectively).   
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The inset image in Figure 5.19a shows an illustration of two different fiber coatings with 

the same fiber spacing and size.  The red structure has a contact angle of 100°, and the blue 130°.  

Both structures have been subjected to their respective critical pressures.  It can be seen that the 

meniscus for the more hydrophobic structure has a tighter curvature than the other, 

corresponding to its higher critical pressure.  The increased hydrophobicity of the blue structure 

is also observed to have a lower wetted surface area, whereas more of the meniscus is draped 

over the fibers of the red structure.  Figures 5.19b shows the effect of varying contact angle on 

critical pressure.  Coatings are kept at an SVF of 10% and a fiber diameter of 10 µm.  It can be 

observed that critical pressure rises as water contact angle increases.  And in Figure 5.19b, it can 

be seen that wetted area fraction Aw drops with increasing contact angle, which is consistent with 

the contrasting menisci in Figure 5.19a, and would result in improved slip performance.   
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Figure 5.19: (a) Two fibrous coatings with an SVF of 10% and a fiber diameter of 10 µm.  The red fibers have a 
water contact angle is 100°, and the blue fibers have a water contact angle is 130°.  (a) Critical pressure and wetted 
area fraction as a function of contact angle for fibers with equal spacing on all layers.  (c) Critical pressure and 
meniscus depth as a function of contact angle for fibers with equal spacing on all layers. 
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the two fiber types is in the even or odd numbered layers.  The variation in critical pressure 

between cases is minimal, as is Aw.   

 

 

Figure 5.20: (a) Critical pressure and wetted area fraction as a function of SVF for coatings alternating contact 
angles.  The alternating layers have contact angles of 130° and 100°.  (b) Critical pressure and meniscus depth as a 
function of SVF for coatings alternating contact angles.   
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5.3 Orthogonally Layered Coatings for Improved Aerosol Filtration 

This last section will quickly review the extension of orthogonally laid electrospun fiber 

coatings to filtering aerosol particles from the air.  The most common method of removing 

particles from a fluid stream is via fibrous filters which are generally characterized by two basic 

parameters: collection efficiency and pressure drop (Brown, 1993; Spurny, 1998; Tien, 2012). 

Generally speaking, nanofiber media cannot be used as a stand-alone filter due to their lack of 

mechanical strength. However, they can be used as a thin coating deposited on the front and/or 

back surface (upstream and/or downstream side) of a filter medium comprised of larger fibers, to 

enhance its overall performance (see e.g., Podgorski et al., 2006; Zhang et al., 2010).  

 

Flow Field and Particle Capture Equations 

In the Stokes flow regime, pressure drop across a filter is caused by viscous forces as air 

flows past the fibers. The flow field through a given domain is determined using the conservation 

of mass and momentum equations, given here as 

 0u v w
x y z

∂ ∂ ∂
+ + =

∂ ∂ ∂
         (5.20) 
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solved using ANSYS-Fluent CFD platform. Air flow enters through a velocity inlet in a uniform 

flow profile of 0.1 m/s, and leaves through a pressure outlet boundary set at atmospheric 

pressure. The inlet boundary is placed at a distance of 12df from the first layer of fibers, and the 

outlet is placed at a distance of 5df from the last layer, far from where strong pressure and 

velocity gradients can be expected.  

 

Due to the scale of the coatings, the no-slip boundary condition on the surface of the 

fibers cannot be applied. The flow regime considered within the coating depends on fiber 

diameter and the thermodynamic state of the air, and include: the continuum regime (Knf < 10-3), 

the slip-flow regime (10-3 < Knf < 0.25), the transition regime (0.25 < Knf < 10), and the free 

molecule regime (Knf > 10), where Knf = 2λa/df. The flow fields in our simulations are all in the 

slip-flow and/or transition regimes, and therefore, slip flow past the fibers must be taken into 

account. For simplicity, we have considered a no-slip boundary condition for the air flow on the 

surface of the fibers, but have corrected the computed pressure drop values using the correlation 

developed by Hosseini and Tafreshi (2010a), as explained in the next section.   Note that the 

inclusion or absence of aerodynamic slip has negligible influence on collection efficiency, as the 

subtle changes in the streamlines around the fibers will have little impact on particles whose size 

is on the same order of magnitude as the fibers (Hosseini and Tafreshi, 2010a and 2010b). 

 

The three main mechanisms by which particles are captured are inertial impaction, 

interception, and Brownian diffusion (Brown, 1993; Spurny, 1998; Tien, 2012). Due to the size 

of the particles and speed of the flow, inertial impaction is of no concern for this work. 

Interception is relevant when the particles and fibers are comparable in size, and Brownian 
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diffusion is important when the particles are small (less than about 500 nm). These latter two 

mechanisms are both prevalent in the study presented in this work. To determine collection 

efficiency for our structures, we use a Lagrangian approach to model particle capture. In the 

Lagrangian model, the balance of forces on each individual particle is integrated over time, 

revealing the particle’s position and velocity in time as it moves through the domain. Note that 

particles do not interact with one another, and therefore do not have a collective influence on the 

flow field or collection efficiency results (a large number of particles can be—and are—injected) 

(Hosseini and Tafreshi, 2010a and 2010b).  For a particle Reynolds number smaller than unity, 

the force-balance equations for a particle are given as (Li and Ahmadi, 1992) 
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where the subscript p denotes particle properties. The term 1.1/1 (1.257 0.4 )pKn
c pC Kn e−= + + is the 

empirical Cunningham correction factor of for slip at the particle surface. As can be seen, the 

force balance equations are each the sum of two terms: the first being the drag force on the 

particle, and the second being the Brownian force. To add the effects of Brownian motion to the 

particles trajectory, we utilize a C++ subroutine that modifies Fluent’s standard DPM model. 

This subroutine was developed and tested in the work of Hosseini and Tafreshi (2010b and 

2011), and readers are referred to that work for more details. We utilize a second subroutine so 

that Fluent can model particle capture via interception. As the standard DPM model treats a 

particle as a point mass, this subroutine removes a particle from the domain if the particle’s 
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center of mass comes within one radius of a fiber, rather than simply if the center of mass 

touches the fiber or any previously deposited particle in case particle deposition is also 

considered in the simulations (Hosseini and Tafreshi, 2012).  

Figure 5.21 shows a conceptual illustration of the particle capture process, as 500-nm 

particles (red spheres) are injected in a line cutting through the xy-plane, and tracked as they 

move though the domain from right to left, being captured by 400-nm fibers.  The injection of 

particles in a line is purely for visualization, i.e., particles are injected from random sites on the 

inlet plane for our actual simulations. 
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Figure 5.21: Visualization of the particle capture process in our model. 300-nm particles flow through the domain 
from right to left (red spheres), and are removed upon contact with a 400-nm fiber.  
 

 

For the sake of brevity, validation with semi-empirical correlations in the literature for 

pressure drop and collection efficiency will be omitted in this thesis itself.  Readers are referred 

to the original publication (Bucher et al., Powder Technology, 2013) for details on that study.  

Suffice it to say for the results shown here that good agreement was observed.  

 

The simulations conducted in this section are aimed at guiding the nanofabrication of the 

unimodal fibrous coatings in terms of the choice of fiber diameter, fiber spacing, and coating 

thickness. To eliminate the statistical noise associated with the randomness in fiber position from 

our simulation results, we used ordered fibrous structures for the analysis reported in the 

remainder of this section. Using ordered fibrous structures also allows us to reduce the size of 

our simulation domains to the smallest divisible unit within the filter that retains the input 

parameters, as is shown in Figure 5.22. Moreover, as nanofibrous coatings are extremely thin, 

consisting only of a very small number of layers, one can treat them as nano-sieves consisting 

only of one pair of layers (see e.g., Cena et al., 2012). In this approach, rather than categorizing 

our fibrous coatings with properties like SVF or thickness, we characterize them using their fiber 

count. The fiber count per distance fc as an input can be more reliably measured under an SEM, 

with less approximation necessary than for SVF—which can still be obtained if needed. 

Moreover, knowing the desired fiber count per layer ahead of time can guide the fabrication 

process in terms of the mass of the polymer to deposit in each layer of a coating. As can be seen 

in Figure 5.22, fiber count in the x- and y-directions (presented in fibers per millimeter in this 

work) is simply the inverse of center-to-center distance s. Surface-to-surface inter-fiber distance 
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w and openness area Ao (measured in percent of total cross-sectional area) are both functions of 

fiber count and fiber diameter, and are ultimately the output parameters that more directly govern 

a coating’s pressure drop and collection efficiency. 

 

 

Figure 5.22: 3-D representation of an idealized thin “nano-sieve” with one pair of layers and even fiber spacing, 
typical simulation domain and boundary conditions for our mesh-screen unit cell model, and visual explanation of 
the input variables that arise in the unit cell modeling approach. 
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The pressure drop and collection efficiency of a fibrous coating with orthogonal fibers 

can be considered to vary depending on fiber diameter fd , fiber count per layer cf , coating’s 

thickness l , and particle diameter pd : 

( , , , )f c pE f d f l d=          (5.23) 

( , , , )f c pp f d f l dΔ =          (5.24) 

A commonly used parameter to characterize filter performance is the quality factor (or figure of 

merit) Q : 

1ln( )p sQ P p −= − Δ          (5.25) 

where 1pP E= −  . Quality factor is in fact a measure of attained collection efficiency for a given 

pressure drop.  

(note in equation 5.25 that spΔ is pressure drop value corrected for aerodynamic slip). The 

peculiar property of the quality factor is that it is independent of the coating’s thickness, that 

means 

( , , )f c pQ f d f d=              (5.26) 

Obviously, our objective here is to determine the fiber diameter–fiber spacing combinations that 

result in the highest quality factor for a given particle size. 

 

Particle Size as the Constraint 

A particle with a diameter of 150–300 nm is often considered to be the Most Penetrating 

Particle Size (MPPS) for most fibrous filters. This is because for such particles, both the 
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interception and Brownian diffusion capture mechanisms are at their minimum. Here we 

considered a particle diameter of 200 nm to simulate the collection efficiency of nano-sieves 

with different fiber diameters and fiber counts consisting of one pair of orthogonally oriented 

layers (see Figure 5.23). In generating this figure, fiber counts in the x- and y-directions were 

varied together, such that apertures between fibers are square. As expected, pressure drop and 

collection efficiency increase with increasing fiber count. However, the increase seems to be 

much faster for coatings with larger fibers. More interestingly, for a desired collection efficiency 

of 60%, for instance, the coating made of 1600 nm fibers causes a pressure drop almost seven 

times higher than that of the coating with 200-nm fibers, which clearly shows the advantage of 

using smaller fibers in a coating.  

 

Figure 5.23c shows the quality factor for the above coatings. It can be seen that when challenged 

with particles of 200 nm diameter, coatings made of smaller fibers show much better 

performance in comparison to coatings made of larger fibers. One can expect that to design 

nano-sieves for filtering a given particle size where ( ) ( , )dp
f cQ f d f= , coatings with smaller fibers 

have better quality factors. Increasing the fiber count fc within the layers significantly increases 

both the pressure drop and collection efficiency of the coating, but the influence on the quality 

factor is more complicated, and seems to depend on the fiber diameter. Our results (Figure 5.23c) 

indicate that (200)Q increases with fc for fibers comparable in diameter to the particles (200 nm 

here), but slightly decreases or stays unchanged for fibers much larger than the particles. 

 



 
 

163 
 

 

Figure 5.23: a) Pressure drop, b) collection efficiency, and c) quality factor as a function of fiber count for unit cells 
challenged with 200-nm particles.   Results for df  = 200, 400, 1000, and 1600 nm are shown.  Fiber counts in the x- 
and y-directions are equal. 
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It is worth mentioning that, since collection efficiency of a filter is higher for particles 

outside the range associated to the MPPS, quality factor for particles greater or smaller than the 

MPPS is generally greater than that of the MPPS, i.e., ( ) ( )dp MPPSQ Q> . Therefore, fibrous 

structures optimized for ( )MPPSQ are expected to perform well for other particle sizes as well. From 

an application point of view for instance, such thin coatings can be applied on the downstream 

side of a traditional more rigid filter comprised of larger fibers to improve their performance 

against MPPSs (placing such a coating on the upstream face of the filter can cause undesired 

surface cake formation). 

 

Fiber Size as the Constraint 

There is often only a narrow range of possible fiber diameters that one can produce by 

electrospinning a given polymer. Therefore, to study the performance of coatings with a constant 

fiber diameter but varying fiber counts against particles of different sizes, where [ ] ( , )df
c pQ f f d=

,we challenged our coatings made of 400-nm fibers with aerosols having different particle sizes 

of 50, 150, and 300 nm (see Figure 5.24). Pressure drop and collection efficiency increase with 

fiber count, as expected. Less expected are the variations in [ ]dfQ . As can be seen in Figure 

5.24c, Q rises with increasing fiber count for 300-nm particles (capture being mostly due to 

interception), but falls for 50-nm particles (capture mechanism being mostly due to Brownian 

diffusion). For the particles with a diameter of about 150 nm, on the other hand, the two effects 

are balanced, and the influence of fiber count on Q is almost negligible. To further explore this 

unique property, a series of additional simulations were conducted, and their results are 
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summarized in Figure 5.25. It can be seen in this figure that the behavior of a certain particle–

fiber diameter combination being independent of fiber count in a layer is also true for other fiber 

sizes, with larger fiber diameters coinciding with larger particle diameters. This indicates that for 

each fiber diameter *
fd , there exists a particle size *

pd at which quality factor becomes 

independent of the fiber spacing, i.e., [ *] *( )df
pQ f d= . It can also be seen in Figure 5.25 that [ *]dfQ  

is higher for larger particles, but the range of fiber count values in which collection efficiency 

transitions from 0 to 1 becomes narrower.  
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Figure 5.24: a) Pressure drop, b) collection efficiency, and c) quality factor as a function of fiber count using the 
unit cell model for a structure with df  = 400 nm.  Particles with dp = 50, 150, and 300 nm were simulated.   Fiber 
counts in the x- and y-directions are equal. 
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Figure 5.25: Quality factor as a function of fiber count for unit cell models with fiber diameters of: 400, 1000, 1900, 
and 2800 nm.  The particle sizes tested for each fiber size (150, 300, 650, and 900 nm, respectively) corresponds to 
the particle diameter at which quality factor changes weakly with fiber count.   

 

 

From the above analysis, one might infer that *
pd  corresponding to a given *
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5.24 where *
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fd  rises. 

 

fc
y (fibers/mm)

Q
(1

/P
a)

500 1000 150020000

0.005

0.01

0.015

dp=150 nm, df=400 nm
dp=300 nm, df=1000 nm
dp=650 nm, df=1900 nm
dp=900 nm, df=2800 nm



 
 

168 
 

 

Figure 5.26: Collection efficiency as a function of particle diameter for four different fiber counts of a coating with 
df = 1900 nm.  Red dashed line illustrates dp

* for df
* = 1900 nm. 

 

 

The quality factor of a coating being independent of its fiber count is an interesting 

property, because it shows that overall performance of the coating is neither lost nor gained due 

to non-uniformity in the coating’s fiber count across the area (imperfection in fiber spacing), 

which is always a concern with manufacturing fibrous media. By conducting a series of similar 

simulations, we in fact establish a relationship between *
fd and *

pd  for which the quality factor 

becomes a single-variable function, [ *] * ( *) *( ) ( )df dp
f pQ f d Q g d= = = as can be seen in Figure 5.27a. 
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fd and *
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statement of MPPS for most filters being between 150 and 300 nm, as the resulting quality 

factors across coatings following the relation between *
pd  and *

pd  behave in the same manner. 

 

Figure 5.27: a) Target fiber diameter df
* shown as a function of intended capture particle diameter, where df

* 
represents the fiber diameter for which the effect of fiber count on quality factor becomes negligible for the 
corresponding particle diameter; b) quality factor for each corresponding coating with df

* as a function of particle 
diameter. 
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case of x
cf  being held constant at 200 fibers/mm is compared with the case of x

cf and y
cf  varying 

together. As can be seen in Figures 5.28a and 5.28b, respectively, pressure drop and collection 

efficiency both reduce slightly when the apertures between fibers are not square. Quality factor 

in Figure 5.28c is seen to fluctuate slightly from the isotropic case, for the most part appearing 

slightly lower. However, the overall dependence of Q on fiber count remains negligible. We 

examined whether or not the fiber-count independence of Q holds for other combinations of *
pd  

and *
fd .  Figure 5.28d presents the graphical information from Figure 5.25, but overlaid with 

hollow symbols with the same combinations of *
pd  and *

fd  as their solid-color counterparts, but 

with x
cf  being held at a constant value for each.  As can be seen, for all cases, while quality 

factor fluctuates more widely for the cases in which x y
c cf f≠ , it still does not change as a 

function of fiber count.  From this, we confirm that the established relationship between *
pd  and 

*
fd  is not affected by anisotropy in the orthogonal fibers of a coating. 
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Figure 5.28: a) Pressure drop, b) collection efficiency, and c) quality factor as a function of fiber count for unit cell 
models with a fiber diameter of 1000 nm and the corresponding dp

* of 300 nm.  Two curves are shown for plots a–c: 
one for which fiber counts are equal in the x- and y-directions (square-shaped apertures between fibers); and one for 
which fiber count in the x-direction is held at a low value while varying y-direction fiber count (rectangular-shaped 
apertures).  d) Quality factor as a function of fiber count for four different combinations of dp

* and df
*.  Legend 

shows information only for hollow symbols for brevity.  Solid-colored symbols represent the same fiber diameter 
and particle diameter as the hollow point of the same color, but fc

x = fc 
y for the solid data points.   
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.  

Figure 5.29: Visualization for the simulation domain and boundary conditions for a nano-sieve unit cell model 
consisting of two pairs of layers instead of one.  Fibers of the second pair of layers are situated on the opposite 
symmetry boundary from those of the first. 
 

 

For Figure 5.30a, we examine the effect of adding a layer on pressure drop for the case of df = 

400 nm. As is expected, pressure drop rises for a given fiber count when a layer is added to the 

coating. However, rather than just examine the effect of simply adding a second pair of layers 

with the same fiber count as the first, one may also wish to examine the effect of simply 

distributing the fibers for one pair of layers across two pairs.  The resulting coating would have a 

fiber count per layer that is half that of a coating in which the fibers are placed only in one pair 

of layers, but still have the same mass and number of fibers.  Figure 5.30b presents the data of 

Figure 5.30a, but adjusted to represent both coatings having the same total mass.  Pressure drop 

is significantly lower for the case of two pairs of layers, as is the rise in pressure drop with 

increasing fiber count.  
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Figure 5.30: Pressure drop as a function of fiber count (x- and y-directions are equal) for unit cell models with a 
fiber diameter of 400 nm.  The two curves in each plot represent fiber coatings comprised of one pair of layers and 
two pairs of layers.  Figure (a) simply illustrates the difference between a coating of a given fiber count that consists 
of either one or two pairs of layers with that fiber count.  Figure (b) shows the same data interpreted as each of the 
two cases having the same total mass, just distributed into either one pair of layers or two (top x-axis shows the 
single-layer fiber count for a coating in which the mass is spread into two pairs of layers). 

 

 

Figures 5.31a and 5.31b respectively show the corresponding collection efficiency and overall 

quality factor for the case shown in Figure 5.30b. The particle size used is 150 nm, the 

corresponding *
pd for 400-nm fibers. Notice in Figure 5.31a that collection efficiency for the two-
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pair case is also reduced. This is because the first layer encounters a uniform flow field, which is 

disrupted for subsequent layers. This disruption reduces the collection efficiency of subsequent 

layers, as particles not caught in the first layer can deviate from their trajectory towards fibers of 

the second in the disrupted flow field. However, the reduction in pressure drop due to layering is 

so large that it nonetheless results in a slightly higher quality factor in Figure 5.31b.  Figure 5.31 

shows the improvement of Q when layering specifically for the case of the particle size 

corresponding to df
* = 400 nm.  Q of fiber count also remains independent of fiber count per 

layer for two pairs of layers.  From this, it is easy to see that for applications in which 

minimizing pressure drop is important, spreading the mass of a coating over several layers can 

improve overall filter performance. 
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Figure 5.31: a) Collection efficiency and b) quality factor for the same case as Figure (b).  Particle size of 150 nm 
corresponds to the quality factor independent particle size corresponding to a fiber diameter of 400 nm. 
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examine the role of a coating’s microstructural parameters in its performance, allowing for 

simulating randomly laid coatings as well as orthogonal. We also presented a comprehensive 

comparison between the predictions the FM method, our force balance formulations, and the 

equations of Tuteja et al. (2008) for fibrous coating comprised of equally spaced parallel fibers. 

It was found that predictions of the FM method deviates from that of the force balance method 

when contact angle is different from 120 degrees, but is reasonably accurate in accounting for the 

effects of SVF variation. The predictions of the robustness angle was found to be in close 

agreement with our force balance method when either SVF or contact angle were varied. The 

robustness height model, on the other hand, was found to be accurate only when the SVF is close 

to 18%. 

 

Having established Full Morphology as a simulation method, we then developed a 

method for predicting coating performance by solving directly for the minimum-energy shape of 

the air–water interface that forms between several layers of fibers in an electrospun coating.  

This method has shown that critical pressure based on Full Morphology simulation is a pretty 

good approximation of critical pressure when comparing models.  However, the method in 

Section 5.2 also reports wetted fiber surface area as well, and is capable of handling more than 

one contact angle among the constituent fibers.  Our model shows that failure pressure is not 

actually due to mechanical failure per se, but rather due to the coalescence of the fluid meniscus 

with itself as it bulges around the first layer of fibers.  Our results also show that the shape of the 

meniscus that penetrates into the spaces of a coating is scalable with fiber diameter, with critical 

pressure varying linearly with fiber diameter.  This allows the trends illustrated in this paper to 

apply across the micro- and nano-scale.  Our results also show the degree to which critical 
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pressure improves with increasing SVF, but shows a limitation to this benefit due to wetted area 

of the coating becoming greater than the surface are of the substrate for higher SVFs.  This 

tradeoff between critical pressure and wetted area can be offset by allowing greater spacing 

between alternating fiber layers, while leaving the others with tight spacing.   

 

 

Finally, on the subject of orthogonally laid electrospun nanofiber coatings, we have 

presented a theoretical analysis of the expected filtration performance of orthogonally layered 

thin nanofiber coatings (fibrous nano-sieves).  Such coatings can be applied to an existing 

nonwoven filter to improve its collection efficiency without a significant additional pressure 

drop. The model produced here provides a means of predicting and therefore optimizing the 

performance of this class of filter coatings by isolating the contributions of their constituent 

microstructure properties. The flow and particle capture simulations have indicated that for each 

particle size, there exists a fiber diameter for which a coating’s performance is not affected by 

the variations of the fiber-to-fiber spacing (i.e., coating’s non-homogeneity). For the range of 

particle and fiber diameters considered in this study, the above fiber diameter is found to be 

about three times greater than the particle diameter. The simulations also indicate that a coating’s 

performance improves when its mass is distributed across more than one pair of orthogonal 

layers. 
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Chapter 6 

Overall Conclusions 

This thesis has presented a series of approaches aimed at predicting capillarity in fibrous 

media.  This behavior was examined in both the context of fluid absorption and fluid repulsion.  

Many of these models can be (and some have been) applied to existing correlations in the 

literature for capillary behavior.  For example, the analytical force balance equation for vertical 

parallel fibers presented in Section 3.2 (Equation 3.8) can accommodate multiple fiber diameters 

and contact angles, but from it can be derived expressions for equivalent capillary diameter and 

capillary contact angle (Equations 3.10 and 3.11).  This allows the method to be inserted into the 

Lucas–Washburn equation (Lucas, 1918; Washburn, 1921) or the related derivation for radial 

fluid spread given in Equation 2.5 (Marmur, 1988; Hyvaluoma et al., 2006), which would allow 

for absorption with respect to time.  The work presented in Chapter 4 solved the Richards 

equation for two-phase flows (Equation 4.13) on the macroscale for fluid spread and drainage.  

That work used the Full Morphology method introduced in Section 3.2 to give expressions for 

capillary pressure as a function of saturation.  Having since developed the model in Section 3.3 

for horizontal parallel fibers, results of that model could also be applied to the Richards equation, 

facilitating multiple contact angles within the sheet along with the effect of other microstructure 

parameters.   
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 Regarding superhydrophobic coatings, the Full Morphology method was again 

employed, this time to determine critical pressure in fibrous coatings produced via 

electrospinning.  This method, while an educated approximation, established important 

relationships regarding the effect of microstructure on resistance to hydrostatic pressures.  This 

was performed for coatings with randomly laid layers and orthogonally laid layers.  Coating 

failure was based on the structures having saturation equal to the first layer of fibers in a uniform 

coating being submerged.  This work was revisited in Section 5.2 in a manner similar to the work 

presented in Chapter 3.  That is, domains representing cells in larger orthogonal coatings were 

constructed, and the minimum-energy shape of the air water interface was solved via the energy 

equation over the meniscus (Equation 5.10), establishing local failure trends that can be applied 

statistically over larger surfaces.  The added context of the results from Section 5.2 show that the 

approximation of Full Morphology and our saturation estimate from Section 5.1 are considerably 

close to one another, validating the utility of the Full Morphology method beyond the simple 

case of force balance across a single pair of parallel fibers (Equation 5.5).  However, solving for 

the minimum-energy interface curvature via Equation 5.10 still carries the additional information 

of wetted fiber area, which itself can be a hindrance to superhydrophobicity if Aw becomes 

greater than 1, as it does at higher solid volume fractions.  Finally, orthogonal coatings have been 

shown to provide additional utility in aerosol filtration, having the unique property of a steady 

performance (i.e., quality factor) for a given fiber diameter–particle diameter pair. 

 

Overall, this thesis has shown that capillarity for fibrous media can be quantified as a 

function of microstructural properties, fluid content, and fluid affinity of the fibers (even if more 

than one affinity exists in the same structure) using the true shape of the air–water meniscus over 
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parallel and orthogonally oriented fibers.  While this thesis focused primarily on absorption and 

drainage in fibrous wipes and the performance of superhydrophobic coatings under pressure, the 

models presented here can be easily applied to many other applications in two-phase flows, such 

as coalescence filtration, water management in PEM fuel cells, fiber impregnation in composite 

materials, Laplace barriers in microfluidics, among countless others.  Aside from having the true 

meniscus shape and location within a medium, the inclusion of multiple wettabilities and 

quantified contact surface area gives these models added value even if approximations for 

pressure in older models were fairly accurate. 
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Nomenclature 

 

 A     Fluid interface cross-sectional area 

 oA     Openness area 

 wA     Wetted area fraction 

a     Capillary length scale 

ia     One of four coefficients in Equation 3.19 

 B     Height of column added to boundary condition 

 Genb     Exponent in Equation 3.21 

 Havb     Exponent in Equation 3.20 

 Lanb     Constant in Equation 4.12 

C     Constant as applied to either Equation 3.20 or 3.21 

cC     Cunningham correction factor 

GenC     Constant in Equation 3.21 

HavC     Constant in Equation 3.20 

LanC     Constant in Equation 4.12 

D     Diffusive coefficient 

 capd     Capillary diameter 

 fd     Fiber diameter 
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 *
fd     Spacing-independent fiber diameter 

 id     Fiber diameter for i-th fiber 

 *
pd     Spacing-independent particle diameter 

 sE     Interface nergy 

 E     Collection efficiency 

 F     Local fluid height 

 F     Average fluid height 

 Fσ     Surface tension force 

 cf     Fiber count 

 G     Level set function   

 g     Gravitational acceleration 

 ij     Brownian force in direction i 

 0K     Zero-order modified Bessel function of the second kind 

1K     First-order modified Bessel function of the second kind 

fKn     Fiber Knudsen number 

 k     Permeability (second-order tensor) 

 dk     Constant in Equation 4.18 

 rk     Relative permeability 

 sk     Saturated or single-phase permeability 

 L     Fiber length 

 l     Coating thickness 
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     Wipe length 

 N     Number of fibers in a layer 

 im     Mass fraction for i-th fiber 

 n     Number of layers 

 in     Fiber number fraction for i-th fiber 

 n̂     Unit normal vector 

P    Fluid interface contact perimeter 

p     Fluid pressure 

cp     Capillary pressure 

*
cp     Maximum capillary pressure 

FBp     Force balance-based hydrostatic pressure 

*
FBp     Force balance-based critical pressure  

*
FMp     Full Morphology-based critical pressure  

Genp     Capillary pressure for Equation 3.21 

*
Hp     Robustness height-based critical pressure 

Havp     Capillary pressure for Equation 3.20 

Lanp     Capillary pressure for Equation 4.12 

Levp     Capillary pressure for Equation 3.19 

*pθ     Robustness angle-based critical pressure 

Q     Quality factor 

cfR     Coarse-to-fine fiber diameter ratio 
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*
FMR     Ratio of Full Morphology to force balance critical pressure 

*
HR     Ratio of robustness height to force balance critical pressure 

*Rθ     Ratio of robustness angle to force balance critical pressure  

r     Radius 

*r     Critical sphere radius for Full Morphology 

mr     Meniscus mean curvature 

0r     Reservoir radius 

 capr     Capillary radius 

 fr     Fiber radius 

 sphr     Sphere radius 

 S     Saturation 

 s     Center-to-center inter-fiber distance 

 fs     Center-to-center inter-fiber distance 

 is     Distance between centers of meniscus curvature and fiber i 

 T     Thickness 

 t     Time 

 u     x-direction velocity 

 u     Velocity vector 

 wV     Wipe speed 

 v     y-direction velocity 

 W     Domain width 
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w     z-direction velocity 

Z     Meniscus depth along fiber when fiber is n layers deep 

z     Fluid height 

addz     Additional fluid height 

minz     Minimum fluid height 

z     Average fluid height 

 

 

 

Greek Letters 

 iα     Angle between fluid–fiber contact and top of i-th fiber type 

 *α     Critical angle between fluid–fiber contact and top of fiber 

β     Fabric inclination angle 

δ     Random distance added to fiber spacing 

 ε     Solid volume fraction 

 η     Multiplier for Equation 5.1  

θ     Contact angle 

iθ     Contact angle for i-th fiber type 

sθ     Solid surface contact angle 

κ     Relative permeability exponent 

λ     Pore size distribution index 

aλ     Mean free path of air 
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 μ     Viscosity 

 ρ     Density 

 σ     Surface tension 

lgσ     Liquid–gas surface tension 

 sgσ     Solid–gas surface tension 

 lgσ     Solid–gas surface tension 

 Φ     Porosity 

 iφ     Angle between fs and is  

 

 

Abbreviations 

c    Coarse 

f    Fine 

FM    Full Morphology 

fl    Fictitious layer 

fm    Fibrous medium 

iso    Isotropic 

MPPS    Most penetrating particle size 

nw    Non-wetting phase 

p    Particle 

ref    Reference 

SVF    Solid volume fraction 
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of multiple fabric layers in absorbent products based solely on the properties of the fluid and
microstructure of the fabrics. Several accompanying experimental procedures were also developed in
order to complement and validate the software model. Program and experimental apparatus were
developed for use as a design tool for Johnson & Johnson, Inc.

• Ph.D. Qualifying Exam (Fall 2010)
Successfully passed the Ph.D. Qualifying Exam for the VCU Department of Mechanical and Nuclear
Engineering in my first semester as a graduate student, less than six months after my baccalaureate

• VCU Nuclear Reactor Simulator (Fall 2009–Spring 2010)
Combined cumulative engineering knowledge with prior Navy experience, and was instrumental in
the initial construction and programming of a nuclear power plant simulator that has gone on to
become a training and education tool for the VCU Nuclear Engineering Program

• Tobacco Company Restaurant (2004–2008)
Spent the first two thirds of my undergraduate education also supporting myself and my education by
working full time as a cook at the famous Tobacco Company Restaurant in Downtown Richmond

Mentorship Experience
• Undergraduate Fluid Mechanics Independent Study (Fall 2011–Spring 2012)

Conducted the undergraduate Fluid Mechanics course as an independent study for one undergraduate
student. Duties included tutoring; writing, assigning, and grading homework assignments; and
writing and conducting midterm and final exams

• VCU Porous Media and Multiphase Flows Laboratory (Summer–Fall 2010)
Supervised five undergraduate student workers in various design and experimental work involving
several lab projects

• Engineering Thermal Sciences Lab Teaching Assistant (Spring 2010)
Set up weekly experiments, supervised thirty students as they conducted the experiments in small
groups, and graded their subsequent lab reports, also made myself available to answer students’
questions throughout the week as they wrote their reports

Graduate Coursework
• Advanced Engineering Mathematics (EGRM 512)

• Vibrations (EGRM 515)

• Advanced Fluid Mechanics (EGRM 561)

• Flow Control (EGRM 580)

• Continuum Mechanics (ENGR 591)
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• Porous Media Independent Study (EGRM 692)

• Mechanical and Nuclear Engineering Materials (EGMN 604)

• Topics in Nuclear Engineering (EGRN 610)

• Nuclear Reactor Safety (EGRN 640)

• Energy Conversion Systems (EGRM 691)

• Nuclear Power Plants (EGRN 630)

• Convective Heat Transfer (EGRM 602)

• Numerical Solutions to Partial Differential Equations (MATH 715)

Industry Experience
• United States Naval Nuclear Propulsion Program (1997–2001)

Orlando, FL; Ballston Spa, NY
Nuclear plant mechanical operator and instructor

Software Proficiencies
• Engineering

ANSYS-FLUENT, Gambit, Surface Evolver, FlexPDE, Geodict, Solidworks, Particle Image
Velocimetry (PIV) software

• Programming Languages
Matlab, C

• General
LaTeX, Tecplot, SigmaPlot, Adobe Photoshop, MS Office, Linux Open Office
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