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This thesis explores radiative efficiencies and recombination dynamics in InGaN-based 

heterostructures and their applications as active regions in blue light emitters and particularly 

vertical cavities. The investigations focus on understanding the mechanism of efficiency loss at 

high injection as well as developing designs to mitigate it, exploring nonpolar and semipolar 

crystal orientations to improve radiative efficiency, integration of optimized active regions with 

high reflectivity dielectric mirrors in vertical cavity structures, and achieving strong exciton-

photon coupling regime in these microcavities for potential polariton lasing. In regard to active 

regions, multiple double heterostructure (DH) designs with sufficiently thick staircase electron 

injection (SEI) layers, which act as electron coolers to reduce the overflow of hot electrons injected 

into the active region, were found to be more viable to achieve high efficiencies and to mitigate 

the efficiency loss at high injection.  Such active regions were embedded in novel vertical cavity 

structure designs with full dielectric distributed Bragg reflectors (DBRs) through epitaxial lateral 

overgrowth (ELO), eliminating the problems associated with semiconductor bottom DBRs having 

narrow stopbands and the cumbersome substrate removal process. Moreover, the ELO technique 
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allowed the injection of carriers only through the high quality regions with substantially reduced 

threading dislocation densities compared to regular GaN templates grown on sapphire.  

Reduced electron-hole wavefunction overlap in polar heterostructures was shown to 

hamper the efficiency of particularly thick active regions (thicker than 3 nm) possessing three-

dimensional density of states needed for higher optical output. In addition, excitation density-

dependent photoluminescence (PL) measurements showed superior optical quality of double 

heterostructure (3 nm InGaN wells) active regions compared to quantum wells (2 nm InGaN wells) 

suggesting a minimum limit for the active region thickness. Therefore, multiple relatively thin but 

still three dimensional InGaN active regions separated by thin and low barriers were found to be 

more efficient for InGaN light emitters. Investigations of electroluminescence from light emitting 

diodes (LEDs) incorporating multi DH InGaN active regions (e.g. quad 3 nm DH) and thick SEIs 

(two 20 nm-thick InGaN layers with step increase in In content) revealed higher emission 

intensities compared to LEDs with thinner or no SEI. This indicated that injected electrons were 

cooled sufficiently with thicker SEI layers and their overflow was greatly reduced resulting in 

efficient recombination in the active region. Among the structures considered to enhance the 

quantum efficiency, the multi-DH design with a sufficiently thick SEI layer constitutes a viable 

approach to achieve high efficiency also in blue lasers. 

Owing to its high exciton binding energy, GaN is one of the ideal candidates for 

microcavities exploiting the strong exciton-photon coupling to realize the mixed quasiparticles 

called polaritons and achieve ideally thresholdless polariton lasing at room temperature. Angle-

resolved PL and cathodoluminescence measurements revealed large Rabi splitting values up to 75 

meV indicative of the strong exciton-photon coupling regime in InGaN-based  microcavities with 

bottom semiconductor AlN/GaN and a top dielectric SiO2/SiNx DBRs, which exhibited quality 



 
 

xviii 
 

factors as high as 1300. Vertical cavity structures with all dielectric DBRs were also achieved by 

employing a novel ELO method that allowed integration of  a high quality InGaN cavity active 

region with a dielectric bottom DBR without removal of the substrate while forming a current 

aperture through the ideally defect-free active region. The full-cavity structures formed as such 

were shown to exhibit clear cavity modes near 400 and 412 nm in the reflectivity spectrum and 

quality factors of 500.  

Although the polar c-plane orientation has been the main platform for the development of 

nitride optoelectronics, significant improvement of the electron and hole wavefunction overlap in 

nonpolar and semipolar InGaN heterostructures makes them highly promising candidates for light 

emitting devices provided that they can be produced with good crystal quality. To evaluate their 

true potential and shed light on the limitations put forth by the structural defects, optical processes 

in several nonpolar and semipolar orientations of GaN and InGaN heterostructures were 

investigated. Particularly, stacking faults were found to affect significantly the optical properties, 

substantially influencing the carrier dynamics in nonpolar (1100) , and semipolar (1101)  and 

(1122) GaN layers. Carrier trapping/detrapping by stacking faults and carrier transfer between 

stacking faults and donors were revealed by monitoring the carrier recombination dynamics at 

different temperatures, while nonradiative recombination was the dominant process at room 

temperature. Although it is evident that nonpolar (1100) GaN and semipolar (1122) GaN require 

further improvement of material quality, steady-state and time-resolved PL measurements support 

that (1101) -oriented GaN templates and InGaN active regions exhibit optical performance 

comparable to their highly optimized polar c-plane counterparts, and therefore, are promising for 

vertical cavities and light emitting device applications. 
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Chapter 1. Introduction 

Over the past 30 years, tremendous developments have taken place in optoelectronics, 

especially devices working in short-wavelength region of the visible spectrum where III-nitride 

semiconductors (GaN, InN and AlN) have played an important role. Figure 1 shows a plot of 

bandgap energy versus lattice constant in combination with the visible spectrum for wurtzite InN, 

GaN and AlN. The bandgap energies of the ternaries (AlGaN, InGaN, InAlN) are given by the 

expression  

g x 1 x g g x 1 xE (A B N) x E (AN) (1 x) E (BN) x (1 x) b(A B N)           Equation 1  

where A and B represent Ga, In or Al atoms, x represents the composition and b(ABN) represents 

the bowing parameter for the ternaries reported as 1.4 eV, 0.7 eV and 3.0 eV for InGaN, AlGaN 

and AlInN,  respectively.1 One can see in Figure 1 that visible spectrum can be easily covered by 

alloying these nitrides. Development of high efficiency blue light emitting diodes (LEDs) and laser 

diodes (LDs) have become possible by using InGaN active regions, and AlGaN and AlInN alloys 

have been utilized for UV emitters as well as power heterostructure field effect transistors.2 Despite 

significant advances, efficiency limiting processes  in InGaN light emitting devices are still not 

fully understood to date and requires further investigations. Moreover, development of LEDs and 

LDs based on different crystal orientations for improved optical performance and exploration of 

new device structures inclusive of those based on vertical cavities utilizing the attractive optical 

properties of nitrides such as the high exciton binding energy and high optical gain are part of 

continuing efforts. This thesis specifically focuses on GaN-based vertical cavities and polariton 
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lasers and the potential of nonpolar and semipolar orientations of GaN for light emitters, which 

will be briefly intorduced below.  

 

Figure 1: Room temperature bandgap energy versus in-plane lattice constant for III-V nitride 

semiconductors AlN, GaN and InN. Their ternary alloys and visible spectrum energy 

range are depicted as well.  

1.1. GaN-based vertical cavities 

GaN-based vertical cavity lasers have attracted a great deal of interest for prospective use 

in many applications. This is due to their circular field patterns and to their possibility of dense 

integration as two-dimensional arrays on the wafer level.3,4,5 Optical communications, imaging, 

optical storage, laser printing/scanning, and signal processing are among the fields vertical cavity 

lasers can be utilized. As shown in Figure 2, a vertical cavity structure is simply composed of an 

active cavity medium, bulk or quantum well semiconductor layers, sandwiched between two 

highly reflective distributed Bragg reflectors (DBRs). DBRs are alternating λ/4-thick stacks of 

dielectric or semiconductor layers, for which high refractive index contrast gives a broad 
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reflectivity band (stopband) centered at the design wavelength. Higher DBR reflectivity results in 

higher cavity quality factors and better light confinement in the cavity. Standing-wave pattern of 

the electric field in the vertical cavity is also shown in Figure 2 (A /2 thick cavity is depicted). 

In order to provide good coupling between electrons (or excitons) and photons, the active layers 

have to be placed at an antinode of electric field pattern in the cavity. The resonance condition for 

the emission wavelength is given by 

2
nL m


       Equation 2 

where n is the active region refractive index, L is the cavity thickness, m is a positive integer, and 

λ is the designed emission wavelength. The shortest cavity with the active layers centered on the 

field antinode can be half wavelength thick, m = 1. The cavity depicted in Figure 2 is for the m = 

1 case.  

 

Figure 2: Schematic of a typical microcavity structure. Squared electric field inside the cavity is 

shown where an InGaN active region is placed at the antinode of the electric field inside 

the cavity (red color). 
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Development of blue GaN-based vertical cavity lasers has faced a number of challenges. 

The integration of high quality InGaN-based active regions with high reflectivity DBRs is one of 

the most important among those.2,6 Semiconductor AlN/GaN DBRs are considered as the natural 

choice for the DBRs due to simple integration. However, their relatively small refractive index 

contrast (~0.3) necessitates a large number of pairs (>20) to achieve sufficiently high reflectivities. 

In addition, AlN/GaN DBRs suffer from cracks because of tensile strain with increasing number 

of pairs. These cracks seriously degrade the reflectivity of the DBRs in addition to quality of the 

subsequently grown active region. On the other hand, dielectric DBRs provide significant 

improvements to devices due to their ease of growth, wide stopbands (~100 nm) compared to 

semiconductor AlN/GaN (~ 20 nm) variety, and smaller number of pairs required for high 

reflectivity if they can be fully integrated with the GaN-based active regions.  

Lasing action under optical injection7,8,9,10 as well as electrical injection11,12,13,14 has been 

reported at room temperature for InGaN-based blue vertical cavities which are composed of 

bottom semiconductor/dielectric and top dielectric DBRs. Higher quality factors (Q-factors) result 

in lower lasing thresholds. However, this is disputed in the literature data for InGaN-based blue 

vertical cavities. The materials preferences, active region quality, as well as the absorption in the 

active region, the injected electron density etc. are some of the effects causing the discrepancy in 

quality factors between the cavities reported. Figure 3(a) shows a theoretical representation of a 

gain profile that has a distribution around the central wavelength, shown in Figure 3(b), which has 

a strong effect on the quality factor described by 0   where 0  is the emission wavelength and 

 is the full width of half maximum of the peak. The lasing threshold or gain threshold is 

characterized by absorption loss and mirror losses. The equation for the lasing threshold for 100% 

light confinement is given as 
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_

th

1 2

1 1
g ln( )

2L R R
       Equation 3 

where 
_

  is the effective absorption loss term (including material absorption, Gaussian beam 

diffraction and scattering), L is the cavity length, and R1 and R2 are the cavity mirror reflectivities. 

The second term in Equation 3 represents loss due to mirrors. The gain becomes equal to loss at 

threshold (lasing condition), which is depicted in Figure 3(c). 

 

Figure 3: a) Optical gain vs. wavelength characteristics (called the optical gain curve) of a lasing 

medium. b) Allowed modes and their wavelengths due to stationary EM waves within 

the optical cavity. c) Gain vs. pump intensity or current density. 

a) b) 

c) 
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With regard to the cavity quality, an emission linewidth of 0.13 nm, corresponding to a Q-

factor of 3000, above a 71.5 mJ/cm2 optical injection threshold has been achieved for a 23.5λ-thick 

GaN-based cavity sandwiched between Ta2O5/SiO2 DBRs.10 Under electrical injection, an 

emission linewidth of 0.03 nm (Q-factor 13800) above a threshold current of 1.5 mA has been 

observed for a 7λ-thick GaN-based cavity sandwiched between SiO2/Nb2O5 DBRs.13 So far, a Q-

factor of 760 has been obtained from a 5λ-thick GaN-based cavity where semiconductor AlN/GaN 

layers were utilized as bottom DBR with top dielectric Ta2O5/SiO2 DBR in the cavity structure, 

and threshold for lasing action has been observed at 7.8 mJ/cm2.15  

Table 1 lists performance parameters of vertical cavities incorporating InGaN MQW active 

regions with hybrid (semiconductor/dielectric DBRs) and all-dielectric DBRs. In all reports 

employing all-dielectric DBRs, however, the deposition of the second DBR stack was made 

possible only after the removal of the substrate. By applying epitaxial lateral overgrowth (ELO) 

on c-plane sapphire, the need for the substrate removal can be eliminated where the active regions 

are fabricated entirely on the nearly defect-free laterally grown wing regions. This is conducted to 

avoid nonradiative centers caused by extended and point defects. One also expects electrical 

injection to only nearly defect-free active regions grown on ELO wings if ELO technique is well 

employed with full dielectric DBRs. This also ensures current confinement without any oxidation 

steps eliminating the substrate removal process. 
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Table 1: Performance of vertical cavities (with InGaN active region) with chronological order 

obtained from the selected literature data. 

Reference 
Cavity 

Length 

Excitation 

Wavelength 

(nm) 

Bottom 

DBR 

Top 

DBR 

FWHM 

(nm) 

Q-

factor 
Threshold 

Someya 199916 2.5 λ 399 GaN/AlGaN ZrO2/SiO2 0.8 500 10mJ/cm2 

Tawara 20038 4 λ 401 SiO2/ZrO2 SiO2/ZrO2 0.87 460 5.1mJ/cm2 

Kao 200517 3 λ 448 AlN/GaN Ta2O5/SiO2 1.4 320 53mJ/cm2 

Wang 200715  5 λ 448 AlN/GaN Ta2O5/SiO2 0.61 760 7.8mJ/cm2 

Zhang 200818 12.5 λ 450 SiO2/Ta2O5 SiO2/Ta2O5 <0.1 - 6.5mJ/cm2 

Zhang 200910 23.5 λ 397 Ta2O5/SiO2 Ta2O5/SiO2 0.13 3000 71.5mJ/cm2 

Liu 201319 - 431 Ta2O5/SiO2 Ta2O5/SiO2 0.3 1400 3.2mJ/cm2 

1.1.1. Epitaxial lateral overgrowth (ELO) 

As explained above, integration of InGaN-based active regions with high reflectivity DBRs 

is a challenge for vertical cavity structures. Epitaxial lateral overgrowth (ELO) technique will 

allow one to grow InGaN MQW active regions on nearly defect-free laterally grown wing regions 

and eliminate cumbersome substrate removal steps. During the growth of GaN on foreign 

substrates (sapphire, Si or SiC), nearly 1010 cm-2 threading dislocation density is formed due to 

lattice mismatch. The dislocations start from the interface and propagate vertically through the 

epitaxial layer up to the surface. One of widely used techniques to reduce the dislocation density 

is epitaxial lateral overgrowth (ELO). In this technique, a mask material is deposited on top of the 

first GaN layer. Then a few micrometers wide stripes, windows, are opened in the mask using 

standard photolithography techniques. Selective GaN epitaxial growth is initiated in the next step, 

where GaN starts to grow from openings (windows) and laterally extends over the mask material. 

Consequently, defects still remain in the windows, while nearly defect-free ELO GaN wings are 
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grown over the mask stripes. This procedure is schematically illustrated in Figure 4. Using this 

technique the threading dislocation density is reduced down to 106 cm-2 in the GaN wings. 

 

Figure 4: Schematic of epitaxial lateral overgrowth technique. The propagation of the threading 

dislocations is blocked by the mask material. 

1.1.2. Active region design 

In order to choose the right active region design for a light emitter one can benefit from 

extensive studies on InGaN-based active regions used in light emitting diodes (LEDs). As InGaN 

based LED technology continues to develop and mature, high brightness LEDs retaining high 

quantum efficiencies at high injection levels (>100 A/cm2) have become even more desirable to 

replace the prevailing incandescent lamps and fluorescent tubes in general lighting. The studies 

showed that InGaN active regions still face challenges at high current injections for high power 

LEDs. External quantum efficiency (EQE) of InGaN LEDs peaks at current densities as low as 

~5-10 A/cm2 and reduces to its half maximum value at as low as ~50-100 A/cm2.2,20 

In order to better understand this efficiency droop one can analyze the carrier 
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recombination by using the simplified ABC model assuming no carrier leakage: 

dn J2 3G = - = An + Bn + Cn -
dt qd

    Equation 4 

where A, B, and C represent the Shockley–Read–Hall (SRH), radiative recombination, and Auger 

recombination coefficients, respectively, n is carrier density, and G is recombination rate. The last 

term in the Eq. 4 represents the contribution from electrical injection where q is the elementary 

charge, d is the thickness of the active layer, and J is the current density. The assumptions for the 

simplified ABC model are as following: 

i. injected carrier density is much higher than background carrier density 

ii. electron and hole carrier cross-sections are equal 

iii. trap and Fermi levels are equal 

 Figure 5 shows a schematic illustration of a simple InGaN active region and carrier flow 

during the electrical injection. In Figure 5, A, B and C represent the nonradiative, radiative and 

Auger recombination processes, respectively. As can be seen from Figure 5 some of the injected 

electrons pass through the active region with their gained kinetic energy while only some of them 

contribute to the recombination processes. Not all the holes are also contributing the recombination 

processes due to electron blocking layer as illustrated in Figure 5. 
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Figure 5: Schematic illustration of carrier flow in a simple LED structure with flat band 

consideration. LED structure consists of n-type GaN, InGaN multiple quantum well, 

AlGaN electron blocking layer (EBL) and p-type GaN. 

Shockley-Read-Hall recombination2, due to the impurity and defect levels (trap levels) that 

lie deep within the forbidden band, and Auger recombination2 are among the mechanisms limiting 

the radiative recombination in QWs. Some groups proposed the Auger loss mechanism, energy 

transfer to another carrier in conduction band, as the main cause for the efficiency droop in InGaN 

active regions. The Auger coefficient varies two orders of magnitude among different reports 

(between 10-29 - 10-31 s-1cm6).21,22,23,24 There is no consensus about the effect of the Auger 

mechanism on the efficiency drop of nitride-based light emitters yet, which calls for more 

experimental and theoretical studies. On the other hand, one should also consider the carrier 

injection, transport, and leakage mechanisms for the efficiency droop. Experiments showed that 

severe electron overflow results in a substantial electroluminescence (EL) efficiency loss (70% or 
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more) if no AlGaN electron blocking layer (EBL) was incorporated25 with InGaN active regions26. 

This shows that the carrier leakage must be taken into consideration seriously for the loss 

mechanism of the injected carriers.27,25,28,29 During this process, the injected electrons cross the 

active region and recombine with the holes outside of the active region. In addition to using the 

EBL layer, another way to prevent carrier overflow is to use a stair-case electron injector (SEI) 

right before the InGaN active region MQWs. SEI is basically multiple InGaN layers with stepwise 

increased indium composition inserted before the InGaN emitting layer. It acts as an electron 

cooler promoting LO phonon emission to reduce the kinetic energy gained by the injected electrons 

without hampering hole injection.30,31  

It is demonstrated that only the QWs closer to the p-GaN layer emit light in a typical InGaN 

active region due to the poor hole transport.32,33,34 Therefore, one may consider using single, but 

thicker active layer (double heterostructure (DH)) instead of multiple quantum wells in order to 

obtain more uniform hole concentration across the active region.22 A 9 nm InGaN-based DH LED 

provided peak EQE approximately 25% higher than that of a MQW LED [6 period In0.15Ga0.85N 

(2nm)/In0.06Ga0.94N(3nm)]35 and low efficiency degradation (~10%) was observed at current 

densities as high as 600 A/cm2. Gardner et al.22 pointed out that the use of DH active regions 

provides a lower carrier density compared to a MQW active regions, and therefore, minimizes the 

effect of Auger nonradiative recombination as well.22 

1.2. Optical characterization of non-polar and semipolar GaN 

Most of GaN-based light emitting devices use wurtzite (0001)GaN orientation due to its 

well-established technology even though it is electrically polar, which adversely affects the device 

performance through spontaneous and piezoelectric polarization. Polarization fields cause spatial 

separation of electron and hole wave functions in active layers and reduce the radiative 
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recombination rate especially at low injections.36,37,38 In contrast, nonpolar orientations have no 

polarization charge at interfaces. The effect of the piezoelectric field on the PL intensity is higher 

in low-dimensional systems. In relatively wide quantum wells (2D case), the PL intensity would 

be higher in nonpolar surfaces compared to polar surfaces since the electron and hole overlap 

significantly increases due to absence of the piezoelectric polarization field, which is illustrated in 

Figure 6 for these surfaces.  

 

Figure 6: Band structures and electron and hole wavefunctions for nonpolar (a) and polar (b) 

directions for a 3 nm InGaN quantum well.39 

Theoretical calculations40 predict that the piezoelectric field across InGaN/GaN 

heterostructures would be considerably reduced in semipolar orientations as well. Figure 7 shows 

piezoelectric polarization and wavefunction overlap of the electrons and the holes in the 

conduction and valence bands in a 3 nm wide In0.25Ga0.75N single quantum well. It has to be noted 

that polarization in Figure 7 is given for a certain composition and thickness considering the strain 

with respect to GaN. The spontaneous polarization is not included in calculations as well. For a 

given composition, the net polarization field may vary in thin QWs. It can be seen from Figure 7 

that the electron and hole wavefunction overlap is maximized when the piezoelectric polarization 

becomes zero for nonpolar orientations (a- and m-orientations) and also at a crystal angle of about 

45° tilted from the c-plane. Compared to c-plane, increased electron and hole wavefunctions 
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overlap and reduced polarization charge are also observable for the semipolar orientations (vertical 

lines around 60°; (1101) , (1122) , etc. in Figure 7). It has been also shown that the piezoelectric 

polarization has only a very small dependence on the In or Al percentage in the ternary alloy 

layers.41 In agreement with predictions, the electric field across the semipolar InGaN/GaN QWs 

are weaker than that for the polar c-orientation,42,43 but naturally stronger than that for the nonpolar 

variety.44 Figure 8(b) shows commonly used polar, nonpolar and semipolar GaN surface 

orientations in wurtzite GaN structure which are considered here for potential use in light emitting 

devices. Wurtzite crystal structure of GaN is also schematically represented in Figure 8(a) where 

the hexagonal unit cell is highlighted with bold lines, whilst adjacent atoms are included to 

highlight the overall hexagonal nature of the structure. Ga–N bonds are shown as dashed lines as 

well. 

 
Figure 7: Piezoelectric polarization (left axis) and wavefunction overlap of the electrons and the 

holes in conduction and valence bands (right axis) in a 3 nm wide Ga0.75In0.25N quantum 

well.45 The crystal angle is defined with respect to the c-axis. For semipolar  1122  and 

 1011  the angles are 58.4° and 61.7°, respectively. 
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Figure 8: (a) A representation of crystal structure of wurtzite GaN. (b) Commonly used GaN 

surface orientations; polar c-plane, the nonpolar a- and m-planes and the semipolar 

 1122 plane.46  

Another factor affecting the PL intensity in different planes of GaN is the selection rules 

for the polarization of the excitation source. Polarization selection rules create polarization 

anisotropy in GaN for both low-dimensional and bulk samples. In wurtzite GaN, optically active 

exciton states (a bound state of electron and hole attracted to each other by electrostatic force) 

obey different selection rules primarily due to the complex valence band structure and spin-

exchange interaction. The band structure of the A, B, and C excitons for n=1 ground states and of 

n=2 excited state of the A exciton obtained in the hydrogen-like isotropic model is shown in Figure 

9.47 The excitons referred to as the A, B, and C excitons are related to the V C

9 7  , 
V C

7 7 upper  and 

V C

7 7 lower
interband transitions in GaN, respectively. Selection rules for these excitons are given 

in Table 2. Considering the crystal symmetry, one can easily find that there is no preferential 

polarization of emission occurring for polar c-plane GaN due to the symmetry in the basal plane. 
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As can be seen in Table 2 A, B and C excitons are allowed for the light wave vector parallel to c-

direction, which is always the case for c-plane GaN in PL measurements. However, when the 

sample is rotated along the growth direction so that the nonpolar m-plane is parallel to the light 

wave vector (i.e., light wave vector is normal to c-plane) there is a clear anisotropy observed in 

the emissions of A, B, and C excitons. In spite of the selection rules one can still observe similar 

emission intensity from A and B excitons for bulk GaN (assuming homogenous crystal quality) 

when it is measured in c- and m-directions. This can be done only when the sample is measured 

with σ-polarized light in the m-direction since A and B exciton transitions are allowed for α- and 

σ-polarization in both c- and m-directions, respectively. However, in low dimensional systems, 

such as quantum wells, the excitation power affect the intensities of the excitonic emission lines 

due to polarization field present in polar direction giving higher emission intensity in nonpolar 

directions. This should not be mixed with the effect of polarization anisotropy in GaN. 
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Figure 9: A schematic of the energy band structure and exciton energy levels in wurtzite GaN in 

an uncoupled hydrogen-like isotropic model.47  

Table 2: Polarization selection rules for A, B and C excitons. 

 

Polarization A exciton B exciton C exciton 

α-polarization 
(k c and E c)  Allowed Allowed Allowed 

σ-polarization 

(k c and E c)   
Allowed Allowed Weak 

π-polarization 
(k c and E c)  Forbidden Weak Strong 

 

One example for the polarization anisotropy is given for nonpolar InGaN/GaN multiple 

quantum well structure in Figure 10.  As can be seen from Figure 10 the PL intensity greatly 

reduced for the different excitation polarization state for the same excitation power density. The 

excitation whose electric field is parallel to c-direction produces lower PL intensity compared to 

the excitation with perpendicular electric field component (wave vector is normal to m-plane). 
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Figure 10: Polarization-dependent PL spectra and polarization ratio of an m-plane InGaN/GaN 

MQWs measured at room temperature. Here, φ = 0◦ and 90◦ represent E || c and E ⊥ c, 

respectively.48  

1.2.1. Extended defects in nonpolar and semipolar GaN 

In spite of the observed reduction of the piezoelectric field in semipolar and nonpolar active 

regions, the crystal quality, and therefore, the efficiency lags behind that of c-plane polar GaN.49 

High density of extended defects, mainly threading dislocations and stacking faults (SF) emerge 

during the growth.50,51 Stacking faults can form on (0001) basal plane and on  1120  prismatic 

planes, and develop by slip. In wurtzite GaN, basal plane stacking faults are regarded as very thin 

zinc-blend segments in a wurtzite matrix and represented as quantum wells with type-II alignment. 

Electrons are confined in the zinc-blend layer, but with significant spreading of the wave function 

in the surrounding barrier. Different types of basal plane stacking faults, based on the fault 

sequence, are depicted in Figure 11. In the wurtzite structure, the atoms follow the stacking 

sequence ...AaBbAaBb... along the [0001] direction, while ...AaBbCcAaBbCc... along the [111] 
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direction in the zinc-blende structure. Capital letters correspond to Ga atoms and lowercase letters 

to N atoms. There are four different types of basal plane stacking faults as follows 

a) Type-I stacking faults (I1): These contain one violation of the stacking rule. For type-I faults 

two stacking sequences can be considered with equivalent energy. The first where the fault 

starts on a Bb layer...AaBbCcBb..., and the second where the fault starts on the Aa layer 

...AaBbAaCcAaCc.... 

b) Type-II stacking faults (I2): These contain two violations of the stacking rule. The stacking 

sequence has the fault starting on a Bb layer ...AaBbCcAaCc... 

c) Type-III stacking faults (I3): These are intrinsic stacking faults in which one of the Aa or Bb 

layers occupies the wrong Cc position, e.g., ...AaBbAaCcAaBb... 

d) Extrinsic stacking faults (E): These stacking faults have an additional Cc layer inserted in the 

middle of the normal stacking sequence ...AaBbCcAaBb... . 

 

Figure 11: The atomic arrangement of stacking faults, type-I, type-II, and extrinsic basal plane 

staking faults. 52,53 

It is found that the prismatic stacking faults are attached to basal-plane stacking faults and 

propagate in the growth direction. The sequential termination of the prismatic faults along the 

growth direction usually folds into basal-plane faults. It is likely that nucleation of stacking faults 
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on a prismatic plane are triggered due to the surface structural imperfections at the intersecting 

basal-plane stacking faults. An atomic model of a prismatic stacking fault projected onto the (0001) 

plane is depicted in Figure 12(a) in addition to a schematic representation of lattice planes and 

directions for prismatic stacking fault in the (0001) projection in Figure 12(b). 

  

Figure 12: (a) Atomic model of a prismatic stacking fault and ( ) stacking mismatch boundary 

(projection onto the (0001)). White and black circles represent Ga atoms (nitrogen 

atoms are omitted because their projection would overlap with Ga atoms).54 (b) 

Schematic representation of lattice planes and directions for prismatic stacking fault in 

the (0001) projection.55  

Microscopic mechanisms governing the defect formation as well as effects on the optical 

quality are not well understood yet. Therefore, comprehensive studies of defect formation in 

nonpolar and semipolar nitrides and their influence on the optical quality are required for 

improvement of material quality of active regions and thus device performance. 

1.3. Polariton Lasers 

Since the first observation of the strong polariton coupling in a gallium arsenide (GaAs) 

based microcavity56 in 1992, the microcavities have attracted a great deal of interest owing to their 

potential to achieve ultra-low threshold lasers, so-called “polariton laser”, first theoretically 

1120



 
 

20 
 

devised by Imamoglu et al.57 The heart of this phenomenon is the formation of a coherent beam 

of photons based on a bosonic phase transition toward a condensate. The bosonic condensation 

can be achieved at densities well below the onset of exciton bleaching, which leads to ultra-low 

threshold, ideally thresholdless, lasers. 

The polaritons are formed due to superposition of excitons and photons having the same 

energy and momentum, which exhibit an effective mass up to four orders of magnitude smaller 

than that of excitons. In a microcavity, the exciton-light coupling may lead to either crossing or 

anticrossing of the real parts of the Eigen-frequencies in the vicinity of the resonance of the 

excitonic transition in the active region with the bare cavity mode. The system is described by the 

coupled-oscillator equation: 

   2

X c ci i V               Equation 5 

where X the exciton resonance frequency, γ is the exciton non-radiative damping rate, c ci 

is the complex Eigen-frequency of the cavity mode in the absence of exciton-light coupling, and 

V is the coupling constant dependent on the exciton oscillator strength and the penetration depth 

of the Bragg mirrors. The splitting between the cavity modes can be written by 

2

22
2

 
  
 

cV
 

if X c  . 
2


 cV
 

 is characterized by crossing of the exciton and photon modes and an 

increase of the exciton decay rate at the resonance point where the weak-coupling regime holds. 

This regime is typically used in vertical cavity surface emitting lasers (VCSELs). The strong-

coupling satisfies if 
2


 cV
 

in which the crossing of real parts of exciton and photon modes 

takes place. In this regime, two new optical resonances manifest themselves in the spectra known 
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as upper and lower exciton-polariton branches (UPB and LPB, respectively). A theoretical result 

is shown in Figure 13 for a CdTe cavity showing newly formed upper and lower polariton branches 

for -10 meV negative detuning (red color). 

 
Figure 13: Dispersion of polaritons in a CdTe cavity.58 Upper and lower polariton braches are 

plotted in red, and bare cavity and exciton dispersion curves are given in blue.  

In confined structures, an exciton with wave vector k couples to the photon of the same in-

plane wave vector (k∥) because of the absence of in-plane confinement. Momentum is not 

conserved in z-direction and exciton couples to photons at different kz whose value is nzπ/L, L 

being the microcavity length. In this case, Rabi frequency occurs at different frequencies leading 

to a weak coupling due to fact that one exciton mode couples to a set of photon modes. However, 

a reversible exchange between exciton and photon modes is established in the strong coupling 

regime resulting in a much smaller cavity line-width. Differently from the bulk case, photon and 

exciton dispersions in microcavities are function of in-plane wave vector, k∥: 
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    Equation 6 

where M is the sum of the electron and hole effective masses in the QW plane, and mph is the 

photonic effective mass described as 
ph c cm hn cL  which is extremely light when compared to 

exciton mass. Using the rotating-wave approximation (EC−EX << EC+EX) and solving the resulting 

eigenvalue problem one reaches to energy values of upper (+) and lower (-) polariton modes as59 

  
  

     
2 2

(

( 1
( 4

2 2

C X

C X R

E k E k
E k E k E k k
 


       Equation 7 

where coupling ΩR is given by 2

( )
( )

2

X

R D

B b

E k
k

a L



 
  , μ being exciton dipole. The in-plane 

wave-vector is related to the light incidence angle,  , by the relation sink
c


 . The polariton 

dispersion curves can simply be obtained by measuring angular dependences of the resonances. 

Angle-resolved reflectivity and photoluminescence techniques are the most commonly used 

techniques to restore the polariton dispersion curves for such microcavities. Figure 14(a) shows 

theoretical polariton dispersion curves in a typical GaN-based microcavity for different Rabi 

splitting values at zero detuning. The detuning of bare photon and exciton modes in a microcavity 

is described as c X     which is an important parameter strongly affecting the shape of the 

polariton dispersion. Figure 14(b) shows polariton dispersion curves for different detuning values 

at 30 meV Rabi splitting. 
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Figure 14: Polariton dispersions curves for GaN-based microcavity (a) for different Rabi splitting 

energies at zero detuning (b) for different detuning energies at 30 meV Rabi splitting. 
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As can be seen from Figure 14  central part (near 0 momentum region) of the lower 

polariton branch is strongly dominated by an extremely light photon effective mass, while the rest 

is dominated by a relatively heavy exciton effective mass. This produces the so-called “polariton 

trap” at 0k   in the LPB.60 The photon emission process is totally different from a photon laser 

where the lasing results from stimulated emission of photons with an occupation number larger 

than 1. The quantum degeneracy threshold of polaritons is triggered by the same principle of 

bosonic final-state stimulation, yet the physical process is different. It is stimulated scattering of 

massive quasiparticles from nonlasing states at  0k  into the lasing state at 0k  . The 

polaritons that reach to polariton trap region (at 0k  ) can only thermalize through the internal 

interactions with each other since the acoustic phonon assisted relaxation is forbidden by energy 

and momentum conservation laws in this region. The polaritons in the trap region are subject to 

quantum coherent effects and maintain coherence during their lifetime. The basis for “polariton 

lasing” is the non-zero minimum of the LPB at 0k  .56 The nonlinear increase of the photon 

flux is an outcome of the leakage of the polaritons via cavity mirrors. Hence the observed threshold 

of the polariton system requires no electronic population inversion. The difference in the 

operational principles of a polariton laser and a conventional laser is shown schematically in 

Figure 15. The vacuum Rabi splitting becomes significantly greater than the broadening of both 

the exciton and the cavity modes when the LPB and UPB anticross. The coupling strength is 

determined by the exciton oscillator strength and the amplitude of the cavity field. Rabi splitting 

can be increased by choosing proper and high quality active regions with large exciton oscillator 

strength. It reaches 4-15 meV61 in existing GaAs-based microcavities, up to 30 meV62 in CdTe 

based microcavities, up to 50 meV63,64 in GaN and ZnO cavities and more than 100 meV65 in 

organic microcavities. With its large oscillator strengths and exciton binding energies at room 
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temperature (26meV in bulk, >40 meV for InGaN quantum wells), and due to its well-developed 

growth technology GaN-based active regions are very attractive for strong coupling regime in 

vertical cavities.  

 

Figure 15: The operational principles of (a) polariton and (b) conventional laser.57 

Polariton lasing under optical injection for GaN-based vertical cavities has been already 

reported by several groups in literature.66,67 Electrical injection polariton lasing for GaAs-based 

microcavities has been demonstrated,68 while it has not yet been achieved for GaN-based 

microcavities. One way to obtain polariton lasing under electrical injection is to achieve a better 

photon confinement in the cavity. This can be done by producing better quality active regions. 

Consequently, the spontaneous emission will take place in the laser mode which results in a strong 

increase of the β coefficient (the fraction of spontaneous emission that seeds the lasing process).58 

The vertical cavities are an example of this trend where a transition from weak coupling (lasing 

effect only originates from stimulated emission process) to strong coupling regime is seen.69 

Larger quality factors will allow strong increase of the cavity photon lifetime and a higher β 
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coefficient. Obtaining high quality GaN-based vertical cavity structures will pave the way for 

polariton lasing under electrical injection. 

1.4. Organization of the thesis 

This thesis is a collection of comprehensive results from optical studies focused on InGaN-

based blue light emitters in general and vertical cavities in particular, in addition to a detailed 

investigation of the building blocks mainly polar InGaN active region designs, and nonpolar and 

semipolar GaN orientations. A set of optical techniques such as photoluminescence (PL), time-

resolved PL, angle-resolved PL and reflectivity, polarization-resolved PL, near-field scanning 

optical microscopy (NSOM), were used to explore the major challenges during the development 

of the vertical cavity structures and solutions were proposed and some were implemented 

accordingly. Temperature and excitation power dependent PL and TRPL measurements gave 

insights about InGaN active region quality as a measure of internal quantum efficiency and 

radiative/nonradiative PL decay times. These techniques were also used to elucidate the optical 

quality, recombination dynamics and defect related luminescence in semipolar/nonpolar GaN 

layers for a prospective use in light emitting devices. 

Chapter 2 is dedicated to improvement of the active region quality for the InGaN-based 

blue light emitting devices by playing with active region components such as staircase electron 

injector (SEI), electron blocking (EBL) layers, quantum well width, barrier heights as well as 

understanding of efficiency droop phenomena in the active regions. In addition to theoretical and 

numerical investigations, optical and electrical measurements were applied to quantify internal and 

external quantum efficiency (IQE and EQE), respectively, together with time-resolved 

photoluminescence to better understand the carrier dynamics governed in the carrier recombination 

processes. 
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In Chapter 3, optical signatures of strong polariton coupling in a hybrid InGaN-based 

microcavity obtained from angle-resolved photoluminescence and cathodoluminescence 

measurements is reported. Having the largest Rabi splitting reported in the literature, 75 meV 

(promising for ideally thresholdless polariton lasers), the cavity structure consisted of six periods 

In0.15GaN MQWs with low In0.06GaN barriers and sandwiched between 29.5 pair bottom 

semiconductor crack-free AlN/GaN and top 13.5 pair SiO2/SiNx distributed Bragg reflectors 

(DBRs). In addition, Chapter 3 reports growth and characterization results of a new type of InGaN-

based vertical cavity structure grown on nearly defect-free epitaxial lateral overgrown (ELO) GaN 

layers utilizing both large stop-band bottom and top dielectric SiO2/SiNx DBRs. This new type 

vertical cavity structure provided solutions to narrow stopband bottom distributed Bragg reflectors 

(DBRs) and their integration with cavity active region, high quality GaN substrate and InGaN 

active regions, and cumbersome substrate removal process after top dielectric DBR deposition. 

Chapter 4 reports on detailed optical investigations of nonpolar and semipolar GaN layers. 

These studies extend to the optical quality enhancement, defect analysis, recombination dynamics. 

Extended defect distributions are studied using spectrally and spatially resolved 

cathodoluminescence and near field scanning optical microscopy. Also, temperature dependent 

time-resolved and polarization-resolved PL are used to gain insight into the contributions of 

excitons and free carriers to the radiative recombination at different temperatures for a nonpolar 

bulk GaN. In addition, InGaN active regions grown semipolar orientations are investigated and 

results are presented at the end of Chapter 4. All the results are summarized and overall conclusion 

are provided in Chapter 5, and the outlook for future studies is discussed in Chapter 6. 
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Chapter 2. Optical investigations of quantum efficiency of InGaN-based active 

regions 

InGaN is now becoming the first choice in industry for blue light-emitting diodes (LEDs)2 

due to its high light conversion efficiency. However, it still suffers efficiency droop at high 

electrical injection levels. The theoretical explanation for the physical origins for the efficiency 

droop21,22,70 have already been discussed in Chapter 1. Carrier overflow is found to be the leading 

mechanism as the debates about the origins of efficiency droop still continue.27,71 One may wisely 

investigate the active region designs to find possible ways to prevent the efficiency droop, where 

the active region is constituted of core elements of staircase electron injector (SEI), quantum wells 

and barriers, and electron blocking layer. One possible approach to prevent the efficiency droop 

and increase the quantum efficiency might be to increase InGaN active region widths as much as 

possible maintaining the material quality. For this reason, instead of 2 nm (2-dimensional) 

quantum well active regions a 3D-like (above 2 nm) double heterostructure (DH) layers can be 

used for active emitting layer owing to their lower density of states minimizing the Auger 

recombination effect.22  Earlier reports demonstrated that EBL layer can be safely removed from 

the active region only if the InGaN SEI layer is maintained in the structure, and the efficiency 

droop can be signicantly reduced.72,31 This may inspire one to further investigate the effects of SEI 

layer on the efficiency droop if the the thicknesses of the InGaN layers in SEI is changed. In this 

chapter, optical characterization techniques are focused to investigate the effeciency droop 

mechanism for the InGaN active regions in which the core parameters of their structure are 

changed. The results are presented and summarized accordingly. 
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2.1. Quantum Efficiency InGaN multiple quantum wells: Effects of barrier height and 

thickness 

InGaN LED structures with different active region designs are investigated to improve the 

quantum efficiencies in addition to reduce the electron overflow at high injection current density. 

In this realm, multiple quantum well (MQW) LED structures with different InGaN barrier heights 

In0.06Ga0.94N (low barrier, LB) and In0.01Ga0.99N (high barrier, HB) and thicknesses (3 nm and 12 

nm) are compared and analyzed. MQWs with 3 nm and 12 nm barriers are called coupled and 

uncoupled MQWs throughout the thesis, respectively. In addition, the quantum efficiency of 

uncoupled MQW LED (with only SEI) is compared to that of only EBL. Internal quantum 

efficiency (IQE) values at different carrier density were measured by resonant photoluminescence 

excitation power-dependence method.73 The details for this method are given in Appendix A. 

Being a very straightforward this method provides one a very good comparison for the relative 

values of internal efficiency of the LEDs investigated, while the exact numbers are still 

questionable. One may need to rely on some other optical experiments to obtain exact IQE values, 

which will be discussed in next sections. For this experiment, the excitation wavelength from a 

frequency doubled Ti:Sapphire laser was set to 385 nm, below the bandgap of the InGaN barriers. 

Therefore, the photo-excited electron-hole pairs were generated only within the quantum wells 

while any carrier generation in the barriers was avoided and the carrier distribution was uniform 

in the active region.73,72 Non uniformity in electron and hole distribution was said to be one of the 

major causes for the efficiency droop in EL observations.74  

InGaN MQW active region LED structures emitting at ~420 nm (15% In) were grown on 

~3.7 µm-thick n-type GaN templates on sapphire in a vertical low-pressure metalorganic chemical 

vapor deposition (MOCVD). The conduction band diagram of the active region designs are given 

in Figure 16. All the structures contained a 60-nm Si-doped (2×1018 cm-3) In0.01Ga0.99N underlying 
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layer just beneath the active region or the SEI for improved quality. The SEI consists of two 5-nm 

InGaN layers (two-layer SEI) with step-increased In composition of 4% and 8%, in the given order, 

again inserted before the active region. The SEI can in principle be made a continuously graded 

structure. The steps having potential energy drop equal or more than one LO phonon energy (88 

meV) contribute to electron thermalization through electron–LO-phonon interaction. A ~10-nm p-

Al0.15Ga0.85N electron blocking layer was deposited on top of the active quantum well region in 

one particular wafer without SEI for comparison. The LED structure was completed with Mg-

doped p-GaN layer of 100-nm thick having 4×1017 cm-3 hole density, as determined by Hall 

measurements on a separate calibration sample. Square mesa pattern (400x400 μm2) were formed 

by conventional lithography and chlorine based Inductively Coupled Plasma (ICP) etching. 

Ti/Al/Ni/Au (30/100/40/50 nm) metallization annealed at 800 ºC for 60 seconds was used for n-

type ohmic contacts, and 5-nm/5-nm Ni/Au electrodes served as the semi-transparent p-contacts. 

Finally, 40/50-nm Ni/Au electrodes were deposited on part of the mesa for contact pads. 
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Figure 16: The conduction band diagrams for the active region designs used in LEDs: (a) coupled 

MQW (b) uncoupled MQW. Flat band diagrams are shown only for simplicity. 
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Compared to the uncoupled MQW LEDs, the coupled MQW and DH LEDs exhibit lower 

IQE values and slower rate of increase in the IQE with generated electron (hole) concentration as 

shown in Figure 17. The low and high barrier coupled MQWs reach the maximum IQE value of 

84% and 79%at the carrier density of about 6x1018 cm-3, respectively. This appears to bode well 

for the low InGaN barrier height sample in terms of IQE, most likely due to strain and quality 

considerations and absorption in the low barrier. The LED structures with coupled MQW active 

regions either low and high barrier exhibit a much slower rise in the IQE values [80% is reached 

at the maximum equivalent photocurrent density of 90 A/cm2] when compared with uncoupled 

MQWs [80% IQE is reached ~30 A/cm2, Figure 18], as displayed in Figure 17. IQE values vs. 

electron density converted from carrier density using rate equation (Equation 8) naturally being 

resonant optical excitation calls for no carrier leakage: 

 2J qdG qd An Bn        Equation 8 

where G is the generation rate, n is the carrier density, q is the electron charge, d is the thickness 

of the active layer, and J is the photo current density. The terms A and B represent Shockley-Read-

Hall (SRH) nonradiative recombination and radiative recombination coefficients, respectively. 

The Auger coefficient C, which we deem small, is neglected here, particularly, at low injection 

level due to the limitation of laser power during optical measurements. By assuming B to be 10-11 

cm3s-1, and fitting the curves, we extracted the A coefficient for the LEDs. Then we converted the 

carrier density n to photocurrent density by inserting the assumed B and extracted A coefficients 

into the rate equation.  
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Figure 17: (a) IQE values determined from excitation-dependent PL for LEDs with coupled 

MQWs. B value was assumed to be 10-11 cm3s-1 for the calculation of carrier densities. 

Figure 18 shows the IQE results for the LED structures with uncoupled MQWs high and 

low barriers w/ SEI and w/o EBL, uncoupled MQWs high w/o SEI and w/ EBL. The IQE values 

reached 90% and 93% at a carrier density of 3x1018 cm-3 for the high and low barrier uncoupled 

MQWS (w/ SEI), respectively, and continued to increase for higher carrier densities [Figure 18]. 

Lowering the InGaN barrier height slightly enhanced the IQE at both low and high carrier 

densities. The uncoupled MQW w/ EBL and w/o SEI shows about 10% lower IQE values 

consistently as compared to the MQWs having only SEI. This demonstrates that the IQE value is 

improved by inserting SEI instead of using EBL. This might be due to the degraded layer 

crystalline quality by the strain-induced defects in the LED with AlGaN EBL.  
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Figure 18: (a) IQE values determined from excitation-dependent PL for LEDs with uncoupled 

MQWs. B value was assumed to be 10-11 cm3s-1 for the calculation of carrier densities. 

Because resonant excitation assures nearly uniform electron and hole generation in the 

active region and implies thermal equilibrium for carriers, the efficiency degradation due to the 

carrier overflow would not be observed. However, it is well known that LEDs exhibit efficiency 

droop under electrical injection, which is the case in EQE measurements. This means that LEDs 

having the best IQE values may not necessarily have the best EQE due to possible carrier leakage. 

To determine the relative EQE, on-wafer pulsed EL measurements (0.1 % duty cycle, 1 kHz) were 

carried out for all the investigated LEDs with no effort having been made to enhance light 

extraction. Care was taken to assure the same light collection geometry among all chips. Note that 
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not all the light emanating from the LED was collected. Figure 19 shows the relative EQE values 

for the uncoupled MQW structures. Among them, the low barrier uncoupled MQW w/ SEI and 

w/o EBL exhibited the highest EQE value and reached a maximum at a current density of around 

40 A/cm2, while the EQE of the high barrier uncoupled MQW w/ SEI and w/o EBL reached the 

maximum at a same current level (~40 A/cm2) but suffers more efficiency degradation in relation 

to the one with reduced barrier with increasing injection current. As shown in Figure 19, the 

relative EQE for the low barrier uncoupled MQW is approximately 15% higher than that for the 

high barrier uncoupled MQW under current density ~600 A/cm2. It is well known that the hole 

transport in GaN is compromised due to the large hole effective mass and ensuing low hole 

mobility (~5 cm2/Vs). The reduced InGaN barrier height (In0.06Ga0.99N) in the MQW active regions 

would help the hole transport and thus reduce the electron overflow induced efficiency degradation 

at high injection levels as the probability of recombination in the active region would increase with 

more holes present. Therefore, improved quantum efficiency would be expected with reduced 

InGaN barriers in MQW-LEDs. As shown in Figure 18, the uncoupled MQW w/ SEI shows 18% 

higher IQE than the uncoupled MQW w/ EBL but w/o SEI under the carrier density ~2x1018 cm-

3. This improved IQE with SEI can be attributed to improved crystalline quality due to the absence 

of any strain induced defects and to more efficient hole injection into the active region, which 

would have been limited by low hole mobility in AlGaN layer had we used EBL. Similarly, the 

uncoupled MQW w/ SEI shows 12% higher peak EQE than the uncoupled MQW w/ EBL w/o SEI 

at lower injection levels though they tend to converge at higher injection levels, as shown in Figure 

19. One can argue then that the efficiency is improved when LEDs use SEI instead of AlGaN EBL. 
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Figure 19: Relative external quantum efficiencies of uncoupled LEDs as a function of pulsed 

injection current density (0.1 % duty cycle and 1 kHz frequency). 

It should be also mentioned that EQE values reach their maximum at current densities 

ranging from 20-70 A/cm2 in the MQW LEDs, depending on the active layer structure. This 

observation as well is consistent with the IQE data shown in Figure 18. The similarity between the 

calculated equivalent photocurrent density using the rate equation and the measured electron 

density suggests that the recombination coefficients A and B reasonably describe the IQE 

characteristics of LEDs. Also, under low injection levels, any electron overflow can be assumed 

negligible and thereby there is reasonable correlation between optical measurements and electrical 

measurements below 30 A/cm2.  
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As a summary, the dependence of both internal and external quantum efficiencies on the 

induced electron density and injection current density for InGaN based LEDs with coupled and 

uncoupled MQW active regions are investigated. Wider barrier width (12 nm), namely uncoupled 

MQW, active region showed better performance in terms of internal quantum efficiency compared 

to coupled MQW active region (3 nm barrier width). It is also found that the EBL layer can be 

successfully replaced with SEI in all the LED active layer designs evidenced by ~12% increase in 

the peak EQE values at low injection levels compared to that with EBL of the same active region.  

2.2. Impact of InGaN double heterostructure active layer design in optical performance  

InGaN double heterostructure (DH) layers can ensure uniform hole spreading across the 

active region due to the absence of barriers, unlikely to MQW active regions, and consequently 

have resulted in quantum efficiencies beyond current densities of ~150 A/cm2.22 Moreover, DH 

structure possesses bulk-like 3D density of states (DOS) which can accommodate more free 

carriers than stepwise DOS in the thin QWs. In this sense, active regions with different DH 

thicknesses are investigated in a series of optical and electrical measurements. Internal and external 

quantum efficiency (IQE and EQE) measurements were held to quantify the efficiency of active 

regions containing either one or more (dual) InGaN DH separated by 3 nm In0.06Ga0.94N barriers. 

The common procedures to evaluate the IQE involve excitation power dependent PL 

measurements and comparison of the peak PL efficiencies at low and room temperatures by 

assuming 100% IQE at low temperature.75,76 Excitation dependent (up to 1.1×1018 cm-3 injected 

carrier concentration) PL measurements were performed at both 15 K and 295 K to find more 

accurate IQE results. The In0.15GaN structures (emitting at ~420 nm) were grown on ~3.7 µm-

thick n-type GaN templates on sapphire in a MOCVD system. Figure 20 shows the conduction 

band diagram for dual DH structures (flat bands shown for simplicity). SEI layer, two 5 nm InGaN 
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layers with step-increased In compositions of 4% and 8%, is incorporated into all structures. The 

structures were completed with 100 nm-thick Mg-doped p-GaN layers having 4×1017 cm-3 hole 

density. 

 

Figure 20: Flat band conduction band diagram for dual DH-LED structures. 

Room temperature resonant optical excitation intensity-dependent method73 was used to 

obtain IQE values versus photo-induced carrier concentration for DH active regions. Injection 

dependent radiative recombination, B, coefficients77 were also used during calculations for an 

effort to produce more accurate qualitative analysis of the DH active regions. Upper limit of the 

IQE values were obtained from the low and room temperature PL comparison of the DH active 

regions, simply assuming 100% IQE at low temperature. The excitation wavelength from a 

frequency doubled Ti:Sapphire laser was set to 385 nm assuring photo-generation of carriers within 

the active region only.72,78  Figure 21(a) shows the IQE values vs. carrier concentration for all the 

DH structures. The IQE for 3 nm DH reaches above 35% at a carrier concentration of 1018 cm-3. 

When a second DH active region is inserted into active region separated by a 3 nm-thick 

In0.06Ga0.94N barrier, the IQE increase rate with increasing photocurrent density is slower than that 

for the single 3 nm DH. For this sample, maximum 35% IQE is reached at a photocurrent density 
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of ~5.5 A/cm2 compared to 0.3 A/cm2 in single 3 nm DH. However, the IQE values are very similar 

for both structures at high injection levels. 
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Figure 21: (a) IQE values determined from excitation-dependent PL with various DH thickness 

by using injection dependent B coefficients (b) IQE values vs. photocurrent density 

converted from carrier concentration. 

When the DH thickness is increased from 3 nm to 6 nm and 9 nm, the IQE and its rate of 

increase is decreased substantially. IQE for both 6 nm and 9 nm DH LED increases slowly with 

carrier concentration and reaches 25% at around 3x1018 cm-3 carrier density. The single and dual 6 

nm DH essentially have quite similar IQE dependence on carrier density, however, the dependence 

on photocurrent density clearly shows a discrepancy due to increased overall active region 

thickness (12 nm) for dual 6 nm DH. Further increase in DH thickness (up to 11 nm) resulted in 
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degradation in IQE and its rate of increase with respect to both carrier concentration and 

photocurrent density. This is partially due to the degraded layer quality with increasing active 

region thickness, which stimulates the nonradiative recombination process in the emitting layer, in 

addition to stronger polarization effects (increased electron and hole wavefunction separation in 

wider active regions). 

In order to determine the relative EQE, pulsed electroluminescence (EL) was carried out 

for the active regions. Figure 22 shows the relative EQE values for the structures with various DH 

thicknesses. The EQE of 3 nm DH exhibited a fast rate of increase with increasing current injection 

and reached its maximum at ~30 A/cm2.  However, its  maximum EQE was only 23% of that of 

the single 6 nm DH active region, most likely due to lower density of states within the 3 nm InGaN 

layer compared to 6 nm InGaN layer. When another 3 nm InGaN layer is added, the total EQE 

values are doubled due to increased active layer volume, which is consistent with resonant PL 

measurements showing two fold increase in emission intensity for the same excitation power.  
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Figure 22: Relative external quantum efficiencies of DH structures as a function of pulsed 

injection current density (0.1 % duty cycle and 1 kHz frequency). The inset shows 

the normalized resonant PL intensity versus the number of 3 nm DH active regions. 

The maximum relative EQE values for the single 6 nm DH structure were obtained at 

current density of ~41 A/cm2, slightly higher than that for the 3 nm DH LEDs. However, single 6 

nm DH suffered from large efficiency droop with increasing current density compared to single 

and dual 3 nm DH structures. The dual 6 nm DH showed ~12% higher peak EQE values and 

slightly less efficiency droop percentile (reduced by ~30%) compared to single 6 nm DH under 

the same current density. Making an analogy between 3 nm and 6 nm DH LEDs, this results show 

that the second 6 nm DH layer in dual 6 nm DH structure is inferior to the first single 6 nm DH, 
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unlikely in the case of 3 nm DH. Increasing the individual layer thickness further to 9 and 11 nm 

results in deteriorated layer quality and the 11 nm DH LED exhibits much lower EQE values. It 

must be mentioned that uniform electron and hole generation can be achieved in active region 

under resonant optical excitation, which prevents the efficiency degradation due to carrier 

overflow observed under electrical injection. Therefore, active regions exhibiting the highest IQE 

values may not necessarily display the highest EQE values due to possible carrier leakage. 

2.3. Multi double-heterostructure active regions in InGaN LEDs 

The degradation of structural quality with increasing thickness and widely separated 

electron and hole wavefunctions due to the polarization field are among those problems thicker 

DH active regions face with.79,77 Therefore, applying multi-thin DH layers (i.e., 3 nm) in the active 

regions could be a promising approach to overcome the efficiency reduction at high driving 

currents.  

The c-plane InGaN LED structures, emitting at ~425 nm, were grown on ~5 µm-thick n-

type GaN templates on sapphire substrate in a MOCVD system. An in situ SiNx nanonetwork80 

was employed to reduce dislocation density in the GaN templates down to mid-108 cm-3. The active 

regions contained one to eight 3 nm-thick In0.15Ga0.85N DH active layers separated by 3 nm 

In0.06Ga0.94N barriers. All the structures are incorporated a SEI layer for efficient thermalization of 

hot carriers prior to injection into the active region, and a 60-nm Si-doped (2×1018 cm-3) 

In0.01Ga0.99N underlying layer for improving the quality of overgrown layers. The SEI consists of 

two 5 nm InGaN layers with step-increased In compositions of 4% and 8%, inserted in the given 

order below the active region. The LED structures were completed with 100 nm-thick Mg-doped 

p-GaN layers having 6×1017 cm-3 hole density, as determined by Hall measurements on a separate 
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calibration sample. The EL efficiencies for the LED structures were measured under the same 

conditions were also compared.  

   To evaluate the optical quality of MDHs, excitation power dependent resonant PL 

measurements were performed with a frequency doubled Ti: Sapphire laser of excitation 

wavelength 385 nm ensuring photo-injection of carriers only into the LED active regions. Figure 

23 depicts PL efficiencies defined as the collected integrated PL intensity normalized to the 

incident laser power. The injected carrier density was estimated from incident PL power on the 

samples, but invoking different absorbed laser power for various samples from transmission and 

reflectance measurements. Notably, the saturated PL efficiencies nearly scaled with the number of 

DH layers up to 6, showing ~2, 4 and 6.5 fold increase for dual, quad and hex DHs compared to 

single DH under carrier density 1018 cm-3. Saturation of PL efficiency takes place for octa DH 

LED probably due to the enhanced non-radiative recombination at this active region thickness. 

Toward studying the impact of carrier overflow and other carrier transport features, we 

measured EL efficiencies on-wafer with light output collected primarily normal to the sample 

surface into an optical fiber (Figure 23). The integrated EL intensities vs. injection current densities 

are also exhibited in the inset of Figure 23(b). The collected integrated EL intensity, ELL , can be 

described by a power dependence on the injection current density J as m

ELL J , where the power 

index m reflects an effective rate of recombination processes within a given range of current 

densities.81 The superlinear growth of EL intensity (m ~ 1.4 for single, ~ 1.3 for dual and quad, 

and ~ 1.6 for hex, octa DHs) at low currents can be attributed to the impact of nonradiative 

recombination. Smaller m values suggest lower density of non-radiative recombination centers in 

single, dual/quad DHs compared to hex/octa DHs. The EL intensity changes nearly linearly at high 

current levels (see the inset); therefore EL efficiency tends to be constant. 
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As presented in Figure 23(b), the EL efficiency for the MDH structures with number of 

DH layers up to 4 increases at a fast rate with current injection and reaches its maximum at ~37 

A/cm2. The observed increase of peak EL efficiencies by 1.6 and 3.5 times that of single 3 nm DH 

is consistent with data of resonant PL efficiency shown in Figure 23(a). This significant 

improvement on EL efficiency by increasing the number of 3 nm DH layers (from 1 to 4) indicates 

that the amount of injected carriers captured by the active region is increased considerably, while 

further increase of layers introduces more nonradiative recombination centers. Although the 

inserted SEI layers in the LED structures can effectively reduce electron overflow,31 calculations 

of electron overflow by simply considering the total active region thicknesses of 3, 6 and 12 nm 

for single, dual, and quad 3 nm DH, respectively, could provide a viable explanation for the 

substantial EL efficiency discrepancies among the MDHs. Based on the hot electron model 

demonstrated in31, for a current density of ~500 A/cm2, the percentage ( p ) of electrons captured 

by and recombining in the active region for single, dual, and quad 3 nm DH LEDs are 48%, 60%, 

and 76%, respectively, which translates to 1, 1.39, and 2.1 fold increase in light output varying as 

m mJ p  (m ~ 0.92, 0.96, and 0.99 for single, dual and quad 3 nm DHs, respectively). However, 

experimental EL efficiency data suggests larger increment amount of light output for quad DHs 

(3.5 fold). This may hint to another mechanism: the formation of localized states by indium 

composition fluctuation prevents electrons and holes from recombination at threading dislocations 

and thereby improves the emission efficiency as well as light output power.82 The number of 

localized states increases with increasing number of DHs due to the more pronounced composition 

fluctuations,83 which could give rise more radiative centers for quad DHs compared to single 3 nm 

DH. The two joint effects can facilitate the enhancement of EL efficiency in dual and quad DHs. 

It should be here emphasized that employment of low and thin InGaN barriers is essential for 
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enhancing hole transport across the active region as we demonstrated in earlier sections. With 

continuously increasing the number of DHs, the EL efficiency of hex 3 nm DH LED did not scale 

to ~6 times that of the single 3 nm DH but is slightly larger than that from the quad 3 nm DH, 

which indicates that the injected holes are mostly consumed in the first four DHs. Further 

increasing the number of DH layers to 8 lowered the EQE  by ~20% compared to the hex 3 nm 

DH at a current density of 350 A/cm2, which is an indicative of the layer quality degradation 

confirmed by PL measurements conducted at 15 K and 295 K. 
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Figure 23: (a) PL and (b) EL efficiency of multi-3 nm DHs vs. injected carrier concentration at 

room temperature. The inset in (b) shows the integrated EL intensity dependence on 

current density.  
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It is worth to note that the EL efficiency for all the DH LEDs except the hex and octal 3 

nm DH show negligible degradation with increasing injection current density up to 500 A/cm2. 

Thus the increase of DH layer up to four confirms the optimized DHs solution. In addition, the 

quad 3 nm DH LED structure outperforms a typical MQW LED having the same total active layer 

thickness (6×2 nm well) and a slightly thinner single 9 nm-thick DH, which was reported to have 

1.25 and 3.8 times higher relative EL efficiency than that of 6 nm and 11 nm-thick DH LEDs, 

respectively, under current density ~ 300 A/cm2.77 Therefore, it is apparent that multi-3 nm DH 

layer design is a superior approach for increasing the active region volume and enhancement of 

LED external efficiency. 

A common procedures to evaluate the IQE involve excitation-dependent PL measurements 

and comparison of the peak PL efficiencies at low and room temperatures by assuming 100% IQE 

at low temperature.75,76 Excitation dependent (up to 1.1×1018 cm-3 injected carrier concentration) 

PL measurements at both 15 K and 295 K are shown in Figure 24. PL-IQE values deduced from 

the comparison of PL intensities at 15K and 300K are shown in the inset of Figure 24(b) indicating 

the highest value ~47% for quad 3 nm DHs. Increasing the number of DHs to 6 and 8 weakened 

the PL-IQE to ~40% and 16%, respectively. It should be noted here that the collected PL intensity 

is proportional to excitation intensity excI , i.e. m

PL excL I , thus  a linear dependence (m = 1) for all 

structures at 15 K indicate that the radiative recombination dominates, tRad<<tnonRad.  Coulomb 

screening of the quantum confined Stark effect (QCSE) will lead to increase of interband 

recombination rate 1/trad(N)  BN, where B is the bimolecular recombination coefficient and N is 

injected carrier density. The superlinear dependence ( 1.4 1.95m   ) for low excitation levels at 

room temperature is attributed to the dominant impact of nonradiative recombination (m = 2 in 

case of constant tnonRad). However, with increasing excitation, this dependence gradually 
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approaches the linear dependence (at 1018 cm-3, PL excI I ), thus indicating that carrier lifetime 

becomes dependent on N. Gradually decrease in slope between 1016 and 1018 cm-3 injection interval 

reveals strong competition between nonradiative and radiative processes and implies other 

mechanisms being responsible for lifetime decrease at moderate injections.  With gradual filling 

of deeply localized states, the delocalized carriers (especially holes, as the electron density in the 

wells is in mid-1017 cm-3) with increased mobility may easily reach defects. Therefore, density of 

available nonradiative recombination centers increases and leads to enhanced nonradiative rate 

with respect to lower injections.84 Similar hypothesis of density activated defect recombination 

was proposed recently.85 On the other hand, bimolecular recombination rate also increases due to 

screening of QCSE. The both recombination processes lead to decreasing trad with excitation; 

therefore their joint contributions result in gradually decreasing slope value m. 
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Figure 24: Integrated PL intensity as a function of injected carrier density at 15 K (dash-dot line 

indicates a slope of 1) (a) and 295 K (b); the inset of (b) displays the PL-IQE vs. the 

number of 3 nm DHs in the active region. 

As a summary, it is demonstrated that incorporating more DH layers (3 nm) separated by 

the thin and low InGaN barriers is a more efficient way to improve light output from InGaN LEDs. 

Excitation-dependent PL results indicated that PL efficiency is nearly proportional to the number 

of DH layers up to 6 at room temperature, suggesting similar quantum efficiency for each DH 

active layer. Similarly, EL efficiency is also shown to be proportional to the number of DH active 

layers up to 4 but hex DHs still shows ~20% higher EL efficiency than that of quad DHs at high 

injection. The proportional increment in EL is attributed to the decreased electron overflow in 

multi-DH LEDs (e.g., dual and quad 3 nm DHs) as well as higher density of localized states 
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compared to single 3 nm DH. The absent proportional EL improvement for hex DHs was ascribed 

to the limited hole transport in each DH layer. Therefore, among the efforts to enhance the quantum 

efficiency at elevated injection levels, MDH designs can constitute a viable approach to achieve 

high efficiency and high power LEDs.  

2.4. The effect of stair-case electron injectors on the electron overflow 

From the previous section (in Figure 24) we saw that, the quad 3 nm DH LED exhibited 

an IQE of ~47% while 37% for single 3 nm DH. However, the EL efficiency of quad 3 nm DH 

LED scaled to ~3.5 times higher than that of single 3 nm DH though they tend to be constant at 

high injection levels, which indicates that more electron overflow in the single 3 nm DH case 

attributed to the thinner active layer thickness and thereby electrons can be drifted across the active 

layer without recombining. One way that we can approve our assumption is to reduce electron 

overflow in the single 3 nm DH by increasing SEI thickness. However, we should note that 

material quality should not be degraded with increased SEI thickness. SEI thickness is carefully 

re-designed taking care of material quality in order to reduce the electron overflow. The c-plane 

InGaN LED structures, emitting at ~420 nm, were grown on ~3.7 µm-thick n-type GaN templates 

on sapphire in the MOCVD system. The structures feature various active regions such as variants 

of DHs, with two-step varied thickness SEI (two InGaN layers with step-increased Indium 

composition of 4% and 8%). The DH active regions contained single and  quad 3 nm In0.15Ga0.85N  

DH active regions separated by 3 nm In0.06Ga0.94N barriers benefical for hole transport. All the 

structures contained a 60-nm Si-doped (2×1018 cm-3) strain relief In0.01Ga0.99N underlying layer  

below the active region and the SEI for material quality improvement. The LED structures were 

completed with 100 nm-thick Mg-doped p-GaN layers having 6×1017 cm-3 hole density. For 

devices, square mesa patterns (400×400 μm2) were formed by conventional photolithography and 
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chlorine based Inductively Coupled Plasma (ICP) etching. Ti/Al/Ni/Au (30/100/40/50 nm) 

metallization annealed at 800 ºC for 60 seconds was used for n-type ohmic contacts, and 5 nm/5nm 

Ni/Au electrodes served as the semi-transparent p-contacts, with 40/50-nm Ni/Au electrodes 

deposited for p-contact pads.  

The quad-DH provided an optimum active region design for IQE without induced active 

region degradation as shown in previous sections. Thus, a quad and single 3 nm DH LEDs with 

SEI thickness varied from 5 nm to 30 nm per step were taken into investigations for the relationship 

of the SEI design and efficiency. A quad-DH with gradient-SEI (7-step gradually increase the 

Indium composition from 4% to 8% with the total thickness 40 nm) was also prepared. The 

excitation power dependent integrated PL intensity measured at 15 K was shown in Figure 25(a). 

The linear dependence of PL intensity on excitation power indicates that the radiative 

recombination dominates. Moreover, the PL intensities show nearly scaled with increasing number 

of DH layers from 1 to 4. Room temperature PL measurement shown in Figure 25(b) exhibited 

that with the increase of SEI thickness, the slope of PL efficiency dependence for the quad 3 nm 

DH at low injection decreases indicating that nonradiative recombination rate and Shockley-Read-

Hall (SRH) coefficient decrease. Increasing SEI thickness from 5 nm to 20 nm per step makes 

considerable improvement of PL intensity up to nearly 10 times improvement at low injection of 

0.001kW/cm2, while it saturated at 30+30 nm-thick SEI or gradient 40 nm-thick SEI. As the 

excitation density is increased, the slope gradually approaches to 1, indicating strong competition 

between nonradiative and radiative processes. At high excitation, radiative recombination 

dominates and the slope tends to be saturate at 1. It is clear that the thicker SEI (SEI thickness 

lower than the critical thickness) benefits DH quality since it reduces the possible misfit dislocation 

density and relaxation ratio of InGaN active region. Another possible mechanism for the efficiency 
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enhancement in the specific positions might be Indium-rich cluster. It is reported that the Indium 

clusters are free from defects, so that the electrons and holes would be trapped in them with high 

radiative recombination efficiency, which would result in four DHs emitting uniformly for quad 3 

nm DH.82,83 
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Figure 25: The integrated PL intensity (grey-sold lines indicates slope of 1) with varied SEI 

thickness as a function of excitation power density for LEDs (a) at 15 K and (b) at 295 

K.  

Carrier recombination process can be clearly observed through a current injection instead 

of optical excitation. The integrated EL intensities vs. current injection for varied SEI thickness 

are shown in Figure 26. The superlinear growth of EL intensities at low current densities is due to 
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the impact of nonradiative recombination. Smaller slope values suggest lower density of 

nonradiative recombination centers, and gradient 40 nm SEI shows best quality improvement for 

the active region. With thicker SEI up to 20+20 nm, the EL efficiency for the single 3 nm DH 

reaches its maximum at ~ 32 A/cm2, showing comparable peak EL efficiency with quad 3 nm DH 

with the discrepancy around 10%. This significant improvement on EL efficiency of 3 nm DH by 

increasing SEI thickness (from 5+5 nm to 20+20 nm) indicates that electrons are cooled 

sufficiently with thicker SEI and electrons overflow are greatly reduced so that most radiative 

recombination occurs even for a single 3 nm DH. Slight higher EL efficiency for quad 3 nm DH 

implies that a small amount of holes transport into the front DHs and recombine with electrons. It 

is noted that 3 nm DH still suffers more visible droop indicating a larger electron overflow through 

the relatively thinner active region at high injections.  
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Figure 26: The integrated EL efficiencies dependence on current density (grey-sold lines indicates 

slope of 1) for LEDs with varied SEI thickness.  

As a summary, it is shown that a good design of SEI may play an important role for the 

efficiency improvement of LEDs. The integrated PL intensity of LEDs employed with 20+20 nm 

SEI are nearly 10 times higher than that of 5+5 nm at low injection levels. Most importantly, the 

increased SEI thickness boosted the electron cooler potential and substantially reduced the electron 

overflow for the single 3 nm DH LED. 
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2.5. A theoretical treatment for injection dependent radiative recombination coefficient 

for single and multi active layer DH structures 

In the realm of Fermi’s Golden Rule, the spontaneous transition rate from a group of initial 

states i in the conduction band to a group of final states f in the valence band separated by a 

transition energy hω can be expressed as 

   

2

i f fi r

2π
T = H ρ hω F hω

h
    Equation 9 

where  r
ρ hω  is the reduced density of states, hω  is the transition energy,  c v

F=f 1-f  is the 

Fermi factor given in terms of the Fermi functions for the conduction (fc) and valence bands (fv), 

and 
fi
H  is the transition matrix element given by 

     * 3

fi f i f i
H = Ψ H Ψ = Ψ r H r Ψ r d r     Equation 10 

For a system with confinement along the z-direction (growth direction), the wave functions 

can be expressed using the envelope functions as      xy
Ψ r =ψ z r . If the physical interaction 

operator is independent of the variable z, the matrix element can be simplified to86 

   *0

fi f i

0

eA
H = M ψ z ψ z dz

2m

 
 
 

     Equation 11 

where A0 is magnitude of the sinusoidal local vector potential, e is the electron charge, m0 is the 

free electron mass, and M is the in-plane momentum matrix element. The spontaneous transition 

rate in Eq. 9 can then be written as 

       
2

2
2 *0

i f f i r

0

eA2π
T = M ψ z ψ z dz ρ hω F hω

h 2m


 
 
 

    Equation 12 

Eq. 12 indicates that a necessary condition for efficient recombination is the spatial overlap 

between the electron and hole wave functions (ψe and ψh) and the radiative recombination rate is 
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proportional to the squared overlap integral when electrons and holes are confined in the z-

direction. 

For quantum-confined structures, it has been suggested that low-dimensional equivalents 

of the bimolecular radiative recombination B coefficient should be introduced to eliminate the 

artificial dependence of the radiative recombination current on size, such as the active region width 

in two-dimensional (2D) systems.86 For InGaN quantum wells with confinement along the z-

direction, defining the spontaneous transition rate as spont 2D 2D 2D
T =B n p  , where n2D and p2D are the 

2D electron and hole densities, respectively, the 2D B coefficient can be expressed in terms of the 

momentum matrix element in Equation 1286 

 
     

22
2

2 *

2D h e r3 * *

0 B e h 0 0

hω4πnh e
B = × M ψ z ψ z dz ρ hω

εc k T m m 2m

 
 
 

  Equation 13 

where n is the refractive index, 0
ε  is the permittivity of free space, c is the speed of light, hω  is 

photon energy, kBT is the thermal energy, and 
*

e
m  and 

*

h
m  are the electron and hole effective 

masses (obtained using linear interpolation from the binary values for a given In content), 

respectively. The momentum matrix element M can be obtained from the in-plane interband 

transition matrix element (for polarization within the plane), cv
P =2M  ,87 which has been 

determined from the absorption measurements for binaries InN and GaN.88 Using a value of Pcv = 

9.6x10-20 g cm/s obtained from linear interpolation for the required composition, the B2D 

coefficient was calculated to be -4 2 -1
1.8×10  cm s  for an In0.15Ga0.85N active region assuming full 

overlap of electron and hole wave functions. In order to make the transition from the 2D to the 3D 

case to be able to employ the conventional 3D rate equation, the 2D B coefficient should be 
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multiplied by the active region thickness, z
L  . To test this approach and the validity of the 2D 

approximation, the 3D limit for the B coefficient for In0.15Ga0.85N was also calculated from89 

 

3/2
2 2

2

3D 1 22 3 2

0 B x y z

e n 2πh 1
B = ×M × hω

m c h k T m m m

 
 
 

                Equation 14 

where    x,y,z e x,y,z h x,y,z
m = m +m  . The 3D B coefficient calculated using Equation 14 is 5x10-11 

cm3s-1 for In0.15Ga0.85N. This value is smaller than that obtained using B2DLz even for the thinnest 

active region with Lz=3nm. Therefore, it can be assumed that all the LED structures exhibit 3D 

behavior but with an electric field along the growth direction reducing the spatial overlap of charge 

carriers in the active region. Consequently, the injection dependent overlap integral of the electron 

and hole wave functions should be incorporated into the calculation of the 3D B coefficients using 

the upper limit for full overlap, 5x10-11 cm3/s 

     

2

-11 3 -1 *

h e

0

B= 5×10  cm s × ψ z ψ z dz



       Equation 15 

The effects of the active region design and the resulting polarization-induced field on the 

overlap integral and the associated spontaneous recombination rates were investigated at different 

injection levels. Figure 27(a) presents the simulated bimolecular recombination coefficients, B, 

which are obtained from the transition matrix element and thus the simulated squared overlap 

integrals of the electron and hole wave functions within the DH active regions.90,89 It should be 

mentioned that the calculated B coefficients may vary slightly based on the material parameters 

used for a given structure; however, this would not affect the overall conclusions. The calculated 

B coefficients are also plotted in Figure 27(b) as a function of supplied electrical power per unit 

cross-sectional area, which is the product of injection current density and applied voltage used in 
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the simulations. It is apparent from Figure 27(a) that the B coefficient, instead of being constant 

as assumed in Ref. 73, depends on the injection current density for a given design, increasing with 

injection due to screening of the internal fields by free carriers. 91  Naturally, the B coefficient tends 

to saturate at high injection levels as the nearly flat band condition is approached.90 It is also 

evident that thinner active layers have relatively larger spatial overlap of the electron and hole 

wave functions. The single 3 nm DH LED shows 30% higher squared overlap integral value 

compared to the single 6 nm DH LED at a current density of ~300 A/cm2. The lower B coefficients 

in wider active regions are attributed to the increased spatial separation of electrons and holes by 

the larger contribution of the polarization fields. Moreover, while the dual and the single DH 

structures exhibit comparable overlap integrals at low injection levels (below 100 A/cm2), the dual 

DH structures surpass their single DH counterparts as the injection current increases. For example, 

the dual 3 nm DH LEDs show 15% higher EQEs compared to the single 3 nm DH LEDs at a 

current density of 500 A/cm2. Furthermore, the rate of increase for the B coefficient vs. the current 

density at low injection levels is reduced with increasing active layer thickness, which is consistent 

with the experimental IQE and EQE data shown in Figure 18(a) and Figure 19 in earlier sections, 

respectively. 
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Figure 27: Calculated B coefficients using squared overlap integrals of electron and hole wave 

functions (proportional to radiative recombination rate) within the active region as a 

function of (a) current density calculated using SILVACO ATLAS simulations and (b) 

injection electrical power density (the product of applied voltages and current 

densities).  

2.6. Recombination dynamics of InGaN active regions using time-resolved 

photoluminescence spectroscopy 

Efficiency degradation at high optical injections still remains an object of study. Moreover, 

carrier recombination dynamics studies in InGaN heterostructures allow insightful information 

about the recombination processes. Time-resolved photoluminescence (TRPL) is a powerful tool 

to study materials because the temporal information combined with spectral data can help 

determine the carrier dynamics involved in optical processes following the sample of interest is 
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illuminated by a short pulse of light. The short pulse light generates electron-hole pairs that 

recombine and emit light.  The emitted light is composed of set transition energies. As a result, 

measuring the optical spectrum as a function of time provides the transition energies and their 

lifetimes. It has mostly been used for monitoring radiative recombination pathways and evaluation 

of internal quantum efficiency in semiconductor heterostructures.92,93,94 It provides easy access to 

spectral features of emission as the PL decay times vary with injection and temperature because of 

simultaneous overlapping of different recombination mechanisms (exciton and free carrier, 

radiative and nonradiative). It is necessary to use a device known as a “Streak camera” since the 

decay times are on the order of picoseconds or nanoseconds, and the intensity of light emitted can 

be very weak, which a conventional spectrum analyzer cannot provide the resolution required. The 

detail about the working principle of a Streak camera can be found in Appendix B. The setup used 

in the temperature or excitation dependent TRPL experiments in the thesis is illustrated in Figure 

28. To perform TRPL experiments, the samples under investigation are mounted on a cold finger 

in the vacuum cell of a closed cycle helium cryostat (operating from 15 K to 350 K), and are 

illuminated with very fast (150 femtosecond) laser pulses. To obtain the light incident on the 

sample, first of all, a 532 nm green laser pumps the tunable Ti:Sapphire laser, which can be tuned 

between 700 and 1000 nm. An ultra-short light, 150 fs, with 80 MHz from Ti:sapphire laser is 

generated with passive mode locking unit in the laser with nearly 1.4 W light output. Then, the 

light pass through the doubler/tripler unit, which multiplies the light frequency by either two or 

three subjected to the nonlinear crystal and nonlinear mixing. The resulting light after 

doubler/tripler becomes UV or deep UV that may excite GaN and InGaN-based heterostructures. 

After illuminating the sample with the laser, the optical response is collected by lenses and sent to 

the spectrograph using an optical fiber, which is connected directly to the input the streak camera. 

http://www.rp-photonics.com/passive_mode_locking.html
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Photoluminescence measurements are performed using the same optical setup by simply changing 

the optical beam path replacing the Streak camera with liquid nitrogen cooled Charged-coupled 

device (CCD) camera. This is illustrated in Figure 28. 

 
Figure 28: Time-resolved photoluminescence setup used in the temperature or excitation 

dependent experiments. 

2.6.1. Recombination dynamics in an InGaN epilayer 

Up to now, studies on InGaN/GaN light-emitting diode structures have been focused 

predominantly on understanding of “efficiency droop” phenomenon (at both optical and electrical 

injections) which has been attributed to impact of Auger recombination, carrier delocalization, 

electron leakage out of active region, and carrier asymmetry.20,95 The two former ones may take 

place under optical injection, while the two latter effects are more important for electrical injection. 

Most of the studies are focused on the active region with single and multiple InGaN quantum wells 
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with thicknesses less or equal to 2 nm. It is believed that the carrier recombination dynamics for 

bulk-like InGaN layer rather 2 nm, two-dimensional, InGaN quantum wells may give insightful 

information about the processes governed in InGaN heterostructures in addition to help 

understanding of the efficiency droop.  

A 50-nm thick InGaN layer is studied using linear and nonlinear optical techniques to 

investigate excitation-dependent carrier recombination dynamics. Time-integrated and time-

resolved photoluminescence (TRPL) spectroscopy techniques allowed studying PL efficiency as 

well as PL decay kinetics at various injected carrier densities. By exploring time-resolved 

differential transmission (DT) spectra, the narrow spectral range accessible by PL was extended 

well above the lowest band tail states of InGaN alloy. The 50-nm thick In0.13Ga0.87N epilayer was 

grown on a few-micrometer thick GaN-on-sapphire template by using Aixtron 3x2 Close-Coupled 

Showerhead reactor at Aixtron in Aachen, Germany. A substrate temperature of 732 °C and a 

chamber pressure of 200 mbar were used for InGaN growth. An In content of 13% was found in 

the epilayer based on XRD analysis. The strain state of the InGaN layer was taken into 

consideration during the simulation of XRD ω-2θ scan in order to achieve reliable In content. The 

AFM measurements revealed a surface morphology dominated by terraces with a roughness of 0.8 

nm and V-pits with density of about
8 22.5 10  cm . The latter value for InGaN is comparable with 

that in GaN layers, suggesting that not many dislocations are formed at the InGaN/GaN interface 

which propagate through the InGaN layer and manifest themselves as V-pits on the surface. 

Photoluminescence spectroscopy was used with 150 fs pulses at 375 nm wavelength (the 

2nd harmonic of an 80 MHz repetition rate Ti-Sapphire laser) for selective excitation of the InGaN 

layer. PL spectra and transients were measured for injected carrier densities in the range of 

16 310  cm  to 18 310  cm  and data collected using a spectrometer and a streak camera. Another setup 
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with 20 ps pulse duration at 266 nm (model PL2143, Ekspla) was used to reach higher injections, 

e.g., up to
19 35 10  cm  at Vilnius University in Lithuania. In this setup, TRPL measurements with 

25 ps temporal resolution were performed using a Kerr shutter with toluene. The experimental 

setup for time-resolved DT is based on a Ti:Sapphire femtosecond amplifier (SuperSpitfire, 

Spectra Physics) delivering 800 nm pulses of 120 fs duration at 1 kHz repetition rate. The DT 

technique helps to observe evolution of DT spectra in 380–480 nm range with high temporal 

resolution.  

Room-temperature PL spectra were measured using resonant excitation at 375 nm (150 fs 

pulses, I0 ~ 10 μJ/cm2) and at 266 nm (25 ps pulses, I0 ~ 100 μJ/cm2). The PL line was positioned 

at 425 nm. PL decay time found to be increasing with increasing injection (Figure 29) observed 

from relatively weak excitation (in the 16 310  cm  to 
18 310  cm

range), indicating a gradual saturation 

of nonradiative recombination centers. This is also supported by excitation density dependent PL 

measurements where a change of the power index, β, of PL intensity dependence on excitation 

density, 
0PLI I   is measured. As can be seen in Figure 30, β changes from 2.7 to 2 at a carrier 

density of 
17 310  cm

at room temperature. The nonradiative carrier lifetime become constant and 

PL intensity increases quadratically with injection (β=2) after this point where the trapping centers 

saturates. The latter β value is indicative of the fact that the injected electron and hole density Nep 

is larger than the background electron concentration n0, thus Ne = Np > n0 and PL intensity increase 

follows the relationship   2

0 0PL e pI n N N I   . The index β changes from ~1.5 to 1 at 10 K (see 

Figure 30) at the same carrier density as for room temperature ( 17 310  cm ). Two factors support the 

argument that radiative recombination is dominant at this temperature:  

(i) The radiative recombination coefficient B essentially increases at low temperatures, 
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 3 2B T  96 and  

(ii) Exciton emission dominates due to relatively high exciton binding energy, leading 

to PL ex exI B n  (Ref. 95) and thus providing the typical β=1 slope value. 
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Figure 29: PL decay kinetics measured using femtosecond pulses at 375 nm wavelength and 

various excitation densities I0, corresponding to injected carrier densities from
16 35 10  cm to

18 310  cm
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Figure 30: Dependence of time-integrated PL intensity on excitation energy density using 

femtosecond pulses at 375 nm. The curves can be approximated by a power-function 

0PLI I  with slope values β, as indicated on the plot. 

Spectrally and temporally resolved DT measurements were performed in a wide spectral 

range (390 to 440 nm) and excitation ranges (4 to 520 μJ/cm2) in order to explore the full spectral 

range and determine spectrally dependent relaxation rates. Figure 31 represents DT spectra 

measured at 10 ps and 1 ns right after the photo-excitation are presented. PL spectra measured at 

20 μJ/cm2 at 375 nm excitation and at 100 μJ/cm2 at 266 nm excitation are shown in Figure 31 for 

comparison. As can be seen from Figure 31, the DT spectra are blue shifted with respect to those 
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obtained by PL, which is ascribed to relatively larger density of higher energy states contributing 

to the absorption bleaching. The FWHM of DT spectra is rather narrow (~60 meV), but it broadens 

towards the blue energy wing due to temporary filling of extended states at higher excitations. The 

spectral broadening is followed by faster relaxation rates, and the DT spectra become symmetric 

after 1 ns (Figure 31).  

 
Figure 31: DT spectra at various excitation energy densities I0 (here I0=4 μJ/cm2). The spectra are 

taken at 10 ps (a) and 1 ns (b) after photo-excitation by 200 fs duration laser pulses at 

375 nm. For comparison, PL spectra at 20 μJ/cm2 (375 nm excitation) and 100 μJ/cm2 

(266 nm excitation) are shown in (a). 
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The decay times of DT spectral components as well as their injection dependences were 

determined from spectrally-resolved DT measurements in order to foster understanding of carrier 

recombination processes. Figure 32 provides spectrally resolved DT kinetics for various excitation 

energy densities (in the range from 10 to 300 μJ/cm2) for two spectral positions, 425 nm (central 

line of PL peak) and 414 nm (DT blue wing). Fast DT decays are observed at low injection levels 

in the spectral range of PL, but the decay times get slower and finally saturates with increasing 

excitation (Figure 32 b)), exhibiting 1.5 ns decay time, similarly to PL decay times, see Figure 

29. The observed long DT decay at the blue wing (Figure 32 a)) does not support the common 

tendency of increasing PL decay rate at the high energy wing. Moreover, the DT decay time at the 

blue wing decreases with increasing the injection from 30 μJ/cm2 to 100 μJ/cm2. Figure 32(c) 

summarizes the variation of carrier lifetimes in the spectral range from the PL emission band up 

to absorption edge and their dependence on injected carrier density. It is found that the ~415 nm 

spectral interval (i.e., ~70 meV above the PL peak) is more favorable for carrier accumulation at 

low injections. At low injections, this wing acts as a reservoir for the injected carriers transferred 

to the lower energy states. At higher injections, the fast recombination rate in this wing consumes 

the carriers and diminishes their delivery to the PL band most likely due to bandgap 

renormalization.  
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Figure 32: Spectrally resolved DT kinetics (a), (b) for two spectral lines which correspond to blue 

wing of DT at 414nm and PL emission at 425 nm at various excitation energy densities 

I0=10 μJ/cm2 (1), 33 μJ/cm2 (2), 100 μJ/cm2 (3), and 300 μJ/cm2 (4). In (c), spectral 

distribution of the initial DT decay time is plotted for various I0. 
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Spectral and spatial carrier dynamics are investigated using time-resolved techniques and 

novel features in carrier recombination dynamics are revealed in an InGaN epilayer. Increase of 

carrier recombination rate in the spectral interval above the PL emission band (415–420 nm) was 

attributed to bandgap normalization effect in extended states. It is found that localized states have 

a strong excitation-dependent impact on radiative emission, resulting in lower PL efficiency as the 

In composition increases. Similar studies of PL efficiency together with spatial, spectral, and 

temporal carrier dynamics in InGaN quantum wells may provide deeper understanding of 

processes leading to saturation of internal quantum efficiency of LEDs. 

2.6.2. Double heterostructure active regions 

Excitation density dependent TRPL measurements were performed in order to better 

understand the recombination dynamics for the DH active regions. Resonant excitation (385 nm) 

from a frequency-doubled Ti:Sapphire laser was used in this experiment. Figure 33 shows TRPL 

data for the 3 nm, dual 3 nm, 6 nm and dual 6 nm DH active regions at different excitation power 

densities: 0.08, 0.20, and1.25 kW/cm2. The other DH structures (9 nm and 11 nm DH not shown) 

exhibited similar behavior with respect to excitation intensity. In literature, the analysis of PL 

transients for a variety of InGaN heterostructures, single quantum wells92, multiple quantum 

wells93 and double heterostructures94, have been performed using multiple97 or stretched 

exponential98 decay functions representing different radiative and nonradiative relaxation 

pathways. In a recent study, H. Kim et al99 proposed a method by which radiative and nonradiative 

decay times and IQE values can be calculated from the TRPL data. The transients were fitted using 

biexponential decay function
-t / τ -t / τi fA e + A e

1 2
, where the fast and slow decay components are 

represented using initial (
i
τ ) and final (

f
τ ) decay times, respectively. Based on the carrier rate 

equation,28 radiative and nonradiative decay times can be approximately estimated using 
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R i f f i2 / ( )      and NR f2  , respectively. The initial (fast) decay of the TRPL spectrum 

is influenced by both radiative and nonradiative recombination rates, whereas the final (slow) 

decay is only dependent on nonradiative recombination. 
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Figure 33: TRPL results for 3 nm, dual 3 nm, 6 nm and dual 6 nm DH LEDs for different excitation 

power densities, 0.08, 0.20 kW/cm2 and 1.25 kW/cm2. TRPL data are fitted with 

biexponential decay functions 
-t / τ -t / τi fA e + A e

1 2
to find initial i   and final 

f  decay 

times, which are also indicated in the figures. 

The radiative and nonradiative decay times obtained from the biexponential fits for the DH 
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structures are listed in Table 3. As can be seen in Figure 33, the initial decay time has a strong 

dependence on optical excitation power density, decreasing with increasing power, while the final 

decay time remains nearly constant for the range of excitation power densities used. The decrease 

of radiative recombination time, R, with increasing excitation power density is attributed to 

increased electron and hole overlap resulting in faster radiative recombination, which is consistent 

with earlier observations in single InGaN quantum wells92. Furthermore, the final decay time is 

independent of excitation intensity as the nonradiative recombination centers are fully saturated at 

high excitation levels. In addition, it is found that the contribution of radiative recombination to 

the total carrier decay is larger at higher excitation power densities as can be seen from the 

increasing amplitude fractions (A1/A2) of the initial and final decay components with increasing 

excitation density (Table 2). The single and dual 3 nm DH structures exhibit faster radiative decay 

times compared to the other DH structures due to better electron and hole wavefunction overlap, 

which is consistent with the IQE measurements (see Figure 18). Also the initial PL decays at lowest 

excitation density for 3 nm and dual 3 nm DHs are more apparent compared to those of other DH 

structures even at low excitation densities, indicating higher radiative efficiency (Figure 33).  

The IQE values calculated from the measured radiative and nonradiative decay constants 

using  int NR NR Rη = τ τ - τ   (Ref 28) are also listed in Table 3. Although these IQE values differ 

from those shown in Figure 27 obtained using optical excitation intensity dependent PL 

measurements (values at the same carrier densities are compared in Table 3), they show the same 

tendency with increasing DH thickness. The differences between the two sets of IQE values are 

most likely due to the inaccuracy of the materials parameters used, particularly the absolute values 

of the B coefficients, which neglect any strain relaxation and material degradation with increasing 

InGaN thickness, and the corresponding carrier densities estimated. To obtain more accurate 
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quantitative analysis for IQE temperature dependent PL measurements will be done and the results 

will be compared. However, here the trends observed with increasing DH active layer thickness 

and increased injection are consistent. In overall, the TRPL data also point out the higher efficiency 

in thinner (3 nm) DH LEDs, and suggest that increasing the number of 3 nm active regions 

separated by thin and low barriers would help enhance the EQE while maintaining high IQE. 

Table 3: The radiative and nonradiative decay times and amplitude ratios extracted from the fitted 

biexponential decay parameters and IQE values for the 3 nm, dual 3 nm, 6 nm, dual 6 nm 

and 11 nm DH LED structures. 

DH  

LED 
R  

[ns] 

NR  

[ns] 

1

2

A

A
 

IQE 

(from Figure 27) 

IQE (from TRPL 

using the approach 

in Ref 28) 

0.08 kW/cm2 excitation power density 

3 nm 1.77 6.26 1.84 0.35 0.78 

Dual 3 nm 2.81 6.48 0.70 0.27 0.70 

6 nm 5.16 7.50 0.22 0.11 0.59 

Dual 6 nm - 6.32 - 0.07 - 

11 nm - 5.86 - 0.05 - 

0.20 kW/cm2 excitation power density 

3 nm 1.80 6.26 1.83 0.35 0.78 

Dual 3 nm 2.23 6.48 2.09 0.30 0.74 

6 nm 3.28 7.50 1.57 0.17 0.70 

Dual 6 nm 2.76 6.32 0.88 0.12 0.70 

11 nm 3.32 5.86 1.37 0.10 0.64 

1.25 kW/cm2 excitation power density 

3 nm 1.45 6.26 3.82 0.36 0.81 

Dual 3 nm 1.56 6.48 5.04 0.34 0.81 

6 nm 1.40 7.50 9.68 0.26 0.84 

Dual 6 nm 1.86 6.32 3.03 0.22 0.77 

11 nm 1.67 5.86 9.71 0.21 0.78 
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Chapter 3. Optical investigations of GaN-based blue emitting microcavity 

structures 

Microcavities possess low lasing thresholds due to their small cavity lengths which are in 

the order of the wavelength of confined light.100 In the case of vertical cavity surface emitting laser 

(VCSEL), the spontaneous emission rate can be controlled and the lasing threshold can be reduced 

owing to the large optical gain arising from the large joint density of states available in GaN. 

However, realization of GaN-based blue vertical cavities with high quality InGaN active regions 

faces major challenges. Integration of active region with the cavity, highly reflective large stop-

band bottom distributed Bragg reflector fabrication, current confinement, and cumbersome 

substrate removal are some of those challenges. Beyond the standard VCSEL, microcavities may 

lead to a mixed quasi-particle, the polariton, which is half-light and half-matter and possesses 

unusual dispersion relations. Its genesis lies in the interaction between photons (light) and excitons 

(matter), which pave the way to polariton lasers. Contrary to the conventional lasers, polariton 

lasers have no threshold condition (ideally thresholdless) linked to the population inversion. In 

order to obtain polariton lasing at room temperature it requires a material which excitons actually 

survive at that temperature. Having 25 meV exciton binding energy, GaN is one of the ideal 

candidates for achieving low threshold polariton lasing at room temperature.  

3.1. Optical investigations on hybrid vertical cavities with bottom semiconductor and 

top dielectric distributed Bragg reflectors (DBRs) 

In regard to active region quality and quantum efficiency, the growth of AlN/GaN DBRs 

on free-standing GaN may help with reduction of defects and enhance the quality of the vertical 

cavities in spite of their small stop band widths (~20nm). A vertical cavity structure was grown 
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using a free-standing GaN substrate utilizing AlN/GaN DBRs. The cavity structure consisted of 

six periods In0.15GaN MQWs with low In0.06GaN barriers and sandwiched between 29.5 pair 

bottom semiconductor crack-free AlN/GaN and top 13.5 pair SiO2/SiNx distributed Bragg 

reflectors (DBRs). The vertical cavity structure is schematically depicted in Figure 34(a). Nitride 

and dielectric DBR layers were grown by MOCVD and PECVD, respectively. In order to achieve 

crack-free AlN/GaN DBRs favorable for high reflectivity, AlN/GaN superlattice insertion layers 

were used within the DBRs replacing the GaN quarter-wavelength thick layer every 5 DBR 

pairs.101,102 The cavity length of the this structure is designed to be 5λ centered at 400 nm. The 

vertical cavity structure was characterized using reflectivity measurements, using a Xe lamp 

source, and micro photoluminescence (micro-PL) spectroscopy. For low excitation micro-PL, 

sample was excited normal to the surface from the top DBR side using a HeCd laser (325 nm 

wavelength) and a long working distance x50 microobjective. The excited area was in the order of 

~2 m in diameter. The emission was also collected normal to the surface from the top DBR side. 
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Figure 34: Basic schematics of vertical cavity structures: (a) 5λ cavity with 6x2 nm 

In0.01Ga0.99N/In0.15Ga0.85N MQW grown on bottom 29 pairs AlN/GaN DBRs grown 

on 400μm thick free-standing GaN (b) 2.5λ cavity with two 6x3 nm 

In0.06Ga0.94N/In0.15Ga0.85N DH separated by 132nm (1λ) In0.01Ga0.99N underlying 

layer grown on bottom 29 pairs AlN/GaN DBRs grown on 2 micron GaN template 

on sapphire substrate. 

Figure 35(a) shows the reflectivity and PL spectra for the cavity grown on free-standing 

GaN. The reflectivity of the crack-free bottom AlN/GaN DBR reached to nearly 98% with stop-

band width of ~18 nm, while 99% reflectivity is achieved for the top SiO2/SiNx DBR with a larger 

stop-band width of ~90 nm compared to bottom semiconductor DBR. The full-cavity reflectivity 

spectrum for the cavity shows a clear dip corresponding to the cavity mode at ~400 nm. A cavity 

Q-factor as high as 300 is deduced from the PL spectrum under low density 325 nm excitation 

[Figure 35(b)]. Q-factors varied across the wafer due most likely to layer thickness variation and 

slightly inaccurate positioning of the active region within the cavity. In order to achieve higher Q-
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factors, further optimization of the active region quality and positioning in addition to improved 

interface and thickness control is necessary.  
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Figure 35: (a) Reflectivity and PL spectra for the vertical cavity structure on freestanding GaN (b) 

The spectrum corresponds to the highest Q-factor measured.  

a) 
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Figure 36: Schematic of angle-resolved photoluminescence setup. 

 

Angle-resolved photoluminescence and cathodoluminescence measurements, which help 

to trace the polariton modes in microcavities, were conducted at room and low temperature (5.8 

K), respectively, for the cavity grown on free-standing GaN. A basic schematic for the angle 

resolved PL measurement is shown in Figure 36.The PL spectra at RT were measured from 0° to 

40°, as shown in Figure 37(a). It is clear that the lower polariton mode approaches to the uncoupled 

exciton mode, and the upper polariton mode is dispersed from the exciton mode to the cavity mode. 

The experimental cavity polariton dispersion curve shown in Figure 37(b) exhibits an anticrossing 

behavior between the cavity mode and exciton mode when the cavity mode energy crosses the 

exciton mode. Although the upper polariton branch was weakly resolved in the angle-resolved PL 

spectra, the anticrossing behavior confirms the strong coupling regime in the microcavity. A 

vacuum Rabi splitting of 45 meV is estimated at room temperature with a large negative detuning 
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-70 meV [Figure 39]. Since the stop bandwidth of the bottom DBR is narrow due to relatively low 

refractive index contrast in semiconductor layers, the upper polariton features are not clear at large 

angles. However, the strong coupling for this cavity is evidenced at low temperature angle-

resolved CL measurement performed by colleagues at University of Magdeburg, and Rabi splitting 

is found to be 75 meV at 5.8 K (Figure 38). The detuning is found to be larger than room 

temperature value, -110 meV [Figure 39].Considering the Rabi splitting, one may expect that the 

oscillator strength of the excitons is larger at low temperatures compared to room temperature 

leading to stronger exciton photon coupling. This was proved for a (Zn,Mg)(S,Se) microcavity 

with three (Zn,Cd)Se quantum wells having Rabi-splitting of 17.5 meV at 70 K and 10 meV at 

175 K by Kelkar et al.103 Also, Tsintzos et al104 experimentally and theoretically showed that the 

Rabi splitting decreased with temperature while increasing the number of QWs in the active layer 

in a GaAs-based microcavity. The largest Rabi splitting energy reported in literature for a GaN-

based vertical cavity was 56 meV observed at room temperature from a lattice-matched 3λ 

GaN/AlGaN QWs cavity system64. The Rabi splitting energy of 45 meV at room temperature is 

quite similar and 75 meV at low temperature for the InGaN microcavity is higher compared to 

those reported in the literature, conforming strong exciton photon coupling. 



 
 

79 
 

0 10 20 30 40

3.03

3.06

3.09

3.12

3.15

3.0 3.1 3.2

 

 P
h

o
to

n
 E

n
er

g
y

 (
eV

)

 

40
o

Angle (degree)

0
oLPB

4
5

 m
e

V

UPB

P
h
o
to

lu
m

in
es

ce
n

ce
 (

a.
u

.)

Photon Energy (eV)
 

Figure 37: (a) Angle-resolved PL spectra at RT in the range of 0°–40° for the cavity on free-

standing GaN (b) Experimental cavity polariton dispersion curve. 
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Figure 38: (a) Angle-resolved CL spectra at 5.8K in the range of -14° to 51° for the cavity grown 

on free-standing GaN. (b) Experimental cavity polariton dispersion curve.  
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Figure 39: Calculated fitfing results for polariton dispersion curves at (a) room and (b) low 

temperatures. In plane wave vector was obtained using the relation sink
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As stated before, better quality active regions are a requirement to increase the exciton 

photon coupling in microcavities. It is already shown that use of multiple DH active regions is a 

superior approach for quantum efficiency enhancement compared to MQW or thicker single DH 

for active regions due to available larger number of states.35 A cavity structure with multi 3 nm 

DH active region is produced and tested under optical injection, schematically illustrated in Figure 

34(b). The structure was designed to have an active region of 2 six periods of 3 nm In0.15GaN DH 

(with high In0.01GaN barrier) separated by 170 nm (λ) In0.01GaN underlying layer with the effective 

cavity length 2.5λ at 420 nm. The active region had AlGaN blocking layer and was sandwiched 

between 29 pair crack-free bottom AlN/GaN DBRs and highly reflective 13.5 pair top SiO2/SiNx 

DBRs. The bottom AlN/GaN DBRs for the VCSEL was grown on 2 µm GaN template on sapphire 

substrate. Reflectivity and PL measurements were performed for the structure in a micro-PL setup. 

The excitation source for the PL was kept at resonant excitation with the active region, 380nm. 

The sense of using 2 six periods of 3 nm In0.15GaN DH separated by λ underlying layer was to feed 

to cavity with more photons to obtain better cavity mode. 

Figure 40(a) shows the reflectivity spectrum for the full vertical cavity (black), reflectivity 

spectrum for the bottom AlN/GaN DBR (red) and photoluminescence spectrum (blue) emitting 

between top dielectric and bottom semiconductor DBR layers. The reflectivity of the bottom 

AlN/GaN DBR is approaching to 97-98% with 10-18 nm stop band centered at the wavelength of 

435 nm. The reflectivity of the full cavity (completed with a top 13.5 pair SiO2/SiNx DBR) peaked 

at nearly 99.5% with a stop-band width of ~90 nm. Figure 40(b) shows the cavity mode peak 

having a high Q-factor of 1300.  However, not all the regions on this sample showed this high Q-

factor. The reason was the inhomogeneous thickness variation of the cavity along the wafer. This 

nonuniform behavior led to inaccurate positioning of the active region within the cavity decreasing 
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the quality factor. As can be seen in Figure 40, the cavity with the multi DH cavity displays higher 

Q-factor compared to earlier test cavity grown on free standing GaN with MQW active region. It 

is apparent that better active region quality has a big impact on the substantial increase in Q-factors 

(from 300 to 1300) since both vertical cavities have same pairs of bottom semiconductor and top 

dielectric DBR with similar reflectivities. In order to achieve higher Q-factors, further optimization 

efforts are needed to be focused on increasing the active region quality and positioning the 

emission between the top and bottom DBR stop bands by precisely controlling the growth 

parameters, achieving of sharper cavity interfaces and better thickness control.  
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Figure 40: (a) The reflectivity spectrum (black) for the full vertical cavity with DH active region, 

reflectivity spectrum for the bottom AlN/GaN DBR (red) and photoluminescence 

spectrum (blue). (b) The spectrum corresponds to the highest Q factor measured. 
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In order to gain insight into the distribution of active region emission from the full cavity 

with DH active region, room temperature NSOM was performed (Figure 41). For NSOM 

measurements, HeCd laser (325 nm wavelength) excitation through a Cr-Al coated optical fiber 

probe with a 100 nm aperture was used.105  A low-pass filter (>400 nm) was used to measure the 

band-edge emission. The PL from the sample surface was collected with a long working distance 

50X UV-visible microscope objective and detected by a photomultiplier tube. Figure 41(a) 

represents the AFM image of the full cavity (13.5 pair top dielectric DBR surface) for the scan 

area 50x50 µm2 while Figure 41(b) represents the corresponding active region emission for the 

scanned area. The PL emission from the microcavity is found to be nonuniform over the scanned 

region. The reason might be different structural quality or differences in the cavity length in this 

region.  

 
Figure 41: Room temperature NSOM results for the DH active region microcavity structure with 

bottom semiconductor and top dielectric DBRs (a) height image (b) PL intensity 

mapping. 

3.2. Optimization and characterization of a vertical cavity with full dielectric distributed 

Bragg reflectors (DBRs) 

Epitaxial lateral overgrowth (ELO) of GaN using dielectric DBR masks as the bottom 

reflector is very helpful to increase the quality of active regions in vertical cavity structures. The 
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“wing region” (overgrown GaN) would have much lower density of dislocations compared with 

the window region. In terms of efficiency as well as device application, it is critical to maximize 

the lateral versus vertical growth ratio and achieve a flat surface and wide enough ELO-GaN wing 

region. To achieve the goal, NH3 flow modulation technique in MOCVD growth was employed to 

enhance the lateral overgrowth, since it could improve the migration of Ga atoms on the (0001) 

plane of ELO-GaN surface. In this method, interruption of NH3 flow was inserted for a given time 

(15, 25, 30 s were test) during growth for every period (20 s) of normal GaN growth, while 

trimethylgallium (TMGa) flow rate was kept constant. This growth was performed using a growth 

mask with varied width such as 2, 3 and 4 μm-wide stripe-shaped windows separated by 32, 33 

and 34 μm, respectively, and aligned along the GaN <1100 > direction. The growth parameters 

such as periods of ammonia on/off time and window size for ELO stripe were optimized to get 

improvement for L/V growth ratio for ELO-GaN. The L/V ratio is successfully improved for the 

ELO-GaN from 1 to around 4 after 1.5 hour growth as can be seen from the cross-sectional SEM 

images in Figure 42.  

 

Figure 42: Cross sectional SEM images of ELO GaN samples grown with (a) ammonia on/off 

time 20 s/15 s with TMGa: 20 sccm and (b) ammonia on/off time 20 s/25 s with 

TMGa: 12 sccm.  

(a) (b) 
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After ELO growth, ICP etching was needed to reduce the ELO thickness in order to obtain 

proper cavity lengths, 2.5λ chosen in this case, which is about 400 nm. Therefore, it was necessary 

to investigate the etching conditions to remove the thick GaN layer and achieve smooth ELO-GaN 

surface. First of all, Cl2/Ar/SiCl4 gas mixture was used for the ICP plasma etching. The flow rates 

of Cl2, Ar, and SiCl4 were maintained at 15, 18, and 5 sccm, respectively. The chamber pressure 

during etching was kept at 0.6 Pa. To verify the results of the dry etching, etched surface 

morphology and cross sections were examined by SEM. Using ICP/bias power 200/45 W, the ELO 

stripes were thinned down to around 1.5 μm. However, 4 μm tall wall-like features were appeared 

at the edges of the ELO wings. This can be clearly seen in Figure 43. The formation of these 

features were concerning that the dielectric material on DBR regions was sputtered during the 

etching when the chemical component of the etching was relatively large, and the dielectric 

material was sputtered to the edge of ELO-GaN, acting as the masks in the subsequent etching of 

GaN.  

 
Figure 43: Cross sectional SEM images of an ELO layer after ICP etching with ICP/bias power 

200/45 W showing wall-like feature on an ELO stripe. 

Dielectric material
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Later, the ICP/bias powers were increased to 350/250 W and the chamber pressure 

increased to 0.67 Pa. The Cl2/Ar gas mixture was kept at 15/25 sccm, and SiCl4 was removed from 

the gas mixture as suggested by Kao et al.106 The cross-sectional SEM images for before and after 

the ICP etching are shown in Figure 44. For this particular sample, the ELO thickness successfully 

decreased from 10 µm to a range between 0.4 µm and 1.5 µm. The reason of this variation is the 

ELO-GaN thickness variation across the wafer during MOCVD growth. The thickness of the ELO 

layers has an increase from 8.5 to 10 µm from one side of the sample to another side. Because of 

high physical component of the etching the dielectric DBR in addition to the GaN layer between 

the stripes were also etched. Since the VCSEL structure is grown only on ELO-GaN wings, etching 

of these layers does not have an effect.  

 
Figure 44: Cross sectional SEM images of an ELO layer (a) before and (b) after ICP etching with 

ICP/bias power 350/250 W. 

After reducing the ELO GaN thickness down to 400 nm (around the center of the sample) 

using ICP etching the sample was loaded into the MOCVD chamber and subjected to an in situ H2 

treatment at high temperature (930 ºC) to remove the residual etching damage. As stated before, 

better quality active region is a requirement to increase the exciton-photon coupling in 

microcavities. Since the multiple DH active regions have exhibited a superior approach for 
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quantum efficiency enhancement and better quality compared to MQW, a multi 3 nm DH active 

region was grown on ELO-GaN layers and tested under optical injection [Figure 47]. The cavity 

active region was designed to have 2 six periods of 3 nm InGaN DH (with high In0.01GaN barrier) 

separated by 160 nm (λ) In0.01GaN underlying layer where the designed wavelength was 410 nm.  

The reason for using 2 six periods of 3 nm In0.15GaN DH separated by λ underlying layer was to 

feed to cavity more photons to obtain better cavity mode. In addition to vertical cavity sample a 

test sample was simultaneously grown on c-plane GaN on sapphire substrate in order to compare 

the optical quality of the vertical cavity active region. PL measurements were performed for the 

formed half cavity structure together with the test sample in a micro-PL setup. The HeCd laser 

emitting at 325 nm was used for excitation source for the PL measurement. Later, to form the full 

cavity structure, a top 13.5 pair SiO2/SiNx DBR is deposited using PECVD technique. It should be 

mentioned here that a SiO2 layer with a photolithography procedure following p-type GaN growth 

are grown for the full structure before the top dielectric DBR deposition. The SiO2 layer here 

ensures the electrical injection goes through InGaN active region grown on defect free ELO layers, 

as will be described below in Figure 48(b)). A basic schematic of the full vertical cavity structure 

is given in Figure 45(a). Figure 45(b) also illustrates the multi-DH positions with respect to cavity 

length. It can be seen that these active layers are designed to place on electric field antinodes in 

the cavity in order to maximize the cavity emission. However, due to the thickness variation of the 

ELO-GaN layers beneath the active regions, the placement of the active regions within the cavity 

varies across the sample. Further optimization to form homogeneous ELO GaN layers is needed 

for better optimized vertical cavity structures. 
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Figure 45: (a) Schematic of the full vertical cavity structure. (b) Electric field inside the cavity 

with respect to distance where an InGaN active region is placed at the antinode of the 

electric field inside the cavity.  

The full cavity structure was characterized using reflectivity (Xe lamp source) and micro 

photoluminescence (PL) spectroscopy. For micro-PL, samples were excited normal to the surface 

from the top DBR side using a HeCd laser (325 nm wavelength) and a long working distance x50 

microobjective. The excited area was in the order of ~ 2 m in diameter. The 325 nm excitation 

ensured to excite the active region outside of the top DBR stop band where its high energy side 

ends at 350 nm (Figure 47). The emission was also collected normal to the surface from the top 

DBR side. Figure 46 show the reflectivity spectrum for the full cavity structure. As can be seen 

from Figure 46, 99% reflectivity is achieved for the top SiO2/SiNx DBR with a stop-band width 

of ~80 nm, which is much larger compared to semiconductor AlN/GaN DBRs (~20 nm). The full-

cavity reflectivity spectrum showed clear dips corresponding to the cavity modes at ~ 400 nm and 

~ 412 nm. 
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Figure 46: Reflectivity spectrum of the full cavity structure (Micro-objective is used in the 

measurement). Cavity modes are observed around 400 and 412 nm can be clearly seen 

in inset corresponding to lateral cavity length of ~3μm. 

Figure 47 shows the PL spectra for the full cavity structure, half cavity structure and 

reference sample. The Q-factor of the reference sample is found to be 20 which is 3 times smaller 

than obtained from the half cavity. It can be clearly seen that the bottom dielectric DBR had an 

influence for the Q-factor increase for the half cavity structure. Q-factor from the full cavity 

structure, 500, was found to be substantially increased after the deposition of the top dielectric 

DBR. The result proves the obtained high quality of the full cavity structure and is very promising 

for the electrical operation. 
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Figure 47: PL spectra for the full cavity structure (red), half cavity structure (black) and reference 

sample with no DBRs. The corresponding Q-factors are 500, 60 and 20, respectively. 

Photolithography techniques were used with different masks in order to form the electrical 

contacts for the vertical cavity structure following with e-beam metal deposition. Metallization 

was performed after exposing the n-GaN and p-GaN layers using ICP dry etching. Ti/Al/Ni/Au 

(30/100/40/50 nm) and Ni/Au (20/50 nm) were deposited for n- and p-contacts, respectively. As a 

result, the current in the final device structure were allowed to flow only through the nearly defect-

free active region formed entirely on the laterally grown wing. The final form of the vertical cavity 

with n- and p-contacts is schematically illustrated in Figure 48. Figure 48 (a) shows oblique view, 

while Figure 48(b) shows cross sectional schematics of the VCSEL structure with electrical 

contacts. The current paths are illustrated with red arrows and the emitted light with light green 
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color in Figure 48(b). The most significant aspect that differentiates the ELO method employed 

here from others reported in literature for cavities with all dielectric DBRs is the absence of the 

need for cumbersome substrate removal, in addition to the naturally formed nearly defect-free 

active regions and current confinement without the need for any oxidation steps. It should also be 

mentioned that the ELO method employed here is applicable to DBRs based on not only SiO2/SiNx 

DBRs, but also other stable and high optical band-gap dielectrics inclusive of Al2O3, ZrO2, and 

Ta2O5, which may be explored for further improvement in vertical cavity performance. 

 
Figure 48: (a) Oblique view and (b) cross sectional schematics of VCSEL structure with electrical 

contacts. Red arrows show the electrical injection path, while light green is showing 

the light output direction. 
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The mask designs to produce the vertical cavity devices with different sizes using 

photolithography and e-beam deposition techniques are shown in Figure 49. Figure 49(a) is 

illustrating the mask patterns on the mesa in more detail without showing the top deposited layers, 

while Figure 49(b) shows the final device shapes with contact layers. The devices are prepared to 

constitute on changing mask patterns in the dimensions of 540X540, 200X200, 20X40, 40X20, 

20X20, 20X10 μm2 as clearly seen in Figure 49(a). The actual device sizes, in other words the 

active emitting area, are shown in black stripes in Figure 49(b), each of which are grown on nearly 

defect free single ELO GaN wings. P-contacts (Ni/Au) can be seen at the end of the ELO wings 

with net-like features on each device in Figure 49(b). N-contacts (Ti/Al/Ni/Au) deposited on 

etched ELO wings are not distinguishable from Figure 49 (b). 

 

Figure 49: VCSEL devices on the mesa produced after photolithography techniques (without the 

top deposited layers, (b) the final device shapes with contact layers.  

Figure 50 shows the I-V characteristics of a medium size device (200X200 μm2) in linear 

and log scales. The forward current level was found to be small (0.1 mA @ 6 V) due to the large 

resistance contribution from the thick p-GaN layer (100 nm). However, fabrication issues having 

a) b) 
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to do with the full contiguity of the metal layer are at least partially, if not nearly fully, responsible 

for these observations. Further reduction of the p-GaN layer thickness in addition to improving the 

fabrication procedures may lead to lasing in these devices under electrical injection. 
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Figure 50: I-V characteristics of the full VCSEL structure in (a) linear and (b) logarithmic scales. 
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Chapter 4. Optical efficiency and carrier dynamics in nonpolar and semipolar 

GaN and InGaN LEDs  

Carrier recombination dynamics may give useful information about GaN substrates for 

various electronic transitions and recombination rate of the carriers, etc. Above band-gap (single-

photon) excitation107 is the first choice for the investigation of the carrier dynamics in GaN, while 

two-photon excitation at below band-gap have advantageous aspects over the above band-gap 

excitation,108 but has not been fully utilized in general. For the single-photon excitation, the high 

absorption coefficient of GaN (~105 cm-1) results in high photo-generated carrier densities within 

the first a couple of hundred nanometer thick surface region with carrier densities up to 1019 cm-3. 

Time-resolved techniques provide easy access to spectral features of emission as the PL transients 

vary with injection and temperature because of simultaneous overlapping of different 

recombination mechanisms, such as exciton and free carrier, radiative and nonradiative 

recombination processes. In recent years, defects, especially extended defects are also found to be 

affecting the recombination dynamics involving with the other processes mentioned above.109,110 

These reports are mainly from nonpolar and semipolar GaN substrates in which the material 

quality greatly suffers from the extended defects, such as basal-plane and prismatic stacking 

faults.53,55 Clearly, the reported studies for carrier recombination dynamics inspires further 

investigations of the optical processes by complementary techniques, in order to delineate the role 

of excitons, nonradiative and radiative decays as well as defects.  
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4.1. Excitonic effects on recombination dynamics in nonpolar m-plane bulk GaN 

Having very close binding energy to the room temperature thermal energy, 25 meV, 

excitons play an important role in recombination dynamics in GaN. However, identifying their 

exact contribution is rather challenging. This is because optical techniques such as steady-state or 

time-resolved photoluminescence are limited to observe excitons in GaN at elevated temperatures. 

One needs to rely on indirect observations to resolve the excitonic effects, such as the polarization 

of luminescence and the relevant selection rules. Knowing the polarization degree of exciton 

emission, one can separate the contribution of excitons to the radiative recombination from that of 

free carriers at different temperatures. For polar c-plane GaN thin films and substrates,78,111,112 

monitoring the polarization along the c-axis  (E c , π-polarization) is challenging;113 therefore, 

non-polar m-plane GaN is more suitable for investigation of the polarization  degree of 

emission114,115,116 

In order to reveal the contributions from excitons and free carriers in a wide temperature 

range (15-350 K), polarization and temperature dependent time-resolved photoluminescence 

(TRPL) measurements were performed in a bulk m-plane GaN with the excitation beam polarized 

parallel or perpendicular to the c-axis of the crystal. In addition, polarization-resolved 

photoluminescence (PRPL) measurements were used to quantify the degree of polarization 

depending on the exciton populations in the mixed free carrier/exciton system at different 

excitation densities and temperatures. 

The freestanding m-plane wurtzite GaN sample (450 µm thick) was sliced from a c-axis 

oriented boule grown by hydride vapor phase epitaxy (HVPE) on sapphire and then separated from 

the substrate by a laser lift-off technique. For TRPL and PRPL measurements a frequency tripled 

Ti:Sapphire laser (267 nm wavelength) and a continuous wave (cw) HeCd laser (325 nm 
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wavelength) were used for excitation. The sample was mounted in a closed-cycle Helium cryostat 

for time-integrated PL spectra and time-resolved PL decay measurements in 15-300 K range, using 

Hamamatsu streak camera. The optical experiments were performed with the light wave vector k 

perpendicular ( k c ) and the electric field parallel ( E c ) or perpendicular ( E c ) to the c-axis 

of the wurtzite GaN (π- or σ-polarization, respectively). A linear polarization analyzer was used 

to resolve the polarization state of the PL. 
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Figure 51: Temperature dependent PL spectra for σ- and π-polarization states collected using 267 

nm excitation wavelength and at an excitation density of 4µJ/cm2 for m-plane GaN. 
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Figure 51 shows the temperature dependent PL spectra for m-GaN measured for σ- and π-

polarization states at excitation density of 4 µJ/cm2. The PL spectra at 15 K for σ-polarization 

shows very broad near band edge emission (NBE) peaking at 3.465 eV; in contrast, sharp donor 

bound exciton (DX) lines (~2 meV FWHM) at 3.471 (DXA) and 3.475 (DXB), and a broad free 

exciton (FX) line at 3.478eV are observed for π-polarization. In PL spectra, LO phonon replicas 

are also seen as shoulders of the main peak at lower energies. The broad peak without fine excitonic 

features in the 300K PL spectra for σ-polarization has its origins in strong exciton screening.117  

Figure 52(a to c) shows low temperature σ-polarized component of PL spectra at different 

excitation densities. As evident from Figure 52(a), decrease of excitation density reduces the 

broadening, and fine exciton structure appears in the spectra as a result of reduced exciton 

screening. The disappearance of the DXA with increasing polarizer angle (0 degree corresponds to 

light polarization parallel to the c-axis) observed in Figure 52(c) and Figure 52(d) confirms a 

degree of polarization of 1 for DXA. The polarization degree of photoluminescence is defined as  

   I I / I Ih l h l  , where Ih  and Il  represent the highest and the lowest PL intensities of  the 

polarization components (occurring at polarizer angles of 0 and 90 degrees, respectively in Figure 

52), respectively. The degree of polarization for the near band edge emission (NBE) peak at 

excitation density of 4 µJ/cm2 decrease to 0.46 (Figure 52(b)) primarily due to the dissociation of 

excitons to free carriers resulting from screening of Coulomb interaction at high excitation 

densities. It is understood that the polarization degree is determined by the populations of the free 

carriers and excitons at different excitation densities, where the former species do not have any 

preferred polarization state.  
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Figure 52: a) Excitation intensity dependent σ-polarized PL spectra for m-plane GaN at 10 K and 

0º polarizer angle. PL spectra at different polarizer angles for σ-polarization at b) 4 

µJ/cm2,  c) 0.4 µJ/cm2, and d) 0.04 µJ/cm2.  

Similarly, degree of polarization for NBE was measured at room temperature for two 

excitation energy densities. The variation of PL intensity with respect to the polarization angle 

(Figure 53) was used to calculate the degree of polarization for σ- and π-polarization states. These 

values for the σ- and π-polarization states are equal to 0.22 and 0.11, respectively at higher 

excitations (4 µJ/cm2) and increases up to 0.28 and 0.30, respectively, at 0.4 µJ/cm2. The difference 

in the degree values for σ- and π-polarizations at 4 µJ/cm2 is primarily due to selection rules 

producing different exciton concentrations for different polarization states. For example, both A 
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and B exciton states are strong for σ-polarization state while only C exciton state is strong for the 

for π-polarization state. The room temperature PRPL results show that the degree of polarization 

varies with intensity of the excitation. The increase in the degree of polarization for 0.4 µJ/cm2 

compared to 4 µJ/cm2 is a result of reduced exciton screening that is still effective at room 

temperature. These results suggest that excitons still survive and therefore would enhance the 

radiative recombination rate in GaN at room temperature. 

To investigate the impact of polarization state to PL decay, time-resolved 

photoluminescence (TRPL) measurements were performed at 15 K for π- and σ-polarization states, 

at various excitation energy densities. As shown in Figure 54(a,b), the PL transients for different 

polarization components exhibit similar exponential decay, while the decay times became  twice 

longer at higher excitations. The latter effect may have different genesis, and one of the reasons 

may be increased ratio of free carriers to excitons. The PL decay time of ~0.7 ns at the lowest 

excitation density is supposed to be of radiative origin, as in the latter case the exciton density is 

below 1016 cm-3 and only excitons dominate in the mixed exciton-free carrier system. Nevertheless, 

estimation of exciton radiative time at 15 K for exciton density of 1016 cm-3 leads to value of τRad= 

1/BNex = 30 ns assuming that the radiative coefficient of excitons B = 2x10-11 cm3/s at 300 K89 

increases by 90 times at 15 K according to relationship B 1/T3/2. This discrepancy requires 

considering different factors which may compete with radiative decay and make the initial PL 

decay time so fast at lowest injections. Therefore, the decrease in the degree of polarization with 

increasing excitation is not unambiguously and quantitatively reflected in the increasing PL decay 

times. Nevertheless, a search for correlation between excitation-dependent degree of polarization 

for NBE and its decay rate needs only normalized ratios.   
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Figure 53: Comparison of normalized PL intensities for π- and σ-polarization components, 

varying with polarization angle in m-plane GaN.  The corresponding degree of 

polarization at 300K is given in the plot.  
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Figure 54: Excitation dependent PL transients for (a) π- and (b) σ-polarization states at 15K. 

System response of 0.28 ns is also shown in the figures (dashed lines). 
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The recombination dynamics were further investigated at different temperatures which 

simply correspond to different exciton populations. Figure 55(a,b) show the temperature dependent 

PL transients (π- and σ-polarization states) in 15 K to 350 K range at 4 µJ/cm2 excitation energy 

density. TRPL spectra exhibit an initial fast decay followed by a longer and temperature dependent 

decay, which correspond to the effective PL lifetime of the mixed exciton-free carriers system. 

The shorter decay may be attributed to the surface recombination, which has been observed in 

other works118,119 and/or to the diffusion of free carriers away from the surface120.  
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Figure 55: Temperature dependent π- and σ-polarized PL transients at 4 µJ/cm2 excitation density. 

The effective PL lifetimes obtained from bi-exponential fits to the data in Figure 55 are 

plotted in Figure 56 as a function of temperature at excitation densities of 0.4 µJ/cm2 and 4 µJ/cm2. 



 
 

104 
 

At low temperatures the PL lifetime is mainly determined by excitons while it increases with 

increasing temperature due to contribution of free carriers resulting from dissociation of excitons. 

It is observed that the PL lifetimes at the excitation energy density of 0.4 µJ/cm2 are always faster 

than those at 4 µJ/cm2 implying that at lower excitation density there is more excitonic 

recombination due to less effective exciton screening. This tendency is consistent  with the fact 

that  the radiative lifetimes of free excitons are nearly one order of magnitude less than those of 

free carriers in the nitrides at the same temperature89. On the other hand, modeling of carrier 

dynamics in m-GaN107 revealed fast initial PL decay transients of 5-6 ns at room temperature in 

spite that a priori known nonradiative carrier lifetime in the m-GaN was of 40-50 ns120. This 

discrepancy having origin in carrier diffusivity may have even stronger impact at lower 

temperatures, therefore the genesis of the initial fast decay in the set of curves in Figure 55 must 

be considered very carefully.  

Obtaining radiative lifetimes separately for free carriers and excitons from the time-

resolved PL measurements at different temperature and excitation density levels is very 

complicated. The factors affecting the PL decay time such as impact of excitation density on 

surface band bending and the resulting change in diffusion/drift as well as recombination rates 

have to be identified. Consequently, variety of reasons may contribute to the total excited carrier 

density and the radiative recombination rate, which are substantially affected by excitation density 

and temperature due to screening of the excitons and their thermal dissociation. Therefore, 

knowledge of radiative decay times of excitons and free carriers together with degree of 

polarization may give insight about the instantaneous populations of excitons and free carriers at 

certain conditions since the radiative lifetime is inversely proportional to radiative recombination 

coefficient times the carrier concentration,   1 B n ,where B(T)  T-3/2. In the meantime, one 
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can separate the total radiative lifetime from the nonradiative lifetime for a temperature range by 

measuring both time-decays and PL intensities. This technique is given in Appendix C. Figure 57 

shows extracted radiative and nonradiative lifetime for the σ-polarization measured at 4 µJ/cm2 

excitation density. As can be seen form Figure 57 the radiative lifetime dominates the PL decay 

time at low temperatures and increases with temperature by power of 1.33 which is very close to 

theoretical value for bulk samples, 1.5. It should be also mentioned that that the radiative lifetime 

at room temperature, 26 ns, is also very consistent with value calculated for the radiative lifetime, 

20 ns using the τRad= 1/BN for the injected carrier density ~1018 cm-3 corresponding to σ-

polarization and assuming that the radiative recombination coefficient B = 5x10-11 cm3/s at 300 K. 
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Figure 56: Effective PL lifetimes for the excitation energy densities of 4 µJ/cm2 and 0.4 µJ/cm2 

obtained using 267 nm excitation wavelength. The solid dashed line represents the PL 

decay time measured at the lowest excitation density for 0.04 µJ/cm2 at 15 K. 
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Figure 57: Temperature-dependent radiative and nonradiative PL decay times extracted from time-

resolved and photoluminescence results for σ-polarization at 4 µJ/cm2. 

To have a complete picture on free carrier and exciton contributions to recombination, Table 4 list 

the polarization degree values obtained from excitation dependent PRPL and TRPL measurements 

(267 nm wavelength) for σ-polarization state at low (15 K) and room (295 K) temperatures. In 

order to determine the polarization degree from the TRPL, the excitonic PL lifetime (0.72 ns and 

0.70 ns for π- and σ-polarization, respectively) is divided by the effective PL lifetime representing 

the mixed exciton-free carrier system. Polarization degree further investigated by temperature 

dependent PRPL measurements using CW HeCd (325 nm excitation wavelength) laser for 

excitation density corresponding to 0.32 kW/cm2 and compared with values obtained from PL 
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lifetimes for π- and σ-polarization states. Figure 58 shows this comparison. The polarization 

degree due to the different exciton and free carriers populations is sensitive to excitation density 

and temperature while the excitonic PL lifetime corresponds to unity degree of polarization. The 

degree of polarization results obtained from TRPL data correlate very well with those from 

temperature dependent PRPL measurements for the excitation density 0.32 kW/cm2 for the 325 

nm excitation wavelength (Figure 58).  

These results show that both TRPL and PRPL spectroscopy techniques can be successfully 

employed to identify accurately the contributions of excitons and free carriers to recombination 

dynamics in GaN and that the excitons in GaN may have considerable contribution to 

recombination at room temperature. In order to assess the information, first of all, the true excitonic 

PL lifetime has to be found comparing the excitation dependent PRPL and TRPL measurements 

at 15 K. Then, simply dividing the effective PL lifetime one can reach degree of polarization. The 

exact concentration of excitons and free carriers in the mixed exciton-free carrier system can only 

be obtained knowing the radiative recombination coefficients for both exciton and free carriers at 

the temperatures employed as well as additional factors affecting the PL lifetime, such as band 

bending and diffusion etc.  

Table 4: The polarization degree values obtained from excitation dependent PRPL measurements 

and TRPL measurements for σ-polarization state (267 nm excitation) at 10 K and 300 K.  

  Excitation density 

(µJ/cm2) 
PRPL TRPL 

10 K 

0.04 0.98 1.00 

0.40 0.74 0.78 

4.00 0.43 0.46 

300 K 

0.04 - - 

0.40 0.30 0.27 

4.00 0.22 0.21 
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Figure 58: Temperature dependent degree of polarization obtained from PRPL and TRPL. PRPL 

measurements were performed under cw HeCd excitation (325 nm wavelength) and 

TRPL measurements were performed under frequency tripled pulsed Ti:Sapphire 

excitation (267 nm wavelength). 

In summary, polarization- and time-resolved PL spectroscopy are used to gain insight into 

the contributions of excitons and free carriers to the radiative recombination at different 

temperatures. It is found that as the free carrier population increases by increasing both excitation 

density (by screening the excitons) and temperature (by dissociation of excitons) radiative 

recombination rate and degree of polarization are strongly affected. The effective exciton PL decay 

time was found to be ~ 0.7 ns in low excitation density TRPL measurements at 15 K and its ratio 

to the effective PL decay time was used to quantify the degree of polarization at different excitation 
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densities and temperatures for the mixed exciton-free carrier system. The very good agreement 

between the polarization degree for the PL at different temperatures obtained from both TRPL and 

PRPL techniques shows that knowing the polarization degree and the radiative recombination 

lifetime in m-plane GaN one can successfully quantify the contributions of free carriers and 

excitons to radiative recombination. 

4.2. Carrier dynamics of nonpolar and semipolar GaN substrates 

As already mentioned earlier GaN-based active regions grown on nonpolar and semipolar 

GaN substrates have prospective use in light emitting devices due to larger wavefunction overlap 

of electrons and the holes in active regions increasing the quantum efficiency compared to polar 

c-plane GaN. In this sense, a series of optical measurements were performed to investigate the 

quality of nonpolar m-plane (1100)  and semipolar (1101) GaN grown on patterned Si(112) and 

Si(001) substrates, respectively, in MOCVD. Optical quality was characterized by steady-state 

micro-PL measurements using HeCd laser of 325 nm excitation wavelength. The spot size of the 

laser beam was nearly 2 micrometer and power density was 22 MW/cm2. Carrier dynamics was 

studied by time-resolved photoluminescence (TRPL) performed using a frequency-tripled 

Ti:Sapphire laser with excitation wavelength 267 nm. A c-plane (0001) GaN film grown on a 

sapphire substrate under conditions optimized for high optical quality was measured as a reference. 

Figure 59 compares the room temperature PL spectra from the c-plane GaN film on sapphire, 

nonpolar m-plane (1100)  and semipolar (1101)  GaN layers. One can see that PL intensity of 

(1101) -oriented GaN is comparable to that of the c-plane layer grown on sapphire. The PL 

intensity of nonpolar GaN layer is rather weak, which can be explained by the fact that the layer 
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was grown under low pressure and low ammonia flow rate which favors carbon incorporation and 

deteriorates radiative recombination efficiency.  

 
Figure 59: Steady-state room-temperature PL spectra of c-plane GaN films grown on sapphire and 

(1 100) m-plane and (1101)-oriented GaN layers grown on the Si patterned substrates. 

Normalized TRPL data were fit using a biexponential decay function

-t / τ -t / τ1 2A e + A e1 2 , where A1 and A2 are the amplitudes of the slow and fast decay components 

with representative time constant τ1 and τ2, respectively. Figure 60 compares the PL transients for 

c-plane GaN on sapphire and (1101) GaN on Si(001) obtained at an excitation density of 0.09 

kW/cm2, and Table 5 lists the fitting parameters for c-plane and (1101) GaN layers. As can be 

seen from Table 3, the fast and slow decay time constants τ1 and τ2 for the two samples are very 
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similar; however, the amplitude ratio A1/A2 varies significantly. The four times smaller A1/A2 

value observed at an excitation density of 0.90 W/cm2, for the (1101) -oriented GaN layer is 

indicative of a larger proportion of nonradiative centers in the (1101) GaN layer as compared to 

the c-plane GaN, as the fast decaying component is representative of the nonradiative decay. These 

results are consistent with the more intense steady state PL observed from the c-GaN layer, as 

shown in Figure 59. As can be seen form Table 5, changing the injected power density has little 

effect on the time constants, whereas the fraction A1/A2 increases nearly 2 times for both samples 

with an order of reduction in the excitation density. This excitation density dependence may be 

indicative of enhanced carrier-carrier scattering at higher optical injection density. TRPL decays 

measured for m-plane GaN are within the system resolution (~30 ps); and therefore, are not 

presented here, but show that the optical quality of the photo-excited top portions of these m-plane 

layers need to be improved significantly.  
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Figure 60: Normalized room-temperature TRPL intensity for c-plane GaN on sapphire and 

oriented GaN on Si measured at an excitation density of 0.09 kW/cm2. System 

response is also shown. The red solid lines represent biexponential fits to the data. 

 

Table 5: Biexponential decay parameters for the room temperature TRPL intensity from c-plane 

GaN on sapphire and -plane GaN on Si at two different power levels. 

 

Sample Power Density 

(kW/cm2) 
1   

(ns) 

2  

(ns) 

A1/A2 

(0001) GaN on Sapphire 
0.90 0.58  0.11  2.26 

0.09 0.56  0.15  4.78 

(1101) GaN on Si 
0.90 0.50  0.12  0.53 

0.09 0.45  0.12  0.94 

 

(1101)

(1101)
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Since the optical quality of semipolar (1101) GaN was found to be comparable to c-plane 

GaN layers, additional semipolar (1101) GaN layers were grown on patterned Si(001) substrates 

in MOCVD with coalesced and noncoalesced geometries, and optical properties were further 

investigated using PL and TRPL techniques. Si(001) substrates offcut by 7° toward the Si<110> 

direction were patterned to form grooves of either 3 or 10 μm width, from here and on referred to 

as the narrow- or wide-groove patterns, respectively, separated by 3 μm terraces. The wide groove 

pattern (3 m x 10 m) did not allow physical contact of the growing GaN stripe with the opposing 

Si(111) facet, whereas the narrow groove pattern (3 m x 3 m) promoted such physical contact 

and results in a fully coalesced layer. The cross-sectional SEM images are shown in Figure 61. For 

simplicity, the part of the GaN stripe adjacent to the –c-wing will hereafter be referred to as –c-

side; and the remaining part, as +c-side, as indicated in Figure 61.  

 

Figure 61: Cross-sectional SEM images for (a) wide- and (b) narrow-groove pattern GaN 

samples. 

Figure 62 shows PL transients for the coalesced and non-coalesced (1101) GaN layers. For 

reference, Figure 62 displays also the data for a c-plane GaN on sapphire template and a c-plane 

GaN layer grown on the state-of-art GaN templates using in situ epitaxial lateral overgrowth (ELO) 

(1101)
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with a SiNx nano-network mask that blocks dislocation propagation (referred to as nano-ELO 

layer).80 The normalized TRPL data were fit by using the bi-exponential decay function. The slow 

decay component, representative of the radiative recombination, for the non-coalesced layer is as 

long as 1.50 ns, which is substantially longer than that for the conventional c-plane GaN layer on 

sapphire (0.62 ns) and even longer than that of the state-of-the-art nano-ELO GaN layer (1.16 ns). 

This long slow decay constant is indicative of high optical quality of the noncoalesced layer and 

lower density of extended and point defects compared to coalesced layer. Note that slow decay 

component for the coalesced layer is substantially shorter (0.20 ns). This must be primarily due to 

higher dislocation density in addition to point and extended defects present in the coalesced layers. 

0 3 6

 P
L

 I
n

te
n

si
ty

 (
ar

b
. 

u
n

it
s)

1.16 ns

1.50 ns

0.20 ns

Delay Time (ns)

 (1) nano-ELO (0001)GaN/sapphire

 (2) (0001)GaN/sapphire

 (3) non-coalesced (1-101)GaN/Si

 (4) coalesced (1-101)GaN/Si

0.62 ns

 
Figure 62: Room-temperature TRPL results for the semipolar and polar GaN samples for the 

excitation density of 0.32 kW/cm2. Numbers indicate values of slow decay component 

τ2. Dashed curve represents the system response of the streak camera.  



 
 

116 
 

Figure 63(a) and (b) show room-temperature excitation density dependent TRPL for the c-

plane nano-ELO GaN and non-coalesced semipolar (1 101) GaN on Si(001) layers, respectively. 

Table 6 lists the biexponential fitting parameters for the PL transients for various excitation power 

densities. As seen from Figure 63 and Table 6, the fast component of the PL transients, τ1, 

representative of the nonradiative recombination, is virtually independent of the excitation power 

density for both polar and semipolar GaN, while the slow decay component for both layers 

becomes longer with increasing excitation power density. However, the amplitude ratio A1/A2 for 

the polar and semipolar GaN samples varies with the excitation power density in different ways. 

For the polar GaN, the amplitude ratio A1/A2 decreases rapidly with increasing excitation power 

density, and the TRPL shows virtually single-exponential decay for the highest excitation power 

densities of 0.25 and 0.32 kW/cm2. For the semipolar film, the amplitude ratio A1/A2 reduces only 

slightly with increasing excitation power density. This implies that the polar nano-ELO GaN 

contains relatively low concentration of nonradiative centers (point and/or extended defects); 

therefore, the nonradiative and the radiative recombination channels compete at low excitations, 

but radiative recombination become dominant at high excitation density due to limited number of 

nonradiative centers. To the contrary, within the excitation area, the number of nonradiative 

centers in semipolar GaN is larger; therefore the nonradiative recombination channel contributes 

substantially even at high excitation power densities. In the case of semipolar GaN, regions with 

very different structural quality contribute to the TRPL signal: high quality +c-wing regions, 

probably responsible for the long slow decay components τ2, together with the portions of +c-wings 

close to the GaN/Si(111) interface by possibly high dislocation density and highly defective -c-

wings, contributing to nonradiative decay that is mainly responsible for the fast decay components 
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τ1. It is apparent from the data in Figure 63(b) that the contribution from defects present in the 

lower quality regions is essential even at high excitation densities. 

 
Figure 63: Excitation density dependent room-temperature TRPL for (a) polar (0001) nano-ELO 

GaN film on sapphire and (b) semipolar non-coalesced (1 101) GaN layer on Si. 

Table 6: PL decay times and amplitude ratios obtained from biexponential fits. 

Excitation 

(kW/cm2) 
τ1 (ns) τ2 (ns) A1/A2 τ1 (ns) τ2 (ns) A1/A2 

 polar c-plane nano-ELO film (1-101) non-coalesced layer 

0.02 0.16 0.54 2.02 0.33 1.03 1.38 

0.06 0.19 0.58 0.65 0.38 1.42 1.12 

0.13 0.15 0.64 0.22 0.38 1.68 1.10 

0.19 0.16 0.71 0.15 0.38 1.80 1.11 

0.25 - 0.84 - 0.39 1.90 1.17 

0.32 - 1.15 0 0.40 1.98 1.19 

 

To shed light on the contribution from near-surface region and deeper portion of the layers 

to carrier dynamics in polar c-plane and semipolar (1101) GaN films, time-resolved PL with 

different excitation wavelengths, 267 and 353 nm have been studied. Those excitation energies 
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provided different excitation depths, about 50 nm and 100 nm, respectively. Figure 64 shows 

excitation-density dependent TRPL for non-coalesced semipolar (1101) GaN and c-plane nano-

ELO GaN layers measured at room temperature with excitation wavelengths of 267 and 353 nm. 

Table 7 lists the biexponential fitting parameters for the PL transients for various excitation power 

densities. As seen from Table 7, the longer PL decay times for the polar GaN measured with two 

different excitation wavelengths are comparable at the lowest excitation density of 0.08 μJ/cm2, 

increase with rising excitation density in the very similar way, and finally reach the same value of 

1.20 ns at 5.50 μJ/cm2. To the contrary, the slow decay time for the semipolar sample measured 

with an excitation wavelength of 267 nm behaves differently with increasing excitation density as 

compared to the data obtained with 353 nm. At the lowest excitation density of 0.08 μJ/cm2, the 

longer PL decay times are essentially the same for the both wavelengths; however, the decay times 

measured with the excitation at 353 nm increase much slower with excitation density as compared 

to those obtained with excitation λ=267 nm. At the highest excitation density of 5.50 μJ/cm2 

employed here, the longer PL decay times for λ=353 nm reaches only a half of that measured with 

λ=267 nm. These findings can be explained as follows. At low excitation, mainly the near-surface 

area contributes to the observed decay times for the both wavelength because of the strong bend 

bending. However, when the excitation density increases, the carriers penetrate deeper into the 

sample volume with larger penetration depth for the longer wavelength. This implies that the near-

surface layer of (1101) GaN are relatively free from nonradiative centers (point and/or extended 

defects), while deeper region of the semipolar film contains more point and/or extended defects 

having a stronger effect on the longer PL decay time than in the case of 267 nm excitation. Most 

likely, free carriers generated with the longer wavelength reach the region containing threading 

dislocations propagating in +c direction from the Si(111)/GaN interface. However, these results 
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indicate that the optical quality of the near-surface area of the semipolar GaN grown on the 

patterned Si is comparable to that of the thick polar GaN fabricated by nano-ELO technique. 

 
Figure 64: Excitation dependent PL transients measured at an excitation wavelength of (a) and (b) 

267 and (c) and(d) 353 nm for (a) and (c) the reference c-plane nano-ELO sample and 

(b) and (d) the semipolar non-coalesced GaN layer. The measurements were performed 

at room temperature. 
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Table 7: Longer PL decay times obtained from the biexponential fits. 

Excitation 

(kW/cm2) 
267 nm 353 nm 267 nm 353 nm 

 polar c-plane nanoELO film (1-101)GaN semipolar noncoalesced layer 

0.08 0.55 0.66 0.51 0.52 

0.55 0.74 0.73 1.19 0.63 

1.10 0.83 0.79 1.50 0.71 

2.20 0.96 0.91 1.96 0.81 

5.50 1.20 1.20 2.38 1.02 

In summary, optical properties of polar c-plane (sapphire substrate), nonpolar m-plane, and 

semipolar (1101) GaN layers grown by MOCVD on patterned (001) Si substrates were examined 

by a series of steady-state and time-resolved PL at different excitation energy and densities. It is 

found that PL intensity of (1101) -oriented GaN layer is comparable to that of the c-plane layer 

grown on sapphire and much higher than nonpolar. The longer PL decay times for the non-

coalesced (1101) -oriented GaN layer is as long as 1.50 ns, which is substantially longer than that 

for the conventional c-plane GaN layer on sapphire (0.62 ns) and even longer than that of the state-

of-the-art nano-ELO GaN layer (1.16 ns). Excitation density dependent TRPL results revealed that 

the polar nano-ELO GaN contains relatively low concentration of nonradiative centers (point 

and/or extended defects), while the number of nonradiative centers in semipolar GaN is found 

larger that the nonradiative recombination channel contributes substantially at high excitation 

power densities. Excitation energy dependent TRPL data indicate that the near-surface of 

semipolar (1101) GaN layer is relatively free from nonradiative centers (point and/or extended 

defects), while deeper region of the film (beyond of ~100 nm in depth) contains more defects 

giving shorter decay times.  
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4.3. Impact of extended defects on optical properties of (1101)GaN grown on patterned 

Silicon 

Attainment of high quality nonpolar and semipolar GaN is a challenging task for the 

growers because large densities of extended defects (such as threading dislocations (TDs) and 

stacking faults (SFs)) emerge during the growth due to lattice mismatch between GaN and 

substrate materials used.121,122,123 Despite the observed high quantum efficiencies124,125 point and 

extended defects are still of major concern in semipolar GaN due to their negative impact on optical 

quality.109,110 It is therefore important to understand the effects introduced by defects observing 

their influence. Steady-state and time-resolved photoluminescence (PL) techniques, combined 

with microPL, in addition to polarization-resolved photoluminescence, were used at low and room 

temperatures to investigate effects of defects in semipolar (1101) GaN layers.  

Semipolar (1101) GaN layers were grown on patterned Si substrates by metal-organic 

chemical vapor deposition (MOCVD) using trimethylgallium (TMGa) and NH3 as sources of Ga 

and N with mass flow rates of 8 sccm and 3500 sccm, respectively, at a chamber pressure of 200 

Torr and a temperature of 1040°C. Si(001) substrate with an offcut by 7° toward the Si<110> 

direction were patterned to form grooves of 10 μm width separated by 3 μm terraces. The 

patterning procedure and initiation of GaN growth on the Si(111) facets exposed within the 

grooves have been described elsewhere.126 Time- and polarization-resolved photoluminescence 

(TRPL and PRPL) were measured at 15 K and 295 K to investigate the optical quality and effects 

of defects on carrier dynamics and polarization. Frequency-tripled Ti:Sapphire laser excitation 

(267 nm) with a pulse width of 150 fs was used as the excitation source for these measurements. 

The pattern (3 m x 10 m) for the semipolar GaN is chosen to prevent the coalescence of the 

growing wings. Furthermore, this pattern does not allow physical contact of the growing GaN 
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stripe with the opposing Si(111) facet. For simplicity, the part of the GaN stripe adjacent to the c-

wing will hereafter be referred to as -c-side; and the remaining part, as +c-side, as indicated in 

cross-sectional SEM image in Figure 65. In order to analyze the optical quality, photoluminescence 

from the semipolar GaN was collected at low (15 K) and room temperatures (295 K). Figure 66(a) 

and (b) show the steady-state PL spectra measured at 15 K and 295 K and the internal quantum 

efficiency (IQE), respectively. The 3.416 eV and 3.336 eV peaks of the 25 K spectrum in Figure 

66(a) are associated with BSFs and prismatic stacking faults (PSFs), respectively.127 The presence 

of a high density of defects is evident from the rapid decrease of the IQE from the assumed 100% 

at 15 K to 4% at 100 K and to 1% at room temperature. 

 

Figure 65: Cross-sectional SEM image of the semipolar (1101) GaN layers. 
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Figure 66: (a) Near bandedge steady-state PL spectra at 25K and 295K (D0X, BSF and PSF are 

marked in 15 K PL spectra) and (b) temperature-dependent IQE for the semipolar layer. 

In order to explore the optical behavior of the stacking faults in detail, peak positions of 

the donor bound exciton and basal plane stacking fault emission with respect to temperature were 

evaluated in large area steady-state PL measurements. Figure 67 shows temperature-dependent PL 

spectra from 15 to 115 K, where the BSF line vanishes. The change of the peak energy positions 

for donor bound exciton and BSF lines by varying temperature are illustrated in the inset of Figure 

67 obtained by deconvolution of the spectra. Varshni’s empirical formula,

     20E T E T T    , was used to fit the temperature dependence of the donor bound exciton 

line, providing   3.4 V0 73 eE  , 0.9 meV/K  and 0 K80  . These values are in very good 

agreement with those in the literature except for  0E , which is 5 meV red shifted from the 
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reported 3.478 eV value for polar GaN. This red-shift in PL suggests that the semipolar layers are 

relaxed.  
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Figure 67: Temperature-dependent PL spectra between 25 and 115 K. Inset shows energy positions 

for the D0X and BSF lines with respect to temperature. 

Figure 68(a) and (b) show PL transients measured from +c and -c-wings of (1101) GaN/Si 

structures in 2 ns and 10 ns time windows at room temperature, respectively. The PL transients 

exhibit biexponential decays. However, the fast decay component representing nonradiative 

recombination has substantially larger contribution for the -c-wings, while the PL transients 

measured on the +c-wing are dominated by the slow decay component. It is also worth noting that 

the time constant of the fast decay component (0.11 ns) is shorter for the -c-wing as compared to 

0.21 ns for the +c-wing. This finding is in good agreement with the room temperature NSOM 

measurements, which will be given in Chapter 7, indicating weak optical emission from the -c-
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wings due to the presence of high density of nonradiative centers associated with dislocations and 

stacking faults. The slow decay constants (1.70 ns) corresponding to radiative recombination were 

found to be similar for the -c-and +c-wings. 
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Figure 68. PL transients for NBE peak measured on +c-and -c-wings of (1101) GaN/Si. Red curves 

represent biexponential fits. The PL decay was measured at room temperature with 

excitation wavelength of 355 nm: (a) 2 ns and (b) 10 ns time windows.  
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In order to better understand the effect of defects on the recombination dynamics, low 

temperature (15 K) excitation power dependent TRPL measurements were performed for the 

semipolar GaN sample. As shown in Figure 69, PL transients for BSF and PSF related emission 

lines showed no dependence on the excitation power density within the range employed (5 - 420 

W/cm2). On the other hand, D0X emission exhibited a much faster and excitation power dependent 

PL decay (0.13 ns at 5 W/cm2 and 0.22 ns at 420 W/cm2). Among the stacking faults, higher PL 

intensity and faster decay times for BSFs compared to PSFs indicate that BSFs have larger density 

and larger contribution to recombination dynamics. It should also be noted that the recombination 

dynamics are affected not only by stacking faults, but by point defects and threading dislocations 

as well. High optical quality of the (1101) GaN layers and degradation of optical quality by 

coalescence were revealed by room temperature TRPL in a previous study.126 PL decay time for 

the semipolar GaN sample at 295 K was 2 ns longer than that for the state-of-the-art nano-ELO 

GaN layer (1.16 ns).126  
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Figure 69. PL transients for D0X, BSF, and PSF spectral lines measured at 15 K and excitation 

densities of (a) 5 W/cm2 and (b) 420 W/cm2.  

Another important feature of semipolar GaN is that the emission normal to the sample 

plane is polarized as the optical axis has a nonzero in-plane projection. Effects of stacking faults 

on optical quality can therefore be further investigated through polarization resolved PL. Figure 

70 shows the normalized polarization resolved PL intensity on a polar plot for band edge and BSF 

emission peaks of the semipolar GaN sample. The directions of the excitation light wave vector k 

and the electric field E with respect to selected crystallographic directions in a wurtzite structure 

are indicated on the same figure. A linear polarization analyzer was used to resolve the polarization 

state of the PL with the light collected always normal to the sample. 90° for the polarizer 
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corresponds to polarization parallel to the (1120) GaN axis. The polarization degree of PL is 

defined as    
h l h l

I I I I   , where 
h

I  and 
l

I  represent the highest and the lowest PL intensities 

resolved, respectively. Polarization degree for the D0X line at 15 K is 0.35, almost twice the room 

temperature value of 0.19 for the near band-edge emission. At 15 K, the polarization degree for 

the BSF peak is 0.22, lower than that for the D0X line. It is therefore clear that polarization 

diminishes when carriers recombine through the BSFs, which can be considered as one of the 

negative effects of stacking faults on the optical quality of the semipolar (1101) GaN layers. 
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Figure 70: Normalized polarization resolved PL intensity for the semipolar GaN sample for 420 

W/cm2 for the spectral lines D0X, BSF at low temperature and NBE at room 

temperature. 

In summary, semipolar (1101) GaN template grown on a Si(001) 7° offcut substrate with 

3 μm x 10 μm groove patterns was studied by steady-state PL, time- and polarization-resolved PL. 

Steady-state PL and TRPL results indicated that inferior optical quality for the -c-wings of 
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semipolar GaN layers compared to +c-wings originate not only from the point defects and threading 

dislocations, but also from basal plane and prismatic stacking faults. It is found in TRPL results 

that fast decay component representing the nonradiative recombination has substantially larger 

contribution for the -c-wings, while the PL transients measured on the +c-wing are dominated by 

the slow decay component, mostly of radiative origin. Higher PL intensity and faster PL decay 

times for BSFs (0.8 ns) compared to PSFs (3.5 ns) suggest larger density and larger contribution 

to carrier recombination dynamics of BSFs compared to PSFs. BSF emission further exhibited 

lower polarization degree than the donor bound exciton at low temperatures, which is considered 

to be a negative effect on the optical quality of the semipolar (1101) GaN layers as well.  

4.4. Strong carrier localization in basal plane and prismatic stacking faults in semipolar 

(1122) GaN 

Lower crystal quality of semipolar and nonpolar GaN layers128 still lag the efficiency 

behind that of the polar GaN substrates.49 High density of extended defects, threading dislocations 

and stacking faults (SFs) emerge during the semipolar/nonpolar GaN growth.50,51. In general, 

stacking faults are regarded as an interrupted sequence in the stacking of closely-packed planes in 

the crystal, and they form on (0001) basal plane and on  1120  prismatic planes, and develop by 

slip. The stacking sequence of the (0001) basal plane in wurtzite crystals is “ABABABABA...” 

where the letters A and B denote lattice structures consisting of atomic Ga-N bilayers. SFs are 

terminated by free surfaces or heteroepitaxial interfaces, and propagated by dislocations within a 

crystal. I1-type basal plane stacking fault (BSF) is the most common type observed in 

semipolar/nonpolar GaN templates which has the lowest formation energy compared to I2-, I3- and 

E-type basal plane stacking faults. It has recently been shown that the formation of I1 type BSF is 
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related to the coalescence of islands in the Volmer-Weber growth mode.129 Prismatic stacking fault 

(PSF)130 is attached to basal plane stacking faults and propagates in the growth direction. The 

sequential termination of the prismatic faults along the growth direction usually folds into basal-

plane faults. The atomic configuration of the PSFs are reported in high-resolution transmission 

electron studies.54 PSFs always connect two I1–type BSF with stair-rod dislocations forming at the 

intersections, leading to step-like features and loops.  

The alignment of the conduction and valence bands is very important for heterostructures. 

The conduction and valence band offsets have opposite signs for type-I alignment, whereas type-

II alignment has band offsets in the same sign. Both electrons and holes are confined in the QW 

for a type-I alignment, while the holes reside outside the QW for a type-II alignment. In a wurtzite 

GaN, BSFs are regarded as thin zinc-blend segments in wurtzite matrix, which are under high 

uniaxial compressive strain shifting the conduction band to form a potential well in the band 

diagram.53 At low temperatures, the free exciton emission is found be placed at 3.478 eV131 and at 

3.276 eV132 for a wurtzite and zinc blende GaN, respectively. The wurtzite phase creates a 

significant spontaneous polarization compared to zinc blend phase, which leads electric fields to 

across the SF quantum wells. In literature, the debate still continues about whether the band 

alignment for wurtzite/zinc blende heterostructure in GaN is type-I133 or type-II.134 In a recent 

study, Lähnemann et al compared a type-I band alignment with a type-II band alignment taking 

the polarization field of 2.5 MVcm−1 (Psp = −0.022 Cm−2) into account for up to 3 nm thick cubic 

segments (BSFs) in a wurtzite GaN matrix. They carried out the calculations using effective-mass 

approach through a self-consistent solution of the one-dimensional Poisson and Schrodinger 

equations.52 They observed small differences in transition energies with increasing cubic segment 

thickness in the wurtzite matrix confirming similar behavior of a type-I band alignment and a type-
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II alignment due to the fact that the spontaneous polarization dominate the emission energy change, 

and holes are confined in the triangular valence bands regardless of the actual band alignment.52 

Microscopic mechanisms governing the stacking fault formation as well as their effects on the 

optical quality are not well understood yet. There are limited studies in literature regarding 

recombination dynamics associated with basal plane stacking faults135,136,137,138 and no studies are 

dedicated to recombination dynamics associated with the prismatic stacking faults. Therefore, 

comprehensive studies for the defects in nonpolar and semipolar nitrides and their influence on the 

optical quality through the recombination dynamics are required to be investigated in order to 

improve the material quality and thus device performance for optoelectronic device applications. 

Various optical techniques such as photoluminescence (PL), time- and polarization-

resolved PL (TRPL and PRPL) were used to investigate the influence of stacking faults on optical 

performance and recombination dynamics of semipolar (1122) GaN. Semipolar (1122) GaN 

layer was grown on m-plane sapphire substrate using metal-organic chemical vapor deposition 

(MOCVD) using trimethylgallium (TMGa) and NH3 as Ga and N sources, respectively. First, 500 

nm thick GaN layer was grown on m-plane sapphire substrate with mass flow rates of 17 sccm and 

9 L for TMGa and NH3, respectively, at a temperature of 1090 °C and a chamber pressure of 200 

Torr. Then, a very thin noncoalesced SiNx layer was deposited in a SiH4 flow, followed by a 800 

nm thick GaN growth at chamber pressure 200 Torr with mass flow rates of 17 sccm and 9 L for 

TMGa and NH3, respectively, at a temperature of 1100 °C. The process is known as in situ 

nanoELO where SiNx layer helps to improve structural quality in addition to surface morphology. 

Figure 71(a) shows the growth schematic of the sample while Figure 71(b) shows the 

crystallographic directions in wurtzite GaN. Photoluminescence measurements were performed 

using frequency-tripled Ti:Sapphire laser excitation (267 nm) with a pulse width of 150 fs. For 
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temperature dependent measurements, the sample was mounted on a closed-cycle He-cooled 

cryostat where emission was collected from the cryostat window using an optical fiber focused 

into a spectrometer. The collected PL was analyzed by a liquid nitrogen cooled charge couple 

device (CCD) which was connected to the spectrometer. Time-resolved photoluminescence 

(TRPL) was measured between a temperature range of 15 K and 295 K to investigate the effects 

of defects on the carrier dynamics. Hamamatsu streak camera was used in order to analyze the 

time-resolved data. In polarization-dependent PL measurements, a linear polarization analyzer was 

used to resolve the polarization state of the PL and collected signal was analyzed using CCD. 

 

Figure 71: Schematic representation of growth procedure for GaN (a) and Crystallographic 

directions in wurtzite GaN structure (b). 

Only a few studies reported BSF related emission from GaN templates at room 

temperature.139,140 In these studies, BSF lines were observed to be quenching with increasing 

temperature and shifting together with the near band edge line. In order to explore the optical 

behavior of stacking faults in detail, free exciton (FX), basal plane stacking faults emission were 

evaluated in temperature dependent steady-state PL measurements. Figure 72 shows PL spectra 

for the semipolar (1122) GaN sample collected a set of different temperature levels (from 15 to 

295 K). The transitions from the stacking faults are clearly observed at 15 K PL spectra for the 
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(1122) GaN template, and indicated with different colored lines for their temporal evolution in 

Figure 72. These transitions at energies changing between 3.31 eV and 3.43 eV at 15 K. The I1-

type BSF (3.43 eV at 15 K) is found to have highest PL intensity for the given temperature range 

in the semipolar GaN compared to other types. Comparing the reported peak emission for the 

stacking faults it can be said that the stacking faults in this semipolar (1122) GaN layer are under 

compressive strain which shifts their emission about 1-2 meV towards blue. The emission energies 

for the I1, I2 and E-type (or PSF) BSFs at room temperature are found to be 3.38, 3.30 and 3.24 

eV, respectively, which are in a very agreement with Lähnemann et al.52 One should note that the 

BSF related emissions quenched at room temperature indicating that nonradiative recombination 

paths become dominant with increasing the temperature. These nonradiative recombination centers 

are believed to be mainly Frank and Shackley dislocations surrounding the basal plane stacking 

faults.  

The binding energy of an electron at a basal plane stacking fault is estimated to be nearly 

25 meV from a solution of one-dimensional Schrodinger equation for a square quantum well.141 

The calculation is obtained for the case of δ-potential well approximation where the binding energy 

is defined as 2 2

e e cE m ( E L) / 2  . The length of the basal plane stacking fault is taken as L=1 

nm and the electron effective mass as e 0m 0.2m . It is believed that the binding energy of an 

exciton bound to a stacking fault must be higher since the hole effective mass is much higher than 

a free electron’s. Supporting this argument, the binding energy of a free exciton at a stacking fault 

is found to be 45 meV based on the theoretical calculations given in Rebane et al.141 According to 

the discussion one can say that electrons can even bind to basal plane stacking fault at room 

temperature in either free or excitonic forms which is very consistent with the steady-state PL 

results shown in Figure 72(a) where the BSF emission is clearly observed at room temperature.  
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Figure 72: Temperature-dependent PL spectra for the semipolar (1122) GaN layer. 

Evaluating earlier reports, it is found that 3.31 eV emission in PL spectrum obtained at 15 

K can be either from E-type basal plane stacking fault or prismatic stacking fault shows, which 

has PL intensities similar to I1-type BSF at low temperatures. Due to high density of I1-type BSF 

in the semipolar (1122) GaN layer 3.31 eV is likely belong to PSF since PSF are always associated 

with I1–type BSF. However, transmission electron microscopy study is needed in order to say if 

the emission from E-type BSF or PSF. Both PL intensities for I1-type BSF and 3.31 eV emission 

show slight decrease up to 80 K following with a drastic droop as can be seen in Figure 73(a). It 

is believed that this behavior is closely related to donors which are acting as exciton capture sides 
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up to 80 K. Excitons are fully delocalized from donors after 80 K (localization energy of the donors 

is 7 meV (~80K)).137 PL ratio of these stacking faults showed slight increase from 15 K to 80 K 

(Figure 73(b)). However, the ratio significantly decreased by increasing the temperature above 80 

K. The slight increase in the ratio up to 80 K might be due to either the carrier transfer between 

the stacking faults or different radiative recombination efficiency of carriers in different type of 

stacking faults since they have different polarization in their QW-like band gaps. Latter is 

supported by time-resolved PL results that will be discussed later. The fast decrease in the PL ratio 

after 80 K is a clear indication of which carriers has lower binding energy at 3.31 eV SF compared 

to I1-type BSF. One can assume that an electron bound to a 3.31 eV SF can either bind to a basal 

plane stacking fault or become a free electron when the substrate temperature is increased above 

80 K. However, the effect of the nonradiative centers cannot be neglected in all processes affecting 

intensity of all stacking fault related emissions via carrier capture. This is very plausible 

considering that the donors cannot prevent excitons from nonradiative recombination since 

excitons are fully ionized from donors at high temperature levels. 
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Figure 73: (a) PL intensity and (b) PL intensity ratio of 3.31 eV SF and I1-type BSF with respect 

to temperature. 
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Temperature dependent TRPL measurements were performed to better understand the 

effect of stacking faults on recombination dynamics. Figure 74 shows PL decay times obtained 

from biexponential fitting of PL transients for I1-type BSF and 3.31 eV SF related emissions. 

Longer decay times are taken as characteristic PL decay times since initial fast decays in transients 

are related to the carrier diffusion away from the surface deeper into the sample.142 Among the 

stacking faults, higher PL intensity and faster decay times for I1-type BSF compared to other 

stacking faults indicate that I1-type BSF has larger density and larger contribution to overall 

recombination dynamics. It should be also mentioned here that recombination dynamics are 

affected by not only stacking faults, but also point defects and threading dislocations. However, 

the discussion here is limited to effects of stacking faults on the recombination dynamics deduced 

from their temperature dependent PL decay profiles. PL decay times of both I1-type BSF and 3.31 

eV SF do not show temperature dependence up to 80 K. After 80 K, PL decay times decreased by 

power of ~-2 and ~-1 for I1-type BSF and 3.31 eV SF, respectively. One may conclude that the 

carrier delocalization with respect to increasing temperature is higher in I1-type BSF compared to 

3.31 eV SF. This is consistent considering the stacking faults’ energy levels where the I1-type BSF 

energy level is closer to conduction band level compared to 3.31 eV SF, which makes the carriers 

in 3.31 eV SF to be trapped by either other basal plane stacking faults or conduction band by giving 

additional thermal energy. However, one should also consider the temperature effects where the 

probability for the dissociation of excitons into free carriers increases by increasing the 

temperature. It must be also taken into account that the carrier localization will be different for the 

free excitons and donor bound excitons in addition to free electrons. For example, when free 

excitons are around the vicinity of a BSF line, the probability of their capture by the BSF will be 

higher than that by donors. This is more effective up to 80 K since the excitons localized in donors 
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cannot bind to donors anymore after this temperature. Another mechanism related to electron 

localization in basal stacking faults was investigated by Confdir et. al.143 They theoretically 

showed that presence of a donor in the vicinity of an I1-type basal stacking fault localizes the 

electrons along the plane of the basal plane stacking fault. The localization gets stronger when the 

distance between the donor and the basal stacking fault gets closer, and reaches its maximum when 

the donor is placed inside the basal stacking fault.143 Nevertheless, the most effective process for 

the dramatic decrease in PL decay time for both the stacking fault after 80 K is related to 

nonradiative recombination since increasing the temperature increases the nonradiative channels 

and delocalize carriers from either donors or stacking faults moving to these channels. It can be 

understood from above discussion that the processes associated with the carrier recombination 

dynamics together with stacking faults are quite complicated and it is indeed difficult to distinguish 

all effects one by one using optical techniques. But optical techniques give strong evidence about 

the dominating mechanisms on the carrier recombination dynamics when temporal evolution of 

PL intensity and PL decay times for the stacking faults are investigated. One may conclude that 

exchange of carriers between the energy levels (conduction band, donor bound, and stacking 

faults) takes place via carrier trapping/detrapping processes and affects the carrier dynamics in 

addition to nonradiative recombination centers.  
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Figure 74: PL decay times for I1-type BSF and 3.31 eV SF obtained from biexponential fits of the 

transients. 

The temperature-dependent PL lifetimes and PL intensity ratios were used to separate the 

radiative and nonradiative lifetimes for both I1-type BSF and 3.31 eV SF emissions based on the 

technique given in Appendix C. Figure 75 shows extracted radiative and nonradiative lifetimes. 

As can be seen form Figure 75 the radiative lifetime dominates the PL decay time at low 

temperatures and increases with temperature. The theoretical value for radiative decay time versus 

temperature is 1.5 for bulk samples, and 1 for two-dimensional structures shown in Figure 75 . 

However, the slopes obtained for these stacking faults differs substantially from the theory as the 

stacking faults are expected to show two-dimensional character. This strongly implies that other 
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mechanisms are affecting the radiative recombination dynamics. The slope for 3.31 eV SF is found 

to be steeper compared I1-type BSF indicating that the density of carriers, which contribute the 

radiative recombination, in 3.31 eV SF decreases much faster with increasing the temperature 

compared to I1-type BSF. As can be seen in Figure 75, the radiative lifetime at 200 K is ~20 ns 

and ~100 ns for I1-type BSF and 3.31 eV SF, respectively. Assuming a radiative recombination 

coefficient B = 5x10-11 cm3/s and using the τRad= 1/BN one can find the carrier density. The carrier 

densities for I1-type BSF and 3.31 eV SF at 200 K are calculated to be 1018 cm-3 and 2x1017 cm-3, 

respectively. The radiative decay times for the I1-type BSF and 3.31 eV SF at room temperature 

will be ~40 ns and ~300 ns, respectively, based on the slopes. As noticed the radiative decay gets 

slower twice at room temperature for the I1-type BSF compared to 200 K, while the decay slowed 

down three times for 3.31 eV SF. Therefore, the carrier densities at room temperature will be 

5x1017 cm-3 and 6.6x1016 cm-3 for the I1-type BSF and 3.31 eV SF, respectively. This clearly shows 

that the escape rate of the carriers from the 3.31 eV SF are much faster than the I1-type BSF 

supporting the earlier arguments and data. The electron bound to these stacking faults can either 

bind to another stacking fault or become a free electron when the substrate temperature is 

increased. However, the effect of the nonradiative centers, surrounding the stacking faults, should 

not be neglected in all processes. 
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Figure 75: Temperature-dependent radiative and nonradiative decay times extracted from PL 

decay times. Stars, open circle and full square show radiative, nonradiative and PL 

decay times, respectively. 

Effects of stacking faults on optical processes are further investigated using polarization-resolved 

PL (PRPL) technique. Figure 76 shows the normalized PL intensity on a polar plot for I1-type BSF 

and 3.31 eV SF emission of the semipolar GaN sample measured at 15 K. The directions of the 

excitation light wave vector k and the electric field E with respect to selected crystallographic 

directions in a wurtzite structure are indicated in the same figure. A linear polarization analyzer 

was used to resolve the polarization state of the PL with the light collected always normal to the 

sample. 90° for the polarizer corresponds to polarization parallel to the [1120] GaN axis. The 
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degree of polarization is defined as     
h l h l

I I I I , where 
h

I  and 
l

I  represent the highest and 

the lowest PL intensities resolved, respectively. The degree of polarization is found to be 0.30 and 

0.15 at 15 K for the I1-type BSF and 3.31 eV SF lines, respectively. Polarization may seem to 

diminish when carriers recombine through the 3.31 eV SF compared to I1-type BSF. However, the 

two times decrease in degree of polarization arises from different orientations of the stacking 

faults. This results is quite different from the PRPL results given in Okur et al144 where the degree 

of polarization clearly diminishes when carriers recombine through basal plane stacking faults 

affecting adversely the optical quality of semipolar (1101) GaN layers. 
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Figure 76: Normalized polarization-resolved PL intensity plot for the I1-type BSF and 3.31 eV SF 

at 15 K together with directions for the excitation light wave vector k and the electric 

field E with respect to selected crystallographic directions in the wurtzite structure.  
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In summary, the stacking faults in semipolar (1122) GaN are investigated using various 

optical characterization techniques. Stacking faults are found to be actively involved in optical 

processes substantially influencing the carrier dynamics. In addition to nonradiative recombination 

centers, carrier trapping/detrapping by stacking faults and carrier transfer between stacking faults 

and donor energy levels are found to be among those processes affecting the carrier recombination 

processes at different temperature levels. Temperature dependent steady-state PL results showed 

that carriers are loosely localized in 3.31 eV SF compared to I1-type BSF. This is evidenced by 

strong I1-type BSF PL appearing at room temperature while the 3.31 eV SF PL dies around 250 

K. Temperature has a strong influence on the PL intensity ratio of those two which is believed to 

be closely related to exciton localization energy to donors (7 meV) where excitons are fully 

delocalized from donors after 80 K. Higher PL intensity and much faster radiative recombination 

decay times of I1-type BSF compared to 3.31 eV SF showed that I1-type BSF has larger density 

and larger contribution to recombination dynamics.  

4.5. Microscopic distribution of stacking faults in semipolar (1101) GaN substrates 

revealed from spatially resolved photoluminescence 

In addition, spatially and spectrally-resolved cathodoluminescence (CL) measurements at 

low temperature (5.8 K) and room temperature spatially-resolved near-field scanning optical 

microscopy (NSOM) were used to investigate the defect distributions, and consequently the optical 

quality of the semipolar (1101) GaN layers whose PL and TRPL results were presented in Chapter 

6. CL measurements145 were conducted by Dr. Sebastian Mentzner from University of Magdeburg, 

Germany. For NSOM measurements, HeCd laser (325 nm wavelength) excitation through a Cr-Al 

coated optical fiber probe with a 100 nm. A band-pass filter (350-370 nm) was used to measure 
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the GaN near bandedge emission. In addition, steady-state PL measurements were performed at 

low and room temperature to compare the optical performance and defect related PL lines.   

The NSOM and CL data for the wide-groove pattern sample are summarized in Figure 77. 

The atomic force microscopy (AFM) image in Figure 77(a) and the corresponding NSOM near-

band edge emission (NBE) intensity map (integrated between 350-370 nm) in Figure 77(b) for the 

wide-groove pattern sample show that NBE originates mainly from the +c-sides of the stripes. 

Figure 77(c) shows the steady-state PL spectra for the wide- and narrow-groove pattern samples 

collected at 15 K and 295 K. At 15 K the intensities of the donor-bound exciton (D0X) emission 

for both samples are comparable to that for a state-of-the-art polar GaN template (~10 µm thick) 

grown on sapphire using in situ epitaxial lateral overgrowth (ELO) with a SiNx nano-network 

mask.80 The relatively high BSF and PSF127 PL intensities (3.416 eV and 3.336 eV, respectively), 

are indicative of a large density of stacking faults in the semipolar (1101) GaN samples. The 

presence of a high density of defects is also evidenced by the rapid decrease of the internal quantum 

efficiency (IQE) from the assumed 100% at 15 K to 4% at 100 K and 1% at room temperature for 

the wide-groove pattern sample. The distinction between the +c and –c-sides in terms of the defect 

densities and the optical quality deduced from NSOM data is confirmed from the SEM and the 

corresponding 5.8 K CL intensity (integrated between 350-380 nm) and CL peak wavelength 

images shown in Figure 77(d), (e), and (f), respectively. The CL NBE (~3.47 eV or ~357 nm) 

mainly originates from the +c-sides, and the overall emission from the –c-sides is significantly 

weaker. Additional nonradiative centers due to threading dislocations (TDs) and associated point 

defects are also manifested as dark regions in NSOM-PL and CL images. The dark patterns 

elongated normal to the stripes correspond to TDs that originate from the Si interface and reach 

the (1101) GaN surface mainly in the –c sides.  
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In order to further understand the distribution of TDs in the wide-groove pattern sample, 

cross-sectional CL measurements were performed. As seen in Figure 78(a), CL intensity 

diminishes at the GaN/Si interface where the growth initiates, and therefore, a high density of TDs 

exists. During the initial stages of growth, the TDs propagate along the +c-direction. However, as 

the growth proceeds the TDs which propagate in the vicinity of (1101)  growth fronts bend toward 

them under the action of image forces146 as schematically shown in Figure 78(b). Gradeèaka et 

al.146 demonstrated that a significant portion of the TDs bend by 90° (depending on the type of 

dislocation and the associated Burger’s vector, intermediate bending angles of ~45° and ~60° have 

also been observed.146,147 and then propagate in the basal plane, i.e. in the direction perpendicular 

to major progressing growth front for our geometry, as illustrated in Figure 78(b). The rest of TDs 

propagate in the +c-direction perpendicular to the growing (0001) front and terminate at the lower 

(1101)  facets. As a result, a relatively narrow slice of the defective material (referred to here as 

the –c-side) forms adjacent to the –c-wing of the stripe (appearing as a dark region on the top-view 

and cross-sectional CL and NSOM images shown in Figure 77 and Figure 78.  
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Figure 77: Top-view (a) AFM and (b) the corresponding room temperature near-band edge 

emission (integrated between 350-370 nm) NSOM images, (c) 15 K and room 

temperature PL spectra (red), (d) SEM, and the corresponding 5.8 K (e) CL intensity 

(integrated between 350-380 nm) and (f) CL peak wavelength images of the wide-

groove pattern (1101) GaN sample. In (c) the PL spectra for the narrow-groove pattern 

(1101) GaN sample (blue) and a c-plane GaN reference sample (black) are also 

shown. 
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Figure 78: (a) Cross-sectional integrated CL intensity image (350–380 nm) for the wide-groove 

pattern sample. The dashed lines represent GaN growth boundaries. (b) Cross-

sectional schematic of GaN growth from  sidewall showing TD propagation 

(blue lines) and the growth fronts (dashed lines). Note that propagation of the bottom 

 front is the slowest because of limited material supply. 

The distribution of defects is found to be quite different in the narrow-groove pattern layer 

as seen in Figure 79. The BSF and PSF densities are significantly higher in the narrow-groove 

pattern sample compared to the wide-groove pattern sample. Moreover, the narrow-groove pattern 

sample exhibited nearly 30 times lower NBE at room temperature than the wide-groove pattern 

sample due to a significantly higher density of extended defects inclusive of threading dislocations 

and the associated point defects. This is why the patterning geometry caused more TDs in addition 

to extra BSF rows126 formed where the growing +c-fronts of GaN made contact with the SiO2 

masking layer on the opposite side of the groove in the Si substrate (Figure 80). 

Si(111)

1101)(
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Figure 79: Plan-view (a) SEM and the corresponding 5.8 K (b) CL intensity (350-380 nm) and (c) 

CL peak wavelength images, and (d) room temperature near-band edge emission 

NSOM image of the narrow-groove pattern GaN sample. The projection of the 

c-axis is also indicated on the images. 

The regions with high density of BSFs are manifested as high brightness rows in plan-view 

[Figure 79(b)] and cross-sectional [Figure 80(a)] CL intensity images. The CL peak wavelength 

image in Figure 79(c) confirmed the presence of BSFs (~364 nm emission) in the –c-wings as well 

as within the +c-wings. Additional BSF rows are also observable in Figure 80. Concentration of 

strain near the region in contact with SiO2 and/or oxygen and/or silicon out-diffusion from SiO2 

followed by surface migration of the species have been proposed as possible causes.126 These 

additional BSF rows within the +c-sides are found to play a critical role for the material quality in 

the narrow-groove pattern sample. As evident from the plan-view [Figure 79(b)] and cross-

(1101)
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sectional CL intensity [Figure 80(a)] and CL peak wavelength [Figure 80(b)] images, the TDs, 

manifested as dark spotty patterns along the c-direction, are blocked by the additional BSF rows. 

Some of the TDs initially propagating along the c-direction are bent into the basal plane with 

further growth as in the narrow-groove pattern sample, and those continuing along the c-direction 

are terminated if they encounter an additional BSF row. This is illustrated in the schematic of 

Figure 80(c). As a result of this interaction between the TDs and the BSFs, the regions between 

the two BSF rows are virtually free of TDs [see the bright regions between two BSF rows in Figure 

79(b) and Figure 80(a)]. This is also confirmed by the NSOM NBE intensity image of Figure 

79(d), which shows periodic high brightness stripes representing the high quality regions between 

the two BSF rows. The effective blocking of TDs by the additional BSFs in the narrow-groove 

pattern sample can be beneficial to further reduce the TD density without the need for a two-step 

selective growth technique.148 
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Figure 80: CL intensity (350–380 nm) and (b) CL peak wavelength images for the narrow-groove 

pattern sample GaN sample. The solid and dashed lines indicate the Si substrate 

surface and the GaN stripe cross section, respectively. (c) Cross-sectional schematic of 

GaN growth from  sidewall showing threading dislocation propagation (blue 

solid lines) and the growth fronts (red dashed lines). 

In summary, semipolar (1101) GaN layers were studied by steady-state PL and spatially 

resolved NSOM and CL with emphasis on the distribution of defects and their effects on the optical 

quality. The PL from the near surface +c-sides of the semipolar (1101) GaN layers are found to be 

mainly dominated by the strong near bandedge emission; however, emission from the -c-sides is 

substantially weaker due to high density of threading dislocations and stacking faults. By entirely 

(1101)

Si(111)
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optical means, without the need for any structural microscopy analysis, it was revealed that some 

TDs bend toward the surface. Additional stacking faults formed in the narrow-groove pattern 

sample when the growing +c fronts made contact with the SiO2 masking layer were found to block 

TD propagation along the +c-direction. These results indicate that, for proper Si(001) substrate 

patterning geometry, high quality (1101) GaN free from extended defects can be obtained using a 

single ELO step. 

4.6. Optical performance of nonpolar m-plane  1100 GaN layers grown using two-step 

growth technique 

As explained before, the reactor pressure during MOCVD growth have a dramatic effect 

on the optical properties of m-plane (1100 )GaN layers. Therefore, the nonpolar GaN layers are 

grown on Si (112) substrates patterned to form grooves aligned parallel to the <110> Si direction 

at high pressure to achieve high optical quality, similar to that of semipolar (1101)GaN films 

which are successfully grown at high pressure of 200 Torr (as discussed above, the optical quality 

of (1101)GaN is comparable to that of state-of-art c-plane GaN; see Figure 59). However, for the 

formation of the nonpolar m-plane ( 1100 )GaN facets, a low reactor pressure of 30 Torr 

required.149 Therefore, m-plane GaN developed by two-stage growth procedure, in which low-

pressure (30 Torr) first stage is used to ensure formation and lateral expansion of m-facet until 

coalescence and high-pressure stage (200 Torr) is employed for improvement of optical quality. A 

reference nonpolar (1100 )GaN sample also was grown in one step at a pressure of 30 Torr (low 

pressure) for comparison. M-plane (1100 )GaN samples were characterized by scanning electron 

microscopy (SEM), steady-state photoluminescence (PL), and near-field scanning optical 
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microscopy (NSOM). HeCd laser excitation (325 nm wavelength) was used for the excitation 

source in the PL measurements.  

Figure 81 shows a cross-sectional SEM image of non-coalesced GaN stripes grown on the 

patterned Si substrate. GaN growth started on the vertical sidewalls and then advanced laterally 

first along the GaN [0001] +c direction (+c wing) and then, once the vertical growth had advanced 

above the Si(112) substrate surface, also along the [ 0001 ] −c direction (−c wing). The growth 

rate of GaN in the +c direction is much higher than that in −c direction; therefore, the +c wing is 

wider than the −c wing, as seen from Figure 81.  

 
Figure 81: Cross-sectional SEM images of nonpolar m-plane GaN on patterned Si(112) substrate. 

Figure 82(a) compares room-temperature PL spectra from two m-plane GaN samples: one 

grown in two steps (30 + 300 Torr) and another grown at a low pressure of 30 Torr. The spectra 

from semipolar (1101)GaN sample grown on patterned Si(001) substrate at 200 Torr and polar c-

plane GaN layer grown on the state-of-the-art GaN templates using in situ epitaxial lateral 
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overgrowth (ELO) with a SiNx nano-network mask are also shown for comparison. One can see 

that the m-plane GaN sample grown at low pressure shows rather weak near band edge emission 

(NBE) with a strong defect-related deep emission band around 550 nm. The sample grown in two 

steps shows improvement of the optical quality: the PL intensity for this sample is about 3 times 

higher than that for the layer grown at 30 Torr in a single step and the intensity of the deep emission 

is considerably lower. However, the emission from m-plane GaN is still more than an order of 

magnitude lower than that of the semipolar GaN grown under the same conditions. Figure 82(b) 

presents 15-K PL spectra measured for the low-pressure sample and the sample grown in two 

steps. In addition to narrow donor-bound exciton emission line (D0X) at 357.6 nm, the low-

pressure sample shows a strong peak at 380 nm related to PSFs and its phonon replicas at longer 

wavelengths. A shoulder of the D0X line at about 362 nm can be assigned to basal stacking faults. 

A broad NBE line at 356.4 nm is observed in the spectrum of the two-step-grown sample, while 

PSF-related emission is seen only as a weak shoulder. One can see that emission from nonpolar 

m-GaN is still lower than that of the semipolar GaN grown under the similar conditions. For further 

improvement of the nonpolar material quality, deeper understanding of mechanisms of defect 

formation is essential. 
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Figure 82: (a) Room-temperature steady-state PL spectra for m-plane GaN layers grown at 30 Torr 

(blue) and in two steps (30 + 200 Torr) (black). The spectra from polar c-plane GaN 

nano-ELO sample (green) and ( 1101 )GaN semipolar sample (red) are shown for 

comparison. (b) Low-temperature (15 K) PL spectra for m-plane GaN samples grown 

at 30 Torr (blue) and in two steps (black). 
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To study PL intensity distribution among the +c and −c wings, NSOM measurements were 

performed. Figure 83(a) shows the micro PL spectra from +c and −c wings of the m-plane GaN 

sample grown in two steps, where the intensity of PL emission from +c and −c wing regions is 

virtually the same. Figure 83(b) and (c) present the NSOM map, i.e. spatial distribution of intensity 

of near band edge emission and yellow emission, respectively, over the surface of m-plane GaN 

sample grown in two steps. The results of NSOM mapping are consistent with the micro PL data: 

PL intensity distribution shows no apparent difference between the +c and −c wings. The strong 

yellow emission from the near surface regions suggests a high density of point defects in these 

regions. 
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Figure 83: NSOM maps for (a) near-band edge and (c) yellow emissions. Dashed lines show the 

boundaries of GaN stripes. The scan area is 20 × 20 µm. The spectra were integrated 

between 350–370 nm for the near bandedge (NBE) intensity maps and above 450 nm 

for the yellow emission (YE) intensity maps. 

Nonpolar m-plane GaN layers were grown on patterned Si (112) substrates by MOCVD using 

a two-step approach to improve their optical quality. The two-stage growth procedure involving a 

low-pressure (30 Torr) first stage to ensure formation of the m-plane facet and a high-pressure 
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stage (200 Torr) for improvement of optical quality was employed. Two-stage growth for the m-

plane GaN growth resulted in higher optical quality layers compared to m-plane layers grown only 

at low reactor pressures (30 Torr), but still lower than that of semipolar (1101)GaN layers which 

were grown in similar conditions. Compared to the layers grown at low pressure in a single step, 

the near band edge PL intensity was ~3 times higher and the deep emission was considerably 

weaker. Optical emission over the c− and c+ wings of the nonpolar GaN/Si was found to be similar 

in terms of PL intensity confirmed by both spatially resolved NSOM and microPL measurements.  

4.7. Semipolar (1101)  and (1122) InGaN LED performance  

An InGaN LED structure is grown on a semipolar (1 101) GaN. LED design optimized for 

polar c-plane LEDs on sapphire in our laboratory were employed for this sample.150 As shown 

schematically in Figure 84, the LED active region consists of six 3 nm In0.16Ga0.84N layers 

separated by 3 nm In0.01Ga0.99N barriers. Situated below the active region is a two-layer staircase 

electron injector (SEI)30 grown on a 60 nm n-type (2×1018 cm-3) In0.01Ga0.99N underlying layer that 

was employed to reduce the probability of strain relaxation in the active region owing to its 

compliance action warranted by its softer lattice compared to GaN. The SEI consists of 

In0.04Ga0.96N and In0.08Ga0.92N layers of the same thickness of 16 nm grown in the given order. The 

LED structures were completed with 100 nm-thick Mg-doped p-GaN layers having approximately 

5×1017 cm-3 hole density (calibration was done for c-plane structures by using Hall effect 

measurements). Spatial distribution of extended defects in the structure was studied at room 

temperature using a Cryoview 2000 NSOM system (Nanonics Imaging Ltd). HeCd laser (325 nm 

wavelength) excitation through a Cr-Al coated optical fiber probe with a 100 nm aperture was used 

for NSOM measurements. 
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Figure 84: Conduction band schematic structure of LED active region grown on GaN 

templates on patterned Si substrates (flat band conditions). The underlying In0.01GaN 

layer is used to improve the active region material quality. Similar LED structures 

were grown on c-plane GaN for comparison. 

Figure 85 compares the PL intensity from the semipolar (1 101) LED structure on patterned 

Si with that from a highly optimized polar c-plane LED structure having a high internal quantum 

efficiency of about 80%. To avoid influence from the top p-GaN layer, the InGaN active regions 

were excited with below GaN bandgap excitation (385 nm wavelength). One can see that the PL 

intensity from the semipolar InGaN/GaN structures on patterned Si is comparable to that from the 

polar LED structure grown on sapphire. These findings indicate that semipolar (1 101) -oriented 

material with optical quality required for light emitting devices can be achieved on patterned Si 

substrates.   

(1 101)
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Figure 85: PL spectra for semipolar (1 101) InGaN LED structure grown on (1 101) GaN on stripe 

patterned Si substrate measured with an excitation wavelength of 385 nm. PL spectrum 

for a highly optimized polar c-plane LED structure with 80% internal quantum 

efficiency is shown for comparison. 

Figure 86 presents the room temperature NSOM reflection (325 nm incident wavelength) 

and InGaN band-edge PL intensity maps of semipolar (1 101) InGaN/GaN LED structures. To 

block the short-wavelength emission from GaN, a 400 nm high-pass filter was used. One can see 

that the -c-wing regions appear as dark areas in the PL map due to the presence of large density of 

stacking faults (acting as nonradiative recombination channels at room temperature) and threading 

dislocations. The emission from the +c-wings is very bright and relatively uniform across the 

sample, which is indicative of homogeneous In distribution. 
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Figure 86: Room temperature NSOM maps of semipolar (1 101) InGaN/GaN LED structure grown 

on (1 101) GaN templates on stripe patterned Si substrates. (a) Optical reflection image 

(325 nm wavelength), (b) PL intensity distribution measured with 400 nm high-pass 

filter. Boundaries of +c- and -c-wings are indicated with dashed lines. 
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The PL from the near surface +c-sides of the semipolar (1 101) InGaN LED is found to be 

mainly dominated by the strong active region emission; however, emission from the -c-sides is 

substantially weaker due to high density of threading dislocations and stacking faults as revealed 

in NSOM measurements. 

Another InGaN LED structure is grown on a semipolar (1122) GaN on m-sapphire 

substrate, which is schematically similar to Figure 84, but with active region consisting of four 3 

nm In0.16Ga0.84N layers instead of six in the case of (1 101) LED structure. Figure 87 compares the 

PL intensity from the semipolar (1122) LED structure with that from a highly optimized polar c-

plane LED structure having a high similar active region. The InGaN active regions were excited 

with 325 nm HeCd laser excitation. One can see that the PL intensity from the semipolar 

InGaN/GaN structures on m-sapphire substrate is substantially lower than that from the polar LED 

structure grown on c-sapphire. These results indicate that semipolar (1122) -oriented material 

quality requires to be improved for light emitting devices.   
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Figure 87: PL spectra for semipolar (1122) InGaN LED structure grown on m-sapphire substrate 

measured with an excitation wavelength of 325 nm. PL spectrum for a highly optimized 

polar c-plane LED structure with 80% internal quantum efficiency is shown for 

comparison.  

In summary, semipolar (1 101) InGaN LED structure grown on Si(001) 7° offcut substrate 

with 3 μm x 10 μm groove pattern and (1122) InGaN LED structure grown on m-sapphire 

substrate were studied by photoluminescence measurements in addition to spatially-resolved 

NSOM with emphasis on the distribution of defects and their effects on the optical quality for 

(1 101) InGaN LED structure. PL measurements showed a promising optical quality of (1 101)

InGaN LED structure which has a similar PL peak intensity to an optimized c-plane polar LED 

structure. However, PL results support the argument that structural quality of (1122) InGaN LED 
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needs to be improved for better optical quality. NSOM results indicate inferior optical quality for 

the -c-wings of semipolar (1 101) InGaN layers compared to +c-wings originate not only from the 

point defects and threading dislocations, but also from basal plane and prismatic stacking faults. 
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Chapter 5. Summary and Conclusions 

A set of optical techniques have been used to explore the major challenges during the 

development of a new type blue InGaN-based vertical cavity structure grown on nearly defect free 

epitaxial lateral overgrown (ELO) GaN layers employed with bottom and top dielectric DBRs. 

The vertical cavity structure provided solutions to narrow stop-band bottom DBR and their 

integration with cavity active region, high quality GaN substrate and InGaN active regions, and 

cumbersome substrate removal process after top dielectric DBR deposition. In the context of 

enhancement of active region quality, DH active regions are investigated in addition to nonpolar 

and semipolar GaN substrates.  

Rabi splitting of 75 meV at low temperature (45 meV at room temperature) was obtained 

for the cavity using InGaN MQW (6 x 2nm well) active region grown on a free-standing GaN 

substrate confirming strong exciton-photon coupling being one of the largest in the literature, 

which is very promising for ideally thresholdless polariton lasers. Substantial increase in quality 

factors (from 300 to 1300) was obtained for the vertical cavity structure grown on a sapphire 

substrate with dual hex 3 nm DH active region compared to the vertical cavity with MQW on free-

standing GaN. In order to achieve the vertical cavity structure, MOCVD growth parameters also 

studied for higher lateral to vertical (L/V) growth ratio ELO-GaN wings. In addition, the etching 

parameters for ELO wings using inductively coupled plasma (ICP) etching technique investigated 

to obtain desired vertical cavity lengths on the ELO wings. Final cavity structure was obtained 

after the lithography techniques used following with e-beam deposition for the electrical contacts.  

The relative roles of radiative and nonradiative processes and the polarization field on the 

light emission from the single and multiple DH active designs have been studied. Experimental 
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results supported by theoretical and numerical studies that injection dependent electron and hole 

wavefunction overlap and the corresponding radiative recombination coefficients suggest to 

employ multiple InGaN DH structures separated by thin and low barriers for better optical 

performance. Time-resolved photoluminescence measurements also revealed higher radiative 

recombination rates with increasing excitation due to screening of the internal field and enhanced 

electron and hole overlap at higher injection levels. It is also shown that a good design of SEI may 

play an important role for the efficiency improvement of LEDs. It is found that the integrated PL 

intensity of LEDs employed with 20+20 nm SEI are nearly 10 times higher than that of 5+5 nm at 

low injection levels. Most importantly, the increased SEI thickness boosted the electron cooler 

potential and substantially reduced the electron overflow for the DH LEDs. Among the efforts to 

enhance the quantum efficiency at elevated injection levels, MDH designs constituted a viable 

approach to achieve high efficiency and high power LEDs. 

Nonpolar and semipolar GaN substrates have been investigated using temperature 

dependent photoluminescence, time-resolved photoluminescence and near-field scanning optical 

microscopy techniques, which provided many insightful information about the optical and material 

quality of these layers. First of all, it is found that one can successfully measure the contributions 

of free carriers and excitons to recombination process and quantify them at different excitation 

densities and temperatures for the mixed exciton-free carrier system if TRPL and PRPL techniques 

are employed together. Based on the results, free carrier population increases by increasing both 

excitation density (by screening the excitons) and temperature (by dissociation of excitons) 

radiative recombination rate and degree of polarization are strongly affected. Stacking faults 

(basal-plane and prismatic) are shown to be actively involved in optical processes substantially 

influencing the carrier dynamics in semipolar (1101)  and (1122) GaN layers grown on silicon and 
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sapphire substrate, respectively. Steady-state PL and TRPL results indicated inferior optical 

quality of  -c-wings of semipolar (1101) GaN layers compared to +c-wings originating not only 

from the point defects and threading dislocations, but also from basal plane and prismatic stacking 

faults. Higher PL intensity and faster PL decay times for BSFs (0.8 ns) compared to PSFs (3.5 ns) 

suggested larger density and larger contribution to carrier recombination dynamics of BSFs 

compared to PSFs in semipolar (1101) GaN layers. Their presence are also evidenced from 

spatially and spectrally resolved near-field scanning optical microscopy (NSOM) and 

cathodoluminescence (CL) measurements and showed very good agreement with PL and TRPL 

results. In addition to nonradiative recombination centers, carrier trapping/detrapping by stacking 

faults and carrier transfer between stacking faults and donor energy levels are found to be among 

those processes affecting the carrier recombination dynamics at different temperature levels. 

Temperature dependent steady-state PL results showed that carriers are loosely localized in 

prismatic stacking faults compared to basal stacking faults. Nevertheless, optical studies conclude 

that nonradiative recombination is still the most effective process for the carrier recombination 

dynamics for these layers. 

Semipolar (1 101) InGaN LED structure grown on Si(001) 7° offcut substrate with 3 μm x 

10 μm groove pattern and (1122) InGaN LED structure grown on m-sapphire substrate were 

studied by photoluminescence measurements PL measurements showed a promising optical 

quality of (1 101) InGaN LED structure which has a similar PL peak intensity to an optimized c-

plane polar LED structure. However, PL results supports the argument that structural quality of 

(1122) InGaN LED needs to be improved for better optical quality.     
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Chapter 6. Outlook 

InGaN active regions were evaluated using a set of optical techniques to obtain the most 

efficient structural design for light emitting devices, LEDs and vertical cavities. Among the efforts 

to enhance the quantum efficiency at elevated injection levels, MDH designs constituted a viable 

approach to achieve high efficiency and high power LEDs. On the other hand, it was found that a 

good design of SEI might have played an important role for the efficiency improvement of LEDs. 

The LEDs employed with 20+20 nm SEI increased the PL intensities and substantially reduced 

the electron overflow for the LEDs. It is suggested that LEDs with active regions with MDH and 

20+20 nm SEI should be investigated more using time-resolved techniques to obtain more 

information about the radiative and nonradiative recombination processes and should be compared 

to LEDs with different active regions. These investigations would pave for further optimization of 

the active regions used in LEDs and vertical cavity lasers. 

 Chapter 3 examines the hybrid vertical cavities (bottom semiconductor and top dielectric 

DBR) and a vertical cavity with full dielectric DBRs. A hybrid vertical cavity with MQW active 

region showed a strong coupling behavior with 75 meV Rabi splitting, which is very promising 

for ideally thresholdless polariton lasers. This cavity structure should be investigated more with 

optical techniques using high power lasers to obtain the threshold lasing value. Excitation power 

dependent PL measurements would also help to find the β coefficient (the fraction of spontaneous 

emission that seeds the lasing process). Eventually, photolithography and deposition techniques 

should be employed to constitute the electrical contacts to test this sample under electrical 

injection.  
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A vertical cavity structure grown on nearly defect free epitaxial lateral overgrown (ELO) 

GaN layers employed with bottom and top dielectric DBRs. The vertical cavity structure provided 

solutions to narrow stop-band bottom DBR and their integration with cavity active region, high 

quality GaN substrate and InGaN active regions, and cumbersome substrate removal process after 

top dielectric DBR deposition. However, fabrication issues having to do with the full contiguity 

of the metal layer are at least partially, if not nearly fully, responsible for not observing the lasing 

at electrical injection. Further reduction of the p-GaN layer thickness in addition to improving the 

fabrication procedures may lead to lasing in these devices under electrical injection. 

As stated in Chapter 4, nonpolar and semipolar GaN substrates are promising for light 

emitting device applications mainly due to the lack of polarization-induced electric field compared 

to its widely used c-plane counterpart. Demonstration of their growth on patterned Si substrates 

shows great promise for obtaining low-cost large-area GaN substrates for the optoelectronic device 

applications. In this thesis, the studies focused on achieving high-quality non-polar m-plane and 

semipolar (1101)  and (1122) GaN layers and investigating them using various optical techniques. 

Semipolar (1101) GaN layers showed better performance in terms of structural and optical quality, 

while nonpolar m-plane and semipolar (1122) GaN layers were found to be in need of further 

structural improvements for better quality. Consequently, [1101] -orientated GaN surface should 

be pursued to construct LEDs and vertical cavities for better device performance in short term. It 

is believed that nonpolar m-plane and semipolar (1122) GaN substrates will also take their place 

in light emitting device applications in near future when their quality are improved. In addition to 

engineering side, physics also benefit from these substrates due to their rich nature for optical 

investigations. Contrary to polar c-plane substrates, nonpolar and semipolar orientations allow one 

to study polarization-resolved recombination dynamic thanks to the polarization selection rules. 
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For this reason, temperature and excitation power dependent PL and TRPL measurement 

techniques should be employed with polarization dependent PL measurements to gain insights 

about the nature of the particles as well as defects which are actively involved in radiative and 

nonradiative recombination processes. 
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Appendices 

Appendix A: Determination of IQE from excitation density dependent photoluminescence 

measurement 

It is assumed that at steady state the total generation rate (G) is equal to the total 

recombination rate (R) which includes Shockley-Read-Hall nonradiative recombination (An), 

bimolecular radiative recombination (Bn2), and Auger recombination (Cn3) if any, where n is the 

carrier concentration, i.e. 

2 3G An Bn Cn         Equation 16 

When the generated stead-state carrier density n is relatively low (in the range 1016 - 1018 

cm-3), the Auger recombination term is very weak as compared to the radiative recombination 

term. In other words, the 
3Cn  term becomes much smaller than 

2An Bn . Then Equation 16 can 

be simplified to: 

2G An Bn         Equation 17 

Fortunately G could also be calculated separately from experimental parameters: 

(1 R)laser

spot

P
G

A h






       Equation 18 

where Plaser is the optical power incident on the sample, R is the Fresenal reflection at the sample 

surface, spot A is the laser spot size, h  is the energy of a photon from laser source, α is the 

absorption coefficient of the InGaN active layers at the laser wavelength. The absorption 

coefficient for InGaN can be obtained by73 

0

g

g

E E

E
 


       Equation 19 
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where 0  is the absorption coefficient at h =2Eg, which is obtained by linear interpolation 

between of GaN and InN (2.0×105 cm-1 for GaN, 1.2×105 cm-1 for InN) values.73 

The measured PL intensity could be represented as 

2

PL cI Bn      Equation 20 

where 
PLI  is the integrated PL intensity, the collection factor 

c  includes escape efficiency of 

photons as well as the collection efficiency of luminescence by the optics/detector, which is 

constant during a given measurement but different from measurement to measurement even though 

attempts are made to keep the collection geometry the same. 

By eliminating n from Equation 17 and Equation 20, one can obtain 

1 2

1
PL PL PL PL

cc

A
G I I P I P I

B 
        Equation 21 

where G is obtained as a function of IPL. By fitting the plot of G versus IPL, one could obtain the 

three fitting coefficients. Then the IQE could be calculated by 

2 2

2

Bn Bn
IQE

An Bn G
 


     Equation 22 

As an example, Figure 88 shows the fitting of the generation rate G as a function of the 

integrated PL intensity IPL for a c-plane LED active layer (with low barrier MQW) on sapphire 

(the reference sample used in Figure 17 in section 2.1. During the calculation of G values, a 

diameter of 100 μm has been used to estimate the laser spot size. Measurement was carried out on 

the LED active layer sample at room temperature using a frequency-doubled 80 MHz repetition 

rate femtosecond Ti:Sapphire laser. The excitation laser wavelength was 385 nm, below the 

bandgap of the quantum barriers and top GaN. 
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Figure 88: Curve fitting results of the generation rate as a function of integrated PL intensity for a 

c-plane LED active layer (with low barrier MQW) on sapphire. The red curve 

represents the fits obtained using Equation 25. 

After obtaining fitting one can reach the IQE values with as a function of generation rate 

(i.e. laser excitation powers) without knowing the values of A and B coefficients. After assuming 

(or measuring) a value for B coefficient (1×10-11 cm3s-1 used here), one could obtain the steady-

state carrier density n by thereby the IQE values as a function of the generated carrier density n.  

Appendix B: Working principle of a Streak Camera 

The streak camera is an ultra high-speed detector which captures extremely short time 

period light emission. Figure 83 shows its working principle. The light pulse to be measured is 

projected onto the slit and is focused by a lens into an optical image on the photocathode, able to 
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cover a wavelength range between 300 nm and 1500 nm. Here, the photons are converted into a 

stream of electrons proportional to the intensity of the incident light. As the electron stream created 

from the light pulse passes between a pair of sweep electrodes, a time-varying voltage is applied 

to the electrodes, resulting in a high-speed sweep. This means that the early part of the pulse is 

deflected less than the later part of the pulse, so that different parts of the pulse strike the micro 

channel plate (MCP) at different positions. Thus the temporal structure of the pulse is converted 

into a spatial distribution, or ‘streak’, pattern. As the electrons pass the MCP, they are multiplied 

several thousands of times and are then bombarded against the phosphor screen, where they are 

converted back into light. The fluorescence image corresponding to the early part of the incident 

light pulse is positioned at the top of the phosphor screen, with later parts positioned in descending 

order; in other words, the axis in the perpendicular direction on the phosphor screen serves as the 

temporal axis. The brightness of the fluorescence image is proportional to the intensity of the 

corresponding incident light pulses and the position in the horizontal direction on the phosphor 

screen corresponds to the wavelength of the incident light.  

 

Figure 89: Schematic illustration of a Streak camera components and working principle. 
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Appendix C: Calculation of temperature dependent radiative and nonradiative lifetimes 

Temperature dependent PL intensity in terms of radiative and nonradiative PL decay times 

is defined as  

r nr

1I(T) I(0)
1  




      Equation 23 

where one can obtain the ratio of radiative and nonradiative lifetimes as 

r

nr

1
I(0)
I(T)







       Equation 24 

where the radiative and nonradiative lifetimes characterize the PL lifetime through the relation 

r nr

r nr r nrPL PL

1 1 1 1  
 

     
 

     Equation 25 

writing the radiative lifetime from the Eq. 25 on get 

r nr r
r rPL PL

nr nr

1
 
  
 

  
    

 
 

    Equation 26 

After evaluating Eq. 25 and Eq. 26 one get the temperature dependent radiative lifetime in 

terms of PL lifetime and PL intensity ratio. 

r PL

I(0)
I(T)

 
       Equation 27 

It can be understood from the Eq. 27 one can easily measure radiative and nonradiative 

lifetimes at different temperatures through the temperature dependent PL and TRPL measurements 

which PL lifetime and PL intensity ratio are obtained, respectively. 
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