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 This thesis explores the creation and setup of a prototype that allows users of the 

device to interact within an indoor real world environment and a virtual environment 

simultaneously using high-tech common technology. The prototype is comprised of a 

small mobile device such as a cellular mobile phone, Raspberry Pi computer, a battery 

powered handheld Pico projector, and software developed for the Android OS. The 

software can easily be ported to other mobile and non-mobile operating systems. The 

mobile device must contain accelerometer, magnetometer, and gyroscope embedded 

sensors as well as 802.11 wireless network chip. The prototype software implements an 

indoor positioning system to track the current location and orientation of the prototype 

device in real time. It also displays a virtual world projection upon the surfaces of the real 

world in relation to the prototype’s physical location and orientation. 

Three different orientation estimation methods were tested and compared in this 

thesis. Accelerometer and magnetometer based method, gyroscope based method, and 

a combined method using a technique called sensor fusion were implemented.  A 



 
 

 
 

multilateration approach was used for location estimation. Location estimates were 

calculated from the measured received signal strength of multiple 802.11 wireless 

network access points. The location of all wireless access points were known and fixed. 

Received signal strength data was converted to meters using a log distance propagation 

model, and tests were conducted to compare actual distance with converted distance. 

Tests were also conducted to compare multilateration estimates from unfiltered or raw 

RSS and filtered RSS data using a Kalman filter. 
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1  An Introduction to Augmented Reality and Indoor Navigation 

 

 

 

 

1.1 Introduction 

 

 Augmented reality is becoming more significant and common as computing 

devices become smaller and faster. Smartphones and other compact mobile devices are 

containing more sensors that can interpret real world data such as light, proximity, 

acceleration, magnetic field, temperature, humidity, and many other physical or semi-

physical elements. Mobile hardware can track the world around us as well as the 

characteristics of a user interacting with the hardware. Mobile technology as such can be 

used to further enhance augmented reality experiences and help augmented reality 
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based applications exists in areas that in the past have not been feasible.  

The experiments in this thesis focus on the creation of prototype that incorporates 

a mobile device and is capable of tracking its own physical orientation and location. The 

prototype device is held in the hand of a user, and projects a virtual environment from a 

forward facing projector upon the objects and surfaces in an indoor environment. 

Orientation and location information from the prototype device is used to determine the 

virtual orientation and location of a user within a virtual environment. The user is able to 

explore and interact with the real world (RW) augmented or overlaid with a virtual world. 

The combining these two elements creates augmented reality experience for the user.  

 

 

 

1.2 Motivation and Goals 

 

 The motivation of this work is an immersive multi-user environment 

comprised of real and virtual objects. The want is to create an augmented reality 

experience allowing users to explore an indoor real world environment while 

simultaneously exploring virtually created environment. The virtual environment is 

presented using a projector embedded in a handheld device. The device acts as a virtual 

reality flashlight and allows users to uncover a virtual world or peel away the real world. 

This also enables users to physically move around in the real world environment which is 

not as easily possible when using a display such as a computer monitor, VR headset, or 

screen of a mobile device for an augmented reality application. 
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The goal of this work is to create a prototype device that allows users to interact 

with both the real world and virtual world using high-tech common mobile or portable 

devices that anyone can acquire at a relatively affordable cost. The prototype must be 

able to estimate the physical orientation and location of the prototype within an indoor 

environment relative to a global reference. The experiments in this thesis use an HTC 

Sensation 4G smartphone, Raspberry Pi computer, and a Pico handheld battery powered 

projector. The choice of this hardware was due to the compact nature of each device and 

the sensors embedded in the smartphone. All three devices were used in the construction 

of a compact prototype device that should be easily and comfortable held in a user's hand.  

The goal of this work is not to create a completed augmented reality game for 

multiple users, but to create the technology and prototype for such an augmented reality 

game. This is the first step to be able to create a system that allows multiple users to 

interact within the real world and virtual world. Another goal of these experiments was to 

test the functionality and feasibility of such a system. 

The ideal maximal variance between the prototype's physical or real location and 

the estimated location is one meter. The ideal maximum variance between the prototype’s 

physical or real orientation and the estimated orientation comprised of azimuth, pitch, and 

roll is one degree for each axis. Figure 1 explains the definition of azimuth, pitch, and roll.  
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Figure 1.1: Definition of azimuth, pitch, and roll 

 

 

 

1.3 Augment Reality 

 

 Augmented Reality (AR) implementations have been defined by many 

researchers. One definition of augmented reality is a technology which allows computer 

generate virtual imagery to exactly overlay physical objects in real time [1]. Another 

definition states augmented reality consists of a combination of three traits: (1) combines 

real and virtual worlds, (2) is interactive in real time, and (3) registers in 3-D [2]. 

Augmented reality has also been defined as the emergence of the real world with 

superimposed virtual images, combining the advantage of both real and virtual 

environments [3]. Augmented Reality also refers to a wide spectrum of technologies that 

project computer generated materials, such as text, images, and video, onto users’ 

perceptions of the real world [4]. 

 The history of augmented reality started in the late 1950s when a simulator called 
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“Sensorama” was developed by Morton Heilig [4], but it wasn't until the 90s that inertia 

became significant, and the numbers of researchers and developers in the AR field 

increased. Today there are a growing number of companies that are researching and 

developing applications and devices for a multitude of applications involving augmented 

reality. This is primarily due to new technology such as small mobile computers and 

devices which come in many forms. Many fields and technologies have incorporated 

augmented reality to aid in various tasks such as training of personnel, to enhance 

visualizations, to help in repairs of equipment, to display vital information for navigation, 

and many other uses.  

 

 

 

1.4 Indoor Navigation 

 

An Indoor positioning system (IPS) or indoor navigation system can be defined as 

any system that provides a precise position inside of a closed structure, such as a 

shopping mall, hospitals, airport, a subway, and university campuses [5]. Many different 

types of indoor positioning systems exist and most indoor positioning systems operate by 

estimating distances to known fixed points using radio based signals although there are 

some indoor positioning systems that do not. Refer to section 1.4.2 for an example of a 

positioning system that does not use radio signals.  

Different types of location information also exist and are required for different types 

of applications. Location types range from physical location, symbolic location, absolute 
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location, and relative location [6]. The experiments in this thesis focus on physical location 

and is expressed in the form of coordinates, which identify a point on a 2-D/3-D map [7]. 

Below is a quick overview of different technologies that exist today and are used in various 

indoor positioning applications. 

 

 

1.4.1 RFID 

 

 RFID stands for radio frequency identification. RFID tags are small devices made 

up of an antenna and chip. Many manufacturing processes incorporate RFID tags to 

enable product tracking along assembly lines and have also been used in warehouse 

storage to easily locate and verify inventory.  Two types of RFID tags exists and are called 

passive and active tags. Active RFID tags use an internal power source to actively power 

the device while passive RFID tags rely on RFID readers for power [8]. Active RFID tags 

have a much higher range than passive tags, and are also more expensive. The 

experiments in this thesis do not focus on using RFID technology for indoor positioning 

because most modern day mobile devices are not equipped with the proper hardware to 

transmit or receive RFID signals.  
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1.4.2 Inertial Navigation 

 

 An inertial navigation is a self-contained navigation technique in which 

measurements provided by accelerometers and gyroscopes are used to track the position 

and orientation of an object relative to a known starting point, orientation and velocity [9]. 

Inertial navigation is commonly used in aircraft. Inertial measurement units (IMUs) 

measure angular velocity and linear acceleration to track position and orientation. 

Microelectromechanical Systems (MEMS) technology, such as sensors contained in 

mobile devices, allow many modern day devices to be capable of being used as inertial 

navigation systems. Inertial navigation systems work best when adjusted independently 

for characteristics for each user. For example, two individuals will most likely have 

different walking stride lengths. The experiments in this thesis do not focus on using 

inertial navigation. 

 

 

1.4.3  WIFI (802.11) and Bluetooth 

 

 Indoor positioning systems using wireless 802.11 and Bluetooth networks function 

by estimating the distances between the current location of a user and wireless network 

access points. Currently, there are many methods of estimation such as Time of Arrival 

(TOA), Time Difference of Arrival (TDOA), Angle of Arrival (AOA), and Received Signal 

Strength (RSS) [10]. Time based techniques require recorded time stamps at either the 

time of sending or receiving packets and control packets such as RTS, CTS, and ACK 
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[11]. Not all 802.11 wireless router manufacturers produce hardware meeting such 

requirements. RSS based techniques estimate the distance between multiple 802.11 

wireless access points using the difference between the transmitted and received signal 

strengths. Trilateration is then used to estimate the location of a user. The experiments in 

this thesis focus on RSS based location estimation.  
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2  Prototype Setup 

 

 

 

 

 
2.1  Introduction 

 

The hardware and software used to build the prototype are explained in the 

following sections. Prototype construction is also explained. Section 2.2 details prototype 

hardware setup. Hardware specifications for the equipment used in the experiments are 

listed in section 2.3. Software components, Android device setup and modification, and 

explanation of libraries and SDKs used in the prototype software are in sections 2.4, 2.5, 

and 2.6, respectively.  
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2.2  Hardware Setup 

 

 The prototype was created from commonly available technology and therefore can 

be acquired easily and reconstructed at a fairly low cost. The main components of the 

hardware consisted of an HTC Sensation 4g smartphone with Android 4.4.4 operating 

system, a Pico hand-held battery powered projector, and a Raspberry Pi running Debian 

Wheezy. Firmware on all the routers was flashed with the latest version of DD-WRT.  

The HTC Sensation 4g smartphone was connected to the Raspberry Pi through 

the micro USB port on the smartphone to a USB port of the Raspberry Pi. The Raspberry 

Pi was connected to the Pico projector using the HDMI ports on both devices. Figure 2.1 

shows how the smartphone, Raspberry Pi, and projector were connected. The wireless 

access points were placed in separate corners in an indoor space.  

 

 

Figure 2.1: Overview of system component setup 
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2.3  Hardware Specifications 

 

Below is the main hardware component specifications used in the prototype. Table 

2.1 lists specifications for the projector used in the prototype. The smartphone device 

specifications is listed in 2.2. The client machine and wireless access point specifications 

are listing in tables 2.3 and 2.4.  

 

Pico Projector

Description: Pico Projector 

Native Resolution: 800 x 600 

Aspect Ratio: 4:3 

Rated Brightness: 32 ANSI lumens

Supported Video Formats: 480i 
Table 2.1: Hardware specifications for projector 

 

Smartphone 

Description: HTC Sensation 4G with Beats Audio 

CPU: 1.8 GHz ARMv7 Processor revision 2 

Operating System: Android 4.4.4 (KitKat) 

Sensors: accelerometer, magnetometer, gyroscope, proximity, light 
Table 2.2: Hardware specifications for smartphone 

 

Client Machine 

Description: Raspberry Pi version B 

CPU: 700 MHz ARM Processor 

RAM: 512 MB

Operating System: Raspian Wheezy 

Table 2.3: Hardware specifications for client machine 
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Wireless Access Points

Description: Linksys WAP54G 

Standards: 802.11g, 802.11b, 802.3, 802.3u 

Transmit Power: 22mw 

Firmware: DD-WRT 

Table 2.4: Hardware specifications for wireless access points 

 

 

 

2.4  Software Setup 

 

 The system for the prototype is comprised of two main components. The first is an 

Android application that is deployed on a smartphone to estimate the location and 

orientation. Location is calculated using the wireless network interfaces integrated on the 

smartphone and orientation is calculated using the sensors on the smartphone. The 

application also starts a server for Android Debug Bridge (ADB) connections.  

The second software component is a program written in Java and runs on a 

Raspberry Pi. The two main function of the Java program is open a client connection the 

Android application to receive location and orientation from the Android application and 

send visual information to visual output display device. After the connection is completed 

the Android application transmits the calculated orientation and location data to the client 

machine. This program also uses OpenGL to display a virtual world through the projector 

that is controlled by the location and orientation of the smartphone.  
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2.5 Android Device Setup 

 

The following section details the steps required to prepare a device running the 

Android operating system. A device will be capable of running the prototype software after 

setup. It is assumed that the android device has an SD card installed, the device is root 

access capable, and is running a compatible Android operating system version (Ice 

Cream Sandwich, Jellybean, Kitkat, and possible future releases). There are various pre-

rooted custom ROMs available for many Android powered devices available for 

download. Many resources are also available documenting how to setup custom ROMs 

on mobile devices, but is beyond the scope of this thesis. 

 

2.5.1 Steps to Prepare an Android Device 

1. Enable Android debugging or USB debugging in Android settings. If Android 

neither option exists then go to Settings >> About phone >> Build Number. Tap 

on build number 7 times to unlock developer options. After this Android 

debugging or USB debugging will appear in Android settings.  

 

2. Compile the Linux Wireless package tool iw for Android available from 

http://wireless.kernel.org/en/users/Documentation/iw. This thesis does not 

detail how to compile Linux Wireless for Android. Various resources can be 

found on the internet or a pre-built version can be used if available. A pre-built 

version of iw has been distributed with this thesis for ease of use. It has been 
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tested and confirmed working on Ice Cream Sandwich, Jellybean, and Kitkat 

Android operating system versions. 

 

3. Use a micro to type-A USB cable to connect the Android device to a computer. 

 

 
The following steps outlined below modifies files on the internal storage of the 

Android operating system. Proceed with caution.  

 

4. Download and install Android Debug Bridge (adb), a command line tool used 

to communicate with Android-powered devices [1]. More information can 

be found at http://developer.android.com/tools/help/adb.html. 

 

5. On some versions of Android, root access for adb must be enabled. On the 

Android device go to Settings >> Developer Options >> Root Access and 

change to Apps and ADB. 

 

6. Change to the directory where the adb executable resides. The following 

commands must be executed in the same directory as adb. Individual 

commands are labeled with lowercase letters. 

 

7. Transfer iw to SD card in Android device.  

a. adb push ./iw /mnt/sdcard/iw  

 



 
 

15 
 

8. Start a shell instance on the mobile device using the Android Debug Bridge. 

b. adb shell 

 

9. Request root access on the Android device. 

c. Su 

 

10. Find the system partition on the Android device. 

d. mount | grep system 

 

This command will produce output similar to the following: 

/dev/block/platform/msm_sdcc.1/by-name/system /system ext4 ro, 

seclabel, relatime, user_xattr, barrier=1, data=ordered, 

noauto_da_alloc 0 0  

 

The important part of the output is /dev/block/platform/msm_sdcc.1/by-

name/system. The output will vary slightly from device to device, and is used in the next 

step (the underlined text). 

 

11. Remount the system partition with read and write access. 

e. mount –o rw,remount 

/dev/block/platform/msm_sdcc.1/by-name/system 

/system 
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12. Transfer iw from the SD card to the system partition. 

f. cp /mnt/sdcard/iw /system/xbin/iw 

 

13. Remount the system partition in read only mode.  

g. mount –o ro,remount 

/dev/block/platform/msm_sdcc.1/by-name/system 

/system  

The Android powered device is now capable of running the software described in 

this thesis. An Android operating system installation file (APK) is included with this thesis. 

 

 

 

2.6 Libraries 

 

Various Android and Java libraries were used to construct the prototype. Each 

library used was chosen to meet requirements needed for a successful prototype design 

and functionality of the prototype is enhanced by the libraries included. An explanation as 

to how and why each library was used is provided in the following subsections contained 

within this chapter. 
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2.6.1 Android SDK 

 

The Android software development kit provides API libraries and development 

tools to create applications on Android powered devices. The Android operating system 

was chosen because many mobile devices run the Android operating system and Android 

applications are written in Java which allows the prototype software to be easily ported to 

other devices that support Java. More information and downloads for the Android SDK 

can be found at http://developer.android.com/sdk/index.html. 

 

 

2.6.2  Linux Wireless (iw) 

 

Linux Wireless or iw is a new nl80211 based CLI configuration utility for wireless 

devices [2]. The software interacts with wireless network adapters and provides 

functionality to perform common wireless network operations such as scanning for 

networks, connecting to networks, and configuring device attached network adapters. 

This software was used to implement a custom WifiManager service to be cable of 

performing selective wireless network scans on subsets of frequencies and SSIDs. iw is 

a much faster wireless scanning utility compared to the native Android WifiManager 

service. Refer to section 5.2 for further explanation explaining the difference between 

successive wireless network scan intervals when scanning with the native Android 

WifiManager versus a custom WifiManager service. More information about Linux 

Wireless can be found at http://wireless.kernel.org/. 
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2.6.3 Google Gson  

 

Google Gson is a java library for converting Java objects into JSON 

representations and convert JSON strings into equivalent Java objects. The library also 

has the ability to work with arbitrary Java objects including pre-existing objects even in 

instances where source code is not available [3]. The library also supports Java Generics. 

The library was used to allow network map data to be shared in a common format 

structured as JSON arrays, and to allow the possibility of sharing network map data via 

RESTful methods. More information and downloads can be found at 

https://code.google.com/p/google-gson/. 

 

 

2.6.4 Android QR Code Decoder and Encoder  

 

Android QR Code Decoder and Encoder is an Android library to encode and 

decode barcodes and quick response codes. The library is a port of the ZXing (version 

2.1) project but [is] reduced in size and scope and can be used as a direct call from any 

Android project instead of using the ZXing Intents mechanisms [4]. The library helps make 

working with QR codes easier in Android operating systems. This library was used to 

share network maps in a common graphical format support by mobile devices. JSON 

strings containing network map data can be encoded as barcodes or quick response 

codes and shared more easily than long JSON strings. More information and downloads 

can be found at https://code.google.com/p/android-quick-response-code/. 
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2.6.5 Libsuperuser  

 

Libsuperuser is an Android persistent root environment access library written by 

the author of SuperSU and Superuser. Both SuperSU and Superuser allow Android 

applications root access in a similar way ‘sudo’ allows specified users root access in some 

Linux operating systems. The [library allows] applications requiring root access to 

overcome common problems when using root with as little code as possible [5]. This 

library was used to access a persistent root shell from the Android operating system 

reduce the execution time for multiple root shell commands. One root shell access 

request is granted instead of one time per each command requiring root access. More 

information and downloads can be found at http://su.chainfire.eu/. 

 

 

2.6.6 AChartEngine  

 

AChartEngine is an Android charting library supporting many common chart types. 

Features for charts include multiple series per chart, real-time chart updating, optimized 

data structures to accommodate large datasets per chart, and combined charts using 

multiple rendering styles. Charts can be built as a view that can be added to a view group 

or as an intent [6]. This makes the library easy to integrate with the Android user interface. 

The library was used to help in the creation of charting experimental data. More 

information and downloads can be found at https://code.google.com/p/achartengine/. 
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2.6.7 Efficient Java Matrix Library 

 

Efficient Java Matrix Library is a Java library for linear algebra used for 

manipulating large and small dense matrices. The library is designed to be as 

computationally and memory efficient as possible. Algorithms used for computations can 

be chosen at runtime to enhance performance and reduce memory usage. The library is 

currently the fastest single threaded pure Java library [for matrices] and contains 

additional optimizations for small matrices [7].This library was used for the data storage 

capabilities of the library, and to perform common matrix operations. More information 

and downloads can be found at https://code.google.com/p/efficient-java-matrix-library/. 

 

 

2.6.8 OrmLite   

 

OrmLite (Object Relational Mapping Lite) is an Android and Java library for 

persisting Java Objects to SQL databases. The library supports multiple SQL databases 

and also includes native calls to Android operating system database APIs. The goal of 

the library is to avoid the complexity and overhead of more standard ORM packages [8]. 

The Android operating system uses an embedded SQLite database for storing application 

data. This library was used to interact with a SQLite database for persistent data storage 

and retrieval. More information and downloads can be found at 

http://ormlite.com/sqlite_java_android_orm.shtml/. 
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2.7 Network Map Format File 

 

 The following is the contents of an example wireless network map file formatted 

using a common JSON string. The below example consists of four wireless network 

access points. The wireless access points are represented within the JSON string as a 

JSON formatted array. The maximum storage offered by QR Codes is 1,264 characters 

of ordinary / ASCII text character [9]. The size of the JSON string formatted wireless 

network map cannot exceed the maximum QR Code storage capacity if stored within a 

single QR Code. This means that approximately only twelve wireless access points can 

be stored within one QR code because each access point takes roughly 100 characters 

of storage.  

 Due to this limitation only relatively small wireless network maps can be stored 

using a single QR Code. Larger wireless network maps would require sufficiently more 

storage capacity and more QR Codes and could be represented with many QR Codes, 

but this would be burdensome to import many QR Codes. An alternative is to encode the 

JSON string formatted wireless network map using some encoding process and 

compress the number of characters per access point. This would allow for more access 

points on a single QR Code and larger wireless network maps. The original JSON string 

would then be decoded after the QR Code is captured. Encoding (compressing) and 

decoding (decompressing) QR Code data is not within the scope of this thesis. 
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[  "name":"lab", 
   "description":"3 routers", 
   [ { "bssid":"00:21:91:da:27:ab", 
       "sssid":"router1", 
       "frequency":2442, 
       "x":0, 
       "y":22, 
       "z":0 }, 
     { "bssid":"00:90:4c:91:00:03", 
       "ssid":"router2", 
       "frequency":2412, 
       "x":19, 
       "y":22, 
       "z":0 }, 
     { "bssid:"00:11:22:33:44:58", 
       "ssid":"router3", 
       "frequency":2412, 
       "x":0, 
       "y":0, 
       "z":0 }, 
 
     { "bssid:"00:11:22:33:44:58", 
       "ssid":"router4", 
       "frequency":2412, 
       "x":0, 
       "y":0, 
       "z":0 } 
   ] 
]  
 

Listing 2.1: Sample Network map file with four wireless access points 
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3  Overview of the Experiment 

 

 

 

 

3.1  Introduction 

 

The goal of these experiments was to use common high-tech devices to create a 

prototype device capable of estimating its own orientation and location within an indoor 

environment. This prototype should aid in creating an augmented reality experience for a 

user by projecting a virtually created three-dimensional environment onto the surfaces of 

the physical real world environment. Orientation and location calculations needed to be 

computed simultaneously and in real-time. The software for the prototype needed to 

compute individual location and orientation algorithms on independent threads.  

The estimated orientation of the prototype needed to correlate to a global 
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coordinate system. The global referenced coordinate system is defined by magnetic North 

and the gravitational direction of Earth. The orientation of the prototype also needed to 

be computed using hardware available on most mobile devices. The sensor hardware 

used for calculating orientation were the magnetometer, accelerometer, and gyroscope. 

Accuracy for orientation estimates needed to be within one degree. 

Location prediction needed to be relative to an indoor environment that was 

defined by a wireless network map. Location needed to be estimated using the received 

signal strength (RSSI) from wireless access points. The prototype needed to implement 

an indoor position system (IPS) capable of synchronizing the true position of the prototype 

in the real world to a position in the virtual world and vice versa. Assumptions made about 

location prediction calculations were as follows: 

 

1. The location of all wireless network access points are predetermined and 

known by the prototype. Wireless network locations have been stored in a 

wireless network map file. 

 

2. The measured signal strength all wireless access points reflect signal strength 

values that have only been transmitted through air and did not pass through 

walls or any other solid object.  

 

3. A minimum of three wireless access points are available when estimating the 

location of the prototype.  
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3.2 Experimental Overview – Process 

  

The overall experimental process was broken into two distinct parts. The first was 

to implement an algorithm to estimate the orientation of the prototype. The second was 

to create an estimation method to track the location of the prototype. The process and 

testing of both experimental parts were conducted independently. Software was created 

to estimate the orientation of the prototype and separate software was created to estimate 

the location of the prototype. After both individual components of the prototype were 

tested and verified to produce acceptable results, then both were combined into a 

grouped software package running on independent threads that communicated. Testing 

was performed on the combined solution to verify both processes were operating correctly 

in the integrated software. 

 

 

 

 

3.3  Content of Experimental Chapters 

 

 Chapters 3 through 6 detail the calculations and results for orientation and location 

tracking of the prototype. Prototype device hardware and software setup is detailed in 

Chapter 3. Libraries and development kits used in the prototype software is explained in 

section 3.4. Wireless network map file example is detailed in section 3.5. Chapter 4 

explains the orientation calculations and details how to calculate orientation using the 
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accelerometer and magnetometer, gyroscope, and by using all three sensors using a 

technique called sensor fusion. Refer to section 2.4 for explanations of different 

orientation representations. Chapter 5 details the how location of the prototype is 

calculated using wireless access points at predetermined positions in a two-dimensional 

coordinate space. Chapter 6 lists test results from orientation and location tests.  

 

 

 

3.4 Representations of Orientation 

 

 The orientation of the prototype can be represented in different forms that are each 

equivalent of another form. Each representation of orientation can be transformed into 

any other representation using mathematical conversions. Euler angles, rotations 

matrices, and quaternions are used in the calculations in device orientation and are 

detailed below.  

 

 

3.4.1 Euler Angle Representation 

 

 Euler angles are the easiest three dimensional orientation vector to understand 

and consists of three values defining azimuth, pitch, and roll of an object. Euler angles 

depend upon two known fixed points of origin. The first point is the direction of magnetic 

North, and the second is the direction of gravity. Euler angle rotations are not 
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commutative, meaning ܽ ⊗ ܾ ് ܾ⊗ ܽ. In other words performing three successive 

rotations does not yield the same orientation if the order of rotations is changed [10]. A 

major drawback to Euler angles is gimbal lock. Gimbal lock is the loss of one degree of 

freedom in a three dimensional coordinate space. This occurs when orientation cannot 

be uniquely represented using Euler angles and is dependent upon the order of rotation 

[11]. An example of when gimbal lock could happen is when pitch equals േ90°. The form 

of a vector comprised of Euler angles is represented in 3.1. 

 

 Ԧ݁ ൌ ሾ݄ܽݐݑ݉݅ݖ ݄ܿݐ݅݌  ሿ  (3.1)݈݈݋ݎ

 

 

3.4.2 Rotation Matrix Representation 

 

 A rotation matrix is a rotation represented by an orthogonal matrix, and is a 

sequence of rotations, with each rotation about a principle axis is a coordinate system 

[12]. Three by three rotation matrices are explained since orientation is computed in three 

dimensional space. After all rotation computations have been completed a final rotation 

is computed. Rotation matrix multiplication is not commutative, meaning ܽ ⊗ ܾ ് ܾ⊗ ܽ. 

This is because the final rotation can be computed in different orders for each of the 

principle axis. Rotation matrix orientation is not prone to gimbal lock, but is much more 

computensive to use in a three coordinate system. The form of a rotation matrix for a 

three axis rotation is represented in 3.2. 
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ݎ  ൌ ൥

ଵݔ ଵݕ ଵݖ
ଶݔ ଶݕ ଶݖ
ଷݔ ଷݕ ଷݖ

൩  (3.2) 

 

 

3.4.3 Quaternion Representation 

 

 A quaternion is a four-dimensional complex number that can be used to represent 

the orientation of a ridged body or coordinate frame in three-dimensional space [13]. A 

quaternion is comprised of four components, one real and three imaginary [14]. The 

components are x, y, z, (imagery) and w (real) where x, y, and z are coordinates and w 

is rotation. Two quaternions can be multiplied using the Hamilton rule and the product of 

two quaternions is not commutative, meaning ܽ ⊗ ܾ ് ܾ⊗ ܽ. Quaternions are also not 

prone to gimbal lock and are less computensive than rotation matrices for three 

dimensional coordinate systems. The form a quaternion is represented as a vector and is 

shown in 3.3. 

 

Ԧݍ  ൌ ሾݔ ݕ ݖ  ሿ (3.3)ݓ
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4  Prototype Orientation Tracking 

 

 

 

4.1  Introduction 

 

Development and testing for prototype orientation accuracy and response was 

broken into two parts. The first part was to determine the level of accuracy and amount 

of noise recorded by the magnetometer, accelerometer, and gyroscope sensors. The 

prototype remained stationary during testing and was not moved, touched, or interacted 

with once sensor test readings started being captured. 

The second part of development and testing for determining accurate and 

responsive prototype orientation was to record and minimize the time between the real 

world movement of the physical prototype and the calculated orientation within the 

prototype software calculations. This was tested by interacting with the prototype. 

Raw sensor data tests using the accelerometer, magnetometer, and gyroscope are 
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discussed in section 4.2. Accelerometer and magnetometer calculated orientation is 

discussed in section 4.3. Gyroscope calculated orientation is discussed in section 4.4. 

Orientation calculated by fusing sensor data from the accelerometer, magnetometer, and 

gyroscope is discussed in section 4.5. Raw sensor data with bias is discussed in section 

4.6.  

 

 

 

4.2  Raw Sensor Data 

 

The first tests involved recording and analyzing the sensor data from the 

magnetometer, accelerometer, and gyroscope. This was done to determine accuracy of 

each sensor and discover the amount of noise that was recorded in the senor data. High 

levels of noise and low accuracy results would require more post processing and filtering 

after the sensor data is captured. Sensor data recording for raw sensor data was 

performed with the mobile device lying flat and stationary on a surface parallel to the 

ground with the screen side (front) of the device was facing up towards the sky. The 

orientation of the device relative to North was not taken into consideration since it was 

irrelevant when gathering this data. 

The magnetometer sensor contained the largest amount of noise, followed by the 

accelerometer sensor. These two sensors would produce a considerable amount of 

variance when calculating the orientation of the prototype. The gyroscope sensor had 

almost no error in the readings, and produced much more stable and accurate results. 
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Filtering the sensor data from the accelerometer and magnetometer to produce more 

accurate results was necessary. 

  

 

 

4.3 Accelerometer and Magnetometer Calculated Orientation 

 

The orientation of the prototype relative to a global coordinate system is possible 

by combining the data from the accelerometer and magnetometer. The global coordinate 

system is representative of the real world coordinate system which is determined by the 

gravitational and magnetic forces of Earth. Tilt (pitch and roll) angles can be computed 

using the accelerometer and heading (azimuth) angle can be computed using the 

magnetometer.  

The accelerometer provided a three-dimensional vector containing acceleration 

values for each axis measured in meters per second squared (݉/ݏଶ). The form of the 

acceleration vector was Ԧܽ ൌ ሾݔ ݕ  ሿ. The force of gravitational acceleration upon theݖ

accelerometer must be taken into account when calculating the orientation of the 

prototype. For example, the accelerometer would return a vector close to  

Ԧܽ ൌ ሾ0 0 9.8ሿ	݉/ݏଶ when the prototype is laying on a horizontal surface at rest. If the 

prototype is in free fall then then accelerometer would return a vector close to  

Ԧܽ ൌ ሾ0 0 0ሿ	݉/ݏଶ. The effect of gravity is why pitch and roll angles of the prototype can 

be determined using the accelerometer. 

The magnetometer provided a three-dimensional vector containing the ambient 
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magnetic field strengths for each axis measured in micro-Tesla (ܶߤ). The form of the 

magnetic field strength vector was ሬ݉ሬԦ ൌ ሾݔ ݕ  ሿ. This sensor responds to the magneticݖ

field of Earth in the same manner as a compass. The heading of magnetic North in relation 

to the prototype can be determined using the magnetometer and also the azimuth angle 

of the prototype. 

Calculating the orientation (azimuth, pitch, and roll) of the prototype using data 

provided by the accelerometer and magnetometer is detailed as follows. Record the 

vector data from the accelerometer and magnetometer and store in ሬ݉ሬԦ and Ԧܽ.  

 

 ሬ݉ሬԦ ൌ ሾ݉௫ ݉௬ ݉௭ሿ  (4.1) 

 Ԧܽ ൌ ሾܽ௫ ܽ௬ ܽ௭ሿ (4.2) 

 

Equation 4.3 calculates the cross product of ሬ݉ሬԦ and Ԧܽ, which is the sensor data 

from the magnetometer and accelerometer. The normal of ሬ݄Ԧ and Ԧܽ is calculated in 

equations 4.4 and 4.5. 

 

 ሬ݄Ԧ ൌ ሾ݄௫ ݄௬ ݄௭ሿ ൌ ሾ݉௬ܽ௭ െ ݉௭ܽ௬ ݉௭ܽ௫ െ ݉௫ܽ௭ ݉௫ܽ௬ െ ݉௬ܽ௫ሿ (4.3) 

 ฮሬ݄Ԧฮ ൌ
ଵ

ට௛ೣ
మା௛೤

మା௛೥
మ
 (4.4) 

 ‖ Ԧܽ‖ ൌ
ଵ

ට௔ೣ
మା௔೤

మା௔೥
మ
  (4.5) 

 

Check if ฮሬ݄Ԧฮ ൏ .01. If ሬ݄Ԧ is not greater than .01 the prototype is in free fall or too 

close to the North Pole. No further calculations can be performed and orientation must be 
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determined after the next data sample is recorded from the accelerometer and 

magnetometer. If ሬ݄Ԧ is greater than .01, continue and calculate the inverse of ሬ݄Ԧ and Ԧܽ 

shown in equations 4.6 and 4.7. The constant .01 was obtained from the Android SDK. 

 

 ሬ݄Ԧିଵ ൌ ൣ݄ିଵ௫ ݄ିଵ௬ ݄ିଵ௭൧ ൌ ቂ
௛ೣ

ฮ௛ሬሬԦฮ

௛೤

ฮ௛ሬሬԦฮ

௛೥

ฮ௛ሬሬԦฮ
ቃ (4.6) 

 Ԧܽିଵ ൌ ൣܽିଵ௫ ܽିଵ௬ ܽିଵ௭൧ ൌ ቂ
௔ೣ

‖௔ሬԦ‖

௔೤

‖௔ሬԦ‖

௔೥

‖௔ሬԦ‖
ቃ  (4.7) 

 

Equation 4.8 calculates the cross product of Ԧܽିଵand ሬ݄Ԧିଵ and store in ଔԦ. 

 

 ଔԦ ൌ ሾ݆௫ ݆௬ ௭݆ሿ ൌ 	 Ԧܽିଵ ൈ	 ሬ݄Ԧିଵ  (4.8) 

 

Create a rotation matrix based on the vectors ሬ݄Ԧିଵ, ଔԦ, and Ԧܽିଵ. 

 

 ܴெ஺ ൌ ൥

௠௔బݎ ௠௔భݎ ௠௔మݎ
௠௔యݎ ௠௔రݎ ௠௔ఱݎ
௠௔రݎ ௠௔ళݎ ௠௔ఴݎ

൩ ൌ ቎

݄ିଵ௫ ݄ିଵ௬ ݄ିଵ௭
݆௫ ݆௬ ௭݆

ܽିଵ௫ ܽିଵ௬ ܽିଵ௭

቏ ൌ ቎

ሬ݄Ԧିଵ

ଔԦ

Ԧܽିଵ
቏ (4.9) 

 

Convert the rotation matrix to Euler angles where ݁௠௔௔
 is azimuth (4.11), ݁௠௔௣

 is 

pitch (4.12), and ݁௠௔௥
 is roll (4.13). 

 

 ݁௠௔ሬሬሬሬሬሬሬԦ ൌ ሾ݁௠௔௔
݁௠௔௣

݁௠௔௥ሿ (4.10) 

 ݁௠௔௔
ൌ ݊ܽݐܿݎܽ ൬

௛షభ೤

௝೤
൰  (4.11) 
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 ݁௠௔௣
ൌ  ൫ܽିଵ௬൯  (4.12)݊ܽݐܿݎܽ

 ݁௠௔௥
ൌ ݊ܽݐܿݎܽ ቀ

௔షభೣ

௔షభ೥
ቁ  (4.13) 

 

Combining data from the accelerometer and magnetometer to calculate the 

orientation of the prototype produced unacceptable results. Both sensors, especially the 

magnetometer, were inaccurate and introduced noise to the measurements [15]. The 

calculated orientation of the prototype jumped sporadically on each sample. The reaction 

time of the magnetometer was much slower than the accelerometer. The lag in the 

magnetometer resulted in the azimuth angle of the prototype updating at a visibly slow 

rate especially when the device was turned horizontally. The raw sensor test data 

explained in the previous section also confirm a large amount of noise in both the 

accelerometer and magnetometer. 

 

 

 

4.4 Gyroscope Calculated Orientation 

 

The gyroscope sensor provided a three-dimensional vector containing the angular 

rotational speed for each axis measured in radians per second (rad/sec). The form of the 

gyroscope vector was Ԧ݃ ൌ ሾݔ ݕ  ሿ. Calculating the orientation of the prototype usingݖ

the gyroscope was done by integrating the gyroscope sensor data with respect to time 

measured in nanoseconds (ns). The idea is to record the current angular speed of the 

prototype using the gyroscope. Then using a previously known orientation of the 
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prototype, apply the current angular speed to the previously known orientation to calculate 

the new orientation of the prototype.  

The limitation of this method is that the initial orientation of the prototype must be 

known otherwise the orientation cannot be computed relative to a global coordinate 

system. Calculating the orientation (azimuth, pitch, and roll) of the prototype using data 

provided by the gyroscope is detailed as follows. The previously calculated orientation of 

the prototype is ݍ௚ሬሬሬሬԦ (4.14), the current gyroscope data is Ԧ݃	ሺ4.15ሻ, and ݀ݐ is the time 

between the previously computed orientation of the prototype and the current orientation 

calculation (4.16). The first ݍ௚ሬሬሬሬԦ is the initial frame of the prototype. 

  

௚ሬሬሬሬԦݍ  ൌ ሾݍ௚௫
௚௬ݍ

௚௭ݍ
 ௚௪ሿ  (4.14)ݍ

 Ԧ݃ ൌ ሾ݃௫ ݃௬ ݃௭ሿ  (4.15) 

ݐ݀  ൌ ௖௨௥௥௘௡௧݁݉݅ݐ െ  ௨௣ௗ௔௧௘  (4.16)	௟௔௦௧݁݉݅ݐ

 

Calculate the angular speed of the data sample. 

 

ݏ  ൌ ඥ݃௫
ଶ ൅ ݃௬

ଶ ൅ ݃௭
ଶ  (4.17) 

  

If the angular speed of the data sample is greater than ߝ then normalize the 

gyroscope sensor data shown in equation (4.18). For this application ߝ ൌ 10݁ݔ1 െ 9 and 

is obtained from the Android SDK. 

 

 ݃′ሬሬሬԦ ൌ ൣ݃
ᇱ
௫

݃ᇱ
௬

݃ᇱ
௭൧ ൌ ቂ

௚ೣ

௦

௚೤

௦

௚೥

௦
ቃ (4.18) 
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Convert the axis angle Ԧ݃ᇱ to a rotation vector in the form of a quaternion (4.20). 

 

ௗ௧ሬሬሬሬሬԦݍ  ൌ ሾݍௗ௧௫ ௗ௧௬ݍ ௗ௧௭ݍ  ௗ௧௪ሿ  (4.19)ݍ

ௗ௧ሬሬሬሬሬԦݍ  ൌ ቂ݊݅ݏ ቀ
௦∗ௗ௧

ଶ
ቁ ݃ᇱ

௫
݊݅ݏ ቀ

௦∗ௗ௧

ଶ
ቁ ݃ᇱ

௬
݊݅ݏ ቀ

௦∗ௗ௧

ଶ
ቁ ݃ᇱ

௭
ݏ݋ܿ ቀ

௦∗ௗ௧

ଶ
ቁቃ (4.20) 

 

Multiply original orientation ݍ௚ሬሬሬሬԦ by ݍௗ௧ሬሬሬሬሬԦ shown in equations (4.12) through (4.24). 

 

௚௫ݍ  ൌ ቀݍ௚௫ ∗ ௗ௧௫ቁݍ െ ቀݍ௚௬ ∗ ௗ௧௬ቁݍ െ ቀݍ௚௭ ∗ ௗ௧௭ቁݍ െ ቀݍ௚௪ ∗  ௗ௧௪ቁ  (4.21)ݍ

௚௬ݍ 
ൌ ቀݍ௚௬

∗ ௗ௧௫ቁݍ ൅ ቀݍ௚௫
∗ ௗ௧௬ቁݍ െ ቀݍ௚௪

∗ ௗ௧௭ቁݍ ൅ ቀݍ௚௭
∗  ௗ௧௪ቁ  (4.22)ݍ

௚௭ݍ 
ൌ ቀݍ௚௭

∗ ௗ௧௫ቁݍ ൅ ቀݍ௚௪
∗ ௗ௧௬ቁݍ ൅ ቀݍ௚௫

∗ ௗ௧௭ቁݍ െ ቀݍ௚௬
∗  ௗ௧௪ቁ  (4.23)ݍ

௚௪ݍ 
ൌ ቀݍ௚௪

∗ ௗ௧௫ቁݍ െ ቀݍ௚௭
∗ ௗ௧௬ቁݍ ൅ ቀݍ௚௬

∗ ௗ௧௭ቁݍ ൅ ቀݍ௚௫
∗  ௗ௧௪ቁ  (4.24)ݍ

 

Convert ௚݁ሬሬሬԦ to Euler angles where ௚݁௔
 is azimuth (4.26), ௚݁௣

 is pitch (4.27), and ௚݁௥
 

is roll (4.28). 

 

 ௚݁ሬሬሬԦ ൌ ሾ ௚݁௔ ௚݁௣ ௚݁௥ሿ  (4.25) 

 ௚݁௔
ൌ ݊ܽݐܿݎܽ ቆ

ଶቀ௤೒ೣ
∗௤೒ೢ

ା௤೒೤
∗௤೒೥

ቁ

ଵିଶቀ௤೒೥
మା௤೒ೢ

మቁ
ቇ  (4.26) 

 ௚݁௣
ൌ ݊݅ݏܿݎܽ ቆ2 ቀݍ௚௫ ∗ ௚௬ݍ ൅ ௚௭ݍ ∗  ௚௪ቁቇ  (4.27)ݍ

 ௚݁௥
ൌ ݊ܽݐܿݎܽ ቆ

ଶቀ௤೒ೣ
∗௤೒೤

ା௤೒೥
∗௤೒ೢ

ቁ

ଵିଶቀ௤೒೤
మା௤೒೥

మቁ
ቇ  (4.28) 
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 Calculating the orientation of the prototype with only the gyroscope also produced 

unacceptable results. The results were much more stable than using the accelerometer 

and magnetometer. The biggest problem with calculating the orientation of the prototype 

with only the gyroscope was drift. Gyroscope drift occurs from the small amount of error 

in the gyroscope sensor accumulating over time and occurs through temperature and 

motion changes [13]. At first the drift amount is small, but grows quite quickly due to the 

way gyroscope orientation is computed through integration. Over time, the calculated 

orientation of the prototype deviates greater and greater from the true orientation of the 

prototype referenced from the initial frame. 

 

 

 

4.5  Sensor Fused Calculated Orientation 

 

 The calculated orientation of the prototype from the accelerometer and 

magnetometer contained too much variance over successive calculations while the 

variance in the orientation calculated from gyroscope sensor data was much lower. 

Accelerometer and magnetometer calculated orientation was relative to a global 

coordinate system, but the gyroscope orientation was not. Both methods needed to be 

combined using sensor fusion to calculate the orientation of the prototype containing less 

variance, relative to a global coordinate system, and not prone to drift. Sensor fusion is 

combining data from multiple sensors to achieve improved accuracies and more specific 

inferences than could not be achieved by the use of a single sensor alone [16]. In other 
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words, the calculated orientation of the prototype accuracy would improve by minimizing 

the weaknesses and complementing the strengths of the sensors.  

 Prototype orientation needed to be primarily calculated from the gyroscope sensor 

data and updated intermediately from the accelerometer and magnetometer sensor data. 

This would yield a smooth orientation that would be corrected for gyroscope drift 

periodically and allow the orientation of the prototype to be referenced using a global 

coordinate system. The accelerometer and magnetometer sensor data was processed 

using a low pass filter and the gyroscope sensor data was processed using a high pass 

filter. This combined filtering is called a complimentary filter [17] [18]. The following is a 

filter implementation proposed by Shane Colton. 

 

Figure 4.1: Overall Complimentary Filter Implementation 

 

 The low-pass filter removes short term variance in a signal allowing only 

long term signal changes to pass through the filter. A high-pass filter does the exact 

opposite of a low-pass filter. It allows only short term signal changes to pass through the 
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filter while filtering out signals that are steady over time and can be used to cancel out 

drift [18]. Applying a complementary filter to the accelerometer and magnetometer 

calculated orientation and gyroscope calculated orientation is shown in equation (4.29). 

 

݊݋݅ݐܽݐ݊݁݅ݎ݋  ൌ ܥܨ ∗ ݊݋݅ݐܽݐ݊݁݅ݎܱ݋ݎݕ݃ ൅ ሺ1 െ ሻܥܨ ∗  (4.29)  ݊݋݅ݐܽݐ݊݁݅ݎܱ݃ܽܯܿܿܽ

 

Two filter coefficient constants (FC and 1 - FC) are introduced in equation (4.29). 

Optimal results have been computed using ܥܨ ൌ .98. The low-pass filter part of the 

equation is ሺ1 െ ሻܥܨ ∗ ܥܨ and the high-pass filter part is ݊݋݅ݐܽݐ݊݁݅ݎܱ݃ܽܯܿܿܽ ∗

 The low-pass portion averaged the accelerometer and magnetometer  .݊݋݅ݐܽݐ݊݁݅ݎܱ݋ݎݕ݃

orientation calculations by applying changes to the global orientation slowly. The high-

pass portion minimized the drift in the gyroscope calculated orientation.  

 The generalized complimentary filter implementation pseudo code is shown in 

listing 4.5.1. The complementary filter portion has been bolded in the listing. This section 

of code runs on a separate thread on the prototype hardware to maximize performance. 

The orientation calculations based upon the sensor data from the accelerometer and 

magnetometer was computed the same way as explained in section 4.3. The same is true 

for the orientation calculations for the gyroscope sensor data explained in section 4.4. 
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INTERVAL = 30 //milliseconds 

FC = .98 //filter coefficients FC and 1 – FC 

accelMagOrientation() { /* refer to section 4.3 */ } 

gyroOrientation() { /* refer to section 4.4 */ } 

fusedOrientation() { 

 return FC * orientation + (1 – FC) * accelMagOrientation() 

} 

while(true) { 

     accelMagOrientation() 

     gyroOrientation() 

 if(currentTime>=INTERVAL)  

orientation = fusedOrientation() 

} 

 

Listing 4.5.1: Pseudo code implementation of fused orientation 

 

The fused orientation was computed incrementally in a timed loop with a time 

constant of 30 milliseconds. The time constant is the relative duration of signal the filter 

will act on. For a low-pass filter, signals much longer than the time constant pass through 

unaltered while signals shorter than the time constant are filtered out and the opposite is 

true for a high-pass filter [18].  

The following details the computations of the fusedOrientation function in 

Listing 4.5.1 and uses ݁௠௔ሬሬሬሬሬሬሬԦ and ௚݁ሬሬሬԦ to calculate the fused orientation ௙݁ሬሬሬԦ, where ௙݁௔
 is 

azimuth (4.31), ௙݁௣
 is pitch (4.32), and ௙݁௥

 is roll (4.33). 

 

 ௙݁ሬሬሬԦ ൌ ሾ ௙݁௔ ௙݁௣ ௙݁௥ሿ  (4.30) 
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 ௙݁௔
ൌ ܥܨ ∗ ௚݁௔

൅ ሺ1 െ ሻܥܨ ∗ ݁௠௔௔
  (4.31) 

 ௙݁௣
ൌ ܥܨ ∗ ௚݁௣

൅ ሺ1 െ ሻܥܨ ∗ ݁௠௔௣
  (4.32) 

 ௙݁௥
ൌ ܥܨ ∗ ௚݁௥

൅ ሺ1 െ ሻܥܨ ∗ ݁௠௔௥
  (4.33) 

 

 The orientation computed from fusing the accelerometer and magnetometer 

orientation and gyroscope orientation yielded much better results. Variance over 

successive calculations was highly reduces and a global coordinate system was able to 

be referenced. Gyroscope drift was also eliminated.  

 

 

 

4.6  Sensor Bias 

 

 Further reducing the amount of variance in the fused orientation was possible by 

eliminating some of the sensor noise in the raw sensor data. This was done by introducing 

a bias to the sensors to negate inaccuracies and filter out noise. This was computed prior 

to calculating orientation. For the scope of this work bias is defined as the average 

recorded error from a sensor accumulated over a predefined number of sensor readings 

and is shown in equations (4.34) and (4.35). 1000 sensor readings were recorded for 

each sensor and the bias value calculated for each sensor was done so independently 

from all other sensors. In other words, the bias value calculated for the accelerometer 

was not influenced by the bias calculated for the gyroscope and is also conversely true. 

The bias can also be considered a very simplistic filter. Bias was calculated using the 
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following procedure. Bias was calculated by the following where  ஺ܾ is for the 

accelerometer, and ܾீ is for the gyroscope. 

 

 ܾ௔ ൌ ൣܾ௔௫ ܾ௔௬ ܾ௔௭൧ ൌ
∑ ሾ௔ೣ ௔ೣ ௔ೣሿభబబబ
೙సబ

ଵ଴଴଴
  (4.34) 

 ܾ௚ ൌ ൣܾ௚௫
ܾ௚௬

ܾ௚௭൧ ൌ
∑ ሾ௚ೣ ௚ೣ ௚ೣሿభబబబ
೙సబ

ଵ଴଴଴
  (4.35) 

 

 Removing the bias from the raw sensor data reduced the variance of the calculated 

fused orientation. Orientation calculated with the accelerometer and magnetometer as 

well as the gyroscope also could benefit from bias removal. Fused orientation results 

without bias removal were much better than both the accelerometer and magnetometer 

and the gyroscope results. Because of this, tests results with bias removal for the 

accelerometer and magnetometer calculated orientation and the gyroscope calculated 

orientation are not included in this thesis.  

 

 Ԧܽ ൌ ൣܽ௫ െ ܾ௔௫ ܽ௬ െ ܾ௔௬ ܽ௭ െ ܾ௔௭൧ (4.36) 

 Ԧ݃ ൌ ൣ݃௫ െ ܾ௚௫
݃௬ െ ܾ௚௬

݃௭ െ ܾ௚௭൧  (4.37) 

 

Bias was removed from the accelerometer and gyroscope raw sensor data by 

subtracting the bias vector from both respective vectors and shown in equation (4.36) and 

(4.37). 
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5  Prototype Location Tracking 

 

 

  

5.1 Location Tracking 

 

 The location of the prototype is estimated by performing successive wireless scans 

measuring the received signal strength (RSS) for specific wireless network access points. 

Wireless network access points can be comprised of multiple types such as 802.11 

networks, Bluetooth devices, RFID tags, and any other wireless network where RSS can 

be determined. At the time of writing this thesis, only 802.11 network scanning has been 

implemented in the prototype. The method described assumes the location of each 

access point has been predetermined and recorded using Cartesian coordinates. This 

method also assumes that the measured RSS of all wireless access points only pass 

through free space or atmosphere. Refer to section 2.5 for how to up a wireless network 
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map. A minimum of three wireless access points were required for the method described 

to work. 

 A custom wireless network scanner was created to maximize the number of scans 

per second. This is discussed in section 5.2. Wireless network scan data is stored in a 

two-dimensional matrix to preserve scan history. A scan result is a tuple comprised of the 

identification marker of an access point and the distance in centimeters from the prototype 

to the access point as detailed in (5.1). The identification marker for each access point is 

unique, such as the basic service set identifier (BSSID) for 802.11 networks. During 

scanning, the newest scan result is stored in the nth row of the scan result matrix and the 

oldest scan result is removed from the scan result matrix when a specified max scan 

history is reached (5.2). Each row in the scan result matrix represents individual wireless 

network scan results and each column represents individual access points (5.3). 

 

ݐ݈ݑݏܴ݁݊ܽܿݏ  ൌ ሺݐ݊݅݋݌	݂݋	ݐݏ݁ݎ݁ݐ݊݅	݅݀,  ሻ (5.1)݅݋݌	݋ݐ	݁ܿ݊ܽݐݏ݅݀

 ݊ ൌ  (5.2) ݕݎ݋ݐݏ݄݅	݊ܽܿݏ	ݔܽ݉

ݏݐ݈ݑݏܴ݁݊ܽܿݏ  ൌ

ۏ
ێ
ێ
ۍ
ሺ݅݋݌ଵ, ܿ݉ሻଵ ሺ݅݋݌ଶ, ܿ݉ሻଵ … ሺ݅݋݌௡, ܿ݉ሻଵ
ሺ݅݋݌ଵ, ܿ݉ሻଶ ሺ݅݋݌௕, ܿ݉ሻଶ … ሺ݅݋݌௡, ܿ݉ሻଶ

⁞ ⁞ ⁞
ሺ݅݋݌ଵ, ܿ݉ሻ௡ ሺ݅݋݌ଶ, ܿ݉ሻ௡ … ሺ݅݋݌௡, ܿ݉ሻ௡ے

ۑ
ۑ
ې
 (5.3) 

 

 The distance to an access point is estimated using the free space loss equation 

described in section 5.3. The RSS for a wireless access point greatly fluctuated and a 

filter had to be implemented to reduce the variances in RSS over successive wireless 

network scans. This is explained in section 5.4. After all distances have been estimated 

for a single wireless network scan, the location of the prototype is estimated using a least-
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squares model for trilateration described in section 5.5. The weighted center of the 

estimated locations was determined when a specified number of estimated locations were 

calculated. This is described in section 5.6. A threshold value is then used to determine if 

a final location update should occur and is described in section 5.7. The pseudo-code for 

the overall location tracking implementation is shown in listing 5.1. 

 

 

 

locationPred //2d list of predicted locations 

locationWeighted //2d list of weighted locations 

location //vector final calculated location 

scanresults //stream of scan results 

centroidK = 5 //refer to section 5.6 

threshold = 1 //refer to section 5.7 

dBmToCM(scanresults) { /* refer to section 5.4 */ } 

leastSumErrors(scanresults) { /* refer to section 5.5 */ } 

weightedCentroid(location) { /* refer to section 5.6 */ } 

distanceTo(temp, location) { /* refer to section 5.7 */ } 

while(true) { 

     scanresultsCm = dBmToCM(scanresults.next()) 

locationPred.add(leastSumErrors(scanresultsCm)) 

if(size(locationPred) >= centroidK) { 

temp = weightedCentroid(locationPred) 

if(threshold <= distanceTo(temp, location)) 

 location = temp 

 } 

} 

 

Listing 5.1: Pseudo code for implementation of location tracking 
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5.2 Custom WifiManager VS Android WifiManager  

 

 A custom 802.11 wireless network scanner was created to minimize the time 

between successive wireless network scans. The custom WifiManager was created using 

the Linux wireless (iw) software discussed in section 2.4.2. The WifiManager service built 

into the Android operating system is extremely slow and time between successive 

wireless network scan is approximately 1 second. This is because there are 14 channels 

on independent frequencies that need to be scanned for wireless 802.11 access points 

[19]. Figure 5.1 displays the 802.11 channels and frequencies where the top row 

represents channels and the bottom row represents frequencies. 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

2.412 2.417 2.422 2.427 2.432 2.437 2.442 2.447 2.452 2.457 2.462 2.467 2.472 2.484 

Figure 5.1: 802.11 wireless network channels and corresponding frequencies 

 

Creating a custom WifiManager based from Linux wireless allowed scanning for 

wireless network access points on a subset of 802.11 frequencies. The built-in 

WifiScanner did not have functionality to selectively choose frequencies, channels, or 

network name. Scanning on a subset of frequencies highly reduced the amount of time 

between successive scans. The greatest increase in scans per second was seen by 

minimizing the number of frequencies per scan to a single frequency.  

Increasing the number of wireless networks scans per second was important 

because there existed significant error in the received signal strength from the wireless 

access points as discussed in section 5.3. Maximizing the number of scans per second 
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reduced the level of error because location estimation calculation could utilize more data 

for calculations. In other words, there exists an inverse correlation between the number 

of wireless network scans per second and accuracy of the estimated location.  

 

 

 

5.3  RSS Distance Conversion 

 

Received Signal Strength (RSS) is the amount of measured power in a received 

radio transmission or signal and is often referred to as Received Signal Strength Indicator 

(RSSI). The idea behind received signal strength is that the configured transmitted power 

at the transmitter device directly affects the received power at the receiving device [19].  

According to Frii’s free space transmission equation (5.4), the strength of a signal 

degrades quadratically in relation to the distance of the sender and is used to convert 

RSS to distance.  

 

 ௥ܲሺௗሻ ൌ
௉೟ீ೟ீೝఒ

మ

ሺସగௗሻమ
 (5.4) 

 

௥ܲሺௗሻ is the received power at the receiver is, ௧ܲ is the transmission power of the 

sender, ܩ௧ is the gain of the transmitter, ܩ௥ is the gain of the receiver. In embedded 

devices, such as mobile devices, ܩ௧ ൌ ௥ܩ ൌ 1 [19]. The wavelength of the signal is ߣ and 

݀ is the distance between the sender and receiver normally. The wavelength (ߣ) can be 

substituted by equation (5.5) where ܿ is the speed of light and ݂ is the frequency of the 
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signal in hertz.  

 

ߣ  ൌ
௖

௙
, where ܿ ൌ 299,792,458 (5.5) 

 

Substituting ߣ yields equation (5.6). Equations (5.7) through (5.13) derive the final 

free space path loss equation to calculate distance from receiver to sender based upon 

the frequency and received signal strength of the signal. 

 

 
௉ೝሺ೏ሻ

௉೟
ൌ ௥ܩ௧ܩ ቀ

௖

ସగௗ௙
ቁ
ଶ
 (5.6) 

 
௉೟

௉ೝሺ೏ሻ
ൌ ቀ

ସగௗ௙

௖
ቁ
ଶ
 (5.7) 

 
௉೟

௉ೝሺ೏ሻ
ൌ ቀ

ସగௗ௙∗ଵ଴వ

ଶଽଽ,ଽ଻ଶ,ସହ଼
ቁ
ଶ

 (5.8) 

 

 Applying ݈݋ ଵ݃଴ሺ݈݃݋ሻ to both sides of equation (5.8) obtains the decibel (dB) version 

of the free space path loss equation (5.9) since RSS is measured in decibels-milliwatts 

(dBm) and is the logarithmic measurement of signal strength [20]. ܮܲܵܨ is also substituted 

for 
௉೟

௉ೝሺ೏ሻ
.  

 

ܮܲܵܨ  ൌ ݋݈	10 ଵ݃଴ ቀ
ସగௗ௙∗ଵ଴వ

ଶଽଽ,ଽ଻ଶ,ସହ଼
ቁ
ଶ

 (5.9) 

ܮܲܵܨ  ൌ ݋݈	20 ଵ݃଴ ቀ
ସగ∗ଵ଴

ଶ.ଽଽଽ଻ଶସହ଼
ቁ ൅ ݋݈	20 ଵ݃଴	ሺ݂ሻ ൅ ݋݈	20 ଵ݃଴	ሺ݀ሻ (5.10) 

݋݈	20  ଵ݃଴	ሺ݀ሻ ൌ ܮܲܵܨ െ ݋݈	20 ଵ݃଴	ሺ݂ሻ െ 32.4423 (5.11) 
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 ݀ ൌ 10ቀ
ಷೄುಽషమబ	೗೚೒భబ	ሺ೑ሻషయమ.ర

మబ
ቁ (5.12) 

 

 Equation (5.12) calculates ݀ in kilometers and must be converted to centimeters 

as shown in equation (5.13). 

 

 ݀௖௠ ൌ ݀ ∗ 10ହ (5.13) 

 

 Tests to determine the accuracy of the calculated distance based on RSS 

compared to a measured distance were performed. These tests were conducted by 

placing four 802.11 wireless access points at the same location. The prototype was then 

located at 50cm, 1m, 2m, 5m, and 10m away from access points. The RSS for each 

access point was recorded at each location. The RSS values were then converted to 

distance in centimeters using Frii’s free path loss equation. Results revealed a high level 

of variance in RSS for successive scan and filtering the received signal was necessary. 

Figure 5.2 displays RSS conversions to distances in meters.  

 

 

Figure 5.2: RSS to distance conversion in meters 
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5.4  Kalman Filter for RSS 

 

 Ideally, the RSS for a wireless network is steady and does not fluctuate. This is not 

the case in practical situations. Fluctuations in received signal can be caused by different 

factors: e.g. physical distance, reflections of objects, environmental parameters, 

movement of objects or change in the environment, antenna position and polarization etc. 

[21]. RSS fluctuations can be seen when recorded from a stationary location. Signal 

strength can increase or decrease greatly depending on the orientation of the access 

point in relation to the device measuring RSS values. For example, when the prototype 

is held in the hand of a user and is pointed to face a wireless access point the RSS could 

be -55dBm and have a lower value when the prototype is facing the opposite direction. 

This is because the human body contains more than 70% water and the resonance 

frequency of water is 2.4 gigahertz which most wireless networks operate on [22] 

 A Kalman filter was implemented to reduce the amount of variance in the RSS. 

This filters is an optimal estimator – i.e. infers parameters of interest from indirect, 

inaccurate and uncertain observations and is recursive so that new measurements can 

be processed as they arrive [23]. It is assumed that the process noise, which is the noise 

in the transmission power itself is negligible when compared to the measurement noise 

[24]. Equations (5.14) through (5.19) detail the simplified Kalman filter where ݔ௡ is the 

filtered output at the nth iteration, ݌௡ is the estimation error covariance, ݇௡ is the gain, ܳ 

is the process noise covariance, ܴ is the measurement noise covariance, and ݊ is the 

current iteration of the filter (5.14). Values are chosen for ܳ ൌ .125 and ܴ ൌ 32. 
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 ݊ ൌ ሼ1, 2, 3, … ,∞ሽ (5.14) 

 

 The first two equations, (5.15) and (5.16) are the prediction phase. The value ݔ௡ 

for the current filter iteration is updated with the filtered output value from the previous 

iteration (5.15). The estimation error covariance is updated using the process noise 

covariance value. 

 

௡ݔ  ൌ  ௡ିଵ (5.15)ݔ

௡݌  ൌ ௡ିଵ݌ ൅ ܳ (5.16) 

 

The estimation error covariance and measurement noise covariance are used to 

update the gain (5.17). Raw RSS values from an access point is stored in ܴ݀ܵܵ݉ܤ on 

every filter iteration and the filtered result is stored in ݔ௡	(5.18). The estimation error 

covariance is updated with the gain (5.19). 

 

 ݇௡ ൌ
௣೙

௣೙ାோ
 (5.17) 

௡ݔ  ൌ ௡ݔ ൅ ݇௡ ∗ ሺܴ݀ܵܵ݉ܤ െ   (5.18)	௡ሻݔ

௡݌  ൌ ሺ1 െ ݇௡ሻ ∗  ௡ (5.19)݌
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5.5 Least Squares Multilateration 

 

Multilateration is a process which estimates the target position based on 

measurements of distances from at least three known fixed points. This information was 

based on verbal communication [37]. Equation (5.21) is based upon Pythagorean 

Theorem and is broken into two distinct parts where ݀௜ is the estimated distance from the 

ith wireless access point, and ܽ݌௫௜, ܽ݌௬௜ are the Cartesian coordinates for the location of 

the wireless access point. 

 

 ݅ ൌ ሼ1, 2, 3, … , ݊ሽ, ݊	݁ݎ݄݁ݓ ൌ  (5.20) ݏܫܱܲ	݂݋	ݎܾ݁݉ݑ݊

 ݀௜
ଶ ൌ ௫௜݌ܽ

ଶ ൅ ௬௜݌ܽ
ଶ (5.21) 

 

 The values ݔ and ݕ in equation (5.22) are unknown and represent the Cartesian 

coordinates for the location of the prototype. Equations (5.22) through (5.25) derive 

equation (5.22) for further calculations in estimating the location of the prototype. 

 

 ݀௜
ଶ ൌ ൫ݔ െ ௫௜൯݌ܽ

ଶ
൅ ቀݕ െ ௬௜ቁ݌ܽ

ଶ
 (5.22) 

 ݀௜
ଶ ൌ ଶݔ െ ݔ௫௜݌2ܽ ൅ ௫௜݌ܽ

ଶ ൅ ଶݕ െ ݕ௬௜݌2ܽ ൅ ௬௜݌ܽ
ଶ (5.23) 

 ݀௜
ଶ െ ௫௜݌ܽ

ଶ െ ௬௜݌ܽ
ଶ ൌ ଶݔ െ ݔ௫௜݌2ܽ ൅ ଶݕ െ ௬௜݌2ܽ

 (5.24) ݕ

 ݀௜
ଶ െ ௫௜݌ܽ

ଶ െ ௬݌ܽ
ଶ ൌ െ2ܽ݌௫௜ݔ ൅ െ2ܽ݌௬௜

ݕ ൅ ଶݔ ൅  ଶ (5.25)ݕ

 

Equation (5.25) is substituted for equation (5.26) and represents one scan result 
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of ݊ total scan results. The left side of equation (5.25) represents the left side of equation 

(5.26) and the same for the right side of both equations (5.25) and (5.26). The equation 

in (5.27) represents all ݊ total scan results and is a system on equations with two 

unknowns.  

 

 ܾ௜ ൌ ܽ௜ ∗  (5.26) ݓ

 ሬܾԦ ൌ ܣ ∗  ሬሬԦ (5.27)ݓ

 

The total scan results must be equal or greater than three, ݊ ൒ 3. Enforcing that ݊ 

is greater than three creates and over-determined system of equations where there is a 

single specific minimal length solution which can be obtained using the pseudoinverse 

[34]. The vector ሬܾԦ and matrix ܣ are detailed in (5.28) and (5.29). Matrix ܣ is augmented 

with a column of ones in order to calculate the pseudoinverse.  

 

 ሬܾԦ ൌ

ۏ
ێ
ێ
ێ
ଵ݁ܿ݊ܽݐݏ݅݀ۍ

ଶ െ ௫ଵ݌ܽ
ଶ െ ௬ଵ݌ܽ

ଶ

ଶ݁ܿ݊ܽݐݏ݅݀
ଶ െ ௫ଶ݌ܽ

ଶ െ ௬ଶ݌ܽ
ଶ

⁞
௡݁ܿ݊ܽݐݏ݅݀

ଶ െ ௫௡݌ܽ
ଶ െ ௬௡݌ܽ

ଶ
ے
ۑ
ۑ
ۑ
ې

 (5.28) 

ܣ  ൌ

ۏ
ێ
ێ
ێ
ۍ
െ2 ∗ ௫ଵ݌ܽ െ2 ∗ ௬ଵ݌ܽ 1

െ2 ∗ ௫ଶ݌ܽ െ2 ∗ ௬ଶ݌ܽ
1

⁞ ⁞ ⁞
െ2 ∗ ௫௡݌ܽ െ2 ∗ ௬௡݌ܽ

ے1
ۑ
ۑ
ۑ
ې

 (5.29) 

  

Equation (5.30) is created by rearranging (5.29). ܸܲܰܫ represents the 

pseudoinverse portion of the equation. The equation (5.31) has the pseudoinverse portion 
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expanded from (5.30).  

 

ሬሬԦݓ  ൌ ሻܣሺܸܰܫܲ ∗ ሬܾԦ (5.30) 

ሬሬԦݓ  ൌ ሺሺܣ′ܣሻିଵ ∗ ᇱሻܣ ∗ ሬܾԦ (5.31) 

 

 

After solving the system of equations the vector ݓሬሬԦ contains three values, but only 

the first two values are needed. The first value (ݓ௫) is the estimated ݔ coordinate and 

second value (ݓ௬) is the estimated ݕ coordinate as shown in equation (5.32). Estimated 

coordinated pairs are stored in the nth row of matrix ݈௣ and the oldest is removed after 

every estimation when a specified capacity is reached same as detailed in equation 

(5.33). 

 

ሬሬԦݓ  ൌ ሾݓ௫ ௬ݓ ∎ሿ (5.32) 

 ݈௣ ൌ

ۏ
ێ
ێ
ێ
ۍ
௫ଵݓ ௬ଵݓ
௫ଶݓ ௬ଶݓ
⁞ ⁞

௫௡ݓ ے௬௡ݓ
ۑ
ۑ
ۑ
ې

 (5.33) 
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5.6 Weighted Centroid  

 

 The weighed center of all locations stored in ݈௣ is calculated and stored in vector 

݈௪ሬሬሬԦ (5.34) after a predetermined number of estimated coordinate locations have been 

calculated and based from section 5.5. The weighted position is derived from the centroid 

determination which calculates the position of [the prototype] by averaging the 

coordinates of know reference points [25]. The known reference points are calculated 

from the last section and stored in matrix ݈௣ (5.33). 

 

 ݈௪ሬሬሬԦ ൌ ሾ݈௪௫ ݈௪௭ሿ (5.34) 

 

The weighted centroid is calculated by summing both columns of matrix ݈௣ shown 

in equations (5.35) and (5.36) and the multiplying each respective summation by the 

variable ݐ݄݃݅݁ݓ shown in equation (5.37). 

 

 ݈௪௫ ൌ ∑ ݈௣௫௜
௡
௜ୀ଴ ∗  (5.35) ݐ݄݃݅݁ݓ

 ݈௪௬ ൌ ∑ ݈௣௬௜
௡
௜ୀ଴ ∗  (5.36) ݐ݄݃݅݁ݓ

ݐ݄݃݅݁ݓ  ൌ
ଵ

௟௘௡௚௧௛ሺ௟೛ሻ
 (5.37) 
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5.7 Distance Threshold  

 The calculated position of the prototype would change slightly when the prototype 

remained stationary. This was due the noise that originated in the RSS values. A threshold 

value was introduced to minimize the location sporadically changing. The threshold value 

is a constant value. The final calculated location of the prototype is stored in vector Ԧ݈ 

(5.38) and is only updated if the distance between the current value of Ԧ݈ and ݈௪ሬሬሬԦ is greater 

than the threshold value as shown in equations (5.39) and (5.40). 

 

 Ԧ݈ ൌ ሾ݈௫ ݈௬ሿ (5.38) 

 Ԧ݈ ൌ ݈௪ሬሬሬԦ	ࢌࢌ࢏	݈݀݋݄ݏ݁ݎ݄ݐ ൑  (5.39) ݋ܶ݁ܿ݊ܽݐݏ݅݀

݋ܶ݁ܿ݊ܽݐݏ݅݀  ൌ ටห݈௫
ଶ െ ݈௪௫

ଶห ൅ ቚ݈௬
ଶ െ ݈௪௬

ଶቚ (5.40) 

  

 The vector Ԧ݈ stores the final location of the prototype relative to a referenced 

wireless network map.  
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6  Experimental Results and Discussion 

 

 

  

6.1 Understanding Test Results 

 

 Chapter 6 contains experimental tests results. Raw sensor data results are shown 

in section 6.2. Orientation test results are shown in section 6.3 and are divided into 

accelerometer and magnetometer calculated orientation, gyroscope calculated 

orientation, and fused orientation calculated orientation. Results with and without bias 

removal are provided for each of the orientations tests. Chapter 4 details calculations for 

orientation estimation. 

 Sections 6.4 through 6.6 provide tests results for location estimation. RSS results 

for raw and filtered wireless scan data is provided in section 6.4. Distance determination 

from received signal strength tests are detailed in section 6.5. Section 6.6 contains test 

results for location prediction. Test results are provided with and without RSS filtering for 
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sections 6.5 and 6.6. Chapter 5 details location prediction calculations. 

 

 

 

6.2 Raw Sensor Data Results 

 

 Experimental tests were conducted to measure the amount of noise in raw sensor 

data recorded from the magnetometer, accelerometer, and gyroscope. Results are shown 

in figures 6.1 through 6.3 and contain 500 samples of data. Sensor data was 

independently recorded for the X, Y, and Z axes. Each of the raw sensor data tests were 

conducted with the mobile device lying flat and stationary on a surface parallel to the 

ground with the screen side (front) of the device facing towards the sky. 

 

 

SD 0.6242 

SE 0.0279 

CI(90%) ±0.0460 

 

SD 0.7493 

SE 0.0335 

CI(90%) ±0.0552 

 

SD 1.6620 

SE 0.0743 

CI(90%) ±0.1225 
 

Figure 6.1: Raw Magnetometer Sensor Data 
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Sensor data for the magnetometer in figure 6.1 are recorded in microTesla. The 

magnetometer sensor had the highest amount of overall noise for raw sensor data tests. 

The standard deviation of the sensor readings for the magnetometer ranged from .062 (X 

axis) to 1.66 (Z axis) and show the inaccuracies of the magnetometer sensor hardware. 

 

 

SD 0.0276 

SE 0.0012 

CI(90%) ±0.0020 

 

SD 0.0242 

SE 0.0011 

CI(90%) ±0.0018 

 

SD 0.0290 

SE 0.0013 

CI(90%) ±0.0021 
 

Figure 6.2: Raw Accelerometer Sensor Data 

 

Figure 6.2 contains the raw sensor data recorded from the accelerometer and is 

measured in units of meters per second squared ቀ
௠

௦௘௖మ
ቁ. The raw accelerometer sensor 

data also contained noise, but much less than the magnetometer. The standard deviation 

for raw accelerometer sensor data ranged from .024 (Y axis) to .029 (Z axis). 

The raw gyroscope sensor data shown in figure 6.3 is measured in radians per 

second ቀ
௥௔ௗ௦

௦௘௖
ቁ. The gyroscope sensor contained almost no noise and has the least 
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amount of noise when compared to the magnetometer and accelerometer. The standard 

deviation was so small that it could not be computed accurately. 

 

 

 

SD 2.44E-15 

SE 1.09E-16 

CI(90%) ±1.8E-16 

 

SD 2.44E-15 

SE 1.09E-16 

CI(90%) ±1.8E-16 

 

SD 2.44E-15 

SE 1.09E-16 

CI(90%) ±1.8E-16 
 

Figure 6.3: Raw Gyroscope Sensor Data 

 

 The results of the raw sensor data tests show a high amount of noise in the 

magnetometer sensor (figure 6.1) and accelerometer sensor (figure 6.2). The gyroscope 

sensor (figure 6.3) produced very steady test results. 
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6.3 Orientation Tracking Results 

  

Experimental tests were conducted to determine the amount of variance in the 

estimated orientation over 500 successive samples. Orientation was calculated using 

three different methods and variance was measured in degrees. Figures 6.4 through 6.9 

show tests results for different orientation methods. Test results have been recorded with 

and without bias removal for each estimation method. Bias is described in section 4.6. 

Tests were conducted with the mobile device lying flat and stationary on a surface parallel 

to the ground with the screen side (front) of the device was facing towards the sky. 

 

6.3.1 Accelerometer and Magnetometer Orientation Results 

 

Figure 6.4 and 6.5 show test results from orientation estimation calculations using 

the accelerometer and magnetometer sensors. Figure 6.4 is without bias removal and 

figure 6.5 is with bias removal. Both tests show that the azimuth has the highest standard 

deviation when compared to pitch and roll. This is because azimuth is calculated from the 

magnetometer sensor data. Pitch and roll are computed from the accelerometer sensor 

data. These results correlate to the raw sensor data test results shown in figures 6.1 and 

6.2. Applying bias removal, shown in figure 6.5, did not significantly improve the estimated 

orientation results using this method. This method could not be used to estimate prototype 

orientation because the standard deviation of the azimuth was too great. 
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 azimuth pitch roll 

SD 0.8525 0.1430 0.1569 

SE 0.0381 0.0064 0.0070 

CI(90%) ±0.0628 ±0.0104 ±0.0116 
 

Figure 6.4: Accelerometer/magnetometer calculated orientation 

 

 

 

 

 azimuth pitch roll 

SD 0.9183 0.1310 0.1478 

SE 0.0411 0.0059 0.0066 

CI(90%) ±0.0677 ±0.0097 ±0.0109
 

Figure 6.5: Accelerometer and magnetometer with bias removal calculated orientation 

 

 

6.3.2 Gyroscope Orientation Results 

 

 Figure 6.6 and 6.7 show test results from orientation estimation calculations using 

the gyroscope sensor. Figure 6.6 is without bias removal and figure 6.7 is with bias 

removal. The standard deviation of the gyroscope estimated orientation was much 

smaller than experimental test results for the accelerometer and magnetometer test 
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results shown in figures 6.4 and 6.5, and was so small it could not be accurately 

computed. These results correlate to the tests results shown in figure 6.3. Applying bias 

removal, shown in figure 6.7, did not significantly improve test results. The results 

computed from this method also contained gyroscopic drift. Over time the estimated 

orientation would deviate from the true orientation of the prototype. This method could not 

be used to estimate prototype orientation because of the gyroscopic drift. 

 

 

 

 

 azimuth pitch roll 

SD 1.1E-13 0.0003 0.0049 

SE 5.1E-15 1.29E-5 0.0002 

CI(90%) ±8E-15 ±2.1E-5 ±0.0004
 

    Figure 6.6: Gyroscope calculated orientation 

 

 

 

 

 azimuth pitch roll 

SD 2.51E-6 0.0003 0.0346 

SE 1.12E-7 1.49E-5 0.0015 

CI(90%) ±1.8E-7 ±2.5E-5 ±0.0026
 

Figure 6.7: Gyroscope with bias removal calculated orientation 
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6.3.3 Sensor Fused Orientation Results 

 

Figure 6.8 and 6.9 show test results from orientation estimation calculations using 

sensor fusion. This method was implemented using a complimentary filter comprised of 

data from the accelerometer, magnetometer, and gyroscope sensors. Figure 6.8 is 

without bias removal and figure 6.9 is with bias removal. The standard deviation of this 

method for both biased and non-biased test results were within acceptable limits. 

Applying bias removal, shown in figure 6.9, significantly improved the estimated 

orientation results for this method and the standard deviation was much less than tests 

without bias removal. This method has a much smaller standard deviation than the test 

results of the accelerometer and magnetometer estimated orientation test results shown 

in figures 6.4 and 6.5. When compared to the gyroscope orientation test results shown in 

figures 6.6 and 6.7, the standard deviation for this method is greater, but the estimated 

orientation did not deviate from the true orientation of the prototype. This method with 

bias removal is used to estimate the orientation of the prototype. 

 

 

 

 

 azimuth pitch roll 

SD 0.2308 0.0788 0.0856 

SE 0.0103 0.0035 0.0038 

CI(90%) ±0.0170 ±0.0058 ±0.0063
 

Figure 6.8: Sensor fused calculated orientation 
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 azimuth pitch roll 

SD 0.1049 0.0224 0.0477 

SE 0.0047 0.0010 0.0021 

CI(90%) ±0.0077 ±0.0016 ±0.0035
 

Figure 6.9: Sensor fused with bias removal calculated orientation 

 

 

6.3.4 Orientation Calculation Comparison 

 

 The following figures 6.10 through 6.12 compare the test results from the different 

orientation estimation methods shown in figures 6.4 through 6.9. The same test data used 

for figures 6.4 through 6.9 is used in figures 6.10 though 6.12. Figure 6.10 compares the 

three different orientation methods for azimuth. Figure 6.11 compares the three different 

orientation methods for pitch. Figure 6.12 compares the three different orientation 

methods for roll. The bolded cyan plot line in figures 6.10 through 6.12 is the sensor fused 

orientation method with bias removal. This method is the best when compared with the 

accelerometer and magnetometer method and gyroscope method. 
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Figure 6.10: Azimuth comparsion 

 

 

Figure 6.11: Pitch comparison 
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Figure 6.12: Roll comparison 

 

 

 

6.4  Received Signal Strength Results 

 

The following two subsections show test results using the prototype to measure 

RSS values at varying distances from four 802.11 wireless access points to compare 

unfiltered or raw signal strength values with filtered signal strength values. Data was 

recorded at 50 centimeters, 1 meter, 2 meters, 5 meters, and 10 meters. Each test 

consists of 100 samples of recorded data. Subsection 6.4.1 contains test results for 

unfiltered or raw data and subsection 6.4.2 contains test results for filtered data. The 

same data recorded data is used for both raw and filtered tests.  
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6.4.1 Raw RSS 

 

 Experimental test results for unfiltered or raw data is shown in figures 6.13 through 

6.17. Each test is comprised of four wireless access points with 100 samples of data. 

Figure 6.13 shows test results at 50 centimeters with RSS values varying from  

-40dBm to -52dBm. Figure 6.14 shows test results at 1 meter with RSS values varying 

from -40dBm to -55dBm. Figure 6.15 shows test results at 2 meters with RSS values 

varying from -53dBm to -63dBm. Figure 6.16 shows test results at 5 meters with RSS 

values varying from -52dBm to -69dBm. Figure 6.17 shows test results at 10 meters with 

RSS values varying from -53dBm to -70dBm. 

 The tests results from measuring the RSS at different distances from the wireless 

access points display the high amount of fluctuation in the signal strengths. This high 

amount of fluctuation caused erroneous values when converting the RSS to distance and 

had to be filtered. It can also be seen from these tests that as distance from each wireless 

access point increases, the overall numerical range in received signal strength also 

increases. 

 

 

Figure 6.13: Raw RSSI, 50 centimeters distance from all access points 
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Figure 6.14: Raw RSSI, 1 meter distance from all access points 

 

 

Figure 6.15: Raw RSSI, 2 meters distance from all access points 

 

 

Figure 6.16: Raw RSSI, 5 meters distance from all access points 
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Figure 6.17: Raw RSS, 10 meters distance from all access points 

 

 

 

6.4.2 Filtered RSS 

 

Experimental test results using Kalman filtered data is shown in figures 6.18 

through 6.22 using the same data from figures 6.13 through 6.17, respectively. The 

Kalman filter is explained in section 5.4. Kalman filter values for all experimental tests 

were conducted with ܳ ൌ .125 and ܴ ൌ 32.  

Figure 6.18 shows test results at 50 centimeters with RSS values varying from -

44dBm to -49dBm. Figure 6.19 shows test results at 1 meter with RSS values varying 

from -44dBm to -51dBm. Figure 6.20 shows test results at 2 meters with RSS values 

varying from -57dBm to -62dBm. Figure 6.21 shows test results at 5 meters with RSS 

values varying from -57dBm to -63dBm. Figure 6.22 shows test results at 10 meters with 

RSS values varying from -55dBm to -65dBm. 

In all test results, filtering the RSS values from the wireless access points 

decreased the numerical range, increased the minimum RSS value, decreased the 
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minimum RSS value, and produced overall steadier signal data. Again, it can been seen 

as in test results in figures 6.13 through 6.17 that as distance from the wireless access 

points increase, the overall numerical range in received signal strength also increases. 

RSS distance conversions using Kalman filtered data improved distance 

conversions when compared to computing estimated distances using unfiltered or raw 

RSS values. This is due to the much steadier non-sporadic received signal strength data 

produced from the filter. 

 

 

Figure 6.18: Filtered RSS, 50 centimeters distance from all access points 

 

 

Figure 6.19: Filtered RSS, 1 meter distance from all access points 
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Figure 6.20: Filtered RSS, 2 meters distance from all access points 

 

 

Figure 6.21: Filtered RSS, 5 meters distance from all access points 

 

 

Figure 6.22: Filtered RSS, 10 meters distance from all access points 
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6.5  RSS Estimated Distance VS Actual Distance 

 

 The estimated distance calculated from the RSS values using Frii’s free space path 

loss equation is shown in figure 6.23. Table 6.1 contains percent errors of the estimated 

distances from actual measured distances. The data used in figure 6.23 and table 6.1 is 

the same test data used in figures 6.18 through 6.22 in the previous subsection.  

It can also be seen in figure 6.23 that as distance from the wireless access points 

increase, the fluctuation in RSS values also increase. This correlates directly to the tests 

results in figures 6.18 through 6.22, and also correlates to test results in figures 6.13 

through 6.17 for unfiltered or raw RSS values. Percent error of the estimated distances 

to the real distances appear to decrease as shown in table 6.1 except when RSS was 

measured at 2 meters, but overall deviation of the estimated distances to the real 

distances increase as the wireless access points move further away from the prototype. 

 

 

Figure 6:23: Estimated Distance VS Actual Distance measured in meters 
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 50 cm 1 m 2 m 5 m 10 m 

router1 192.8163   45.2607   316.3574   106.3421    38.4594 

router2 287.8415   179.24 442.5555   70.3171    42.1488 

router3 340.5913   171.7048    273.3680   46.5706    39.7410 

router4 416.3006 61.9333 297.5566 59.1920 -35.5219 

average 309.39 99.051 221.82 70.605 21.207 
 

Table 6.1: Percent error of estimated distance from actual distance 

 

 

 

6.6 Location Estimation Results 

 

 The following two subsections contain test results for location estimation 

comparing raw and filtered RSS data. Tests were conducted in an indoor environment 

that measured 14.0462 meters wide and 17.4498 meters deep. An 802.11 wireless 

access point was placed in each corner of the indoor environment. Figure 6.24 gives the 

layout of the test environment and position of the access points and four test locations. 

 

 
Figure 6.24: Indoor test environment and test locations 
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All experimental tests were conducted with a threshold value of 1 meter and 

conducted over 100 received RSS samples from all four wireless access points. Weighted 

locations are calculated from 10 predicted locations. Four tests were conducted at 

stationary locations at coordinates (3m, 0m), (6.5m, 6.5m), (7.5m, 10m) and (14m, 5m) 

shown in figure 6.24. The same datasets are used in tests results for each position 

comparing unfiltered and filtered RSS data. 

 For each test location, the total number of final predicted location updates were 

counted, the average distance from the actual locations to the estimated final locations 

were determined, and the standard deviation over all final predicted locations were 

computed. The percentage of final locations estimated within the threshold limit of 1 meter 

as well as 2 meters were calculated for each test. 

 Figures 6.25 through 6.27 contain four symbol types. The red diamond is the 

location of the prototype. Black circles are multilaterated location estimates. Orange 

squares are weighted multilaterated location estimates. Cyan diamonds are weighted 

multilaterated location estimates or final estimated locations bound to a threshold. 

 

 

6.6.1 Location 1 

 

 One hundred RSS readings were recorded at coordinates (3m, 0m). Figure 6.25 

contains unfiltered or raw data and figure 6.26 contains Kalman filtered data. It can be 

seen from the tests results at location 1 the filtered RSS data improved location 

estimation. The total number of final location updates were significantly smaller for filtered 
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data. The average distance from the estimated final locations to the real location and 

standard deviation improved for filtered data. The percentage of estimated final locations 

within 1 meter and 2 meters improved with filtered RSS test data. 

 

  

Final Location 

Updated # 39 

Average Meters 3.5164 

SD 2.5994 

SE 0.4162 

CI(90%) ±0.702 

% <= 1 meter 5.1282 

% <= 2 meters 38.46 
 

Figure 6.25: Estimated position for location 1, raw data 

 

  

Final Location 

Updated # 7 

Average Meters 0.9763 

SD 0.5909 

SE 0.2233 

CI(90%) ±0.434 

% <= 1 meter 57.14 

% <= 2 meters 100 
 

Figure 6.26: Estimated position for location 1, filter data 
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6.6.2 Location 2 

 

One hundred RSS readings were recorded at coordinates (6.5m, 6.5m). Figure 

6.27 contains unfiltered or raw data and figure 6.28 contains Kalman filtered data. It can 

be seen from the tests results at location 2 the filtered RSS data improved location 

estimation. The total number of final location updates were significantly smaller for filtered 

data. The average distance from the estimated final locations to the real location and 

standard deviation improved for filtered data. The percentage of estimated final locations 

within 1 meter did not improve, but at 2 meters improvement occurred with filtered RSS 

test data. 

 

  

Final Location 

Updated # 9 

Average Meters 2.4302 

SD 1.0725 

SE 0.3575 

CI(90%) ±0.6648 

% <= 1 meter 0 

% <= 2 meters 33.33 
 

Figure 6.27: Estimated position for location 2, raw data 
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Final Location 

Updated # 3 

Average Meters 1.7397 

SD 0.4068 

SE 0.2349 

CI(90%) ±0.686 

% <= 1 meter 0 

% <= 2 meters 66.66 
 

Figure 6.28: Estimated position for location 2, filter data 

 

 

6.6.3 Location 3 

 

One hundred RSS readings were recorded at coordinates (7.5m, 10m). Figure 6.29 

contains unfiltered or raw data and figure 6.27 contains Kalman filtered data. It can be 

seen from the tests results at location 3 the filtered RSS data improved location 

estimation. The total number of final location updates were significantly smaller for filtered 

data. The average distance from the estimated final locations to the real location and 

standard deviation improved for filtered data. The percentage of estimated final locations 

within 1 meter and 2 meters slightly decreased with filtered RSS test data and raw data 

performed better. 
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Final Location 

Updated # 26 

Average Meters 2.7520 

SD 1.6985 

SE 0.3331 

CI(90%) ±0.57 

% <= 1 meter 23.0769 

% <= 2 meters 42.3077 
 

Figure 6.29: Estimated position for location 3, raw data 

 

  

Final Location 

Updated # 5 

Average Meters 2.3333 

SD 1.2082 

SE 0.5403 

CI(90%) ±1.1519 

% <= 1 meter 20 

% <= 2 meters 40 
 

Figure 6.30: Estimated position for location 3, filter data 
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6.6.4 Location 4 

 

One hundred RSS readings were recorded at coordinates (14m, 5m). Figure 6.31 

contains unfiltered or raw data and figure 6.32 contains Kalman filtered data. It can be 

seen from the tests results at location 4 the filtered RSS data improved location 

estimation. The total number of final location updates were significantly smaller for filtered 

data. The average distance from the estimated final locations to the real location and 

standard deviation improved for filtered data. The percentage of estimated final locations 

within 1 meter and 2 meters improved with filtered RSS test data. 

 

  

Final Location 

Updated # 32 

Average Meters 7.0104 

SD 5.7221 

SE 1.0115 

CI(90%) ±1.7151 

% <= 1 meter 5.556 

% <= 2 meters 16.667 
 

Figure 6.31: Estimated position for location 4, raw data 
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Final Location 

Updated # 9 

Average Meters 2.2361 

SD 0.9922 

SE 0.3307 

CI(90%) ±0.615 

% <= 1 meter 11.11 

% <= 2 meters 44.44 
 

Figure 6.32: Estimated position for location 4, filter data 
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7  Conclusions 

 

 

  

7.1 Conclusion 

 

 Sensor fusion with bias removal produced the best results for orientation 

estimates. The estimated azimuth angle contained the highest amount of variance over 

successive sensor readings for all test incorporating the magnetometer sensor. This was 

because the magnetometer had the highest variance in the raw sensor data. Tests 

involving the gyroscope contained the least amount of variance over successive sensor 

readings, but also contained gyroscopic drift misaligning the orientations of the real and 

virtual worlds over time.  

Sensor fused orientation estimates with bias removal performance was the best of 

out all three methods tests. Maximum variance of the true orientation of the prototype 

versus the estimated orientation was less than 1 degree over successive orientation 
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estimates and orientation changes are smooth. The prototype orientation remained 

aligned to a global reference. The sensor fused orientation tracking method is acceptable 

and can be used for further development of the prototype.  

Estimating the location of the prototype when stationary can be computed 

somewhat accurately. The goal of less than one meter of the estimated location to the 

actual location cannot be met using 802.11 wireless network access points. When the 

prototype is moving location estimation is very limited and unacceptable. This is due to 

the high amount of noise in the RSS for each of the 802.11 wireless access points. When 

testing was conducted, variances could be seen in the RSS when the prototype remained 

stationary and was held in the hand of a user in different ways. Stabilizing the RSS using 

a Kalman filter introduced a small amount of lag for location estimation updates, but the 

number of overall final location estimates over time were greatly reduced when compared 

to using unfiltered or raw RSS data for location estimates. The physical space needed for 

this method to work optimally is about 10 to 20 meters and many indoor environments do 

not accommodate this physical size. Different technology must be explored to achieve 

more reliable and steady RSS readings.  

 

 

 

7.2 Future Works 

 

 There are many possible directions to extend the research described within this 

thesis. First, it would be interesting to compare the received signal strength variance and 
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accuracy using different technologies such as Bluetooth or other wireless based network 

hardware. Secondly, incorporating prototype orientation into the multilateration method 

described should be investigated since RSS values highly decrease when the prototype 

is not facing the wireless access point. Finally, the research completed here can be used 

to continue to develop a prototype device to allow a user to experience a virtual reality 

experience using common high-tech devices. 
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