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New power applications for managing increasingly higher power levels require that more heat 

be removed from the power transistor channel. Conventional treatments for heat dissipation 

do not take into account the conversion of excess electron energy into longitudinal optical 

(LO) phonons, whose associated heat is stored in the channel unless such LO phonons decay 

into longitudinal acoustic (LA) phonons via a Ridley path. A two dimensional electron gas 

(2DEG) density of ~5×1012cm-2 in the channel results in a strong plasmon–LO phonon 

coupling (resonance) and a minimum LO phonon lifetime is experimentally observed, 

implying fast heat removal from the channel. Therefore, it is desirable to shift the resonance 

condition to higher 2DEG densities, and thereby higher power levels. The more convenient 

way to attain the latter is by widening the 2DEG density profile via heterostructure 

engineering, i.e. by using multiple channel heterostructures. A single channel heterostructure 

(GaN/AlN/AlGaN), a basic heterostructure used to obtain a 2DEG, exhibits a resonance 

condition at low 2DEG densities (~0.65×1012 cm-2). Successful widening of the 2DEG density 
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profile was predicted by simulation results for two types of multiple (Al)GaN channel 

heterostructures, i.e. coupled channel GaN/AlN/GaN/AlN/AlGaN and dual channel 

GaN/AlGaN/AlN/AlGaN. Because of a reduction of carrier confinement, it is experimentally 

observed that control of the channel is moderate in the case of dual channel heterostructures. 

On the other hand, carrier confinement provides a better control of the channel in coupled 

channel heterostructures. Furthermore, unlike in a dual channel heterostructure, alloy 

scattering does not affect carrier transport properties, which results in a higher cut-off 

frequency. It was found experimentally that the coupled channel heterostructure successfully 

reaches resonance condition at a 2DEG density that is 23% higher than in a single channel 

heterostructure. Multiple channel heterostructures therefore provide a convenient way to shift 

the plasmon-LO phonon resonance to higher 2DEG densities. However, in our grown 

heterostructures, high power levels under optimal channel working conditions and minimum 

heat accumulation, all desirable benefits for the development of high power transistors, were 

only observed in coupled channel heterostructures.  
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Chapter 1. Introduction 

Traditional applications in the range of RF, microwave, and millimeter frequencies for 

telecommunication systems, wireless infrastructure (base stations), and high performance 

military electronics compel devices with incessant demand for superior performance; low 

noise figure (NF), reasonable gain at frequencies exceeding 100 GHz, and management of 

increased power levels. In order to satisfy applications requirements, in the last three decades, 

a good deal of effort was invested in the development of new device architectures and in the 

search for new semiconductors. Because of limitations in the realm of Si for high frequencies 

applications and because of the lack of gate quality dielectrics in other semiconductor 

families, heterostructure field effect transistors (HFET) and no metal-oxide-semiconductor 

field-effect transistors (MOSFET) are used for high performance transistors. 

Initial FETs implemented in non-conventional Si technology, were of the metal-

semiconductor (MESFET) type. MESFETs are based on semiconductors with high quality 

surfaces like GaAs, InP, and SiC. Later on, modulation-doped FETs (MODFET) emerged as 

an option to overcome MESFETs limitations; because of the doping levels requirements and 

proximity of the gate with respect to the conducting channel in short channel devices for high 

speed applications. Early MODFETs were based on GaAs and then on SiGe and InP. When 

based on GaN, MODFET are usually called HFETs (in Europe and Asia are also mistakenly 

known as high electron mobility transistors (HEMTs)) and for the compound semiconductors 

they are usually based on i.e. AlGaN, InAlN, and GaN. HFETs exhibit relative large low-field 

mobility, large maximum electron velocities (at high critical electric fields), and large 

electron concentrations, which are required characteristics for high-performance FETs.  
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AlGaAs/InGaAs-based pseudomorphic MODFET characterized by low noise, high gain, and 

reasonable high power handling capabilities at high frequencies used to dominate the radio 

frequency (RF) marketplace. However, because GaAs-MODFETs power output is relatively 

low, high radio frequency power levels used to be only achieved by means of power 

combining schemes which increase not only hardware/infrastructure complexity, but also 

costs. GaN-based HFET resolved these issues by providing high power at high frequencies. 

Electrical properties, large bandgap (3.42 V), large dielectric breakdown electric field (3-5 × 

106 Vcm-1), and good electron transport properties (~1400 cm2 V-1 S-1 experimental at 300K), 

specially at room temperature, are the relevant characteristics of GaN which make of GaN a 

suitable semiconductor material for high frequency, high power, and high temperature 

applications. Record power densities levels (see Table 1.1), unthinkable some years ago, were 

already achieved thanks to the development of GaN technology. From Table 1.1 we can see 

that the highest power density (PD) levels are attained when HFET on SiC substrates. And 

which is consistent with the thermal conductivity of the material, 4.5 Wcm K-1, the highest 

among the substrates used for RF power transistors. Therefore, using substrates with high 

thermal conductivity and assuming heat sink attached to the substrate has a thermal resistant 

zero (ideal case), heat removal from the device is limited by the heat transfer along the path 

from the FET channel through the device structure down to the substrate. In a HFET the 

active part, the main component, is the channel where a two dimensional electron gas (2DEG) 

is formed. See Figure 3.6 for a description of GaN-HFET and location of the 2DEG. 

At high electric field conditions, under which power transistors perform most of the time, 

electron gain energy; increases its temperature and start to transfer energy to the lattice (hot 

electron). Effects of hot electrons are more prominent underneath and at the drain side of the 

gate where the electric field is more intense (see Figure 3.6). And at high power working 

conditions occur heat accumulation aggravated by the built-up of phonon (a unit of 
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vibrational energy that arises from oscillating atoms within a crystal) which generate a non-

equilibrium distribution, in this case, of longitudinal optical (LO) phonons (hot phonons) 

inside of the 2DEG channel. 

Table 1.1. Semiconductor materials used for power transistors. Cutoff frequency (fT,), 
power gain (Gain), power-added efficiency (PAE), and power dissipation (PD) 
performed by GaN-based HFETs 

Material Ecrit 300K  fT Gain PAE PD 

 MVcm-1 Wcm-1 K-1 GHz dB % Wmm-1 

GaAs[1] 0.4 0.46 3.8 12 50 0.4 

Si[2] 0.3 1.5 14 7 30 3 

GaN[3] 3.3 >1.5 10 3 40 9.4 

SiC[4] 3 4.5 10 9 44 16.7 

 

Hot phonons persist in the 2DEG channel until they decay into acoustic phonons (APs), 

removing the heat from the 2DEG channel. 2DEG in a GaN system is formed by mobile 

electrons provided, mainly, by the ohmic contacts. Therefore, hot electron and hot phonon 

effects are not screened by impurity scattering in GaN 2DEG channel.  

One of the most important carrier-phonon scattering mechanisms in semiconductors is the 

carrier-electric polarization field, due to the relative displacement of positive and negative 

ions. In polar semiconductors and in particular in low-defect polar GaN material system, 

carrier scattering is governed by the polar-optical-phonon (POP) scattering mechanism and it 

is referred to as the Fröhlich interaction. Because of the Fröhlich interaction, emission and 

absorption of LO phonons by hot electrons perform the most relevant role in terms of heat 

generation at high electric fields.  
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On other hand, it was observed, experimentally, a carrier density dependence of hot phonon 

lifetime [5]–[10]. Phonon lifetime minimum occurs when the frequency, , of longitudinal 

oscillation of the free electron gas (plasmon) in the channel match LO phonon frequency 

(resonance). Strong resonance happens at a 2DEG density of 0.8-1.1 × 1013 cm2, equivalent to 

~1x1019 cm3. Where 2D and 3D densities are related by a “form factor,” correlated with the 

way in which the channel widens the carrier density profile. Channel widening depends on 

the heterostructure in which it is formed.  

Because in bulk GaN resonance happens around ~1x1019 cm3 and in order to achieve higher 

power levels under resonance conditions, the heterostructure should wide the carrier density 

profile in such a way that 3D carrier density maximum is ~1×1019 cm3 and 2DEG density is 

as high as possible. Then, hot phonons emitted by hot electrons decay very fast and therefore 

a minimum of TO and LA phonons are launched. Due to that LA phonons are in charge of the 

heat removal from the channel, under resonance working conditions, minimum dissipation 

and fast decay of the heat conditions are attained. Efficient heat management will let device 

work at higher power levels. And owing to the hot phonon fast decay, hot phonon effects are 

expected to be the lowest, increasing device reliability. 

 

This thesis aims to evaluate heterostructure designs that may drive to plasmon - hot phonon 

resonance conditions toward higher carrier densities and to estimate the reduction on heat 

dissipation under resonance conditions 

 



 

5 

Chapter 2. Motivation 

Heat removal from a power transistor junction has been a complication since early days of 

solid state power electronics. Usually, heat management on a power transistor is characterized 

by the thermal figure of merit, maximum junction temperature. Maximum junction 

temperature is defined as the highest temperature at a semiconductor electronic device still is 

functional. A number of factors i.e. temperature effects, p-n junction leakage, thermionic 

leakage, and carrier mobility just to mention a few, limit the high-temperature operation of 

semiconductor electronic devices. 

Regarding temperature effects, more precisely, when the intrinsic carrier concentration 

defined as 

∝ 	 / / , 

where 	is the band gap energy, k is the Boltzmann constant and T the absolute temperature, 

becomes equal to typical doping level (either intentional or unintentional), 1×1015 cm-3 at 

267°C for Si, 3.9×107 cm-3  at 427°C for 4H-SiC [11] , and 1×1012 cm-3  at 700°C for GaN[12] 

(where the donor concentration of an unintentionally doped GaN and 4H-SiC layers is 1×1016 

cm-3 at room temperature) the development of mesoplasmas has been observed [13]. 

Mesoplasma creates current filaments that have very high current density, leading to 

destructive failure in semiconductors[11]. This phenomenon is less likely in SiC and even 

much less likely in GaN, mainly, because EgSi < EgSiC < EgGaN. Then for unintentionally 

doped semiconductors, intrinsic carrier concentration determined by the thermal generation of 

electron-holes pairs across the energy band gap imposes a fundamental limit to the junction 

temperature. 
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With a maximum junction temperature of 150°C [14], the performance of power transistors 

based on Si technology rely strongly on high performance cooling systems. The advent of III-

Nitride semiconductors brought relief to this stringent condition, extending the maximum 

junction temperature up to 300°C [15]. However, new power applications, inquire for 

managing of constantly increasing higher power levels. 

In a simplistic one dimensional (1D) heat diffusion model, where the only variable is the 

temperature, yet conceptually correct. The temperature differential between ambient 

temperature and device temperature can be written as 

ca Θca D, 

where T  is the temperature difference between the maximum junction temperature jT  and 

the case temperature caT , W  is the distance from the junction to the case,   is the thermal 

conductivity of the semiconductor material, A  is the area of heat source (assumed to be 

spatially uniform to allow the use of 1D model), ca  is the thermal resistance of the case to 

the ambient, and finally DP  is the dissipated electrical power, which is represented, for 

instance, by the subtraction of RF power-out from DC power-in in a radio frequency circuit 

(see Figure 2.1). 

In a one-dimensional problem where the temperature is the only variable, the difference 

between the device and the ambient temperature under steady-state conditions is determined 

by the product of the total device to ambient thermal resistivity and the total power that must 

be dissipated by the device. The very simplistic of Figure 2.1 and even more complex heat 

flow removal models for power devices do not take into account, properly, the fundamental 

process through which heat is removed from semiconductor channel.  
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Selection of materials for power devices usually is determined by the thermal conductivity 

parameter,  . Thermal conductivity is a diffusion process, in which the heat flow,  , 

is driven by gradient of temperature.  is majorly constituted by two components. One owing 

the phonon conduction (lattice), L , and the second, e , due to the free-carrier (electron) 

conduction. Contribution of e  to the total thermal conductivity is quite small, specially, at 

high temperatures (>300K). Then, electron contribution to the heat conduction can be 

discharged in our case, because we are interested in the conduction mechanism at high 

temperatures. And the total thermal conductivity can be taken as L , that is, L  . The 

lattice contribution to the heat conductivity is realized by diffusion and scattering of phonons 

(such as phonon-to-phonon, phonon-to-defects, phonon-to-carriers, boundaries, and surfaces). 

At high temperature, phonon-to-phonon is the dominant scattering process, resulting in a 

reduction of the mean free path of the phonon. And a monotonically drop of   as 1/T is 

observed as the temperature increases. Thermal conductivity values at room temperature for 

GaAs, Si, GaN, and SiC can be found in Table 1.1. Observing at the thermal conductivity,  , 

column we can see that SiC and GaN are best suitable for heat conduction. 

Figure 2.1 One dimensional heat model. White area, A,is the heat 
source. Gray part represents the device case, heat sink. 
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Low values of   fosters heat accumulation in the channel with side effects; reduction of 

carrier mobility and carrier velocity. What, fortunately, prevent thermal-runaway. Heat source 

temperature is determined by Joule effect, i.e. input DC power minus RF power extracted. 

Joule effect manifests itself as heat owing to the relaxation of the electron kinetic energy. 

Relaxation is dominant by electron-lattice inelastic scattering mechanisms. Then Joule 

heating results in phonon (LO-phonon) emission, and may lead to sensible heating[16]. The 

higher the device efficiency the lower the heat needs to be removed from the channel.  

The described above is the conventional manner to consider heat dissipation. In which, the 

heat transfer from the heat source to the lattice is dissipated via longitudinal acoustic phonons 

without taking into account the conversion of hot electron energy excess into LO phonons. 

The aforementioned conversion is the genesis of the heat generation in GaN-based HFET. 

Generation that if could be suppressed an improved heat management can be attained. And 

that is the topic of this thesis. 

 

The organization of this thesis is as follow. In the chapter Background is introduced all basic 

concepts; hot electron, hot phonon, phonons in GaN, plasmon, their interaction and their 

relation with the generation and transport of heat. Also, a description of the different ways in 

which a carrier density profile may be widened is exhibited. 

In the chapter Review a description of the standard HFET is presented. And a revision of 

HFET performance reported in the literature is given. The aim here is to show that in standard 

HFET, in the context of plasmon-hot phonon resonance, optimal working condition occur at 

low power levels. 
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Then preluding the experimental work, the methods and approach utilized for the design, 

simulation, and growth of the heterostructures and the fabrication and characterization of the 

devices are exposed in the chapter Methods and approach.  

Following results on the performance of implemented heterostructures are presented in the 

chapter Experimental results. Conclusions from the work carried out are presented in the 

chapter Conclusions. Ending the thesis, guide lines for further investigation are provided in 

the chapter Future work. 

 

Chapter 3. Background 

GaN and related nitrides being direct and large band gap materials led themselves to a variety 

of electronic and optoelectronic applications. Advantages associated with a large band gap 

include relatively high breakdown voltages, ability to sustain large electric fields, low noise 

generation, and high temperature and high power operation. Reasonable low-field mobility, 

large satellite energy separation, and high phonon frequency are among the other attributes. A 

high thermal conductivity, large electrical breakdown fields, and resistance to hostile 

environments also support the III-Nitrides as a true material of choice for device applications.  

In this work we make focus on power applications therefore high current level at high electric 

field. In other words, the related with high field transport is the indicated physics and is the 

topic of the next section. 
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3.1 High Field Transport in nitrides 

Ensemble Monte Carlo simulations have been the popular tool to theoretically investigate the 

steady-state electron transport in nitrides. In particular, the steady-state velocity-field 

characteristics have been determined for AlN ([17], [18]), GaN ([17], [19]–[23]), and InN ( 

[24], [25]). These reports show that the drift velocity initially increases with the applied 

electric field to reach a maximum and decreases with further increase in the field strength. 

The intervalley electron transfer plays a dominant role at high electric fields leading to a 

strongly inverted electron distribution and to a large negative differential resistance (NDR). 

Not that credible experimental confirmation of intervalley scattering is still pending. The 

reduction in the drift velocities was attributed to transfer of electrons from the high-mobility 

 -valley to the low-mobility satellite X-valley. The onset electric field and peak drift 

velocities, however, show some disparity among the reported calculations due to the variety 

of the degree of approximation and used physical constants of the materials. A typical 

velocity-field characteristic for bulk III-nitrides at room temperature is shown in Figure 3.1 

along with the well-studied GaAs data used to test the author’s Monte Carlo model. For the 

doping concentration being set to 1017 cm-3, InN has the highest steady-state peak drift 

velocity; 4.2×107 cm/s at an electric field of 65 kV/cm. In the case of GaN and AlN, steady-

state peak drift velocities are rather low and occur at larger electric fields; 2.9×107
 cm/s at 140 

kV/cm for GaN and 1.7×107 cm/s at 450 kV/cm for AlN. 

 

 



 

11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Another interesting aspect of electron transport in III-nitrides is its transient behavior, which 

is relevant to short channel devices with dimensions smaller than 0.2 µm where a significant 

overshoot is expected to occur in the electron velocity over the steady state drift velocity. 

Transient electron transport and velocity overshoot in both wurtzite and zincblende GaN, InN, 

and AlN were studied theoretically by a number of groups. Foutz et al. [26] employed both 

Monte Carlo simulations and one dimensional energy-momentum balance techniques. They 

used a three-valley model for the conduction band by taking the main scattering mechanisms, 

such as ionized impurity, polar optical phonon, acoustic phonon through deformation 

potential and piezoelectric, and intervalley scatterings into account. 

 

 

Figure 3.1 The velocity–field characteristics associated 
with wurtzite GaN, InN, AlN, and zincblende GaAs. In all 
cases, the temperature was set to 300K and the doping
concentration was set to 1017 cm−3. The critical fields at 
which the peak drift velocity is achieved for each velocity–
field characteristic are clearly marked: 140 kV/cm for
GaN, 65 kV/cm for InN, 450 kV/cm for AlN, and 4 kV/cm 
for GaAs. After [26]. 
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In particular, they examined how electrons, initially in equilibrium, respond to the instant 

application of a constant electric field. Figure 3.2 shows the average velocity of the electrons 

in AlN, GaN, and InN as a function of distance. According to their calculation, electron 

velocity overshoot only occurs when the electric field exceeds a certain critical value unique 

to each material and it lasts over a certain distance dependent on applied field. These critical 

fields are points where the highest steady-state peak drift velocities are achieved and being 

reported as 65 kV/cm, 140 kV/cm, and 450 kV/cm with corresponding peak velocities of 

Figure 3.2 The average electron velocity as a function of the displacement for various applied
fields for the cases of (a) GaN, (b) InN, (c) AlN, and (d) GaAs. In all cases, we have assumed
an initial zero-field electron distribution, a crystal temperature of 300 K, and a doping
concentration of 1017 cm−3. After [26]. 
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2.9×107 cm/s, 1.7×107 cm/s, and 1.6×107 cm/s for InN, GaN, and AlN, respectively. Among 

them InN exhibits the highest peak overshoot velocity on the order of 108 cm/s at 260 kV/cm 

and the longest overshoot relaxation distance on the order of 0.8 m at 65 kV/cm. To 

optimize the device performance by only minimizing the transit time over a given distance is 

prevented by a tradeoff between the peak overshoot velocity and distance taken to achieve 

steady state. The upper bound for the cutoff frequency of InN and GaN based HFETs benefits 

from larger applied fields and accompanying large velocity overshoot when the gate length is 

less than 0.3 m in GaN and 0.6 m in InN based devices. However, all measured cutoff 

frequencies are gate length dependent and well below these expectations indicating that 

devices operate in the steady-state regime and other effects, such as real-space transfer, 

should also be considered. On the other hand, there is some controversy in the reports related 

to the onset of velocity overshoot in nitride semiconductors. For example, Rodrigues et al. 

[27] reported overshoot onsets at 10 kV/cm in InN, 20 kV/cm in GaN, and 60 kV/cm in AlN 

by using a theoretical model based on a nonlinear quantum kinetic theory, which compares 

the relation between the carriers’ relaxation rate of momentum and energy. Experimental 

investigations of the transient transport in III-Nitrides are very limited and few results are 

reported by using different techniques. Wraback et al. [28] employed a femtosecond time-

resolved electro-absorption technique to study the transient electron velocity overshoot for 

transport in the AlGaN/GaN heterojunction p-i-n photodiode structures. It has been reported 

that electron velocity overshoot can be observable at electric fields as low as 105 kV/cm. The 

velocity overshoot increases with electric fields up to ~320 kV/cm with a peak velocity of 

7.25×107 cm/s relaxing within the first 0.2 ps after photoexcitation. The increase in electron 

transit time across the device and the decrease in peak velocity overshoot with increasing 

field beyond 320 kV/cm are attributed to a negative differential resistivity region of the 

steady-state velocity-field characteristic in this high field range. Collazo et al. [29] used 
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another experimental technique based on the measurement of the energy distribution of 

electrons which were extracted into vacuum through a semi-transparent Au electrode, after 

their transport through intrinsic AlN heteroepitaxial films using an electron spectrometer. 

They observed electron velocity overshoot as high as five times the saturation velocity and a 

transient length of less than 80 nm at the field of 510 kV/cm. In order to design an electronic 

device that is expected to operate at high power and high frequency, one could consider 

harnessing velocity overshoot in III-Nitrides semiconductor heterojunctions. However, the 

strong coupling between hot electrons and LO phonons appear to limit the velocity attainable 

by electrons, being dependent on the LO phonon decay time. A systematic investigation of 

InN, GaN, AlN and their alloys as a function of various parameters in dynamics mode would 

be very beneficial for development of higher performance, next generation electronic and 

optoelectronic devices. 

Because the gate length of the HFETs investigated in this thesis are around 1µm, we do not 

expect observe ballistic conduction. Furthermore, in all cases applied electric field is lower 

than 50 KV/cm which means drift electron velocity is well below the saturation. And we are 

safe considering that drift velocity increase with the applied electric field.  

 

3.2 Hot electrons 

The electron transport in semiconductors, including nitrides, can be considered at low and 

high electric field conditions. (i) At sufficiently low electric fields, the energy gained by the 

electrons from the applied electric field is small compared to the thermal energy of electrons, 

and therefore, the energy distribution of electrons is unaffected by such a low electric field. 

Since the scattering rates determining the electron mobility depend on the electron 

distribution function, electron mobility remains independent of the applied electric field, and 

Ohm's law is obeyed. (ii) When the electric field is increased to a point where the energy 
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gained by electrons from the external field is no longer negligible compared to the thermal 

energy of the electron, the electron distribution function changes significantly from its 

equilibrium value. These electrons become hot electrons characterized by an electron 

temperature larger than the lattice temperature.  

When the electron transport is caused by an electric field, electrons are continuously supplied 

with energy from the source of the electric field at a rate 	E (where  is current density and 

 is the electric field). It would appear that the total energy of the electron system should 

increase indefinitely. Actually, this not happens as the gain of energy is balanced by transfer 

of energy to the lattice atoms via collisions. Electron are scattered by the lattice by emitting or 

absorbing a phonon. The lattice absorbs energy from the electron when phonon is emitted and 

it delivers energy to the electron when a phonon is absorbed. In the absence of electric field 

the absorption and emission processes are balanced and there is not transfer of energy from 

the electron system to the lattice system or vice versa. It means in fact that the temperature, 

thermodynamic coefficient determining transfer of energy from one system to another, of the 

electron (value of temperature in the electron distribution function) and the lattice system 

(temperature in the phonon occupation number) are identical.  

Under the presence of an external electric field, the energy of the electron system start to 

increase and electrons start to emit more phonons than they absorb. In other words, there is a 

net transfer of energy from the electron system to the lattice system. This mean the 

temperature of the electron system, Te, is larger than the lattice temperature, TL. And energy 

transfer rate increases as the difference between Te and TL augment. This situation keeps until 

a new equilibrium is reached. The latter is set when the difference between the electron and 

the lattice temperature is such that the rate of gain of energy of the electron from the electric 

source is balance by the rate of loss of energy to the lattice atoms.  
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3.3 Hot phonons 

From the preceding discussion, when Te 	TL hot electron lose energy to the lattice creating a 

large non-equilibrium population of phonons, hot phonons, in the semiconductor so that the 

probability a free carrier absorb a phonon is increased. The latter leads to a reduction in the 

net probability of emission of a phonon and therefore reduces the energy loss rate from 

carriers to the lattice. This effect is present in bulk as well as in 2D systems like a 2DEG. 

 

3.4 Phonons in GaN 

III-nitrides and in particular GaN and they alloys can present either both zinc-blend or 

wurtzite crystal structures. However, attainable GaN under normal growth conditions by 

MBE and MOCVD is the wurtzite crystal structure. Therefore, from now on we focus only in 

wurtzite structure. Wurtzite crystal structure with a number of atoms per unit cell s=4 exhibit 

a  symmetry (belongs to the hexagonal crystal system) and according group theory the 

total number of vibrational modes in wurtzite is 12 (see Table 3.1). 

Table 3.1. Phonon modes in a crystal with wurtzite symmetry such as 

AlN, GaN, and InN. s stands for number of atoms per unit cell. 

Mode type       Set Number of modes 

LA   A1   1 

TA   E1   2 

Total acoustic modes    3 

LO   A1, B1, E1   4-1 

TO   A1,B1,E1,2E2   2s-1 

All optical modes    3s-3 

All modes     12 
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For hexagonal structures group theory predicts eight sets of phonons normal modes at the Γ 

point, namely 2A1 + 2E1 + 2B1 +2E2. Among them, one set of A1 and E1 modes are acoustic 

(LA+2TA) and the remaining six, A1 + E1 + 2B1 + 2E2, are optical modes (3LO + 6TO) (see 

Table 3.1). A1 and B1 modes give atomic displacement along the c-axis and E1 and E2, gives 

atomic displacement perpendicular to c-axis, on the basal plane. Because of their polar nature, 

the A1 and E1 modes split into longitudinal optical modes (A1-LO and E1-LO) meaning 

Figure 3.3 Phonon normal modes at the Γ point (zone-center). Z=(001) and 
X=(100) represent the optical polarization directions for zone-center 
phonons. 
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beating along the c-axis, and transverse optical modes (A1-TO and E1-TO), meaning beating 

along the basal plane.  A description of the atomic vibrations in wurtzite GaN for the zone-

center phonons (Γ point) are displayed in Figure 3.3. 

Calculated phonon dispersion curves and phonon density of states or hexagonal bulk GaN are 

show in Figure 3.4. 

 

 

 

 

 

 

 

 

 

 

 

Infrared reflection and Raman spectroscopy are very useful techniques to derive zone-center 

and some zone-boundary phonon modes in nitrides. The A1 and E1 modes are each split into 

longitudinal optic (LO) and transverse optic (TO) components, giving a total of six Raman 

peaks. These A1 and E1 branches are both active for Raman and infrared techniques, while the 

Figure 3.4 Phonon dispersion curves for GaN. Normal modes are indicated along
the zone-center. Also, indicate with arrows are the dominant decay paths – Ridley 
path [30]. 
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E2 branches are Raman-active only and B1 branches are inactive. Table 3.2 gives a list of 

experimental as well as calculated values for the zone-center optical-phonon wave numbers of 

AlN, GaN, and InN. A1(LO) and E1(LO) are very close each other in energy with a value of 

~92meV. And their effects are the most relevant from the point of view of transport properties 

at high electric field in polar semiconductors such as III-nitrides. 

Table 3.2. Optical phonon frequencies of wurtzite AlN, GaN, and InN at the center of the 
Brillouin zone in the units of cm-1. 

Symmetry AlN (cm-1) GaN (cm-1) InN (cm-1) 

A1 – TO 613.64[30], 607.3[31], 
609[32], 610[33], 
609[34], 612[35], 
601[36] 

531.0[37], 531.4[38], 
533.54[39], 531.2[40], 
531.7[41], 540[42] 

440[43], 446[44], 
440[45], 480[46], 
445[47], 440[47] 

E1 – TO 671.41[30], 666.5[31], 
668[32], 669.6[33], 
668[34] 679[35], 
650[36] 

558.0[37], 558.4[48], 
559.99[39], 558.2[41], 
568[42], 558.4[49] 

477.9[50], 476[46], 
472[47], 472[47] 

A1 – LO 883.6[51], 891.80[30], 
884.5[31], 891[52], 
895[32], 888[33] 

736.5[41], 748[42], 
735[53], 733[54], 
737[55] 

585.4[56], 592[43], 
590[44], 590[45], 
580[46], 588[47] 

E1 – LO 919.09[30], 911[32], 
912.6[33], 911[34] 

739.9 [40], 742[41], 
757[42], 743[53], 
740[54], 745[55] 

570[46] 

E2 – (low) / 1
2E  247.8[51], 249.57[30], 

249[31], 246[32], 
248[33], 246[34], 
247[35], 228[36] 

144.1[41], 142[42], 
144[53], 144[54], 
146[36] 

89[44], 88[45], 
87[46], 104[47] 

E2 – (high)/ 2
2E   653.6[51], 658.51[30], 

653.6[31], 659[31], 
655[32], 656.6[33], 
655[34], 672[35], 
638[36] 

566.6[37], 567.6[48], 
567.5[38], 568.28[39], 
567.0[41], 576[42], 
566.9[49] 

490.1[56], 491[43], 
491[44], 491.1[50], 
490[45], 488[46], 
483[47] 

B1 – (low) 636[35], 534[36] 337[42], 526[35], 
335[36] 

192[44], 200[46], 
270[47] 

B1 – (high) 645[35], 703[36] 713[42], 584[35], 
697[36] 

540[46], 530[47] 

[51] Seeded grown of AlN boules on PVT grown c-plane AlN; [30] bulk wurtzite AlN crystals 
grown by PVT method; [31] 0.8-µm-thick AlN layer under a biaxial tensile stress of 0.6 GPa 
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grown on Si(111) by MBE; [52] Freestanding bulk AlN grown by sublimation sandwich 
technique on SiC seed; [32] AlN bulk crystal grown by PVT technique; [33] Self-nucleated 
AlN single crystal with facets; [34] bulk AlN grown by PVT technique; [35] Calculated using 
first-principle total energy; [36] Calculated using pseudopotential LDA; [37] Non-polar (
1 100 ) bulk GaN grown by Ammonothermal method; [48] c-plan bulk GaN grown by HVPE; 
[38] m-plane GaN substrate grown by HVPE; [39] Nonpolar a-plane GaN grown on r-plane 
sapphire substrate; [40] Strain-free frequencies in a high-quality bulk GaN; [41] 50 µm thick 
hexagonal crystal of GaN grown on 6H-SiC by HVPE; [42] ab initio calculation using a 
pseudopotential-plane-wave method; [49] Bulk-like GaN grown by HVPE and with removed 
substrate by laser liftoff; [53] Raman scattering on bulk GaN; [55] Raman study on high-
quality freestanding GaN templates grown by HVPE; [56] Strain-free values obtained by 
Raman measurements on a freestanding InN film grown by MBE; [43] Raman measurements 
on wurtzite InN film deposited on sapphire substrate by MOVPE; [44] Raman measurements 
on hexagonal InN thin films grown by MOVPE; [50] Strain-free value obtained by Rama 
measurement on InN films grown on sapphire by MBE; [45] Hexagonal InN thin film grown 
on (0001) GaN; [46] Raman study on InN grown on sapphire and calculation based on the 
pairwise interatomic potentials and rigid-ion Coulomb interaction; [47] Raman study on 
polycrystalline and faceted platelets of InN and calculation using FP-LMTO LDA. 

 

3.5 Polar phonon in GaN 

One of the most important carrier-phonon scattering mechanisms in semiconductors is the 

carrier-electric polarization field, due to the relative displacement of positive and negative 

ions. In polar semiconductors and in particular in low-defect polar GaN material system, 

carrier scattering is governed by the polar-optical-phonon (POP) scattering mechanism. And 

it is referred to as the Fröhlich interaction. The Hamiltonian for the interaction is given by: 

F/ 	 iq∙r‐ LO 	 ‐iq∙r‐ LO  

where and  are the phonon creation and annihilation operators, respectively, LO is the 

LO phonon frequency,  is the wave vector, and  is the variable time. The coefficient F is 

given by 

F
2 LO

/
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	is the number of unit cells,  is the volume, 	 and  are the high- and the low-frequency 

dielectric constants [57]. Because of the Fröhlich interaction, emission and absorption of LO 

phonons by hot electrons perform the most relevant role in terms of heat generation at high 

electric fields.  

 

3.6 Hot phonon decay 

While the harmonic approximation of the displacement of the ions from their equilibrium 

position may be used to describe phonon dispersion, non-parabolic terms (cubic or higher 

order terms containing product of three or more displacements) in the crystal potential for 

ionically bonded atoms are required in order to describe the decay of phonon modes into 

other phonons. The leading term in the anharmonic interaction is the cubic term. Interaction 

Hamiltonian for the cubic term of the anharmonic interaction may be written as  

/

, , , , , ,

/ 2Γ , ,  

where  is the oscillator mass,  is the oscillator angular frequency, Γ , ,  is the third-

order anharmonicity coefficient (optical-mode analogue of the type of Grüneisen constant). 

The subscripts , ,	and	  refer to spatial directions and , , and  refer to the type of phonon 

mode.  is the relative displacement of the ions in each mode and is given by  

2
∗ iq∙r 	 ‐iq∙r  

where 	is a unit polarization vector.  
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Anharmonic effects, i.e. phonon decay, in wurtzite structures occurs via Ridley three-phonon 

(LO, transversal optic (TO), longitudinal acoustic (LA), and transversal acoustic (TA)) decay 

path, LO → TO + LA which competes with the LO → TO + TA path. However, owing to 

wurtzite crystal symmetry considerations, it is expected that Ridley path LO → TO + LA 

dominates. For the case of the Ridley path, phonon modes in  are identified as LO with the 

subscript , TO mode with , and LA mode with  [58].  

It is known that the lifetime of TO phonon is shorter than that of LO phonon mode [59] and 

that additionally electron-TO scattering rate is two order of magnitude lower than the 

electron-LO phonon scattering [60] due to TO weak coupling with carrier. Then, once the LO 

phonon has decayed via the Ridley mechanism, we can disregard the effect of the daughter 

TO mode. Owing to the polar nature of GaN, electron-LO-phonon interaction is strong 

therefore the more probable heat dissipation path, according Ridley [58] and the mentioned 

above, is hot electron → LO → LA(TA), then to the heat sink. LA (TA) is related with the 

thermal conductivity of the lattice. And which is approximately equal to the total thermal 

conductivity at high temperatures. That is to say, reported high temperature thermal 

conductivity values for materials and in particular for material for power electronics 

applications (see Table 1.1) are a measure of how efficient is the propagation of LA through 

the crystal structure. In GaN it is well known that the LO-LA(TA) is the limiting conversion 

process. Because, the direct hot electron – LA (TA) path is a very less probable one. 

Therefore, the LO-LA conversion is the limiting factor; the ultimate process needs to be 

optimized to remove heat from higher power devices. See Figure 3.5. 
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3.7 Phonon generation in HFETs 

The hot electron – LO conversion is a bidirectional process. And manipulation of the physics 

of the device should incline in favor of the direct path, hot electron → hot phonon (big bold 

arrow, see Figure 3.5) and not vice versa. As indicated in Figure 3.6, in FETs and in particular 

in HFETs, the hottest zone (transparent red area), is in between drain side of the gate and 

drain. Where, the electric field is stronger than in any other region of the device. Because of 

the GaN pyroelectric nature, hot spots would induce dynamic polarization, affecting device 

performance. In particular, gate-drain region is subject to high electric fields and current 

densities (red spot in Figure 3.6). That linked with local defects and pyro-and piezoelectric 

effects, owing to the different thermal expansion coefficient of the layers and additional strain 

induced by the dissimilarities between gate metal and semiconductor would result in device 

performance limitation and shorter lifetime. 

Figure 3.5 Electron energy excess - conversion path. Hot electrons generate hot
phonons (LO), LO phonons are converted into TO and LA(TA) phonons via
Ridley channel [5] 
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Generation of hot electron and subsequent emission of hot phonon is expected in 

aforementioned region. In other words, in GaN HFETs heat is generated by high electric 

field. And the diffusion of the heat (white arrow) is assisted by the decay of the hot phonons 

(LO) into LA phonons. Therefore, heat removal away from the channel, in GaN, is crucial not 

only for good device performance, but also for device reliability. 

 

 

 

 

Figure 3.6 Schematic of a standard GaN-based HFET. Layers desciption are at the left
figure. G stands for gate, S for source, and D for drain. The location of the 2DEG is
indicated at the right. The red spot dicates the region subject to high electric fields. The
hot-electron generation place is pointed. The hot zone of the HFET (transparent red
colored) expand parallel to the channel and perpendicular to the channel, down to the
substrate. Also, the desirable heat flow direction is indicated (white arrow). 
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3.8 Geometric aspect of phonon generation 
 
In wurtzitic III-nitride, as it was mentioned already, there are 12 phonon modes in total. Three 

times the number of atoms per unit cell, and which is four. From those 12, 9 modes are 

optical phonons and the remaining three are acoustic phonons. Electrons interact more 

strongly with A1(LO) and E1(LO) phonons which energy levels are close each other and is 

around 92meV in GaN. E1(LO) couples parallel to the channel direction in a HFET base on 

heterostructures grown on basal c-plane and A1(LO) couples along the direction 

perpendicular to the channel (see Figure 3.7).  

 

 

 

 

 

 

 

 

Electron flow along the channel parallel to the applied electric field (Ex), therefore, it is 

expected that electrons interact mainly with E1(LO) phonons. In case electrons are available, 

also, to flow perpendicular to the c-plane (because scattering process or leakage current from 

the gate and through the barrier), interaction of electrons with the A1(LO) phonons should 

also be taken into account.  

 

Figure 3.7 Schematic representation of the phonons in a HFET built-up on a 
heterostructure grown along c-plane direction, [0001]. Small arrows indicate 
the phonon atomic displacement.
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In general emission of both A1(LO) and E1(LO) take place and the angular frequency 

dependence of the resultant zone-center LO phonon is given by 

ωLO θ ωLO cos θ ωLO sin θ
/

 

where θ is the angle formed between c-axis and the resulting phonon wave vector, ωLO  and 

ωLO are the A1 and E1 LO phonon frequency, respectively. Depending on the current 

direction, hot electrons may primarily relax through A1(LO) (θ 0°) or E1(LO) (θ 90°) 

emission. Assuming transport occurs in c-plane only hot electrons loss energy by emission of 

E1(LO) phonons should be considered. However, from an energetic point of view, LO energy 

in all cases is ~ 92 meV. In steady state, electron energy gained from the electric field is 

balance by electron energy loss via LO phonon emission, so the electrons propagate at a 

saturated velocity. 

 

3.9 Power dissipated by hot phonons 

The probability that a phonon state with energy  is excited at a temperature, Tph, is known 

as its occupation number. Phonons are bosons and their phonon occupation number, 

ph , is given by the Bose-Einstein distribution function: 

ph 	
/ Tph

, 

where is the Boltzmann constant.  
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Under energy conservation considerations, which means that the energy supplied by the 

electric source is equal to the dissipated energy, the energy given off by an electron is given 

by the following formula 

 d
sp

ph 1 ph
abs

ph  (1) 

where the average times sp and abs correspond to the spontaneous emission and absorption 

of LO phonon by a hot electron, respectively. And  and  are the probabilities a hot 

electron be ready to emit or absorb an LO phonon, respectively, and are given by: 

∓
1

E E 1 E ∓ LO dE 

where E is the electron energy, E  is the Fermi function, 	 E  is the 2D density of states , 

and is the 2DEG density [61]. 

 

3.10 Plasmon 

The dielectric behavior of semiconductors with high electron concentrations is determined by 

collective excitations of the free carriers. If  is the homogeneous displacement of the 

electron gas relative to the ion cores, then equation of motion (without considering any 

mechanical restoring force) is given by 

 	 E (2) 

where  is the elemental charge, 	is the bulk electron concentration,  the electron mass, 

E	applied electric field, and is the damping constant. The damping constant and the 

conductivity, 	 , are related by 
E

	 	
. 
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Replacing the latter into the equation of motion (2) we have  

	 	 	 	 	 	E 

Then Fourier-transformed equation is 

	 	 	
	 	

	 	E  

Writing  as a function of the polarization, 	 	 , and replacing it in the 

latter expression we have then the dielectric function 

1
p

p
 

with p
	 	

	
 (in a 2DEG system 	 ∝ 	 	 	

∗ 	where  is 2DEG density, ∗ is the 

electron effective mass, and  is the dielectric contact of the material). Assuming weak 

damping,  is just the frequency at which 0. Thus,  denotes the frequency of the 

longitudinal oscillation of the free electron gas. These oscillations are called plasmon. On the 

other hand there is no transverse oscillation because of the lack of restoring force. As we can 

see from its expression, p increases with the square root of the electron density. It is worth 

to mention at this point that in semiconductors beside the plasma oscillation of free electrons, 

also display plasma oscillations of valence electrons[62]. In this work when we talk about 

plasmon, we mean oscillation of free electrons. 
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3.11 Plasmon-hot-phonon resonance 

RF, microwave, and millimeter wave systems for telecommunication and power switching 

electronics claim for electronic devices capable to work at higher frequency and higher power 

levels [63]. HFET based on GaN is covering this demand in both telecommunication and 

power electronics. Nowadays, GaN HFETs are a commercial reality and several vendors are 

supplying the high power switching [64] and high power at frequency [65] markets. 

However, long term reliability at high power is still an issue even for HFET based on GaN for 

which crystal perfection has not been achieved yet. On the other hand, generated heat in the 

channel (non-equilibrium (hot) longitudinal optical phonons) fosters additional electron 

scattering, degrading device performance comprising the reliability and stability of the HFET. 

Then, it is desirable to find optimal working conditions for the HFET at which higher power 

handling at higher frequencies (cut-off frequency) and lower degradation (reliability) can be 

all achieved, simultaneously. The latter can be attained under plasmon–hot phonon resonance 

conditions where HFET work at optimal conditions, because plasmon-assisted ultrafast decay 

of hot phonons. 

Experimental data obtained from both Fluctuation technique and Raman techniques show an 

empirical 1/  dependence of the hot phonon lifetime, where  is the volumetric carrier 

density. Such a model suggest a plasmon-assisted decay of the LO phonons into acoustic 

phonons. As plasmon energy exceeds the acoustic phonon energy ( ~	10 10 	cm ) 

plasmon-LO phonon coupling becomes more pronounced. A further increase of the carrier 

density ( ~	10 	cm ) results in a plasmon energy comparable to that of the LO phonon 

energy. At this point plasmon–LO phonon coupling is the strongest (minimum hot phonon 

lifetime) and reversing the course for higher carrier densities. In other words, for a 

~	10 	cm  we have plasmon-LO phonon resonance. 
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In HFET with a 2DEG density of ~	10 	cm  and considering the 2DEG is confined in a 

triangular quantum well with effective width at Fermi level of 5nm, we see that volumetric 

electron (3DEG) densities in the order of ~	10 	cm and higher are achievable in the 

channel of a GaN-based HFET. Figure 3.8 a) shows the energy levels of LO phonons, 

acoustic phonons and plasmon energy as function of the 3DEG density. Figure 3.8 b) exhibits 

experimental data on hot phonon lifetime dependence on 2DEG and equivalent 3DEG 

density. At this moment, it is worth to mention that there is not satisfactory theoretical 

treatment of plasmon-LO phonon interaction as indicated in Ref [66]. And that the “plasmon–

LO phonon resonance” model is sustained by experimental data as the shown in Figure 3.8 b). 

Also, signature of the plasmon-hot phonon resonance in HFET was found in a variety of 

experimental results. Resonance signature in hot phonon lifetime, reliability, and signal delay 

in single InAlN/AlN/GaN channel HFET were summarized in Ref. [5], resonance signature in 

electron drift velocity was studied in Ref. [6]. And resonance signature in fast decay of hot 

phonons in InAlN/AlN/AlGaN/GaN multiple channels was studies in Ref. [7]. Also, 

resonance signature in hot-phonon lifetime in single AlGaN/GaN channel and in ultrafast 

decay of hot phonons and hot electron drift velocity in multiple AlGaN/GaN channels were 

studied in Ref. [8] and Refs. [9], [10], respectively. Since drain current is proportional to 

carrier drift velocity and carrier density, higher power implies higher voltage and higher 

current levels. At higher voltage then higher electric field the electron drift velocity, because 

of the LO phonons, increase slowly and toward carrier velocity saturation [67]–[69]. Hence, 

in order to increase HFET power delivery, it is more feasible to achieve higher power levels 

by increasing the carrier density in the channel. Electronic devices working at high power 

conditions, always comes with heat dissipation issues. Built up heat in the channel is 

dissipated, mainly, by the conversion hot LO phonons into acoustic phonons which transfer 

the heat out of the channel. 
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The rate of the aforementioned conversion is a limiting from the point of view of power 

dissipation. Therefore, the faster the hot phonon decay the lesser the hot phonon effects and 

consequently a better frequency performance of the channel [70]. Then, for power 

application, it is desirable to attain plasmon-hot phonon resonance at higher 2DEG. The latter 

can be attained by widening the electron density profile.  

Figure 3.8 Idealization of the LO phonon, acoustic phonon, and plasmon
energies as a function of the electron concentration in GaN a) and b)
Measured low-field hot phonon lifetime for bulk (closed circles) and various
GaN-based channels (open circles). After [61]. In a) red line indicate the
plasmon energy for a for a heterostructure field-effect transistor with a gate
length (Lg) of 0.9µm, n indicates the plasmon wave vector order. 
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3.12 Widening the carrier density profile 

With strongest plasmon-hot phonon interplay, resonance, at a 2DEG density of 0.8-1.1 x 1013 

cm2, equivalent to a 3DEG ~1x1019 cm3, 2D and 3D densities are related by a “form factor,” 

correlated with the way in which the channel widens the carrier density profile. Channel 

widening at moderate electric fields depends, mainly, on the heterostructure in which it is 

formed. Because in bulk GaN resonance happens around ~1x1019 cm3 and in order to achieve 

higher power levels, the heterostructure should wide the carrier density profile in such a way 

that 3D carrier density maximum is ~1x1019 cm3 and 2DEG density is as high as possible.  

 

In Figure 3.9 a) is presented a representation of the electron density profile of a standard 

HFET (here called single channel (SC)). In order to bring plasmon–LO phonon resonance 

condition in the SC, we to deplete the channel.  

Figure 3.9 3DEG density profiles a) in a standard heterostructure (single channel (SC)) and
b) a qualitative comparison between single and multiple channel heterostrucutre (coupled
channel (CC) or dual channel (DC)) on the widening of 3DEG density profile. 



 

33 

Channel depletion can be done in different ways. One is by applying very high electric fields. 

Doing so, electron will gain energy increasing its temperature. As a result the 3DEG density 

is reduced and resonance is achieved. Unfortunately, this is not a practical way to widening 

the 3DEG density profile because the necessary electron temperature is too high (>400K) that 

the channel would be destroyed before to occur resonance conditions. Other option is by 

depleting the channel via gate-source voltage. This option even safe, is not convenient 

because usually requires an almost complete depletion of the channel. It means that the 

resonance condition would be attained under very low power conditions. And it is what 

happens, as discussed in the section 4.2 Single channel HFET performance: literature review. 

As it was already reported, a convenient realizable approach to reach the mentioned 

resonance at higher 2DEG is by designing HFET structures based on multiple channels [9], 

[71] e.g. dual channel (DC) and coupled channel (CC) (see Figure 5.1). When DC and CC 

structures widen the carrier density profile, as it was already pointed out in Ref.[7], [9], the 

plasmon-hot LO phonon resonance occurs at higher 2DEG. And the wider the part of 3DEG 

profile close to 1019 cm-3 level, at which plasmon–hot phonon resonance happens in GaN bulk 

system[67], [72], the higher 2DEG density in the channel under resonance condition. Thus 

resonance takes place at higher power working conditions. It is desirable to attain resonance 

conditions at VGS=0V. Case in which gate leakage current is expected to be minimum with 

additional benefit of an efficient use Al content of the barrier layer which is directly related 

with the carrier density in the channel. In summary, at resonance condition it is expected 

phonon side effects to be minimized, a better use of the heterostructure and minimum heat 

dissipation from the channel. However, a better understanding of the conditions at which 

resonance occur is lacking. So far, there is no reported plasmon-phonon resonance at values 

of VGS ≈ 0V. 
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Chapter 4. Review 

In this Chapter we present a brief description of the heterostructure on which SC HFET are 

usually based. The role that each layer plays in the heterostructure is mentioned. Later on a 

revision of the reported values of gate-source voltage (VGS) under which cut-of frequency 

happens in standard HFETs as well as other electrical parameter that characterizes the 

performance of the SC heterostructure are presented. 

 

4.1 Single channel (Standard) HFET: A brief description 

Description of a generic standard HFET based on GaN is exhibit in Figure 4.1. The HFET 

topology presented is a well-established one and is used by the industry. Following a brief 

explanation of the component layers of a HFET as well as their main purpose are given. 

 

Figure 4.1 Schematic description of a standard (single channel (SC)) GaN-based HFE. Layers
desciption at the left of the figure indicate the diferent layers which form a standard HFET. G
stands for gate, S for source, and D for drain. The location of the 2DEG is indicated at the
right of the figure.  
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Substrate: basically three different materials are used for device based on III-nitride, 

sapphire, Si, and SiC. Sapphire is used in low power application, mainly, optoelectronics. 

Owing to their thermal properties Si and SiC are the election in power switching electronics 

and in RF power application, respectively. Also, it should be mentioned the existence of GaN 

substrates but they prohibitive. 

 

Buffer layer: ideally insulating GaN. However, owing to the imperfection GaN has semi-

insulating character with a background carrier density of 10 	cm  in good quality material. 

At the edge of buffer layer (adjacent to the separation layer) is where the formation of the 

channel occur. Therefore, the last nanometers of the buffer layer should be of high quality. 

That means, free of imperfections. Also, its end surface should be electrically smooth. 

Separation layer: a thin AlN interlayer at the buffer/barrier interface. It suppresses the 

penetration of the electron wave function into the barrier layer and effectively reduces alloy 

scattering. From the point of view of the transport parameters, an optimized thickness value 

of 1nm for the AlN layer is found and for which either both the carrier mobility and the sheet 

resistance of the channel are optimum. 

Barrier layer: the mission of this layer is twofold. It provides polarization induced charge to 

the 2DEG and at the same time serves as Schottky-gate barrier. Induced charge is controlled, 

mainly, by the Al content in the barrier. Also, and at lower degree, induce charge density can 

be controlled with the barrier thickness. The higher the Al content and the thicker the barrier 

layer the higher the induced charge density. Of course, first theoretical and practical issues 

limit the maximum achievable charge density. As material for the barrier, AlGaN and InAlN 

were proposed for HFET applications. 
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For AlGaN/GaN the general trend is, the higher the Al composition and the thicker the barrier 

layer the higher the polarization induced charge. At Al content higher than 37% or barrier 

thicker than 10nm induced charge starts to saturate. The highest sheet carrier density, either 

both calculated and measured, is 2×1013cm-2 for an Al composition of 37% in a barrier layer 

30nm thick. For higher Al content the barrier stats to relax diminishing the piezoelectric 

component of the polarization induce charge.  

InAlN barrier layers were proposed as an alternative to AlGaN barriers. Having the 

possibility to growth lattice match on GaN, InAlN barrier reduce stress related issues. And 

because of the band discontinuity with GaN provide higher polarization induced charge than 

AlGaN counterpart, even though only the spontaneous component of the polarization is 

present for InAlN barrier lattice matched. In the practice InAlN-GaN lattice matched is 

achieved for an Al composition of ~18% with a sheet carrier concentration of around 

1.2×1013cm-2. And which would be promising from the point of view of the power level a 

HFET could handle. However, as pointed in the Chapter Experimental results, InAlN barrier 

layers degrade easily, even after few hours under electrical stress. 

Cap layer: improve Schottky barrier and facilitates ohmic (drain/source) contacts. Also, 

protects AlGaN from oxidation (Al oxidation). Inclusion of a GaN layer of a few nanometers 

(usually 2nm) on top of the barrier layer increases the peak barrier height owing to the strong 

polarization effect in nitrides. Higher peak barrier results in a reduction in the gate leakage 

current when compared with HFET without cap layer. However, the suppressed leakage 

current mechanism is unclear. 

Ohmic contacts: source and drain contacts are of fundamental importance for GaN-HFETs 

because they provide most of the electron to 2DEG. Ohmic contacts are formed by deposing a 

sequence of metal layers, usually, Ti/Al/Ni/Au. In aforementioned scheme, Ti is the 
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responsible to form the ohmic contact itself via TiNx phase formation which provides residual 

nitrogen vacancies that act as donors in GaN. 

Schottky contacts: formed by bilayer Ni/Au directly deposit on top of the cap layer. 

Resulting layer denominated gate is expected to have the control of the charge in the channel. 

Lateral tunneling (from gate to cap surface) at the drain edge of the gate creates an extension 

of the gate what is usually referenced as “virtual gate”. Virtual gate degrade the HFET cutoff 

frequency performance. 

 

4.2 Single channel HFET performance: literature review 

Table 4.1 summarizes characteristics of high performance HFET together with the transport 

parameter of the heterostructure they are base on, single channel in all cases. All 

heterostructures perform carrier density larger than 1×1013cm-2 and according what we 

discussed in the section “Widening the carrier density profile” it should be necessary to 

deplete the channel in order to get resonance condition and in fact it is what happens. As 

explained in section 5.6.2, in this work we are going to use the cutoff frequency (fT ) as 

“sensing probe” to infer HFET bias condition at which minimum lifetime of hot phonon occur 

(plasmon-hot phonon resonance). Note that here we do not emphasis the absolute value of fT 

but the bias condition at which fT is attaned. Then plotting the gate-source for which cutoff 

frequency is found, VGSfT, over the threshold voltage, VTh, versus pristine carrier density, ns, 

we demostratet that standard channels need to be depleted around 50% or more in order to 

reach plamon –hot phonon resonance conditions (see Figure 4.2). This means, assuming VDS 

voltage fix, that in reported high performance HFET resonace conditions take place at 50% of 

the maximum power level the HFET can handle which is not optimum.
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Table 4.1. Reported cutoff frequequency values for high performance HFET. 

 
  

    
VGSfT - VGSfT 

for   fT  and   fmax
  

VGSfT - VGSfT 

for    gm 
   

ns µ 
Sheet 

Resistance 
VTh VGSfT VDSfT fT fmax VGSgm VDSgm gm Ref. Year

×1013 [cm-2] [cm2 · V−1 · s−1] [Ω/■] [V] [V] [V] [GHz] [GHz] [V] [V] [mS/mm]   
2.74 759 - -3.3 -2.4 6 64 106 -2 6 363 [73] 2014
1.8 1770 195 -4 -3.3 5.6 230 300 -3.75 5.6 770 [74] 2013
1.64 1766 215 -5.25 -3.7 2.5 317 49 -3.7 2.5 680 [75] 2013
1.17 2000 314 -2.8 -2.1 5 100 206 -2 5 440 [76] 2012
1.92 1240 262 -4.25 -2.9 2.75 370 30 -3 3 650 [77] 2012
1.5 1670 250 -2.7 -1.7 3.5 245 - -1.3 5 467 [78] 2011
2.4 1300 200 -9 -5.3 4 205 - -5.3 4 575 [79] 2011
1.4 1500 290 -3.25 -2 20 19 50 -3 10 374 [80] 2011
1.56 1000 - -3 -1.5 7 14.32 16.22 -2 7 169 [81] 2011
1.89 1790 183 -3.5 -2.6 4 52 110 -2.6 4 460 [82] 2011
2.15 1250 235 -6 -3.2 5 52 102 -4 10 400 [83] 2011
1.6 1330 290 -4.7 -4.1 4 46 125 -4 6 473 [84] 2011
1.9 1.300 260 -5.5 -4.0 4.8 55 210 -4 6 487 [84] 2011
2.2 1250 - -4.5 -3 10 50 40 -2.8 4 300 [85] 2011
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VGSfT - VGSfT 

for   fT  and   fmax
  

VGSfT - VGSfT 

for    gm 
   

ns µ 
Sheet 

Resistance 
VTh VGSfT VDSfT fT fmax VGSgm VDSgm gm Ref. Year

×1013 [cm-2] [cm2 · V−1 · s−1] [Ω/■] [V] [V] [V] [GHz] [GHz] [V] [V] [mS/mm]   
1.5 1900 227 -4.8 -3.7 4.7 220 60 -4 6 548 [86] 2011
1.8 1790 190 -4.8 -3.7 4.7 153 54 -4 6 548 [86] 2011
1.1 1635 310 -2.5 -1.6 4.5 210 - -17.5 5 540 [87] 2011
1.7 1369 260 -3.5 -2.4 4.5 195 - -2.6 5 595 [87] 2011
2.3 1400 - -7 -5.6 6 205 220 -5.5 4 462 [88] 2011
1.65 1581 228 -4.2 -2.9 4 300 - -3 4 525 [89] 2011
2.15 1250 23 -2.5 -1.6 4 85 103 -1.4 5 600 [90] 2011
1.3 731 - -5 -2.5 10 21 42 -2.3 8 138 [91] 2010
2.39 1079 244.3 -5.8 -4.5 10 104 96 -4.75 10 432 [92] 2010

3 1050 - -4. -3 14 54 58 1 5 187 [93] 2010
3 1050 - -6.8 -4.5 10 61 70 1 6 222 [93] 2010

1.95 1060 380 -5.5 4.2 4 143 176 -4.34 4 415 [94] 2010
2.4 1300 200 -5 -4.25 5 144 137 -4 4 480 [95] 2010

Continued Table 4.1 
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Chapter 5. Methods and approach 

Following a brief description of the methods used for the study of the plasmon–hot phonon 

resonance is presented. First, multiple channel heterostructures, coupled channel and dual 

channel, are introduced. Also a description of the multiple channel heterostructures is 

presented taken as base the single channel heterostructure already described in section 4.1. 

Next, simulation results on mentioned heterostructures are reported. Simulations aim to share 

some light on how multiple channel heterostructures widen the carrier density profile. Here, 

distribution and shape of the electron density profile are our main concern. Continuing with 

our presentation, the growth process based on metal organic vapor chemical deposition 

(MOCVD) technique employed to grow the multiple channel heterostructures is described. 
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Figure 4.2 Gate-source voltage at maximum cut-off frequency (VGSft) relative to 
(VTh). Reported fT values for standard high performance HFET are obtained for 
VGSft/VTh equal or higher than 0.5. 
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Following, the device fabrication process is presented. Electrical tools and techniques to 

characterize the heterostructures and devices are detailed. Finally, the approach followed to 

grow and characterized the heterostructures and fabricate and characterized HFET devices is 

described. 

5.1 Multiple channel heterostructures 

Heterostructures studied in this work, namely, single channel (SC), dual channel (DC), and 

coupled channel (CC) are presented in Figure 5.1. A qualitative description of a single 

channel heterostructure was given in subsection 4.1. The main difference between SC and DC 

and CC is the insertion of an extra channel ((Al)GaN) layer and separation layers between the 

barrier layer (second layer from top) and the buffer layer (3µm GaN) of a SC heterostructure. 

By inserting extra channels of varied composition and thickness it is expected to control, to 

some extent, the carrier density profile as it is demonstrated in subsection 5.2. 

 

 

 

 

 

 

 

 

 
Figure 5.1 HFET structures with AlGaN barrier layers a) single channel (SC), b) coupled
channel (CC), and c) dual channel. d) single channel HFET with InAlN barrier layer. The
latter, optimized AlInN/AlN/GaN heterostructure.  

 30%Al

-20nm
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5.2 Simulation 

Single and multiple channel heterostructures design, namely, coupled (CC) and dual (DC) 

were model and simulated via technology computer –aided design (TCAD) tool – ATLAS by 

SILVACO. Self-consistent coupled Schrodinger Poisson Mode was used in all simulations. 

This model self-consistently solves Poisson's equation (for potential) and Schrodinger's 

equation (for bound state energies and carrier wave functions). III-nitride material and model 

parameters were the ones provided by the Blaze simulator, which simulates devices fabricated 

using advanced materials and includes a library of binary, ternary and quaternary 

semiconductors, i.e. III-nitrides. Blaze has built-in models for graded and abrupt 

heterojunctions, and simulates binary structures such as MESFETS, HFETs and HBTs. 

Piezoelectric polarization (strain induced) and total spontaneous polarization in our 

simulations are calculated automatically. Therefore, insertion of delta doping to simulate 

interface charge is not necessary. Also the degree of polarization can be controlled by a factor 

which value goes between 0 and 1. In our simulation a value of 1 was used in all simulations. 

No unintentional doping was added to the heterostructure modeling since the purpose of the 

simulation is to evaluate the effect of the heterostructure design on the widening of the carrier 

density profile and not HFET performance. A working and tested simulation file for a single 

channel heterostructure is displayed in APPENDIX C. Simulation results are plotted in such a 

way that x-axis represents depth perpendicular to the heterostructure from the top (left side) to 

the bottom (right side). Right y-axis indicates the conduction band (CB) and link y-axis the 

carrier density profile (ns). 
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5.2.1 Coupled Channel HFET 

For coupled channel heterostructure the effect of the GaN channel thickness and AlN 

separation layer thickness were studied. In Figure 5.2 the effects of GaN channel layer 

thichness is exhibited. As expected the thicker the GaN layer the large the separation between 

channels. Intresting to note is that for thickness lower than 4nm, the coupled channels 

combine in one and from the point of view of carrier profile the heterostructure behaves as a 

single channel heterosstucture. Then, thickness equal or larger than 4nm should be 

implemented in order to be in the presence of coupled channels.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Coupled channel heterostructure. GaN channel layer thickness
effects on carrier density profile. Left axis indicates conduction band (CB),
right axis carrier density (ns).  Thin continuous line is the CB for single channel
(SC) heterostructure and dashed line for couple channel heterostructure for a
GaN layer 4nm thick and a separation layer 1nm.  
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Results on the effect of the thickness of the separation layer on the carrier density profile are 

presented in Figure 5.3 and Figure 5.4. It is clear from Figure 5.3 that separation layer thicker 

than 1nm concentrate carrier in the botton channel. Resulting carrier profile resmbles pretty 

much the same than for a a single channel structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

More interesting results are obtained when AlN separation layer is thinner than 1nm. 

Reduction of separation layer has the effect of redistribute carriers among channels (see 

Figure 5.4). As AlN layer thickness goes from 0 to 1nm the carrier profile changes of  

Figure 5.3 Coupled channel heterostructure. AlN separation layer thickness 
(1≤2nm) effect on carrier density profile. Left axis indicates conduction
band (CB), right axis carrier density (ns).  Thin continuous line is the CB 
for single channel (SC) heterostructure and dashed line for couple channel 
heterostructure for a GaN layer 4nm thick and a separation layer 1nm. 
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character. From single peak like in the top channel, splits into two peaks one in each GaN 

channel and for AlN 1nm thick carrier are concentarted mostly in the botton channel. Notice 

that for a AlN 0.5nm thick a balanced distribution of the carriers among the channel is 

achieved and what is desirable. Also, the effect of the separation layer composition was 

evaluated via simulation (see Figure 5.5). The effect of the separation layer composition is 

similar to the AlN separation layer for thickness lower than 1nm. For decreasing Al content in 

Figure 5.4 Coupled channel heterostructure. AlN separation layer
thickness (≤1nm) effect on carrier density profile. Left axis indicates
conduction band (CB), right axis carrier density (ns).  Thin continuous
line is the CB for single channel (SC) heterostructure and dashed line for
couple channel heterostructure for a GaN layer 4nm thick and a
separation layer 1nm.  
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the separation layer the carrier distribution changes from a crrier profile mostly concentrated 

in the botton channel to a profile that acumulates carrier in the top channel. For intermediate 

Al concentration (50%, not show here) ist is expected a balanced distribution of the carrier 

among the channels. Balanced distribution of carrier is desirable because plasmon-hot phonon 

resonance is expected to be atained at higher carrier densities, therefore, higher power levels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 Coupled channel heterostructure. Separation layer composition
effect on carrier density profile. Left axis indicates conduction band (CB),
right axis carrier density (ns).  Black thin continuous line is the CB for single 
channel (SC) heterostructure and red continuous line for couple channel
heterostructure for a GaN layer 4nm thick and AlN separation layer 1nm
thick.  
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5.2.2 Dual Channel HFET 

In the case of dual channel heterostructures, the effect of both the Al content in the AlGaN 

channel and the channel thickness were simulated. Heterostructures with AlGaN channels 

4nm thick and 10, 15, and 20% Al content were simulated, results are shown in Figure 5.6. 

First observation is that the carrier density profile is compact.  

 

Channel with low Al content behaves pretty much like single channel. However, as Al 

content is increased the carriers concentrate more in the channel located in the buffer layer 

Figure 5.6 Dual channel heterostructure. Effect of the Al content in the 
AlGaN channel in the carrier distribution. Left axis indicates conduction 
band (CB), right axis carrier density (ns). Thin black line is the electron 
density profile for single channel (SC) heterostructure. 
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(bottom channel). The latter can be seen as beneficial from the point of view of a possible 

reduction of the alloy scattering at low electric field. However, a 15% Al content result in a 

better profile for a plasmon-hot phonon resonance at higher carrier densities at higher applied 

electric fields. Figure 5.7 shows simulation results for an AlGaN channel with 20%Al content 

and 2, 3, and 4nm thick. The AlGaN channel thickness seems to be not as effective as the 

channel Al content in widening the carrier profile. Even though, the carrier profile can be 

widen a peak like prevails. Thicker AlGaN channel concentrate carrier in the buffer side 

which could be beneficial from the point of view of transport properties of the channel. 

However, the carrier profile resembles a single channel profile.  

 

 

 

 

 

 

 

 

 

 

 

  

Figure 5.7 Dual channel heterostructure. Effect of the AlGaN channel
thickness on the carrier profile. Left axis indicates conduction band (CB),
right axis carrier density (ns).  Thin black line is the electron density profile 
for single channel (SC) heterostructure. 
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5.3 Heterostructure Growth 

Heterostructures were gown on 2” c-plane sapphire substrate utilizing a vertical low pressure 

metal-organic chemical vapor deposition (MOCVD) system in which trimethylgallium 

(TMG), trimethylaluminium (TMAl), and NH3 was used as Ga, Al, and N precursors, 

respectively, and Hydrogen was used as carrier gas. Following, a description of the 

heterostructure growth process is presented. Low temperature AlN nucleation layer with 

thickness of about 20nm grown at growth temperature about 900°C was followed by a 330nm 

thick AlN at high substrate temperature (1050°C) and pressure of 30Torr and V/III ratio of 

≈7. Growth of GaN was performed in 2 step process. First, a 1µm thick layer at 76 Torr was 

grown to introduce a carbon compensated layer which acts as a semi-insulating buffer. Then, 

2.5 µm of GaN at 200 Torr was grown to improve crystal quality which is an important factor 

in high mobility heterostructures. On top of the buffer layer, a 1nm thick AlN was deposited, 

separation layer, this layer helps to improve electron transport properties. Thereafter, a 20nm 

thick Al0.3Ga0.7N barrier layer was grown followed by a 2nm of GaN cap layer to protect the 

barrier from oxidation. All the last three stages were grown at chamber pressure of 76Torr 

and a V/III ratio of 910 at same substrate temperature as that for the underlying GaN buffer 

layer. In case of coupled-channel structure an additional 1 nm separation layer followed by 

4nm layer was deposited on top of the original spacer layer (see shown Figure 5.1 b)). For 

dual channel structure, an additional Al0.15Ga0.85N layers was grown on top of GaN buffer 

layer (see Figure 5.1 c)).  
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5.4 Thermal conductivity in heterostructures 

In order to evaluate the thermal conductivity as seem from the channel and especially from 

the top channel in multichannel heterostructures i.e. dual and coupled channel where heat 

flow could be impeded by subsequent layer, we calculate the effective thermal conductance 

between two points A and B using the series model as displayed in Figure 5.8. The figure 

shows an array of three layers, AlN/GaN/AlN, that essentially may be the path through which 

the heat generated in the channel of single channel heterostructure need to go to reach the 

substrate (see Figure 5.9 a)). The same concept applies to dual and couple channel. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8 Thermal conductance series model 
to calculate the effective thermal conductance 
from a to b. Shown in the figure is the case 
for single channel heterostructure 
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The series model for the effective thermal conductance between point a - b is given by [96] 

eff	series 	
∑

∑

 

where  is the thickness of the sima layer,  the thermal conductance of the sima 

layer, and N runs from 1 to total number of layers. The thermal conductance for binaries 

materials at a temperature, TL, can be calculated by the power law  

TL
TL

300K
 

where  is the thermal conductance at room temperature (300K) and  is a fitting 

parameter. In the case of ternary alloy materials,	A 	B 	C, the thermal conductance of the 

material, , varies between the values of  and .  can be calculated via 

harmonic mean (
∑

,  is the harmonic mean of  real values, ) model of the 

conductance at 300K and which given by 

1 1
 

where  is an additional bowing factor introduced in order to account for the drastic 

reduction of the thermal conductivity with the increasing alloy compositions. 

Exponent is linearly interpolated as 

1 	 

where  and  are the fitting parameter for the binary alloy A 	B  and B C , 

respectively. 
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Then the thermal conductivity for ternary alloys materials at a temperature, TL, can be 

calculated by the power law  

ABC TL 	
TL

300K

ABC

 

In our calculations we use the following values of thermal conductivity, power constant, and 

bowing factor, κ 3.5	W/cm	K, α 1.7, κ 2.2	W/cm	K, α 1.2, 

C 0.031	W/cm	K (for AlGaN alloys). AlN, GaN and AlGaN thermal conductivities as a 

function of the temperature for 1%Al, 15%Al, and 99.9%Al, are shown in Figure 5.10 a), c), 

and e), respectively. As expected in all cases, the thermal conductivity decreases as the 

temperature increases. As the Al composition goes from zero to 100% the thermal 

conductivity of AlGaN changes from the value for GaN to the thermal conductance value for 

AlN. As observed in Figure 5.10 b), d), and d) the change in the thermal conductance from 

(top) channel to the substrate in single and multiple channel heterostructures is insubstantial.  

Figure 5.9 HFET structures a) single channel (SC), b) coupled channel (CC), 
and c) dual channel (DC). Red arrows indicate calculated thermal 
conductivity, start positioned at the top channel, end points the substrate.  
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However, the effect of Al content is notorious in dual channel heterostructures, especially, for 

15Al% (see Figure 5.10 d). Nevertheless, the difference in the thermal conductance between 

the dual channel heterostructure and coupled channel which is very close to the single channel 

conductivity is ≈ 2%. Variation on the thermal conductance as a function of the Al content in 

AlGaN at 300K is displayed in Figure 5.11 a). AlGaN thermal conductivity exhibits a 

minimum (plateau like) with a value of 0.25	W/cm	K for 15%Al content. It is worth to 

evaluate the effect of Al% in AlGaN in the dual channel thermal conductance and which 

shown in Figure 5.11 b). We are interested in 10 < Al% < 20 range of Al content for which 

the AlGaN contribute more efficiently to the widening of the 2DEG profile. For this range of 

Al content the variation in the thermal conductivity of AlGaN is ≈1%.  

In summary, the higher the temperature and the larger the Al content (< 50%) in AlGaN 

channel the lower the conductivity. For 1<AlGaN layer thickness < 5nm and 0< Al% < 50 the 

change in thermal conductivity is lower than 2%. Therefore, it is expected as shown in Figure 

5.10 b), d), and d) that the thermal conductivity in the single and multiple channel be govern 

by the thermal conductivity and thickness of GaN buffer layer (3.5µm thick GaN layer, see 

Figure 5.9 a), b), and c)). 

 

  



 

54 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) 

b) 

c) 

d) 

e) 

f) 

Figure 5.10 Thermal conductance as a function of the
temperature for AlN, GaN and AlGaN for 1%Al, 15%Al, and
99.9%Al are shown in a), c), and e), respectively. b), d), and f)
thermal conductance from (top) channel to substrate for single-
dual and couple channel heterostructures. 
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Figure 5.11 a) Thermal conductance variation for a 4nm thick AlGaN layer as function 
of Al content, b) Change in the thermal conductance of dual channel heterosturucture
(Figure 5.9 c)) as a function of the Al content in the AlGaN channel.  
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5.5 Device fabrication 

After heterostructures are grown, ohmic contacts Ti/Al/Ni/Au (30nm/100nm/40nm/75nm) are 

deposited via E-beam and thermal evaporation. Then MESA etch by dry etching (Cl2 

reaction). Next, ohmic contacts are annealed under nitrogen atmosphere at 800-940°C for 20-

60s. Finally, Schottky contacts Ni/Au (300nm/75nm) are deposited. A picture of fabricated 

devices is shown in Figure 5.12. Devices are compound of two (gate (G), source 1 (S1), drain 

(D), and G, source 2 (S2), and D) HFETs with common drain and gate. The gate length is 1-

2μm, channel width is 90 μm. Source – gate separation is 1-1.5µm, and gate-drain separation 

2-4µm. The recipes used to carrier out the photolithography process are in the APPENDIX B. 

The recipe for photolithography process for MESA etching results in undercut photoresist 

profiles, which allows a better access to the HFET channel. The photolithography process for 

metal contact deposition produce overcut profiles ideal to obtain acute and clean metal 

profiles. 

 

 

 

 

 

 

 

 

 Figure 5.12 Optical image (top view) of fabricated devices composed by two 
HFETs. Indicated in the insert are gate (G), drain (D), source 1 (S1), and source
2 (S2). 
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5.6 Electrical characterization 

5.6.1 Heterostructures 

The entry level electrical characterization of the heterostructures is accomplished via Hall 

measurements-Van der Paw configuration at room temperature. Hall measurements results 

are decisive for further sample processing. This technique provides the carrier nature (holes – 

electrons) and its density (including parallel conduction if any). It should be pointed out that 

HFETs based on GaN/AlGaN or GaN/InAlN heterostructures such as the ones shown in 

Figure 5.1 exhibit always n-channels. In all studied cases mobility was around 1x103 cm2 V-

1S-1 or higher and 2DEG density higher than 1.2 x1013 cm-2. Samples with lower carrier 

mobility and/or carrier density are discharged from the study. 

 

5.6.2 Devices 

Direct current voltage-current characteristics either both input, gate-source voltage (VGS)-

gate current (IGS) and output, drain-source voltage (VDS) - drain current (ID), as well as 

transconductance (Gm) were measured and used to evaluate the DC performance of the 

devices. Devices with IGS <100 µ mm-1, Gm >100 mS mm-1, and ID > 350 mA mm-1 were 

selected. High ID is mandatory for high power applications. Gm is capital for power amplifier 

gain. While a low IGS (leakage current) level is important to reduce IGS side effects (i.e. drain 

current lag and poor device reliability), it is also relevant for a meaningful low noise 

frequency characterization of the device.  

 

Capacitance-voltage (C-V) measurements were accomplished with a RLC meter. From the  

C-V measurements, apparent carrier concentration profile, n (cm-3) normal to the growth 

direction versus depth (nm), were calculated by using the equations: 
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n
2

1

depth

 

n vs depth curves were used to judge the widening of the carrier concentration. Standard 

heterostructure exhibits, usually, a narrow peak. While multiple channel HFETs, usually, 

present one or two peaks. And in general the carrier concentration profile is wider than that 

for a standard structure. Knowledge of the carrier density profile is important in terms of 

evaluation of the effectiveness of the heterostructure on widening the 3DEG density profile. It 

worth to mention that results from C-V profile should be taken “qualitatively” since this 

method has several limitation. Among which Debye length is the most important in the 

definition of the carrier density profile (see APPENDIX A ). 

 

Measurement of s-parameters is carried out with a vector network analyzer in the range of 

frequencies 2-20GHz. Cut-off frequency, fT, defined as extrapolation of 
2

21h  to zero dB. And 

21h  short circuit current again, is calculated from s-parameters as 

/ | 	
 . 

 

Gate-source voltage (VGS) and drain-source voltage (VDS) at which fT is achieved are recorded 

for further analysis. Studied devices exhibit a fT in the range 10-14 GHz.  This technique is 

crucial to evaluate the bias point at which plasmon-hot phonon resonance in gated HFETs is 

attained. Since no other technique is applicable. s-parameters together with a HFET small-

signal equivalent electrical circuit Figure 5.13 help to find out extrinsic and intrinsic 

parameters by extraction techniques. Then it is possible to reconstruct the intrinsic equivalent 
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circuit. Of principal interest are gate-source capacitance (Cgs), and gate drain capacitance 

(Cgd). Which are related with the intrinsic cut-off frequency in the following manner 

 

,
	

2

	
2

 

where  is the small signal transconductance,   the saturation velocity, and  the gate 

width.  

 

 

 

 

 

 

 

 

 

 

Extrinsic parameters are useful in finding out a better approximation to the real conditions, 

electric field in the channel, at which cut-off frequency occurs. That is to say, bias conditions 

at which phonon effects are minimized. From the measurements of the fT, intrinsic transient 

time, τint, is calculated. Under high electric field but lower than critical electric field (Ecri), 

shorter τint implies higher saturation carrier velocity, , therefore, shorter hot-phonon 

lifetime. τint, is calculated as follow, the total transient time is τTotal= τint + τD + τRC = (2π f T )-1 

, where τD is the drain time constant and τRC is the charging delay time constant. From the 

τTotal versus channel voltage, Vch = VDS – ID (RS – RD), and τTotal versus 1/ ID characteristics 

Figure 5.13 HFET equivalent small signal circuit. 
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we obtained τint + τRC and τint + τD, extrapolating τTotal , respectively, for Vch  and 1/ ID tending 

to zero.  

 

In order to evaluate the reliability of the devices, a series of stress at four different bias 

points were carried out. The bias points are: (1) on-state-low-field stress (VGS = 0 V, 

VDS = 7 V), (2) reverse-gate-bias stress (VGS = −20 V, VDS = 0 V), (3) off-state-high-field 

stress (VGS = −10 V, VDS = 20 V), and (4) on-state-high-field stress (VGS = 0 V, VDS = 20 V). 

Mentioned electrical stress tests are realized, also, at high temperature, up to 200°C.  

Low frequency noise (LFN) characterization of the devices before and after stress them is 

accomplished with the help of a phase noise measurement system. See Figure 5.14. 

Characteristic noise signal from HFET are built up, usually, by a superposition of 1/f –like  

noise, generation-recombination (G-R) noise, and white noise. The latter, frequency 

independent is related with the device temperature and impose a minimum detectable noise 

level. In practice this level is set by either both the device under test (DUT) or the set up used 

to measure the noise. In this case our Test set has a noise level well below -180 dB V/Hz, 

which corresponds to a power density of -167dBm/Hz at an input impedance of 50 Ω. The 

thermal noise power density is -174dBm/Hz, which is about 7dB lower compared to the noise 

floor of the Test set. 

G-R noise in semiconductors is related with the generation and recombination of carries. G-R 

results in a fluctuation in the number of carriers contributing to the current transport. G-R 

power spectrum density (PSD), Lorentzian in nature, is given by the McWhorter’s number 

fluctuation as follow: 

4Δ
1 2

 

where τ is the trap time constant and f belongs to the noise frequency spectrum. 



 

61 

 

When a large number of trap (number fluctuation) are presented, G-R noise exhibit 1/f –like 

noise provided trap time constant are distributed as follow: 

1

ln
							 	 , 0			otherwise.					 

Because G-R noise is relevant within a few kT from the Fermi energy level and owing to the 

pining of Fermi energy level in nitrides, G-R noise in nitrides is mostly due to the deep traps. 

Traps closer to the conduction or valence band will stay most of the time either empty or 

filled. PSD general expression for 1/f –like noise is proportional to 1 f  , with 0.3 1.3  . 

  is found from the phenomenological relation between 1/f and the inverse of the total 

number of charge carriers, N, in the channel in homogeneous samples. This relation is called 

Hooge and is given by: 

 

where ( )IS f  is the current spectral density, H  is the dimensionless Hooge’s parameter, N is 

the number of electrons scattered by A lattice nodes.  

Figure 5.14 Block diagram shows the Agilent E5505A residual phase-noise measurement 
setup with the single-sided spur calibration technique. Calibration source and 10 dB attenuator
attenuator are only used for calibration purpose. DUT stands for device under test. 
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Fluctuation in current may be caused by either both mobility fluctuation and number carrier 

fluctuation. Carrier fluctuation can be described by McWhorter’s number fluctuation, while 

mobility fluctuation can be described by Hooge phenomenological formulation. Both 

fluctuations may exhibit 1/f –like PSD. Therefore, sometimes it is not possible to discerner 

between carrier or mobility fluctuations. And extra measurements (e.g. pulse measurements, 

high temperature measurements) and or stress the device are necessary in order to elucidate 

the nature of noise. Difference in LFN levels is an indication of the degradation of the device 

after being stressed. It is expected, for example, that when the stress takes place under 

plasmon-hot phonon resonance conditions, the device be minimally degraded because the 

effect of hot phonon is minimized. In order to corroborate result from the 

stress/measurements usually an ensemble of the devices on the same sample is studied, and a 

representative value is taken for every single measured variable. 

 

5.7 Approach 

Owing to the lack of a theory may take into account all factors, which could intervene in the 

plasmon-phonon resonance bias point, there is so far, no other direct option than the 

experimental one. In other words, growth the heterostructures, fabricate devices on them and 

find the bias points at which cut-off frequency occurs. If the bias point does not approach to 

VGS =0V at high VDS voltages, the growth, fabrication and testing processes need to be 

repeated until some satisfactory result is attained. After an evaluation of the obtained results, 

new directions on the heterostructure design are taken, if necessary. Of course, all experiment 

work is sustained by a theoretical background. And this work is not the exception. Theory is 

appealed as required. In order to understand the electron-phonon physics in the 

heterostructures and then guide the design of the heterostructures. Also, TCAD simulations 



 

63 

are carried out to evaluate the electron wave function profile, carrier density, and electric field 

distribution among other parameters. 

The heterostructure design optimization process starts with the growth of the heterostructure 

on sapphire substrate (for low cost, SiC or even better GaN substrates would be ideal, but 

they are prohibitive) by MOCVD technique; see Figure 5.16 for the explanation of the 

optimization process. Two innovative heterostructures for the implementation of HFET, 

namely, coupled channel and dual channel are object of the optimization process. Also, and as 

reference, standard heterostructures named single channel are growth (see Figure 5.1 a)). The 

latter are used for device performance reference. Following heterostructure growth, substrates 

are cut as indicated in Figure 5.15. The Figure 5.15 also shows the relative position of the 

HFET’s gate with respect to the c-sapphire substrate m-plane. Gates are aligned parallel to the 

substrate m-plane, because it is believed that defect density in the perpendicular direction to 

the m-plane, where sit the HFET channel, is lower. 

Small samples of 5x5 mm2 are used to characterize heterostructure transport properties via 

Hall measurements in the Van der Paw configuration. Mobility higher than 1x103 cm2v-1 s-1 

and carrier density higher than 1x1013 cm-2 are used as sample selection rule. In the case the 

sample does not satisfied the mentioned condition no further sample processing is carried out. 

After Hall measurement, remaining pieces of wafer are processed in the following way. 

Remaining piece of pie shape used for Hall measurement is used to fabricate of TLM devices 

(see Figure 5.15). These devices help in the optimization of ohmic contact rapid thermal 

annealing (RTA) process. The optimization is realized by finding best combination of 

annealing temperature and annealing time under a nitrogen atmosphere. As a feedback, I-V 

characteristic curves of the TLM patterns are used to calculate electrical properties of the 

ohmic contacts.  
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The lower the specific contact resistance, ρc, the better the ohmic contact. Values of ρc,≈ 1x10-

6 Ω cm2 are considered good and the annealing conditions are accepted. Once implemented 

the ohmic contacts, gateless HFETs are DC characterized. Obtained I-V curves are used as 

reference to discriminate the metal gate effect on the 2DEG density, unintentional depletion. 

Continuing with the fabrication process, gates are deposited by E-Beam evaporation. Then 

first, direct current characterization results of the HFETs are used to screen devices. Only are 

chosen for further studies those devices that exhibit good drain current, ID (>600 mm A-1) and 

transconductance, Gm, ≥ 100 mSmm-1. Also C-V measurements are taken on fat FET in order 

to calculate the 2DEG density profile. This measurement is important in terms of the 

evaluation of the 2DEG profile widening that multichannel structure may cause if compared 

with the 2DEG profile of a standard structure. 

 

Figure 5.15 Substrate cutting details. Pieces 1-5 are dedicated to Hall measurements. Pie 
shape indicated as TLM is destinated to the fabrication of TLM devices. Remaining pie-
shapes are used for the fabrication of HFET devices. 
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Selected devices are RF characterized. The RF performance is evaluated via s-parameters. 

Which are used for the calculation of the cut-off frequency. Scanning in VGS and VDS is 

executed to find out the bias conditions at which fT occurs. fT is an indicator of when 

minimum effect of hot phonons happens. And is a crucial parameter for the performance, in 

terms of plasmon-hot phonon interaction in the heterostructure. To find out if the fT is 

influenced by the carrier velocity frequency values are, in conjunction with the bias points, 

further processed in order to find out the internal transient time. The latter is related with the 

carrier saturation velocity, / . If  occurs at high electric field but lower than 

critical electric field, . It means that the possible difference in  among samples is due 

to mobility. Increase of mobility is related, at the same time, with a reduction of the hot 

phonon lifetime. Otherwise, the relation between  and hot phonon is no trivial, because 

the carriers begin to populate higher valleys and a new effective transient time, eff, need to be 

defined. This new eff does not relate directly mobility with the hot phonon lifetime. 

If the bias point at which fT occurs, approaches to VGS = 0V, a whole evaluation of the device 

performance is carried out. And decisions on fine tuning of the heterostructure design are 

taken. Otherwise, heterostructure efficiency in widening the 2DEG density profile and 

possible reasons on why VGS does not approach to 0V are analyzed. And new decisions on 

heterostructure designs are taken.  

The whole optimization process, of course, is an iterative one. And values of VGS approaching 

to 0V are expected to be achieved cycle after cycle. Iteration, always, starts from growth 

process. See Figure 5.16 for a description of the entire flow process. 
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Figure 5.16 Heterostructure design optimization process flow. 
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Chapter 6. Experimental results 

GaN-based heterostructure field effect transistors exhibit remarkable performance in the high 

frequency and high power applications [63]. The reliability of GaN-based power devices is 

still focus of intense research in order to improve their performance and extend their lifetime, 

since the devices still suffer from some degradation mechanisms such as mechanical stress 

due to high electric field, strain, electrical defects and hot electron/hot phonon effects. For 

instance, the drain current collapse (gate lag) is attributed to the charge traps located in the 

buffer layer, barrier region or the surface states mostly residing on the drain side of the gate 

[97]–[100].  

For high power application, as mentioned earlier, channel capable to conduct high current 

densities are desirable. In this vein first devised theoretically [101] and then implemented 

[102], InAlN/GaN heterostructures offer a mean to supply the increasing power demand.  

Increase of power handling with conventional AlGaN barrier layer, mainly, means increase 

Al%. This approach has a limitation and this is that for Al% higher than ~37% Al in AlGaN 

barriers layers on GaN start to relax. And the piezoelectric component of the polarization 

induced charge begins to be diminished. Increasing barrier layer thickness do not make any 

substantial increase in the induced charge with the side effect of degrading the DC and RF 

performance of the HFET i.e. pinch-off voltage, Vpo, and fT. 

 

6.1 Single channel HFET – InAlN barrier layers 

InAlN barrier layers induce higher charge levels in the channel (~ 0.9 A/mm, see Figure 6.2 

curve corresponding to a 17.5%In) as compared with AlGaN barrier layers (0.6 A/mm for 

25%Al, not shown here). Therefore, InAlN/GaN HFETs are, a priori, capable to handle 

higher power level.  



 

68 

Replacing the AlGaN with an InAlN barrier layer, due to its lattice-matched growth 

possibility, larger band-gap leads to higher current densities compared to the counterparts 

with AlGaN barriers [101], [103], [104]. Even though there are an increasing number of 

studies on structures with InAlN barriers delving into the lattice parameter effect, i.e. the 

impact of Indium composition [104]–[106], the study of In-composition effect on reliability 

was missing. Hot phonon and hot electron/phonon effects in InAlN/AlN/GaN HFET were 

reported in Refs. [107] and [108]. The study on off-state electrical stress in InAlN/AlN/GaN 

HFETs with varying In compositions [109] is presented here. Optimized InAlN/GaN 

heterostructure designs like the shown in Figure 5.1 d) were studied. We monitored low-

frequency noise (LFN) for the HFETs with InAlN barriers with In compositions varying from 

12% to 20% to investigate the impact of electrical off-state stress (VGS = -10 V, VDS = 0 V, 

and ID = 0 A - Inverse-Piezoelectric stress) in the context of inverse piezoelectric effect.  

Figure 6.1 a) exhibits the resulting curves of LFN measurements before stress. Mostly, the 

noise characteristic of the samples follows 1/f type. However, in some of the LFN curves 

slight features were observed deviating from 1/f, indicating generation recombination noise. 

Because these features are contemplated (for 18.5% and 20% In) pre and post-stress 

conditions, it is feasible to attribute them to the GaN buffer, in which case it can be concluded 

that there was no additional trap generation under the above mentioned stress conditions. 

Figure 6.1 b) shows pre- and post-stress LFN curves for the lattice matched condition (17% 

In) and for the ones with the In compositions below the lattice matched condition (12% and 

15%). We observed that LFN spectra for the HFETs with the In compositions higher than the 

lattice matched conditions (18.5% and 20%) remained almost the same (no shown in the 

Figure 6.1 b)).  
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However, the noise level increased 6 dB and 10 dB for the HFETs with 15% and 12% In 

compositions in their barriers, respectively. This effect may be caused by the tensile stress 

from which the barrier layers suffer for lower Indium compositions [110]. 

Figure 6.2 presents ID-VDS characteristics before and after stress for VGS = 0V. For higher In 

composition the IDmax increases as expected because of the higher electron density 

accumulated in the GaN channel. For 17% In composition, electron density is mostly due to 

the spontaneous polarization. For In composition higher than 17%, the piezoelectric effect 

due to the compressive strain reduces the two-dimensional electron density. While for lower 

In compositions, piezoelectric effect contributes positively to the increase of the density of 

electrons, which in turn increases the IDmax.. For HFETs with lower In compositions (12% and 

15%) an appreciable degradation due to the off-state stress is noticed. Even though, for lattice 

matched HFETs (17% In) the stress effect in LFN spectra variation is not severe, it is 

notorious if compared with the results from AlGaN/GaN HFET (not shown here) under 

a) b) 

Figure 6.1 a) LFN measurement on pristine samples. Distinct features can be observed for 
15%, 18.5%, and 20% In, indicating generation-recombination noise. b) pre and post-stress 
LFN curves for 12%, 15%, and 17% In composition. HFETs with 18.5%, and 20% In 
compositions (not shown) showed no change in noise power after stress process. In the case 
of 12% and 15% In, the lower the In composition the larger the noise power. 
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similar stress condition. In AlGaN/GaN HFET change in noise power, due to stress is not 

discernible, even after dozen hour under stress. 

 

 

 

 

 

 

 

 

 

 

On the other hand, even for lattice match (InAlN-GaN) In composition, InAlN barrier layer 

degrade easily. Even after, a couple hour of stress, notable increase in the LFN level is 

observed. In spite of InAlN/AlN/GaN heterostructures have attractive electrical 

characteristics from the point of view of the reliability which is of uppermost importance for 

power devices InAlN barrier layers are not reliable enough yet. Reason may be varied, from 

the barrier layer growth quality, to hot electron/phonon effects at high carrier densities and /or 

high electric field effects. 

 

Figure 6.2 ID -VDS characteristics before and after stress for VGS = 0V. A substantial
difference between characteristic curves can be observed for HFETs with 12% and 15% In
composition in the barriers of the devices. 
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As an introduction to the next step in the developing of HFET for power applications, it is 

worth to mention that the minimum degradation in InAlN/GaN HFETs as monitored by LFN 

in Ref. [107] was found at a 2DEG density of ~0.92x1013 cm-2 (coincident with the 2DEG 

density at which also fT is found in this type of heterostructures [111]), while the 2DEG 

density at VGS = 0V is 2.3 x1013 cm-2. That means we need to deplete the channel in more 

than 50% of the carrier in order to achieve, from the point of view of the reliability, optimal 

working conditions. The latter is not fruitful from the point of view of a good utilization of 

the heterostructure. In this regard, a more efficient HFET power handle capabilities need to be 

found without scarify its reliability.  

 

6.2 Multiple channel HFET – (Al)GaN barrier layers 

AlGaN/GaN HFET, even though, has some reliability issues are preferable for power 

applications. And they are chosen by the industry. 2DEG densities as high as 2x1013 cm-2 for 

AlGaN/GaN HFET with barrier layer with 37% Al and 30nm thick were predicted [112]. In 

practice, however, a carrier density of 1.0 x1013 cm-2 and 1x103 cm2 /V s are routinely attained 

for barrier layer with 25%Al. Beside the lower polarization induced carrier in the channel 

compared with InAlN barrier case, HFETs based on AlGaN barrier layers also need to be 

depleted ≈ 50% in order to accomplish cut-off frequency (see section 4.2). As a result HFET 

based on AlGaN/GaN heterostructures, as in the case of HFET with InAlN barrier layers, 

exhibit a reliable working point at low carrier densities. And then, once again, the HFET has a 

poor power handling. In this case, we come across with the mismatched situation. That is to 

say, on the one hand we have minimum degradation at low 2DEG. While for high power 

applications we need higher 2DEG densities at high VDS voltages. And the ideal condition 
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would be to have minimum degradation (plasmon-hot phonon resonance) at high carrier 

densities.  

Originally proposed by Prof. Arvydas Matulionis and then by Prof. Hadis Morkoç, the idea to 

shift plasmon-hot phonon resonance point to a higher 2DEG densities via multiple channels 

heterostructures was established. In this respect, first experimental work consisted in the 

implementation of coupled channel (CC) heterostructures [71].  

 

6.2.1 Coupled channel HFET 

Coupled channel heterostructures like shown in Figure 5.1 b) were first studied and their 

performance compared with the one from single channel (SC) heterostructure, Figure 5.1 a). 

In this first approach, we compare electronic transport performance in HFETs based on single 

channel (SC) GaN/Al0.30Ga0.70N/AlN/GaN (2nm/20nm/1nm/3.5μm) and coupled channels 

(CC) GaN/Al0.28Ga0.72N/AlN/GaN/AlN/GaN (2nm/20nm/1nm/4nm/1nm/3.5μm) structures.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3 Apparent carrier density, n, as a function of the depth along the direction 
perpendicular to the heterostructure. 
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Apparent carrier density (n) profiles versus depth, deduced from C-V measurements (not 

shown here), are shown in Figure 6.3. From the apparent carrier density profiles we can see 

that the CC heterostructure successfully widens the 2DEG density profile if we compare it 

with the one from SC channel heterostructure. The two structures have similar current gain 

cut-off frequencies (11.6 GHz for SC and 14 GHz for CC for ~1μm gate length), however, the 

maximum drain current, IDmax, is nearly doubled in the CC HFET (0.64 A mm-1 compared to 

0.36 Amm-1 in SC). HFETs exhibit maximum transconductance (Gmmax) at a bias point close 

to where maximum fT occurs: VGS =-2.25 V and VDS =12 V and VGS = -2 V and VDS= 15 V 

for SC and CC HFETs, respectively. Since threshold voltage (Vth) is ~ -3.75 V for both SC 

and CC structures, devices are able to work at high frequencies with a high Gm delivering 

higher ID. This is in contrast with device performance reported by others where fT is attained 

at VGS closer to Vth and therefore with lower ID/IDmax ratios and low Gm. From the Hall 

measurement SC presents an electron mobility (μ) 1.1×103 cm2 V-1 s-1 and n = 1.2×1013 cm-2, 

while CC performs μ= 1.4 ×103 cm2V-1 s-1 and n= 1.3×1013 cm-2 giving a higher product μ × 

n, which is consistent with the higher IDmax.  

Figure 6.4 Intrinsic transit time vs of 2DEG density under different VDS, for a) SC and b) CC 
HFETs. Minimum Intrinsic transit time occur at ~5.85×1012 cm-2 and ~8 ×1012 cm-2 for SC 
and CC, respectively. 
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In order to shed light on the reason of the difference in electron mobility, we conducted 

Moll’s transit time analysis, as explain in section 5.6.2. Results of the mentioned analysis are 

shown in Figure 6.4. The difference in electron mobility can be explained as follow. The 

strong hot electron-hot phonon scattering decreases electron velocities [68], [69], [113] and 

additionally keeps heat trapped in the channel [68], [114] unless the hot phonons can decay 

into propagating (acoustic) modes and exit the channel [111]. The existence of a minimum in 

the intrinsic transit time (see Figure 6.4), or a maximum in the electron velocity which in this 

case corresponds to a maximum in mobility, at a particular 2DEG density can be understood 

in terms of the hot plasmon-hot phonon resonance. At resonance, hot phonon lifetime is the 

shortest. The hot phonon lifetime appears to be dependent on the power applied to and the 

electron density in GaN 2DEGs, and also is understood in terms of the interaction between 

hot phonons and plasmon [115], [116]. In the regime where the plasmon-hot phonon effect is 

prominent (at high electric field in the channel), we expect the electron velocity to increase as 

the hot phonon lifetime decreases. What means that intrinsic transit time decreases as 

observed in Figure 6.4 a) and less pronounced in Figure 6.4 b). 

The hot phonon lifetime is a non-monotonic function of 2DEG and applied power [117], that 

exhibits a minimum for a 2DEG density near ~ 6.5×1012 cm−2 [16] or equivalently a bulk 

electron density of ~ 1×1019 cm−3. The SC structures exhibit minimum in the intrinsic transit 

time at a 2DEG density of ~5.85×1012 cm−2, which is close to 6.5×1012 cm−2, the optimum 

[118] 2DEG density (at which hot plasmon-hot phonon resonance occurs). In contrast, 

minimum in the intrinsic transit time for CC occurs at a 2DEG density of ~8×1012 cm−2 at 

which the mobility is even higher compared with the one for SC structure. This happens, 

because the hot electrons in CC are spread over a larger volume, they have a lower (full width 

at half maximum (FWHM)) bulk electron density ~2×1019 cm−3 compared with ~3×1019 cm−3 

of SC (see Figure 6.3). And as pointed out in Ref. [7], the plasma frequency decreases and the 
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plasmon-hot phonon resonance is observed at higher 2DEG densities. Based on the higher 

mobility and lower FWHM bulk electron density obtained for CC, it is believed that a 2DEG 

density ~8×1012 cm−2 is closer to the 2DEG density at which plasmon-hot phonon resonance 

happens in CC structure. 

As the saturation drain current, IDsat, is attained at electric fields (~40KV/cm) lower than the 

critical electric field, Ecr, (~150KV/cm for GaN) the higher fT in CC HFETs can be attributed, 

mainly, to a higher μ, which is in agreement with the Hall measurements. A higher μ in CC 

HFET is attributed to a shorter hot phonon lifetime. 

Even though, CC heterostructures reach resonance conditions at higher carrier densities the 

channel need to be depleted, as a VGS < 0V need to be applied to attain resonance conditions. 

A better situation could be if we tune the 2DEG density profile in order to achieve the 

resonance at as closer to VGS =0V. This is extra beneficial. First, an efficient use of the 

heterostructure is achieved. Second, because the gate is at 0V the barrier layer is subject to 

lower electric fields, reducing leakage current either both because of the surface states or 

because of the barrier layer. 

 

6.2.2 Dual channel HFET 

In an attempt to shift resonance bias point even closer to VGS=0V, another series of devices 

were fabricated on fresh grown similar heterostructures and additionally a new 

heterostructure design was implemented, dual channel (DC) heterostructure, see Figure 5.1 

b). The idea behind different heterostructure designs is, observe how the heterostructures 

widen the 2DEG density profile and evaluate possible shift in plasmon-hot phonon resonance.  
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Apparent carrier density profiles for the new series of samples are shown in Figure 6.5 and 

their characteristics are displayed in Table 6.1. The following discussion spins around the 

HFET universal relationship (the concept of “universal relationship” was first introduced by 

Prof. Arvydas Matulionis) between the initial electron density and the optimal gate bias 

toward higher carrier densities.  

 

Table 6.1. 2DEG density and apparent carrier density profile parameters. 

 

HFET based on multiple channels heterostructures are expected to shift the HFET universal 

relation toward higher carrier densities. Therefore, HFET higher power operation points at 

optimum electron densities. And best HFET performance (higher cut-off frequency, low 

degradation, and phase noise level), because plasmon-assisted ultrafast decay of hot phonons. 

Optimum electron density in the active part of the channel, tuned by the optimal gate bias, is 

≈ 1x1013 cm-2 for standard AlGaN/GaN HFETs. As shown Figure 6.6, multiple AlGaN/GaN 

channel structures, when widen the 2DEG density profile (see Figure 6.5), can shift the HFET 

universal relation curve toward higher 2DEG densities, from ~1×1013 cm-2 for standard HFET 

structure to ~1.15×1013 cm-2 for multiple channel HFET structures. Among proposed multiple 

Sample VGS at fT 

 
V 

2DEG 
 

x 10
13 

cm
-2

 

2DEG width  at 1019cm-3 
 

nm 

2DEG  Δ-height 

from x 10
19 

cm
-3 

nm 

SC -1 1.23 2.15 5 

CC1 -2.5 1.55 3.1 3.6 

CC2 -1.25 1.3 3.1 3 

DC1 -1.5 1.3 2.3 5.3 

DC2 -3 1.5 2.95 15.7 



 

77 

channel structures, coupled channel and dual channel, coupled channel heterostructures seem 

to be more suited to widen the 2DEG density profile. Increasing the optimal electron sheet 

density without the deleterious effect caused by inefficient hot phonon decay observed in 

HFET standard design. 

 

 

 

 

 

 

 

 

 

 

In the regime where the plasmon-hot phonon effect is prominent, (at high electric field in the 

channel), electron velocity increases as plasmon-assisted ultrafast decay of hot phonons is 

more pronounced. This means a decreasing carrier intrinsic transit time. Hence, HFET bias 

conditions for fT are the same at which plasmon-hot phonon resonance occurs. Notice here we 

are interesting in the conditions at which fT is achieved, in particular VGS, and not in the 

absolute value of fT which depends on scaling down of the transistor and on parasitic 

elements. On the other hand, optimal gate bias depends, mainly, on the initial 2DEG density 

Figure 6.5 Apparent carrier density, ns, as a function of the depth along the 
direction perpendicular to the heterostructure. 
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[119]. In Figure 6.7 dots on Ns curves (integrated apparent carrier density curves normalized 

with respect to initial electron density) indicate the value of VGS at which fT is achieved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The first observation we should make is the following. When the multichannel structure fails 

in broadening the 2DEG profile, the optimal gate bias may lead to a lower 2DEG density than 

the one for a SC. This is the case for the dual channel heterostructures DC1 and DC2, in 

which both exhibit higher 2DEG Δ-height (see Table 6.1). That is, a great contribution to the 

2DEG density is over 1019 cm-3 level (see Figure 6.5). On the other hand, CC1 and CC2 

widen successfully the 2DEG profile demonstrating optimal gate bias at higher NS. In the 

latter case, 2DEG width and 2DEG Δ-height for both samples are comparable. However, NS 

is a little be lower for CC1 due to the higher initial 2DEG of CC1 compared with the of CC2 

(see Table 6.1).  

Figure 6.6 Universal optimum gate voltage - pristine 2DEG density 
relationship for standards HFETs (▬) and for coupled channels (---). 
SC stands for single channel, DC dual channel, and CC for coupled 
channel. 
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For comparable 2DEG densities, the larger the 2DEG Δ-height the more negative (closer to 

pinch-off) is the optimal gate bias. The mentioned can be observed between CC1 and DC2 

and between CC2 and DC1. Whose 2DEG density and 2DEG width are comparable. 

Exception is the sample DC1 for which 2DEG is smaller but it is compensated by a larger 

2DEG Δ-height. In other words, in order to attain optimal gate bias closer to VGS = 0V, what 

is important, ultimately, is that the area of 2DEG profile above 1019 cm-3 level needs to be as 

small as possible. Therefore, the channel needs to be depleted less to achieve resonance 

conditions. It is the case of SC when compared with DC1 and DC2 and the case of CC2 when 

compared with CC1. In this last point a more formal analysis of the 2DEG profile should be 

done. The analysis should take into account the effect of VDS (in fact the applied electric field) 

bias in reshaping of 2DEG density profile. Here, for the sake of simplicity, we assume the 

profile does not change much under VDS bias in first approximation. Therefore, 2DEG density 

Figure 6.7 Normalized integrated apparent carrier density (Ns) vs.VGS. Dots 
indicate HFET working conditions at which cut-off frequency occurs. 
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profiles obtained from C-V measurements are valid under VDS bias. The universal optimum 

gate voltage - pristine 2DEG density relationship for standard heterostructure (SC) is given by 

the following , where , is the active 2DEG density in the part of the channel 

controlled by the gate bias, ,  is the effective gate capacitance,  is the initial 2DEG 

density, and e is the electron charge. Figure 6.6 displays  for standard structures (solid line) 

with  = 1 × 1013 cm−2 and  = 3.8 × 10−7 F cm−2. By using the expression for  and  as 

fitting parameter to fit points CC1 and CC2 taken  = 3.8 × 10−7 F cm−2, we get  = 1.15 × 

1013 cm−2. It means optimal gate bias for CC structures occurs at higher active 2DEG density 

(1.15 × 1013 cm−2 ) compared with that of SC (1 × 1013 cm−2 ). Namely, CC structures shift 

optimal gate bias closer to VGS=0 V for the same 2DEG density. That means, CC structures 

possess 2DEG density profile for which more carriers take part of the plasmon-hot phonon 

resonance. Clearly, optimal gate bias points for DC1 and DC2 lay on the standard HFET’s 

universal relation curve. This is consistent with the fact that these structures do not widen the 

2DEG profile substantially (DC1) or its profile concentrates a good deal of carrier above 1019 

cm-3 level (DC2). On the contrary, CC structures separate from standard universal relation 

curve to higher 2DEG at constant VGS or similarly, lower absolute values of VGS at constant 

2DEG. The latter is exemplified by comparing DC1 and CC2 in the case of constant VGS and 

comparing DC2 and CC1 in the case of constant 2DEG density (see Figure 6.6). In both cases 

CC structures successfully shift the optimal gate bias point to higher active 2DEG densities. 

The most interesting of the cases is when the CC structure a constant VGS shifts active 2DEG 

density to higher levels. And therefore, higher power working conditions. Additionally, a 

more efficient use of the structure is attained. The key point is that CC structures widen the 

2DEG profile, reshaping it in such a way the channel needs to be depleted less than in the 

case of DC ones to achieve plasmon-hot phonon resonance. Of course, It is desirable to reach 
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resonance conditions at VGS = 0V, case in which HFET would delivers maximum power 

without the deleterious effect caused by inefficient hot-phonon decay observed in HFET 

standard design and as an extra benefit lower gate leakage currents are expected. 

 

6.3 Estimation of heat dissipation 

From the point of view of energy efficiency and heat removal from the heterostructure it is 

instructive to do an estimation of the hot electron given energy to the lattice. In the following 

analysis we assume that the hot phonon energy is 100% converted into acoustic phonon (LA) 

energy. Hence, LO phonon excess energy is transported to the heat sink. In this section our 

approach to calculate hot phonon dissipated power is a slightly different to the one presented 

in section 3.9. While the Eq. 1(1)111 is theoretically correct the one presented here is more 

practical and instructive one. Assuming hot phonon life time constant, the hot phonon 

dissipated power is proportional to the excess occupancy of the hot phonon modes. Such 

proportionality is described by LO

LO
∗ 	 LO

∗ 	where LO
∗  its effective lifetime, LO

∗ 	is 

the equivalent occupancy of the LO phonon states. In the case of dominant phonon, here 

because of the electron –LO-phonon interaction and strong phonon effect, a direct 

relationship between noise temperature, Tn, (that can be experimentally measured) and hot 

phonon temperature can be found. Under the condition of dominant electron-LO-phonon 

scattering Tn is just a few per cent higher than the electron temperature, Te [120]–[122]. In a 

2DEG hot electron and hot phonon are under intense interaction. Then at a high density of 

electrons, the hot phonon temperature, TLO, is just few per cent lower than the hot phonon 

temperature [113], [120]. As a result, in GaN based channel with high 2DEG density we have 

Tn Te TLO. Thus, LO
∗ , can be estimated, after Bose-Einstein distribution with TLO Te 

assumed, as 
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d

LO

LO
∗ LO

Tn
LO
TL

  
(3) 

 

where LO	is the energy of the hot electrons emitted phonon, Tn in the noise temperature, TL 

is the ambient temperature, and , is the Boltzmann constant.  

Correctness of Eq. (3) was checked by Monte Carlo simulation [123], [124]. Our estimation 

of power dissipation is focus in dual channel (In0.82Al18N/AlN/Al0.1Ga0.9N /GaN) which is 

contrasted with its single channel counterpart (In0.82Al18N/AlN /GaN). From experimental 

data displayed in Figure 6.8 a) we obtain the hot electron temperature for a fix resonance 

2DEG density, here we chose 1.15 10 cm . We found hot electron temperature of 

350K and 2300K for dual a single channel, respectively. Then we these value of 

temperatures we enter in Figure 6.8 b) as indicated by arrows. Doing so, we get for both cases 

constant hot phonon lifetime of 60fs. Then inserting phonon lifetime and temperature in 

the Eq. (3) we have power dissipation per electron of 410nW/e and 3.8nW/e for single and 

dual channel respectively. It means that the single channel dissipates 108 times more 

power per electron than the dual channel does before to achieve optimal work conditions. 

Two order of magnitude in the dissipate power is a remarkable difference. 

To contrast latter result, we found phonon dissipated power from Figure 6.8 c) in which 

dissipated power and excess noise temperature are experimentally and directly correlated.  

A dissipated power of 100nW/e and 0.25nW/e are found for dual and single channel with a 

power ratio of 400. Once again dissipated power in single channel is two order of magnitude 

higher compared with dual channel. The difference in absolute values might be due to 

experimental, extrapolation and calculation errors. In concrete, we have that electron 

dissipated power is two order of magnitude higher in a single channel than in dual channel for 

a 2DEG density of 1.15 10 cm . A reduction of hot electron dissipated power is 

desirable especially at high current level when a large total amount of heat is expected to be 
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dissipated by the device compromising not only electron transport performance but also 

device reliability. 

 

 
 
 
 
  

Figure 6.8 2DEG density at resonance conditions in a dual channel heterostructure. a)
dependence of resonance 2DEG on hot-electron temperature: single channel (start), and 
dual channel (diamonds) [66]. b) hot phonon lifetime as a function of the excess noise 
temperature in the single channel (squares) and in the dual channel (circles) [7]. In a) and 
b) curves guide the eye. c) Solid lines indicate power dissipated by hot phonons at a
number of phonon temperature. Symbols and curve display experimental electron
temperature as a function of supplied power. Intersection of the curves gives hot phonon 
temperature for a given hot electron temperature [119]. 
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Chapter 7. Conclusions 

The concept of hot electron, hot phonon, plasmon and the interaction among them was 

presented. Plasmon-hot phonon resonance model under which phonon fast decay is observed 

was introduced. A logical path for the understanding of electron power dissipation by 

emission of hot phonon under high electric field was delineated. 

The fact that the resonance depend on the carrier density profile open the door to imaginative 

heterostructure designs such as the ones show here, dual- and coupled-channel 

heterostructures. As discussed in the section dealing with heterostructure simulations 5.2, dual 

channel is attractive design from the point of view of 2DEG density profile widening and 

coupled channel design from the point of view of transport properties as assessed from 

experimental results. However, under inadequate design parameters i.e. layer thicknesses and 

compositions, either both dual and channel heterostructures may behave as a single channel 

heterostructure from the point of view of the 2DEG profile widening.  

Capacitance –voltage profile confirm 2DEG density widening in either both dual and coupled 

channel heterostructures. However, in the case of our dual channel heterostructures widening 

is not very notorious, fact that is reflected in the bias point for the resonance condition. 

Single channel heterostructure concentrate carrier profile shifting resonance point to lower 

carrier concentrations, delivering higher power under non optimum working conditions 

therefore under high electron power dissipation conditions. The 2DEG in dual channel 

heterostructure is subject to alloy scattering which is not desirable, especially, at low electric 

fields. At high electric field it was observed that carrier experience real transfer space (RTS) 

effect which in principle might look like something negative. Nevertheless, at high electric 

field the 2DEG profile widens toward the GaN part of the channel where better transport 

conditions are expected. Nonetheless, we lose channel confinement in consequence control of 
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the channel. Also from simulations and from experimental data (in the case of DC) it is 

observed a single channel performance like if the layer thickness and compositions are not the 

adequate and all potential advantages of the multiple channel heterostructures are lost. On the 

other hand, in coupled channel heterostructures carrier confinement is best but the carrier 

profile is not as uniform as it is in dual channels. In reality this structure exhibit two channel 

in parallel in which carrier distribution should be balanced in order to optimize the widening 

of the 2DEG density profile. It was demonstrated that in couple channel resonance condition 

can be effectively shift toward higher resonance 2DEG.  

Dual and coupled channels successfully widen the 2DEG density profile. However, because 

of a reduction of the carrier confinement the control of the channel is moderate in the case of 

dual channel heterostructures. On the other hand, in coupled channel heterostructures carrier 

confinement is better providing a better control of the channel. Furthermore, unlike in a dual 

channel heterostructure, alloy scattering does not affect carrier transport properties, resulting 

in a higher cut-off frequency. It was found that coupled channel heterostructure successfully 

reaches resonance conditions at a 2DEG density 23% higher than that in single channel 

heterostructure.  

Calculation based on conventional thermal model show that separation layer (AlN) and 

AlGaN layer (channel) reduce thermal conduction for top channel in just 2%. Therefore, we 

can say that in all cases the thermal conductance of the heterostructures is comparable and it 

is limited mainly by the GaN thermal conductance of the buffer layer and not by the 

multichannel heterostructure design. Simple calculation based on the assumption that the hot 

electron dissipated power is fully converted into hot phonon power and the later converted 

only into acoustic phonon power (we assume that the TO mode shared energy is negligible), 

the power dissipated by an electron in a single channel heterostructure (~400nW/e) is 100 
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times higher than the power dissipated per electron in a dual channel heterostructure 

(~4nW/e) for the same 2DEG density ~1.15 10 cm . Similar calculations for a carrier 

density of ~1.4 10 cm  result in a ratio of 50. Promising ratios still need to be proven in 

HFET where the electric field in the channel under working condition is not uniform and heat 

up the 2DEG changing the 2DEG density profile. 
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Chapter 8. Future work 

In order to evaluate if such mentioned electron dissipated power ratio keep in HFET at high 

power working conditions, the channel temperature need to be measured, task which is not 

trivial. So, methods to estimate the channel temperature need to be applied. Such as methods 

are based on many considerations and many measurements need to be taken before to arrive 

to some useful result. Instead, a convenient qualitative approach as the following can be 

implemented.  

The main idea is to evaluate the temperature ramping of a well-defined and isolated piece of 

chip (see Figure 8.2). It could a block of our fabrication process. A block consists of 26 

HFETs distributed in an array of 4 columns by 7 rows with a total area of 3 3	mm . All 

devices of the block should be connected in order to avoid excessive temperature gradient. By 

applying power the temperature of the piece of chip will increase reaching a steady state. 

 

 

 

 

 

 

 

 

Figure 8.1 HFET design block 3 3	mm2. 
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It is this temperature at steady state we should keep track of. Assuming, dissipated heat due to 

the ohmic contacts is the same in single, dual, and couple channel HFETs the difference in 

final temperatures for the same drain current level should be owing to the hot electro 

dissipated power. If we set the drain current level at the one at which plasmon-hot phonon 

resonance occurs in dual- or coupled channel, the temperature of the single channel-chip 

should be higher than the one for dual- or coupled channel chip. 

Two feasible methods to measure the chip temperature are: thermocouple and infrared gun. 

The thermocouple compared with the piece of chip should smaller in size. And it should be 

mechanically attached to the chip. On the other hand, infrared gun need to be well aligned 

with the chip and have enough resolution to detect small variations in temperature. 

Other option is to evaluate the temperature on HFET capable to handle higher power levels 

for instance Finger HFET design such as the one shown in Figure 8.3 or versions with 10 or 

more fingers. Such design might dissipate enough heat to detect the temperature variations 

Figure 8.2 Chip bonded to a socket.Wires suspend the chip.
With this arrangenemt heat transfer from the chip to the
surroundings is minimized. 
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and under real working condition the effect of hot phonon dissipated power could be 

evaluated by measuring the temperature increment of the isolated piece of substrate (chip).  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 8.3 Multi-Finger HFET design for power application. The design 
consists of 4 fingers. 
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APPENDIX A 

Debye Length  
 
Debye length, , is a characteristic length for semiconductors and is given by   
 

T
, 

 
where  is the vacuum dielectric constant,  the relative dielectric constant of the 

semiconductor,  the Boltzmann constant, T the absolute temperature,  , the elemental 

electric charge and the charge density. Debye length gives an idea of the limit of the 

potential change in response to an abrupt change in the doping profile. Figure A1 exhibits the 

Debye length characteristic for GaN as a function of carrier density, N. For carrier densities ≈ 

1E20 cm-3, what is expected for the peak of a 2DEG profile in a GaN-based HFET, Debye 

length is in the order of few Åmstrongs.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

A1 Debye length in GaN at room temperature as a function of the carrier
(electrons) density, N. 
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APPENDIX B 

Photolithography 
 
 
Photolithography Process for MESA etching 

SPR3012 

1. Cleaning  Acetone/methanol (under ultrasound)/ DI water 
2. Spin Coating  1000rpm/3 sec, 3000rpm/30sec, 6000rpm/3 sec 
3. Softbake  80 sec  @ 100oC 
4. Exposure  2.38min @ 6.5 W/cm2  (90mJ/cm2 / i-Line ) 
5. Postbake  80 sec    @ 110oC 
6. Development  60 sec - MF CD-26 @ RT, DI water rinse/1min, N2 blow dry 

 

SPR955 0.9µm 

1. Cleaning  Acetone/methanol (under ultrasound)/ DI water 
2. Spin Coating  1000rpm/3 sec, 3000rpm/30sec, 6000rpm/3 sec 
3. Softbake  140 sec  @ 100oC 
4. Exposure  2.38min @ 6.5 W/cm2  (165mJ/cm2 / i-Line ) 
5. Postbake  80 sec    @ 110oC 
6. Development  60 sec - MF CD-26 @ RT, DI water rinse/1min, N2 blow dry 

 

Photolithography Process for Metal contact deposition 

SPR955 0.9µm 

1. Cleaning  Acetone/methanol (under ultrasound)/ DI water 
2. Spin Coating  1000rpm/3 sec, 3000rpm/90sec, 6000rpm/3 sec 
3. Soak in Developer 60 sec - MF CD-26 @ RT, DI rinse 1min, N2 blow dry 
4. Exposure  2.38min - 6.5 W/cm2 (to remove sample edges) 
5. Softbake  140 sec @ 70oC 
6. Exposure  2.38min - 6.5 W/cm2  (165mJ/cm2 / i-Line ) 
7. Postbake  80 sec @ 110oC 
8. Development   11 sec - MF CD-26 @ RT, DI water rinse/1min, N2 blow dry 
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APPENDIX C 

 
Atlas – SILVACO  -  Setting to simulate a single channel GaN-HFET 
 
#=================================================================# 
#     GaN HFET simulation 
# 
#      AlN/GaN/AlGaN/GaN - Single Channel HFET 
# 
#     By Romualdo Alejandro Ferreyra    January 2014 
# 
#=================================================================# 
# Start 
#____________________________ 
go atlas  
# Constants definition 
#____________________________ 
set GateLength = 90 
# Structute Specification 
#=================================================================# 
# mesh definition 
#___________________ 
mesh width=$GateLength 
# x plane meshing 
x.m l=0.0  s=0.25 
x.m l=0.5  s=0.125 
x.m l=1.5  s=0.125 
x.m l=2.5  s=0.125 
x.m l=4.5 s=0.25 
x.m l=5    s=0.25 
# y plane meshing 
y.m l=0         s=0.249 
y.m l=0.498  s=0.0001 
y.m l=0.499  s=0.0001 
y.m l=0.5      s=0.0001 
y.m l=0.520  s=0.00001 
y.m l=0.521  s=0.00002 
y.m l=0.6      s=0.005 
y.m l=0.7      s=0.1 
y.m l=1.0      s=0.2 
y.m l=2.0      s=0.5 
y.m l=3.5    s=0.05 
y.m l=3.850 s=1 
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# Regions definition 
#_______________________ 
region num=1 x.min=0 x.max=5 y.min=0.0   y.max=0.498  mat=  nitride insulator 
region num=2 x.min=0 x.max=5 y.min=0.498 y.max=0.499  mat= GaN                 
polar calc.strain polar.scale=1 
region num=3 x.min=0 x.max=5 y.min=0.499 y.max=0.5   mat= GaN                 
polar calc.strain polar.scale=1 
region num=4 x.min=0 x.max=5 y.min=0.5   y.max=0.520  mat= AlGaN x.comp=0.3   
polar calc.strain polar.scale=1 
region num=5 x.min=0 x.max=5 y.min=0.520 y.max=0.521  mat= AlN         
polar calc.strain polar.scale=1 
region num=6 x.min=0 x.max=5 y.min=0.521 y.max=3.5   mat= GaN                
polar calc.strain polar.scale=1 
region num=7 x.min=0 x.max=5 y.min=3.5   y.max=3.85   mat= AlN  substrate     
polar calc.strain polar.scale=1 
# Electrodes definition 
#_____________________________ 
elec num=1 name=source x.min=0   x.max=0.5 y.min=0.498  y.max=0.6 
elec num=2 name=drain   x.min=4.5 x.max=5   y.min=0.498  y.max=0.6 
elec num=3 name=gate    x.min=1.5 x.max=2.5 y.min=0        y.max=0.498  
elec num=4 substrate 
# Material Models Specifications 
#=================================================================# 
# Models definition 
#____________________________ 
model n.schrodinger p.schrodinger fixed.fermi 
# Contact definitions 
#____________________________ 
contact name=gate  work=5 
contact name=source work=3.93 
contact name=drain  work=3.93 
# Numerical Method Selection 
#=================================================================# 
# Method definition 
#____________________________ 
method carriers=0 
# Solution Specification 
#=================================================================# 
# Outputs 
#____________________________ 
output con.band val.band charge  polar.charge band.par 
# Solve 
#____________________________ 
solve init 
save outf=GaN_HFET_SC.str 
# Stop 
#____________________________ 
quit 
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