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Staphyloccocal nuclease domain containing protein 1 (SND1) is identified as an oncogene in 

multiple cancers, including hepatocellular carcinoma (HCC). SND1 regulates gene expression at 

transcriptional as well as post-transcriptional level and mediates molecular pathways that 

culminate into carcinogenesis. SND1 is a component of RNA-induced silencing complex (RISC) 

and functions as a nuclease for RNAi-mediated mRNA degradation. On the other hand SND1 



  

 
 

also binds to specific mRNAs, increasing their stability and hence expression. The aim of the 

present study is to identify mRNAs to which SND1 binds and modulates them either by 

degradation or increasing stability which might facilitate promotion of HCC by SND1. We 

performed RNA immunoprecipitation followed by RNA sequencing (RIP-Seq) using anti-SND1 

antibody and human HCC cell line QGY-7703. More than 350 mRNAs were identified to be 

interacting with SND1, of which Protein tyrosine phosphatase non-receptor 23 (PTPN23) was of 

particular interest, since PTPN23 has been identified to be a tumor suppressor and its role in 

HCC has not been studied. We document that SND1 can bind to PTPN23 mRNA and induce its 

degradation. There is an inverse correlation between SND1 and PTPN23 levels in human HCC 

cell lines and PTPN23 level is downregulated in HCC. Our study thus identifies a novel 

mechanism by which SND1 promotes hepatocarcinogenesis and identifies PTPN23 as a potential 

tumor suppressor in HCC. Further studies need to be performed to explore the relationship of 

these two molecules in in vivo models and to develop PTPN23 overexpression as a potential 

therapeutic approach for HCC.  
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CHAPTER 1 

 

Role of Staphylococcal Nuclease Domain Protein 1 (SND1) in cancer 
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 Cancer is a highly aggressive disease characterized by interplay of mutations that 

cause cellular transformation and abnormal cell growth. Over the years, state-of-the-art 

studies have provided great insights into the pathogenesis of this highly complex disease. 

Cancer is now well defined by six hallmarks – sustained proliferative signaling, evasion 

of growth suppressors, invasion and metastasis, replicative immortality, angiogenesis and 

resistance to apoptosis (1). Change in expression patterns of any gene controlling these 

pathways initiate tumorigenesis that has the potential of malignancy. With increasing 

number of mutations being identified each day, that play a role in cancer development, 

molecular understanding of this disease gets more complicated. Further adding to the 

complexity is the effect of environmental factors in disease pathogenesis at each stage. 

Mutations arising in cells are mainly governed by genetic predisposition to changes in 

DNA structure, stability and expression, epigenetic changes and environmental factors 

(2). Epigenetic variations broadly include methylation pattern, microRNA expression 

disorders and chromatin organization (2). Diversity in cancer is not just restricted to the 

factors leading to cancer development, but is also observed within tumor 

microenvironment – broadly classified as inter-tumor heterogeneity and intra-tumor 

heterogeneity (2). With the advent of science, the molecular changes, which are 

responsible for such alterations are being identified as potential therapeutic targets.  

Hepatocellular carcinoma, neoplasm arising in primary hepatocytes of liver is a 

highly aggressive primary liver cancer. It has a very high mortality and morbidity rate, 

ranking 3rd in cancer related deaths. Liver plays a primary role in metabolism and hence 

HCC is closely associated to metabolic pathways, especially lipid metabolism. It is well 



 

3 
  

known that majority of the HCC incidences are secondary to cirrhotic liver. A general 

understanding about HCC development is aptly described in following figure (3).  
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Inflammation has been long known to precede carcinogenesis, and is now considered one 

of the critical hallmarks of cancer (1).  Viral infection, microbial invasion by breach in 

liver-gut barrier, alcohol abuse or nonalcoholic steatohepatitis (NASH) are most 

commonly observed molecular events that trigger inflammatory response, leading to liver 

cirrhosis which culminates into HCC.  Necroinflammation and telomere shortening have 

also been reported to cause cell senescense and associated with onset of tumorigenesis, 

respectively (3). NF-κB- STAT3 inflammatory network is critical for progression of 

chronic inflammation of hepatic tissue to HCC (3). Proinflammaory molecules such as 

IL6 cause increased activation of STAT3 signaling, subsequently leading to cellular 

transformation (3). Relevance of SND1 in this network and eventual development of 

HCC, is discussed in detail later. Though significance of chronic inflammation with HCC 

development and progression has been well established by multiple studies, detailed 

molecular understanding of this vital association is not reported.  

 Staphylococcal nuclease and tudor domain containing 1 (SND1) is known to be 

involved in transcriptional activation, RNA splicing, editing and stability, and RNAi 

function (4-11). These processes are relevant for regulation of gene expression. SND1 is 

predicted to manifest a dynamic role modulating multiple molecular networks that 

control gene expression. SND1 has been proven to play a crucial role in transcriptional 

regulation of several genes important for tumorigenesis (6, 12-14). Structural analysis has 

confirmed that the protein functions include nucleic acid interaction along with protein – 

protein interactions (4). Several studies have illustrated the significant association of 

SND1 with different types of cancers, including breast, prostate, colorectal and liver 

cancer. It is overexpressed in these cancers and known to promote manifestation of 
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aforementioned hallmarks of carcinogenesis (15). The present review provides a 

comprehensive description of the functional aspects of SND1 that are relevant to cancer 

development and progression. 

SND1 protein structure  

Human SND1 gene was assigned to chromosome 7q31.3 band location employing 

restriction fragment and fluorescence in-situ hybridization (FISH) analyses (16). 

Genomic gain in 7q, especially 7q31, has been demonstrated in prostate, renal and 

colorectal carcinoma (17-20). SND1 is overexpressed in prostate and colorectal 

carcinoma and genomic amplification might be an underlying mechanism for this 

overexpression (21-23). 

Human SND1 is a 910 a.a. containing 100kDa protein with highly conserved 

domains, observed as low as Caenorhabditis Elegans in evolution. SND1 comprises of 

tandem repeats of four nuclease (SN) domains and a fifth domain containing fusion of 

Tudor and partial nuclease domains (TSN) (Fig. 1.2). Both, SN domain as well as Tudor 

domains have been reported to be involved in protein – protein interactions. The nuclease 

domains share 20% - 30% sequence homology amongst each other.(4) These domains 

have been well characterized and found to be structurally related to staphylococcal 

nuclease (SN) domains (4). These are thermo nucleases that hydrolyze DNA and RNA in 

a calcium dependent manner (4). However, hydrophobic cluster analysis shows that the 

SN domains of SND1 lack the specific amino acid residues involved in calcium 

dependent catalytic activity (4). SN domains are included in the oligonucleotide/ 

oligosaccharide binding (OB) fold superfamily, which comprises of a large number of 

proteins, involved in nucleic acid binding (4). OB fold proteins are critical for DNA 
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replication, DNA recombination, DNA repair, telomeric maintenance and cold shock 

response (24). OB fold domains range from 70-150 a.a in length and comprise of variable 

loops between conserved secondary domains (24). Other than Staphylococcal Nucleases, 

OB fold is also observed in bacterial enterotoxins, nucleic acid binding proteins and 

inorganic pyrophosphates (24). Many of the proteins in OB fold family, lack catalytic 

activity but carry out several other functions, such as transcriptional activation or 

repression, chromatin modification and DNA repair (4, 24). Tudor domains are highly 

conserved domains across eukaryotic species and studied in great detail employing 

Drosophila model system (25). Tudor domain containing proteins are involved in DNA 

interactions, specifically in epigenetic regulation, gene expression as well as snRNP, 

miRNA and piRNA biogenesis (25). The presence of these versatile SN and Tudor 

domains confer upon SND1 its diverse multifunctional properties. Below is a 

representation of SND1 protein structure. 
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Regulation of SND1 expression 

The isolated 5’- flanking regulatory region of human SND1 gene spans more than 

3.8 kb, including transcription start site and translation initiation codon (26). 

Bioinformatics analysis revealed presence of putative binding motifs for NF-κB, Sp1 and 

NF-Y transcription factors (26). The core promoter region does not contain TATA box, 

but is rich in CpG islands to form pre-initiation transcription complex (26). The lack of a 

TATA box, an initiator sequence for transcription is complimented by presence of 

CCAAT box in reverse orientation i.e. ATTGG at position -61 and -28 (26). The CCAAT 

box and a GC box, at -48, act as positive regulatory elements for SND1 expression (26). 

Inverted CCAAT sequences are often binding targets for NF-Y transcription factor (27). 

Luciferase assays with promoter deletion mutants show that -274 to -112, containing 

potential binding sites for NF-κB and Sp1 are crucial for SND1 expression (26). 

Interaction of NF-κB, Sp1 and NF-Y with the SND1 promoter was also detected by 

chromatin immnunoprecipitation (26). Mutation in GC box or CCAAT box reduced 

SND1 expression by 55-75%. As expected, TNFα treatment induced NF-κB mediated 

SND1 transcription, thereby suggesting the functional role of NF-κB in SND1 

transcription regulation (26). The fact that NF-κB regulates SND1 transcription 

underlines the significance of this interaction in inflammation. Indeed, under pro-

inflammatory conditions, there is an induction in NF-κB levels and activity, which in turn 

upregulates SND1 expression. Considering the supporting literature on pro-oncogenic 

properties of SND1, it can be speculated that Nf-κB mediated upregulation of SND1 is 

instrumental in progression from inflammation to carcinogenesis. 
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Promoter regions of human, mice and rat SND1 gene show about 80-85% 

sequence homology (26). Similar findings have been observed in promoter analysis of rat 

homologue of SND1, p102 (27). Putative binding sites for CCAAT/ enhancer binding 

protein (C/EBP), STATs and upstream stimulatory factor (USF) were identified (27). NF-

Y binds at the CCAAT box (-370, -366) whereas the GC rich regions were identified as 

putative Sp1 binding sites (27). DNA elements that matched the consensus binding 

sequences for liver specific transcription factors, such as HNF-4 were also found (27), 

suggesting that SND1 might be differentially expressed in tissue specific manner. 

Fashe et. al investigated cellular localization and tissue specific expression of 

SND1 in mice. With an exception of muscle tissues, SND1 is ubiquitously expressed in 

mice and the expression patterns are mostly consistent with that reported in humans (28). 

SND1 is strikingly upregulated in active secretory organs including pancreas, liver and 

mammary glands (28). Different studies have reported upregulated levels of SND1 in 

lipid droplets of milk secreted by mammary epithelial cells of mouse and cow (28, 29). 

SND1 levels were higher in exocrine pancreatic cells as compared to endocrine cells (28). 

SND1 is lower than in hepatocytes, however, it is more highly expressed in sinusoid 

endothelial cells (28). Actively proliferating cells such as crypts of Lieberkuhn and basal 

keratinocytes of skin and hair follicle show high SND1 protein levels compared to more 

differentiated or terminally differentiated cells in the same tissue (28). SND1 protein 

levels are much higher in spermatogonial cells than in spermatocytes and Sertoli cells 

(28). There is no protein detected in terminally differentiated spermatids and mature 

spermatozoa (28). In ovary, SND1 levels are high in follicular cells compared to that in 

stromal cells. There is no SND1 protein in oocytes (28). SND1 protein levels are 
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moderately expressed in human brain tissue, in neuronal as well as glial cells. In mice 

kidney, SND1 is comparatively more highly expressed in endothelial cells of Bowman’s 

capsule than podocytes and mesangial cells (28). It is also expressed in bronchiolar 

epithelium, alveolar cells and pneumocytes of lung (28). Within gastrointestinal system, 

SND1 is expressed in ileum, deuodenum and colon. Lower SND1 levels were observed 

in more differentiated cells like villi and Paneth cells in ileum and absorptive cells of 

colon (28). Overall, SND1 is overexpressed in rapidly proliferating or precursor cells and 

downregulated in terminally differentiated cells. SND1 is upregulated in T-cells and co-

localizes with CD3, as observed in lymphoid organs (28). Also, SND1 is not expressed in 

macrophages, in lymphoid organs as well as tissue residing macrophages like Kuppfer’s 

cells in liver and alveolar macropahges in lungs (28). Further, SND1 levels in the red 

pulp of spleen are higher than that in white pulp (28). Differential expression of SND1 in 

T lymphocytes and macropahges suggests a potential role of SND1 in regulating 

immunity (28). 

Functions of SND1: regulation of transcription 

SND1, also called TudorSN or p100, was first identified as a transcriptional co-

activator in an attempt to identify proteins interacting with Epstein Barr Nuclear Antigen 

(30). EBNA2 specifically activates transcription of genes that mediate B lymphocyte 

transformation (30). Along with known interacting factors such as TFIIB, TFIIH and 

TAF40, SND1 specifically interacts with EBNA2 acidic domain (30). This interaction is 

mediated by SND1 - TFIIE interaction such that SND1 acts as an adapter protein between 

EBNA2 and the transcriptional machinery (30). Pim kinases, found to be up regulated 

during Epstein Barr Virus infection, also interact with SND1 and mediate cellular 
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transformation by cooperating to enhance c-Myb activity (10).  Pim-1 has been shown to 

phosphorylate SND1 and forms a stable complex, leading to an induction in c-Myb 

activity (10). Ectopic expression of Ras and Pim-1 also induced Myb responsive genes, 

since c-myb is a downstream target in this signaling cascade (10). This research study 

thus revealed that SND1 is a vital link in Ras and Pim-1 mediated induction of c-Myb 

(10). Lack of SND1 or dominant negative alleles of SND1 failed to cause an induction in 

c-Myb activity (10). c-Myb is linked to proliferation and differentiation, and also known 

to mediate cellular transformation. Hence, role of SND1 in regulating c-Myb expression 

via Ras or Pim-1 is significant to understand its functional impact in oncogenesis. 

Another important class of transcription factors that are known to interact and 

cooperate with SND1 is Signal Transducers and Activator of Transcription i.e. STATs (6, 

31-33). STAT proteins are sequestered to Janus kinases (JAK), which upon stimulation 

by cytokines like IFN-γ, undergo phosphorylation (31). Phosphorylation of STAT 

proteins and subsequent dimerization leads to nuclear localization where it activates 

transcription of target genes (31). Constitutive activation of JAK-STAT pathway has 

been implicated in many cancers (31). There are seven STAT proteins, which share 

structural and functional homology. Of these, SND1 is known to act as a transcriptional 

co-activator for STAT5 and STAT6. STAT5 co-immunoprecipitates with SND1, 

confirming the protein –protein interaction, but does not affect the phosphorylation status 

of STAT5 (32). Interaction with STAT5 is mediated via SN as well as Tudor domains of 

SND1 whereas for STAT6 – SND1 interaction involves only SN domains. SND1 acts as 

an adapter molecule, allowing functional bridging between CREB binding protein (CBP) 

and STAT6 (33). It interacts with D3-D4 domain of CBP and STAT6 transactivation 
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domain (TAD). Histone Acetylase Activity of CBP is stimulated by SND1, thereby 

allowing transcriptional activation (33). 

A recent study in breast cancer model illustrated that SND1 significantly interacts 

with promoter regions of several genes in TGFβ signaling pathway, including Smad1-4 

and TGFβ (14). We have shown that SND1 up regulation is also correlated with TGFβ 

signaling in HCC, as described later (34). 

 

Post-transcriptional regulation of gene expression 

Regulation of RNA-induced silencing complex (RISC) activity 

Post-transcriptional regulation of gene expression can be mediated by several 

mechanisms including nucleocytoplasmic localization, mRNA stability, mRNA 

processing and translation. SND1 functions as a nuclease in RNA-induced silencing 

complex (RISC) that plays a significant role in modulation of gene expression at a post-

transcriptional level (35). Our studies have shown that Astrocyte elevated gene-1 (AEG-

1), an important oncogene, in association with SND1 and other proteins, forms a stable 

RISC complex (8). RISC incorporates one strand of a small interfering RNA (siRNA) or 

microRNA (miRNA) and uses the siRNA or miRNA as a template for recognizing 

complementary mRNA. Argonaute proteins are activated in RISC when a complementary 

mRNA is identified which then cleaves the mRNA. SND1 functions as a nuclease in 

RISC along with the Argonaute proteins while AEG-1 functions as a scaffold protein for 

proper assembly of this complex. Both SND1 and AEG-1 are overexpressed in multiple 

cancers and together they facilitate functions of oncogenic miRNAs (onco-miRNA). 
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Indeed RISC activity in cancer cells was found to be higher than that in normal cells (8). 

The increased activity of onco-miRNAs leads to increased suppression of their target 

tumor suppressor genes. In HCC cells it was documented that overexpression of AEG-1 

or SND1 resulted in decreased expression of several tumor suppressor genes that are 

targets of oncomiRNAs, e.g., PTEN which is a target of miR-221 and miR-21; CDKN1C 

(p57), target of miR-221; CDKN1A (p21), target of miR-106b; SPRY2, target of miR-21 

and TGFBR2, target of miR-93 (8). The reverse finding was observed upon knockdown 

of SND1 or AEG-1 (8). These findings suggest that increased RISC activity conferred by 

SND1 and AEG-1 might contribute to the carcinogenic process (8). 

In pancreatic cancer, synaptogamin-11 interacts with RISC via SND1 binding 

(36). It is hypothesized that this protein is the missing link between membrane trafficking 

and miRNAmediated gene regulation (36). Synthesis of mature mir17-92 cluster is also 

inhibited by SND1 protein, thereby affecting several downstream target genes (37). 

Regulation of mRNA stability 

SND1 interaction with mRNA transcript can be independent of the RISC. Studies 

show that SND1 interacts with 3’UTR of angiotensin II type 1 receptor (AT1R), a G 

protein coupled receptor mediating the action of angiotensin (9). Here, SND1 increases 

mRNA stability and translational efficiency by increasing AT1R mRNA half-life, 

resulting in elevated protein levels (9). A recent finding shows that SND1 and AT1R 

mRNA colocalize in stress granules followed by oxidative stress and SND1 is required 

for efficient protein – RNA aggregation (38). These findings imply that SND1 increases 

stability of specific mRNAs, crucial for cellular stress response (38). Using HCC cell 

lines, we have demonstrated that SND1-mediated increased activity of AT1R activates 
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TGFβ signaling cascade thereby promoting epithelial-mesenchymal transition (EMT) and 

increase in migration and invasion (34). Studies have also established interaction of 

SND1 and Dengue virus 3’UTR, leading to increased viral replication (39). It needs to be 

studied whether SND1 has similar role in promoting replication of Hepatitis B or C 

viruses (HBV or HCV), the most common cause of HCC.  

Regulation of mRNA splicing 

Splicing is an important post transcriptional event, involved in excluding the non-

coding intronic regions of mRNA transcript and thereby allowing translation of exonic 

regions into a functional polypeptide (40). A large macromolecular complex, driven by 

several proteins is required for this processing. Splicing is tightly regulated and 

functionally coupled with transcription (40). Because differential regulation of genes 

influencing cell growth and proliferation are critical for carcinogenesis, splicing is 

speculated to play a vital role in establishing pathogenesis (41). Spliceosome complex 

comprises of five major small ribonucleoprotein – U1, U2, U4/U6 and U5 along with 

several small non-snRNPs (42). It has been shown that SND1 interacts with U5 

component of spliceosome and other non-snRNPs (42). Immunoprecipitation studies with 

GST-TSN fusion protein (lacking SN domains) and GST-SN fusion protein (lacking TSN 

domain) demonstrated that this interaction is specifically via TSN domain (42). In vitro, 

exogenously added SND1 accelerated the kinetics of spliceosome assembly, detected in 

terms of a ligated mRNA product, in a dose-dependent manner.(42) However, no 

difference was observed in the amount of splicing products with or without SND1 (42). It 

was demonstrated that SND1 improved the efficiency of pre-spliceosomal Complex 

assembly and accelerated the formation of complex B and complex C (42).  
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Alternative splicing, observed in eukaryotes, allows translation of multiple 

polypeptides from the same gene transcript by selection of specific exons to be included 

in the processed mRNA (40). Recent reports have shown that deregulation of alternative 

splicing is associated with cancer development and progression (41). Studies have shown 

SND1 to play a major role in this biological process. SND1 is identified as an interacting 

partner for SAM68, a pro oncogenic RNA binding protein that is up regulated in prostate 

cancer and supports cellular proliferation (40). SAM68 is involved in alternative splicing 

of CD44, specifically favoring inclusion of exon v5 of this gene (40). Inclusion of 

variable exons (v5) in CD44 mRNA is correlated with cancer development in prior 

studies (40). Authors observed that SND1 is a positive regulator of the alternative 

splicing of CD44 via SAM68. Knocking down SND1 inhibited inclusion of upstream 

variable exons (v4, v5 and v7) but that of the downstream variable exons (v8-v10) and 

constitutive exons was not affected (40). These findings suggest that SND1 co-ordinates 

transcriptional and post-transcriptional events for regulation of gene expression. Future 

studies focused on splicing activity of SND1 might provide insights into molecular events 

governing malignancy. 

Regulation of RNA editing 

Adenosine deaminase (ADAR) proteins function in RNA A-to-I editing in which 

it deaminates Adenosine to Inosine which is read as guanosine on an mRNA transcript. 

Such processes regulate protein translation by functionally changing the mRNA sequence 

(11). This post-transcriptional regulation also plays a role in gene expression and miRNA 

processing (11). Interestingly, ADAR protein expression is tightly regulated during 

embryogenesis, it is highest in the oocytes and zygote and diminished in the embryo 
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stages.(11) A strong correlation was observed between ADAR and SND1 levels during 

mouse fertilization.(11) While ADAR marks hyperedited transcripts, SND1 is 

responsible for degradation of hyper-edited mRNA transcripts as well as miRNA 

precursors (11). The data suggests that SND1 and ADAR1 are functionally synchronized 

in A-to-I editing and eliminate most miRNA precursors, progressively from oocyte to 

zygote (11). However, this function is prohibited during embryogenesis. Thus SND1 

plays a crucial role in early stage embryogenesis and cell differentiation (11). Analysis of 

a SND1 knockout mouse will provide insights into the role of SND1 in regulating gene 

expression during developmental stage.  

SND1 and stress response 

SND1 plays a key role in cellular stress response via stress granule formation 

(43). Several environmental stimuli can be stressful for cellular growth. In response to 

such stimuli, cells undergo reprogramming in gene expression that allows cell survival 

(43, 44). Initial studies illustrated that SND1 is a component of the cytoplasmic stress 

granules and SN domain is crucial for this function (43, 44). SND1 interacts with Ras 

GTPase Activating Protein SH3 Domain Binding Protein (G3BP) and Adenosine 

deaminase (ADAR1). While G3BP has been shown to be essential for assembly of stress 

granules(43), ADAR1 has been linked to apoptosis and stress response (44). ADAR1 

levels are also induced by interferon and its deficiency causes defective haematopoesis 

(44). Such studies implicate ADAR1 in cell survival and immune response towards 

stress. SND1 was found to directly interact with ADAR1. These proteins colocalized 

within cytoplasmic stress granules following oxidative stress, heat shock or interferon 

induction (44). Knock down of SND1 prohibited assembly of smaller stress foci into 
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larger granules, emphasizing its role in this cellular function (43). These studies need to 

be extended into in vivo models to confirm the essential role of SND1 to cope with stress 

responses. 

Regulation of cell cycle and cell division 

 SND1 is shown to be an essential protein in the normal programmed cell death, a 

process mediated by caspases (45). SND1 is cleaved by caspase 3 during drug-induced 

apoptosis. A non-cleavable SND1 mutant increased cell viability and knocking down 

SND1 promoted drug-induced apoptosis in HeLa cells (45). Incubation with caspases 

completely blocked RNase activity of SND1 indicating that SND1 enzymatic activity is 

required for maintaining cell viability or protection from apoptosis (45).   

Oncogenic functions of SND1 

Role of SND1 in Hepatocellular Carcinoma (HCC) 

HCC is the primary liver malignancy, characterized by a highly aggressive form 

of cancer. In most cases, HCC develops from a preexisting condition, such as liver 

cirrhosis, nonalcoholic steatohepatitis or viral hepatitis infection (3). It is the fifth most 

common cancer and ranks third in cancer related deaths worldwide (34). Current 

management options include surgical resection, tumor ablation and embolization, though 

there is virtually no cure for this cancer. Molecular approaches such as multikinase 

inhibitor Sorafenib help to moderately increase the survival of HCC patients. To curb the 

increasing mortality rate, there is an urgent need for identification of potential therapeutic 

targets that can be employed for translational applications. 
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Studies demonstrate multiple ways by which SND1 contributes to 

hepatocarcinogenesis. Immunohistochemical analysis has demonstrated that SND1 is 

overexpressed in a high percentage of HCC patients and SND1 levels correlate with HCC 

stages (8). Stable clones of human HCC cells, with either overexpression or knockdown 

of SND1, in nude mice xenograft studies confirmed the positive role of SND1 in 

regulating cell viability and growth (8). Since SND1 is also an integral component of 

RISC complex, we investigated if RISC activity correlated with HCC development. 

Increased RISC activity was observed in HCC cell lines compared to normal hepatocytes, 

which consequently led to increase down regulation of tumor suppressors via RNA 

interference (8). As pointed out earlier, SND1 interacts and co-operates with AEG-1 to 

form RISC along with other known RISC proteins and inhibition of SND1 activity 

diminished AEG-1 activity (8). SND1- AEG-1 interaction was first established in our 

study aimed at identifying interacting partners of known oncogene, AEG-1 (46). Further 

investigation established that increased SND1 protein levels trigger a cascade of 

molecular events that promote invasion, proliferation, migration and angiogenesis (8, 34, 

47). We unraveled a linear pathway in which NF-κB activation by SND1 augments miR-

221 levels (47). As a result of this interaction and increase in miR221, Angiogenin and 

CXCL16 protein expression was upregulated and was observed to promote angiogenesis 

(47). Analysis of global gene expression profiles of SND1 knock down HCC clones 

identified 123 genes drastically down regulated, many of which are in TGFβ signaling 

pathway (34). We documented that increased stabilization of AT1R mRNA by SND1 

activates AT1R downstream signaling, such as activation of ERK1/2, culminating in 

activation of TGFβ signaling pathway. The TGFβ signaling pathway closely regulates 
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EMT (34). Indeed, in vitro analysis demonstrated increased invasion and migration in 

SND1 overexpressing clones and viceversa in SND1 knock down clones (34), and 

expression of EMT marker proteins, such as N-cadherin, Slug and Snail and Vimentin, 

was found to be congruent with our hypothesis (34). A tissue microarray on 50 HCC 

cases showed statistically significant correlation between AT1R and SND1 levels further 

establishing a causative relationship between SND1, AT1R and TGFβ (34).  

Insulin growth factor signaling (IGF) pathways are reported to be deregulated in 

HCC and found to be a cause of the aggressive tumorigenesis. Insulin like growth Factor 

Binding protein 3, a negative regulator of IGF pathway, was reported to be significantly 

over expressed in SND1 knockdown HCC clones (48). Thus SND1 might contribute to 

HCC by inhibiting IGFBP3 and promoting IGF-1 activity (48).  

SND1 promotes invasion and metastasis in breast cancer 

Cancer cells possess the ability to invade circulatory system and establish tumors 

in tissues distant from the primary site of tumorigenesis. Angiogenesis enables them to 

acquire nourishment and growth factors for constitutive proliferation. Metastatic potential 

of a tumor is often a measure of the fatality of the cancer. Metastasis has been long 

known to be a major cause of disease relapse and cancer related deaths. More patients 

succumb to metastatic malignancy than by the primary cancer (49). An efficient 

prognosis and diagnostic tool has not been discovered, in spite of several attempts at 

analyzing differential expression patterns in tumorous tissue.  

iTRAQ based proteomic analysis on breast cancer metastasis model revealed that 

SND1 levels are up regulated in correlation with carcinoma progression (49). This study 
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aimed at studying gene signatures in breast cancer metastasis model. Out of the 197 

proteins differentially regulated in cancerous tissue as compared to normal tissue, only 

those that have not been reported in association with metastasis were shortlisted (49). 

This approach helped identify 10 novel proteins significantly associated with metastasis, 

employing Mass spectrometry and immunohistochemistry. SND1 was one of these 

proteins, deregulated in the breast cancer metastasis model and showed significant 

differential expression in normal and breast cancer tissue (49). Immunohistochemical 

analysis of a tissue microarray showed up regulation of SND1 in majority of the cases 

(49). 

AEG-1, also called Metadherin, is a known oncogene, associated with most 

oncogenic phenotype such as metastasis, invasion, angiogenesis, chemoresistance and 

apoptosis (22). Studies have shown that AEG-1 is associated with poor prognosis in 

breast metastasis patients (22). It is involved in oncogenic signaling pathways such as 

ERK, NF-κB, Ras and Wnt/β-catenin pathway (22). A study aimed at exploring role of 

AEG-1 in breast cancer metastasis, identified SND1 as an AEG-1 interacting protein 

(22). Role of SND1 in metastasis was further emphasized based on the global gene 

expression profiling of SND1 knockdown clones. The list of gene sets globally enriched 

in SND1-expressing control cells versus SND1-KD cells was strikingly dominated by 

those involving genes up-regulated in some component of metastatic or oncogenic 

signaling (22). Genes such as ANGPTL, ID1 and EREG, known to promote specifically 

lung metastasis in breast cancer model, is significantly enriched in this gene set (22). 

Experimental lung metastasis study on nude mice with highly metastatic breast cancer 

cell line, with SND1 knockdown showed dramatic reduction in pulmonary metastatic 
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burden in vivo (22). Though SND1 did not promote invasion, it was found to augment 

chemoresistance to cells (22). SND1-KD cells demonstrated sensitivity towards 

chemotherapeutic drug induced apoptosis. Microarray data from SND1-KD cells showed 

up regulation of KiSS1 gene (22). Reporter assays later confirmed that SND1 directly 

down regulates the expression of KiSS1 gene that is known to suppress metastasis (22). 

Analysis of clinical data set of breast cancer patients with metastasis revealed that SND1 

levels strongly correlated with specifically lung metastasis and metastasis free survival 

(22). Thus, SND1 is established to be a pro-metastasis protein. A recent finding shows 

significance of AEG-1-SND1 interaction in mammary tumorigenesis (50). AEG-1 

knockout cells show reduced tumor initiation and sphere formation in vivo (50). This 

effect can be completely rescued by ectopic expression of AEG-1 in these cells (50). 

However, knocking down SND1 in these clones completely abolished the rescue effect of 

ectopic AEG-1 (50). Knocking down SND1 in AEG-1+/+ cells reduces the sphere 

formation in vitro and tumor formation in vivo, resembling the phenotype of AEG-1-/- 

cells (50). Thus SND1 is essential for pro-oncogenic manifestation of AEG-1 in breast 

cancer (50). 

Early studies have established that SND1 cooperates with c-Myb, a differentiation 

and growth factor for immature hematopoetic stem cells and brings about lymphocyte 

transformation (10). Studies in breast cancer patients show overexpression of c-myb as 

well as SND1 (51). Study aimed at identifying target genes of c-Myb transcription factor 

revealed that SND1 promoter is one the target sites of c-Myb (51). There could be a 

possible positive regulatory mechanism to maintain levels of c-Myb and SND1 that 
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potentially maintains tumorigenesis in breast cancer. Other target genes relevant to 

oncogenesis identified by these authors were JUN, CXCR4 and CCNB1 (51). 

SND1: an efficient diagnostic marker for Prostate cancer and Colorectal cancer 

Studies focused on prostate cancer have identified SND1 as an efficient 

diagnostic marker (21). In a study including 174 prostrate cancer patients, SND1 levels 

could be correlated with histological grade of the tumor (21). SND1 protein levels were 

comparable to alpha-methylacyl-coA racemase (AMACR) protein levels, a currently 

employed marker protein for prostate cancer diagnosis (21). Though there were some 

cases were SND1 and AMACR protein levels differed, there was robust over expression 

of SND1 in tumorigenic tissue (21, 40). It was suggested that multiple protein markers, 

including SND1 and AMACR, should be used for better diagnosis of the disease (21). 

Knocking down SND1 reduces proliferation of prostate cancer cells, demonstrating the 

importance of SND1 in maintaining prostate cancer viability (21). SND1 also promotes 

prostate cancer development by positively regulating CD44 alternative splicing, allowing 

inclusion of variable exon v5 that is known to be pro-oncogenic (40). 

SND1 is also significantly associated with colorectal cancer. A recent genome 

wide analysis of methylation patterns in CRC patients revealed a pool of genes that are 

differentially methylated in cancerous tissue in comparison to adjacent normal tissue 

(52). The study also included tissue from normal, healthy patients with no familial history 

of CRC as a control. CpG site located in SND1 gene was identified with highest 

discriminative accuracy, highlighting role of this protein in oncogenesis (52). Most of the 

hypermethylated CpG sites lied within the SND1 gene regions whereas methylation in 

the promoter region of SND1 was observed to be comparatively lower. SND1, along with 
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other genes, was thus identified as a potential diagnostic candidate gene (52). Significant 

correlation is observed in nodal stage, pathological stage and co-expression of SND1 and 

AEG-1 in colon cancer (53). Immunohistochemical analyses of 196 colon cancer cases 

establish that cytoplasmic expression of AEG-1 and SND1 protein positively correlates 

with tumor grade and cancer progression, but negatively correlates with post-operative 

survival of patients (53). The study suggests potential application of these proteins as 

prognostic markers for colon cancer (53). 

SND1 downregulates Adenomateous Polyposis Coli protein levels by post-

transcriptional modification, without altering the mRNA levels of this gene, as reported 

in colon cancer (23). APC is a tumor suppressor in colon carcinogenesis and also 

associated with maintaining cell polarity and cell-cell adhesion by regulating E-cadherin 

localization (23). Loss of APC protein leads to stabilization and subsequent accumulation 

of β-catenin by preventing its proteasomal degradation with subsequent loss of contact 

inhibition and increased proliferation (23). These findings suggested that SND1 might be 

involved in early stage colon carcinogenesis. However, whether miRNAs or RISC is 

involved in SND1-mediated downregulation of APC protein remains to be studied.  

SND1 in malignant glioma.  

Malignant gliomas are the most frequent malignant brain tumor in adults (64). Current 

multi-modality therapies include surgery, radiation and chemotherapy, nonetheless the 

prognosis of malignant glioma remains extremely poor (65). The rapid growth and highly 

invasive nature of malignant glioma, favors its infiltration into surrounding normal brain 

parenchyma and facilitates recurrence after therapy (66). This aggressive disease 

progression necessitates further understanding of molecular mechanism involved in 
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glioma growth and invasion that ultimately will lead to identification of novel therapeutic 

targets of translational relevance. Our recent studies suggest that SND1 may provide a 

novel target for malignant glioma treatment (20). In this study we found higher SND1 

mRNA and protein in human malignant glioma tissue as compared to normal brain. The 

Cancer Genome Atlas (TCGA) data showed a similar trend of high SND1 expression in 

human astrocytoma and glioblastoma samples as compared to normal brain. Additionally 

Rembrandt (Repository for Molecular Brain Neoplasia) data supports the prognostic 

significance of SND1 expression in which patients with intermediate levels of SND1 

survived longer than patients showing elevated SND1 expression. Overexpression (OE) 

and knock down (KD) studies were performed to unravel the functional significance of 

SND1 in glioma progression. Overexpression of SND1 in immortalized primary human 

fetal astrocytes (IM-PHFA) (low SND1) significantly enhanced invasion and colony 

formation as compared to parental IM-PHFA cells. Conversely, when SND1 was 

knocked down in multiple glioma cell lines (high SND1), it significantly decreased 

invasion and colony formation, both in monolayer and in soft agar. Interestingly, SND1-

KD primary glioma cells demonstrated enhanced sensitivity towards Temozolomide, an 

FDA approved drug used with radiation therapy as a standard of treatment for GBM 

patients (67). Knock down of SND1 in malignant glioma cells resulted in a flat-shaped 

cells, which stained positive with β-galactosidase, indicating induction of cellular 

senescence. Further studies documented a potential involvement of STAT-3 in SND-1-

mediating glioma invasion and senescence-induced cell death. An intracranial xenograft 

study in nude mice using a highly invasive patient-derived malignant glioma cell line, 

showed a significant improved survival in SND1-KD group. This was associated with a 
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significant decrease in proliferation marker, activated STAT3, and angiogenesis marker 

and an enhanced expression of apoptotic marker. The observation that SND1 regulates 

several important determinants of glioma progression supports the rationale of using 

SND1-inhibition as a means of treating glioma patients. 

Specific inhibitors of SND1 

BLAST search reveals that SND1 is the only eukaryotic protein with Tudor and 

SN fusion domain. Hence, this quaternary fold can be employed for targeted therapeutic 

approaches, developing SND1 specific inhibitors. Similar protein domain is observed in 

Plasmodium falciparum, a parasite causing malarial infections in humans. Studies with P. 

falciparum SND1 have confirmed that SN domain is involved in nuclease activity 

whereas Tudor domain carries out the function of RNA binding (15). 3′, 5′ -

Deoxythymidine bisphosphate (pdTp) is a competitive chemical inhibitor against SNases. 

In P. falciparum , it not only blocks the nuclease activity but also inhibits RNA/ protein 

interaction of SND1.(15) pdTp inhibited growth of both chloroquine-sensitive and 

chloroquine-resistant strains of P. falciparum at a concentration of 100-200 μM of 

SND1 inhibitor, suggesting that pdTp might be developed as an anti-malarial drug (15). 

Studies performed in our laboratory using multiple human HCC cell lines demonstrated 

that pdTp treatment resulted in significant reduction in call viability and colony forming 

potential (8). However, this effect was observed at high chemical concentrations, ranging 

from 100-200 μM thus rendering it ineffective for clinical applications. Further high 

throughput screening assays need to be performed to develop clinically relevant chemical 

inhibitors against SND1 enzymatic activity. Employing the C terminus fusion domain of 

Tudor SN might prove to be a productive effort in designing targeted molecular therapy. 



 

27 
  

REFERENCES 

1. Hanahan D and Weinberg RA: Hallmarks of cancer: the next generation. Cell 

144: 646-674, 2011. 

2. Gerashchenko TS, Denisov EV, Litviakov NV, et al.: Intratumor heterogeneity: 

nature and biological significance. Biochemistry. Biokhimiia 78: 1201-1215, 2013. 

3. Mornon Icjp: The human EBNA-2 coactivator p100: multidomain organization 

and relationship to the staphylococcal nuclease fold and to the tudor protein involved in 

Drosophila melanogaster development. Biochemistry Journal: 125-132, 1997. 

4. Sun S-C: Non-canonical NK-kB signalling pathway. Cell Research 21: 71-85, 

2011. 

5. Jie Yang SA, Marko Pesu,, Kara Carter JS, Nisse Kalkkinen EK and Silvennoinen 

O: Identification of p100 as a coactivator for STAT6 that bridges STAT6 with RNA 

polymerase II. The EMBO Journal 21, 2002. 

6. Gao X, Zhao X, Zhu Y, et al.: Tudor staphylococcal nuclease (Tudor-SN) 

participates in small ribonucleoprotein (snRNP) assembly via interacting with 

symmetrically dimethylated Sm proteins. The Journal of biological chemistry 287: 

18130-18141, 2012. 

7. Yoo BK, Santhekadur PK, Gredler R, et al.: Increased RNA-induced silencing 

complex (RISC) activity contributes to hepatocellular carcinoma. Hepatology 53: 1538-

1548, 2011. 

8. Paukku K, Kalkkinen N, Silvennoinen O, Kontula KK and Lehtonen JY: p100 

increases AT1R expression through interaction with AT1R 3'-UTR. Nucleic acids 

research 36: 4474-4487, 2008. 

9. Joel D. Leverson PiJK, Frank C. Orrico E-MR, Katriina J. Jalkanen ABD and 

Robert N. Eisenman SAN: Pim-1 Kinase and p100 Cooperate to Enhance c-Myb 

Activity. Molecular Cell 2: 417-425, 1998. 

10. Garcia-Lopez J, Hourcade Jde D and Del Mazo J: Reprogramming of microRNAs 

by adenosine-to-inosine editing and the selective elimination of edited microRNA 

precursors in mouse oocytes and preimplantation embryos. Nucleic acids research 41: 

5483-5493, 2013. 

11. Derudder E, Dejardin E, Pritchard LL, Green DR, Korner M and Baud V: 

RelB/p50 dimers are differentially regulated by tumor necrosis factor-alpha and 

lymphotoxin-beta receptor activation: critical roles for p100. The Journal of biological 

chemistry 278: 23278-23284, 2003. 

12. Solan NJ, Miyoshi H, Carmona EM, Bren GD and Paya CV: RelB cellular 

regulation and transcriptional activity are regulated by p100. The Journal of biological 

chemistry 277: 1405-1418, 2002. 



 

28 
  

13. Liu X, Dong L, Zhang X, et al.: Identification of p100 target promoters by 

chromatin immunoprecipitation-guided ligation and selection (ChIP-GLAS). Cellular & 

molecular immunology 8: 88-91, 2011. 

14. Hossain MJ, Korde R, Singh S, et al.: Tudor domain proteins in protozoan 

parasites and characterization of Plasmodium falciparum tudor staphylococcal nuclease. 

International journal for parasitology 38: 513-526, 2008. 

15. P. Liénard MR, P. Van Vooren, C. Szpirer and J. Szpirer: Assignment1 of SND1, 

the gene encoding coactivator p100, to human chromosome 7q31.3 and rat chromosome 

4q23 by in situ hybridization. Cytogenetics and Cell genetics, 2000. 

16. Voeghtly LM, Mamula K, Campbell JL, Shriver CD and Ellsworth RE: Molecular 

alterations associated with breast cancer mortality. PloS one 7: e46814, 2012. 

17. Robert B. Jenkins JQ, Hyun K. Lee, et al.: A Molecular Cytogenetic Analysis of 

7q31 in Prostate Cancer. Cancer research 58: 759-766, 1998. 

18. Liubov Glukhova1 CL, Didier Fauvet1, Ilse Chudoba3, GiseÁ le Danglot1, and 

Eric Angevin4 ABaA-FG, 1: Mapping of the 7q31 subregion common to the small 

chromosome 7 derivatives from two sporadic papillary renal cell carcinomas: increased 

copy number and overexpression of the MET proto-oncogene. Oncogene 19: 754-761, 

2000. 

19. Loo LW, Tiirikainen M, Cheng I, et al.: Integrated analysis of genome-wide copy 

number alterations and gene expression in microsatellite stable, CpG island methylator 

phenotype-negative colon cancer. Genes, chromosomes & cancer 52: 450-466, 2013. 

20. Kuruma H, Kamata Y, Takahashi H, et al.: Staphylococcal nuclease domain-

containing protein 1 as a potential tissue marker for prostate cancer. The American 

journal of pathology 174: 2044-2050, 2009. 

21. Blanco MA, Aleckovic M, Hua Y, et al.: Identification of staphylococcal nuclease 

domain-containing 1 (SND1) as a Metadherin-interacting protein with metastasis-

promoting functions. The Journal of biological chemistry 286: 19982-19992, 2011. 

22. Tsuchiya N, Ochiai M, Nakashima K, Ubagai T, Sugimura T and Nakagama H: 

SND1, a component of RNA-induced silencing complex, is up-regulated in human colon 

cancers and implicated in early stage colon carcinogenesis. Cancer research 67: 9568-

9576, 2007. 

23. Douglas L. Theobald RMM-F, and Deborah S. Wuttke: Nucleic acid recognition 

by OB-fold proteins. Annual Reviews of Biophysics and biomolecular structure: 115-

133, 2003. 

24. Ying M and Chen D: Tudor domain-containing proteins of Drosophila 

melanogaster. Development, Growth & Differentiation 54: 32-43, 2012. 

25. Armengol S, Arretxe E, Rodriguez L, Ochoa B, Chico Y and Martinez MJ: NF-

kappaB, Sp1 and NF-Y as transcriptional regulators of human SND1 gene. Biochimie 95: 

735-742, 2013. 



 

29 
  

26. Rodriguez L, Bartolome N, Ochoa B and Martinez MJ: Isolation and 

characterization of the rat SND p102 gene promoter: putative role for nuclear factor-Y in 

regulation of transcription. Annals of the New York Academy of Sciences 1091: 282-

295, 2006. 

27. Fashe T, Saarikettu J, Isomaki P, Yang J and Silvennoinen O: Expression analysis 

of Tudor-SN protein in mouse tissues. Tissue & cell 45: 21-31, 2013. 

28. Thomas W. Keenana SW, Hans-Richard Rackwitzb, Hans W. Heidb: Nuclear 

coactivator protein p100 is present in endoplasmic reticulum and lipid droplets of milk 

secreting cells. Biochimica et Biophysica Acta (BBA) - General Subjects: 84-90, 

September 2000,. 

29. Xiao tong RD, Ramana Yalamanchili, George Mosialos, Elliott Kieff: The 

Epstein-Barr Virus Nuclear Protein 2 Acidic Domain Forms a complex with a Novel 

Cellular Coactivator That Can interact with TFIIE. Molecular and Cellular biology, Sept. 

1995. 

30. Bromberg J: Stat proteins and oncogenesis. Journal of Clinical Investigation 109: 

1139-1142, 2002. 

31. Paukku K, Yang J and Silvennoinen O: Tudor and nuclease-like domains 

containing protein p100 function as coactivators for signal transducer and activator of 

transcription 5. Molecular endocrinology 17: 1805-1814, 2003. 

32. Valineva T, Yang J, Palovuori R and Silvennoinen O: The transcriptional co-

activator protein p100 recruits histone acetyltransferase activity to STAT6 and mediates 

interaction between the CREB-binding protein and STAT6. The Journal of biological 

chemistry 280: 14989-14996, 2005. 

33. Santhekadur PK, Akiel M, Emdad L, et al.: Staphylococcal nuclease domain 

containing-1 (SND1) promotes migration and invasion via angiotensin II type 1 receptor 

(AT1R) and TGFbeta signaling. FEBS open bio 4: 353-361, 2014. 

34. Amy A. Caudy1* RFK, Scott M. Hammond1†,Ahmet M. Denli1, Anja M. P. 

Bathoorn1,2, Bastiaan B. J. Tops1,2,Jose M. Silva1, Mike M. Myers1, Gregory J. 

Hannon1 and lasterk2 RHA: A micrococcal nuclease homologue in RNAi effector 

complexes. NATURE 425, September, 2003. 

35. Milochau A, Lagree V, Benassy MN, et al.: Synaptotagmin 11 interacts with 

components of the RNA-induced silencing complex RISC in clonal pancreatic beta-cells. 

FEBS letters, 2014. 

36. Heinrich EM, Wagner J, Kruger M, et al.: Regulation of miR-17-92a cluster 

processing by the microRNA binding protein SND1. FEBS letters 587: 2405-2411, 2013. 

37. Gao X, Shi X, Fu X, et al.: Human Tudor staphylococcal nuclease (Tudor-SN) 

protein modulates the kinetics of AGTR1-3'UTR granule formation. FEBS letters 588: 

2154-2161, 2014. 



 

30 
  

38. Lei Y, Huang Y, Zhang H, Yu L, Zhang M and Dayton A: Functional interaction 

between cellular p100 and the dengue virus 3' UTR. The Journal of general virology 92: 

796-806, 2011. 

39. Cappellari M, Bielli P, Paronetto MP, et al.: The transcriptional co-activator 

SND1 is a novel regulator of alternative splicing in prostate cancer cells. Oncogene, 

2013. 

40. David CJ and Manley JL: Alternative pre-mRNA splicing regulation in cancer: 

pathways and programs unhinged. Genes Dev 24: 2343-2364, 2010. 

41. Yang J, Valineva T, Hong J, et al.: Transcriptional co-activator protein p100 

interacts with snRNP proteins and facilitates the assembly of the spliceosome. Nucleic 

acids research 35: 4485-4494, 2007. 

42. Gao X, Ge L, Shao J, et al.: Tudor-SN interacts with and co-localizes with G3BP 

in stress granules under stress conditions. FEBS letters 584: 3525-3532, 2010. 

43. Weissbach R and Scadden AD: Tudor-SN and ADAR1 are components of 

cytoplasmic stress granules. Rna 18: 462-471, 2012. 

44. Heidebrecht HJ, Buck F, Steinmann J, Sprenger R, Wacker HH and Parwaresch 

R: p100: a novel proliferation-associated nuclear protein specifically restricted to cell 

cycle phases S, G2, and M. Blood 90: 226-233, 1997. 

45. Sundstrom JF, Vaculova A, Smertenko AP, et al.: Tudor staphylococcal nuclease 

is an evolutionarily conserved component of the programmed cell death degradome. 

Nature cell biology 11: 1347-1354, 2009. 

46. Ramakrishna G, Rastogi A, Trehanpati N, Sen B, Khosla R and Sarin SK: From 

Cirrhosis to Hepatocellular Carcinoma: New Molecular Insights on Inflammation and 

Cellular Senescence. Liver cancer 2: 367-383, 2013. 

47. Yoo BK, Emdad L, Lee SG, et al.: Astrocyte elevated gene-1 (AEG-1): A 

multifunctional regulator of normal and abnormal physiology. Pharmacology & 

therapeutics 130: 1-8, 2011. 

48. Santhekadur PK, Das SK, Gredler R, et al.: Multifunction protein staphylococcal 

nuclease domain containing 1 (SND1) promotes tumor angiogenesis in human 

hepatocellular carcinoma through novel pathway that involves nuclear factor kappaB and 

miR-221. The Journal of biological chemistry 287: 13952-13958, 2012. 

49. Yin J, Ding J, Huang L, et al.: SND1 affects proliferation of hepatocellular 

carcinoma cell line SMMC-7721 by regulating IGFBP3 expression. Anatomical record 

296: 1568-1575, 2013. 

50. Jiapei Ho J-W-FK, Lee-Yee Choong, Marie-Chiew-Shia Loh, Weiyi Toy, and 

Poh-Kuan Chong C-HW, Chow-Yin Wong, Nilesh Shah, and Yoon-Pin Lim*: Novel 

Breast Cancer Metastasis-Associated Proteins. Journal of Proteome Research 8: 583-594, 

Sep, 2009. 



 

31 
  

51. Wan L, Lu X, Yuan S, et al.: MTDH-SND1 Interaction Is Crucial for Expansion 

and Activity of Tumor-Initiating Cells in Diverse Oncogene- and Carcinogen-Induced 

Mammary Tumors. Cancer Cell, 2014. 

52. Quintana AM, Liu F, O'Rourke JP and Ness SA: Identification and regulation of 

c-Myb target genes in MCF-7 cells. BMC cancer 11: 30, 2011. 

53. Naumov VA, Generozov EV, Zaharjevskaya NB, et al.: Genome-scale analysis of 

DNA methylation in colorectal cancer using Infinium HumanMethylation450 BeadChips. 

Epigenetics : official journal of the DNA Methylation Society 8: 921-934, 2013. 

54. Wang N, Du X, Zang L, et al.: Prognostic impact of Metadherin-SND1 interaction 

in colon cancer. Molecular biology reports 39: 10497-10504, 2012. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

32 
  

 

CHAPTER 2 
 

An Introduction to Protein Tyrosine Phosphatases 
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Significance of kinase- and phosphatase-mediated regulation of cell functions 

Kinases and phosphatases are a set of complimentary enzymes responsible for 

phosphorylation and dephosphorylation of proteins, respectively, associated with a 

multitude of human diseases (1-3). This set of reversible reactions is a common mode of 

post-translational modifications of eukaryotic proteins. By changing phosphorylation 

status of specific amino acid residues of proteins, these enzymes coordinate signaling 

events that determine cellular responses against external or internal stimuli. Several 

molecular signaling networks are tightly regulated by a balanced interplay between 

kinases and phosphatases. Deregulated function of these enzymes has been suggested to 

cause pathophysiologies ranging from autoimmune reaction to carcinogenesis (3, 4). 

With emerging discoveries, their role as potential drug targets becomes more evident. 

Protein phosphatases have evolved from a wide spectrum of protein families, mainly 

categorized by the substrate amino acid residues into four classes. Of these, tyrosine 

phosphatases is the largest group of enzymes, encoded by more than 100 genes and 

subdivided into four main classes (1). Class I comprises of Dual specificity phosphatases 

and tyrosine phosphatases, two main groups of Protein Tyrosine phosphatases (PTPs) (1) 

The Dual Specificity enzymes can utilize Serine/ Threonine as well as Tyrosine residues 

as their catalytic substrates whereas the classical enzymes show specificity restricted to 

Tyrosine residue (1). Serine/ threonine phosphatases exist in vivo in a range of 

holoenzymes with variable regulatory or catalytic functional role (1). Physiologically, a 

given dual specificity phosphatase demonstrates functional specificity for either of these 

amino acid residue (1). The dual specificity enzyme sequence is not well conserved, 

demonstrates variability except for the cysteine containing catalytic domain (1). In this 
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study, we focus on classical tyrosine phosphatases, described in detail below. Class II 

consists of a single low molecular weight phosphatase (4). Yeast cdc25 homologues 

make up the Class III whereas drosophila Eya homologs are categorized as Class IV PTP 

(4) 

Initial evidence suggesting phosphatase activity was encountered while studying 

significance of tyrosine phosphorylation in cell growth and signaling (5). These studies 

were based on temperature sensitive mutants of SRC oncogene that encodes protein 

tyrosine kinase (5). Enzymatic activity observed to counter protein phosphorylation by 

kinases was the preliminary evidence of phosphatase activity (5). PTP1A and PTP1B 

were the first purified extracts of phosphatases, of which PTP1B was crystallized for 

structural analysis (5). Years of investigation later, scientists have deduced the structural 

details of this group of proteins. Enzymatic catalysis of these proteins has been studied in 

great depth. 

Classical PTP structure  

PTP structure has been very well characterized, identified by a signature catalytic motif 

HC(X)5R (1). The cysteine residue in this active site acts as a nucleophile and is essential 

for binding of the enzyme to target phosphate group on the substrate (1). In addition to 

large number of genes that encode protein tyrosine phosphatases, further diversity is 

contributed by mechanisms such as alternative splicing and post translational 

modifications (1). The complex level of diversity and the observed functional 

deregulation in several pathophysiologies are suggestive of the crucial role of these 

enzymes in cellular signaling. Based on the protein structure and cellular localization, 
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classical PTPs can be divided into two major categories – receptor (RPTPs) and non-

receptor type of phosphatases (PTPNs).  

Structures of classical tyrosine phosphatases are illustrated in figure below (1).  
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Classical protein tyrosine phosphatase receptor typically comprises of a transmembrane 

domain that links the protein to the plasma membrane of cell. This domain is often 

attached to an extracellular domain, which is receptive to external signaling via specific 

molecules. It regulates cell signaling via substrate protein tyrosine de-phosphorylation, 

triggered by receptor – ligand interaction. The cytoplasmic chain consists of tandem 

repeats of the PTP domain (1). However, in most classical receptor type enzymes, the 

catalytic function is carried out by the PTP domain proximal to membrane whereas the 

distal domain has been proven critical for intracellular protein – protein interactions (1, 6, 

7). Several of the enzymes belonging to this class have been associated with cell- cell 

adhesion(8) and cell- matrix interactions (1). Dimerization of the protein tyrosine 

phosphatases receptor followed by ligand interaction has been implicated in regulation of 

enzyme activity (1, 9). 

Protein tyrosine phosphatase non receptor type comprises of regulatory units flanking the 

enzymatic domain (1). These flanking regions are responsible for substrate specificity 

and subcellular localization of the active protein thereby assisting in catalytic de-

phosphorylation (1). SHP1, PTPN23 (HD-PTP) and PTP1B are some of the most well 

characterized non-receptor PTPs. For example, SH2 domain in SHPs directs the protein 

towards target substrate tyrosine sites for phosphorylation (10). Similarly, FERM 

domains target the PTPs to interface between plasma membrane and cytoskeleton (11) 

and BRO1 domain targets proteins to endosomes (12). Apart from stringent subcellular 

targeting, these PTPs show high sequence identity and non-redundant functional 

specificity (5). 
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PTP function and regulation of enzymatic activity 

PTPs are known to negatively regulate tyrosine phosphorylation, thereby terminating the 

signaling cascade. This enzymatic activity is essential to balance phosphorylation 

dependent molecular signaling, in order to maintain cellular physiology. With the 

advances in science, significance of these proteins has been emphasized in regulation of 

cellular metabolism and cell cycle. General catalytic reaction of PTPs is aptly described 

in figure 2.2. Cysteine residue in the catalytic domain functions as a nucleophile and the 

attacks the phosphate group on substrate tyrosine residue to break the phosphorus–

oxygen bond. The aspartate in the WPD loop acts as a generate acid and donates a proton 

to the dephosphorylated tyrosine (4). This generates an unstable phosphocysteine 

intermediate and the dephosphorylated substrate is released (4, 13). The phosphocysteine 

intermediate is cleaved via hydrolysis by the aspartate residue and results in the release of 

free phosphate (4). 
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Reactive oxygen species have been implicated in altering tyrosine phosphatase mediated 

signaling pathways, under normal physiology as well as in cancer cells (1, 14). The 

nucleophilic nature of cysteine residue within the active domain renders it susceptible to 

reversible oxidation by ROS thereby resulting in inhibition of the enzymatic action (15). 

Oxidation of nucleophile, cysteine brings about conformational changes that are non-

conducive for substrate binding (15). Several ligand molecules are known to trigger 

reversible oxidation of receptor tyrosine phosphatase. For example, insulin, epidermal 

growth factor (EGF) and TNFα stimulate oxidation of PTP1B, PTEN and MKPs, 

respectively (1). Ligand interaction mediating dimerization of the receptors is also a 

proposed mechanism for regulation of receptor PTP activity. Crystallization studies have 

elucidated that such dimerization of RPTPs result in reciprocal occlusion of active sites, 

thereby inhibiting the enzymatic activity (9). However, only few ligands have been 

identified so far, in this context. For example, RPTPζ activity following binding of 

pleiotrophin is shown to result in increased phosphorylation of - catenin, a known 

substrate of RPTKα (1, 9, 16). 

According to current understanding of tyrosine phosphorylation mediated signaling, an 

external physiological stimuli triggers inhibition of the tyrosine phosphatases, thereby 

allowing amplification of the tyrosine phosphate mediated signaling (1). Loss of stimuli 

results in activation of the phosphatase and subsequent termination of the signaling 

pathways (1). Inhibition of phosphatase activity is complimentary to kinase activity that 

promotes tyrosine phosphorylation, and downstream signaling. Hence, an optimum 

balance between phosphatase and kinase activity is crucial for maintenance of normal 

physiology.  
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Identification of HD-PTP or PTPN23 

First study that identified PTPN23 as HD-PTP (His domain containing PTP) was aimed 

at identifying phosphatases that play critical role in hypertrophy in cardiomyocytes. 

Among the 16 target phosphatases, HD-PTP was a novel discovery. Though the protein 

was observed to be ubiquitously expressed, distinctly high levels were detected in rat 

neonatal cardiomyocytes (17). PTPN23 is localized within cytoplasm and protein 

localization was found to be independent of the PTP domain (17, 18). Preliminary mRNA 

sequence analysis established the presence of a BRO1 domain, a yeast signaling protein, 

on the N terminus of translated protein (17). The identified HD-PTP cDNA sequence 

showed a variant from the generic catalytic site sequence of most PTP’s identified to 

date. Specifically, serine residue was observed to be replaced by an alanine residue (17). 

However, the overall sequence was observed to be in synchrony with that of the 

phosphatases. This study also demonstrated that PTPN23 inhibits Ha-Ras mediated 

cellular transformation. When PTPN23 was overexpressed in Ha-Ras expressing cells, 

foci formation was significantly reduced by 33% (17). This was the first evidence 

implying a tumor suppressive role of PTPN23.  

PTPN23 genomic cDNA sequence was first isolated in an attempt to characterize human 

genomic sequences that promoted anchorage independent growth of cells. These 

sequences were derived from B – cell lymphoma (18). Southern hybridization with 

human genomic DNA probe identified nine repeat regions (18). Each of these sequences 

was then employed for Northern blot analysis for identification of corresponding mRNA 

sequence (18). A common 6kb sequence was identified using three different probes (18). 

These probes were than utilized for screening human cDNA library obtained from tumor 
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cell line (18). Analyzing the identified mRNA sequence confirmed that the protein 

encoded by this gene belonged to the PTP superfamily, later identified to be PTPN23 

(18). PTPN23 gene was localized on short arm of chromosome 3, specifically 3p.21.3 

(18). This region is observed to be frequently deleted in many cancers including lung, 

breast, renal, urogenital and bladder carcinoma (19, 20), further implying PTPN23 as a 

tumor suppressor gene. Alterations within the sequence were mostly restricted to the 

substrate-binding domain, indicating altered substrate specificity.(18)  

PTPN23 structure and expression pattern 

Initial bioinformatics analysis revealed that PTPN23 protein is proline rich (17%) and 

lacks transmembrane domain as well as a unique localization peptide (17). The N 

terminus of PTPN23 also shows 45% similarity with BRO1 domain (17, 18). Literature 

confirms that BRO1 domain is homologous with a yeast signaling protein, involved in 

mitogen activated protein kinase signaling cascade. Detailed analysis also revealed 

presence of two SH-3 binding domains towards the C terminal end of BRO1 domain 

(17). This protein sequence was also found to be significantly similar to mouse AIP1, an 

apoptosis regulatory protein. The C terminus of PTPN23 carried an amino acid sequence 

similar to a known ‘PEST’ protein destabilizing sequence, indicative of a very short half-

life of this protein (17, 18). Thus the PTPN23 protein structure can be explained as 

follows: a functionally uncharacterized BRO1-like domain (BRO), a histidine-rich 

domain (HIS), a classical protein tyrosine phosphatase domain (PTP) and a proteolytic 

degradation targeting sequence (PEST motif). Below is representation of PTPN23 

structure (21). 
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Though in vitro biochemical assays indicate a lack of phosphatase activity, an in vivo 

loss of PTPN23 mouse models, provides insight into the crucial role of this protein in 

mammalian development. PTPN23 gene was disrupted by insertion of β-galactosidase-

neomycin- phosphotransferase II (β-geo) DNA sequence (22). Such insertion resulted in 

loss of wild-type PTPN23. This protein was found to be essential for mouse 

embryological development and loss of 3’region of PTPN23 was embryonically lethal at 

E8.5 (22). Expression analysis of WT mouse showed distinct expression of PTPN23 in 

neurological tissues of an E9.5 embryo, specifically within neuroepithelial lining of 

midbrain, hindbrain, inner side of optic and ottic vescicle and ventricular area of 

forebrain (22). At E12.5, PTPN23 expression is more pronounced encompassing more 

organs including tongue, heart, gut, common bile duct, precursor stomach, lung, bronchia 

and vertebral column (22). With advancing embryonic age, PTPN23 expression was 

observed to be more cell-specific, ubiquitous but variable (22). Extended expression 

analysis in adult tissues revealed similar pattern, conserved in adulthood as well, although 

loss of expression was observed within spleen, heart and muscle tissue (22). Expression 

of PTPN23 in adult mammalian skeletal tissue is controversial, with two independent 

studies showing distinctly high to low levels of mRNA, respectively (17, 22, 23). 

Another study affirms the fact that particularly high levels of PTPN23 are observed in 

brain and kidneys of fetal tissue (17, 23). Negligible to very low levels of PTPN23 

transcript was detected in liver tissue (17, 23).   

In vitro biochemical studies reported that PTPN23 lacks catalytic phosphatase activity, 

and the specific amino acid substitution is implicated to be the causative factor (17, 24). 

Although, later studies have identified Src Kinase to be a direct substrate of the 
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phosphatase activity of PTPN23 (25). At the same time, role of PTPN23 in endosomal 

cargo sorting and epidermal growth factor receptor (EGFR) transport to lysosomes is well 

documented, apart from its effect in several oncologically relevant cellular functions. It 

was observed that RNAi mediated knockdown of PTPN23 caused disruption in recycling 

EGFR to lysosomal machinery and accumulation of ubiquitinylated proteins on 

endosomal compartments (26).  

Mutations in PTP genes are associated with a variety of diseases  

Reversible phosphorylation of tyrosine residues of proteins has been studied as a popular 

signaling mechanism under physiological conditions. Phosphatases regulate levels of 

phosphorylation and their mode of action is well conserved in eukaryotes, highlighting 

their significance in normal development and physiology. Research has demonstrated 

role of phosphatases in a range of molecular pathogenesis, including developmental 

disorders, autoimmune reactions and cancer.(2, 4) Deregulation of phosphatase function 

in association with human diseases has been studied in great details.  

Loss-of-function as well as gain-of-function mutations in PTP genes have been reported 

in reference to human diseases. Several single nucleotide polymorphisms in PTP genes 

are shown to be associated with diseases, though underlying molecular mechanisms are 

not studied yet. A single nucleotide insertion within the 3’UTR of PTPN1 leads to 

increased mRNA stability and subsequent overexpression of PTPB1 protein (27). PTPB1 

dephosphorylates and inactivates insulin receptor, thereby increasing insulin resistance, a 

trait commonly observed in type 2 diabetes mellitus patients (28). Studies in knockout 

mice models have demonstrated that loss of PTPB1 protein confers resistance to high fat 

diet induced diabetes and obesity (28) A study has also shown association between a 
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polymorphism in PTPN1 intron 6 and body fat distribution and diabetes mellitus type 2 

(29). PTPN2 is important in immune regulation and has been identified as a susceptibility 

locus in inflammatory bowel disease as well as autoimmune reactions.(2, 4) SNPs in 

PTPN2 are associated with autoimmune disorders such as Rheumatoid arthritis (30, 31) 

whereas loss of PTPN2 is also observed in a subset of leukemia cases therefore 

implicating its role as a tumor suppressor (32). SNPs causing increased expression of 

STEP (Striatal enriched protein tyrosine phosphatase), encoded by PTPN5 and expressed 

in a brain specific manner, has been associated with increased susceptibility to cognitive 

disorders such as hereditary schizophrenia(33)  SNP causing reduced PTPN12 expression 

is embryonically lethal, so is a gain of function mutation in PTPN11. Similarly, SNP 

resulting in partial loss of function of PTPN12 is associated with increased risk of 

developing breast cancer (34). A range of mutation in PTPN11 are linked to several 

diseases, from autosomal dominant dysmorphic Noonan syndrome to leukemia and 

autoinflammatory Lupus erythematosus (35, 36). SNPs in PTPN13 are studied in 

association with familial hepatocellular carcinoma, lung carcinoma and colorectal cancer 

(37, 38). A SNP in PTPN22 gene (p.R620W) resulting in amino acid substitution 

(arginine to tryptophan) is associated with increased risk of autoimmune disorders such 

as Graves’ disease and Rheumatoid arthritis (39). Broadly, non-receptor PTPs are 

implicated in inflammatory disorders, psychiatric disorders, metabolic disorders such as 

type 2 diabetes mellitus and cancer predisposition. 

In case of receptor PTP, mutations0 have been linked to a similar array of disorders. For 

example, mutations in PTPRA, PTPRC and PTPRD are associated with Schizophrenia, 

Severe Combined Immunodeficiency and renal cancer, respectively.(2, 4) These 
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comprehensive analyses underline the role of tyrosine phosphatases in maintenance of 

cellular functions, its association with human pathologies as well as its significance in 

developing therapeutics. 

Role of PTPs in cancer  

Due to their integral role in cellular signaling, PTPs are strongly suggested to be involved 

in cancer development and progression. Early attempts to study role of PTPs in cancer 

were focused on colorectal cancer. Research identified deregulation of PTPRT, PTPRF, 

PTPRG, PTPN3, PTPN13 and PTPN14 in approximately 26% of the CRC cases (40). A 

more recent study has identified PTPRT, PTPRC, PTPRD and PTPRM as tumor 

suppressors in head and neck squamous cell carcinomas (41). Detailed information about 

PTP mutations in human cancer is now available via high throughput sequencing 

analyses. Protein tyrosine phosphatase receptor T (PTPRT) manifests missense mutation 

in multiple cancers such as colon, bladder, endometrium, esophagus, head and neck 

squamous carcinoma, lung and stomach (40, 41). Mutations resulting in truncated protein 

product are also widely observed in human tumors, suggesting a putative tumor 

suppression function of this protein (40). Studies on PTPRT knock out mice have shown 

early development of carcinogen induced colorectal tumors (42). Loss of PTPRT due to 

promoter DNA methylation is also reported in gastric and colon cancers. STAT3 

dephosphorylation is proposed to be the underlying signaling mechanism, mediating 

tumor suppressive function of PTPR (42). 

Genetic deletions and promoter DNA methylation of PTPRD gene, resulting in loss of 

phosphatase activity has been observed in multiple cancers, indicating tumor suppressive 

function. Mutations in this gene have also been observed in glioblastoma multiforme, 
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neuroblastoma, head and neck, lung and colon cancers (43, 44) PTPRD knock out mice 

manifest enhanced gliomagenesis whereas overexpression of this protein in colon cancer 

cells inhibited migration, implying its role in metastasis (44). 

PTPRK, known to promote cell adhesion, migration and proliferation via EGFR 

signaling,(45, 46) is frequently mutated in breast, cervical, colon, endometrial and skin 

cancers as well as glioma and lymphoma. It is also known to dephosphorylate Her2, 

subsequently inhibiting growth of breast cancer cells. Almost 26% of angiosarcoma cases 

manifest nonsense or frame-shift mutations in PTPRB gene suggestive of its role as 

tumor suppressor (47). Knock out of PTPRB is embryonically lethal, emphasizing the 

importance of this protein in angiogenesis and development (48). 

PTPRJ has been implicated in breast, colon, pancreatic and thyroid cancer (49-51). Intra-

(52)injections of PTPRJ conjugated adeno-associated virus suppresses growth of 

pancreatic cancer cell xenografts (53). PTPRM inhibits proliferation, invasion and 

migration in breast, prostrate and brain tumor (54). Proteolytically cleaved products of 

this protein have been observed in tumor samples (55). These fragments are found to 

translocate to nucleus, where they are hypothesized to mediate cancer specific functions 

(55). Exact molecular mechanisms underlying this hypothesis have not been elucidated. 

Among non-receptor PTPs, PTPN11 is a rare PTP to function as an oncogene in juvenile 

myelomonocytic leukemia, acute myeloid leukemia . Germ line gain of function mutation 

in PTPN11 was first observed in Noonan syndrome cases (52). Contrarily, PTPN11 is 

also demonstrated to act as a tumor suppressor in hepatocellular carcinoma by a recent 

study. Liver specific knockout of PTPN11 in mouse model resulted in increased 

susceptibility to carcinogen-induced HCC (56). PTPN11 is also suggested to be a tumor 
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suppressor in metachrondomatosis (57). Loss of function of PTPN11 have also been 

implicated in other diseases such as Leopard syndrome (58). At cellular level, it has been 

shown to regulate several critical signaling pathways including Jak/Stat, PI3K/AKT, 

NFB and Ras-ERK MAPK. 

PTP1B, encoded by PTPN1 is overexpressed in ~72% of breast cancer cases (58). Protein 

levels of PTP1B are correlated with Erbb2 expression and known to activate c-Src and 

Ras signaling (58). PTPN1 is also implicated in tumor suppression, according to genome 

wide sequencing. It is mutated in ~20% Hodgkin’s lymphoma and primary mediastinal B 

cell lymphoma cases (59). Most of the identified mutations are loss of function, and few 

of them are non-sense or missense mutation, parallel with the tumor suppressive function 

(59). PTPN1 dephosphorylates insulin receptor and JAK2, thereby negatively regulating 

JAK-STAT and PI3K/AKT signaling (28) PTPN1 knockout mice demonstrate delayed 

Erbb2 induced breast cancer and decreased lung metastasis  (60). 

Mutations leading to loss of function of PTPN13 are identified in endometrial, lung, liver, 

breast and colorectal cancers (40, 61). In colorectal cancer, PTPN13 is identified as a 

substrate of mir200, known to promote EMT. It is also known to interact with Bcr-Abl, 

such that Bcr-Abl expression in myeloid progenitor cells up regulated PTPN13 protein 

levels and induce apoptosis (62). PTPN13 is known to regulate Adenomatous Polyposis 

Coli/ β-catenin pathway and PI3K/AKT signaling. Insulin receptor 1 and Ephrin B1 are 

identified PTPN13 substrates whereas phosphorylation of ERK and Her2/Erbb2 is 

inversely correlated with PTPN13 expression (63). Negative regulation of PI3K/AKT 

pathway via PTPN13 leads to apoptosis in breast cancer cells (64). Epigenetic silencing 
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of PTPN13 is observed in non-Hodgkin’s and Hodgkin’s lymphoma, breast, gastric and 

hepatocellular carcinoma (61).  

PTPN14 is known to regulate -catenin pathway(65), promoting cell adhesion, migration 

and cell growth. It was initially identified as a tumor suppressor in breast cancer, where it 

was observed to promote anchorage independent proliferation of mammary cells (65). 

Currently, it is established that PTPN14 mutations are associated with breast, colon and 

endometrium cancers. Point mutation at Y128 residue of p130Cas, a direct substrate of 

PTPN14 promotes migration, adhesion and tumorigenesis in colon (66). 

Dephosphorylation of this tyrosine residue results in slower growth of colon cancer 

xenograft tumors, reduced migration and colony formation as well as impaired anchorage 

independent growth (66). It is also observed to mediate epithelial-mesenchymal transition 

via TGFβ pathway regulation. 

Significance of non-receptor PTPs in hepatic physiology and function 

With increasing evidence emphasizing role of phosphatases and kinases in cellular 

functions, there have been some rigorous studies on elucidating role of PTPs in liver 

physiology. Liver is a critical link between metabolism and diseases and deregulation of 

hepatic functions can result in multifarious effects on normal physiology. Hence, 

molecular signaling pathways in liver are very tightly regulated and most of these 

mechanisms are dependent on tyrosine phosphorylation.  

PTP1B, a non-receptor type PTP, is studied as a negative regulator of insulin receptor 

signaling and leptin signaling (67). Phosphorylation of IR is necessary to activate 

multiple downstream signaling molecules, such as AKT, mTORC and PI3K via 
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phosphorylation of IR substrates (67). PTP1B dephosphorylates IR and thereby inhibits 

the subsequent cellular signal transduction (67). Leptin, secreted by white adipose tissue, 

is expressed in proportion to body fat mass. It is a key signaling molecule to 

communicate with hypothalamus region of brain, in order to regulate fat metabolism (67). 

Interaction between leptin and its receptor is known to activate JAK2, thereby affecting 

the JAK-STAT signaling network. Dephosphorylation of JAK2 leads to immediate 

termination of Leptin signaling. PTP1B has been established to directly mediate 

dephosphorylation of JAK2 (67). Hence it is hypothesized that inhibition of leptin 

signaling, via PTP1B can be a potential mechanism to promote obesity. This hypothesis 

is consistent with the fact that global knock out of PTP1B in mice results in lower 

adiposity in spite of a high fat diet (67). Observations were concurrent with increased 

brown fat and lower leptin levels in serum. Improved glucose tolerance and lipid profile 

was observed in liver specific knock out mice (67). Lack of PTP1B activity also led to 

attenuation of endoplasmic reticulum stress (ER), a known cause of obesity (67). There is 

convincing evidence that PTP1B is a potential therapeutic target for diabetes as well as 

obesity. An independent study revealed that lack of PTP1B also inhibits insulin resistance 

and increase in body fat associated with aging (68). Non-significant increase in hepatic 

glucose production was observed in aged, PTP1B knock out mice, as opposed to that in 

wild type age-matched controls (68). Loss of PTP1B also prohibited hyperinsulinemia 

and enlargement of islets indicative of absence of age-related insulin resistance (68). 

Accumulation of white adipose tissue is linked to inflammation that can potentially 

progress into carcinogenesis. PTP1B knock mice not only demonstrated reduced 

adiposity, but also maintained normal tissue specific as well as serum levels of pro-
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inflammatory molecules such as TNFα, indicating absence of inflammation (68). 

However, there was a marked increase in the levels of inflammatory molecules in age 

matched wild type mice, indicating inflammation in hepatic tissue of wild type mice (68). 

Elevated levels of adipose tissue are correlated with steatosis and inflammation in liver. 

These conditions give rise to steatohepatitis, culminating into cirrhosis and possibly, 

carcinogenesis. Loss of PTP1B also protected the hepatic tissue against obesity induced 

steatosis and inflammation by blocking activity of specific kinases (68). Hepatic insulin 

signaling was observed to be maintained at normal levels, with advent of age in PTP1B 

null mice (68). Under normal physiological functioning, hepatic insulin signaling 

declines with age. Insulin resistance, deregulated insulin signaling in liver, increased 

accumulation of white adipose tissue, elevated levels of pro-inflammatory molecules 

were all congruent with the observed elevation in PTP1B levels of aged mice, as 

compared to young ones (68). This was also affirmed by differential expression levels of 

negative regulators of insulin signaling pathway, in PTP1B null mice versus age-matched 

normal wild type mice (68). Researchers have also established that PTP1B levels are 

down regulated in most of the HCC cases. Lower PTP1B levels also correlated with 

overall survival rate of the patients (69). Lower PTP1B levels were thus proved to be 

associated with poor prognosis and survival prediction of patients (69). Tumor initiating 

cells are shown to have lower proliferative potential with higher PTP1B levels (69). 

PTP1B levels are also inversely proportional to -catenin nuclear levels (69). Since 

Wnt/β-catenin is an important pathway mediating expansion of cancer stem cells, lower 

PTP1B levels cause increased tumorigenesis (69). Role of PTP1B in hepatocyte 

proliferation has been well studied. Lack of PTP1B activity results in increased EGFR- 
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and HGFR-mediated tyrosine phosphorylation, thereby activating Akt and ERK signaling 

pathways (70). Increased proliferation of PTP1B deficient hepatocytes and subsequent 

delay in termination of liver regeneration is observed in PTP1B null mice (70). This 

phenomenon was confirmed by correlation of multiple marker protein levels such as 

TGFβ and cyclin D (70). Thus, PTP1B is a strong candidate for developing molecular 

therapeutics in obesity, diabetes and cancer management.  

A tissue microarray study on 42 HBV or HCV associated HCC samples, followed by 

gene expression assay identified PTPN4A3, also called phosphatase of regenerating liver- 

3 (PRL3) in correlation with poorly differentiated tumors, poor prognosis and survival 

chance and higher rate of HCC recurrence.(71) Twelve out of 13 hepatoma cells lines 

demonstrated lower PRL3 levels, confirming its potential role as a tumor suppressor (71).  

Another non-receptor tyrosine phosphatase linked to obesity and cancer is PTPN6 (72). 

Heterozygote knockout mice of this gene manifest resistance to high fat diet induced 

hepatic stress and insulin resistance (72). Heterozygote PTPN6 liver shows normal 

insulin signaling and insulin sensitivity with high fat diet, as opposed to that observed in 

wild-type mice (72). Steatohepatitis was also augmented in heterozygote PTPN6 mice, 

with comparable cholesterol levels (72). Loss of PTPN6 results in increased activity of 

SREBP1 (sterol-regulated element binding protein 1) and other lipogenic enzymes such 

as fatty acid synthase (72). Expression of CD36 and FABP5 (Fatty acid binding protein) 

increases in PTPN6 knockout mice, and subsequently results in increased hepatic uptake 

of fatty acids (72). PTPN6 heterozygote knockouts are also protected against hepatic 

inflammation, an important molecular stage allowing transition from steatosis to 

carcinogenesis in liver (72). This phenomenon was supplemented by no significant 



 

54 
  

increase in inflammatory cytokines IL-3 and IL-6 after 16 weeks of high fat diet (72). 

Serum ALT and AST levels were also detected to be within normal range, thus indicating 

regular liver function (72). They also demonstrate significantly lower levels of hepatic 

gluconeogenesis as compared to the wild-type counterparts (72). PPAR was 

overexpressed in primary hepatocytes of PTPN6 knock out mice (72). Global expression 

analysis revealed that loss of PTPN6 significantly impacts lipid metabolism, in 

accordance with the in vivo observations (72).  

Shp2, an intracellular tyrosine phosphatase with Src homology-2 domain containing 

protein is encoded by PTPN11. Gain of function mutation in this gene has been observed 

in leukemia, establishing this protein as rare PTP oncogene (56). However, recently, 

PTPN11 has been implicated as a tumor suppressor in hepatocellular carcinoma (56). 

Reduced expression of this protein is also observed in 11.5% of HCC cases (56). Liver 

specific knockout of this gene caused increased DEN induced carcinogenesis in mice 

(56). This was supplemented by necrosis and infiltration of hepatic tissue with 

inflammatory cells, indicated by histological analysis (56). Inflammatory cytokines such 

as IL-6 and TNFα were also overexpressed in PTPN11 knock out mice hepatocytes (56). 

Splenomegaly and aggravated immunological response to LPS was observed in knock 

out mice compared to the wild type mice (56). Spontaneous hepatocellular adenoma 

development as a result of sustained STAT3 signaling was observed in knock out mice 

(56). 

PTPN12 has also been studied as a tumor suppressor in hepatocellular carcinoma. Protein 

levels of PTPN12 are inversely correlated to tumorigenesis (73). Decreased PTPN12 

levels also correlated with reduced patient survival rate and serum AFP levels (73). 
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Clinopathologic analysis established that PTPN12 levels were significant for prognosis in 

patients of HCC stage I/II and stage III/IV (73). To further emphasize the role of 

PTPN12, researchers proved that decrease in PTPN12 protein levels is concurrent with 

increased risk of recurrence and hence, reduced chance of disease free survival (73). 

PTPN13 is recently studied as a mir200 target in hepatic tissue. Loss of PTPN13 results 

in augmentation of hepatic fibrosis, a key driver of hepatic carcinogenesis (74). These 

molecular events are promoted via deregulation of Src signaling cascade in hepatic 

fibroblasts (74). PTPN13 protein levels are also down regulated in hepatocellular 

carcinoma cell lines, transformed liver fibroblast cell line and 45.8% of HCC tumor 

tissues, as compared to normal hepatocytes or corresponding non-tumorous tissue (74). 

Accordingly, overexpression of PTPN13 is congruent what increased proliferation. 

Reduced expression is a consequence of promoter DNA methylation (74). Genetic 

alteration in PTPN13 gene is significantly associated with multiplex familial risk of 

hepatocellular carcinoma, strengthening its role as a tumor suppressor gene (74).  

Role of PTPN 23 in cancer 

PTPN23 gene is located at chromosomal position 3p21.3 and contains 25 exons as 

established in the preliminary studies (18). This region is highly susceptible to loss of 

heterozygosity mutations in cancer cells (18-20). Multiple mutations within the genes 

have been identified, though no single mutations are correlated with a particular type of 

cancer or tumor stage so far.  

Significance of PTPN23 in neoplasm and cellular transformation was first studied in 

cardiomyocytes where it was observed to promote hypertrophy of cardiac tissue (17). 
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This group of researchers were first to identify PTPN23 as a potential tumor suppressor. 

They observed that Ha-ras mediated foci formation was reduced by more than 3 fold if 

cells were transfected with PTPN23 (17). This observation required presence of the 

catalytic domain of PTPN23, since the mutant DNA vector, lacking this domain failed to 

inhibit cellular transformation (17). Although in vitro tyrosine phosphatase biochemical 

assays established that PTPN23 lacked enzymatic activity (17). However, later studies 

have identified Src- kinase and Focal adhesion kinase as direct targets dephosphorylated 

by PTPN23. Different studies have demonstrated that cellular transfection with PTPN23 

DNA promotes anchorage independent cell growth and Ha-Ras mediated transformation 

(17).  

PTPN23 is also known to inhibit endothelial migration (75). Angiogenesis, an important 

hallmark of cancer progression involves migration of endothelial cells from existing 

vasculature, into tumorous tissue to form new blood vessels. These endothelial vessels 

are essential to maintain high metabolism of cancerous cells. Molecular signaling 

cascades leading to endothelial migration as well as angiogenesis are tightly regulated by 

coordinated activity of kinases and phosphatases (76). Role of protein tyrosine 

phosphatases is emphasized by the fact that PTP inhibitors cause neovascularization in 

vitro as well as in vivo (76). This fact was consistent with the observation that knock 

down of PTPN23 protein levels in human umbilical vein endothelial cells promoted 

migration (75). Cellular phenotype was observed to change from rounded, epithelial to 

more taper-ended mesenchymal phenotype, with presence of lamellipodia and 

reorganization of actin cytoskeleton (75). Further, this study also established that Focal 

Adhesion kinase (FAK) interacts with PTPN23, as indicated by immunoprecipitation 
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analysis. FAK is crucial for formation of focal adhesions and is known to manifest 

phosphorylation dependent kinase activity (75). Endothelial migration is complimented 

by a dynamic, cyclic change in the cytoskeleton mediated by focal adhesion molecules 

and stress fibers. PTPN23 knock down was correlated with increased phosphorylation of 

FAK and specific localization of this protein, along the plasma membrane to allow 

formation of focal adhesions (75). Lack of PTPN23 activity produces results similar to 

those observed post 24-hour FGF treatment in these cells. Cells with high PTPN23 

protein levels also showed cytoplasmic localization of FAK (75). Bioinformatics analysis 

demonstrates structural homology between PTPN23 and Alix/ AIP1, known to interact 

with FAK (75). Interestingly, PTPN23 also interacts with Src kinase (25). Src is a non-

receptor kinase, working in conjugation with FAK to modulate turnover of focal 

adhesions. An independent study elucidated that PTPN23 regulates phosphorylation of 

Src and negatively regulates kinase activity (25). Immunoprecipitation studies confirmed 

PTPN23- Src interaction. Alix1, also known to interact with Src shares the biding domain 

sequence with PTPN23 (25). Researchers have also demonstrated that augment in 

migration of endothelial cells, upon inhibition of PTPN23 is mediated via Src kinase 

activity (25). PP2, inhibitor of Src kinase, reverses the scattered, migratory phenotype. 

Thus, PTPN23 inhibits Src kinase activity as well as FAK kinase activity, both of which 

are essential for membrane localization of FAK and subsequent formation of focal 

adhesions. Down regulation of PTPN23 reverses the molecular cascade, allows for FAK 

localization and thereby augments cellular motility and migration. 

Magnesium is a known chemo attractant for endothelial cells, promoting migration. 

Treatment of Human vein endothelial cells (HUVEC) with increasing concentrations of 
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magnesium is correlated with reduced migration as well as down regulation of PTPN23 

protein levels (77). These results reaffirm the significance role of PTPN23 in endothelial 

migration and angiogenesis. 

Similar effects in cellular migration have been observed in bladder carcinoma. PTPN23 is 

shown to be inversely correlated with cell motility and migration. The research group 

confirmed that epidermal growth factor (EGF) not only enhanced interaction between 

PTPN23 and Src, but also observed mislocalization of Src within the cytosol in presence 

of PTPN23 (78). Src was found to be a key regulator of PTPN23 tyrosine 

phosphorylation, which subsequently controlled FAK phosphorylation status and its 

localization at focal contacts (78). A more recent finding has shown that loss of PTPN23 

function bladder carcinoma is attributed to calcium dependent calpain degradation (79). 

The authors have shown that PTPN23 protein levels are in inverse correlation with those 

of calcium.  

Another interesting observation in context of PTPN23-EGFR interaction was made by 

Doyotte et. al. This study demonstrated that loss of PTPN23 inhibits delivery of cell 

surface signaling molecule EGFR to lysosomal machinery (26). Significance of 

constitutive EGFR signaling is well described in literature. This observation can lead to 

the hypothesis that loss of PTPN23 results in deregulation of intra-cellular protein 

trafficking and EGFR signaling (25). Subsequently, due to lack of lysosomal degradation 

of EGFR, there is an increase in EGFR mediated cell signaling, promoting carcinogensis 

(49).  

PTPN23 is studied to interact with Grb2 and GrpL proteins (80). These are adapter 

proteins belonging to the Grb2 family. It has been established that Grb2 family of 
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proteins co-ordinate a multitude of downstream signaling pathways that are relevant in 

carcinogenesis, from cell adhesion to invasion and metastasis (81). PTPN23 was found to 

be interacting with the adapter proteins via His domain, deduced by yeast two hybrid 

screening employing human colon cDNA (80). This finding further strengthens the 

evidence, implicating role of PTPN23 in cancer.  

A wide scale loss-of-function screening of PTPs in breast cancer cell lines, employing 

RNAi-mediated down regulation, identified PTPN23 as a key regulator of cellular 

motility and invasion (13). Specifically, down regulation of PTPN23 leads to epithelial- 

mesenchymal transition of cellular phenotype (13). It is concurrent with increased 

expression of mesenchymal marker proteins and internalization of E-cadherin (13). These 

molecular events are supplemented by marked reduction in cell migration. The study also 

affirmed that Src kinase activity was essential to manifest downstream effect of PTPN23 

depletion (13). In addition, authors identified β-catenin and E-cadherin as novel 

substrates of PTPN23 (13). Authors proposed that loss of PTNP23 in breast cancer cases 

might lead to increase Src kinase activity, subsequently causing increased 

phosphorylation of β-catenin/E-cadherin complex (13). Phosphorylation status of this 

protein complex is crucial in promoting proliferation, growth and invasive properties of 

breast cancer cells.  

Though chromosomal deletion is a common mode of loss of PTPN23, a recent finding 

has suggested potential role of microRNAs and post-transcriptional RNA regulation in 

regulating PTPN23 protein levels. Studies in testicular cancer model have demonstrated 

that PTPN23 protein levels are negatively correlated with mir142, suggesting PTPN23 as 

putative microRNA target (13, 82). Further investigation revealed that PTPN23 functions 



 

60 
  

as a tumor suppressor in testicular cancer, inhibits colony formation on soft agar as well 

as tumorigenesis in xenografts (82).  

In this study, we identified and analyzed SND1-mediated inhibition of PTPN23 

expression in hepatocellular carcinoma. 

Molecular therapeutic approach 

With the advances in research and realization of molecular complexities of human 

disorders such as cancer, emphasis is being laid on developing molecular medicine that 

shows high specificity and increased efficacy. Molecules with unique structural feature 

make it possible to develop specific chemical inhibitors. This approach is especially 

critical for oncogenes, inhibiting their expression and downstream signaling. At the same 

time, tumor specific over expression of proteins that inhibit carcinogenesis allows 

therapeutic application of tumor suppressors via gene therapy. Viral constructs 

identifying and targeting strictly cancer cells are available and efforts are made in 

employing them for successful clinical trials with several known tumor suppressor genes. 

PTPN23, with a strong impact on cellular physiology could potentially be one such tumor 

suppressor that could be successfully employed in cancer management. Strategic 

chromosomal location, often deleted in human cancers, and literature underlining its 

significance in more than one cancer hallmarks, makes this protein a very promising 

candidate for gene therapy.  
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CHAPTER 3 

 

Identification and Understanding Role of PTPN23 in Hepatocellular 

Carcinoma 
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INTRODUCTION 

SND1 regulates gene expression both at transcriptional and post-transcriptional levels. As 

a component of RISC, SND1 mediates RNAi-mediated mRNA degradation (1). 

However, SND1 has also been shown to bind to 3’-UTR of specific mRNAs, increase 

their stability and hence gene expression. SND1 binds to AT1R mRNA and increases 

AT1R mRNA stability (2) and we have shown that activation of AT1R-downstream 

signaling by SND1 also plays an important role in the activation of TGF signaling and 

EMT (3). We hypothesized that in addition to its RNAi function, SND1 might bind to 

additional mRNAs and modulate their half-life, either by increasing stability or directly 

degrading these mRNA.  To identify these mRNAs, we chose to perform RNA 

immunoprecipitation study using anti-SND1 antibody employing a HCC cell line 

expressing high basal level of SND1. RNA sample was amplified and subjected to 

sequencing for identification of genes. From a milieu of genes, we chose nine genes that 

show 10 fold amplification in SND1 IP as compared to the control IgG IP. After initial 

expression screening, we focused on PTPN23 because of its role as a tumor suppressor 

(4). We hypothesized that SND1 might bind PTPN23 and degrade it and this 

downregulation of PTPN23 by SND1 might contribute to tumor promoting function of 

SND1. We also explored the potential role of PTPN23 as a tumor suppressor in HCC 

since PTPN23 has not been studied in HCC before. We designed our experiments to 

interrogate these questions. 
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MATERIALS AND METHODS 

1. Cell culture 

QGY-7703, Hep3B, Huh 7 and HepG3 human HCC cell lines were cultured in 10% 

FBS containing DMEM cell culture media (Life Technologies #12491-015, #11095-

072), at 37°C in CO2 incubators, under aseptic conditions. Hep3B clones stably 

overexpressing SND1 (H-17) and QGY clones with siRNA mediated stable knock 

down of SND1 (QGYsh2, QGYsh24) were also cultured under similar conditions (1). 

Transient transfection of QGY-7703 was carried out with pcDNA3.1-2Flag-PTPN23 

construct. For experimental control, QGY-7703 were also transfected with empty 

vector pcDNA3.1, under similar condition. For colony formation assay, 2000 cells 

were plated in 6-cm dishes and colonies > 50 cells were counted after 2 weeks 

2. RNA- immunoprecipitation and Sequencing  

QGY-7703 was employed for immunoprecipitation, using Magna RIP™ RNA-

Binding Protein Immunoprecipitation Kit (Millipore EMD #17-700). Rabbit anti- 

SND1 (Sigma) was used as primary antibody. Extracted RNA sample was amplified 

and sequenced to identify target genes. Illumina TruSeq RNA sample preparation kit 

was used for preparing RNASeq library, which was sequenced on Illumina 

HiSeq2000 platform. RNA-Seq libraries were pooled together to aim about 25-40M 

read passed filtered reads per sample. All sequencing reads were aligned with their 

reference genome (UCSC human genome hg19) using TopHat2 and the Bam files 

from alignment were processed using HTSeq-count to obtain the counts per gene in 

all samples. The counts were read into R software using DESeq package and plot 
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distributions were analyzed using Reads Per Kilobase Million (RPKM) values. Data 

was filtered based on low count or low RPKM value (<40 percentile). Pairwise tests 

were performed between each group using the functions in DESeq. Genes showing 

absolute fold-change of >2, False Discovery Rate (FDR) of <0.1 and p-value of <0.01 

were selected. Gene cluster analysis was performed using bioinformatics tools for 

gene ontology such as KEGG. 

3. Tissue microarray 

Human HCC tissue microarray from Imgenex (IMH360) was used. For 

immunostaining, Rabbit anti-PTPN23 (Sigma Aldrich #HPA016845) was used at a 

concentration of 1:100.  

4. Immunohistochemistry 

Tissue sections of human HCC tumors and corresponding non-neoplastic tissue 

sections were obtained from Liver Tissue Cell Distribution System (LTCDS). Rabbit 

anti-PTPN23 (Sigma Aldrich #HPA016845) was used at a concentration of 1:100 as 

primary antibody. Standard protocol for immunohistochemical staining was followed.  

5. Isolation of total RNA, cDNA synthesis, Reverse Transcriptase PCR and qRT-

PCR 

Total RNA was extracted from HCC cell lines or mouse tissues using the miRNAeasy 

Mini Kit (QIAGEN). cDNA preparation was done using cDNA Synthesis Kit 

(Applied Biosystems). Real-time PCR (RT-PCR) was performed using an ABI ViiA7 

fast real-time PCR system and specific TaqMan gene expression assays according to 

the manufacturer's protocol. For RT-PCR, gene specific primers, spanning 300-400 



 

71 
  

base pair sequence were obtained from Nucleic acid Research Facility (NARF) at 

Virginia Commonwealth University. Standard PCR protocol was used. 

6. Western blots 

Cell lines described above, were lysed in 1.5% DDM lysis buffer. Protein sample was 

loaded at a concentration of 50μg/μl on 8% SDS-PAGE gel. Rabbit anti-SND1 

(Santacruz Biotechnology Inc. #sc-67128), rabbit anti- PTPN23 (ProteinTech 

#10472-1-AP) and mouse anti- GAPDH (Santacruz Biotechnology Inc. #sc-166545) 

were used as primary antibodies at 1:1000 concentration, in 5% blocking buffer. Anti-

Rabbit and anti- mouse were used as secondary antibodies, used at 1: 2000 and 

1:5000 concentrations, respectively in 5% blocking buffer.  

7. Synthesizing radio-labelled 3’UTR-PTPN23 mRNA probe 

3’UTR sequence of PTPN23 was amplified by PCR and cloned into pGEMT-easy 

vector (according to manufacturer’s protocol) such that target sequence was 

transcribed by T7 promoter (Primer sequence: Fwd; 5’ acaggttttgcctacctggtc 3’ and 

Rev; 5’ acgggccacagaacagggt 3’). Plasmid was linearized using Sca1 restriction 

endonuclease, at 37°C. As a non-specific control, IGFBP-7 pGEMT-easy plasmid 

clone was linearized in a similar way. Linearized plasmids were used for in vitro 

transcription with T7 Maxiscript kit (Life Technologies # AM1312). In the presence 

of radioactive UTP labeled with  32-P (Perkin Elmer) radiolabelled transcription 

products were gel purified on 4% non-denaturing gel and eluted in DEPC water at 

37°C.  
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8. Binding assay 

SND1 protein was synthesized in vitro, employing T7 translation kit (Promega # 

L1171). Protein sample was diluted 1:2 in Buffer D (20 mM HEPES, pH 7.0, 0.1 M 

NaCl, 3 mM MgCl2, 0.4 mM EDTA, 1 mM DTT, 20% glycerol.). SND1 extract was 

incubated with radiolabelled 3’UTR-PTPN23 mRNA, in presence of 10X Binding 

buffer (0.1 M HEPES, pH 7.0, 1 M NaCl.). Non-specific radiolabelled probe was 

used as control reaction. Reaction was carried out at 4°C for 2 hours. 

9. Electrophoretic Mobility Shift Assay (EMSA) 

Binding reaction mixtures were analyzed on a 4% non-denaturing gel. Gel was run at 

200V for 1-2 hours, at 4°C. Gels were dessicated onto Whatmann’s filter paper and 

analyzed by autoradiography.  
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RESULTS  

1. Identification of target mRNAs interacting with SND1  

With strong evidence suggesting SND1 functions as a global regulator of gene 

expression, the aim of this study was to identify mRNAs under direct regulation of 

SND1. This was aimed to understand molecular changes brought about by SND1 by 

modulating gene expression, specific to cancer. For this purpose, we chose to perform 

RNA immunoprecipitation sequencing (RIPSeq). RNA immunoprecipitation 

employing anti-SND1 revealed several target mRNAs to be significantly interacting 

with SND1 protein. Out of the total mRNAs sequenced, those with a Read per 

KiloBase Million (RPKM) value below 45th percentile were filtered out. RPKM value 

was calculated taking into consideration reads per gene and read length. Of the 

remaining mRNAs, only those showing significant enrichment in SND1 IP samples 

(S1-S5) in comparison to the control IgG IP (C1-C3) were considered for further 

analysis. Out of the total mRNAs sequenced, 370 were found to be significantly 

enriched in SND1 IP samples, implying putative association of SND1 protein to the 

respective mRNA transcripts. It was speculated that SND1 regulates expression of 

these genes at post-transcriptional level. Databases such as Gene Ontology 

Consortium were employed to identify biological processes that could be potentially 

regulated by SND1, depending on the mRNAs identified to interact with this protein. 

Critical processes implicated to be under direct SND1 mediated regulation include 

RNA processing and splicing, mRNA metabolism, cell junction organization and 

assembly, angiogenesis and vasculature development (Figure 3.1, 3.2). Bioinformatic 

tools such as KEGG were used for gene clustering and annotation study. Critical 



 

74 
  

pathways identified by KEGG analysis included ECM- receptor interactions, focal 

adhesion and pathways in cancer (Figure 3.1, 3.2). This data analysis helped us infer 

that SND1 affects molecular pathways, via regulation of global gene expression. It 

regulates expression of a milieu of genes, transcriptionally as well as post-

transcriptionally and affects a variety of cellular processes altered in cancer. Based on 

the fold change value, we shortlisted nine genes (Table.1) showing at least a 10 fold 

enrichment in SND1 IP as compared to the control IgG IP. These genes were further 

analyzed to understand SND1 mediated regulation of the respective transcripts. For 

this purpose, mRNA levels of the nine genes were analysed in QGY-7703 cells and 

SND1 knock down clone in QGY (QGYsh24), employing Reverse Transcriptase 

PCR. Out of the nine genes, three genes (PCSK9, PTPN23, PNPLA7) negatively 

correlated and three genes (KCNJ, CELSR2, COL4A2) were in positive correlation 

with SND1 protein levels, whereas three genes (BCAM, AGRN, LAMB3) showed no 

change in mRNA expression (Figure 3.3). Since PTPN23 mRNA levels are 

upregulated in SND1 knock down clones, it was speculated that SND1 negatively 

regulates PTPN23 expression. With relevant literature, role of PTPN23 was further 

studied in detail with respect to HCC. 
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Figure 3.1. Heat Map of RIPSeq data. Heat map indicating the mRNAs enriched in 

SND1 IP samples (S1- S5) as well as the control IgG samples (C1- C3). A total of 370 

mRNAs were significantly enriched in SND1 IP samples in comparison to the IgG IP 

sample. These mRNAs were then filtered based on fold change to shortlist few mRNAs 

significantly interacting with SND1. 

  

Control IgG Samples SND1 IP Samples 

Genes enriched in SND1 IP  Genes enriched in Control IgG IP 
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Figure 3.2 Biological Processes and pathways potentially regulated by SND1. 
mRNAs enriched in SND1 IP samples were found to be significantly involved in above 

mentioned biological processes, as studied using Gene Ontology Consortium database. 

KEGG analysis was used to identify major pathways in which the enriched 370 mRNAs 

were playing an important role. The listed pathways are potentially regulated by SND1, 

as indicated by KEGG analysis of sequencing data. 
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Table 1. A shortlist of nine mRNAs regulated by SND1. A list of nine mRNAs were 

shortlisted on the basis of fold change (>10 value) and significance level, for preliminary 

in vitro screening. Identified mRNAs were speculated to be under SND1 mediated post-

transcriptional regulation. 

  

Gene Id Control mean SND1 IP mean 
Fold 

Enrichment 
P- value Protein Function 

BCAM 84.99 1426.40 16.78 1.73E-65 Cell adhesion 

PCSK9 2.13 34.94 16.39 1.14E-09 
Cholesterol 

homeostasis 

AGRN 695.054 8559.479 12.314 2.21E-31 
Cell – ECM 

interaction 

KCNJ12 5.0861 58.448 11.491 9.43E-14 Senescence 

PNPLA7 2.274 24.514 10.777 1.17E-05 Lipid metabolism 

CELSR2 252.998 2604.322 10.293 1.60E-69 
Circulating Lipid 

Levels 

COL4A2 211.599 2141.286 10.119 6.18E-38 Metastasis 

LAMB3 446.552 4520.898 10.124 1.30E-108 Cell adhesion 

PTPN23 313.245 3144.123 10.037 1.56E-114 Migration/ Invasion 
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2. PTPN23 is down regulated in HCC  

With preliminary studies indicating downregulation of PTPN23 expression in HCC 

and thus suggesting a tumor suppressive function of this protein, it was important to 

observe PTPN23 expression pattern in HCC. Immunohistochemical analysis of 

PTPN23 expression was performed on a tissue microarray (Imgenex) of 38 

hepatocellular carcinoma, 2 cholangiocarcinoma, 10 metastatic hepatocellular 

carcinoma and 9 corresponding non-neoplastic liver tissue samples. Approximately 

40% of these cases demonstrated down regulation of PTPN23 levels (Figure 3.4). 

Immunohistochemical staining was also performed on human HCC sections with 

adjacent non-neoplastic tissue. Loss of PTPN23 expression was specific to neoplastic, 

highly proliferative tissue. PTPN23 expression was also corelated with SND1 protein 

levels in HCC cell lines, at mRNA as well as protein level. SND1 knockdown clones 

in QGY-7703 cell line showed higher PTPN23 mRNA as well as protein expression, 

in comparison to parental cell line (Figure 3.5a). SND1 knock down correlated with 

up to 3 fold increase in PTPN23 transcript level in comparison with parental QGY-

7703 cells (Figure 3.5a) SND1 over-expressing clone (H17) in Hep3B cell line did 

not show significant decrease at mRNA level, though a marked reduction in PTPN23 

protein was observed (Figure 3.5a-b). Overall, PTPN23 mRNA levels were observed 

to be lower in HCC cell lines Huh-7, HepG3 and QGY-7703 in comparison to normal 

hepatocytes (Figure 3.5a). Thus, SND1 protein levels negatively correlated with 

PTPN23 expression in HCC, at transcriptional as well as post-transcriptional level. 

  



 

80 
  

  

Figure 3.4 HCC tissue microarray. Immunohistochemical staining of a HCC 

tissue microarray was performed. Loss of PTPN23 protein expression was 

observed specifically in HCC tissue sections and compared to normal non-

neoplastic tissue sections 
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(a)                                          

 

                                                                           (b) 

Figure 3.5 SND1 protein levels negatively correlate with PTPN23 expression (a): 

Quantitative Real Time PCR analysis showed up to 2-fold decrease in PTPN23 transcript 

levels in human HCC cell lines (HepG3, Huh7, QGY, Hep3B) in comparison to normal 

human hepatocytes. SND1 knockdown clones (QGYsh2, QGYsh24) in QGY-7703 cells 

showed up to 3-fold increase in PTPN23 transcript levels in comparison to parental 

QGY-7703 cells. Not a significant difference is observed in PTPN23 transcript levels in 

SND1 over expressing clones (H17) and parental Hep3B cells. 

Figure 3.5 (b): Western Blot analysis showed upregulation of PTPN23 protein expression 

in SND1 knockdown clones (QGYsh2, QGYsh24). PTPN23 protein levels were 

significantly reduced in SND1 overexpressing clone (H17) in comparison to parental 

Hep3B cell line.    
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2. PTPN23 inhibits cell proliferation in HCC cells 

Since tyrosine phosphorylation dependent signaling is heavily implicated in cell 

proliferation and growth, it was hypothesized that PTPN23 regulates this cellular 

function. For this purpose, we performed colony formation assay in cells 

overexpressing PTPN23. QGY-7703 cells were transfected with pcDNA3.1-Flag-

PTPN23 construct. Cellular proliferation as measured by Colony formation assay 

showed more than 90% decrease in the number of colonies formed by QGY-7703 

overexpressing PTPN23, as compared to control QGY-7703 cells (Figure 3.6). Thus 

it can be inferred that over expression of PTPN23 in cancer cells might inhibit tumor 

growth in vivo, in HCC.  
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Figure 3.6 Overexpression of PTPN23 inhibits cellular proliferation in HCC. QGY-

7703 cells were transiently transfected with PTPN23 pcDNA3.1 construct and empty 

vector pcDNA3.1 as control. Colony formation assay was performed with transiently 

transfected cells. PTPN23 overexpressing cells showed more than 90% reduction in 

colony formation.   
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3. SND1 protein binds to PTPN23 mRNA 

Since RIPSeq does not affirm direct protein-RNA interaction and relevant literature 

indicating this interaction as a potential regulatory mechanism, it was necessary to 

observe SND1 and PTPN23 mRNA interaction in vitro. We performed an in vitro 

binding assay with SND1 protein and 32-P labelled 3’UTR of PTPN23 mRNA, the 

results of which were analyzed using EMSA. This was aimed to help us understand 

how SND1 suppresses PTPN23 expression in HCC. Using T7 MaxiScript kit, 

radiolabelled 3’UTR PTPN23 mRNA was synthesized in vitro. The RNA probe was 

gel purified and utilized for subsequent binding assay. SND1 protein was also 

synthesized in vitro with T7 translation kit. Binding reaction was carried out at 4°C 

for 2 hours and the reaction mixture was analyzed by electrophoretic mobility shift 

assay. A shift in band position was observed when SND1 was incubated with 3’UTR 

PTPN23 (Figure 3.7).  Furthermore, when reaction mixture was incubated at 37°C, no 

corresponding band was observed, indicating absence of radiolabelled mRNA, 

possibly due to SND1 mediated degradation (Data not shown). For further confirming 

specificity of SND1 protein binding to the 3’UTR mRNA sequence, binding 

reactions were subjected to RNase treatment at 37°C for 15 minutes and the samples 

were analyzed by EMSA. IGFBP7 transcript was not observed, whereas a clear band 

of 3’UTR transcript was seen by autoradiography (Data not shown). It was inferred 

that SND1 binds to the 3’UTR and therefore offers protection against RNase 

degradation. Thus, it can be hypothesized that SND1 binds to PTPN23 transcript at 

3’UTR and possibly degrades it under physiological conditions, causing down 

regulation of protein.  
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Figure 3.7. SND1 binds to 3’UTR of PTPN23 mRNA. 32-P radiolabeled mRNA probes 

spanning 3’UTR of PTPN23 and IGFBP7 full length transcript (as positive control) were 

incubated with in vitro translated SND1 protein, at 4°C. Electrophoretic Mobility Shift 

Assay demonstrated a supershift in band position when 3’UTR of PTPN23 is incubated 

with SND1 protein, indicating a protein – mRNA interaction.  
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CHAPTER 4 

 

Discussion and Future perspectives 
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DISCUSSION 

Staphylococcal Nuclease Domain containing protein 1 (SND1) is crucial mediator of 

molecular events that culminate into carcinogenesis. Role of SND1 has been studied 

in multiple cancers as an oncogene, promoting proliferation, invasion, angiogenesis 

and EMT (5-9). In reference to hepatocellular carcinoma, we have previously 

demonstrated that SND1 promotes tumorigenesis using both in vitro assays as well as 

nude mice xenograft models (1, 3, 10). It was also established that functional role of 

SND1 in RNA induced silencing complex (RISC) is one of the critical mechanisms 

via which this protein regulates global gene expression (1). Specifically, we observed 

that SND1 down regulates expression of tumor suppressor genes such PTEN via 

RISC activity employing miR-221(1). There are several reports elucidating role of 

SND1 in regulation of gene expression at transcriptional and post-transcriptional level 

(2, 11, 12). Since SND1 shows RNA binding as well as differentially regulates 

expression of multiple genes employing a diverse array of functions, we were 

interested in identifying target mRNAs that are modulated by SND1 interaction, at a 

post-transcriptional level. The rationale was to understand SND1 mediated changes in 

gene expression and subsequent molecular pathways, in reference to cancer and 

inflammation. We employed RIPSeq approach for this aim and observed a vast 

number of mRNAs potentially interacting with SND1. In accordance to our 

hypothesis, RIP-Seq data identified multiple SND1 interacting mRNAs, mostly 

affecting RNA processing and splicing, mRNA metabolism, cell junction assembly 

and morphology, cell cycle and division, replication, vasculature development and 

angiogensis. The relevance of these pathways in tumor development, cell cycle and 
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signaling further confirms the notion that SND1 mediates dynamic changes at 

molecular level, affecting cellular physiology. Such changes in global molecular 

signaling are key to development of cancer and hepatocellular carcinoma, in 

particular. It should be noted that the mRNAs identified in RIPSeq data are 

speculated to potentially interact with SND1 protein. However, the effect of post-

transcriptional regulation by SND1 on each of them is independent and needs to be 

studied individually, in vitro. 

We selected nine genes with a fold change value >10 and functional relevance for 

further in vitro analysis. Since SND1 is known to specifically down regulate or 

upregulate gene expression, it was necessary to understand SND1 mediated 

regulation of these nine genes. Expression pattern of these mRNAs were analyzed in 

correlation to SND1 protein levels, by Reverse Transcriptase PCR using QGY-7703 

and SND1 knock down clone (QGYsh24). As expected, all nine mRNAs were found 

differentially correlate with SND1 protein levels. Three out of nine genes were up 

regulated whereas three were down regulated in SND1 knock down clones. 

Remaining three genes showed no change in expression in correlation to SND1 

levels. This observation affirms the theory that SND1 modulates gene expression by 

more than one mechanism. There have been reports indicating increased mRNA 

translation conferred by stabilization of the transcript by SND1 protein. We observed 

that PNPLA, PCSK9 and PTPN23 are up regulated when SND1 is knocked down in 

QGY-7703 cells. Down regulation of CELSR, COL4A2 and KCNJ was correlated 

with low SND1 protein levels in knock down clones. This varied observation can be 

attributed to nuclease activity or increased mRNA stabilization and translation by 
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SND1. PNPLA7 is a phospholipase whereas PCSK9 is known to plays a crucial role 

in cholesterol homeostasis. It degrades LDL receptor expression, thus reducing 

cellular intake of LDL. SND1 mediated down regulation of PCSK9 is thus, in 

agreement with increased lipid uptake of hepatocytes, a condition characterized as 

steatosis that initiates inflammation and leads to carcinogensis. PCSK9 is currently 

being pursued as a potential molecular target for familial hypercholesterolaemia (13).  

CELSR2 is identified in a genome- wide meta-analysis study, to be significantly 

associated with increased risk for coronary artery disease and influencing circulating 

lipid levels (14). These findings suggest that SND1 might be a regulator of 

cholesterol metabolism.  COL4A2 expression is altered and significantly associated 

with metastasis in laryngeal cancer (15). In epithelial ovarian cancer cells, COL4A2 

upregulation mediates anoikis resistence (16). Interestingly, three genes BCAM, 

AGRN and LAMB3 did not show a difference in expression levels upon SND1 knock 

down. Detailed mechanistic analysis will help understand the role of SND1 in 

regulating the identified genes in the context of their functional pathways. It is also 

with relevant literature supporting its role as tumor suppressor, was the highlight of 

this study (4, 17, 18). PTPN23 is so far implicated as a potential tumor suppressor in 

breast cancer, where it regulates invasion (18) and testicular cancer, where it’s 

expression is lost as result of miR142-3p mediated degradation (17). Preliminary 

investigation in HCC tumor samples by immunohistochemical approach reveal that 

PTPN23 expression is lost in HCC liver sections in comparison to non-neoplastic 

normal liver sections. Further analysis proved that SND1 protein levels negatively 

correlate with PTPN23 expression, at a transcriptional as well as post-transcriptional 
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level. According to the results observed, one of the possibilities is that SND1 

represses transcription of PTPN23 as a co-repressor protein. Hence, in SND1 knock 

down clones (QGYsh2, QGYsh24) we observe a 3 fold induction in PTPN23 

transcript levels. An independent mode of regulation would be inhibition of 

translation of the PTPN23 mRNA. This possibility would explain the lack of 

difference in PTPN23 mRNA levels in SND1 overexpressing clones (H17) but a 

significant reduction in protein levels of the same clone. Although it is very critical to 

confirm the qRT-PCR analysis of PTPN23 mRNA levels in SND1 overexpressing 

clone (H17) and rule out any discrepancy. Especially since in subsequent experiment 

we find compelling evidence that SND1 might be degrading PTPN23 transcript, and 

this could also be a potential underlying mechanism of downregulation of PTPN23 

protein in SND1 overexpressing (H17) cells.  

Loss of 3p21.3 chromosomal location, housing PTPN23 gene has been associated 

with multiple cancers (19-21). Tissue microarray data, analyzing PTPN23 expression 

in normal and neoplastic liver tissue sections from HCC patients, helped in 

strengthening the tumor suppressive role of PTPN23. A marked decrease in PTPN23 

protein was observed in tumor tissue as compared to adjacent normal tissue. 

Although, there was no correlation between PTPN23 protein expression and 

progression of HCC stages and metastasis. 

Accordingly, overexpression of PTPN23 protein in a highly aggressive HCC cell line 

(QGY-7703) resulted in severe decrease in cellular proliferation. However, these 

results need to be confirmed in clones with inducible expression of PTPN23 and 

eventually in an in vivo model. Forced overexpression of PTPN23 causes severe cell 
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death (data not shown), emphasizing the necessity to establish inducible clones, 

which can be employed for long term in vitro studies. The exact mechanism, 

underlying reduction in proliferation remains to be studied. It will be interesting to 

understand whether this observation is result of increase in apoptosis or decrease in 

replicative potential of cells. Such studies shall be instrumental in understanding the 

molecular pathways under regulation of phosphatase activity of PTPN23.  

In this study, we were successful in establishing the SND1- PTPN23 interaction in 

vitro. According to the observation by EMSA, in vitro translated SND1 protein binds 

to 3’UTR region of PTPN23 mRNA at 4°C, under conducive conditions. This 

binding interaction between SND1 and 3’UTR of PTPN23 transcript was observed to 

be a specific event and presumed to lead to mRNA degradation. This assumption was 

based on the observation that the binding reaction mixture comprising of SND1 and 

3’UTR-PTPN23 transcript, incubated at 37°C, for 2 hours, showed no band in 

EMSA analysis (data not shown).  

Studies so far have deduced that this phosphatase interacts with critical kinases such 

as Src and Focal Adhesion kinase (FAK) to inhibit cellular migration (22, 23). Initial 

studies have confirmed decrease in Ha-Ras mediated cellular transformation and 

proliferation, upon over expression of PTPN23 (4). There is also strong evidence 

implicating role of PTPN23 in endothelial migration regulating angiogenesis, 

migration of cancer cell lines as well as inhibition of invasion in breast cancer 

patients (24). These studies, emphasizing role of PTPN23 in manifesting hallmarks of 

cancer, indicate that reviving PTPN23 expression in cancer cells specifically, should 
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ameliorate disease condition. PTPN23 expression is expected to manifest as a 

protective mechanism against tumorigenesis in in vivo mice model.  

Employing SND1 as a therapeutic target is at a risk of affecting global molecular 

networks, with increased chances of unfavourable downstream effects. However, it 

seems interesting to target SND1 specifically within tumor cells, and subsequent 

reduction in carcinogenesis. With a unique Tudor-SN fusion protein domain, 

specificity and high efficacy drug targeting is not a far reaching goal. Loss of SND1, 

an anti-apoptotic protein is expected to induce wide scale cellular death. It should also 

allow up regulation of tumor suppressors, which subsequently induces cell death. If 

targeted restrictively to cancer cells, SND1 is a very promising candidate in 

molecular drug development.  

Alternatively, specific relevant downstream targets of SND1 would be potential 

molecular therapy candidate genes. Due to high significance studies proving role of 

PTPN23 as a tumor suppressor gene, testing its therapeutic potential on liver specific 

SND1 transgenic model or a xenograft study with adeno-associated viral construct of 

PTPN23 seems promising.  

According to current findings, SND1 and PTPN23 are crucial for HCC development 

as well as progression. Pursuing detailed studies on understanding function of 

PTPN23 in cancer, specifically HCC, employing in vitro studies with stable clones 

and eventually an in vivo model, would be an interesting future direction.  
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CONCLUSION AND FUTURE DIRECTION 

SND1 is known to orchestrate a series of changes that affect global gene expression 

and brings about cellular transformation. It regulates gene expression employing 

multiple unique mechanisms that function at transcriptional as well as post-

transcriptional level. With increasing relevance of studies on SND1 in the context of 

carcinogenesis it is important to elucidate the molecular mechanisms underlying 

SND1 activity. Studies so far suggest it is a promising molecule for clinical 

investigation and targeted therapeutic management of cancer. Considering the 

pleiotrophic functions of SND1, one important question that has not been addressed is 

that how important is SND1 for maintaining normal physiological function including 

growth and development. An SND1 knockout mouse, conditional and global, will not 

only provide comprehensive insights into the physiological functions of SND1 but 

also will be an ideal model to interrogate the role of SND1 in immortalization, 

transformation, metastasis and overall cancer development and progression. 

Conversely, organ-specific SND1 transgenic mouse will also provide useful insight 

into the oncogenic function of overexpressed SND1. Is SND1 overexpression alone 

sufficient for transforming normal cells into cancer cells? Can SND1 function as a 

driver for tumorigenesis or is it a promoter following initial mutagenic events? Which 

particular aspects of SND1 function are most relevant to confer its oncogenic 

properties? Future studies need to be focused toward these angles.  

PTPN23 is a potential discovery that can be pursued for gene therapeutics. Inducing 

PTPN23 expression in cancer cell specific manner is expected to inhibit 

tumorigenesis by reducing cell proliferation, migration and increasing apoptosis. 
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Whether these in vitro findings remain true under in vivo conditions needs to be 

elucidated by over expression of PTPN23 in a HCC mice model. Though 

embryological expression patterns of PTPN23 have been elucidated, its role in 

maintenance of normal physiology is not known. Hence, a global knock out or liver 

specific knock out of this gene will illustrate its role in maintaining normal 

physiology as well as its tumor suppressor functions. Very little is known so far about 

this protein in normal hepatic physiology, and it would be an imminent question to be 

answered before employing this protein in molecular medicine. First and foremost, 

we need to understand the signaling pathways that are under direct regulation of 

PTPN23. For this purpose, it is necessary to identify the phosphorylated tyrosine 

substrates of the phosphatase activity of this protein.  

Another important discovery in this study is PCSK9, a known regulator of plasma 

LDL levels. PCSK9 is known to bind to LDL receptors, mediate their degradation by 

endocytosis thereby causing hypocatabolism of cholesterol in liver and increased 

levels of circulating LDL. Decreased PCSK9 levels correlate with increase in LDLR 

activity and subsequent increase in uptake of LDL in human hepatocytes, such as 

HepG2 and Huh7 (25, 26). Such an increased uptake of LDL within hepatocytes leads 

to hepatosteatosis, which is expected to initiate inflammatory response that progresses 

to HCC. Currently, PCSK9 is also being employed for therapeutic targeting for 

developing therapies against familial hypercholesterolaemia (13). Since steatosis 

induced cirrhosis is one of the major conditions causing HCC development, it would 

be interesting to study SND1 mediated down regulation of PCSK9 and subsequent 

impact on hepatic physiology. 
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There are several other mRNAs identified in RIPSeq analysis, which are implicated 

in lipid metabolism and cholesterol homeostasis, affirming that SND1 might be 

closely regulating these biological processes. 
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