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Doctor Philosophy at Virginia Commonwealth University 
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Professor, Department of Psychology 

 
 
     Amisulpride, a benzamide derivative, is a second generation (atypical) antipsychotic drug 

used to treat both positive and negative symptoms of schizophrenia.  Amisulpride is a relatively 

selective antagonist at dopamine D2 and D3 receptors and at serotonin 5-HT2B and 5-HT7 

receptors.  This is a unique binding profile as compared to both first generation (typical) and 

second generation antipsychotic drugs. It is approved in Europe and displays an atypical clinical 

profile with reduced extrapyramidal motor effects. The drug has a chiral center and is a mixture 

of two optical isomers: (S)-amisulpride and (R)-amisulpride. The therapeutic form of the drug is 

a mixture of these two enantiomers (rac-amisulpride).  The present study used a two-lever drug 

discrimination assay to allow a direct comparison between amisulpride and its two isomers. 

Additionally, substitution testing was conducted with the typical antipsychotics haloperidol and 

chlorpromazine; the atypical antipsychotics olanzapine, clozapine, risperidone, quetiapine and 

aripiprazole; the antidepressants imipramine, fluoxetine, bupropion, mianserin; the anxiolytic 



 
 

 

chlordiazepoxide; and the benzamide derivatives sulpiride, (S)-sulpiride , tiapride, nemonapride 

and zacopride; and selective ligands with receptor mechanisms relevant to amisulpride.  

C57BL/6 mice were trained to discriminate 10 mg/kg rac-amisulpride from vehicle in a two-

lever drug discrimination task for food reinforcement in an average of 35.7 sessions (range 6-89). 

The amisulpride dose-response curve (0.078 – 10.0 mg/kg) yielded an ED50 = 0.64 mg/kg, 95% 

CI [.47, 0.84 mg/kg]. The (S)-amisulpride and (R)-amisulpride isomers fully substituted for 

amisulpride with a significant left-ward shift in the dose-response curve for (S)-amisulpride 

(ED50 = 0.33 mg/kg) as compared to rac-amisulpride and (R)-amisulpride. The benzamide 

derivatives sulpiride and the (S)-sulpiride isomer fully substituted for amisulpride; however, the 

benzamide derivative tiapride produced only partial substitution (76.4% DLR), and nemonapride 

(54.52% DLR) and zacopride (38.64% DLR) did not substitute for amisulpride. None of the 

other tested drugs (antipsychotics, antidepressants, anxiolytics, and selective ligands) substituted 

for rac-amisulpride’s discriminative stimulus. These results showed that the rac-amisulpride 

stimulus was readily acquired in C57BL/6 mice, and that it has a unique and robust 

discriminative stimulus that is dose-dependent, time-dependent and stereoselective and is not 

shared with other antipsychotic or antidepressant drugs. 
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Characterization of the Discriminative Stimulus Properties of the Atypical Antipsychotic   
Amisulpride in C57BL/6 Mice 

 
 

 
Synopsis of Antipsychotic Drugs in the Treatment of Schizophrenia 
 
 Research in the 1950s produced the first effective pharmacological treatments for the care 

of individuals diagnosed with schizophrenia. The first generation antipsychotics (also called  

typical antipsychotics), such as chlorpromazine and haloperidol, proved effective in treating 

some the positive symptoms of the disorder (e.g. hallucinations and delusions) but had serious 

drawbacks, including severe extrapyramidal motor side effects (EPS).  In addition, the typical 

antipsychotics also were not effective in alleviating negative symptoms of the disorder (such as 

depression and anhedonia) and a significant proportion of individuals with the disorder proved to 

be treatment-resistant (J. M. Kane, Honigfeld, Singer, & Meltzer, 1988). Continued research led 

to more effective antipsychotic medications with less unwanted side effects ushering in a second 

generation of antipsychotic drugs known as atypical antipsychotics such as clozapine, 

risperidone, and olanzapine. Clozapine, first synthesized in 1958 by Wander AG, (compound 

HP-1854) is known as the prototypical atypical antipsychotic medication and proved effective in 

treating a range of symptoms of schizophrenia without producing EPS. However, clozapine was 

not without its problems as it was associated with a high incidence of agranulocytosis (a 

condition resulting in reduced production of white blood cells) in certain populations leading to it 

being withdrawn from the marketplace in 1975. It was reintroduced in 1989 in the USA with 

special guidelines and restrictions for use with treatment-resistant schizophrenic patients 

(Meltzer, 1997). This spurred additional research to develop other atypical antipsychotics and 

amisulpride was bought to the market in the mid-1990s in France by Sanofi-Aventis. 

Amisulpride is the focus of this dissertation. It is the intent of this dissertation that an 
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investigation of the discriminative stimulus properties of amisulpride will yield knowledge of the 

drug’s underlying pharmacological mechanisms responsible for the drug’s interoceptive 

(subjective) properties.  Hopefully, this research also will yield valuable information as to the 

unique contribution amisulpride has made in treating schizophrenia as compared to typical 

antipsychotics. 

 
Schizophrenia 
 
     Schizophrenia is a debilitating mental disorder involving major disruptions of perception, 

cognition, emotion, and behavior. Its cause remains a persistent and challenging mystery. The 

consequences for the individual and society are profound as most patients suffer from a lifetime 

of psychiatric disability, periodic hospitalizations, poor social adjustment, and disrupted family 

relationships. The overall U.S. cost of schizophrenia in 2002 was estimated at $62.7 billion (Wu 

et al., 2005). While there is some variation across countries and by race/ethnicity the worldwide 

prevalence rate for the disorder is approximately .07 % (Saha, Chant, Welham, & McGrath, 

2005). Schizophrenia typically has an early onset appearing in late adolescence and the early 20s, 

and rarely does it affect individuals older than 45 years old (Mueser & McGurk, 2004). 

Compared to women, men tend to experience symptoms earlier, have a slightly higher incidence 

of the illness and respond more poorly to treatment (Cocchi et al., 2014; M. V. Seeman, 1982). It 

appears across all economic, social and cultural borders and it is a devastating disorder, with 

4.9% of schizophrenics committing suicide during their lifetime, usually near illness onset 

(Palmer, Pankratz, & Bostwick, 2005). The etiology of schizophrenia is complicated and still 

unclear. Quite a few factors have been implicated. Genetic factors have been found to play a role 

as the illness appears to run in families (Sullivan, 2005); however, the role of genetics is 

complicated by the fact that monozygotic twins have a concordance rate of 50% for 
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schizophrenia implying that other environmental or organic factors play a significant role as well 

(Owen, Craddock, & O'Donovan, 2005). Research indicates that an interaction of genes and 

environmental factors such as exposure to viruses, prenatal malnutrition, complications during 

birth, and other unknown psychosocial variables play an important role in the development of 

schizophrenia (Fatemi & Folsom, 2009; Mirsky & Duncan, 1986). Other theories emphasize the 

role of brain pathology, neurodevelopmental factors, brain chemistry and the more recent 

plethora of studies surrounding epigenetic factors (Fatemi & Folsom, 2009; Gavin & Floreani, 

2014; Hyde & Weinberger, 1990; Snyder, 1976; Trimble, 1991).  Historically, psychiatry has 

progressed from merely observing symptoms to defining symptom clusters as part of an illness 

associated with a disorder and patterns of recovery. In 1896 the German psychiatrist Emil 

Kraepelin used the term “dementia praecox” (early dementia) to distinguish the dementia (and 

psychosis) that struck people in the late teens and early twenties from that seen in the elderly. 

Additionally he developed the first list of symptoms associated with the disorder emphasizing 

thought disorders.  In 1911, the Swiss psychiatrist Eugen Bleuler coined the term 

“schizophrenia” from the Greek meaning split-mind (Tsuang, Faraone, & Green, 1999) in an 

effort to clearly differentiate the disorder from late onset dementia. Bleuler also detailed 

differences between the two in terms of onset, duration and possible remission/recovery  (B. J. 

Cohen, 2003). 

Symptoms. The Diagnostic and Statistical Manual of Mental Disorders (5th ed.; DSM-5) 

(American Psychiatric Association, 2013) is the most widely accepted reference used by 

clinicians and researchers for the classification and symptomatology of mental disorders. Table 1 

shows the DSM-5 diagnostic criteria for schizophrenia.  Generally speaking, for a diagnosis of 

schizophrenia, an individual is required to exhibit two (or more) of the following symptoms for a 
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Table 1.  
 
Diagnostic criteria for schizophrenia 
 

Diagnostic Criteria for Schizophrenia Disorder 
 

A. Two (or more) of the following, each present for a significant portion of time during a 1-
month period (or less if successfully treated). At least one of these must be (1), (2), or (3): 

1. Delusions. 
2. Hallucinations. 
3. Disorganized speech (e.g., frequent derailment or incoherence). 
4. Grossly disorganized or catatonic behavior. 
5. Negative symptoms (i.e., diminished emotional expression or avolition). 

B.  For a significant portion of the time since the onset of the disturbance, level of functioning in 
one or more major areas, such as work, interpersonal relations, or self-care, is markedly below 
the level achieved prior to the onset (or when the onset is in childhood or adolescence, there is 
failure to achieve expected level of interpersonal, academic, or occupational functioning). 
C.  Continuous signs of the disturbance persist for at least 6 months. This 6-month period must 
include at least 1 month of symptoms (or less if successfully treated) that meet Criterion A (i.e., 
active-phase symptoms) and may include periods of prodromal or residual symptoms. During 
these prodromal or residual periods, the signs of the disturbance may be manifested by only 
negative symptoms or by two or more symptoms listed in Criterion A present in an attenuated 
form (e.g., odd beliefs, unusual perceptual experiences). 
D.  Schizoaffective disorder and depressive or bipolar disorder with psychotic features have been 
ruled out because either 1) no major depressive or manic episodes have occurred concurrently 
with the active-phase symptoms, or 2) if mood episodes have occurred during active-phase 
symptoms, they have been present for a minority of the total duration of the active and residual 
periods of the illness. 
E.  The disturbance is not attributable to the physiological effects of a substance (e.g., a drug of 
abuse, a medication) or another medical condition. 
F.  If there is a history of autism spectrum disorder or a communication disorder of childhood 
onset, the additional diagnosis of schizophrenia is made only if prominent delusions or 
hallucinations, in addition to the other required symptoms of schizophrenia, are also present for 
at least 1 month (or less if successfully treated). 
 
Adapted from Diagnostic and statistical manual of mental disorders (5th ed). (American 

Psychiatric Association, 2013) 
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significant portion of time during a 1-month period: delusions, hallucinations, disorganized 

speech, grossly disorganized or catatonic behavior and the presence of negative symptoms, e.g. 

depression (Criterion A). Additionally, for a significant portion of time since the onset of 

disturbance, the individual should exhibit social/occupational dysfunction in areas such as work, 

school, and interpersonal relations or markedly below normal self-care (Criterion B). These 

symptoms should persist for at least 6 months (Criteria C) and the clinician should rule out both 

Schizoaffective Disorder and Mood Disorder (Criteria D). The diagnosis is precluded if the 

disturbance is due to the direct physiological effects of medication or substance abuse       

(Criteria E). Finally, if the individual has a history of Autistic Disorder or another Pervasive 

Developmental Disorder, the additional diagnosis of schizophrenia should be applied only if 

prominent delusions or hallucinations are present. 

     British psychiatrist and researcher Timothy Crow proposed that the symptoms of 

schizophrenia be further refined into two main categories, positive and negative symptoms 

(Crow, 1980).  Positive symptoms are produced by the individual that are outside the usual 

behavioral repertoire of human beings. That is, they are behaviors that exist, which should not be 

present, such as auditory hallucinations (hearing voices), delusional thoughts (being persecuted), 

or rambling and incoherent speech (word salad). The individual may also exhibit bizarre motor 

behaviors such as purposeless and unstimulated motor activity (catatonic excitement).  

      Disorganized thinking. The most pronounced positive symptom of schizophrenia is 

disorganized thinking. Individuals with the disorder often express thoughts that are loosely 

connected, appear in random order, and bear little association to relevant situations. Further, 

thoughts are not expressed in coherent, meaningful language.  Disorganized thinking is mainly 

seen in the form of many varied delusions and distinguishing among them can be difficult  
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(Spitzer, 1990).  Simply, delusions are false beliefs not subject to change by reason or experience  

(Tsuang et al., 1999). Individuals may express delusions of grandeur, such as thinking one is a 

famous movie star, one is omnipotent, or is all-knowing. Further, delusions can be expressed in 

the form of control; for example, believing that others are controlling one’s thoughts or that one 

is controlling the thoughts of others. 

     Cognitive impairments. Closely related to disorganized thinking are other cognitive 

impairments. Previously, the loss of normal cognitive abilities has been framed as a negative 

symptom; however, due to its unique characteristics, DSM-5 delineates cognitive impairments 

into a separate category of symptoms. Most schizophrenics have some degree of cognitive 

deficiency (Meltzer, Thompson, Lee, & Ranjan, 1996). These include: disorganized thoughts, 

difficulty concentrating/and or following instructions, difficulty completing tasks, memory 

problems, impairments in delayed recall, visuomotor skills, distractibility, impairments in 

delayed recognition, perceptual skills, and IQ (Keefe, 2007). The degree of cognitive impairment 

is important as it is a major predictor of the individual’s functional outcome (Green, Kern, Braff, 

& Mintz, 2000). The more severe the cognitive deficit, the more difficult it is to treat the patient 

and the less favorable the outcome. The National Institute of Mental Health established the 

MATRICSTM initiative (Measurement and Treatment Research to Improve Cognition in 

Schizophrenia) to clarify for researchers how the issue of cognitive deficits should be 

approached (Green et al., 2004).  Initiatives such as these will hopefully stimulate research 

toward the development of novel therapeutic agents tailored specifically for cognitive 

impairments associated with schizophrenia. Until such cognitive deficits are clearly defined from 

other symptoms of the disorder, the burden falls on pharmaceutical companies to empirically 

demonstrate the efficacy of a drug promoted for the treatment of schizophrenia or, failing that, 
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delineate which symptoms a promised treatment will and will not provide therapeutic relief 

(Laughren & Levin, 2006). 

Disorganized behavior. Disorganized behavior is another salient symptom of 

schizophrenia. Disorganized behavior is defined as behaviors that are not in accord with the 

usual, customary socially acceptable repertoire of behaviors and does not express clear intent and 

purpose. A common example of such behavior is a motor disturbance known as catatonic 

behavior. This may consist of episodes of uncontrolled, agitated, and disorganized behavior, such 

as pacing around a ward aimlessly. Behavior can appear repetitive, hyperactive, destructive and 

even violent. The schizophrenic patient may exhibit mannerisms, habitual movements that 

usually involve a single body part such as, grimaces, tics, moving lips soundlessly, fidgeting with 

fingers, or hand wringing. At the opposite extreme, catatonic behavior may be expressed as a 

complete absence of motor actions, such as sitting rigid and motionless in a chair for hours on 

end, unresponsive to external stimuli. 

Negative symptoms. While positive symptoms are the most pronounced symptoms of 

schizophrenia, negative symptoms are no less troublesome. Negative symptoms are behaviors 

that should normally be present, but are absent (Andreasen, Flaum, Swayze, Tyrrell, & Arndt, 

1990). Negative symptoms may be expressed in the form of a marked decrease or almost absence 

of cognitive, emotional, and motor behaviors. Typical examples would include: avolition (lack of 

initiative), blunt, flat or restricted affect (emotionally void), anhedonia (lack of pleasure), alogia 

(absence or poverty of speech), poor eye contact, decreased spontaneous movements, and 

diminished emotional responsiveness as seen in the muted ability to feel intimacy or closeness to 

others. The catatonic stupor, a total lack of movement and verbal behavior, is an extreme 

example of a negative symptom. A person may appear poorly groomed, unable to persist at a 
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task, and withdrawn from social activities sitting motionless in a chair for hours on end, 

completely unresponsive to environmental stimuli (Will, 1972). Traditionally, negative 

symptoms have proven to be more difficult to treat than positive symptoms (Möller, 1998). Such 

symptoms  clearly underscore the fact that schizophrenia  results in a marked loss of the basic 

behavioral components necessary for effective social interaction (Curran & Monti, 1982).   

          No two individuals with the disorder present with identical symptoms; each patient has a 

unique combination of behavioral and cognitive difficulties. Indeed, only a few of the symptoms 

need be present for a diagnosis of schizophrenia to be made. DSM-5 cautions that there is not 

“one type” of schizophrenia and its authors saw fit to drop all previous schizophrenic subtypes 

that appeared in earlier versions of the manual such as paranoid, disorganized, catatonic type, 

etc. Current thinking emphasizes the presence of specific symptoms within a continuum and a 

combination of positive or negative symptoms unique to each individual. 

Pharmacological Treatments for Schizophrenia 

            Throughout history, the treatment of individuals with schizophrenia and related disorders 

has been nothing if not misguided, ineffective and, in many cases, inhumane. Those afflicted 

with the disorder were subjected to a wide range of treatments such as beatings, isolation, 

bloodletting, crude medical procedures, exorcism, and generally restricted to asylums or 

imprisoned in jails under notorious and dehumanizing conditions (Alexander & Selesnick, 1966). 

The French physician Philippe Pinel (1745-1826) was the first advocate for the development of 

more humane treatment of mental patients. Pinel promoted a medical model of mental illness 

based on the belief in organic causes for mental illness (Pinel, 1804). Pinel was one of the early 

founders of psychiatry through his work at the Bicêtre Hospital in Paris, and he is remembered as 

the “father of psychiatry.” Yet, even with care for the mentally ill generally improving 
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throughout the late 1800s and through most of the 1900s, most individuals with schizophrenia 

were still confined to institutional care with little in the way of hope for treating the disorder. By 

1955, more than half a million psychotic patients in the United States were confined to mental 

institutions (Julien, Advokat, & Comaty, 2010). From today’s perspective, it is difficult to 

fathom how the treatments pursued at that time could have ever been seen as therapeutic and as 

advanced medical practices. Treatments included carbon dioxide (CO2) inhalation (Lovenhart, 

Lorenz, & R.M., 1929), injections of apomorphine or the barbiturate sodium amytal (Thorner, 

1935), comas induced by insulin (Sakel, 1937), convulsive treatment induced by injections of 

camphor and metrazol (von Meduna, 1935), and electroconvulsive shock (Cerletti, 1956; Shorter 

& Healy, 2007).  Hindsight bias aside, one might suggest that these treatments could be 

considered the prelude to the first pharmacological treatments for schizophrenia.  

First generation typical antipsychotic medications.  The development of 

pharmacological treatments for schizophrenia began in the 1940s with the French surgeon Henri 

Laborit  (Hamilton & Timmons, 1994). Convinced that a patient’s own fears of surgery were a 

major attributing factor to many of the deaths associated with surgery, Laborit experimented with 

various drugs to reduce presurgical anxiety. In 1950, S. Courvoisier and her associates tested 

Paul Charpentier’s new compound chlorpromazine (4560 RP) discovered while Charpentier was 

working for the French pharmaceutical company Laboratoires Rhône-Poulenc (Charpentier P & 

Jacob R, 1952). Courvoisier found that it prolonged sleep induced by barbiturates in rodents and 

inhibited conditioned avoidance-escape responding in mice (Pichot, 1996). The conventional 

sedatives at that time merely blocked autonomic responses but had no antianxiety (anxiolytic) 

effect. Laborit experimented with chlorpromazine combining it with promethazine and an 

analgesic to produce a presurgical “lytic cocktail” which indeed lessened presurgical fears 
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(Laborit, Huguenard, & Alluame, 1952). When administered prior to surgery, patients became 

calm, mildly sedated, and the post-surgical complications and death rates were greatly reduced. 

This conscious but nonchalant state (being indifferent to what occurs around them) would come 

to be known as a “neuroleptic” state from Greek world lepsis (seizure), thus to “seize” the 

neuron. Laborit’s cocktail-induced state bore a striking resemblance to the detached state and 

behaviors exhibited by individuals with schizophrenia such as emotional flatness, apathy, and a 

loss of initiative. Thus, drugs treating this detached schizophrenic state came to be known as 

“neuroleptics” and represent the first-generation (typical) of antipsychotic drugs  (Julien et al., 

2010). These typical antipsychotics were derived from a class of drugs known as phenothiazines 

and were the first drugs to successfully treat the symptoms of schizophrenia. Laborit correctly 

predicted that the main ingredient in his “lytic cocktail”, chlorpromazine, may have application 

for psychiatric disorders (Stip, 2002). As the history of pharmacological agents demonstrates, 

drugs effective for the treatment of one medical condition often lead to the drug being used for 

the treatment of other medical conditions (W. W. Shen, 1999). Excitement grew over the use of 

chlorpromazine when Parisian psychiatrists Hamon, Delay and Deniker used it in psychiatric 

hospitals with astounding results (Deniker, 1990). It quieted down many frenetic positive 

symptoms of individuals with schizophrenia and related disorders, although it did little to treat 

depression. In a short period of time, it was marketed in France for the treatment of 

schizophrenia. In 1953 it was brought to the European market under the trade name Largactil®. 

The drug’s powerful effect in managing some of the symptoms of schizophrenia led to its 

expanded use throughout Europe and North America. It was approved for use in the United 

States in 1955 and marketed under the trade name Thorazine®. The discovery of the therapeutic 

effects of chlorpromazine sparked what has come to be known as the drug revolution in 
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psychiatry (Lopez-Munoz et al., 2005). Chlorpromazine’s impact cannot be overstated. This was 

the beginning of psychopharmacology and ushered in a new era in the treatment of mental 

disorders (Thompson, 1997). 

Following the introduction of chlorpromazine, the late 1950s and 1960s would see the 

development of other neuroleptics, such as haloperidol, benperidol, droperidol, loxapine and 

molindone, all from a class of drugs known as butyrophenones (Julien et al., 2010). These typical 

neuroleptics shared a similar mechanism of action: reducing dopamine activity in the brain, 

chiefly as antagonists at dopamine D2 or D2-like receptors (Meltzer, 1991).   

As clinical practice has shown, dopamine antagonism proved to be rather important, if 

not indispensable, for the therapeutic effects of antipsychotic medications. However, dopamine 

antagonism is also responsible for the undesirable extrapyramidal motor side effects. 

Additionally, dopamine antagonism (alone) has been found to be ineffective for treating the 

negative symptoms of schizophrenia. The extrapyramidal system is a neural network found in the 

central nervous system that is part of the motor system responsible for involuntary reflexes and 

modulation of movement (i.e. coordination). It is located primarily in the reticular formation of 

the pons and medulla, and target neurons in the spinal cord involved in reflexes, locomotion, 

complex movements, and postural control. These tracts include the nigrostriatal (mesostriatal) 

pathway, basal ganglia, cerebellum, the vestibular nuclei, and different sensory areas of the 

cerebral cortex and serve regulatory functions by moderating motor activity without directly 

innervating motor neurons (Purves et al., 2001). Extrapyramidal motor side effects are often 

devastating and in some cases, permanent. They may include: Parkinsonian-like tremors, 

rigidity, involuntary tics, involuntary movements and body restlessness known as akathesia 

(Jeste & Caliguiri, 1993).  Another side-effect noticed by clinicians of early neuroleptic drugs 
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was tardive dyskinesia, a devastating neurological syndrome characterized by repetitive, 

involuntary movements such as grimacing, lip smacking, pursing of the lips, and or excessive 

eye blinking. Sadly, tardive dyskinesia tended to appear late in the course of treatment and often 

after discontinuation of the drug with symptoms continuing for years and was untreatable (Crane, 

1968).  Although such side effects were regrettable, many in the psychiatric field came to view 

such effects as an indication and expectation of whether or not a drug was a true neuroleptic, and 

therefore considered to be a necessary and unavoidable part of therapeutic treatment (van 

Rossum, 1966). The risk of extrapyramidal motor effects, the presence of tardive dyskinesia, the 

failure of the early neuroleptics to alleviate the negative symptoms, was further complicated by 

the fact that many patients were treatment-resistant to the early antipsychotics. This scenario was 

the catalyst for researchers to develop a “second-generation” of antipsychotics. These improved 

medications would be known as “atypical” antipsychotics and provided psychiatrists with 

alternative therapeutic medications that could treat a wider range of schizophrenic symptoms 

with less adverse side effects (Julien et al., 2010).   

Second generation atypical antipsychotic medications. The second-generation 

antipsychotics were introduced into the United States with clozapine in 1989 followed by: 

risperidone (1994), olanzapine (1996), sertindole (withdrawn from U.S. markets in 1998, but 

available in certain European countries), quetiapine (1997), ziprasidone (2001), aripiprazole 

(2002), paliperidone (2006), iloperidone (2009) and asenapine (2009). Amisulpride (Solian®) 

was available in the mid-1990s in Europe and Australia but not in the United States (Julien et al., 

2010).   

Clozapine (Clozaril®) was the first atypical antipsychotic with demonstrated superiority 

over first-generation antipsychotics. It was developed by the European pharmaceutical company 
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Wander Pharmaceutical Company in 1958, later acquired by Sandoz in 1967. It was the 

prototypical second-generation antipsychotic medication and remains, today, as the “gold 

standard” medication for treatment-resistant patients, as well as being the first drug to prove 

effective in treating both the positive and negative symptoms of schizophrenia. (Hippius, 1999; 

Meltzer, 1994).  Clozapine was the first antipsychotic with greatly reduced extrapyramidal motor 

side effects, the major concern with the first-generation drugs (Arnt & Skarsfeldt, 1998a; 

Ellenbroek, 1993a; J. M. Kane et al., 1988). Additionally, clozapine was not linked to tardive 

dyskinesia, which was a significant problem for typical antipsychotic medications such as 

haloperidol (Meltzer & Luchins, 1984).  However, clozapine’s initial success suffered a major 

setback in 1975 when it was linked to agranulocytosis during a clinical trial in Finland that 

resulted in the deaths of several patients (Anderman & Griffith, 1977; Idnpn-Heikkil, Alhava, & 

Olkinuora, 1975; Lahdelma & Appleberg, 2012). Subsequently the drug was voluntarily 

withdrawn from the market. Despite thorough investigations, the exact reason for those deaths 

remains a mystery. However, some clinicians in Europe and the United States continued to use 

clozapine, and the positive results they witnessed led to a groundswell of support for the drug’s 

reintroduction to the general marketplace. This ground swell of support for the drug prompted 

the FDA in 1989 to allow the drug to be used with the restrictions that it carry a “Black Box 

Warning”, combined with the restriction that the drug  be used only for treatment-resistant 

patients with required mandatory and regular white blood cell tests (Volavka et al., 2002). 

Patients are classified as treatment-resistant if their condition shows little or no improvement 

from the administration of two other antipsychotic medications (Chakos, Lieberman, Hoffman, 

Bradford, & Sheitman, 2001; J. Kane, Honigfeld, Singer, Meltzer, & 1988). Due to the medical 

risks associated with agranulocytosis, fear of litigation, and expenses related to blood cell testing 
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clozapine remains closely monitored and limited to a smaller segment of the patients suffering 

from schizophrenia.   

Researchers continued in the development of atypical antipsychotics hoping to prevent 

the agranulocytosis associated with clozapine as well as other unwanted side effects such as 

metabolic syndromes associated with many antipsychotics.  These metabolic syndromes included 

significant weight gain, a propensity to produce glucose intolerance (leading to diabetes), 

elevation in blood lipids, and cardiac electrographic abnormalities (Gupta, Dadheech, Yadav, 

Sharma, & Gautam, 2014). As the second-generation antipsychotics grew in popularity, so did 

their “off label” use for conditions such as depression, bipolar disorder, dysthymia, dementia, 

autism spectrum disorders, anxiety disorders, borderline personality disorder, anger, aggression, 

and various behavioral control disorders. This off label use spurred the coining of new terms for 

these drugs specifying their use in a wider variety of psychiatric conditions. Terms such as mood 

stabilizers and neuromodulators entered the psychiatric lexicon (Crystal, Olfson, Huang, Pincus, 

& Gerhard, 2009). The section below will now profile a rather unique atypical antipsychotic, 

amisulpride, which is the primary focus of this dissertation. 

 
Amisulpride 

      History. Amisulpride was introduced by the French pharmaceutical company Sanofi-

Aventis in the mid-90s, and marketed as Solian®, Sulpitac®, Amitrex® or Soltus®.  Merger 

acquisitions of Sanofi-Aventis delayed amisulpride’s introduction and marketing in the United 

States. Subsequently, Sanofi-Aventis decided not to pursue the U.S. market where numerous 

atypical medications where already present. Thus, amisulpride is not approved by the Food and 

Drug Administration (FDA) for use in the United States, but it is used in Europe (France, 

Germany, Italy, Switzerland, Russia, United Kingdom, etc.) and in Australia to treat psychoses, 
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schizophrenia, and depression (Abbas et al., 2009). It shows clinical efficacy for both positive 

and negative symptoms of schizophrenia with a low incidence of extrapyramidal motor side 

effects (Delcker, Schoon, Oczkowski, & Gaertner, 1990). 

     Amisulpride originated from the development of benzamides, second-generation atypical 

antipsychotics designed to alleviate the positive and negative symptoms of schizophrenia without 

producing unwanted side effects. It became evident that clinically effective drugs for 

schizophrenia share D2 dopamine receptor antagonist properties (Seeman, P, 1992). Dopamine 

receptor occupancy of 50% - 60% in the central nervous system, specifically D2 receptors, 

appears to be necessary to elicit antipsychotic activity. However, increased receptor occupancy 

amounts of 70% - 80% are believed to be responsible for the extrapyramidal motor side effects 

(Farde et al., 1992). The current interpretation of the dopamine hypothesis holds that 

antipsychotic effects of these drugs are linked to activity at limbic dopamine receptors, whereas, 

antagonism of dopamine receptors in the striatum is responsible for extrapyramidal motor side 

effects. The mesolimbic pathway is a key area for memory and motivational behaviors. When 

antipsychotics block the dopamine receptors in this pathway, intense emotions associated with 

schizophrenia are often reduced. Additionally, a blockade of dopamine receptors in the 

mesocortical dopamine pathway produces a reduction of positive symptoms such as 

hallucinations, disordered thinking, and delirium. Antipsychotics that antagonize the nigrostriatal 

dopamine pathway are linked to extrapyramidal motor side effects. Thus, compounds possessing 

selectivity for limbic and mesocortical structures while exerting minimal antagonism on 

nigrostriatal receptors would function as ideal antipsychotic drugs: producing few unwanted 

motor side effects and treating both the positive and negative symptoms of schizophrenia 

(Perrault, Depoortere, Morel, Sanger, & Scatton, 1997). The benzamides met the challenge of a 
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compounds  that were clinically effective through their action of  preferentially blocking limbic 

versus striatal dopamine receptors (Zivkovic, Guidotti, Revuelta, & Costa, 1975).              

  Benzamides. In 1958, the French company Delagrange produced a range of medicinal 

compounds from the benzamides. This class includes, for example, metoclopramide which was 

used to treat gut disturbances. Metoclopramide is a D2 receptor antagonist and a mixed 5-HT3 

receptor antagonist/ 5-HT4 receptor partial agonist (Donnerer, 2003). In 1962, at St. Anne’s 

Hospital in Paris, Psychiatrist Pierre Deniker observed that some patients in the clinic who were 

taking metoclopramide exhibited neuroleptic-like extrapyramidal side effects. Although these 

effects were rare, Deniker hypothesized (correctly) that metoclopramide might be a neuroleptic. 

Delagrange synthesized a wide variety of benzamides and chose sulpiride for antipsychotic 

testing. Animal testing revealed that sulpiride had a lower risk of causing catalepsy, and the 

human studies found it was less likely to be associated with both extrapyramidal side effects and 

tardive dyskinesia (Borenstein et al., 1969). Fortunately, the compound also was effective in 

treating depression and anxiety. The first clinical data on sulpiride’s effectiveness for treating 

psychotic and dysthymia symptoms were presented in Paris in 1968 at the Académie française. It 

was used throughout the 1970s in both France and Japan (Healy, 2002).  Healy notes that had the 

dopamine hypothesis existed at the time of the introduction of sulpiride, it would have created a 

more mysterious puzzle because neuroleptic effects were to become associated with D2 receptor 

antagonism. Sulpiride is a very potent D2 receptor antagonist, Ki = 8.20 (Kessler et al., 1993), yet 

it was associated with fewer extrapyramidal side effects than typical antipsychotics. However it 

was not without its problems including  hyperprolactinemia and the necessity of increased use of 

additional drugs for managing adverse effects, including stomatological, dermatological, and 

musculoskeletal or joint side effects, constipation, and pneumonia (Lai, Hsieh, Yang, & Lin, 
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2014; Wang & Sampson, 2014). Research continued with the benzamides producing several 

derivatives, including amisulpride. Amisulpride would be found to be an effective medication for 

treating the positive symptoms of schizophrenia, as well as treating depression and dysthymia 

with few extrapyramidal side effects; valued attributes of an “atypical” antipsychotic. 

Receptor binding profile. Amisulpride [(± amino-4-N-(1-ethyl-2 pyrrolidinyl) 

methylsulphonyl-5-methoxy-2-benzamide)] is a substituted benzamide derivative that has a 

relatively narrow range of effects on dopaminergic and serotonergic transmission. Figure 1 

illustrates the chemical structure and molecular weight of amisulpride, including the racemic 

form of the drug (rac-amisulpride) and its two isomers. The racemic form of amisulpride 

constitutes the actual therapeutic drug.  It is used as an atypical antipsychotic and has a unique 

 

   

 

Figure 1.  Chemical Structure of rac-amisulpride and its two isomers. 

 

binding profile. Amisulpride has an affinity for dopamine D2 (Ki = 1.3) and D3 (Ki = 2.4) (P. 

Sokoloff et al., 1992) receptors where it has been shown in vitro and in vivo to display 

antagonistic effects at both of these dopamine receptors (Chivers, Gommeren, Leysen, Jenner, & 

Marsden, 1988; Perrault et al., 1997; Scatton et al., 1994; P Sokoloff, Giros, Martres, Bouthenet, 
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& Schwartz, 1990). Amisulpride binds to serotonin 5-HT7 (Ki = 11.50) receptors (Abbas et al., 

2009) where it displays potent antagonistic activity (Abbas et al., 2009; P Sokoloff et al., 1990). 

Amisulpride also binds to serotonin 5-HT2B (Ki = 13.0) (Abbas et al., 2009).  A recent 

unpublished binding assay found that at the serotonin 5-HT2B receptor, rac-amisulpride displays 

weak antagonistic activity, about 500 fold lower potency, compared to its antagonistic activity at 

serotonin 5-HT7A (Bryan L. Roth, personal communication,  November 11, 2013). The drug has 

no other relevant pharmacological interactions having negligible affinity for other receptors. 

Table 2 presents the known binding profile of amisulpride. It has been well established that the 

effectiveness of many antipsychotic drugs depends on their blockade of postsynaptic 

dopaminergic sites. What is of particular interest with amisulpride is its activity at dopamine D3 

presynaptic autoreceptors. Also, numerous studies confirm that amisulpride has a greater affinity 

for dopamine D3 versus D2 receptors (de Bartolomeis et al., 2013; Scatton et al., 1994; Stone, 

Bressan, Erlandsson, Ell, & Pilowsky, 2005). Ex vivo binding studies in the rat brain show that 

amisulpride is twice as selective for dopamine D3 as for D2 receptors (Scatton et al., 1977).  It 

has particular selectivity for dopamine D3 autoreceptors which are located mainly on cells in the 

limbic system (Möller, 2003; Perrault et al., 1997; Scatton et al., 1977; Scatton et al., 1994; 

Schoemaker et al., 1997).  Rodent studies reveal that at high doses (40-80 mg/kg), it exhibits 

dopaminergic blocking activity on postsynaptic sites similar to that of typical antipsychotic 

medications; however, at low doses (˂10 mg/kg) it increases dopaminergic transmission by 

blocking autoreceptors on the presynaptic terminals (Möller, 2003).  This presynaptic blockade , 

in turn, leads to increased dopaminergic transmission (Sanger, Perrault, Schoemaker, & Scatton, 

1999), a finding supported by laboratory techniques designed to measure extracellular dopamine 

levels which found amisulpride at dose of 1, 3 and 10 mg/kg did indeed increase dopamine  
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Table 2.                    
 
Dissociation rate constants for rac-amisulpride. 
 

 

Constants (Ki, nM) for 5-HT, serotonin receptors; α, adrenergic alpha receptors; D, dopamine 
receptors 
Amisulpride has been tested and has no significant binding (Ki > 10,000 nM) at the following 
receptors: 5-HT1A, D1, D5, α1A, α1B, H1, M1, M5 

 
aSchoemaker et al., 1997; rat cerebral cortex 
bSokoloff et al., 1992; human cloned cDNA cells 
cAbbas et al., 2009; human cloned cDNA cell 
 

 

 

 

 

 

 

 

 

 

 

 

 

                                   Receptor 
Drug 
Name 

5-HT1B 5-HT2A 5-HT2B 5-HT6 5-HT7 D2 D3 D4 α2A 

Rac-
amisulpride 

1,744.0c 2,000.0a 13.0c 4,154.0c 11.5c 1.3b 2.4b 2,369.0c 1,114.0c
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release from presynaptic D3 neurons (Schoemaker et al., 1997).  It is suspected that the increased 

dopamine release via amisulpride’s antagonism of presynaptic autoreceptors is also the 

underlying mechanism responsible for the drug’s therapeutic effect in alleviating depression, a 

topic that will be addressed further in this paper. Dopamine D3 antagonism is of much interest as 

a target for therapeutic neuroleptic agents primarily due to the location of D3 receptors in neural 

circuits, primarily the nucleus accumbens and cerebral cortex, areas believed to be dysfunctional 

in schizophrenia (Schwartz, Diaz, Pilon, & Sokoloff, 2000; Schwartz, Levesque, Martres, & 

Sokoloff, 1993).    

      Theories of atypicality. There appear to be two schools of thought as to why atypical 

antipsychotics, given their binding profile at dopamine  D2 and D3  receptors, show greatly 

reduced risks of extrapyramidal side effects. In one of the first attempts to define atypicality on 

the basis of receptor mechanisms, Meltzer stated that one criteria is that a drug would have a 

higher binding affinity to 5-HT2 serotonin receptors relative to D2 dopamine receptors (Meltzer, 

1989). In a study of 38 typical and atypical antipsychotic medications that have affinities to 

binding sites in rat brains, Meltzer found the distinguishing characteristic of atypical 

antipsychotics was that these drugs exhibit a higher binding affinity for serotonin as compared to 

dopamine receptors. From that study he concluded that a medication characterized as an atypical 

should yield a pKi ratio of 5-HT2/D2 value   1.2.  Interestingly, amisulpride (which was not 

included in Meltzer’s study) does not meet that criteria; its pKi ratio of 5-HT2B/D2 is 0.976 which 

is ˂ 1.2. This illustrates difficulty of defining atypicality solely on the basis of receptor binding. 

Abbas concludes, “Thus, despite having a pharmacological profile reminiscent of a typical 
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antipsychotic in that it exhibits high D2 affinity and low 5-HT2A affinity, amisulpride 

therapeutically resembles atypical antipsychotics” (Abbas, 2010, p. 2). 

     Kapur and Seeman argue an alternative theory known as the “fast-off” theory (Kapur & 

Seeman, 2001). This theory holds that atypical antipsychotics have low affinities for the 

dopamine D2 receptor and are loosely bound to and rapidly released from this receptor. 

Accordingly, atypical antipsychotics bind more loosely to D2 receptors than dopamine itself, 

while typical antipsychotics bind more tightly than dopamine. In a dissociation-time course 

investigation of 31 antipsychotics, Seeman et al. found that atypical antipsychotics such as 

amisulpride dissociate  in less than 60 seconds from dopamine receptors; whereas, atypical 

antipsychotics such as haloperidol dissociate more slowly over a 30-minute time span (P. 

Seeman, 2002). These findings would tend to support the “fast off” theory as a distinguishing 

characteristic separating atypical from typical antipsychotics and possibly be a reason accounting 

for the therapeutic effects of atypical antipsychotics and their reduced incidence of 

extrapyramidal side-effects.  Figure 2 illustrates Seeman’s findings. 

     However, a recent radioligand binding study challenges the notion that the rate of reversibility 

of dopamine antagonism is the salient characteristic of atypicality (Sahlholm et al., 2014) . 

Sahlholm et al. used human GIRK1 and GIRK4 cDNA cells transfected into Xenopus laevis 

oocytes, then, with an electrophysiology-based assay that provides greater temporal resolution 

than in previous studies, they compared the dopamine D2 dissociation rates of the typical 

antipsychotics chlorpromazine and haloperidol to 10 atypical antipsychotics (including 

clozapine, amisulpride, and sulpiride) and 5 experimental compounds, all possessing high 

affinities for dopamine D2 receptors. The results showed that while there was wide variability in 

dissociation rates among the antipsychotics tested, the small and nonsignificant differences 
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observed between chlorpromazine on the one hand and amisulpride, clozapine and quetiapine on 

the other hand do not support the argument that the rate of reversibility of dopamine D2 

antagonism is the distinguishing feature delineating atypical vs. typical antipsychotics. The 

authors concluded that “other factors, such as engagement of serotonin receptors, functional 

selectivity for D2R signaling pathways, or subpopulation – or brain region-selective D2R 

occupancy, may be the critical determinants of antipsychotic atypicality” (Sahlholm et al., 2014, 

p. 154).  Thus, the current trend emerging in the field suggests that the debate is larger than 

dissociation rates or ratios of receptor binding.  The debate is widening and calls a more 

comprehensive explanation of what exactly delineates atypical from typical antipsychotic 

medications. The reason why atypical antipsychotics are more effective than typical 

 
 

 
 
 
 
Figure 2. Dissociation rates of rac-amisulpride and relevant antipsychotics medications. Using 
human cloned D2 receptors were equilibrated in with various tritium-labelled antipsychotic 
drugs followed by a high concentration of raclopride or dopamine to displace the antipsychotic 
drug from the receptor.  The atypical antipsychotics displayed rapid dissociation (˂ 60 seconds), 
olanzapine and sertindole showed a medium dissociation rates, and the typical antipsychotics 
exhibited much slower dissociation rates (from Seeman, P., 2002, p. 30). 
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antipsychotics in treating schizophrenia would have to incorporate a whole host of factors such 

as the role of genetic variations, interactions among other neurotransmitters involved in 

schizophrenia, and other intracellular processes initiated by antipsychotics (da Silva Alves, 

Figee, Amelsvoort, Veltman, & de Haan, 2008).  It may be that the label of “atypical 

antipsychotic” is a therapeutic clinical label and not one derived solely from receptor 

mechanisms. Until these issues are resolved, clinicians will most likely rely on the rule of thumb 

that if a medication treats the major symptoms of schizophrenia (positive and negative) and 

produces less extrapyramidal motor side effects (compared to typical antipsychotics) then said 

medication is referred to as an atypical antipsychotic. 

     The answer to the question of what exactly accounts for the difference in receptor 

mechanisms between typical and atypical antipsychotics also may provide a clue in explaining 

any potential differences found in the discriminative cue properties of atypical antipsychotics 

(e.g. amisulpride) versus typical antipsychotics (e.g. haloperidol) as well as the discriminative 

cue differences among atypical antipsychotics (e.g. amisulpride vs. clozapine, olanzapine, etc.). 

This research hopes to shed more light on this subject. 

 
            Pharmacokinetic properties. The pharmacokinetic properties of a drug address how the 

drug is handled by the body relative to factors such as: amount of drug absorption, distribution, 

time course, elimination, and half-life. Until recently, pharmacokinetic analyses of amisulpride 

in humans have been conducted with assays such as: high performance liquid chromatography 

coupled with UV/visible detection (Péhourcq, Ouariki, & Bégaud, 2003), fluorescence detection 

(Malavasi, Locatelli, Ripamonti, & Ascalone, 1996), single mass spectrometry (Kratzsch, Peters, 

Kraemer, Maurer, & Maurer, 2003), and tandem mass spectrometry (Mogili, Kanala, Challa, 

Chandu, & Bannoth, 2011). Table 3 presents the general pharmacokinetic properties of 



 
 

24 
 

amisulpride in human subjects receiving 50 mg/day for the treatment of dysthymia.  

Interestingly, amisulpride is relatively slow to cross the blood brain barrier (BBB), a factor offset 

clinically by administering the drug in higher doses than other antipsychotics. This slow 

penetration is also responsible for elevated prolactin levels; an adverse side effect discussed later 

in this paper. Amisulpride has been shown to be well tolerated (Widlöcher, Allilaire, Guérard des 

Lauriers, & Lecrubier, 1990). A recommended starting dose for acute schizophrenia is ∼800 

mg/day (Y. Lecrubier et al., 2001).  Using this dose, it has been found that amisulpride is rapidly 

absorbed having an oral bioavailability of ≈ 50% with peak plasma concentrations occurring at 1 

and 3 hours after oral administration, the second peak larger than the first. The drug’s absorption 

rate is significantly reduced by ingestion of a meal with high in carbohydrates, but is not affected 

by a meal high in fat. Protein binding of amisulpride appears minimal and the volume of 

distribution is large (Noble & Benfield, 1999). The total body clearance is 32.8 hours with renal 

clearance at 18.7 hours. Terminal elimination half-life of a single radiolabelled amisulpride dose 

(200mg orally) is 12 hours with 51 – 71% eliminated in feces and 24 – 47% in urine (Bianchetti, 

Canal, & Rosenzweig, 1995; Dufour & Desanti, 1988; Noble & Benfield, 1999).  Amisulpride is 

absorbed via the gastrointestinal tract and evenly distributed to all body systems with minimal  

(≤ 17%) binding to plasma proteins  (Rosenzweig et al., 2002).  Whether administered 

intravenously or orally, elimination occurs mainly via the kidneys. A minor amount is 

metabolized hepatically, and produces two inactive metabolites (Bergemann, Kopitz, Kress, & 

Frick, 2004; Lambert & Naber, 1999; Malavasi et al., 1996).  A study utilizing liquid 

chromatography-tandem mass spectrometry of amisulpride in human plasma found that the 

metabolites of amisulpride to be of minor relevance as less than 5% of the drug undergoes
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Table 3. 
 
Pharmacokinetic properties of rac-amisulpride. 

 

 
In human studies:  
a = mean weight 70.0 ± 7.0 kg 
IV, intravenous; PO, oral; t1/2, elimination half-life; CL, clearance; 
 F, bioavailability; --, not reported 
 
aCoukell, et al., 1996  
bNoble et al., 1999  
cRosenzweig et al., 2002  
dSparshatt et al., 2009 
 

 

Amisulpride Route Dose 
 

t1/2 

(h) 
CL 

(L/h) 
F 

(%) 
Caukell et.al. 
(1996)a 

PO 50 mg 12.1 -- 47 

Nobel & Benfield 
(1999)b 

IV 
PO 

50 mg 
50 mg 

-- 
12 

32.8 
-- 

-- 
≈50 

Rosenzweig et.al. 
(2002)c 

PO 50 mg 1.3 0.1 31.2-41.6 48-51 

Sparshatt et.al. 
(2009)d 

PO 50 mg 12 -- 48 
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metabolism (Gschwend, Ring, & Martin, 2006). The pharmacokinetics of the enantiomers of 

racemic amisulpride reveal that the plasma concentration profiles of (S)-amisulpride and (R)-

amisulpride are closely parallel with (S)-amisulpride showing higher concentrations in a ratio of 

∼1.3 for Cmax and AUC (Rosenzweig et al., 2002). 

     The pharmacokinetic properties of amisulpride in rodents are pertinent to this research. In a 

study just published (Noh et al., 2014), researchers used a rapid and simple chromatographic 

assay to determine amisulpride time course bioavailability  in rat plasma using tandem mass 

spectrometry. Its findings are presented in Figure 3. The assay characterized the time course of 

the plasma concentration of amisulpride at a dose of 10 mg/kg following oral administration in 

three rats. Two peaks are noticeable at about 0.5 and 2.5 h, and the plasma concentrations 

decayed mono-exponentially thereafter. The investigators presented the following 

pharmacokinetic findings: the maximum concentration was 80 ± 18 ng/ml; the elimination rate 

constant was 0.24 ± 0.08 h-1; the half-life was 2.9 ± 1.0 h; the AUC24th was 450 ± 120 ng·h/ml; 

and the total clearance was 22.2 ± 5.8 l/h/kg (Noh et al., 2014). These findings combined with 

that of Perrault et al. (1997) support the one hour pre-session injection time used in this study. 
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Figure 3.   Time course of plasma concentrations of amisulpride in rats after a single oral 
administration of 10 mg/kg amisulpride (n = 3)     (Noh et al., 2014)  
 
 
     Pharmacodynamic properties. The pharmacodynamic properties of a drug account for the 

biochemical and physiological effects of the drug, particularly at receptor sites. A basic 

underlying principle of pharmacology is that any behavioral and psychological effects induced 

by a drug are derived from the drug’s interaction with receptors (Julien et al., 2010). While the 

complete mechanism of action of amisulpride has yet to be determined, it is known that it has a 

high affinity for dopamine D2 and D3 receptors (Cudennec, Fage, Benavides, & Scatton, 1997; 

Schoemaker et al., 1997) in the limbic system and at serotonin 5-HT2B and 5-HT7A also in limbic 

areas (Abbas et al., 2009).  It does not bind to dopamine D1, D4, or D5 receptors to any appreciate 

extent. The drug is unique in that at low doses (≤10 mg/kg) in vivo (rodents) it preferentially 

blocks presynaptic D2 and D3 dopamine autoreceptors, facilitating both dopamine release and 

dopaminergic neurotransmission for limbic rather than striatal receptors. Higher doses of 

amisulpride (while still antagonizing presynaptic autoreceptors) block postsynaptic receptors, 

thereby inhibiting dopaminergic hyperactivity.   (Coukell, Spencer, & Benfield, 1996; R. H. 
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Roth, 1984; Schoemaker et al., 1997). Amisulpride also is significantly more efficacious in 

reducing the negative symptoms of schizophrenia as compared to typical antipsychotic drugs 

such as haloperidol (S. Leucht, 2004; S Leucht, Pitschel-Walz, Engel, & Kissling, 2001; Möller, 

2000).  In vivo preclinical studies (Abbas et al., 2009) verify that amisulpride has potent  5-HT7 

antagonistic effects, making it useful in the treatment of the negative as well as the positive 

symptoms of schizophrenia. Table 4 summarizes the relevant pharmacodynamic properties of 

amisulpride. 

            Selectivity. A brief clarification is in order to discuss what is meant in the 

characterization of amisulpride as a selective dopamine D2, D3 receptor antagonist.  Much 

research has been done unraveling the neurotransmitter dopamine (3-hydroxytyramine,  which is 

synthesized from the amino acid tyrosine) since its discovery almost sixty years ago (Carlsson, 

Lindqvist, & Magnusson, 1957). While dopamine is an integral player in a wide variety of 

normal physiological functions and behaviors, it also is implicated in a host of abnormal 

behaviors. Changes in brain dopaminergic function underlie the dopamine hypothesis of 

schizophrenia (Carlsson, 2001; Creese, Burt, & Snyder, 1976; Snyder, 1976; Snyder, Taylor, 

Coyle, & Meyerhoff, 1970).   

     Dopamine receptors belong to a large class of proteins known as G protein-coupled receptors, 

also referred to as metabotropic receptors. They are a seven-transmembrane domain structure 

coupled to three G-proteins sub units: alpha (α), beta (ᵝ) and gamma (ᵞ). Upon activation by a 

ligand in the extracellular space, the seven-transmembrane structure undergoes a conformational 

change and releases its subunits, each of which can open or close an adjacent ion channel and/or 

initiate a wide variety of intracellular activities. Many of these intracellular activities involve 

second- messenger mechanisms affecting a whole host of functions within the cell such as 
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Table 4. 
 
 Pharmacodynamic properties of rac-amisulpride. 
 
Selectivity for dopamine D2 and D3 receptorsa

In vitro: high affinity for and blockade of human dopamine D2 and D3 receptors (Ki <3nmol/L) 
No appreciable affinity for D1 and D4 or D5 receptors 
Affinity for and blockade of 5-HT2B,  and 5-HT7  but no significant affinity for other serotonin 
receptor types and none for histamine H1, muscarinic, or α-adrenergic receptors 
Ex vivo: higher affinity for D3 than for D2 receptors (selectivity ratio = 2) 
 
Selectivity for limbic structuresb 

Preferential blockade of dopamine agonist-induced hypermotility vs stereotypies, lack of 
induction of extrapyramidal motor side effects 
 
Selectivity for presynaptic D2 and D3 autoreceptors at low dosesb

Preferential blockade of apomorphine-induced yawning and hypomotility; potentiation of the 
incentive value of food in a place preference paradigm 
 
Endocrine effects in humansc 

Mean prolactin level increased from 7.89 (predose baseline) to 36.96 mg/L 5 hours after 
administration of a single 50 mg dose of amisulpride in 21 healthy volunteers; after a further 3 
days of amisulpride administration (50 mg twice daily), predose and postdose (5 hours) prolactin 
levels on day 5 were 41.77 and 47.23 mg/L, respectively 
Endocrine adverse events during amisulpride treatment for dysthymia suggest at least some 
dopamine receptor antagonism at low dosages 
Ki (nM) = binding constant 
 
Ki (nM) = binding constant 
 
Note.  Adapted from (Noble & Benfield, 1999) 
aScatton et al., 1997; rat brain 
bSchoemaker et al., 1997; rat brain 
cNoble et al., 1999; human cloned cDNA cells 
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metabolism, enzyme activity, protein synthesis, and gene expression.  These receptors are 

divided into two major classes on the basis of their structural, pharmacological, and biochemical 

properties (Beaulieu & Gainetdinov, 2011). The classes are D1 subtype receptors (D1 and D5)  

and D2 subtype receptors (D2, D3, D4). Dopamine D1 receptors are found exclusively on 

postsynaptic neurons. Dopamine D2 and D3 receptors are more complex as they are found on 

both presynaptic and postsynaptic sites. The presynaptic sites act as autoreceptors critical for 

negative feedback mechanisms that adjust neuronal firing rate, synthesis, and release of 

dopamine in response to dopamine’s presence in the extracellular milieu (Wolfe & Roth, 1990).  

G-protein receptors represent a dynamic system and amisulpride, through its antagonistic action, 

disrupts the normal dynamic processes of these receptors. 

     While dopamine receptors are distributed throughout the central nervous system, there appear 

to be three main pathways: the nigrostriatal, the mesolimbic and the tuberoinfundibular (Jaber, 

Robinson, Missale, & Caron, 1996). The regional distribution of dopamine receptors and their 

location on the neuron (presynaptic versus postsynaptic sites) is directly related to the function of 

ligands with dopaminergic affinities. D2 receptors are found mainly in the striatum, olfactory 

tubercle, nucleus accumbens, substantia nigra and pituitary. While amisulpride has an affinity for 

D2 receptors, it has a greater affinity for with D3 receptors that possess a more limited 

distribution, primarily in the limbic areas such as the shell of the nucleus accumbens, olfactory 

tubercle and islands of Calleja (Jaber et al., 1996; Missale, Nash, Robinson, Jaber, & Caron, 

1998; P. Sokoloff et al., 1992).  Electrophysiological assays designed specifically to measure the 

effects of amisulpride at D2 and D3 in specific regions of the rat brain (10 mg/kg) confirmed that 

amisulpride does indeed have “limbic selectivity” primarily in the ventral tegmental area (Di 
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Giovanni, Di Mascio, Di Matteo, & Esposito, 1998) confirming earlier research that amisulpride 

increases dopaminergic neuronal activity in the mesolimbic versus the mesostriatal region 

(Schoemaker et al., 1997).  Another measure of selectivity of amisulpride has to do with the 

drug’s functional effect on receptor intracellular signaling transduction pathways.  Dopamine D1 

receptors are generally coupled to Gαs and stimulate the production of the second messenger 

cAMP and the activation of protein kinase A (PKA). Amisulpride has an affinity for dopamine 

D2 class (D2 and D3 receptors) which are coupled to Gαi/o and negatively regulate cyclic 

adenosine monophosphate/protein kinase A resulting in a decrease of protein kinase PKA in 

intracellular activity (Beaulieu & Gainetdinov, 2011; Missale et al., 1998) of which the net effect 

is the inhibition of dopamine levels in extracellular space in postsynaptic sites, and conversely, 

an increase in dopamine on presynaptic sites through a blockade of autoreceptors responsible for 

negative feedback messages, thereby having a disinhibition effect.  In a very relevant study on 

the specific signaling pathway of amisulpride, Park et al., used immunostaining of SH-SY5Y 

human cells to determined that amisulpride (compared to haloperidol) increased the levels of Akt 

and GSK-3ᵝ phosphorylation effectively increasing the levels of phosphor-CREB, BDNF, and 

Bcl-2 regulation of the ᵝ-arrestin 2-dependent pathway via blockade of the D2 receptors. This 

signaling pathway, they believe provides a critical clue as to the mechanism underlying the 

functional effect of amisulpride (Park et al., 2011). Natesan et al. utilized fluorescent 

spectrometry to demonstrate another signaling pathway of amisulpride. With rats as subjects, 

they demonstrated that amisulpride induces c-fos, a protein that is a transcription factor 

instrumental as a mediator in multiple signaling cascade pathways which, in turn, bind to  DNA 

in the nucleus and activate genes, particularly in the limbic regions (specifically the nucleus 

accumbens) when D2/D3 receptor occupancies exceed 60% (Natesan, Reckless, Barlow, 
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Nobrega, & Kapur, 2008). The link between c-fos induction in the nucleus accumbens and the 

therapeutic effects of antipsychotics has been well established, although deeper understanding of 

exactly how this improves the symptoms of schizophrenia remains unanswered (A. Y. Deutch & 

Duman, 1996; A.Y Deutch, Lee, & Iadarola, 1992; Kontkanen, Lakso, Wong, & Castren, 2002). 

Another interesting intracellular action of amisulpride is its region-specific action on gene 

expression (induction). Utilizing an autoradiographic signal assay on sectioned rat brain tissue, 

de  Bartolomeis et al. investigated the effects of postsynaptic signaling  differences, specifically 

gene expression,  between amisulpride and haloperidol.  Specifically, they were investigating the 

different levels of key gene expression between the two drugs and whether those genes are 

region-specific in the brain. The genes of interest were Arc, c-fos, Zif-268, Norbin and Homer ; 

all key regulators of synaptic plasticity and linked to schizophrenia and the pharmacodynamic 

effects of antipsychotic drugs. Results showed that amisulpride (compared to haloperidol) has a 

very unique signaling profile. It impacts preferentially on receptors in limbic forebrain areas and 

initiates a unique pattern of postsynaptic genes in these regions, principally c-fos and Zif-268. As 

well, this gene activity is dose-dependent with a dose range of 10 – 35 mg/kg (de Bartolomeis et 

al., 2013) 

     In summary, regarding amisulpride, the term “selective” refers to four components: first, the 

relative selective affinity of amisulpride for dopamine D2/D3 receptors; second, its brain region 

specificity for limbic versus striatal structures; third, its preference at low doses for presynaptic 

dopamine receptors, while at high doses for postsynaptic receptors, and fourth; its intracellular 

activation of Akt/GSK-3ᵝ-arrestin 2-dependent signaling system and c-fos and Zif-268 induction. 

These factors contribute to the use of the descriptive term of amisulpride being a selective 

benzamine derivative.  
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 Role of dopamine autoreceptors. An autoreceptor is a G-protein receptor situated on the 

membrane of a presynaptic neuron.  Its main function is to serve as a negative feedback 

mechanism, regulating the synthesis and release of neurotransmitters secreted by the neuron that 

the autoreceptor is located on. Once dopamine is released by a presynaptic neuron, it travels 

across the synapse to bind to postsynaptic dopamine receptors and that released dopamine is 

simultaneously detected by the autoreceptor (on the presynaptic site), which triggers a cascade of 

events inside the presynaptic neuron such as regulating the synthesis and further release of 

dopamine; typically this action is a negative feedback response inhibiting the release of 

additional dopamine into the synaptic cleft. As mentioned earlier, rac-amisulpride has been 

demonstrated (particularly at low doses) to have an affinity for and possesses an antagonistic 

effect on dopamine D3 autoreceptors.  In effect, rac-amisulpride inhibits the negative feedback 

activity of D3 autoreceptors resulting in an increase of dopamine in the synaptic cleft. This action 

(in addition to antagonism of dopamine D2 post synaptic receptors) appears to be one of the 

important characteristics of amisulpride in improving cognitive functions in patients with 

schizophrenia, as well as alleviating the negative symptoms of the disorder (Horacek et al., 2006; 

McKeage & Plosker, 2004). 

 Adverse effects.  As with many medications for the treatment of schizophrenia 

amisulpride is not without unwanted adverse effects. Clinical studies in which amisulpride is 

used at low does (50-100 mg/day) for the treatment of depression or dysthymia report  that the 

most common adverse effects are weight gain, headache, dry mouth, somnolence and 

constipation(Noble & Benfield, 1999; Ravizza & Investigators., 1999). Endocrine effects are 

another category of unwanted side effects, including: galactorrhoea, amenorrhoea, breast pain, 

decreased libido, high prolactin risk and menstrual dysfunction (Boyer, Lecrubier, Puech, 
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Dewailly, & Aubin, 1995; Smeraldi, 1998).  Patients receiving higher doses (400-800) for the 

treatment of positive symptoms of schizophrenia report many of the same adverse effects seen 

with lower dose treatment: weight gain and elevated serum prolactin levels (Peuskens, Pani, 

Detraux, & DeHert, 2014). The elevated prolactin levels are caused by the drug’s poor ability to 

cross the BBB, a factor necessitating administering high doses of the drug relative to dosage 

levels for other antipsychotics. As the drug is slow in penetrating the BBB, this causes a 

saturation of dopamine receptors in the periphery, such as the pituitary (which is outside the 

BBB)  contributing to elevated blood prolactin levels (Natesan et al., 2008). Regarding 

extrapyramidal effects, the European First episode Schizophrenia Trial (EUFEST) collected data 

from 50 sites in 13 European countries (including Israel) specifically assessing rates of 

extrapyramidal effects including parkinsonism, akathesia, dystonia and dyskinesia. The study 

(n=490) compared amisulpride (200-800 mg/day) to three other second-generation 

antipsychotics: olanzapine (5-20 mg/day), quetiapine (200-750 mg/day) and ziprasidone (40-160 

mg/day). Results showed that the amisulpride group reported 2.1% of patients showing mild 

parkinsonism, 0% showing akathesia, dyskinesia or dystonia (Janusz K. Rybakowski et al., 

2014). Another multicentered study comparing one group of patients taking amisulpride 400 

mg/day and a second group taking 800 mg/day found only 5% of all patients complaining of 

minor adverse effects such as headache, constipation, abdominal discomfort and somnolence and 

no reports of extrapyramidal adverse effects (Lee et al., 2012).  While many studies report few 

extrapyramidal effects with amisulpride, the European Schizophrenia Outpatient Health 

Outcomes Study conducted a massive 3-year research project (N=7728) on the incidence of 

extrapyramidal symptoms and tardive dyskinesia in patients taking olanzapine, risperidone, 

quetiapine, amisulpride and clozapine compared to haloperidol (Novic, Haro, Bertsch, & 
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Haddad, 2010). The study sought to examine the clinical correlations of the incidence of 

extrapyramidal effects and treatment medication. While the results showed much lower incidents 

of adverse motor effects of those taking atypical antipsychotics versus typical antipsychotics 

(e.g. haloperidol), the incidence of extrapyramidal effects among the atypical antipsychotic 

group were quite interesting. Figure 4 illustrates the results of the European Schizophrenia 

Outpatient Health Outcomes Study. 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Incidence of extrapyramidal effects by treatment cohort in the European 

Schizophrenia Outpatient Health Outcomes Study. A total of 7728 patients began treatment with 

a single antipsychotic drug at baseline. At the beginning of the study, 4893 patients (63%) 

reported no EPS and 6921(89.6%) reported no tardive dyskinesia. After 3 years of treatment, 

there were significant differences between treatment cohorts in the incidence of EPS, which 

ranged from 7.7% (Olanzapine) to 32.8% (depot injection/typical). With olanzapine as the 

reference drug, patients treated with risperidone, amisulpride, clozapine, and both oral and depot 

typical antipsychotics were more likely to develop EPS compared with patients treated with 

olanzapine. 

Note: Adapted from (Novic et al., 2010)  
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Dosage for treatment of depression.  Before proceeding, it is necessary to briefly 

discuss the dysthymia and how is it different from depression (discussed earlier in this paper). 

Both dysthymia and depression are separate mood disorders with many overlapping symptoms 

(depressed mood, disturbed sleep, low energy, poor concentration, suicidal ideation).  Dysthymia 

generally has fewer or less symptoms of depression but it last longer, perhaps as long as two 

years. It is incorrect to view dysthymia as a mile form of depression as it lacks a number of 

signature symptoms of depression, most notably: anhedonia, psychomotor symptoms (e.g. 

lethargy or agitation), physical symptoms and the fact that an episode of depression need last 

only two weeks versus two years (American Psychiatric Association, 2013).  Treatment of 

dysthymia is similar to that for depression: psychotherapy and medication.  

     There are clinical studies validating the effectiveness of amisulpride in the treatment of 

dysthymia (Racagni, Canonico, Ravissa, Pani, & Amore, 2004; Rocca et al., 2002; Zanardi & 

Smeraldi, 2006).  There are studies where amisulpride is used in the treatment of both dysthymia 

and depression (Komossa, Depping, Gaudchau, Kissling, & Leucht, 2010). And there are clinical 

studies validating the effectiveness of amisulpride for depression and the negative symptoms of 

schizophrenia  (Danion, Rein, & Fleurot, 1999; Kim et al., 2007; Y. Lecrubier, Quintin, 

Bouhassira, Perrin, & Lancrenon, 2006; Peuskens, Moller, & Puech, 2002; J.K. Rybakowski et 

al., 2012).  It is a challenge attempting to cleanly delineate among the studies using amisulpride 

for dysthymia, depression or the negative symptoms of schizophrenia as many studies use 

different diagnostic criteria for each of the disorders and there is a great deal of overlap among 

the symptoms and terminology.  

     Studies indicate that with patients with a diagnosis of only dysthymia, amisulpride 50 mg/day 

is as effective as amitriptyline 25 to 75 mg/day or fluoxetine 20 mg/day  (Y.  Lecrubier, Boyer, 
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Turjanski, & Rein, 1997; Noble & Benfield, 1999).  Table 5 provides data compiled from four 

randomized double-blind comparative studies of amisulpride and traditional antidepressants in 

patients with dysthymia, depression in remission, or mild to moderate depression. Pre and post-

tests were given on the Montgomery-Asberg Depression Rating Scale (MADRS). The overall 

conclusion of the studies in Table 5 provides evidence that amisulpride is as effective or equal 

other antidepressants (amineptine, amitriptyline, imipramine, fluoxetine) used in the treatment of 

these mood disorders.  It also exhibits good tolerability and minimal side effects. What is of 

particular interest is that the dose used to treat dysthymia is lower than the dose used to treat the 

positive symptoms of schizophrenia (Noble & Benfield, 1999).  

     Additionally, the literature regarding the use of amisulpride in treating the negative symptoms 

of schizophrenia indicates that low doses of amisulpride have proven to be effective in regards to 

alleviating the negative symptoms of schizophrenia with the optimum dose range of 50-150 

mg/day (Boyer et al., 1995). Anhedonia, a hallmark negative symptom of schizophrenia, is 

believed to be related to dopamine D2/D3 receptors in the limbic brain areas, and the therapeutic 

effects of antidepressant medications increase in the sensitivity of D2/D3 dopamine receptors in 

these brain areas (Willner, 1997).  In similar research, Speller et al. conducted a one-year, low-

dose neuroleptic study of patients with schizophrenia characterized by persistent negative 

symptoms comparing amisulpride and the typical antipsychotic haloperidol (Speller, Barnes, 

Curson, Pantelis, & Alberts, 1997). That study found that a regimen of low dose of amisulpride  

100-150 mg per day was more effective in treating flattened affect and avolition-apathy in    

patients with chronic schizophrenia than comparable low doses of 3.0-4.5 mg per day 

haloperidol.  Another placebo-controlled clinical study conducted by Danion et al. evaluated the 

efficacy and safety of low doses of amisulpride in schizophrenic patients with predominantly 
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Table 5. 
 
Efficacy of amisulpride (AMIS) in patients with dysthymia: summary of data from randomized double-blind 
comparative studies. 
 
 
Reference Diagnosis (% of pts) 

 [mean MADRS score] 
Study 
Duration 

(mo) 

Drug and dosage 
(mg/day) [no. of pts] 

Response rate 
(% of pts) 
 

Reduction from 
Baseline in rating 
Scores (%) 

Overall 
Efficacyc 

    MADRSa CGIb MADRS CGI  
    Severity Severity  
 
Comparison with tricyclic antidepressants 

       

Boyer et 
al.i 

PDYS (NR) or PDYS and 
Single episode of mild major depression (NR) 
[18] 

3 AMIS 50 [101d] 
AMIN 200[107d] 
PL [105d] 

 63* 
64* 
33 

48* 
46* 
21 

 AMIS≡AMIS 
>PL 

         
Ravizza 
et al.j 

PDYS (98%) or single 
Episode of major depression in partial 
remission (2%), PL responders excludedf [21 
(AMIS) or 22 (AMIT)] e 

6 AMIS 50 [165d] 
AMIT 25-75g[85] 

60 
63 

67 
68 

51 
53 

 AMIS≡AMIT 

         
Lecrubier 
et al.k 

PDYS (41%), PDYS and mild or moderate 
major depression (41%) or isolated chronic 
major depression in partial remission (18%) 
[25] 

6 AMIS 50 (1 wk) then 
100 [54h] 
IMIP 100 [51h] 
PL [51h] 

72* 
 
69* 
33 

53* 
 
48* 
31 

 36* 
 
31* 
16 

AMIS≡IMIP 
>PL 

         

Comparison with fluoxetine (FLUX)        

Smeraldil PDYS (94%) or single episode of major 
depression in partial remission (6%), PL 
responders excludede [21AMIS) or 22 
(FLUX)] 

3 AMIS 50 [139] 
FLUX 20 [129] 

74 
67 

78 
66 

62 
56 

 AMIS≡FLUX 

 
 
a  MADRS score reduced by ≥50% 
b  Pts considered ‘much improved’ or ‘very much improved’ for CGI 2 item. 
c   Based on primary efficacy end-points [reduction in MADRS total score and CGI response rate (Lecrubier et al.), CGI response rate (Boyer et al.) 

and MADRS response rate (Smeraldi)] except in Ravizza et al. (efficacy was a second end point). 
d  Intention-to-treat analysis. 
e  Trial designed primarily to assess tolerability; efficacy variables were secondary end-points. 
f   Pts received PL during a 1-wk run-in period prior to active treatment and those with a ≥20% decrease in MADRS score and MADRS score ≤13 

were excluded. 
g   Patients received 50 mg/day for 2wk and then 25, 50 or 75 mg/day thereafter depending on clinical response and tolerability. 
h   Per-protocol analysis. 
AMIN = amineptine; AMIT = amitriptyline; FLUX = fluoxetine; CGI = Clinical Global Impression; IMIP = imipramine; MADRS = Montgomery-

Asberg Depression Rating Scale; NR = not reported; PDYS = primary dysthymia; PL = placebo; pts = patients; > indicates efficacy significantly 
(p < 0.05) better than that of comparator; ≡ indicates similar efficacy; * p < 0.05 vs PL. 

 
i   (Boyer, Lecrubier, Stalla-Bourdillon, & Fleurot, 1999) 
j   (Ravizza & Investigators., 1999) 
k   (Y.  Lecrubier et al., 1997) 
l   (Smeraldi, 1998) 

 
 
Note.  Adapted from (Noble & Benfield, 1999)
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primary negative symptoms with 242 patients (64% men and 36% women) in 35 treatment 

centers in four countries (Danion et al., 1999). That study found that lowed doses of 50 - 100 

mg/day amisulpride consistently showed a clear superiority over placebo in improving primary 

negative symptoms in patients with schizophrenia.  

     In comparison to other atypical antipsychotic drugs, amisulpride possesses a unique receptor 

binding profile which appears to be dose-dependent.  In vivo studies with rodents demonstrate 

that low-dose (≤ 10 mg/kg) amisulpride selectively antagonizes presynaptic dopamine 

autoreceptors controlling dopamine synthesis and release in limbic structures; whereas with 

higher doses (40-80 mg/kg) postsynaptic dopamine D2 receptor occupancy and blockade is 

evident (Schoemaker et al., 1997).  Perhaps, this dose-effect is responsible for the drug’s clinical 

effectiveness in treating both the positive and negative symptoms of schizophrenia. 

     Interestingly, the benzamide sulpiride has also been demonstrated to exhibit a clinically dose-

dependent profile.  In an animal model of depression, rats were subjected chronically (12 weeks) 

to a variety of mild, unpredictable stressors and within 2 weeks exhibited depressive like 

behaviors. Treatment with various antidepressants (sulpiride, tricyclic antidepressants 

desmethylimipramine  or amitriptyline) found that sulpiride attenuated (or reversed) depression-

like behaviors in the least amount of time (2 weeks) compared to the other medications (7 weeks) 

(Sampson, Willner, & Muscat, 1991). Clinical human trials have shown that sulpiride at low 

doses (100-500 mg/day) is effective for treating chronic depression and, at higher doses (300-

1,200 mg/day), it is effective for treating the positive symptoms of the disorder (Alfredsson, 

Harnryd, & Wiesel, 1984; Benkert & Holsboer, 1984).  

      Dosage for treatment of schizophrenia. Apparently, among clinicians, there are a few 

unsettled questions surrounding the appropriate starting dose of amisulpride in the treatment of 
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schizophrenia. For example, is dose titration or the use of a loading dose necessary or could one 

give 800 mg/day beginning with the first day of treatment? To compare the efficacy, tolerability 

and subjective experience between a group receiving an initial dose of 800 mg/day and a group 

titrating up from an initial dose of 400 mg/day Lee et al. (2012) conducted an extensive 6-week, 

randomized, multicentered, open-label study to examine this question. Their results found that 

slow titration from 400 mg/day only delayed maximal efficacy by weeks relative to starting with 

an initial dose of 800 mg/day. With regard to safety, more adverse effects were seen in the group 

beginning with 800 mg/day, with the more serious effects being minimal weight gain, and 

elevated serum prolactin levels. Regardless of the beginning dose, the study found no statistically 

significant difference between the two groups in overall incidence of adverse events, including 

extrapyramidal effects. Another result was that subjects reported an improvement in subjective 

measure of quality of life and attitudes towards amisulpride regardless of dose group  (Lee et al., 

2012).  A similar study conducted by Möller et al. found that 62% of patients receiving a fixed 

dose of 800 mg/day reported higher ratings on Clinical Global Impression scores than those 

receiving titrated doses (Möller, Boyer, & Fleurot, 1997).  Another dose-range study compared 

fixed doses of amisulpride (400, 800 and 1200 mg/day) to haloperidol (16 mg/day).  In that 

study, Puech et al. found an interesting bell-shaped dose-response curve on scores on the 

Simpson-Angus Scale (a measure of extrapyramidal syndromes) among groups receiving 

amisulpride 100 mg/day (52%), 400 mg/day (66%), 800 mg/day (78%) and 1200 mg/day (66%). 

Interestingly, the 800 mg/day group represented the peak of the curve with the highest incidence 

of EPS. Overall, subject data reported on the Brief Psychiatric Rating Scale (BPRS) indicated 

that the dose range of 400 to 800 mg/day are optimal for amisulpride and that these doses were 

superior to haloperidol (16 mg) in the treatment of acute episodes of schizophrenia  (Puech, 
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Fleurot, & Rein, 1998). In summary, the research is consistent in finding that doses ranging from 

400-800 mg/day provide the best relief for the positive symptoms of schizophrenia.  

 

Drug Discrimination as a Behavioral Assay 

Drug discrimination is an important behavioral assay for studying the in vivo 

pharmacology of drugs. Its methodology consists of a laboratory investigation of the 

interoceptive effects (i.e. subjective effects) of a training drug as a stimulus cue for performing a 

specific behavioral response (Solinas, Panlilio, Justinova, Yasar, & Goldberg, 2006). Basically, 

drug discrimination is a behavioral procedure whereby an organism must recognize a particular 

drug state, choose a correct response, and receive reinforcement (Young, 2009). It has been used 

to study a wide assortment of drugs, test compounds, therapeutic agents, and drugs of abuse.  In 

a standard study, an animal such as a mouse or rat is trained via Pavlovian and operant 

(Skinnerian) principles of learning to associate an interoceptive, subjective state with a particular 

behavioral response such as lever pressing. The subject learns to discriminate the internal stimuli 

associated with a particular drug (called a training drug) from those stimuli of a vehicle state 

(non-drug agent such as saline). After training in a drug discrimination paradigm, the subject can 

recognize the specific interoceptive cues of different drugs. As the drugs themselves serve as the 

discriminative stimuli, this procedure proves quite useful in studying the pharmacological profile 

of the drug (Harris & Balster, 1971; Overton, 1966). After the subjects learn to discriminate the 

training drug from vehicle, testing usually proceeds with different doses of the training drug 

(generalization testing) followed by the introduction of novel agents for the purpose of 

substitution testing. Substitution testing can provide critical information as to the receptor 

binding profile of the drug that contributes to the discriminative stimulus properties of that drug. 
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Also, drugs belonging to the same pharmacological class tend to substitute for each other.  For 

example, animals trained to discriminate dihydroetorphine will provide similar behavioral 

responses to the stimulus cue of heroin and morphine (Beardsley & Harris, 1997). If a novel drug 

does not substitute for a training drug, this suggests that the underlying pharmacological 

mechanisms of the two drugs are different. Drug discrimination also is an important technique 

for assessing a wide variety of factors related to drugs such as: sex, genetic strains, 

pharmacological history, genetic manipulations (knockout subjects), and other neurobiological 

factors that may influence the interoceptive property of a chemical agent. Research has shown 

high reliability between the discriminative effects of drugs in animals and that of humans 

(Kamien, Bickel, Hughes, Higgins, & Smith, 1993).   

There are a number of procedural variables that are important components in the drug 

discrimination paradigm. Procedures may vary depending on the design of the study, such as: the 

route of injection (e.g., subcutaneous, intraperitoneal), the pre-injection time (typically 30 to 60 

minutes), the reinforcement schedule (often fixed ratio 30 or 10 reinforcement schedules), and 

the reinforcers, (most likely food pellets or liquid, such as water or sweetened milk). Despite 

these differences in procedure, results from drug discrimination studies tend to be quite 

consistent within the same drug class (Porter & Prus, 2009).  If differences are found across 

studies, these differences are usually related to the dose of the training drug and the species 

utilized. 

Brief History of Drug Discrimination with Antipsychotic Drugs. Drug discrimination 

has its roots in early theories of state dependent learning dating from the early 1800s. While 

psychology’s enthusiasm in state dependent learning waxed and waned throughout the 19th 

century into the 20th century a milestone was reached with the publication of Conger’s research 
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on the stimulus effects of alcohol on approach and avoidance behavior (Conger, 1951). Many 

hold that this was the first drug discrimination study. This was followed by other studies such as 

in 1962 when Stewart trained rats to discriminate 4.0 mg/kg (i.p.) of the typical antipsychotic 

chlorpromazine from saline in a shock-avoidance task using a three-compartment test chamber 

(Stewart, 1962). She found that the phenothiazines acepromazine, perphenazine, and 

prothipendyl fully substituted for chlorpromazine, but that the phenothiazines prochlorperazine 

and the tricyclic antidepressant imipramine did not substitute. In 1966 Overton attempted to 

establish discrimination with a 5.0 mg/kg (i.p.) dose of chlorpromazine in a T-maze (shock 

avoidance) procedure; no discrimination could be established (Overton, 1966). The first drug 

discrimination study on chlorpromazine in a two-lever operant task with rats as subjects was 

conducted by Barry et al. (1974). They successfully trained rats to discriminate 1.0 mg/kg 

chlorpromazine from saline. This was the first study that also included testing of the 

discriminative stimulus properties of metabolites, in this case metabolites of chlorpromazine.   

Colpaert et al., in 1976, were the first to test the typical antipsychotic haloperidol as the 

training drug in a two-lever operant discrimination, training rats to discriminate 0.02 mg/kg (s.c.) 

haloperidol from saline. This was an onerous task requiring over 80 training sessions (Colpaert 

F, Niemegeers, & Janssen, 1976). Colpaert also was the first to introduce the procedure  of using 

a fixed-ratio (FR 10) schedule of reinforcement as a component in the methodology (Glennon, 

Torbjorn, & Frankenheim, 1991). The first drug discrimination study on an atypical 

antipsychotic utilizing clozapine in addition to the typical antipsychotic chlorpromazine as 

training drugs was conducted by Goas and Boston in 1978 with rats as subjects. While 

haloperidol, clozapine, and the muscarinic antagonist benztropine mesylate produced full 

substitution for chlorpromazine, none of the tested drugs (chlorpromazine, haloperidol, 
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chlordiazepoxide, or atropine) substituted for clozapine (Goas & Boston, 1978).  In 1982 

Overton utilized a T-maze drug discrimination procedure demonstrating that clozapine and 

haloperidol could be established as training drugs; however, no drug discrimination could be 

established with chlorpromazine, fluphenazine, haloperidol, or thioridazine as the training drugs 

(Overton, 1982). 

Drug discrimination plays a unique role in the investigation of the biochemical, 

neurological, and pharmacological properties of antipsychotic medications. As a tool it is useful 

as a behavioral assay in the preclinical development of medications (A. J. Goudie & Smith, 

1999; Porter & Prus, 2009). It also contributes to our understanding of the pharmacological 

mechanisms that mediate the discriminative stimulus properties between and within 

antipsychotics and provides a method of analysis for charting the stimulus effects of various 

doses of a particular drug. Furthermore, it provides researchers with an assay to measure the 

extent to which a drug generalizes to various doses of itself and the degree to which a novel drug 

may substitute for a training drug. There are many preclinical behavioral tests used in screening 

drugs in the development of antipsychotic medications (Arnt & Skarsfeldt, 1998a; Ellenbroek, 

1993b; Geyer & Ellenbroek, 2003); however, what makes drug discrimination unique is that it 

measures the interoceptive effects of a training drug as a stimulus cue for performing a specific 

behavioral response. Thus, as a behavioral assay and paradigm, it has been used over many years 

to aid in classifying drugs, identifying the underlying pharmacological mechanisms mediating 

the stimulus properties of a drug, and providing information on the role of genetics in drug 

response  (Arnt & Skarsfeldt, 1998a; A. J. Goudie & Smith, 1999; Porter & Prus, 2009).  

  Colpaert, an enthusiastic advocate for drug discrimination, uses almost poetic language 

in speaking of the drug discrimination paradigm to “reveal exquisite molecular specificity” of 
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drugs (Colpaert, 1999), and to provide valuable information about drug activity including: 

“kinetic and temporal features, reversibility of receptor ligand binding, stereospecificity, 

structure-activity relationships, agonist-antagonist interactions, pA2 characteristics, receptor 

supersensitivity, central vs. peripheral sites of drug’s actions, and neurotoxicological effects of 

therapeutic agents” (Colpaert, 1999, p. 338).  Not only does the drug discrimination paradigm 

allow us to study the physiological mechanisms underlying the subjective and perceptual effects 

of a drug, it also is a valuable model for pathology, and provides a credible, empirical and 

scientific way to investigate subjective states. In so doing, Colpaert holds that drug 

discrimination “makes contributions to neurobiology that are unique, realizing that it does the 

astonishing feat of bridging “hard” molecular processes to the “soft” realm of subjectivity that at 

one point seemed forever beyond the realm of science (Colpaert, 1999). This author of this 

dissertation has long shared the belief that everything psychological has its roots in the 

biological. Drug discrimination is one of the tools to investigate that relationship. 

           Drug Discrimination with atypical antipsychotics. After the early drug discrimination 

studies investigating typical antipsychotics, much of the recent focus has centered on the atypical 

antipsychotic drug clozapine, a dibenzodiazepine. Clozapine continues to be the “gold standard” 

and “prototypical” atypical antipsychotic medication against which all antipsychotic drugs are 

compared. The binding profile of clozapine shows that it has a high affinity for dopaminergic D4 

receptors, serotonergic 5-HT2A/2B/2C, 5-HT6, and 5-HT7 receptors; cholinergic M1  M2, receptors; 

adrenergic α1 and  α2 receptors; and histaminergic H1 receptors and moderate affinity for 

dopamine D1, D2, D3, and D5 receptors (Arnt & Skarsfeldt, 1998a; Bymaster et al., 1996; Davies, 

Compton-Toth, Hufeisen, Meltzer, & Roth, 2004; E. Richelson, 1999; Schotte et al., 1996). The 

receptor activity of clozapine shows that it has mixed agonist-antagonist properties. Generally, it 
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exhibits antagonist action at the aforementioned receptors (Meltzer, 1994).  However, there is 

evidence to suggest that clozapine acts as an agonist or partial agonist at peripheral and central 

muscarinic subtype receptors and that the drug’s activity may also be dependent on tissue, 

metabolic process and site (e.g. central vs. peripheral) (Olianas, Maullu, & Onali, 1999; Smith 

GC et al., 2014). For example, Zorne et al. (1994) provided evidence that clozapine behaves as a 

full agonist at the cloned human M4 receptor expressed in Chinese hamster ovary CHO cells, 

while acting  as an antagonist at muscarinic M1,M2, M3, and M5 receptors (Zeng, Le, & 

Richelson, 1997). Agonistic properties of clozapine may explain some of its unique therapeutic 

properties (Porter & Prus, 2009); specifically, that agonistic activity at 5-HT1A receptors 

contributes to the treatment of negative and cognitive symptoms, mood enhancement, and, the 

reduction of extrapyramidal motor side effects (although what accounts for this reduction of 

motor effects is unknown) (M.J. Millan, 2000). Nielsen contends that muscarinic cholinergic 

antagonism (in rats) is key to clozapine’s discriminative stimulus properties (Nielsen, 1988), a 

finding reinforced by Kelley and Porter (B.M. Kelley & J.H. Porter, 1997) and others (A. J. 

Goudie, Smith, Taylor, Taylor, & Tricklebank, 1998). Nicotinic cholinergic receptors have not 

been shown to be important in the discriminative stimulus properties of clozapine (Prus, Philibin, 

Pehrson, & Porter, 2006; Villanueva, Arezo, & Rosecrans, 1992). Clozapine’s lower affinity for 

dopamine receptors suggests that the drug’s antagonistic effect at these receptors does not seem 

to be significant as a mediating factor for clozapine’s discriminative stimulus properties. In 

contrast,  antagonism of D2 receptors is thought to inhibit the ability of some antipsychotic drugs 

to substitute for clozapine (Carey & Bergman, 1997; Cole, Field, Sumnall, & Goudie, 2007). The 

preponderance of the evidence indicates that clozapine has a diverse and multifaceted binding 
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profile and a compound (complex) discriminative stimulus that is not fully understood (A. J. 

Goudie & Smith, 1999; Porter & Prus, 2009). 

     Beyond Clozapine.  To date, only four atypical antipsychotics have been utilized as the 

training drug in drug discrimination studies. They are: clozapine (A. Goudie & Taylor, 1998; 

Brian M. Kelley & Joseph H. Porter, 1997; Nielsen, 1988), olanzapine (Porter & Strong, 1996), 

quetiapine (A. J. Goudie, Smith, & Millan, 2004), and ziprasidone (Wood et al., 2007).  Each of 

these compounds exhibit a greater affinity for 5-HT2A receptors over D2 receptors; however, like 

clozapine, they have diverse binding profiles for other receptors as well (Schotte et al., 1996). 

Olanzapine has a receptor-binding profile resembling clozapine, but has a much higher affinity 

for D1 and D2 dopamine receptors. Ziprasidone has a higher affinity for 5-HT1A and 5-HT7 

receptors. Olanzapine, quetiapine, and ziprasidone all have strong affinities for α1-adrenoceptors, 

while only olanzapine exhibits a strong affinity for muscarinic receptors (M.J. Millan, 2000; E. 

Richelson, 1999; Schotte et al., 1996).  

     The only study in which a stereoisomer of an antipsychotic has been used as a training drug 

utilized the enantiomer (S)-amisulpride as a discriminative cue in C57BL/6 mice (Donahue et al., 

2014).  Interestingly, the enantiomer (S)-amisulpride has a very different profile than the four 

atypical antipsychotics previously used in drug discrimination studies. (S)-amisulpride 

exhibits a higher affinity at dopamine D2 and D3 receptors where it is twice as potent as rac-

amisulpride and 20-50 times more potent than (R)-amisulpride (Castelli, Mocci, Sanna, Gessa, & 

Pani, 2001; Marchese, Ruiu, et al., 2002).  In a study to determine the effects of the amisulpride 

isomers on rat catalepsy and the radioligand binding affinities for the isomers, Marchese et al. 

determined that (S)-amisulpride bound to the dopamine D2 receptor with higher affinity than the 

racemic form of the drug and (R)-amisulpride with none of the isomers showing significant 
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affinity for 5-HT2 serotonin receptors (Marchese, Bartholini, et al., 2002). Table 6 presents the 

binding profile of rac-amisulpride and its isomers. 

    Preliminary data.  Donahue et al. investigated the discriminative stimulus cue properties of 

(S)-amisulpride, the enantiomer thought to underlie the actions of rac-amisulpride, the 

therapeutic form of the drug (Donahue et al., 2014).  Male C57BL/6 mice were trained to 

discriminate (S)-amisulpride (10 mg/kg, s.c.) form vehicle in a standard two-lever drug 

discrimination paradigm. The (S)-amisulpride stimulus was rapidly acquired and was shown 

to be dose-related, time dependent (effective between 30 and 120 min) and stereoselective: (S)-

amisulpride (ED50=1.77 mg/kg) was approximately three times more potent than rac-amisulpride 

(ED50=4.94 mg/kg) and ten times more potent than (R)-amisulpride (ED50 = 15.84 mg/kg). 

Generalization testing showed the (S)-amisulpride stimulus generalized completely to rac-

amisulpride (ED50-=4.78), to (R)-amisulpride (ED50=22.36), to the benzamide analog sulpiride 

(ED50 = 12.67 mg/kg), but did not fully generalize (≥ 80% drug lever responding) to the typical 

antipsychotic drug haloperidol nor to the atypical antipsychotic drugs clozapine (partial 

substitution of 65%), nor to aripiprazole. These results with (S)-amisulpride were encouraging 

and lead to the current investigation into the discriminative stimulus properties of the racemic 

form of the drug, rac-amisulpride used for treatment. 

     Amisulpride in drug discrimination studies. To date, rac-amisulpride has not been used as 

a training drug in drug discrimination studies with rodents, but it has been tested in several drug 

discrimination in which other drugs were trained as the discriminative stimulus.  Cohen et al. 

tested numerous drugs for their ability to substitute to the discriminative stimulus of tiapride 

including: amisulpride, sulpiride, sultopride, clebopride, raclopride, 

metoclopramide, remoxipride and numerous others non-benzamide drugs. They demonstrated  
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Table 6.    
 
Comparison of Ki binding profiles of amisulpride and its isomers compared to antipsychotics on 
[3H]YM-09151- nemonapride (D2),  [

3H]ketanserin (5-HT2A) and [3H]clonidine (α2) binding. 
 

Drug (Rat Striatum), D2, 
Ki (nM)  S.E.M. 

(Rat Cortex),  
5-HT2A, 

Ki (nM)  S.E.M. 
 

(Rat Cortex), α2, 
Ki (nM)  S.E.M. 

 

(RS)-amisulpride 9.8   0.4 > 5000 783   27 
(S-) amisulpride 5.2   01a > 5000 1528  45a 

(R+)-amisulpride 244  12b > 5000 375   14a 

Haloperidol 1.11  0.04b 42.2   0.81 > 5000 
Risperidone 3.5   0.6a 0.6   0.01 16   3 
 

Ki of the different forms of amisulpride and haloperidol, and risperidone for different 
[3H] ligands.  Data represent mean (± S.E.M.) of four independent experiments.  Statistical  
Differences vs (RS)-amisulpride were calculated using one-way ANOVA followed by 
 Neumann-Keuls test for multiple comparisons (aP<0.05 or bP<0.01 vs/ (RS)-amisulpride). 
 
Note.  Adapted from (Marchese et al., 2002). 
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that in rats trained to discriminate tiapride (2.2 mg/kg) from vehicle amisulpride fully substituted 

for tiapride (ED50 = 4.0 mg/kg) with significant rate suppression as compared to vehicle.  They 

also found that the benzamide sulpiride (ED50 = 18.0 mg/kg) completely substituted for tiapride 

(2.2 mg/kg) and also produced significant reduction in rate as compared to vehicle (C. Cohen, 

Sanger, & Perrault, 1997). Two studies have tested amisulpride in rats trained to discriminate the 

atypical antipsychotic drug quetiapine.  Smith et al. found that amisulpride did not substitute for 

quetiapine (10 mg/kg training dose) at any dose tested (range 3-80 mg/kg) and produced 

significant rate suppression at 80 mg/kg compared to vehicle (Judith A. Smith & Andrew J. 

Goudie, 2002).  In a second study, Goudie et al. found that amisulpride did not substitute for the 

discriminative stimulus properties of the antipsychotic quetiapine (10 mg/kg) nor to clozapine (5 

mg/kg) trained rats (A. J. Goudie et al., 2004).   

     With the limited drug discrimination research utilizing atypical antipsychotics, combined with 

the fact that rac-amisulpride has yet to be investigated as a training drug, there remains more to 

be discovered about the subjective effects of these medications and the neural receptor 

mechanisms underlying their discriminative stimulus properties. To add to the body of 

knowledge on this subject, this author believes that there is much to be gained by an 

investigation of the discriminative stimulus properties of the rather unique and effective atypical 

antipsychotic amisulpride. An examination of the drug’s interoceptive properties promises to 

yield relevant information regarding the pharmacological mechanisms underlying amisulpride’s 

discriminative stimulus and may shed light on the medication’s possible therapeutic effect. 
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Rationale 
 

Amisulpride is an atypical antipsychotic medication developed in the 1990s. It has a 

unique binding and clinical profile, possessing a high affinity for dopamine D2 and D3 receptors 

and for serotonin 5-HT2B and 5-HT7 receptors with a preferential activity in the limbic region of 

the brain. Its activity appears to be dose-dependent. At high doses it blocks postsynaptic D2 / D3 

receptors and at low doses it selectively blocks dopamine D2 and D3  presynaptic autoreceptors 

amplifying dopaminergic transmission (Coukell et al., 1996; Cudennec et al., 1997; Schoemaker 

et al., 1997). This low-dose effect appears to be responsible for the drug’s efficacy as an 

antidepressant. Amisulpride is chiral in nature possessing two optical isomers: (S)- amisulpride 

and (R)-amisulpride. The racemic form, rac-amisulpride, is a 50/50 mixture of the two 

enantiomers. The more active enantiomer is (S)-amisulpride insofar as its ability to bind to 

dopamine D2 (Ki =1.3 nM) and D3 receptors (Ki =2.4 nM), where it is twice as potent as the 

racemic form and 20 to 50 times more potent than (R)- amisulpride in displacing radioligands 

from dopamine D2 and D3 receptors (Castelli et al., 2001). The racemic form of the drug has 

proven its efficacy in treating both positive and negative symptoms and the value of its clinical 

use in the treatment of schizophrenia (Möller, 2000). It has shown to be well tolerated with the 

incidence of extrapyramidal motor symptoms (especially for low doses) similar to that of 

placebo (Noble & Benfield, 1999). Amisulpride’s binding affinity and antagonist action at 

dopamine D2 and D3 receptors is intriguing because classic typical antipsychotics antagonize 

these same receptors and it is precisely this mechanism that is believed to produce 

extrapyramidal motor side effects (Strange, 2001). Yet, compared to typical antipsychotics, 

amisulpride’s propensity to produce unwanted extrapyramidal effects is almost negligible 

(Geddes, Freemantle, Harrison, & Bebbington, 2000). For example, the typical antipsychotic 



 
 

52 
 

haloperidol has antagonistic action with high affinity for the dopamine D2 (Ki = 0.50 nM) and D3 

(Ki =12 nM) receptors (B. L. Roth, 2014), while amisulpride also has high affinity at dopamine 

D2 (Ki =1.3 nM) and D3 receptors (Ki =2.4 nM) (P Sokoloff et al., 1990). High affinity and 

antagonism at these receptor sites are known to play an important role in producing 

extrapyramidal motor side effects; yet, this is not seen with amisulpride. What accounts for this 

discrepancy? Is it that amisulpride is more selective at D2 and D3 receptors? Is it that haloperidol, 

unlike amisulpride, also has antagonism and moderate affinity for D1 receptors (Ki = 83 nM)? Is 

it the speed with which amisulpride releases from dopamine receptors as compared to typical 

antipsychotics such as haloperidol (Kapur & Seeman, 2001)? It is the ratio of serotonin-

dopamine receptor activity (Meltzer, 1989)? Perhaps it is the action of amisulpride at 

autoreceptors or the particular dopamine pathway (limbic versus striatal) in the brain that is 

affected? Perhaps it is amisulpride’s activity at serotonin 5-HT2B and 5-HT7A receptors. This is a 

puzzle that this dissertation seeks to examine and, hopefully, suggest some answers. 

With the knowledge that drug discrimination is an impressive, dynamic and cogent in 

vivo assay for determining the subjective effects of drugs and for studying the in vivo receptor 

mechanisms that mediate a drug’s discriminative stimulus and perhaps therapeutic effects, 

utilizing this paradigm will allow for a direct comparison between the therapeutic form of the 

atypical antipsychotic amisulpride (rac-amisulpride) and other typical and atypical 

antipsychotics, and also representative compounds from the major classes of antidepressants. 

This comparison will be followed by testing selective ligands to better parse out underlying 

neural receptor mechanisms responsible for the discriminative stimulus cue of rac-amisulpride.  

  The overall goal of this study is to use the drug discrimination paradigm as a behavioral 

assay to examine the ability of male C57BL/6 mice to discriminate the atypical antipsychotic 
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drug rac-amisulpride from vehicle. To date, there are no published drug discrimination studies of 

rac-amisulpride as the training drug with mice or rats. C57BL/6 mice are chosen for this study as 

they have been demonstrated to be an excellent model for preclinical studies of medications used 

for schizophrenia (Laurent & Podhorna, 2004; Powell, Zhou, & Geyer, 2009; Xu, Yang, 

McConomy, Browning, & Li, 2009). As such, this research is an original study in the effort to 

investigate the discriminative stimulus properties of rac-amisulpride.  

There were two major aims of this study. The first aim was to establish rac-amisulpride 

as a discriminative stimulus in a standard two-lever drug discrimination procedure in C57BL/6 

mice. The purpose of this aim was to determine if rac-amisulpride has a discriminative stimulus 

that can be detected by C57BL/6 mice. This aim began with generalization testing of rac-

amisulpride to develop a dose-response curve. Next, we proceeded to substitution testing with 

the drug’s two isomers, and continued substitution testing with a wide variety of typical and 

atypical antipsychotics, other benzamide derivatives, and other medications known for their 

antidepressant and anxiolytic effects. The rationale employed was that if rac-amisulpride does 

have a discriminative stimulus cue, and knowing the drug’s receptor mechanisms at dopamine D2 

and D3 and serotonin 5-HT2B and 5-HT7A, then, by substitution testing with other known 

antipsychotics, we could begin the process of delineating, through comparison and contrast, 

those receptor mechanisms most likely responsible for the discriminative cue properties of the 

rac-amisulpride.  Table 7 shows for the binding profile of the antipsychotics tested in the present 

study. The inclusion of substitution testing with antidepressant and anxiolytic compounds was  
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Table 7. 
 
 Receptor binding affinity Ki values (nM) for tested antipsychotic drugs at relevant receptor targets 

 
5-HT, serotonin receptors; D, dopamine receptors; α, adrenergic alpha receptors; M, muscarinic receptors; --, not tested; NSB, no 
significant binding (Ki > 10,000 nM)
 

a (Schoemaker et al., 1997); rat cerebral cortex l (P Sokoloff et al., 1990); rat cloned D2 cells 
b (Bymaster et al., 1996); rat cortex m (Schotte et al., 1996); rat brain 
c (Abbas et al., 2009); cloned human cDNA cells n (Anderson, 1989); rat frontal cortex 
d PDSP Certified data; human cloned 5-HT cells o (P. Sokoloff et al., 1992); Cloned D3 receptor  from human  
e (Arnt & Skarsfeldt, 1998b); rat cloned D1 cells   mammillary bodies 
f (Titeler, Lyon, Bigorna, & Schneider, 1987); rat striatum p (Philip Seeman, Roy Corbett, & Van Tol, 1997); human cloned 
g (Schotte et al., 1996); rat striatum   D2 receptor 
h (Elliott Richelson & Souder, 2000); human brain tissue q (Arnt & Skarsfeldt, 1998b); rat striatum 
i (Wainscott, Lucaites, Kursar, Baez, & Nelson, 1996) r (Burstein et al., 2005); human cloned NIH-3T3 cells 
j (Bymaster et al., 1999); CHO-K1 cells transfected with  s (B. L. Roth, Tandra, Burgess, Sibley, & Meltzer, 1995); cells 
   human muscarinic receptors   transfected with rat D4 cDNA cells subcloned into pcDNA3 

k (B. L. Roth, Ciaranello, & Meltzer, 1992); rat cloned receptors   cells 
  t (Bymaster et al., 1996); rat cortex 

 Receptor 
Drug Name 5-HT1A 5-HT1B 5-HT1D 5-HT2A 5-HT2B 5-HT7 D1 D2 D3 D4 α1A α1B M1

Rac-amisulpride NSBa 1,744.0c -- 2,000.0a 13.0c 11.5c -- 1.3c 2.4l 2,369.0c NSBa NSBa NSBa 

Haloperidol 7,930.0b 165.0d -- 78.0b 165.0g -- 25.0b 0.5d 12.0d 2.3d 12.0d 8.0d NSBd 

Chlorpromazine 3,115.0d 1,489.0f 452.0d 3.2d 6.0d 21.0k 25.0n 2.8l 5.0d 12.3s 0.28d 0.81d 47.0d 

Clozapine 770.0b 390.0d -- 13.0d 31.30i 6.3k 53.0e 69.0o 83.0e 39.0d 1.6d 7.0d 14.0d 

Aripiprazole 5.6d 833.0d 63.0d 4.6d 0.36d 10.0d 387.0d 0.95d 5.35d 514.0d 25.0d 34.0d 6776.0d 

Risperidone 427.0d 53.6d 22.3d 0.19d 41.58d 6.6d 60.6d 4.9d 12.2d 18.6d 5.0d 9.0d NSBd 

Olanzapine -- 509.0d 150.0h 3.0d 12.0j 100.0e 10.0e 3.7p 2.0e 9.6s 7.3e -- 1.9t

Quetiapine 830.0e 5,000.0g 560.0h 366.0d -- 290.0m 390.0e 69.0q 9.2r 1164.0s 7.0b -- 120.0b 
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warranted as rac-amisulpride is quite effective in treating the negative symptoms of 

schizophrenia (e.g. depression) and may further elucidate the role of serotonin 5-HT2B and 5-

HT7A in amisulpride’s discriminative stimulus cue. Recall that rac-amisulpride is also prescribed 

for treating dysthymia and depression.  

The second aim was to conduct substitution testing with selective ligands that are either 

agonists or antagonists at specific receptor sites responsible for the effects of rac-amisulpride.  

Specifically, selective agonists and antagonists for dopamine D2 and D3 and for serotonin 5-HT2B 

and 5-HT7 receptors were tested.  Thus, building upon knowledge gained in our general 

substitution testing, this specific ligand testing enabled us to more precisely investigate the 

underlying neural receptors responsible for the discriminative stimulus effects of rac-

amisulpride.   
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Methods 

 

Subjects  

Thirty-five experimentally naïve, adult male C57BL/6 inbred mice (20-25 g) obtained 

from Harlan Laboratories (Indianapolis, IN) were housed individually in clear plastic cages (18 

X 29 X 13 cm) secured on a ventilated rack with wood chip bedding (sanichips, Teklad, 

Madison, WI). Mice were transported daily (6-7 days per week) from the vivarium (12 hour 

light-dark cycle, lights on at 6 a.m.) to the laboratory where experimental training and testing 

sessions occurred. The vivarium temperature remained between 22 and 24 degrees Celsius. After 

one week of acclimation to the vivarium and handling, the subjects were food deprived to 85-

90% of their free feeding body weights and were maintained on a food restricted diet of standard 

rodent chow (Harlan Teklad Lab Diets, Teklad LM-485). Water was available ad libitum in the 

home cages. The mice were randomly assigned to two cohort groups. Cohort 1 (n = 16) were 

used for substitution testing to rac-amisulpride 10 mg/kg. Cohort 2 (n = 19) were used for 

selected ligand substitution testing to 10 mg/kg rac-amisulpride. The Guide for Care and Use of 

Laboratory Animals (National Research Council, 2011) was followed and the Institutional 

Animal Care and Use Committee at Virginia Commonwealth University (VCU) approved the 

procedures that were used in the present study (IACUC Protocol AM10284). 

 

Drugs  

  
Rac-amisulpride, (S)-amisulpride and (R)-amisulpride (gift from Drug Discovery Program, 

Georgetown University, Washington, D.C.), clozapine (gift from Novartis, East Hanover, N.J.),  

haloperidol, sulpiride, chlorpromazine, tiapride, risperidone, chlordiazepoxide HCl, quinpirole 

HCl, bupropion HCl and apomorphine  (Sigma-Aldrich  Chemical Co., St. Louis, MO), 
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olanzapine (gift from Eli Lily, Indianapolis, IN), fluoxetine HCl (National Institute of Mental 

Health Chemical Synthesis and Drug Supply Program, Bethesda, MD), imipramine and 

zacopride (Gift from A.H. Robbins Pharmaceuticals, Richmond, VA), aripiprazole, nemonapride 

and LP-44 HCl (National Institute of Mental Health Chemical Synthesis and Drug Supply 

Program), mianserin (Research Biochemical International, Natick, MA), quetiapine (Gift from 

Zeneca Pharmaceuticals, Wilmington, DE), SB-269970 HCl, BW 723C86 HCL, SB-204741, 

racolopride and (S)-sulpiride (Tocris, Minneapolis, MN). Fluoxetine HCl, chlordiazepoxide HCl, 

raclopride HCl, bupropion HCL, SB-269970 HCl, BW 723C86 HCL, LP-44 HCL and quinpirole 

HCl were the salt form of the drug and dissolved in saline. All other drugs were the free base 

form and were dissolved in distilled water with a small quantity (approximately two drops) of 

85% lactic acid, with sodium hydroxide used as a buffer to insure a pH balance of approximately 

7.0.  Doses and pretreatment times were based on preliminary studies and previous studies in the 

literature (C. Cohen et al., 1997; Collins, Jackson, Koek, & France, 2014; DiPilato et al., 2014; 

Donahue et al., 2014; Furmidge, Exner, & Clark, 1991; Galici, Boggs, Miller, Bonaventure, & 

Atack, 2008; McElroy, Stimmel, & O'Donnell, 1989; Morita et al., 2005; Perrault et al., 1997; 

Philibin, Prus, Pehrson, & Porter, 2005; Philibin et al., 2009; Prus et al., 2006; Schechter, 1983; 

Shelton & Nicholson, 2013; Ukai, Mori, & Kameyama, 1993; Upton, Stean, Middlemiss, 

Blackburn, & Kennett, 1998; Young & Glennon, 2002; Young & Johnson, 1991). All drugs were 

administered subcutaneously (s.c.) in an injection volume of 10.0 ml/kg body weight.  

Apparatus  

Testing was conducted in six standard computer-interfaced operant conditioning 

chambers (Model ENV-307A, Med Associates Inc., St. Albans, VT) each containing two  

retractable levers in the left and right positions (8 cm apart) on the front panel of the operant 
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chamber. The levers extended 0.8 cm into the chamber and were positioned 2.5 cm above a grid 

floor constructed of parallel stainless steel rods. Centered between them was a recessed food 

trough into which a liquid dipper delivered 0.02 ml of sweetened-milk (by volume: 150 ml 

powdered milk, 150 ml sugar, and 500 ml water). The inner test chambers consisted of a 15 cm L 

X 11.5 cm D X 17.5 cm H area surrounded by an aluminum framed box with a single Plexiglas 

side door. Test chambers were housed in sound attenuating chambers equipped with ventilation 

fans. MED-PC software (Version 4.2, Med Associates Inc.) was used to control the operant 

sessions and record data. 

Training Procedures 

Phase I: Lever-press training. The mice were trained to lever press using a modified 

autoshaping procedure to respond on a single extended lever (J. E. Barrett & Vanover, 2003). 

Mice were randomly assigned to an operant box placed in which a single lever (the vehicle-

paired lever) was extended inside the chamber.  Each subject was placed in the operant chamber 

for a 15 minute session and trained to press the levers for 0.02 ml of sweetened milk on a fixed 

ratio one (FR 1) schedule of reinforcement, in which the reinforcer was delivered after every 

lever press (dipper was available for 3 sec.). Subjects were trained to lever press on a single lever 

(i.e. the vehicle-paired lever) until drug administration began. The position of the drug-

associated lever (left vs. right) was counterbalanced for each subject to control for olfactory cues 

(Extance & Goudie, 1981). In between each session, the interior of the operant boxes and the 

levers were wiped down with a solution of water and 10% ethyl alcohol to further control for 

olfactory cues. The value of the FR was gradually increased over the next 7-8 sessions until FR 

10 was obtained. After response rates were consistently higher than 10 responses per minute, 

two-lever drug discrimination training began. 
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Phase II: Drug discrimination acquisition training. Following initial lever-press 

training, the mice then began single-lever training (errorless training). Subjects were injected 

daily with vehicle 60 minutes prior to each training session. Only the vehicle-associated lever 

was extended in the test chamber and responding was reinforced according to the FR 10 

schedule. This vehicle training continued for 5 sessions (days) until rates stabilized. The mice 

then began errorless training on the drug appropriate lever. The mice were administered 10 

mg/kg rac- amisulpride injections 60 minutes prior to training sessions and were only presented 

with the rac-amisulpride-associated lever (opposite of the vehicle-associated lever). The training 

dose of 10 mg/kg rac-amisulpride  and the pre-session injection time of 60 minutes was chosen 

based on previous drug discrimination studies in the literature (C. Cohen et al., 1997; Perrault et 

al., 1997) and from a study done in our lab study on the discriminative stimulus properties of (S)-

amisulpride (Donahue et al., 2014). Our training dose and pre-session injection time also was 

recently supported in a blood plasma assay utilizing a sensitive LC-MS/MS method (tandem 

mass spectrometry) for determining amisulpride concentrations in rat plasma, and a preclinical 

pharmacokinetic study in the rat (Noh et al., 2014).  Once response rates stabilized at over 10 

responses per minute (5 sessions/days for vehicle, ∼10 sessions/days for rac-amisulpride), two-

lever drug discrimination training began. During two-lever training sessions both levers were 

extended into the operant chamber. The subjects were administered rac-amisulpride and vehicle 

injections according to a double alternation sequence (i.e., DDVVDDVV). On days when the 

drug was administered, only responding on the drug-associated lever was reinforced. On days 

when vehicle was administered, only responding on the vehicle associated lever was reinforced. 

Responses on the incorrect lever reset the ratio requirement on the correct lever to 10. Subjects 
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received two-lever drug discrimination training until the training criteria were passed during 5 of 

6 consecutive sessions.  

Drug discrimination training criteria.  Successful discrimination training was 

evaluated and assessed according to three criteria: (1) the first completed fixed ratio (FFR) of the 

FR 10 schedule was executed on the appropriate lever, (2) 80% or greater of total responses 

made during the session occurred on the appropriate lever, and (3) response rate for the session 

was equal to or exceeded 10 responses per minute (RPM). Control tests with vehicle and 

amisulpride were administered and had to be passed prior to generalization testing with all drugs. 

During control test sessions, responses on both levers were reinforced according to the FR 10 

schedule and the FR requirement was reset when switching between levers occurred. The three 

training criteria also had to be met for two consecutive training sessions immediately prior to all 

drug test sessions.  

Phase III: Generalization and Substitution testing and time course. After successful 

completion of vehicle and rac-amisulpride control tests, a rac-amisulpride generalization dose 

effect curve was determined. Next, the substitution testing was conducted with the two isomers 

of rac-amisulpride, antipsychotics drugs, antidepressant drugs and selective ligands. Six subjects 

were randomly assigned to the testing of a drug and each animal received one injection of each 

dose tested. Table 8 shows drugs tested for substitution to rac-amisulpride, doses, injection times 

and literature references. Table 9 shows antidepressants used for substitution testing and their 

binding affinities at receptors relevant to rac-amisulpride. Table 10 shows the selected ligands 

used for substitution testing and their binding affinities at receptors relevant to rac-amisulpride. 
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Table 8.   Drugs tested for substitution to rac-amisulpride: doses and injection times 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      Drug Doses Tested (mg/kg) Inj. time Citation: Inj. time & doses

 1 rac-amisulpride 0.078 0.3125 0.625 2.5 10.0 20.0     60 mins Perrault et al. 1997 

2 (S)-amisulpride 0.0078 0.156 0.3125 0.625 1.25 2.5 5.0   60 mins Perrault et al. 1997 

3 (R)- amisulpride 0.156 0.3125 0.625 1.25 2.5 5.0 10.0 20.0 60 mins Perrault et al. 1997 

4 Clozapine 0.625 1.25 1.78 2.5 3.54       30 mins Philibin et al. 2009 

5 Haloperidol 0.00625 0.025 0.05 0.10 0.20 .40      30 mins McElroy et al. 1989 

6 Sulpiride 0.78 3.125 6.25 12.50 25.0 50.0     60 mins Cohen et al. 1997 

7 Chlorpromazine 0.125 0.25 0.50 1.0 2.0 4.0     30 mins Philibin et al. 2009 

8 Tiapride 2.5 10.00 20.0 40.0 56.6 80.0     30 mins Cohen et al. 1997 

9 Olanzapine 0.0625 0.125 0.25 0.5 1.0       30 mins Philibin 2005 

10 Risperidone 0.0625 0.125 0.25 0.50         60 mins Philibin 2005 

11 Fluoxetine 5.0 10.0 20.00 40.00         30 mins Philibin et al. 2009 

12 Imipramine 5.0 10.0 20.00           30 mins Schechter 1983 

13 Aripiprazole 0.15625 0.31250 0.625 1.25         30 mins Philibin et al. 2009 

14 Chlordiazepoxide 2.5 5.0 10.00 20.00 40.0 56.60     30 mins Shelton & Nicholson ,2013 

15 Mianserin  0.5 1.0 2.0           30 mins Prus, et al. 2006 

16 Quetiapine 2.5 5.0 7.10 10.0         30 mins Philibin et al. 2009 

17 (S)-sulpiride 2.5 5.0 10.0 20.0 40.0       60 mins Ukai et al. 1993 

18 Nemonapride 0.01 0.032 0.056 0.10          60 mins Furmidge et al. 1991 

19 Bupropion 1.0 10.0 32.0 56.0          15 mins Young & Glennon, 2002 

20 Zacopride 1.0 10.0 32.0  56.0          60 mins Young & Johnson, 1991 

21 Apomorphine 0.032 0.10 0.32 1.0     15 mins Collins et al. 2014 
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Table 9 

Receptor binding affinity Ki values (nM) for antidepressant drugs at relevant receptor targets to rac-amisulpride 
 

 
SERT, serotonin transporter; 5-HT, serotonin receptors; α, adrenergic alpha receptors; D, dopamine receptors; DAT, dopamine transporter; NET, norepinephrine 
transporter; --, not tested; NSB, no significant binding (Ki > 10,000 nM) 
 
 

a (Schoemaker et al., 1997); rat cerebral cortex p (Unsworth & Molinoff, 1994); 5-HT receptor in mouse  
b (Owens, Morgan, Plott, & Nemeroff, 1997); rat cortex     neuroblastoma N18TG2 cells 
c (Abbas et al., 2009); human cloned cDNA cells q (Stanton, Bolden-Watson, Cusack, & Richelson, 1993); human  
d (Boess & Martin, 1994); human cloned [3H]8-OH-DPAT cells      cloned M5 cells 
e (Wong, Threlkeld, & Robertson, 1991); rat cerebral cortex r (Runyon et al., 2001); rat cloned 5-HT2A cells (NIH3T3) 
f (Matsumoto, Combs, & Jones, 1992); rat spinal cord s (Kessler et al., 1993); rat hippocampus 
g (Rothman et al., 2000); human brain cloned 5-HT2B cells t (Toll et al., 1998); human cloned D3 receptors 
h (Glusa & Pertz, 2000); rat cloned 5-HT2B receptors in AV-12 cells u (Fernandez et al., 2005); human cloned D3 receptors 
i (Sanders-Bush & Breeding, 1988); rat choroid plexus v (Béı̈que, Lavoie, de Montigny, & Debonnel, 1998); rat brain 
j (Pälvimäki et al., 1996); rat brain w (Wikström, Mensonides-Harsema, Cremers, Moltzen, & Arnt, 2002); 
k (Stebben, Ansanay, Brockaert, & Dumuis, 1994); rat striatal cDNA cloned cells    rat brain 
l (P. Sokoloff et al., 1992); human cloned D3 receptor, human mammillary bodies x (Anderson, 1989); rat brain 

m (Y. Shen et al., 1993); rat cloned kidney G protein-coupled receptors y (Sanchez & Hyttel, 1999); rat brain 
n (Letchworth et al., 2000); rat striatum   
o (Tatsumi, Groshan, Blakely, & Richelson, 1997); human cloned dopamine cells   

 

 Receptor 
Drug Name SERT 5-HT1A 5-HT1B 5-HT2B 5-HT2C 5-HT6 5-HT7 M1 M5 D2 D3 DAT NET 
Amisulpride -- NSBa 1,744.0c 13.0c -- 4,154.0c 11.5c NSB NSB 1.3c 2.4l -- --
Fluoxetine 2.0b 8313.0b 6165.0e 5,030.0g 23.98i 1,770.0k -- 702.0b 2,700.0q -- -- 784.0n 119.0v

Imipramine 8.7b -- -- -- 94.0j 209.0k 1,000.0m 42.0q 83.0q 726.0r 387.0t 8,500.0o 11.0b

Mianserin 1,000.0j 398.0d 2,801.0f 50.11h 1.99i 19.9p 111.0m -- -- 674.0s 2,841.0u 9,400.0o 22.0w

Bupropion 1000x NSBy -- -- NSBy -- -- -- -- NSBx -- 570y 940x 
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Table 10.   
 
Selective ligands for substitution test: Receptor Binding affinity Ki values (nM) and activity at 
relevant receptor targets.  
 

 

 

 

 

 

 

 

 

 

 

 

 

5-HT, serotonin receptors; D, dopamine receptors; --, not tested; NSB, no significant binding (Ki 
> 10,000 nM); pKi, the negative logarithm to base 10 of the equilibrium dissociation constant 

 
 

 

a (Abbas et al., 2009); human cloned cDNA cells 
b (Andersen, 1988); mouse brain 
c (Strange, 2001); rat cloned CHO cells 
d (Levant, Grigoriadis, & DeSouza, 1992); rat brain 
e (P Sokoloff et al., 1990); rat cloned CHO cells 
f (Knight et al., 2004); human cloned high expressing CHO-K1 cells 
g (Lovell et al., 2000); human cloned receptors in HEK 293 cells 
h (Leopoldo et al., 2004); RNA from cloned rat kidney cells 
i (Forbes, Jones, Murphy, Holland, & Baxter, 1995); rat stomach fundus 
j (Kennett, Bright, Trail, Baxter, & Blackburn, 1996); rat stomach cells 

 

 

 

 

 

 

 

 

Drug D2 D3 5-HT2B 5-HT7A 

Amisulpride Antagonist 
Ki = 1.3a 

Antagonist 
Ki = 2.4a 

Antagonist 
Ki = 13a 

Antagonist 
Ki = 11.5a 

Raclopride Antagonist 
Ki = 4.8b 

Antagonist 
Ki = 1.8c 

-- -- 

Quinpirole Agonist 
Ki = 8.0d 

Agonist 
Ki  = 5.1e 

Agonist 
Ki = 302f 

-- 

SB-269970 -- -- -- Antagonist 
Ki = 1.26g 

LP-44 HCl -- -- -- Agonist 

Ki = 0.22h 

SB-204741 -- -- Antagonist 
pKi = 7.8i 

-- 

BW-723C86 -- -- Agonist 
Ki = 12.58j 

-- 
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A brief explanation of our order of dosing is relevant to address the question of order  

effects as a possible confound.  For the order of doses used on each drug tested we first 

conducted a research of the literature to determine the range of doses for pertinent behavioral 

effects such as substitution to a relevant test drug, or a significant decrease in rate of responding. 

We then utilized an ascending order approach in the administration of different doses of each 

drug. First, we administered low doses of each drug that we suspected would not produce any 

behavioral effects and proceeded in ascending order to higher doses based on a logarithmic scale. 

This incremental ascending order approach is a conservative method to detect and therefore 

avoid any toxic effects of higher doses of certain drugs. If it became evident that a dose of a drug 

produced severe rate suppression, testing at that dose was stopped and no further animals tested 

at that dose.  Also, since we used the ascending order method in the substitution phase of our 

study, we used this same method in subsequent combination testing to preserve consistency in 

methodology.  

 A time-course study with the 10 mg/kg training dose of rac-amisulpride also was 

conducted to confirm that our pre-session injection time was the optimal period for the 

bioavailability of 10 mg/kg rac-amisulpride. Six mice were selected at random and required to 

pass control points for both rac-amisulpride and vehicle. The mice were randomly assigned to 

one of two groups, an ascending or descending pre-session injection time period. The ascending 

group was administered 10 mg/kg rac-amisulpride with increasing pre-session time periods in 

the following order: 0, 15, 30, 60, 120, 240, and 480 minutes prior to testing.  The descending 

time period group received the training dose with a reversed pre-session time period: 480, 240, 

60, 50, 15, and 0 minutes. As in generalization and substitution testing, each subject had to 

successfully meet the three training criteria for two consecutive training sessions immediately 
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prior to all test sessions. 

Operational definitions of dependent variables. One measure of stimulus control is the 

first fixed ratio (FFR). This is defined as the subject’s first set of 10 continuous and 

uninterrupted responses on either of the two levers. If a subject begins responding on one lever, 

and then switches to the opposite lever without completing 10 consecutive responses on the 

initial lever, the counter is reset to 0 and does not record a first fixed ratio until 10 uninterrupted 

responses were completed on one lever. Another measure of behavior is the percent of drug lever 

responding (%DLR).  This is calculated by counting the number of responses on the appropriate 

drug lever in a 15 minute session and dividing the quotient by the total number of responses 

made on both levers, then multiplying that number by 100 to convert the decimal to a percentage. 

Test drugs that achieve response percentages at 80% or higher are considered full substitution.  

Response rate was calculated as responses per minute (RPM) for each 15 minute session. 

 Data analysis. For all sessions, the Med-PC software was programmed to calculate the 

percent drug-lever responding (%DLR) on the condition-appropriate lever, dividing the number 

of responses on that lever by the total number of responses on both levers and then multiplying 

the result by 100. Responses per minute were calculated by taking the total number of responses 

on both levers and dividing by 15 min (i.e. the session length). A subjects % DLR data were 

excluded from data analysis if it did not complete a fixed ratio (i.e. did not receive a reinforcer) 

or if responses per minute were ˂ 2.0. However, all response rate data were included in the 

calculation of responses per minute, even it was 0 (i.e. no responses during the session). Full 

substitution to the drug stimulus cue was defined as ≥ 80% DLR. Partial substitution to the drug 

cue was defined as ≥60% DLR and ˂80%DLR. No substitution to the drug stimulus cue was 

defined as ˂60% DLR (Porter, Walentiny, Philibin, Vunck, & Crabbe, 2008).  For all drugs that 
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produced full substitution for rac-amisulpride an effective dose 50% (ED50) value with 95% 

confidence intervals were calculated for %DLR data using the least squares method of linear 

regression with the linear portion of the dose effect curve (Bliss, 1967; Goldstein, 1964). The 

ED50 represents the calculated drug dose at which animals would be expected to make 50% of 

their responses on the drug designated lever. A one-way repeated-measures analysis of variance 

(ANOVA) comparing responses per minute were calculated for each drug (GraphPad Prism 

version 6.0 for Windows; GraphPad Software, San Diego, CA, USA). Significant ANOVAS 

were followed by Dunnett’s post hoc tests comparing the doses to vehicle when appropriate      

(p < 0.05).  For the time-course experiment, a one-way repeated measures ANOVA comparing 

%DLR at the different time points was conducted. Significant ANOVAs were followed by 

Newman-Keuls post hoc tests (P˂0.05). 
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Results 
 

 
rac-Amisulpride Acquisition Discrimination and Generalization Dose Effect Curves 
 
     The results of the acquisition training for both cohort groups of mice that successfully trained 

to discriminate 10 mg/kg rac-amisulpride from vehicle are shown in Figure 5.  In cohort 1, 

fourteen of the 16 mice met acquisition criteria in a mean (± SEM) of 35.71 ± 6.18 training 

sessions (range of 6-89 sessions). Two mice failed to meet acquisition criteria in 121 training 

sessions; therefore, they were removed from the study. For cohort 2, all nineteen mice met 

acquisition criteria in a mean (± SEM) of 41.58 ± 4.47 training sessions (range of 7-75 sessions).  

     Generalization testing (Figure 5, lower panels) for cohort 1 yielded an ED50 = 0.73 mg/kg 

95% CI [0.47, 1.13 mg/kg]. Partial generalization to the rac-amisulpride discriminative cue was 

attained at 2.5 mg/kg (66.41% DLR) and full generalization was attained at the training dose of 

10.0 mg/kg (94.65 DLR), and 20 mg/kg (94.99% DLR). A one-way repeated measures ANOVA 

revealed that there was a significant effect of doses on response rate, F(6,78) = 4.81, p = 0.0003. 

A Dunnett’s post hoc test revealed a significant increase in response rates at doses 2.5, 10 and 20 

mg/kg as compared to vehicle.  

     Generalization testing for cohort 2 yielded an ED50 = 0.56 mg/kg 95% CI [0.42, 0.76 mg/kg]. 

Two mice in this group failed to establish consistent stimulus control and were removed from the 

study.  Partial generalization to the rac-amisulpride discriminative cue was attained at 0.625 

(67.10%DLR) and 2.5 mg/kg (76.73% DLR). Full generalization was attained at 10.0 mg/kg 

(96.31% DLR). A one-way repeated measures ANOVA revealed that there was a significant 

effect on response rates F(4,25) = 7.50,  p = 0.0004. However, a Dunnett’s post hoc test failed to 

reveal any significant differences between drug and vehicle. 
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Figure 5. rac-amisulpride acquisition discrimination and rac-amisulpride generalization dose 

effect curves. Panel (a) shows acquisition of two-lever discrimination is shown for the 10 mg/kg 

rac-amisulpride (AMI) training dose for cohort 1 and panel (b) shows acquisition data for cohort 

2. Mean percentage drug lever responses (± SEM) are presented separately for drug injections 

(closed circles) and vehicle (VEH) injections (open circles).The dashed line at 80% indicates 

drug-appropriate responding and the dashed line at 20% indicates vehicle-appropriate 

responding. As the mice met the training criteria, they were removed from the curves. The 

numbers in parenthesis indicate the number of remaining mice who had not yet met acquisition 

(a) 

(c)  (d)

(b)



 
 

69 
 

criteria. Panel (c) shows rac-amisulpride generalization dose effect curve in C57BL6 mice 

trained to discriminate 10mg/kg rac-amisulpride from vehicle in cohort 1, and panel (d) shows 

rac-amisulpride generalization does effect curve for cohort 2. The dashed line at 80% indicates 

drug-appropriate responding indicating full generalization to the training drug rac-amisulpride 

10 mg/kg. Prior to generalization testing, control test sessions were conducted with both rac-

amisulpride (10 mg/kg) and vehicle (VEH). Left ordinate: Percentage of drug lever responses 

(%DLR) on the rac-amisulpride designated lever after s.c. administration of rac-amisulpride. 

Right ordinate: Animals’ response rates (responses per minute [RPM]) are shown (significantly 

different from vehicle, * p < 0.05, ** p < .01, *** p < .001, **** p < .0001). AMI and VEH are 

the control tests showing % DLR and RPM after the standard pre-session injection interval of 60 

min. Abscissa: drug doses. 
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rac-Amisulpride Time Course 

     Time course data shown in Figure 6 demonstrated that the 10 mg/kg training dose of 

rac-amisulpride produced full substitution at the 30 minute s.c. pre-session injection time point 

(average drug lever responding = 86.5%), and at the training 60 minute time point (average drug 

lever responding = 91.8%). Partial substitution was seen at the 15 minute (average drug lever 

responding = 67.5%) and at the 120 minute (average drug lever responding = 77.6%) injection 

time points. A one-way repeated measures ANOVA for percent drug-lever responding (%DRL)  

was significant, F(7,35) = 13.03, p < 0.0001, and a Dunnett’s multiple comparison post hoc test 

was used to determine which injection times were significantly different from the training 

injection time of 60 minutes. Compared to the 60 minute injection time, 0 minutes and 480 

minutes produced significantly lower %DLR (p = 0.001). The 15 minute, 30 minute, and the 120 

minute injection times were not significantly different (p = 0.05) from the 60 minute injection 

time. A one-way repeated measures ANOVA for responses per minute showed there was no 

significant effect of injection time, F(7,35) = 1.16, p = 0.35.  

Isomer Substitution and rac-amisulpride Generalization For Both Cohort Groups. 
 
     Generalization testing for combined cohort groups (N=31) yielded an ED50 = 0.64 mg/kg 95% 

CI [0.47, 0.84 mg/kg] as shown in Figure 7 panel (a). Partial generalization to the rac-

amisulpride discriminative cue was attained at 2.5 mg/kg (72.07% DLR) and full generalization 

was attained at 10.0 mg/kg (95.56 DLR). A one-way repeated measures ANOVA revealed that 

there was a significant effect of drug on response rates, F(5,50) = 4.81, p = 0.0001. A Dunnett’s 

post hoc test revealed a significant increase in response rates at doses 2.5, and 10 mg/kg, as 

compared to vehicle.    
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Figure 6.  Time course of 10 mg/kg rac-amisulpride. Time course data are shown for 0, 15, 30, 

60, 120, 240 and 480 minute pre-session s.c. injection times for the 10 mg/kg training dose of 

rac-amisulpride.  For percent drug lever responding, significant differences from the pre-session 

injection time (60 min) are indicated by asterisks (*** p = .001). For responses per minute, there 

were no significant differences as compared to the vehicle (VEH) control. 
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      Substitution testing for the combined rac-amisulpride cohorts and for the two isomers (S)-

amisulpride and (R)-amisulpride is shown in Figure 7. (S)-amisulpride (panel b) produced full 

substitution for rac-amisulpride at 1.25 (94.29% DLR), 2.5 (97.94% DLR), and 5.0 mg/kg 

(84.92 % DLR). Substitution testing revealed an ED50 0.33 mg/kg 95% CI [0.25, 0.45 mg/kg]. A 

one-way repeated measures ANOVA found (S)-amisulpride produced a significant effect on 

response rates, F(6, 36) = 3.03,  p = 0.02. A Dunnett’s post hoc test revealed significant increases 

at doses 1.25, 2.5 and 5.0 mg/kg as compared to vehicle.  

     The isomer (R)-amisulpride produced full substitution for rac-amisulpride at 1.25 mg/kg 

(80.78% DLR), 5 mg/kg (90.38%DLR), and 10 mg/kg (90.39% DLR) as shown in Figure 7 

panel (c).  Substitution testing revealed an ED50 0.68 mg/kg 95% CI [0.43, 1.11 mg/kg]. There 

was no significant change in response rates at any dose tested F(7,42) = 0.88, p = 0.53.   

    Benzamide derivatives substitution testing for sulpiride and (S)-sulpiride isomer.  

The substitution testing of the benzamide derivatives sulpiride and its (S)-sulpiride isomer are 

shown in Figure 8. The atypical antipsychotic sulpiride substituted for rac-amisulpride at 25.00 

mg/kg (81.61% DLR), and 50.00 mg/kg (82.65% DLR) as shown in panel (a).  Substitution 

testing revealed an ED50 = 7.29 mg/kg 95% CI [3.73, 14.28 mg/kg]. A one-way repeated 

measures ANOVA found sulpiride produced a significant effect on response rates, F(6, 30) = 

2.71, p = 0.03. A Dunnett’s post hoc test revealed that 3.125 mg/kg sulpiride significantly 

suppressed response rate as compared to vehicle.  

     The (S)-sulpiride isomer substituted for rac-amisulpride at 40.00 mg/kg (82.18% DLR).  

Substitution testing revealed an ED50 = 9.12 mg/kg 95% CI [4.60, 18.08 mg/kg] as shown in 

Figure 8 panel (b). A one-way repeated measures ANOVA found that sulpiride produced no 

significant effects on response rates, F(5,25) = 1.64, p = 0.186.
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Figure 7. Rac-amisulpride generalization curve for combined groups, (S)-amisulpride, and (R)-amisulpride substitution. Panel (a) 

shows mean percent drug lever responding (± SEM) and mean responses per minute (± SEM) for rac-amisulpride substitution curve 

for combined groups. Panel (b) shows generalization testing for the isomer (S)-amisulpride, and panel (c) shows mean percent drug 

lever responding (± SEM) and mean responses per minute (± SEM) for the isomer (R)-amisulpride, * p < 0.05, *** p < .001.  All other 

details are the same as Figure 5.

(a)  (b) (c)
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Figure 8. Substitution testing of benzamide derivatives sulpiride and (S)-sulpiride. Panel (a) 

shows mean percent drug lever responding (± SEM) and mean responses per minute (± SEM) for 

the benzamide derivative sulpiride substitution curve, and panel (b) for the benzamide derivative 

(S)-sulpiride isomer, * p < .05.  All other details are the same as Figure 5. 

 

(a)  (b) 
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Substitution testing of benzamide derivatives tiapride, nemonapride and zacopride 
 
     The results for substitution testing of the benzamide derivatives tiapride, nemonapride and 

zacopride are shown in Figure 9.  Panel (a) shows the atypical antipsychotic tiapride produced a 

very high partial substitution for rac-amisulpride at 40 mg/kg (76.41%DLR).  No other doses of 

tiapride substituted for rac-amisulpride. There were no significant changes in response rates 

F(6,30) = 0.45, p = 0.45.   

     The benzamide atypical antipsychotic nemonapride did not substitute for rac-amisulpride at 

any of the tested doses (0.01 – 0.10 mg/kg) as shown in Figure 9 panel (b). Maximum %DLR 

was seen at the 0.032 mg/kg dose (54.52% DLR). A one-way repeated measures ANOVA found 

a significant difference in response rates, F(3, 20) = 16.82, p < 0.0001. A Dunnett’s post hoc test 

revealed significant rate suppression at the 0.10 mg/kg dose as compared to vehicle.  

     Zacopride, a selective 5-HT3 antagonist and 5-HT4 agonist, did not substitute for rac-

amisulpride at any of the doses tested (1.0 – 56.0 mg/kg) as shown in Figure 9 panel (c). 

Maximum %DLR was seen at 0.032 mg/kg dose (38.64% DLR). A one-way repeated measures 

ANOVA found that zacopride produced no significant effects on response rates, F(4, 25) = 1.10, 

p = 0.38.  

Substitution Testing of Typical Antipsychotic Medications: Haloperidol, Chlorpromazine 
and Apomorphine 
 
     The typical antipsychotic haloperidol did not substitute for rac-amisulpride at any of the 

tested doses (0.00625 – 0.20 mg/kg) as shown in Figure 10 panel (a). Maximum %DLR was seen 

at 0.10 mg/kg (41.61 %DLR). A one-way repeated measures ANOVA found a significant 

difference in response rates, F(5,25) = 2.63, p = 0.05. However a Dunnett’s post hoc test failed to 

reveal any significant differences between drug and vehicle response rates.
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Figure 9. Substitution testing of benzamide derivatives tiapride, nemonapride and zacopride.  Panel (a) shows mean percent drug lever 

responding (± SEM) and mean responses per minute (± SEM) for the benzamide derivative tiapride substitution curve, panel (b) for 

the benzamide derivative nemonapride, and panel (c) for the benzamide derivative zacopride, ****p < .0001.  All other details are the 

same as Figure 5

(a)  (b)  (c) 



 
 

77 
 

     The typical antipsychotic chloropromazine did not substitute for rac-amisulpride at any of the 

tested doses (0.125 – 2.0 mg/kg) as shown in Figure 10 panel (b). Maximum % DLR was seen at 

0.50 mg/kg (57.14 % DLR). A one-way repeated measures ANOVA found a significant 

difference in response rates, F(5, 25) = 11.44, p <.0001. A Dunnett’s post hoc test revealed that 

2.0 mg/kg chlorpromazine significantly suppressed response rates as compared to vehicle. Two 

animals were tested at 4.0 mg/kg chlorpromazine; however, that dose produced complete 

suppression of responding and no further animals were tested at this dose.  

     Apomorphine, a non-selective D1, D2, D3, D4 and D5 agonist, did not substitute for rac-

amisulpride at any of the tested doses (0.032 mg/kg)  as shown in Figure 10 panel (c).  Maximum 

%DLR was seen at 0.032 mg/kg dose (12.91% DLR). A one-way repeated measures ANOVA 

found a significant difference in response rates, F(3,20) = 7.84, p = 0.0012. A Dunnett’s post hoc 

test revealed significant rate suppression at 0.032, and 0.32 mg/kg apomorphine as compared to 

vehicle. Two animals were tested at 1.0 mg/kg apomorphine; however, that dose produced 

complete suppression of responding and no further animals were tested at this dose.
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Figure 10. Substitution testing of typical antipsychotics: haloperidol, chlorpromazine, and the dopamine agonist apomorphine. 

Panel (a) shows mean percent drug lever responding (± SEM) and mean responses per minute (± SEM) for the typical antipsychotic 

haloperidol substitution curve, panel (b) for the typical antipsychotic chlorpromazine, and panel (c) for the dopamine agonist 

apomorphine, * p < .05, *** p < 0.001, **** p < 0.0001.  All other details are the same as Figure 5.

(a)  (b) (c)
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Substitution testing of atypical antipsychotics: olanzapine, clozapine, risperidone, 
quetiapine, and aripiprazole. 
 

      The atypical antipsychotic olanzapine did not substitute for rac-amisulpride at any of the 

tested doses (0.0625 – 1.0 mg/kg) as shown in Figure 11 panel (a). Maximum %DLR was seen at 

0.5 mg/kg dose (20.03% DRL). There were no significant changes in response rates as compared 

to vehicle at any dose tested F(4,20) = 0.79, p = 0.55.   

     The atypical antipsychotic clozapine did not substitute for rac-amisulpride at any of the tested 

doses (0.625 – 2.5 mg/kg) as shown in Figure 11 panel (b). Maximum %DLR was seen at 1.78 

mg/kg dose (29.25% DLR). A one-way repeated measures ANOVA revealed clozapine produced 

a significant effect on response rates, F(4, 20) = 19.44, p < 0.0001. A Dunnett’s post hoc test 

revealed that 1.78 and 2.5 mg/kg clozapine significantly suppressed response rates as compared 

to vehicle.  

     The atypical antipsychotic risperidone did not substitute for rac-amisulpride at any of the 

tested doses (0.625 – 2.5 mg/kg) as shown in Figure 11 panel (c). Maximum %DLR was seen at 

0.25 mg/kg dose (36.39% DLR). A one-way repeated measures ANOVA revealed that 

risperidone produced a significant effect on response rates, F(3, 15) = 32.80, p < 0.0001. A 

Dunnett’s post hoc test revealed that 0.125 and 0.25 mg/kg risperidone significantly suppressed 

response rates as compared to vehicle.  

     The atypical antipsychotic quetiapine did not substitute for rac-amisulpride at any of the 

tested doses (2.5 – 7.10 mg/kg). Maximum %DLR was seen at 7.10 mg/kg dose (44.58% DLR) 

as shown in Figure 11 panel (d). A one-way repeated measures ANOVA found a significant 

difference in response rates compared to vehicle, F(3,20) = 8.80, p = 0.0006. A Dunnett’s post 

hoc test revealed significant response rate suppression at 7.10 mg/kg quetiapine as compared to 
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vehicle. Two animals were tested at 10.0 mg/kg quetiapine; however, that dose produced 

complete suppression of responding and no further animals were tested at this dose.  

     The atypical antipsychotic aripiprazole did not substitute for rac-amisulpride at any of the 

tested doses (0.15625 – 1.250.0 mg/kg) as shown in Figure 11 panel (e). Maximum %DLR was 

seen at 1.5625 mg/kg (38.04% DLR). A one-way repeated measures ANOVA revealed 

aripiprazole produced a significant effect on response rates, F(4, 25) = 7.49, p = 0.0004. A 

Dunnett’s post hoc test revealed that 0.625 and 1.25 mg/kg aripiprazole significantly suppressed 

response rates as compared to vehicle. 

Substitution testing of antidepressants fluoxetine and imipramine 
 
     The selective serotonin reuptake inhibitor antidepressant fluoxetine did not substitute for rac-

amisulpride at any of the tested doses (5.0 – 40.0 mg/kg) as shown in Figure 12 panel (a).  

Maximum %DLR was seen at 20.0 mg/kg dose (5.28% DLR). A one-way repeated measures 

ANOVA revealed that fluoxetine produced a significant effect on response rates, F(4, 20) = 

11.88, p < 0.0001.  A Dunnett’s post hoc test revealed that 20.0 and 40.0 mg/kg fluoxetine 

significantly suppressed response rates compared to vehicle. 

     The tricyclic antidepressant imipramine did not substitute for rac-amisulpride at any of the 

tested doses (5.0 – 20.0 mg/kg) as shown in Figure 12 panel (b). Maximum %DLR was seen at 

5.0 mg/kg dose (2.60% DLR). A one-way repeated measures ANOVA revealed that imipramine 

produced a significant effect on response rates, F(3, 15) = 8.65, p = 0.0014. A Dunnett’s post hoc 

test revealed that 20.0 mg/kg imipramine significantly suppressed response rates compared to 

vehicle.
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Figure 11. Substitution testing of atypical antipsychotics: olanzapine, clozapine, risperidone, quetiapine, and aripiprazole. Panel (a) 

shows mean percent drug lever responding (± SEM) and mean responses per minute (± SEM) for the atypical antipsychotic olanzapine 

substitution curve, panel (b) for clozapine, panel (c) for risperidone, panel (d) for quetiapine and panel (e) for aripiprazole, * p < .05, 

** p < 0.01, *** p < 0.001, **** p < 0.0001.  All other details are the same as Figure 5.

(a) 
(b)

(c)  (d)  (e) 
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Figure 12. Substitution testing of antidepressants fluoxetine and imipramine. Panel (a) shows 

mean percent drug lever responding (± SEM) and mean responses per minute (± SEM) for the 

selective serotonin reuptake inhibitor fluoxetine substitution curve, and right panel (b) for the 

tricyclic antidepressant imipramine, * p < .05,  *** p < 0.001.  All other details are the same as 

Figure 5. 

 

(a)  (b) 
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Substitution testing of bupropion, mianserin, and chlordiazepoxide. 
 
     The antidepressant bupropion (aminoketone class) did not substitute for rac-amisulpride at 

any of the tested doses (1.0 – 56.0 mg/kg) as shown in Figure 13 panel (a). Maximum %DLR 

was seen at 56.0 mg/kg dose (14.25% DLR). A one-way repeated measures ANOVA found a 

significant difference in response rates, F(4, 25) = 18.65, p < 0.0001. A Dunnett’s post hoc test 

revealed significant response rate suppression at 56.00 mg/kg bupropion as compared to vehicle. 

     The tetracyclic antidepressant mianserin did not substitute for rac-amisulpride at any of the 

tested doses (0.50 – 2.00 mg/kg) as shown in Figure 13 panel (b). Maximum %DLR was seen at 

0.50 mg/kg dose (40.26% DLR). A one-way repeated measures ANOVA revealed that mianserin 

produced a significant effect on response rates, F(3, 20) = 65.11, p < 0.0001. A Dunnett’s post 

hoc test revealed that 2.00 mg/kg mianserin HCl significantly suppressed response rates 

compared to vehicle.  

     The anxiolytic chlordiazepoxide did not substitute for rac-amisulpride at any of the tested 

doses (2.5 – 56.6 mg/kg) as shown in Figure 13 panel (c). Maximum %DLR was seen at the 56.6 

mg/kg dose (17.10% DLR). A one-way repeated measures ANOVA found a significant 

difference in response rates, F(6, 35) = 3.50, p = 0.0084. However, a Dunnett’s post hoc test 

failed to reveal any significant difference between chlordiazepoxide as compared to vehicle. 

Substitution testing of selected dopaminergic ligands raclopride and quinpirole 

      The results for the selected dopaminergic ligands raclopride and quinpirole are shown in 

Figure 14.  Panel (a) shows the substituted benzamide raclopride (D2, D3 antagonist) did not fully 

substitute for rac-amisulpride at any of the tested doses (0.025-0.40 mg/kg). However, there was 

partial substitution at 0.10 mg/kg (62.68 %DLR). A one-way repeated measures ANOVA found 

no significant differences in response rates, F(5, 30) = 1.48, p = 0.23.   
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Figure 13. Substitution testing of bupropion, mianserin, and chlordiazepoxide.  Panel (a) shows mean percent drug lever responding 

(± SEM) and mean responses per minute (± SEM) for the antidepressant bupropion substitution curve, panel (b) for the tetracyclic 

antidepressant mianserin, and left panel (c) the anxiolytic chlordiazepoxide, **** p < 0.0001.  All other details are the same as   

Figure 5.

(a)  (b)  (c) 
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Figure 14. Substitution testing of selective dopaminergic ligands raclopride and quinpirole.  

Panel (a) shows mean percent drug lever responding (± SEM) and mean responses per minute (± 

SEM) for the dopamine antagonist raclopride substitution curve, and panel (b) for the dopamine 

agonist quinpirole, * p < .05.  All other details are the same as Figure 5.

(a)  (b) 
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The compound quinpirole (selective D2 and D3 agonist) did not fully substitute for rac-

amisulpride at any of the tested doses (0.01-0.32 mg/kg) as shown in Figure 14 panel (b). 

Maximum %DLR was seen at the 0.10 mg/kg dose (56.64 %DLR). A one-way repeated 

measures ANOVA found a significant difference in response rates, F(4, 25) = 3.73, p = 0.0164. 

A Dunnett’s post hoc test revealed significant rate suppression at 0.32 mg/kg quinpirole as 

compared to vehicle. 

Substitution testing of selective serotonin ligands BW-723C86 and SB-204741 

     The compound BW 723C86 (selective 5-HT2B agonist) did not substitute for rac-amisulpride 

at any of the tested doses (1.0 – 32.00 mg/kg) as shown in Figure 15 panel (a). Maximum %DLR 

was seen at 10.00 mg/kg (17.91% DLR). A one-way repeated measures ANOVA found a 

significant difference in response rates, F(3, 20) = 15.19, p < 0.0001. A Dunnett’s post hoc test 

revealed significant rate suppression at a dose 32.00 mg/kg as compared to vehicle. 

     The compound SB-204741 (5-HT2B antagonist) did not fully substitute for rac-amisulpride at 

any of the tested doses (1.0 – 4.00 mg/kg) as shown in Figure 15 panel (b). Maximum %DLR 

was seen at 2.00 mg/kg (17.64 %DLR). A one-way repeated measures ANOVA found no 

significant differences in response rates, F(3, 20) = 0.182, p = 0.91. 

Substitution testing of selective serotonin ligands LP-44 and SB-269970  
 
     The compound LP-44 (selective 5-HT7 agonist) did not substitute for rac-amisulpride at any 

of the tested doses (1.0 – 32.00 mg/kg) as shown in Figure 16 panel (a). Maximum %DLR was 

seen at 10.00 mg/kg (50.11% DLR). A one-way repeated measures ANOVA found a significant 

difference in response rates, F(4, 25) = 4.80, p < 0.0054. A Dunnett’s post hoc test revealed 

significant rate suppression at 32.00 mg/kg as compared to vehicle. 
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Figure 15. Substitution testing of the selective serotonin ligands BW 723C86 and SB-204741.   

 Panel (a) shows mean percent drug lever responding (± SEM) and mean responses per minute  

(± SEM) for the 5-HT2B agonist BW 723CC86, and panel (b) for the 5-HT2B antagonist SB-

204741, ** p < .01. All other details are the same as Figure 5. 

 

(a)  (b)
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   The compound SB-269970 (selective 5-HT7 antagonist) did not fully substitute for rac-

amisulpride at any of the tested doses (0.32 – 56.0 mg/kg) as shown in Figure 16 panel (b). 

Maximum %DLR was seen at 32.00 mg/kg dose (36.74 %DLR). A one-way repeated measures 

ANOVA found no significant differences in response rates, F(6, 35) = 0.97, p = 0.463. 
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Figure 16. Substitution testing of selective serotonin ligands LP-44 and SB-269970.  Panel (a) 

shows mean percent drug lever responding (± SEM) and mean responses per minute (± SEM) for 

the selective serotonin ligand LP-44 (5-HT7 agonist). Panel (b) shows mean percent drug lever 

responding (± SEM) and mean responses per minute (± SEM) for the selective serotonin ligand 

SB-269970 (5-HT7 antagonist), * p < .05.  All other details are the same as Figure 5. 

 

 

 

 

  

(a)  (b) 
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Discussion 

     rac-Amisulpride as a discriminative stimulus. The results of the present study 

demonstrated that the atypical antipsychotic rac-amisulpride can exert reliable discriminative 

stimulus control in male C57BL/6 mice at doses that do not significantly suppress rates of 

responding.  A previous study conducted by this author (Donahue et al., 2014) demonstrated that 

the isomer (S)-amisulpride (10 mg/kg training dose) also exerts a robust discriminative stimulus 

in C57BL/6 mice, and that the (R)-amisulpride isomer and rac-amisulpride produced full 

substitution for (S)-amisulpride. Results from that study will aid, through comparison, in the 

analysis of the findings of this dissertation project. This study is original as, to date; there are no 

published studies on the discriminative stimulus properties of rac-amisulpride, the therapeutic 

form of the drug, with any species. The general goal of this study was to build upon the data 

demonstrated in Donahue et al. (2014) by utilizing the drug discrimination paradigm as a 

behavioral assay to investigate the discriminative stimulus properties of rac-amisulpride. The 

first aim was to establish rac-amisulpride as a discriminative stimulus and compare, through 

substitution testing, the discriminative stimulus properties of rac-amisulpride to the enantiomers 

(S)- amisulpride and (R)-amisulpride as well as a wide variety of typical and atypical 

antipsychotics,  other benzamide derivatives, and other medications known for their 

antidepressant and anxiolytic effects. The second aim was to conduct substitution testing with 

selective ligands that are either agonists or antagonists at specific receptor sites responsible for 

the effects of rac-amisulpride. Specifically, selective agonists and antagonists for dopamine D2 

and D3 and for serotonin 5-HT2B and 5-HT7 receptors were tested. This specific ligand testing 

enabled us to more precisely investigate the underlying neural receptors responsible for the 

discriminative stimulus effects of rac-amisulpride. 
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     The present study utilized rac-amisulpride (10 mg/kg) as the training drug. The acquisition 

differences among the two groups of animals reveals that Cohort 1 acquired the discriminative 

cue in fewer sessions (35.7) compared to Cohort 2 (41.58) and their respective ranges overlap. 

These differences in acquisition between the two groups are minimal and may be accounted for 

by the differences in sample size in the three groups.  The training dose (10 mg/kg) and pre-

injection time (60 min) in the present study were based upon published drug discrimination 

research from our lab as well as the pharmacological profile of amisulpride in mice and rats in 

other behavioral studies (Donahue et al., 2014; Perrault et al., 1997).   

     Comparison of dose-effect curves. A comparison of the generalization curves for the 

racemic and two isomeric forms of amisulpride yielded interesting information regarding %DLR 

and respective ED50 values. As seen in Table 11 and Figure 17, the ED50 values for rac-

amisulpride and the (R)-amisulpride isomer are very similar to each other; however, there was a 

significant leftward shift for the (S)-amisulpride isomer. This leftward shift may be due to the 

differences in potency for (S)-amisulpride relative to (R)-amisulpride and the racemic form. It 

has been demonstrated that (S)-amisulpride is twice as potent as rac-amisulpride and 20 to 40 

times more potent than (R)-amisulpride in displacing radioligands from dopamine D2/3 receptors 

(Castelli et al., 2001).  It is also interesting that in our study (R)-amisulpride (ED50 = 0.68 mg/kg. 

95% CI[0.41, 1.11 mg/kg.]) and rac-amisulpride (ED50=0.46 mg/kg. 95% CI[0.47, 0.84]) show 

overlapping intervals indicating that the respective ED50 values were not statistically different. 

This suggests that the R-isomer (while not as potent as the S-isomer) is equipotent with rac-

amisulpride and shared discriminative stimulus properties with rac-amisulpride and, in fact, may 

contribute to the discriminative stimulus properties of rac-amisulpride. This finding is intriguing 

and warrants further investigation as to whether or not (R)-amisulpride possesses a  
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Table 11. 

 

Comparison of ED50 values for the three forms of amisulpride. 
 
 

Drug Form ED50 Value 95% Confidence 
Interval 

rac-amisulpride (N=31) ED50 = 0.64 mg/kg 0.47 – 0.84 mg/kg 
(S)-amisulpride (N=7) ED50 = 0.33 mg/kg 0.25 – 0.45 mg/kg 
(R)-amisulpride (N-7) ED50 = 0.68 mg/kg 0.41 – 1.11 mg/kg 
   

 
 
Values based on free base weights of the drugs. 
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Figure 17.  Dose-effect curves for (S)-amisulpride, rac-amisulpride and (R)-amisulpride. 
 
The % drug lever responding data for rac-amisulpride and its isomers are redrawn on a log base 

10 scale with least squares regression lines to illustrate the significant (p<0.05) leftward shift of 

(S)-amisulpride dose-effect curve relative to rac-amisulpride and (R)-amisulpride. 
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discriminative stimulus that can be trained in C57BL/6 mice and, if so, at what dose?  

Furthermore, this suggests that (R)-amisulpride may contribute to the therapeutic properties of 

rac-amisulpride and may in fact have unique therapeutic properties of its own for the treatment 

of schizophrenia and/or depression. 

 

 rac-Amisulpride time course. Time course data shown in Figure 3 revealed a rather 

symmetrical inverted U shaped curve for %DLR responding across various time points with no 

significant changes in response rates. The data demonstrated that with a 60 minute s.c. pre-

injection time, 10 mg/kg training dose of rac-amisulpride produced partial substitution at 15 

minutes (67.5% DLR) and 120 minutes (77.55% DLR). Full substitution was produced at 30 

minutes (86.54%  DLR) and 60 minutes (91.78% DLR) with a significant decline at 0 minutes 

(7.53% DLR), 240 minutes (55.26% DLR), and 480 minutes (3.50% DLR). The finding that full 

substitution was achieved at 60 minute time point is consistent with existing research using the 

same post injection time period to achieve maximum behavioral effects in mice and rats 

(Donahue et al., 2014; Manzaneque & Navarro, 1999; Perrault et al., 1997; Scatton et al., 1994).  

The elimination rate appears consistent with expected normal half-life elimination. Interestingly, 

this author’s previous study of (S)-amisulpride (10 mg/kg training dose) (Donahue et al., 2014) 

showed a 30 minute time point produced only partial substitution (70.28% DLR) compared to 

the full substitution at 30 minutes (86.54% DLR) for rac-amisulpride at that same dose. This 

difference may be due to absorption rates, and/or slower elimination rate or the difference in 

potency at certain receptors between the racemic form of the drug and its isomers.   
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Benzamide derivatives substitution testing. Of particular interest to this study was the testing 

of the benzamide derivatives, the class of drugs to which rac-amisulpride belongs. Tested 

benzamides included: the atypical antipsychotic sulpiride, (S)-sulpiride (Figure 10), tiapride, 

nemonapride and zacopride (Figure 13). Binding affinities for the benzamides are shown in 

Table 12. This study showed that both sulpiride and (S)-sulpiride fully substituted for rac-

amisulpride. Sulpiride substituted for rac-amisulpride at 25.00 mg/kg (81.61% DLR), and 50.00 

mg/kg (82.65% DLR) revealing an ED50 = 7.29 mg/kg.  (S)-sulpiride substituted for rac-

amisulpride at 40.00 mg/kg (82.18% DLR) revealing an ED50 = 9.12. While sulpiride showed a 

significant suppression of response rates as compared to vehicle, (S)-sulpiride show no 

significant effects on response rates. This is particularly interesting as both sulpiride and (S)-

sulpiride both display a high binding affinity and antagonistic action at dopamine D2 and D3 

receptors, an affinity and antagonism shared by rac-amisulpride. However, unlike rac-

amisulpride, sulpiride and (S)-sulpiride show no affinity for any serotonin receptors. This 

provides us with a clue that perhaps the discriminative stimulus properties of rac-amisulpride are 

particularly related to its affinity for and antagonism of dopamine D2 and D3 receptors. Also 

interesting was that tiapride showed very high partial substitution for rac-amisulpride at 40 

mg/kg (76.41% DLR), again with no significant effects on response rates. Tiapride also has no 

known affinity for serotonin receptors (unlike rac-amisulpride), but does have affinity for 

dopamine D2 receptors (Ki = 31.0) as does rac-amisulpride (Ki = 1.3). However, tiapride has an 

affinity for dopamine D4 (Ki =14.0) receptors while rac-amisulpride has no affinity for D4 

receptors. Perhaps the shared affinity at D2 receptors provides a clue as to why tiapride showed 

high partial substitution for rac-amisulpride. Recall in our introduction that  

Cohen et al. (1997) trained rats to discriminate tiapride and amisulpride produced tiapride-
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Table 12 
 
Receptor binding affinity Ki values (nM) of tested benzamide drugs at relevant receptor targets 
 

 

5-HT, serotonin receptors; α, adrenergic alpha receptors; D, dopamine receptors; --, not tested; NSB, no significant binding 
 (Ki > 10,000 nM) 
 

a (Schoemaker et al., 1997); rat cerebral cortex o  (Kapur & Seeman, 2001); human cloned cDNA cells 
b (Raymond et al., 1989) ; COS-7 human cloned cells p (Toll et al., 1998); D3-receptor-containing CHOp- cells 
c (Abbas et al., 2009) ; human cloned cDNA cells q (Tang, Todd, Heller, & O'Malley, 1994); rat cloned D3 
d (B. L. Roth et al., 1992) ; rat brain         cells transfected into mouse Ltk- fibroblasts 
e (Kilpatrick, Bunce, & Tyers, 1990); rat cortex  
f (B. L. Roth et al., 1994) ; rat cloned HEK-293 receptor cells  
g (Ruat et al., 1993); rat cloned hypothalamus cDNA cells  
h (Boyajian & Leslie, 1987); rat brain  
i (Kessler et al., 1993); rat cortex  
j (Burstein et al., 2005); human monoamine G protein-coupled receptors  
k (Philip Seeman & Van Tol, 1995); pig anterior pituitary  
l (P Sokoloff et al., 1990); rat brain cloned G protein-coupled receptors  

m (Lawler et al., 1999); rat cloned C-6 glioma cells  
n (Zahniser & Dubocovich, 1983); rat striatum  

 Receptor 
Drug Name 5-HT1A 5-HT1B 5-HT2A 5-HT2B 5-HT3 5-HT6 5-HT7 α2A D2 D3 D4 
Rac-amisulpride NSBa 1,744.0c 2,000.0a 13.0c -- 4,154.0c 11.5c 1,114.0c 1.3c 3.8l 2,369.0c

Sulpiride 589.0b -- NSBd -- -- 5,000.0f 3,000.0g 682.0h 8.2i 0.71m 54.0n

(S)-sulpiride -- -- -- -- -- -- -- -- 9.9n 6.4o  
Tiapride -- -- -- -- -- -- -- -- 31.0j -- 14.0j

Nemonapride 58.0p -- -- -- -- -- -- -- 0.04k 0.06q -- 
Zacopride -- -- -- -- 8.97e -- -- -- -- -- -- 
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appropriate responding; however, the present study showed that tiapride produced only partial 

substitution for amisulpride. This is an interesting asymmetrical cross-generalization between 

tiapride and rac-amisulpride.  One possible explanation is that tiapride’s binding profile only 

shares one receptor affinity with rac-amisulpride (dopamine D2) and that this (alone) is 

insufficient to fully produce amisulpride-like drug lever responding.  As to why amisulpride fully 

substituted for tiapride in Cohen et al. (1997) remains a curious question. 

     Nemonapride did not substituted for rac-amisulpride and showed significant rate suppression 

compared to vehicle. The failure for nemonapride to fully substitute for rac-amisulpride may be 

because nemonapride has an affinity only for dopamine D2 receptors, and perhaps, as we saw 

with sulpiride, affinity for D3 is required for substitution to rac-amisulpride. Zacopride, a 

diagnostic compound displaying antagonism at and a highly potent and selective binding affinity 

for serotonin 5-HT3 receptor was also included in the benzamide testing. It did not substitute for 

rac-amisulpride and produced no significant effects on response rates compared to vehicle. 

Again, that zacopride has  affinity for only serotonin 5-HT3 receptor probably accounts for its 

inability to substitute for rac-amisulpride 

   Typical antipsychotic drugs substitution. The present study demonstrated that the typical 

antipsychotic medications haloperidol, chlorpromazine or the dopamine non-selective agonist 

apomorphine did not substitute for rac-amisulpride at any of the doses tested (Figure 8) and all 

three drugs showed significant rate suppression as compared to vehicle.  Haloperidol has proved 

to be a difficult drug to establish as a discriminative stimulus (Colpaert F et al., 1976; McElroy et 

al., 1989) although it has been used in drug discrimination studies with drugs such as 

amphetamine(Haenlein, Caul, & Barrett, 1985) and nicotine (R. J. Barrett, Caul, & Smith, 2004). 

There are no studies showing that haloperidol has substituted for any atypical antipsychotic 
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medications; thus, it is not surprising that it did not substitute for rac-amisulpride. Donahue et al. 

(2014) found that (S)-amisulpride did not generalize to haloperidol, which supports the finding of 

this study regarding rac-amisulpride. The failure of haloperidol to substitute for (S)-amisulpride 

and rac-amisulpride suggests the difference in binding profiles between rac-amisulpride and 

haloperidol most likely accounts for this. See Table 7 for binding affinities at relevant receptors. 

Structurally, haloperidol is a butyrophenone that has strong binding affinity with antagonistic 

effects at dopaminergic D1-5 and adrenergic α1A and α1B receptors and sigma1-2 receptors. 

Chlorpromazine has a similar binding profile with strong affinity to and antagonistic action at 

dopaminergic D1-5 and adrenergic α1A and α1B receptors and muscarinic M1 receptors. Goas and 

Boston (1978) were the first to show that  haloperidol substituted for chlorpromazine in a drug 

discrimination study with rats (Goas & Boston, 1978) a finding later supported by McElroy et al. 

(1989), which showed that chlorpromazine substituted for haloperidol in rats trained to 

discriminate 0.05 mg/kg (i.p.) haloperidol from vehicle (McElroy et al., 1989).  Thus, there is 

cross-generalization between the two drugs.  In contrast, rac-amisulpride binds selectively to 

dopaminergic D2/3 and to serotonin 5-HT2B and 5-HT7 receptors and it is most likely that the 

difference in binding profiles between rac-amisulpride and haloperidol and chlorpromazine 

accounts for the fact that neither of the later drugs substituted for rac-amisulpride.  It also may be 

that rac-amisulpride more quickly dissociates from dopamine receptors than either haloperidol or 

chlorpromazine (P. Seeman, 2002) (see Figure 2) and that this may be a factor for the failure of 

either typical antipsychotic to substitute for rac-amisulpride. 

   The non-selective dopamine agonist apomorphine, a compound sometimes used in the 

treatment of Parkinson’s disease, did not substitute for rac-amisulpride and produced severe rate 

suppression compared to vehicle at higher doses. Apomorphine is not an antipsychotic drug and 
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was used as a negative control because of its agonistic activity and strong binding affinity to 

dopamine D1 (Ki = 7.2)(Burt, Creese, & Snyder, 1976), dopamine D2 (Ki = 2.3) and dopamine D3 

(Ki = 2.2) (Sautel et al., 1995), and dopamine D4 (Ki = 4.3 )(M. J. Millan et al., 2002).  

Considering that apomorphine and rac-amisulpride have opposite effects at dopamine D2/3 

receptors and that apomorphine does not bind, as rac-amisulpride does, to dopamine serotonin 5-

HT2B, or  to 5-HT7A, it is not surprising that it does not substitute for rac-amisulpride. 

       Atypical antipsychotic drug substitution. This present study found that the atypical 

antipsychotics olanzapine, clozapine, risperidone, quetiapine and aripiprazole did not substitute 

for rac-amisulpride at any of the tested doses (see Figure 9). Additionally, all of the drugs except 

olanzapine produced significant suppression of response rates compared to vehicle. See Table 7 

for the binding affinities of these antipsychotics at receptors relevant to rac-amisulpride.  There 

are studies to show that many of these atypical antipsychotics (with the exception of rac-

amisulpride) substitute for each other in drug discrimination assays. For example, olanzapine 

binds with high affinity to dopamine D1-4 receptors, and serotonin 5-HT2A and 5-HT2B, and 

adrenergic α1A, and muscarinic M1 where it displays antagonistic action at all of these receptor 

sites.  Moore et al. (1992) showed that in rats trained to discriminate 5.0 mg/kg (i.p) clozapine 

from vehicle olanzapine produced full substitution (Moore, Tye, Axton, & Risius, 1992).  Porter 

and Strong (1996) were successful in training rats to discriminate 0.5 mg/kg (i.p.) olanzapine 

from vehicle in a drug discrimination assay and that clozapine fully substituted for olanzapine in 

a dose-dependent manner (Porter & Strong, 1996). Olanzapine also was shown to show partial 

substitution to risperidone (Porter, McCallum, Varvel, & Vann, 2000).  While olanzapine 

appears to share similar binding affinities and antagonist effects with other atypical 
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antipsychotics, this study concluded that the difference in binding profiles between olanzapine 

and rac-amisulpride appear to prohibit one from substituting for each other.  

     Clozapine, a dibenzodiazepine, binds to many receptors displaying a lower affinity to 

dopamine D2 receptors but higher affinity for dopamine D1, D4, and serotonergic 5-HT2A/2C,      

5-HT6, 5-HT7, cholinergic M1-4, adrenergic α1-2, and histaminic H1 receptors (Arnt & Skarsfeldt, 

1998a; Bymaster et al., 1996; E. Richelson, 1999; Schotte et al., 1996).  Generally, clozapine is 

characterized as an antagonist at these receptors, but it has been shown to act as a week partial 

agonist at M1 receptors, and as an agonist at M4 and 5-HT1A receptors (Davies et al., 2004; 

Weiner et al., 2004).  It has been shown in drug discrimination studies with rats/mice that 

clozapine fully substitutes for olanzapine (Porter & Strong, 1996; Porter, Varvel, Vann, Philibin, 

& Wise, 2000),  quetiapine (J. A. Smith & A. J. Goudie, 2002) and chlorpromazine (Goas & 

Boston, 1978; Porter, Villanueva, & Rosecrans, 1999). While clozapine may share similar 

stimulus properties with the aforementioned drugs it failed to substitute for rac-amisulpride and 

produced significant rate suppression compared to vehicle. Our preliminary investigation 

demonstrated that clozapine failed to fully substitute for (S)-amisulpride (Donahue et al., 2014) 

which makes it not surprising that clozapine did not substitute for rac-amisulpride. The selective 

binding profile of rac-amisulpride versus the rather extensive binding profile of clozapine 

combined with the latter drug’s mixed antagonistic/agonistic effects most likely accounts for 

clozapine’s failure to substitute for rac-amisulpride. 

     The atypical antipsychotic risperidone did not substitute for rac-amisulpride at any of the 

tested doses and produced significant rate suppression as compared to vehicle (Figure 9). 

Interestingly, risperidone was developed in an attempt to replicate clozapine’s effectiveness 

without clozapine’s side effects (agranulocytosis), so it is understandable that its mechanism of 
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action would be similar to that of clozapine (Schatzberg & Nemeroff, 2009). It has a high affinity 

for serotonin 5-HT1D, 5-HT2A, 5-HT7, dopamine D2-4, adrenergic α1A-1B and moderate affinity at 

histamine H1 and dopamine D1, where it acts as an antagonist at all these sites.  Unlike rac-

amisulpride, risperidone has higher affinity at serotonin 5-HT2A receptors than for D2 receptors. 

Risperidone has been shown to substitute fully for clozapine (Philibin et al., 2005; Porter, 

Varvel, et al., 2000; Porter et al., 2008), partially substitute for olanzapine  (Porter, McCallum, et 

al., 2000), and fully substitute for quetiapine (J. A. Smith & A. J. Goudie, 2002). It is most likely 

that the dissimilarity in binding profiles between rac-amisulpride and risperidone account for 

why risperidone did not substitute for rac-amisulpride in this study. 

     Quetiapine, an atypical antipsychotic, likewise did not fully substitute for rac-amisulpride and 

produced severe rate suppression compared to vehicle. Table 7 shows that quetiapine has 

moderate affinity for and antagonizes dopamine D2 receptors, a strong affinity for and acts as a 

partial agonist at histamine H1A receptors, a strong affinity for and antagonizes adrenergic α1 

receptors, and a weak affinity and antagonistic action at serotonin  5-HT1A, 5-HT2A receptors. In 

drug discrimination studies where it was used as a test drug it showed full substitution to 

clozapine (Carey & Bergman, 1997; A. J. Goudie et al., 1998). The difference in binding profiles 

between rac-amisulpride and quetiapine are most likely the reason quetiapine did not fully 

substitute for rac-amisulpride. 

     The novel atypical antipsychotic aripiprazole, a benzisoxazole, is unique among the atypical 

antipsychotics, as it reduces dopaminergic neurotransmission acting as a partial agonist (versus 

antagonist) at dopamine D2/3 receptors where it shows high affinity (see Table 7). Aripiprazole 

also has high affinity for and partial agonistic effects at serotonin 5-HT1A, 5-HT2A, 5-HT2B , and 

shows a high affinity for and antagonistic effects at serotonin, and 5-HT7 , dopamine D3 and 
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adrenergic α1A, α1B, α2C, receptors . The present study showed that aripiprazole did not substitute 

for rac-amisulpride at any of the doses tested and produced significant rate suppression 

compared to vehicle (Figure 9). As well, the preliminary study in our lab showed that 

aripiprazole also did not fully substitute for (S)-amisulpride and produced significant rate 

suppression compared to vehicle (Donahue et al., 2014). Our results suggest that the difference 

in binding profiles of rac-amisulpride as compared to aripiprazole helps explain why aripiprazole 

did not substitute for rac-amisulpride.      

     Antidepressant substitution. A number of antidepressant medications representing a wide 

class of drugs were tested in this study (Figures 11 and 12) and the binding affinities are 

presented in Table 9. The selective serotonin reuptake inhibitor fluoxetine did not fully substitute 

for rac-amisulpride and produced significant suppression of rates compared to vehicle. 

Fluoxetine has a high affinity for serotonin 5-HT2c receptors where it inhibits the reuptake of 

serotonin into the presynaptic neuron, principally at serotonin 5-HT2c receptor with no binding 

affinity for dopamine receptors. Additionally, serotonin acts a potent inhibitor of serotonin 

transporter proteins (SERT). This profile is quite different than rac-amisulpride and most likely 

contributes to the inability of fluoxetine to substitute for rac-amisulpride at any of the doses 

tested.   

     Bupropion is categorized as an “atypical” antidepressant as it acts via dual inhibition of 

norepinephrine and dopamine reuptake with negligent serotonergic effect or effects on post 

synaptic receptors (Stahl et al., 2004).  It did not substitute for rac-amisulpride and produced 

significant rate suppression as compared to vehicle. As bupropion displays no binding affinity to 

any receptors relevant to rac-amisulpride it is understandable why it would fail to substitute.  



 
 

103 
 

     The tricyclic antidepressant imipramine also did not substitute for rac-amisulpride at any of 

the tested doses and produced significant rate suppression. Imipramine has high binding affinity 

to SERT, serotonin 5-HT2c, norepinephrine transporter (NET) and moderate affinity for 

muscarinic M1 and M2 receptors.  Its principal mechanism of action is in inhibiting neuronal 

uptake of serotonin and norepinephrine. This dissimilarity to rac-amisulpride in receptor binding 

affinity and mechanism of action is most likely a factor for why it failed to substitute for rac-

amisulpride.  

     The tetracyclic antidepressant mianserin did not substitute for rac-amisulpride at any of the 

tested doses and produced significant rate suppression. Mianserin displays a high affinity for 

serotonin 5-HT2C, 5-HT6 and NET receptors. Mianserin acts as a weak inhibitor of NET and an 

antagonist at serotonin 5-HT2C, 5-HT6.  Of interest to this study, is that mianserin also displays a 

moderate affinity for serotonin 5-HT2B receptors (Ki = 50.11).  Rac-amisulpride also has an 

antagonistic action at 5-HT2B receptors although its binding at that receptor displays a higher 

affinity at that receptor (Ki = 13.0) than that of mianserin. Apparently, this lone similarity was 

not sufficient to enable mianserin to fully substitute for rac-amisulpride.  

     The benzodiazepine anxiolytic chlordiazepoxide did not substitute for rac-amisulpride at any 

of the tested doses and produced a significant suppression of response rates. Chlordiazepoxide 

has an affinity for benzodiazepine (BZD) sites at GABAA receptors where it exerts an agonistic 

effect increasing the binding of GABA to GABAA receptors. This binding profile and action is 

quite different from that of rac-amisulpride and most likely accounts for the failure of 

chlordiazepoxide to substitute for rac-amisulpride. Thus, it is apparent from the evidence in this 

study that the discriminative stimulus of rac-amisulpride at the training dose of 10 mg/kg is not 

shared with the antidepressant drugs tested. 
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     Selective ligand testing. Selective ligand testing revealed interesting information in our 

investigation into the neural receptors responsible for the discriminative stimulus effects of rac-

amisulpride. Compounds were selected (see Table 10) that display a high affinity for receptors 

relevant to rac-amisulpride and exerted either agonistic or antagonistic effects at those receptors.  

     Rac-amisulpride displays a high affinity for dopamine D2 and D3 receptors where it exerts 

antagonistic effects. The compound raclopride is selective ligand displaying a high affinity for 

dopamine D2/3 where it exerts antagonistic effects, quite similar to rac-amisulpride at those 

receptors. Raclopride has no affinity for serotonin receptors. Our study revealed that raclopride 

failed to substitute for rac-amisulpride at any of the tested doses and had no significant effect on 

rate.  The compound quinpirole is a selective ligand displaying a high affinity for D2/3 receptors 

where it exerts an agonistic effect at those receptors.  Our study revealed that quinpirole failed to 

substitute for rac-amisulpride at any of the doses tested and produced a significant suppression 

of rates compared to vehicle.  This suggests that the discriminative stimulus effects of rac-

amisulpride are not solely dependent upon activity at dopamine D2/3 receptors. 

     To investigate the contribution of serotonin 5-HT2B receptors to the discriminative stimulus 

effects of rac-amisulpride, the present study tested the compound SB-204741 which has a high 

affinity for 5-HT2B receptors and exerts an antagonist effect at that receptor (a property shared 

with rac-amisulpride). It was found that SB-204741 did not substitute for rac-amisulpride at any 

of the doses tested with no significant effects on response rates. We tested the selective 

compound BW 723C86, which has a high affinity for 5-HT2B receptors, but exerts an agonist 

effect at that receptor, unlike rac-amisulpride. Our results showed that BW 723C86 did not 

substitute for rac-amisulpride at any of the doses tested and produced significant rate suppressive 
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effects. These results indicate that activity at serotonin 5-HT2B is not sufficient, in and of itself, 

to account for the discriminative stimulus properties of rac-amisulpride. 

     To investigate the contribution of the serotonin receptor 5-HT7 to the discriminative stimulus 

property of rac-amisulpride this study tested the selective compound SB-269970 which has a 

high affinity for serotonin 5-HT7 receptors and exerts an antagonistic effect at that receptor 

similar to rac-amisulpride. We found that SB-269970 did not fully substitute for rac-amisulpride 

at any of the doses tested and had no effect on rate compared to vehicle.  We tested the selective 

compound LP-44 which has a high affinity for serotonin 5-HT7 receptors but exerts an agonist 

action at that receptor.  Our results showed that it failed to substitute for rac-amisulpride at any 

of the doses tested with no significant effect on rate. This testing demonstrated that the 

discriminative stimulus property of rac-amisulpride is not solely dependent upon activity at the 

serotonin 5-HT7 receptor. 

     That none of the selected ligands substituted for rac-amisulpride provides evidence that the 

discriminative stimulus property of rac-amisulpride, most likely, cannot be attributed to the 

action at any one specific receptor relevant to the drug.  This assessment is tempered by our 

results that showed sulpiride and (S)-sulpiride both fully substituted for rac-amisulpride. This is 

interesting as both sulpiride and (S)-sulpiride have rather specific and limited receptor affinities 

to only dopamine D2 and D3 receptors. A curious question is why would sulpiride and (S)-

sulpiride substitute for rac-amisulpride when the similar selective ligand raclopride (having 

identical binding affinity and antagonistic action) did not substitute fully for rac-amisulpride? 

One could surmise that the discriminative stimulus property of rac-amisulpride does not 

completely reside in its receptor affinities but may be related to more complicated and 

undetermined intracellular processes pertinent to dopamine and serotonin G-protein events. Or, 
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that the molecular structures of sulpiride and (S)-sulpiride and rac-amisulpride are similar 

enough to account for why sulpiride and (S) sulpiride substituted fully for rac-amisulpride; a 

similarity not shared by raclopride. 

     Autoreceptors.  The literature is replete with studies indicating that medications having a 

high affinity for and antagonistic action at dopamine D2 receptors produce a decrease in motor 

responses in animal models; and, in human studies, trigger a wide range of behavioral deficits 

one would usually associate with negative symptoms in schizophrenia such as: dysphoria, 

anhedonia, depression, akathesia, low libido, sedation or narcolepsy. The prevailing thought is 

that a blockade of the dopamine D2 receptor (and other dopamine receptors) is responsible for 

these behavioral deficits.  Rac-amisulpride, despite exhibiting a strong affinity for and 

antagonistic action at dopamine D2 receptors did not produce any rate suppression effects as 

compared to vehicle in our study, nor does the clinical literature report that it has significant 

behavioral deficits in humans as compared to other medications with a similar profile at 

dopamine D2 receptors (e.g. haloperidol). It is plausible to suggest that rac-amisulpride’s affinity 

for and antagonistic action at dopamine D2 receptors is possibly offset by its inhibition of 

autoreceptors on presynaptic dopamine D3 sites, which actually increase dopamine availability in 

the synaptic cleft. Perhaps this increase in dopamine via D3 autoreceptor inhibition is sufficient 

to offset the decrease of dopamine availability produced by the blockade of dopamine at D2 

receptors.  A mentioned earlier, it is suggested that rac-amisulpride’s ability to increase 

dopamine via D3 antagonism is widely believed to account for the drug’s efficacy in treating 

depression-like symptoms, and this may account for why we found no rate suppression effects of 

our tested doses of rac-amisulpride on C57BL/6 mice. 
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     Future studies. Future drug discrimination studies in our lab will test the role played by the 

enantiomer (R)-amisulpride. Our investigations to date have demonstrated that (R)-amisulpride 

does fully substitute for both (S)-amisulpride and rac-amisulpride. An investigation of (R)-

amisulpride as the training drug and substitution testing with many of the same compounds 

tested in this study will provide a more complete picture of the racemic form of amisulpride and 

its two isomers. 

     Our lab is also currently conducting combination testing of the selected ligands used in the 

present study to examine the ability of these selected ligands to attenuate or potentiate the 

discriminative stimulus effects of rac-amisulpride (10 mg/kg training dose). Specifically, we are 

investigating whether the discriminative stimulus effects of rac-amisulpride will be potentiated 

when combined with raclopride which has a similar high affinity for and antagonistic effect on 

dopamine D2/3 receptors; and, whether the dopamine D2/3 agonist quinpirole combined with rac-

amisulpride will attenuate rac-amisulpride’s discriminative effect.  We are investigating whether 

the combination of rac-amisulpride and the compound SB-269970 (which has strong affinity for 

and antagonistic action at serotonin 5-HT7A receptors) will potentiate rac-amisulpride’s 

discriminative effect; and whether the compound LP-44 (with a high affinity for and agonistic 

action at serotonin 5-HT7A receptors) combined with rac-amisulpride will attenuate rac-

amisulpride’s discriminative effect. We are also investigating whether rac-amisulpride’s 

discriminative effect will be potentiated by the compound SB-204741 (with a high affinity for 

and antagonistic action at serotonin 5-HT2B); and whether the compound BW-723C86 (with a 

high affinity for and agonist action at serotonin 5-HT2B) will attenuate rac-amisulpride’s 

discriminative effect. We hope the results of this combination testing will reveal additional clues 

regarding the underlying receptor mechanisms involved in rac-amisulpride’s discriminative 
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effect with C57BL/6 mice. Recall that none of these selective ligands when given alone 

substituted for rac-amisulpride. If rac-amisulpride’s discriminative effect is not affected by this 

selective ligand combination testing, then this is more evidence to suggest that the discriminative 

stimulus effect of rac-amisulpride is not to be found at activity at any one receptor site. Instead, 

it would suggest it is a compound stimulus residing in rac-amisulpride’s unique binding profile 

and antagonistic action at dopamine D2, D3 and serotonin 5-HT2B, and 5-HT7A.  Or, perhaps that 

activity of rac-amisulpride at autoreceptors mediates its unique discriminative stimulus cue. 

     Also, future tests could investigate the utilization of transgenic or knockout mice (KO) to 

discern genetic influences on various receptors that are perhaps responsible for the discriminative 

stimulus property of rac-amisulpride. With the results of our study on (S)-amisulpride and this 

current study on rac-amisulpride it would be very interesting to conduct a study with knock out 

mice with inactivated genes for specific receptors (dopamine D2, D3 or serotonin 5-HT2B, 5-HT7) 

to further delineate those receptors responsible for the discriminative stimulus properties of rac-

amisulpride in C57BL/6 mice. 

     Conclusion: The use of rac-amisulpride, the therapeutic form of the drug, in this drug 

discrimination study extended the results of our previous study with (S)-amisulpride. Through 

our testing of numerous typical and atypical antipsychotics, antidepressants, anxiolytics, and 

selective ligands we investigated a wide range of receptor mechanism thought to be relevant to 

the discriminative stimulus properties of rac-amisulpride in a drug discrimination assay. While 

this investigation ruled out a number of receptor mechanisms thought to be important in the 

discriminative stimulus property of rac-amisulpride, we reached a similar conclusion as in our 

preliminary investigation with (S)-amisulpride. The exact pharmacological properties that are the 

basis for the discriminative stimulus properties of rac-amisulpride remain an open question. That 
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being said, we are confident that our results have narrowed the field and established a number of 

important findings. Of all the drugs tested for substitution to 10 mg/kg rac-amisulpride, only 

certain benzamide derivatives substituted fully (sulpiride and S-sulpiride) or partially (raclopride, 

tiapride) for rac-amisulpride. This indicates that the molecular structures of these compounds are 

similar enough to allow them to substitute for rac-amisulpride; a similarity not shared among all 

benzamide derivatives tested.  We found that the S-isomer and R-isomer substituted fully 

supporting the conclusion that the discriminative stimulus of rac-amisulpride is stereoselective. 

We demonstrated that none of the antipsychotics tested (typical or atypical) nor the 

antidepressants (regardless of class of drug) substituted for rac-amisulpride; nor did the 

anxiolytic chlordiazepoxide. Through our testing of selected dopamine and serotonin ligands 

(antagonists and agonists) we demonstrated that the discriminative stimulus of rac-amisulpride 

appears not to be mediated solely via affinity for and functional activity at dopamine D2/3 or 

serotonin 5-HT2B and 5-HT7 receptors. These findings led us to conclude that the benzamide 

atypical antipsychotic rac-amisulpride can serve as a discriminative stimulus in C57BL/6 mice 

and that its discriminative stimulus is dose-dependent, time-dependent and stereoselective. 
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