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ABSTRACT 

THE EFFECT OF FLUVASTATIN ON MAST CELL FUNCTION: GENOTYPE 

DEPENDENCE. 

 

 

By 

Elizabeth Motunrayo Kolawole 

 

 

A dissertation submitted in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy at Virginia Commonwealth University  

 

 

Virginia Commonwealth University, 2014 

Director: John J. Ryan, Professor, Department of Biology 

 

Fluvastatin, the HMG-CoA reductase inhibitor known for its role in the 

treatment of hypercholesterolemia and cardiovascular disease, has more 

recently been shown to play a role in the immune response. Given the critical 

role that mast cells play in allergy and inflammatory diseases such as asthma, 

which effects one third of America’s population, we assessed the effect of 



	  

fluvastatin on mast cell and basophils function. We demonstrate that 

fluvastatin downregulated IgE-mediated cytokine production. Additionally, in vivo 

studies showed that fluvastatin suppressed IgE-mediated anaphylaxis. 

Interestingly, the effects of fluvastatin showed dependence on genetic 

background, as C57BL/6 mast cells were sensitive, while 129/Sv mast cells were 

resistant to fluvastatin.  Characterizing the role of fluvastatin on mast cells may 

prove to be therapeutically important. 

 
 
 
 
 



	  

 
 

Part I  
 

The effect of fluvastatin on mast cell function: 
genotype dependence 
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CHAPTER 1 - INTRODUCTION: 
 
Immunology- a brief war and peace 
 

From a distance the human body looks serene, but on closer inspection a 

battle ensues. Life is an epic fight.  The ability to thwart the onslaught of disease- 

causing agents is a constant struggle that all living organisms face. With 

increasing complexity of the organism, more elaborate plans of defense are 

devised and implicated. We call this defense mechanism the immune system. 

The immune system, beautiful in its complexity, at its best goes unnoticed. Only 

when an invader breaches our front lines or our defenses turn on us do we see 

any evidence of its existence. It is in this defective state that we realize how truly 

intricate and multifaceted our immune system is. Thus, we try to restore the 

balance, giving rise to the field of immunology. 

Throughout history, immunology and the treatment of disease has gone by 

many names and taken a plethora of forms and iterations. Known as shamanism 

or divination, healing by supernatural means in ancient times or physician, 

civilizations have always revered those who possess such capabilities and 

sometimes feared them.  The Smith and Ebers papyrus dating back to 1500 B.C. 

are ancient Egyptian documents, providing remedies for various illnesses from 

the use of bark, which contains acetylsalicylic acid, an active ingredient of 

aspirin, to the treatment of burns and brain injuries (1). While the Egyptians of 

1500 B.C. did not know about microorganisms, they knew to treat with copper 

salts and honey to prevent infection (2) and had healers specializing in different 

organs.  
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In 430 B.C Thucydides writes of, “the plaque of Athens” (typhoid fever) 

and how those who had recovered were then able to treat the sick as they had 

become unsusceptible. Thucydides might well have been influenced by the great 

philosophers and historians of his time, such as Hippocrates, Socrates and 

Galen, who theorized that the body was composed of 4 vital fluids called humors 

- blood, phlegm, yellow bile and black bile - and that an imbalance between these 

4 led to disease. Aristotle was the first to study anatomy in animals, and 

Herophilus the first to conduct human dissections. Hippocrates believed in 

starvation for fevers and feeding for colds. Galen however, believed in 

bloodletting, often using leaches to resolve the humoral imbalance. 

 Humoralism has been a prevailing theory throughout history, though it 

has taken many forms, with those in India and China having similar ideas. Indian 

traditions believed in three humors. Kapna or phlegy was composed of earth and 

water. Pitta, or bile, being fire and water. Vata was described as being wind or 

air. Tibetans believed that a blockage of these fluids led to disease and so taking 

the pulse was important in the identification of such blockages. In the 9th century 

in the Persian Empire Al-Razi wrote a book of medicine, where he documented 

and was able to identify allergic reactions, and reasoned that fever was the body 

fighting disease. Following him, Ibn-Sina’s correctly described blood circulation 

and recognizied that quarantine was required to prevent the spread of infectious 

disease. 

Variolation came before vaccination and dates back to 10th century China 

where powdered lesions from those with smallpox would be exposed to the 
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healthy. The numerous delivery methods and vast discrepancies between 

quantities being used as treatments occasionally resulted in death and 

disfigurement and therefore were not widely accepted. 

From the time of Thucydides, different cultures had recognized that some 

diseases were contagious. Many believed that these diseases arose 

spontaneously, an idea that persisted from the time of Aristotle. However, during 

the renaissance the scientific method of observing, conducting experiments and 

reaching conclusions moved at a faster pace. In the 18th century James Lind 

proved that citrus fruits cured scurvy. Subsequently, the English physician 

Edward Jenner intentionally used cowpox and a vaccine for small pox and the 

etiology of disease began to be understood.  

It was not until the end of the 19th century that the French chemist Louis 

Pasteur quashed the concept of spontaneous generation. Pasteur’s “Germ 

Theory” (1860) states that microorganisms cause disease and that they are ever 

present. Pasteur also proposed that microorganisms needed to be prevented 

from entering the body during surgeries, which lead to Joseph Lister developing 

the antiseptic surgical method. Pasteur also showed that it was microorganisms 

that are responsible for milk souring and that fermentation is a result of 

microorganism growth (1858-59). This, along with his development of early 

vaccines for anthrax, cholera, and tuberculosis earned him the title of the “father” 

of immunology. Whilst Pasteur is known for early vaccines to these diseases, it 

was Robert Koch who identified the specific bacteria Bacillus anthracis, Vibrio 

Cholera and Mycobacterium tubercerculosis being causative for Anthrax, cholera 
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and tuberculosis respectively, giving rise to bacteriology. Furthermore, “Koch’s 

postulates” brought about a method of determining if a given microorganism was 

the causative agent for a particular disease. This vast body of work earned Koch 

the Nobel Prize in 1905.  

The 20th century saw the dawn of modern immunology, with many brilliant 

scientists in addition to Pasteur and Koch. Behring’s anti-diphtheric serum 

showed immunity can be transferred, earning him the first Nobel Prize in 

medicine in 1901. Mechnikov and Ehrlich were awarded for recognizing antibody 

generation, and Ehrlich for many more wonders, such as chemotherapy and 

identification of mast cells. He is accredited for being “the father of histology” and 

conceived the idea of the immune system being able to direct responses against 

“itself”. Metchnikoff is esteemed for identifying phagocytosis. These great minds, 

all of which received the Noble Prize in Medicine inside a decade of each other, 

along with many more paved for way for immunology, unveiling the immune 

system and its complexities.  

This period of history marked the beginning of a new era, a time when 

scientists would not simply react to some terrible outbreak of disease, but 

actually begin to unravel the inner working of interactions between host and 

microorganism. This identification of cause and effect allowed remedies and 

preventative measures to be outlined. Thus, modern immunology was born.  
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Immunity –A tale of two theories  

The end of the 19th century and 20th century saw a debate between two 

conflicting theories: the long standing, ever-evolving theory of humoralism, and 

the immunological wonders that opposed it. Modern humoralism was initiated by 

Ehrlich’s group at the Institute of Infectious Disease in Berlin, with Metchnikoff’s 

group in opposition at the Pasteur Institute in Paris. Humoralism was the 

prevailing theory of the early 1900’s, predominantly led by Ehrlich’s proposition 

that antibodies are responsible for immunity. This inspired subsequent 

generations, supported by the likes of Von Behring’s transferable immunity 

(1890), Roux’s passive immunity (1891), and Bordet’s complement and antibody 

activity in bacteriolysis (1894) to name but a few. Metchnikoff’s discovery of 

Phagocytic cells (1884) inspired the cellularist theory. Phenomenons such as 

Koch’s uncovering delayed type hypersensitivity (1883) and Medawar’s 

hypothesis of allograft rejection (1944) suggested that antibodies were not the 

definitive immune component, fostering the spread of skepticism regarding the 

all-encompassing humoral theory and making way for the concept that 

phagocytic cells were the prominent component of immunity.  

The case for Humoralism was strengthened by the immunochemistry work 

of Heidelberger who demonstrated the precise method for the determination of 

antibodies, antigen and complement on a weight basis, giving rise to 

Radioimmunoassays (RIA) and Enzyme Linked Immunosorbent Assays (ELISA). 

Furthermore, Heidelberger showed that polysaccharides in addition to proteins 

can act as antigens. Heidelberger in conjunction with Kabat (1953) paved the 
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way for the understanding of the immunoglobulin molecule, which was elucidated 

by Porter and Edelman (1959) firmly solidifying the humoral theory. Definitive 

proof of the Celluarist Theory came from the work of Landsteiner and Chase 

(1942). They showed that cells transferred from a guinea pig immunized against 

Mycobacterium tuberculosis to naïve mice and then injected with antigen, 

underwent an immune response, not seen in mice when the serum fraction was 

transferred. This showed irrefutable proof that antibodies alone did not 

orchestrate the immune response and that leucocytes play a role, as later shown 

by Gowen  (1962).  

 

Ehrlich v Metchnikoff 

Ehrlich’s camp and Metchnikoff’s camp both sought to prove the other 

wrong with many scientists believing that it was one theory or the other. But 

ultimately, both were correct.   

Innate immunity  

The innate immune system, pioneered by Metchnikoff’s phagocytic cells, 

is the first response to infection. It begins with a physical barrier to the external 

environment, encompassing the skin and mucosal surfaces. The cellular fraction 

is composed of circulating cells (basophils, monocytes, eosinophils and 

neutrophils) and resident cells (mast cells, newly recruited monocytes and 

macrophages), which migrate to these physical barriers. These cells are 

activated via receptors such as toll-like receptors (TLR) or immunoglobulin 

receptors (FcR), and secrete chemokines and cytokines in addition to lipid 
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mediators, which recruit additional immune cells. The humoral fraction of innate 

immunity includes activation of the complement cascade.   

Adaptive immunity  

The adaptive immune system, pioneered by Ehrlich, can be expanded 

beyond antibodies. Antigen presenting cells (APC) described as “professional” or 

“non-professional” process and then present antigen fragments to T cells using 

Major Histocompatibility Complex (MHC) proteins. T cells assist in B cell 

maturation and differentiation into memory B cells and plasma cells. B cells can 

undergo isotype switching and somatic hypermutation, producing different 

antibodies such as IgA, IgD, IgE, and IgG, which bind antigen. Antibodies have 

many functions, some of which are to neutralize toxins, target infectious 

organisms, activate complement and promote activation of mast cells, 

neutrophils, and macrophages.  

 

Mast cells: Importance to innate immunity 

Mast cells are classically known for their integral role in IgE-dependent 

allergic disease such as anaphylaxis and asthma, with anaphylaxis effecting 2% 

of the American population (3).The prevalence of asthma alone has reached 

epidemic proportions in westernized countries with an estimated 39.1 million 

Americans being diagnosed in 2011 and an estimated 6,278 fatalities (4).  

In recent years, it has been shown that the mast cell’s role is multifaceted 

and extends beyond allergic disease, having a key role in inflammatory 

conditions such as multiple sclerosis	   (5, 6), rheumatoid arthritis (7), and 
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atherosclerosis (8). In addition, a mast cell role is not limited to the harmful 

immune responses, as they participate in host defense against viral (9) and 

bacterial pathogens (10), as well as immunosuppressive capabilities in 

connection with allograph tolerance (11) and contact dermatitis (12) (13). 

Furthermore, mast cells have also been documented at tumor sites and 

associated with tumor progression (14),(15). The role in tumor biology appears to 

be linked to promoting angiogenesis, tissue remodeling, and tissue repair (16). 

These vast amounts of data demonstrate the plethora of complex roles mast 

cells have. Thus elucidating the mechanisms mast cells employ are of great 

importance.  
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Figure 1 

The inflammatory mechanism in allergic inflammation. 

Antigen is engulfed by antigen presenting cells (APC). It is then processed by 

and presented to CD4+ T helper (Th) cells. Th1 production of IFN-γ down 

regulates the Th2 response, while Th2 production of IL-4 down suppresses Th1 

responses. IL-4 is also responsible for class switching of B cell antibody 

production to IgE. B cells produce IgE that binds to FcεRI receptors present in 

high abundance on mast cells and basophils. Additional Th2 cytokines such as 

IL-3 and IL-5 stimulate eosinophils and basophils to become active. IgE bound to 

FcεRI is cross-linked by antigen and become activated to release preformed 
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chemical mediators such as histamine, lipid mediators, such as leucoktriene C4 

(LTC4), platelet-activating factor (PAF) and de novo cytokines, chemokines and 

growth factors. These mediators can yield symptoms from mild rhinitis to 

anaphylactic shock, by inducing vasodilation, contraction of the bronchial smooth 

muscle and increased mucus secretion in the lungs. 
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A mast cell rises   

Mast cells derive from distinct hematopoietic stem cell (HSC) precursors. 

Human mast cells arise from pluripotent CD34+ progenitor cells (17), whereas 

the mouse mast cell progenitors (MCP) are derived from Thy-1lo c-kit high and 

express c-kit, FcεRI, ST2 and integrin β (18-20). Whilst development begins in 

the bone marrow, maturation is completed after immature mast cells migrate 

through the peripheral blood to vascularized tissues. Interleukin (IL) 3 is 

important for the development of most hematopoietic lineages, including mast 

cells.  Stem cell factor (SCF) is also important for early development and 

proliferation of hematopoietic cells (21). However, while other hematopoietic 

lineages downregulate the SCF receptor c-Kit while immature, mast cells 

maintain expression. Furthermore, SCF is imperative to mast cell proliferation, 

survival and activation (22), making the combination of IL-3 and SCF receptors 

distinct markers of mature mast cells. 

Mast cells can be found throughout the body with the exception of the 

blood. Being largely known for their role in innate immunity, they are strategically 

placed at the interface to the external world and are found in high numbers in the 

lungs, skin and mucosal surfaces (20, 23, 24). In connective and mucosal 

tissues, mast cell maturation is the product of their microenvironment. Mast cells 

can be activated by an array of different stimuli ranging from immunoglobulin, 

microbial products such as lipopolysaccharide (LPS) and various cytokines and 

chemokines (20, 21). Their subsequent activation, resulting in the release of 

preformed and newly synthesized mediators has a substantial impact on their 
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microenvironment. The mast cell response can be broadly divided into a pro-

inflammatory response leading to cellular migration and infiltration and the anti- 

inflammatory response, which can result in venom degradation, T-reg migration 

and immunosuppression (Figures 2 and 3). 
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Figure 2 

Mast cells: Two arms of activation. 
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Mast cells can be activated by an array of different stimuli, resulting in pro-

inflammatory or anti-inflammatory responses mediated by preformed or newly 

synthesized factors.  
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Figure 3 

Activation via the FcεRI receptor. 

Mast cells are most commonly activated by the high affinity FcεRI receptor.  

Upon FcεRI aggregation with antigen and IgE, mast cells are activated. Initial 

stimulation leads to the release of preformed chemical mediators, followed by 

synthesis of newly-formed chemical mediators such as chemokines and 

cytokines. These factors result in a myriad of immune responses that act on the 

surrounding microenvironment.  
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Statins 

Statins are a class of drugs widely used in the treatment of 

hypercholesterolemia and cardiovascular disease, cardiovascular disease being 

the leading cause of deaths in the western world (25). Statins act by 

competitively inhibiting the 3-hydroxy -3-methyglutaryl coenzyme A (HMG-CoA) 

reductase enzyme and subsequently reduces intermediates, downstream of 

HMG-CoA, resulting in reduced cholesterol (25). Statin chemical structure plays 

a role in hydrophobicity and consequently, their ability to be absorbed and 

metabolized, distributed and excreted (26). Recently, it has become apparent 

that statins exhibit anti-oxidant, anti-atherosclerotic, anti-thrombotic and 

immunomodulatory functions in addition to lipid lowering {Liao:2005eo}(27). In 

the rabbit atherosclerosis model, atorvastatin significantly reduced neointimal 

inflammation and macrophage infiltration (28). Lovastatin has been shown to 

decrease surface expression of CD11b on monocytes and CD11b-dependent 

adhesiveness to fixed endothelium (29).  

These immunomodulations have been attributed to the fact that the 

cholesterol biosynthesis pathway also generates a series of vital isoprenoids 

involved in modifying cell signaling proteins. In particular, the geranylated and 

farnesylated proteins, which include the small GTPase family such as Ras, Rac 

and Rho, are responsible for controlling multiple cell signaling pathways. It is 

therefore not surprising that statins affect more that just cholesterol formation and 

exert additional pleiotropic effects.  

It has been shown that statins can suppress TNF and IL-1β  production 
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from macrophages (30) and that statins can suppress mast cell degranulation in 

rat cell lines (26). In spite of these revelations, the mechanism has yet to be 

elucidated. Thus, outlining the mechanisms whereby statins alter mast cell 

responses may prove to be crucial in terms of alternative therapies for allergic 

disease. 
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Figure 4 

The cholesterol biosynthesis pathway. 

The cholesterol biosynthesis pathaway or mevalonic acid pathway.  

The mevalonic acid pathway is required for the biosynthesis of a range of 

important molecules, namely cholesterol and the generation of prenylated 

proteins. Statins are competitive inhibitors of HMGCR and decrease 

intermediates in the mevalonate pathway.  
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CHAPTER 2 – METHODS & MATERIALS: 
 

Animals 

C57BL/6, 129/SvImJ (henceforth referred to as 129/sv) , Balb/c, A/HeJ and 

C3H/HeJ mice were purchased from The Jackson Laboratory (Bar Harbor, ME) 

and used at a minimum of 12 weeks old, with approval from the Virginia 

Commonwealth University institutional animal care and use committee (IACUC). 

Cells 

Mouse bone marrow-derived mast cells (BMMCs) were extracted from mice 

femurs and cultured for 21 days in complete RPMI 1640 medium (Invitrogen Life 

Technologies, Carlsbad, CA) containing 10% FBS, 2 mM l-glutamine, 100 U/ml 

penicillin, 100 µg/ml streptomycin, 1 mM sodium pyruvate, and 1 mM HEPES 

((cRPMI); all  materials from Biofluids, Rockville, MD), supplemented with IL-3–

containing supernatant from WEHI-3 cells and stem cell factor (SCF)-containing 

supernatant from BHK-MKL cells. The final concentration of IL-3 and SCF was 

adjusted to 1 or 10 ng/ml, respectively as measured by ELISA. Mouse bone 

marrow-derived basophils were cultured in cRPMI supplemented with 

recombinant IL-3 at 20ng/ml (Biolegend, San Diego, CA), for 7-10 days, then 

sorted by flow cytometry selecting for CD49b-positive cells (Biolegend). 

Human mast cell culture  

All protocols involving human tissues were approved by the human studies 

Internal Review Board at the University of South Carolina. Surgical skin samples 
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were obtained from the Cooperative Human Tissue Network of the National 

Cancer Institute or from the National Disease Research Interchange. Skin MCs 

were prepared and cultured as described previously (31) and were used after 6–

10 week, at which time purity was essentially 100% mast cells, as determined by 

staining with toluidine blue.  

IgE-mediated activation 

Human MC or BMMC were sensitized overnight with DNP-specific mouse IgE 

(1.0µg/ml for human MC; 0.5 µg/ml for BMMC), washed to remove excess 

unbound IgE and stimulated with DNP-HSA (Ag; 30 or 20 ng/ml for human MC or 

mouse BMMC, respectively). Ionomycin (1µM) was used as positive control. 

Passive Systemic Anaphylaxis 

Mice were administered 200µl of PBS containing 1mg fluvastatin or equivalent 

dilution of DMSO via intraperitoneal injection, followed by 200µl of PBS 

containing 50ng of mouse anti-IgE. The following day, DNP-HSA 50µg/ml was 

administered via intraperitoneal injection. In some experiments, 5mg of histamine 

was injected in place of antigen. The core body temperature of each mouse was 

measured using a rectal microprobe (Physitemp Instruments) at regular intervals. 

Mice were euthanized using with CO2 asphyxiation, and blood was collected by 

cardiac puncture to analyze plasma. 
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Cytokines and reagents 

All cytokines, including murine IL-3, SCF, were purchased from Biolegend. 

Mouse IgE was generously provided by Dr. Daniel Conrad (VCU). Purified 

mouse IgE (clone C38-2, κ isotype) was purchased from BD Biosciences 

(Pharmingen division, San Diego, CA).  Antibodies recognizing mouse CD49b, 

CD107a, CD63, TNFα, IL-4 and IL-6 were purchased from Biolegend. Mouse anti 

c-Kit, FcεRI, IL-13, MIP-1α, MCP-1, p AKT and p-SYK were purchased from 

eBioscience. Mouse anti-p-ERK was purchased from BD Pharmingen (San 

Diego, CA). Mouse anti-IL-33 was purchased by R&D systems.  Propidium Iodide 

and DNP-HSA was purchased from Sigma-Aldrich (St. Louis, MO). Caspase 3/7 

kit was purchased from Immunochemistry. Cyto ID autophagy detection kit was 

from Enzo Life Sciences (Farmingdale, NY). The following drugs were used:  

Fluvastatin (SML0038), Simvastatin (S6196), Pravastatin (P4498), Atorvastatin 

(PZ0001), Lovastatin (PHR1285), Mevalonic acid (44714), Zaragozic acid A 

(Z2626), all from Sigma-Aldrich. Farnesylation transferase inhibitor III (FPTIII) 

and geranylgeranyl transferase inhibitor-286 (GGTI-286) were purchased from 

Calbiochem (Darmstadt, Germany). Farnesyl diphosphate and geranyl geranyl 

diphosphate were purchased from Echelon (Salt Lake city, UT). Wnt5a and 

Leptin were purchased from R&D systems (Minneapolis, MN). 

Peritoneal mast cell culture  

Peritoneal lavage was performed on C57BL/6 and 129/sv mice. Cells were 

harvested and cultured in cRPMI (as described above) containing IL-3 and SCF 
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at 10ng/ for 5 days to allow for expansion of mast cells. Mast cells were positively 

selected and separated using the EasySep Magnet from StemCell Technologies 

(Vancouver, BC) using c-Kit as a positive marker of mast cells. Flow cytometry 

was used as confirmation of mast cells.  

Cytokine measurement 

BMMC treated with fluvastatin or DMSO were cultured in cRPMI 1640 with 10 

ng/mL IL-3 and SCF +/- 0.5 µg/mL IgE for 24 hours at a concentration of 1x106 

cells/m. BMMC were washed in PBS, resuspended at 1x106 cells/mL in cRPMI 

1640 with 10 ng/mL IL-3 and SCF  +/- 50 ng/mL DNP-HSA for 16 hours, after 

which supernatants were taken. IL-6, IL-13, TNF-α, and MCP-1 supernatant 

levels were measured by ELISA kits (Biolegend). ELISAs were developed using 

BD OptEIA reagents from BD Biosciences. 

Flow cytometric analysis 

Surface expression of c-Kit and FcεRI were measured by flow cytometry on a BD 

FACScalibur. BMMC were cultured in fluvastatin at 10µm/ml or DMSO at varying 

concentrations for varying times. Cells were then washed in PBS. For directly-

labelled antibody staining, cell pellets were incubated in 10µL 2.4G2 rat anti-

mouse FcγRII/III culture supernatant with PE- anti-c-Kit and FITC- anti-FcεRI, 

then incubated for 30 minutes at 4°C, washed in FACS buffer (PBS, 3% FBS, 

0.1% Sodium Azide), and analyzed by flow cytometry. 

In-cell staining for cytokines 
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Cells treated with 10µm/ml fluvastatin or DMSO ± IgE at 0.5µg/ml for 24 hours 

were washed and resuspended in cRPMI containing IL-3 and SCF at 10ng/ml. 

BMMC were given DNP-HSA for 90 minutes, then treated with 5µM Monensin for 

8 hours, fixed in 4% paraformaldehyde, washed twice in PBS and stored 

overnight at 4°C. Cells were then pelleted and resuspended in saponin buffer 

(PBS, 0.1% BSA, 0.01M HEPES, 0.5% saponin) for 20 minutes at room 

temperature. Cell pellets were incubated in 10 µL 2.4G2 rat anti-mouse FcγRII/III 

culture supernatant with APC- or PE -anti- TNF, IL-6, IL-13, MCP-1, MIP-1, IL-33 

or IL-4  in saponin buffer at 4°C for 30 minutes. Basophils were also stained with 

Fitc- anti-CD49b as a marker of basophils prior to fixation.   

Degranulation assays 

Cells plated at 1x106 cells/mL in cRPMI (as described above) and treated with 

fluvastatin or DMSO for 24 hours ± 0.5 µg/ml of IgE, were washed twice in RPMI 

and activated ± DNP-HSA for 1 hour and then stained with CD107a or CD63 for 

45 minutes at 4°C. cells were then washed twice in FACS buffer and analyses by 

flow cytometry. 

Cell death 

Cells were treated with 5µM, 10µM, 20µM or 40µM fluvastatin for 1 to 4 days, 

then assessed for cell death via caspase-3/7 staining using the methods 

described in the millipore kit. PI-exclusion yields a live versus dead 

determination. Prepare Propidium iodide solution to 200 µl/ ml and add 10 
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microlitres per 200 µl of cells (resuspended at 1x106 cells/mL) and run by flow 

cytometry. 

Autophagy detection 

For autophagy detection using Cyto ID the detection kit, BMMC were 

resuspended at 5x105 cells/mL and treated with 5 µM, 10 µM, 20 µM and 40 µM 

fluvastatin for 1-3 days, then pelleted and stained with the Cyto ID kit using the 

method described in the kit. 

Migration assay 

8 µm polycarbonate 24-well transwell inserts from Corning will be coated in BSA, 

plates were incubated for 1 hour at 37°C. BMMC were resuspended at 2x106 

cells/mL in FBS-free cRPMI for 2 hours. Bottom chambers contained 850 µL of 

FBS-free cRPMI with IL-3 at 0.5 ng/mL +/- 50 ng/mL SCF in the bottom well and 

200 µL of the previously starved BMMC supplemented with 0.5 ng/mL IL-3 in the 

upper well. Cells were then incubated for 16 hours at 37°C, then counted using 

flow cytometry with propidium-iodide exclusion staining. Fold of control was 

calculated for all groups.   

HMG-CoA reductase qPCR  

BMMCs were cultured with or without 40 µM fluvastatin for 6 hours. Then, 

cells were harvested and total RNA was extracted with TRIzol reagent (Life 

Technologies, Grand Island, NY). cDNA was synthesized using the qScript 
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microRNA cDNA Syntheis Kit (Quantabio, Gaithersburg, MD) following the 

manufacturer’s protocol using oligo dT primers provided in the kit. cDNA was 

quantified using the Thermo Scientific NanoDrop™ 1000 UV–vis 

Spectrophotometer (Thermo Scientific, Waltham, MA) according to 

manufacturer’s recommended protocol. qPCR analysis was performed with Bio 

Rad CFX96 Touch™ Real-Time PCR Detection System (Hercules, CA) and 

SYBR® Green detection using a relative Livak Method. Each reaction was 

performed according to the manufacturer’s protocol using 8ng of sample cDNA, 

12.5 µl of PerfeCTa SYBR Green SuperMix (Quantabio, Gaithersburg, MD) and 

mmu-miR-155 or SNORD47 (housekeeping gene) primers (Quantabio, 

Gaithersburg, MD) in a final reaction volume of 10 µM. Amplification conditions 

for all reactions consisted of a heat-activation step at 95 °C for 15 min followed 

by 40 cycles of 95 °C for 15 s, 60 °C for 30 s and 70 °C for 15 s. Fluorescence 

data was collected during the extension step of the reaction.  

Western blot analysis  

Western blotting was performed using 50µg total cellular protein per sample. 

Protein was loaded and separated over 8–16% or 4–20% gradient SDS 

polyacrylamide gels (Bio-Rad, Hercules, CA). Proteins were transferred to 

nitrocellulose membranes (Pall Corporation, Ann Arbor, MI), and blocked for 60 

minutes in Blotto B buffer (Rockland Immunochemicals, Gilbertsville, PA) plus 

0.1% Tween-20. Blots were incubated in a solution of TBS supplemented with 

0.1% Tween-20 and 5% BSA (TBST), with the indicated antibodies overnight at 
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4°C with gentle rocking. Blots were washed six times for 10 minutes each in 

TBS-T, followed by incubation in Blotto B containing a 1:5,000 dilution of HRP 

linked anti-IgG matched to the relevant species, from Cell Signaling (Danvers, 

MA). Size estimates for proteins were obtained using molecular weight standards 

from Bio-Rad (Hercules, CA). 

Statistical Analysis 

Data presented are the mean ± SEM of at least 3 independent experiments. P 

values were calculated by paired or unpaired, two-tailed Student’s t test as 

appropriate. P values of <0.05 were considered statistically significant using 

GraphPad Prism software.  
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CHAPTER 3 – RESULTS:  

The effect of statins on IgE activated BMMC’s  

Simvastatin and lovastatin are the most commonly prescribed statin for 

the treatment of dyslipidemia. It has previously been shown that lovastatin alters 

isoprenoid generation in rat basophil leukemia cells (RBL-2H3) (32). We panned 

for a range of statins, in addition to lovastatin; to assess which exert the largest 

response on IgE activated mast cells. C57BL/6 bone marrow derived mast cells 

(BMMC’s) were pretreated for 24 hours with lipophilic statins  (lovastatin, 

simvastatin, atorvastatin, pitavastatin and fluvastatin) and the hydrophobic statin 

(pravastatin). BMMC’s treated with lipophilic statins significantly suppressed IgE 

mediated mast cell IL-6, TNFα and IL-13 (Figure 5) production, with the 

exception of atorvastatin. The hydrophobic pravastatin showed no significant 

effects on cytokine production but actually slightly enhanced IL-6 and TNFα. 

Fluvastatin, simvastatin and lovastatin were the most effective at suppressing 

cytokine production but fluvastatin elicited the strongest response and is the 

focus of this study. 

To determine the kinetics for the effects of fluvastatin on IgE mediated 

cytokine production, we conducted a time course (Figure 6), and dose response 

(Figure 7) assays for IL-6, TNFα and IL-13. We established that the effect of 

fluvastatin on mast cell cytokine production is dose dependent and that 10µM 

fluvastatin suppressed cytokine production on average 50%. Fluvastatin cultured 

for 24-hours yielded significant suppression of pro-inflammatory cytokines and 

while suppression is greatest at 72 hours, a large portion of cells are dead at this 
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point. Interestingly, fluvastatin has no effect on IL-10 production (Figure 8), which 

in many cases is seen as an anti-inflammatory chemical mediator. 
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Figure 5 

Fluvastatin suppress cytokine production from IgE activated mast cells to a 

greater extent than other statins.  

IgE primed C57BL/6 BMMC’s were cultured in IL-3 and SCF, with or without 

DMSO or 10 µM statin and then activated with DNP-HSA for 16 hours. 

Supernatants were collected as described in the methods and materials and 

assessed by standard sandwich ELISA to determine A) IL-6, B) TNFα, C) IL-13 

concentrations. The results are expressed as the mean ± SEM of at least 3 

independent experiments conducted in triplicate. 
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Figure 6 

Fluvastatin suppresses IgE activated BMMC’s in a dose dependent manner.  

IgE primed C57BL/6 BMMC’s were cultured in IL-3 and SCF, with or without 

fluvastatin or DMSO and then activated with DNP-HSA for 16 hours. 

Supernatants were collected as described in the methods and materials and 

assessed by standard sandwich ELISA to determine A) IL-6, B) TNFα, C) IL-13 

concentrations. The results are expressed as the mean ± SEM of at least 3 

independent experiments conducted in triplicate. 
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Figure 7 

Fluvastatin suppression of IgE activated BMMC’s increases with time.  

IgE primed BMMC’s were cultured in IL-3 and SCF, with or without fluvastatin 10 

µM or DMSO for the stipulated time periods and then activated with DNP-HSA for 

16 hours. Supernatants were collected as described in the methods and 

materials and assessed by standard sandwich ELISA to determine A) IL-6, B) 

TNFα, C) IL-13, D) MCP-1 concentrations. The results are expressed as the 

mean ± SEM of at least 3 independent experiments conducted in triplicate. 
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Figure 8 

Fluvastatin does not alter IgE mediated IL-10 production in BMMC’s  

IgE primed C57BL/6 BMMC’s were cultured in IL-3 and SCF, with or without a 

given 10 µM fluvastatin or DMSO and then activated with DNP-HSA for 16 hours. 

Supernatants were collected as described in the methods and materials and 

assessed by standard sandwich ELISA to determine IL-10 concentration. The 

Graph is a representation of 3 independent experiments with an n=9. Data shown 

are mean ± SEM. 
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The effect of fluvastatin on peritoneal mast cells 
 
Thus far, we have showed that fluvastatin suppresses pro inflammatory cytokines 

on BMMC’s that have been cultured in vitro in IL-3 and SCF. To determine if ex 

vivo mast cells respond in the same way as BMMC’s cultured with fluvastatin we 

assayed peritoneal mast cells. We conducted peritoneal lavage and cultured 

cells in IL-3 and SCF for 3 days and then isolated and purified the mast cell 

populations. IgE sensitized mast cells were then cultured in fluvastatin for 24 

hours and activated with antigen (DNP-HSA). Here, we show that mast cells 

cultured ex vivo when treated with fluvastatin suppress cytokine production in the 

same way as in vitro cultures BMMC’s. (Figure 9-10).   
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Figure 9 

Fluvastatin suppress IL-6 and TNFα production from IgE activated 

peritoneal mast cells. 

Peritoneal mast cells were separated using easySep magnet selecting for c-kit 

positive cells. Mast cells were then cultured in IL-3 and SCF with or without 

fluvastatin or DMSO in IgE over night and then activated with DNP-HSA for 16 h 
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and supernatants were collected as described in the methods and materials. A) 

IL-6, B) TNFα. The results are expressed as the mean ± SEM of at least 3 

independent experiments conducted in triplicate. 
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Figure 10 

Fluvastatin suppress IL-13 and MCP-1 production from IgE activated 

peritoneal mast cells. 
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Peritoneal mast cells were separated using easySep magnet selecting for c-kit 

positive cells. Mast cells were then cultured in IL-3 and SCF with or without 

fluvastatin or DMSO in IgE over night and then activated with DNP-HSA for 16 h 

and supernatants were collected as described in the methods and materials. A) 

IL-13, B) MCP-1. The results are expressed as the mean ± SEM of at least 3 

independent experiments conducted in triplicate. 
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The effect of fluvastatin on FcεRI and c-kit receptor expression. 

The suppressive effect of fluvastatin on C57BL/6 BMMC’s may manifest 

from altered FcεRI expression. We proceeded by conducting a dose response of 

fluvastatin for 4 days and assessed FcεRI expression by flow cytomentry. Here, 

we show that fluvastatin treatment does not significantly alter FcεRI expression in 

C57BL/6 (Figure 11) BMMC’s. We also investigated the effect of fluvastatin on c-

kit receptor expression since it has been shown that BMMC’s cultured with SCF 

(the c-kit ligand) increase cytokine production. Our data show that fluvastatin 

does not alter c-kit surface receptor expression on C57BL/6 (Figure 11) BMMC’s. 

 



	  

	   39	  

 

 

 

 

Figure 11 

Fluvastatin does not alter FcεRI or c-kit surface expression on C57BL/6 

BMMC’s. 
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C57BL/6 BMMC’s were treated with DMSO or fluvastatin at 5 µM, 10 µM, 20 µM 

and 40 µM for 1-4 days and surface expression of A) FcεRI, B) c-kit expression 

were measured by flow cytometry. The results are expressed as the mean ± 

SEM of 3 independent experiments. 
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The effect of fluvastatin on IgE mediated mast cell cytokine production is 

counteracted by mevalonic acid (MVA) 

Fluvastatin acts by blocking HMG-CoA reductase and inhibiting the 

production of mevalonic acid (MVA). To assess fluvastatin’s target specificity we 

treated BMMC’s with fluvastatin and MVA to see if MVA reversed the effects of 

fluvastatin. Here, we show that fluvastatin suppresses IgE mediated mast cell 

production of pro inflammatory cytokines and chemokines and is rescued by 

mevalonic acid treatment (Figure 12-13).  
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Figure 12 

Fluvastatin induced suppression of IgE mediated cytokine production in 

mast cells is rescued by mevalonic acid. 

C57BL/6 BMMC’s were cultured in IL-3 and SCF, with or without fluvastatin 10 

µM or DMSO for 24 h with or without mevalonic acid 1000 µM and IgE 

sensitized. Mast cell cultures were washed in PBS and then treated again with 

fluvastatin 10 µM or DMSO for 24 h with or without mevalonic acid and then 

given DNP-HSA for 16 h and supernatant taken for ELISA. A) IL-6, B) TNFα, C) 

IL-13. The Graph is a representation of 3 independent experiments with an n=9. 

Data shown are mean ± SEM. 
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Figure 13 

Fluvastatin induced suppression of IgE mediated chemokine production in 

mast cells is blunted by mevalonic acid. 
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C57BL/6 BMMC’s were cultured in IL-3 and SCF, with or without fluvastatin 10 

µM or DMSO for 24h with or without mevalonic acid 1000 µM and IgE sensitized. 

Mast cell cultures were washed in PBS and then treated again with fluvastatin 10 

µM or DMSO for 24 h with or without mevalonic acid and then given DNP-HSA 

for 16 hours and supernatant taken for ELISA. A) MCP-1, B) MIP-1α. The Graph 

is a representation of 3 independent experiments with an n=9. Data shown are 

mean ± SEM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	  

	   45	  

The effect geranylgeranyl pyrophosphate inhibitor and farnesyl pyrophosphate 

inhibitor on IgE mediated mast cell cytokine production.   

MVA continues to be metabolized to the farnesyl pyrophosphate and 

geranylgeranyl pyrophosphate, which leads to the production of prenylated 

proteins, which include the small GTPases such as Ras, Rac, Rho and CDC42. 

Thus, we investigated the effects of GGTI-286 and FPTIII, which selectively 

inhibit geranylgeranylation and farnesylation respectively. Here, we show that IgE 

sensitized mast cells pretreated with GGTI-286 for 24 hours significantly inhibit 

IgE induced cytokine production to a similar degree as fluvastatin treated mast 

cells (Figure 14-15). Treatment with fluvastatin and GGTI-286 suppress cytokine 

production more significantly that either drug alone. FPTIII treated mast cells 

show cytokine suppression to a lesser extent that fluvastatin for IL-6 and MCP-1 

(Figures 14, and 15 respectively). For TNFα, IL-13 and MIP-1α FPTIII shows no 

significant suppression (Figures 14-15 respectively). Additionally, BMMC’s 

treated with both fluvastatin and FPTIII show suppressed cytokine levels to the 

same extent as fluvastatin alone, suggesting that the FPTIII arm of the 

cholesterol biosynthesis pathway does not significantly contribute to cytokine 

suppression. These data suggest that fluvastatin suppression of antigen induced 

cytokine production alters geranylgeranylation more so that farnesylation. 
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Figure 14 

GGTI-286 significantly suppresses Ag induced cytokine production on 

BMMC and FPTIII to a lesser extent.  

C57BL/6 BMMC’s were cultured in IL-3 and SCF and IgE sensitized and 

pretreated with or without DMSO, fluvastatin 10 µM, GGTI-266 20 µM or FPTIII 

20 µM or combinations for 24 hours and then stimulated with DNP-HSA 

(50ng/ml) for 16 hours. Supernatants were harvested and ELISA’s were 

preformed. A) IL-6, B) TNFα, C) IL-13. The Graph is a representation of at least 4 

independent experiments with an n=12. Data shown are mean ± SEM. 
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Figure 15 

GGTI-286 and FPTIII suppress Ag induced chemokine production on 

BMMC.  

C57BL/6 BMMC’s were cultured in IL-3 and SCF and IgE sensitized and 

pretreated with or without DMSO, fluvastatin 10 µM, GGTI-266 20 µM or FPTIII 

20 µM or combinations for 24 hours and then stimulated with DNP-HSA 

(50ng/ml) for 16 hours. Supernatants were harvested and ELISA’s were 

preformed. A) MCP-1, B) MIP-1α. The Graph is a representation of at least 4 

independent experiments with an n=12. Data shown are mean ± SEM. 
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The effect of geranylgeranyl pyrophosphate (GPP) and farnesyl pyrophosphate 

(FPP) on IgE mediated mast cell cytokine production in response to Fluvastatin 

treatment   

Inhibition of MA also alters production of the intermediate isopreniods 

GGPP and FPP. GGPP and FPP have been shown to affect posttranslational 

modification of signaling molecules including small G-proteins(25). GGPP is 

known solely for the production of prenylated proteins such as Rac Rho and 

Cdc42. FPP on the other hand, leads to the production of sterol and non-sterol 

products in addition to prenylation such as Ras. We therefore, sought to 

investigate which branch of the isoprenoid pathway was responsible for cytokine 

production suppression in mast cells. Following treatment with GGTI-286 and 

PTIII we shows that GGTI-286 treatment mimicked fluvastatin treated mast cells, 

suggesting fluvastatin acts by blocking production of geranylgeranylated proteins 

more so than farnesylated proteins. We then wanted to treat mast cells with 

exogenous GGPP and FPP and see if these treatments restored cytokine 

production in fluvastatin treated cells. Here, we show that treatment of IgE 

sensitized mast cells activated with antigen and pretreated with either GGPP or 

FPP has little effect to no effect on cytokine production (Figure 16-17). Treating 

mast cells with GGPP and fluvastatin shows a partial rescue of cytokine 

production in relation to fluvastatin alone treated mast cells, suggesting that 

fluvastatin acts predominately by blocking geranylgeranylated proteins. 

Treatment of fluvastatin with FPP shows little to no rescue of cytokine production 

in relation to fluvastatin alone treated mast cells (Figure 16-17). In addition 
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treatment of fluvastatin, GGPP and FPP are not statistical difference that 

fluvastatin and GGPP treated cells for IL-6, TNFα (Figure 16), IL-13 and MCP-1 

(Figure 17). 
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Figure 16 

Geranylgeranyl pyrophosphate (GGPP) partially rescues Antigen induced 

IL-6 and TNFα production from fluvastatin treated BMMC’s. C57BL/6 
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BMMC’s were cultured in IL-3 and SCF and IgE sensitized and pretreated with or 

without DMSO, fluvastatin 10 µM, GGPP 20 µM or FPP 20 µM or combinations 

for 24 hours and then stimulated with DNP-HSA (50ng/ml) for 16 h. Supernatants 

were harvested and ELISA’s were preformed. A) IL-6, B) TNFα. The Graph is a 

representation of 3 independent experiments with an n=9. Data shown are mean 

± SEM. 
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Figure 17 

Geranylgeranyl pyrophosphate (GGPP) partially rescues Antigen induced 

IL-13 and MCP-1 production from fluvastatin treated BMMC’s. C57BL/6 
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BMMC’s were cultured in IL-3 and SCF and IgE sensitized and pretreated with or 

without DMSO, fluvastatin 10 µM, GGPP 20 µM or FPP 20 µM or combinations 

for 24 h and then stimulated with DNP-HSA (50ng/ml) for 16 h. Supernatants 

were harvested and ELISA’s were preformed. A) IL-13, B) MCP-1. The Graph is 

a representation of 3 independent experiments with an n=9. Data shown are 

mean ± SEM. 
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The effect of zaragozic acid A on BMMC’s cytokine production. 

Thus far, we have demonstrated that isoprenoid generation is critical for 

IgE Induced cytokine production. We next investigated the potential role of 

cholesterol in the suppression of cytokines without altering isoprenoid production. 

To achieve this, we used the squalene synthase inhibitor zaragozic acid A (ZA), 

which blocks cholesterol synthesis downstream of isoprenoid synthesis. Here, we 

show that BMMC’s treated with ZA does not alter cytokine production (Figure 18) 

and propose that fluvastatin’s method of suppressing cytokines is independent of 

cholesterol.  
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Figure 18 

Zaragozic acid A does not alter cytokine production of IgE sensitized and 

Antigen activated BMMC’s.  

C57BL/6 BMMC’s were cultured in IL-3 and SCF and IgE sensitized and 

pretreated with or without DMSO or zaragozic acid A (ZA) for 24 h and then 

stimulated with DNP-HSA (50 ng/ml) for 16 h. Supernatants were harvested and 

ELISA’s were preformed. A) IL-6, B) TNFα, C) IL-13. The Graph is a 

representation of 3 independent experiments with an n=9. Data shown are mean 

± SEM. 
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Figure 19 

T helper cell differentiation.  

T helper cells are characterized by distinct cellular function and cytokine 

secretion. Their subsets also account for different immune pathologies and 

atopy. Whilst there are many more T cell subsets than shown, we will focus on 

genetic strains that are predisposed to generating a Th1 prone (C57BL/6) 
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immune response or a Th2 prone (129/sv) immune response, Th2 prone mice 

being more susceptible to asthma and allergy. 
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The effect of fluvastatin on IgE activated mast cells: genetic influence 

Thus far, we have demonstrated that fluvastatin suppresses antigen-

induced cytokine production on C57BL/6 mice, which are Th1 prone. To 

determine if genetic background alters fluvastatin responsiveness we looked at 

129/sv mice, which are Th2 prone in comparison to C57BL/6 mice. As shown in 

Figure 20, (TNFα, IL-13 and MCP-1 respectively) the Th1 prone C57BL/6 mice 

show suppression of cytokines. Interestingly, the Th2 prone 129/sv mice show 

resistance to fluvastatin treatment when assessing cytokine production. We 

further demonstrate that C57BL/6 mice treated with fluvastatin or ZA suppress 

cholesterol levels, whereas 129/sv mice treated with fluvastatin or ZA do not alter 

cholesterol levels (Figure 21). 
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Figure 20 

Fluvastatin suppress TNFα, IL-13 and MCP-1 production from IgE activated 

BMMC’s from 129/sv IgE sensitized BMMC’s were cultured in IL-3 and SCF with 

or without fluvastatin at 5 µM, 10 µM and 40 µM for 24 h and then activated with 

antigen for 16 h. Supernatants were collected as described in the methods and 

materials. A) TNFα, B) IL-13, C) MCP-1. The results are expressed as the mean 

± SEM of 3 independent experiments. 
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Figure 21 

Fluvastatin and zaragozic acid suppress cholesterol production on the 

C57BL/6 background but not the 129/sv BMMC’s.  

C57BL/6 and 129/sv BMMC’s were cultured in IL-3 and SCF with or without 

fluvastatin or ZA for 24 h spun down and resuspended in PBS. Cholesterol levels 

were measured using mass spectrometry.   
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The effect of fluvastatin on intracellular cytokine versus extracellular cytokine 

secretion. 

We have shown that fluvastatin suppresses cytokine secretion. We next 

wanted to evaluate fluvastatin’s ability to alter intracellular cytokine production via 

in cell staining. It may be that mast cells treated with fluvastatin make the same 

levels of cytokines, but have defects in pathways that transport these chemical 

mediators. We therefore compared intracellular cytokine production, to secreted 

cytokines. Our data show that fluvastatin suppresses intracellular IL-6 (Figure 22) 

and TNFα (Figure 23) production in addition to secreted cytokines on the 

C57BL/6 Th1 prone genetic background but not the 129/sv Th2 prone 

background. These data suggest that fluvastatin does not just impede secretion, 

but also generation of these cytokines. 
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Figure 22 

Fluvastatin suppresses IL-6 on C57BL/6 BMMC’S intracellularly and 

extracellularly but 129/sv BMMC’S are resistant.  
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IgE sensitized C57BL/6 and 129/sv BMMC’s were cultured in IL-3 and SCF with 

or without fluvastatin or DMSO A) cells were then activated with antigen for 90 

minutes and then cultured with monensin for 6 hours and fixed in 4% 

paraformaldehyde. Cells were then permeabilized in saponin buffer and 

intracellularly stained with PE-anti IL-6. B) Cells were then activated with antigen 

for 16 hours, supernatants were harvested and ELISA’s run. The results are 

expressed as the mean ± SEM of 2 independent experiments n=6. 
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Figure 23 

Fluvastatin suppresses TNFα  on C57BL/6 BMMC’S intracellularly and 

extracellularly but 129/sv BMMC’S are resistant.  
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IgE sensitized C57BL/6 and 129/sv BMMC’s were cultured in IL-3 and SCF with 

or without fluvastatin or DMSO A) cells were then activated with antigen for 90 

minutes and then cultured with monensin for 6 hours and fixed in 4% 

paraformaldehyde. Cells were then permeabilized in saponin buffer and 

intracellularly stained with PE-anti TNFα. B) Cells were then activated with 

antigen for 16 h, supernatants were harvested and ELISA’s run. 
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Additional Th1 and Th2 prone genetic strains 

In addition to the Th2 prone 129/sv mice we looked at the Th2 prone 

Balb/c mice. Here, we show that Balb/c BMMC’s are also resistant to fluvastatin, 

when assessing IgE induced cytokine production (Figure 24) but 129/sv and 

Balb/c mice did not show resistance to GGTI (Figure 25-26). Another Th2 prone 

strain the A/J mice. When looking at A/J’s ability to produce cytokine in response 

to antigen, we see a variation. For IL-6 production, overall we see a slight 

suppression at 5 µM but for higher fluvastatin concentrations of 20 µM we see a 

slight enhancement (Figure 27). For TNFα  (Figure 27 B) we see suppression 

with increasing concentration of fluvastatin.  When looking at C3H/HeJ mice 

whose genetic background is Th1 prone, we show that IL-6 (Figure 28) and 

TNFα (Figure 28B) production is suppresses.  

We next compared peritoneal mast cells of A/J, and C3H/HeJ in 

comparison to C57BL/6 and 129/sv. Here, we show that whilst the peritoneal 

mast cells for C57BL/6 show suppression, 129/sv show resistance to fluvastatin 

treatment where as the A/J, and C3H/HeJ peritoneal mast cells do not show the 

same Th1 and Th2 prone responses (Figure 29). Previously, we have shown that 

fluvastatin does not suppress IL-10 production on C57BL/6 BMMC’s. We next 

looked at IL-10 production on peritoneal mast cells from C57BL/6 and 129/sv 

interestingly show enhancement (Figure 30). These data suggest that fluvastatin 

resistance that is evident on some Th2 genetic backgrounds is not all-inclusive 

and is more complex than simply a Th1 versus a Th2 genetic background.  
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Figure 24 

Fluvastatin does not suppress IgE activated cytokine or chemokine 

production from Balb/c BMMC’s.  

Balb/c IgE sensitized BMMC’s were cultured in IL-3 and SCF, with or without 

fluvastatin or DMSO and then activated with DNP-HSA for 16 h and supernatants 

were collected as described in the methods and materials. A) IL-6, B) TNFα, C) 

IL-13, D) MCP-1. The results are expressed as the mean ± SEM of 3 

independent experiments. 
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Figure 25 

GGTI-286 significantly suppresses Ag induced cytokine production on 

129/sv BMMC’s but fluvastatin does not.  

129/sv BMMC’s were cultured in IL-3 and SCF and IgE sensitized and pretreated 

with or without DMSO, Fluvastatin 10 µM, GGTI-266 20 µM or FPTIII 20 µM or 

combinations for 24 h and then stimulated with DNP-HSA (50 ng/ml) for 16 h. 

Supernatants were harvested and ELISA’s were preformed. A) IL-6, B) TNFα, C) 

MCP-1. The Graph is a representation of 4 independent experiments with an 

n=12. Data shown are mean ± SEM. 
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Figure 26 

GGTI-286 and FPTIII significantly suppresses Ag induced cytokine 

production on Balb/c BMMC’s but fluvastatin does not.  

Balb/c BMMC’s were cultured in IL-3 and SCF and IgE sensitized and pretreated 

with or without DMSO, fluvastatin 10 µM, GGTI-266 20 µM or FPTIII 20 µM or 

combinations for 24 h and then stimulated with DNP-HSA (50 ng/ml) for 16 

hours. Supernatants were harvested and ELISA’s were preformed. A) IL-6, B) 

TNFα, C) MCP-1. The Graph is a representation of 4 independent experiments 

with an n=12. Data shown are mean ± SEM. 



	  

	   71	  

 

 

Figure 27 

Fluvastatin does not suppress IgE activated IL-6 production But does 

suppress TNFα, additionally Fluvastatin does not suppress consistently 

suppress IgE activated IL-13 production from A/J BMMC’s.  

IgE sensitized A/J BMMC’s were cultured in IL-3 and SCF, with or without 

fluvastatin or DMSO and then activated with DNP-HSA for 16 h and supernatants 

were collected as described in the methods and materials. A) IL-6, B) TNFα, C) 

IL-13. The results are expressed as the mean ± SEM of 2 independent 

experiments. 
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Figure 28 

Fluvastatin mediated suppression of IL-6 and TNFα by IgE activated mast 

cells increases with dose on C3H/HeJ.  
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IgE sensitized C3H/HeJ BMMC’s were cultured in IL-3 and SCF, with or without 

fluvastatin or DMSO and then activated with DNP-HSA for 16 h and supernatants 

were collected as described in the methods and materials. A) IL-6, B) TNFα. The 

results are expressed as the mean ± SEM of 2 independent experiments. 
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Figure 29 

The effect of fluvastatin from IgE activated peritoneal mast from C57BL/6, 

129/sv, C3H/HeJ and A/J. 

Peritoneal mast cells were separated using easySep magnet selecting for c-kit 

positive cells. IgE sentitized mast cells were then cultured in IL-3 and SCF with or 

without fluvastatin or DMSO and then activated with DNP-HSA for 16 h and 

supernatants were collected as described in the methods and materials. A) IL-6, 

B) TNFα  and C) shows IL-13 production. The results are expressed as the mean 

± SEM of 3 independent experiments. 
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Figure 30 

Fluvastatin shows no suppression of IL-10 in C57BL/6 peritoneal mast cells 

but actually enhances IL-10 production in 129/sv peritoneal mast cells.  

Peritoneal mast cells from C57BL/6 and 129/sv mice were separated using 

easySep magnet selecting for c-kit positive cells. IgE sensitized mast cells were 

then cultured in IL-3 and SCF with or without fluvastatin or DMSO and then 

activated with DNP-HSA for 16 h and supernatants were collected as described 

in the methods and materials. The results are expressed as the mean ± SEM of 3 

populations. 
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Fluvastatin effect on mast cell degranulation 

It has previously been shown that fluvastatin suppresses mast cell 

degranulation (26) in RBL-2H3 cells. Here, we show that fluvastatin suppresses 

mast cell degranulation on C57BL/6 BMMC’s but not Th2 prone 129/sv BMMC’s 

(Figure 31) demonstrating that fluvastatin resistance on 129/sv BMMC’s extends 

beyond cytokine production.   
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Figure 31 

Fluvastatin suppresses mast cell degranulation from C57BL/6 but not 

129/sv BMMC’s. C57BL/6 and 129/sv IgE sensitized BMMC’s were cultured in 

IL-3 +SCF with fluvastatin or DMSO for 24 h and then activated for 1 h with 

antigen. Cells were then stained for CD63 for 45 minutes and then run by flow 

cytometry. 
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Fluvastatin and migration 
 

SCF induces chemotactic migration of mast cells and is important for 

survival and proliferation. We wanted to assess the potential for fluvastatin to 

suppress mast cell migration by setting up a transwell assay. It has previously 

been show that C57BL/6 BMMC’s migrate to SCF for 24 hours suppresses 

BMMC migratory capabilities. Here, we compare C57BL/6 and 129/sv BMMCs 

ability to migrate towards SCF and show that the Th2 prone 129/sv  BMMC’s are 

resistant to the suppressive capabilities of fluvastatin (Figure 32). 
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Figure 32 

Fluvastatin suppresses mast cell migration of C57BL/6 BMMC’s but not 

129/sv BMMC’s. 

C57BL/6 and 129/sv BMMC’s were tested through 8 µm transwell membranes for 

migration in response to SCF or fluvastatin as describes in methods and 

materials. Fold migration is based on comparison to media alone samples. The 

results are expressed as the mean ± SEM of 2 independent experiments. 
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Fluvastatin elicits cell death in C57BL/6 BMMC’s more so than 129/Sv BMMC’s. 

We next wanted to assess the effect of fluvastatin on mast cell death by 

looking at dead cells (Figure 33), apoptosis (Figure 34) and autophagy (Figure 

35) on C57BL/6 and 129/sv mice (Figure 36), apoptosis (Figure 37) and 

autophagy (Figure 38) by flow cytometry as a time course assay. Here, we show 

that C57BL/6 mice show increased cell death, apoptosis and autophagy is a 

dose dependent manner after 3 days of fluvastatin treatment whereas 129/sv 

BMMC’s show resistance.  
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Figure 33 

Fluvastatin enhances mast cell death in C57BL/6 mice in a dose dependent 

way over 3 days. 

C57BL/6 BMMC’s were cultured with 5 µM, 10 µM, 20 µM or 40 µM fluvastatin for 

1 through 3 days and then stained with propidium iodide 200 µL (PI exclusion) a 

few seconds before running by flow cytometry. The results are expressed as the 

mean ± SEM of n=6. 
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Figure 34 

Fluvastatin enhances mast cell apoptosis in C57BL/6 mice in a dose 

dependent way over 3 days. 

C57BL/6 BMMC’s were cultured with 5 µM, 10 µM, 20 µM or 40 µM fluvastatin for 

1 through 3 days and then stained with caspase 3/7 green detection reagent for 

45 minutes and then run by flow cytometry. The results are expressed as the 

mean ± SEM of n=3. 
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Figure 35 

Fluvastatin enhances mast cell autophagy in C57BL/6 mice in a dose 

dependent way over 3 days. 

C57BL/6 BMMC’s were cultured with 5 µM, 10 µM, 20 µM or 40 µM fluvastatin for 

1 through 3 days and then stained with CytoID autophagy kit as describes in 

methods and materials. Samples were run by flow cytometry. The results are 

expressed as the mean ± SEM of n=6. 
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Figure 36 

Fluvastatin enhances mast cell death in 129/Sv mice in a dose dependent 

way over 3 days. 

129/sv BMMC’s were cultured with 5 µM, 10 µM, 20 µM or 40 µM fluvastatin for 1 

through 3 days and then stained with propidium iodide 200 µL (PI exclusion) a 

few seconds before running by flow cytometry. The results are expressed as the 

mean ± SEM of n=6. 
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Figure 37 

Fluvastatin enhances mast cell apoptosis in 129/SvImJ mice in a dose 

dependent way over 3 days. 

129/sv BMMC’s were cultured with 5 µM, 10 µM, 20 µM or 40 µM fluvastatin for 1 

through 3 days and then stained with caspase 3/7 green detection reagent for 45 

minutes and then run by flow cytometry. The results are expressed as the mean  
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Figure 38 

Fluvastatin enhances mast cell autophagy in 129/sv mice in a dose 

dependent way over 3 days. 

129/sv BMMC’s were cultured with 5 µM, 10 µM, 20 µM or 40 µM fluvastatin for 1 

through 3 days and then stained with CytoID autophagy kit as describes in 

methods and materials. Samples were run by flow cytometry. The results are 

expressed as the mean ± SEM of n=6. 
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The effect of fluvastatin on antigen stimulated basophils 

To this point, we have investigated the suppressive capabilities of 

fluvastatin on mast cell function with particular emphasis on IgE signaling and 

cytokine production. Basophils express the FcεRI and upon aggregation of this 

receptor are capable of producing a similar range of chemokine’s and cytokines. 

We therefore decided to investigate the potential suppressive abilities of 

fluvastatin on basophils from a C57BL/6 and 129/sv genetic backgrounds. Here, 

we show that IgE sensitized basophils activated with antigen from a C57BL/6 

background pretreated with fluvastatin for 24 h show suppression of IL-4, IL-6, IL-

13 (Figure 39). The suppression of IL-6 (Figure 39 B) and TNFα (Figure 40 A) on 

the C57BL/6 and the cytokine production in general is less so, but still evident. 

MCP-1 (Figure 40 B) and MIP-1α (Figure 40 C) show similar trends. However, 

no significant suppression of cytokines or chemokines is evident in the Th2 prone 

129/sv treated with fluvastatin. 
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Figure 39 

Fluvastatin suppress IL-4, IL-6 and IL-13 production from IgE activated 

basophils on a C57BL/6 but not a 129/sv genetic background. 

C57BL/6 and 129/sv IgE bone marrow were cultured in IL-3 20 ng/ml for 8 days 

and then cultured with or without IgE at 0.5 µg/ml, in fluvastatin 10 µm or DMSO 

for 24 h. in cell staining was conducted as described in methods and materials 

with CD49b as a basophil marker. A) Shows IL-4, B) shows IL-13 and C) shows 

IL-6 production from basophils on a C57BL/6 and 129/sv genetic background. 

The results are expressed as the mean ± SEM of n=6. 
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Figure 40 

Fluvastatin suppress TNFα ,  MCP-1 and MIP-α from IgE activated basophils 

on a C57BL/6 but not a 129/sv genetic background. 

C57BL/6 and 129/sv IgE bone marrow were cultured in IL-3 20 ng/ml for 8 days 

and then cultured with or without IgE at 0.5 µg/ml, in fluvastatin 10 µm or DMSO 

for 24 h. in cell staining was conducted as described in methods and materials 

with CD49b as a basophil marker. A) Shows TNFα, B) shows MCP-1 and C) 

shows MIP-α production. The results are expressed as the mean ± SEM of n=6. 
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Fluvastatin effect on basophil degranulation 

We, and others have shown that fluvastatin suppresses mast cell 

degranulation (26) in RBL-2H3 cells, and we have shown that the suppression is 

evident on C57BL/6 mice but not Th2 prone 129/sv mice. Here, we show that 

fluvastatin suppresses basophil degranulation in C57BL/6 mice but not Th2 

prone 129/sv mice (Figure 41). 
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Figure 41 

Fluvastatin suppresses basophil degranulation from C57BL/6 but not 

129/sv mice. C57BL/6 and 129/sv IgE sensitized basophils were cultured in IL-3 

20 ng/ml with fluvastatin or DMSO for 24 h and then activated for 1 h with 

antigen. Cells were then stained for CD107a for 45 minutes and then run by flow 

cytometry. The results are expressed as the mean ± SEM of n=6. 
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Fluvastatin alters membrane bound Ras on C57BL/6 mice 

As previously states, fluvastatin treatment does not suppress FcεRI 

expression. Our data suggests that fluvastatin suppresses geranylgeraylation 

more so that farneslylation. We therefore wanted to investigate the effect 

fluvastatin may have on membrane bound Ras, a prenylated protein involved in 

IgE mediated signaling. Here, we show suppression of membrane bound Ras on 

the C57BL/6 but not 129/sv BMMC’s. 
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Figure 42 

Fluvastatin treatment dramatically suppresses membrane bound Ras in 

C57BL/6 BMMC’s, whereas there is little difference in 129/sv BMMC’s. 

BMMC’s treated with or without fluvastatin for 24 h. Cells were lysed and 

cytospin. Cell membranes were collected and probed for Ras. Fyn was used as a 

control. Data represents 2 Independent experiments after normalizing to Fyn.  
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Fluvastatin selectively suppresses Fyn but upregulates Lyn in C57BL/6 BMMC’s 

 Down stream of the FcεRI, Fyn and Lyn are recruited and activated. 

Both Fyn and Lyn can act as positive regulator, recruiting LAT. Additionally, Lyn 

can act as a negative regulator. Here, we demonstrate that fluvastatin treatment 

suppresses Fyn activation and augments Lyn activation on the C57BL/6 

BMMC’s. 
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Figure 43 

Fluvastatin selectively suppresses Fyn and upregulate Lyn. 

C57BL/6 BMMC’s were IgE primed and cultured in IL-3 and SCF, with or without 

fluvastatin overnight and activated with antigen for 5 minutes, followed by cell 

lysing. Lysates were blotted for Fyn and Lyn. A) Shows a representative blot for 

Fyn and Lyn from two separate experiments that yielded similar results. B) 

Shows quantification of Fyn analysis form two independent experiments. C) 

Shows quantification of Lyn analysis form two independent experiments. 
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Fluvastatin selectively suppresses ERK and STAT5 pathway 

 The suppressive effects of fluvastatin are evident through the 

suppression of membrane Ras on C57BL/6 BMMC’s. Down stream of Fyn and 

Ras, we show that fluvastatin suppresses ERK (Figure 44) a member of the MAP 

kinases. Greatest suppression in fluvastatin treated C57BL/6 BMMC’s, is evident 

at 5 minutes of antigen activation. Additionally, it has been shown that Stat5 is 

critical for IgE mediated signaling (33-35). We therefore investigated fluvastatin 

suppression of Stat5. Here, we show that fluvastatin treatment also suppresses 

Stat5 expression (Figure 45) in C57BL/6 BMMC’s but has little effect on 129/sv 

BMMC’s. Taken together, these data suggest a role for protein prenylation being 

important for IgE induced signaling in primary BMMC’s. 
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Figure 44  

Fluvastatin selectively suppresses ERK on C57BL/6 BMMC’s. 

C57BL/6 and 129/sv BMMC’s were IgE primed and cultured with or without 

fluvastatin in IL-3 and SCF overnight and activated with or without antigen for 0, 

5 and 15 minutes, followed by cell lysing. Lysates were blotted ERK and p-ERK. 

A) Shows a representative blot for ERK and pERK for C57BL/6 BMMC’s from 

two separate experiments that yielded similar results. B) Shows quantification of 

the p-ERK/ERK ratio for C57BL/6 BMMC’s form two independent experiments. 

C) Shows a representative blot for ERK and pERK for 129/sv BMMC’s from two 

separate experiments that yielded similar results. D) Shows quantification of the 

p-ERK/ERK ratio for 129/sv BMMC’s form two independent experiments. 
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Figure 45  

Fluvastatin selectively suppresses Stat5 on C57BL/6 but not 129/sv 

BMMC’s. 

C57BL/6 and 129/sv BMMC’s were IgE primed and cultured with or without 

fluvastatin in IL-3 and SCF overnight and activated with or without antigen for 0, 

5 and 15 minutes, followed by cell lysing. Lysates were blotted Stat5 and p-Stat5. 

A) Shows a representative blot for Stat5 and p-Stat5 for C57BL/6 and 129/sv 

BMMC’s from one experiment. B) Shows quantification of the p-Stat5/ Stat5 ratio 

for C57BL/6 and 129/sv BMMC’s from one experiment.  
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Fluvastatin selectively augments HmG-CoA reductase expression on 129/SvImJ 

but not C57BL/6 BMMC’s. 

Thus far, we have demonstrated that C57BL/6 mice are sensitive to 

fluvastatin, and that 129/sv are resistant. We initially hypothesized that it might 

be that 129/sv mice have an increase in MVA or that they have increased 

expression of HMGCoA reductase (HMGCR). Here, we demonstrate that 129/sv 

mice have increased HMG-CoA reductase levels upon treatment with fluvastatin, 

in comparison to the C57BL/6 BMMC’s (Figure 46). These data suggest that the 

increase in HMG-CoA reductase levels in 129/sv BMMC’s, is in part responsible 

for 129/sv mice being resistant to fluvastatin. 

 

 

 

 

 

 

 

 

 

 

 

 

 



	  

	   100	  

 
 
 

Figure 46  

Fluvastatin selectively augments HMGCR reductase expression on 129/Sv 

but not C57BL/6 BMMC’s. 

Expression of HMGCR mRNA in C57BL/6 and 129/sv BMMC’s. BMMC’s were 

plated at 1x106 cell ml and treated with DMSO or Fluvastatin for 6 h. mRNA 

expression was determined by comparative qPCR. Data are expressed as the 

mean ± SD of triplicate measurements from 2 independent experiments n=6.  
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Fluvastatin suppresses passive systemic anaphylaxis on C57BL/6 mice but not 
129/sv 
 

Thus far, we have demonstrated the suppressive effects of fluvastatin in 

vitro and ex vivo and that fluvastatin’s suppressive capabilities are exhibited on 

the Th1 C57/BL/6 but not the Th2 129/sv mice. We next wanted to extend our 

study the functional relevance of fluvastatin sensitivity on both the C57BL/6 and 

129/sv mice. IgE dependent passive systemic anaphylaxis (PSA) is a mast cell 

dependent process and thus, we investigated the effects of fluvastatin on mast 

cells within this in vivo system. Here, we show that fluvastatin dampens PSA on 

C57BL/6 mice (Figure 48 A), in a dose dependent manner (Figure 47) but, mice 

treated with fluvastatin on 129/sv background continued to be fluvastatin 

resistant (Figure 48 B). Plasma chemokine levels from C57BL/6 mice also show 

suppression of serum MIP-1α (Figure 49) on C57BL/6 but not 129/sv mice. 

These data, taken together, suggest that fluvastatin dampens the early and late 

phase of mast cell dependent anaphylaxis. We were unable to fully investigate 

additional cytokines and chemokines due to low serum levels.  

Histamine causes bronchoconstriction, vasodilation and vascular leakage, 

features observed during systemic anaphylaxis. We wanted to investigate 

whether fluvastatin is affecting the vasculature in conjunction with mast cells of 

the C57BL/6 mice. Here, we show that fluvastatin pretreatment 16 h before 

administration of histamine does not significantly alter PSA (Figure 50). We 

therefore conclude, that it is the effects fluvastatin exerts on mast cells that 

causes a reduction of PSA on C57BL/6 mice.   
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Figure 47 

Fluvastatin dampens IgE induced PSA in C57BL/6 mice in a dose 

dependent manner. 

C57BL/6 mice were sensitized with 50 µg of IgE by intraperitoneal injection 

overnight with or without fluvastatin at 1 mg, 0.5 mg or 0.25 mg or DMSO. Mice 

were then injected with fluvastatin or DMSO the next morning and left for 90 

minutes to rest. PSA was induced by intraperitoneal administration of DNP-HSA 

antigen. Changes in core body temperature were measured by rectal probe at 

regular intervals. (DMSO n=5), (fluvastatin 1 mg n=5), (fluvastatin 0.5 mg n=5) 

and (fluvastatin 0.25 mg n=5). 
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Figure 48 

The effect of fluvastatin on PSA is strain dependent. 

C57BL/6 mice were sensitized with 50µg of IgE by intraperitoneal injection 

overnight with or without fluvastatin at 1mg, or DMSO. Mice were then injected 

with fluvastatin or DMSO the next morning and left for 90 minutes to rest. PSA 

was induced by intraperitoneal administration of DNP-HSA antigen. A) 

Fluvastatin suppresses IgE induced PSA in C57BL/6 mice. B) Fluvastatin does 

not alter IgE induced PSA in 129/sv mice. Changes in core body temperature 

were measured by rectal probe at regular intervals.  
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Figure 49 

Plasma levels of circulating MIP-1α following IgE- induced PSA on C57BL/6 

and 129/SvImJ mice.  

Mice were administered fluvastatin and sensitized to IgE 16 h prior to the 

induction of PSA and then again 1 h before Mice were injected i.p with antigen. 

Mice were then sacrificed 4 h after the induction of PSA and cardiac puncture 

was performed to assess circulating plasma MIP-1α levels. Data shown 

represents the mean ± SEM. C57BL/6 DMSO mice (n=2), C57BL/6 fluvastatin 

mice (n=2) 129/sv DMSO mice (n=5), 129/sv fluvastatin mice (n=5). 
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Figure 50 

Fluvastatin does not alter histamine induced PSA in C57BL/6 mice. 

C57BL/6 mice were injected by intraperitoneal injection overnight with or without 

fluvastatin at 1 mg, or DMSO. Mice were then injected with fluvastatin or DMSO 

the next morning and left for 90 minutes to rest. PSA was induced by 

intraperitoneal administration of histamine. Changes in core body temperature 

were measured by rectal probe at regular intervals. Mice were sacrificed 4 hours 

after the induction of PSA and cardiac puncture was performed to assess serum 

cytokine levels. 
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The variable responsiveness of fluvastatin is consistent with primary human skin 

mast cells.  

We extended our study of the fluvastatin induced differential production of 

IgE mediated cytokines and chemokine production, to primary human skin mast 

cells from five donors. Interestingly, we show a large variation in fluvastatin 

responsiveness between the five donors (Figure 51). When investigating MCP-1 

production we show we show suppression from as little as 18% to as much as 

71% as seen using cluster analysis. With TNFα we see a variation in sensitivity 

ranging from 30% to 87% suppression. These data suggest that the variability in 

cytokine and chemokine suppression induced by fluvastatin may have a human 

correlate. 
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Figure 51 

Variation in human mast cell responsiveness to fluvastatin 

Mast cells cultured from human skin donors were sensitized to IgE and treated 

with or without fluvastatin for 24 h. Human skin donors were then activated with 

antigen for 16 hours as described in methods and materials. Supernatants were 

then collected and then analyzed for the production of MCP-1 and TNF-α by 

ELISA.  Total of 5 donors labels sample 1-5, each in quintuplicate. A) MCP-1 

chemokine levels. B) Fold of control MCP-1 levels S1=34% suppression, S2= 

26% suppression, S3= 18% suppression, S4=71% suppression, S5= 54% 

suppression. C) TNF-α cytokine levels.  D) Fold of control TNF-α levels. S1=66% 

suppression, S2= 87% suppression, S3= 80% suppression, S4=42% 
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CHAPTER 4– DISCUSSION:  
 

Statins, as HMG-CoA reductase inhibitors (36) display effects in addition 

to lipid lowering and exhibit pleiotropic effects on immune cells. Given that statins 

alter protein prenylation in addition to the lipid modification that occurs on many 

proteins including those of the immune system, it is not surprising that statins 

alter immune function. Statins display comparable biochemical properties and 

effects on mevalonate, but have different structures and exhibit different 

potencies. It has been shown that statins, in particular lovastatin, can inhibit 

function of the RBL-2H3 cells (37) in vitro, and that fluvastatin inhibits 

degranulation of RBL-2H3 cells (26) in vitro. Furthermore, cerivastatin and 

atorvastatin have been shown to suppress growth and IgE-mediated histamine 

release in human basophils (38).  

 This study establishes that a range of statins inhibit IgE-induced cytokine 

production from Th1-prone C57BL/6 BMMC’s with varying degrees. There were 

some exceptions to this: pravastatin slightly enhanced cytokine production, and 

atorvastatin produced no significant effect. While atorvastatin has been shown to 

strongly suppress human mast cell degranulation in vitro (39), pravastatin’s 

effects may be due to its hydrophilic properties preventing it from permeating the 

cell surface membrane to the extent of more lipophilic statins such as 

simvastatin, lovastatin and fluvastatin (40). This being said, the most lipophilic 

statins, lovastatin and simvastatin (41), whilst demonstrating significant 

suppression, do not display the greatest suppression. Additionally, we 

demonstrate that fluvastatin; a moderately lipophilic statin, suppresses cytokine 
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production with the strongest effect and in a dose dependent manner on primary 

murine mast cells. Furthermore, fluvastatin’s suppression is shown in vitro and ex 

vivo. Interestingly, fluvastatin’s suppressive capabilities did not extend to IL-10, 

widely known as an anti-inflammatory cytokine (42-44).  

This study also demonstrates that fluvastatin effects on IgE-induced 

cytokine production on primary murine mast cells were reversed with MVA 

pretreatment, confirming targeted specificity to the mevalonate pathway. These 

data support the findings that suppressed degranulation mediated by fluvastatin 

was also rescued by MVA in RBL-2H3 cells (26).  As previously stated, MVA 

inhibition by statins suppresses the generation of prenylated proteins. Prenylation 

is a posttranslational modification, with covalent binding of isoprenoid lipids to 

conserved cysteine residues near the C terminus of target proteins (45, 46). 

These include the Ras superfamily of small GTP binding proteins, such as Ras, 

Rho and Rac.   

Prenylated proteins can be further divided into farnesylated proteins and 

geranylgeranylated proteins. Since farnesylated and geranylgeranylated proteins 

play a critical role In maintaining cell function (47), we investigated the effect of 

geranylgeranylation and farnesylation by using GGTI and FPTIII respectively. 

Here, we show that GGTI pretreatment significantly inhibited cytokine production 

and mimicked the action of fluvastatin, whereas FPTIII only slightly suppressed 

IL-6 production. These data suggest that fluvastatin’s ability to suppress IgE-

induced cytokine production might be mediated by geranylgeranylation as 

opposed to farnesylation. Farnesylation might be more important for the 
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arachidonic acid pathway in mast cells (26, 48) (49). It has been reported that 

dolichol and cholesterol, which are also synthesized from the mevalonate 

pathway, did not restore inhibition of degranulation in RBL-2H3 cells (37) and 

were not tested here.  

To further corroborate the involvement of geranylgeranylation for IgE 

induced cytokine production, we attempted to reverse fluvastatin suppression 

with exogenous GGPP and FPP to restore geranylgeranylation and farnesylation, 

respectively. We found that GGPP partially rescued cytokine production, 

whereas FPP has no significant effect. These data further support the theory that 

fluvastatin blockade of geranylgeranylation, more so than farnesylation, 

suppresses IgE-induced cytokine production. The importance of upstream lipids 

such as isoprenoids was further supported by studies using the squalene 

synthase inhibitor zaragozic acid A (ZA) that blocks the formation of squalene 

from transfarnesyl pyrophosphate (50). ZA pretreatment did not alter IgE-induced 

cytokine production despite suppressing cholesterol synthesis, as measured my 

mass spectrometry.  These latter results suggest that fluvastatin effects are not 

due to large scale changes in cholesterol-containing lipid rafts. Taken together, 

these data argue that geranylgeranylation has the largest effect on IgE-mediated 

cytokine production, and suggest this pathway as a potential target for controlling 

the mast cell response.  

Allergic asthma is characterized by reversible obstruction of airway hyper 

responsiveness, infiltration of inflammatory immune cells into the lungs, coupled 

with Th2-mediated cytokines. The mechanism has yet to be fully elucidated, but 
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the involvement of inflammatory and structural cells are critical. Current therapies 

can be improved upon, especially for patients who respond poorly to traditional 

treatments. These include those who remain symptomatic despite high dose 

corticosteroid treatment, and account for approximately 10% of asthmatics (51). 

Given the time, expense, and risks associated with new drug developments, 

exploring previously-approved drugs for alternative disease states may prove to 

be beneficial. In the case of asthma, statins are a prime candidate.   

There are studies to support statin use in asthma and allergic disease. 

Peripheral blood mononuclear cell (PBMC) proliferation and inflammatory 

responses were suppressed by fluvastatin in patients with allergic asthma (52). 

Furthermore, Atorvastatin in conjunction to inhaled corticosteroids improved lung 

function and airway inflammation in atopic asthmatics (53). These and other 

studies have led to the conclusion and statins are beneficial for asthma 

management (54). Cellular and molecular mechanisms supporting these clinical 

benefits are forthcoming from human and animal studies. Statins may suppress T 

cell activation by decreasing MHC II expression on monocytes induced by IFN-γ 

(55). T cell activation, proliferation, and migration are also suppressed by statin 

treatment (52). This includes Th2 lymphocytes, which play a key role in the 

initiation and prolongation of airway inflammation. In addition to their effects on 

immune cells, statins have been shown to suppress bronchial wall remodeling 

(56).  

Among the statins, Simvastatin has been studied in some detail for its 

suppressive effects. It has anti-inflammatory capabilities in the murine model of 
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allergic asthma (57). This is in partly due to suppression of T lymphocytes and T 

cell-produced IL-4 and IL-5 (58). More recently, Kim et al showed that 

simvastatin reduced ovalbumin- specific IgE level, number and total of 

macrophages, neutrophils and eosinophils into bronchoalveolar lavage fluid (59)  

in a mast cell-independent model.  Moreover, Simvastatin also reduced 

thioglycolate-induced peritoneal inflammation (60) in which the predominate 

infiltrate is neutrophils. This suggests that statins might be beneficial in “non-

allergic” asthma, which Is associated with strong Th17 responses and 

neutrophilic infiltration (61-63). 

Taken together, many studies have investigated immune modulating cells 

and the effect statins have on allergic lung function. However, these in vivo 

studies have overlooked mast cells, and its fundamental role in allergic asthma 

and anaphylaxis. In the airways of asthmatics, mast cells are not only present 

(64-66), but fundamental for initiating and maintaining allergic inflammation by 

interactions with resident and infiltrating cells in the airway. 

As many treatments have shown, targeting and suppressing specific 

aspects of mast cell function is beneficial to allergic disease. Using the mast cell-

dependent passive systemic anaphylaxis  (PSA) model, we assessed the 

functional validity of our in vitro data. Anaphylaxis is a life threatening acute 

systemic reaction caused largely by IgE-mediated release of mediators from 

mast cells and basophils to allergen triggers, such as venom, food and 

medication (67). Estimated occurrences of anaphylaxis vary greatly, with the 

majority of studies agreeing that its prevalence is increasing (68-74). Estimates 
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predict a frequency of approximately 50 to 2000 episodes per 100,000 people 

(67). Anaphylaxis can also be IgE-independent, caused by agents such as serum 

complement activation or direct mast cell degranulation. These IgE-independent 

pathways are often directed by non-immunological factors such as exercise, cold 

air, or medications such as vancomycin or opioids, and are not fully understood 

(69, 75). Regardlesss of the activating pathway, mast cells and to a lesser extent, 

basophils are central effector cells in anaphylaxis. Degranulation and the 

immediate release of preformed mediators such as histamine, leukotrienes, and 

platelet activating factor (PAF) occur between 5 and 30 minutes after cell 

activation (76). This gives rise to the hypersensitivity response (69). The delayed 

response arises 2-6 hours after initiation and involves the production of cytokines 

and chemokines (77).  

This study demonstrates that pretreatment with fluvastatin prior to 

induction of IgE-mediated PSA dramatically reduced the severity of anaphylaxis 

in C57BL/6 mice. These data clearly show the importance of mast cells as a 

target and fluvastatin as a therapy for allergic disease. To rule out fluvastatin 

primarily provoking a response on the vasculature, we pretreated mice with 

fluvastatin and then bypassed the mast cell response by injecting histamine i.p.  

Our results showed no significant drop in core body temperature. These data 

demonstrate that the dramatic suppression of anaphylaxis is a result of 

fluvastatin acting on the mast cells and not the vasculature. Strikingly, mice of the 

Th2-prone 129/SvImJ background demonstrated no alteration in anaphylaxis 

following pretreatment with fluvastatin. These in vivo data support our in vitro 
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findings that 129/SvImJ mast cells are resistant to fluvastatin-mediated 

suppression. We postulate that genetic variation could be the cause of these 

altered responses in inbred mice.  

 

In addition to the classical anaphylactic pathway, numerous studies have 

shown that anaphylactic responses can occur in mice deficient in mast cells (78), 

IgE (79) or FcεRIα  chain {Dombrowicz:1997wy}. These data provide an 

argument for an alternative pathway, whereby IgG1- dependent activation of the 

FcγRIII receptor is required (73). Studies show that although mast cells are 

involved, the major cells involved in this pathway are basophils, macrophages 

and neutrophils (80). This is a mechanism that can be explored in future work.  

 

Down stream of the IgE receptor, Fyn and Lyn are recruited and activated. 

Lyn acts both as a positive and negative regulator, the predominant phenotype 

being a negative regulator, as seen in Lyn Knockout mice that demonstrate 

increased PSA (81, 82). Our data suggest that statins might be useful in 

inflammatory disorders not typically thought of as mast cell-driven, such as lupus. 

 

Along with Fyn down regulation, we further show fluvastatin suppressed 

Erk phosphorylation in C57BL/6 but not 129/SvImJ BMMC’s. Additionally, Stat5 

phosphorylation was suppressed on C57BL/6 but not 129/SvImJ BMMC. We 

previously found that Fyn and Stat5 physically interact, and that Stat5 is crucial 

for mast cell function and survival	  (33, 83, 84). Given the importance of Fyn and 
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Stat5 for IgE-mediated cytokine release, suppressing this pathway could explain 

the reduced cytokine secretion. Additionally, the Ras–MAPK cascade is 

important for differentiation and survival. reduced activation of Stat5 and ERK 

could partially explain the increased cell death observed among C57BL/6 mast 

cells treated with fluvastatin for prolonged periods. 

 

Variable responses to fluvastatin among C57BL/6 and 129/SvImJ  mast 

cells are consistent with previous studies from our group. Previously, we 

demonstrated that mast cell precursors from the Th2-prone 129/SvImJ 

background are resistant to IL-10 (85), and BMMC are resistant to the TGF-βI-

mediated suppression (35). Additionally, 129/SvImJ mice display increased 

circulating levels of IgE and an increase in FcεRI expression (86). Therefore we 

were intrigued by the lack of fluvastatin effects on 129/SvImJ mice.	  We further 

found that the commonly used Th2-prone Balb/c strain also demonstrated 

fluvastatin resistance when assessing IgE-mediated mast cell activation. A 

simple conclusion would be that genetic variations predisposing to strong Th1 or 

Th2 development show linkage to genetic effects yielding drug resistance. 

However, it is important to note that while the C57BL/6 mice are Th1 prone and 

129/SvImJ are Th2 prone, this is not their only variation. Moreover, fluvastatin 

responses are not simply a Th1-prone versus a Th2-prone phenomenon. Mast 

cells from Th2-prone A/J mice did not show complete fluvastatin resistance in 

vitro and ex vivo. These observations prompted a deeper investigation into the 

mechanisms explaining this pharmacogenomic effect. 
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There is a wide variation in inter-individual responses to statin therapy, 

and many have hypothesized that genetic differences may contribute to this 

variation (87). Clinical data for pharmacogenetic interactions with statins have 

largely focused on polymorphisms in the cytochrome P450 enzyme, which 

assists in statin export; the lipid metabolism genes apolipoprotein E and B 

(APOE,APOB), which control cholesterol transport across the plasma membrane; 

and cloesteryl ester transfer protein (CETP) and the LDL receptor (LDLR) which 

regulate LDL/VLD protein binding (88-90). CYP2C9 is the primary pathway for 

fluvastatin metabolism (91). It might be that functional variants of the CYP2C9 

gene are genetic determinants for the lipid response to fluvastatin therapy. 

However, this hypothesis while important for in vivo study, would not explain our 

in vitro findings. 

In addition to these plausible mechanisms yielding statin resistance, there 

could be pharmocodynamic gene-drug interactions involving gene products 

expressed as receptors after the drug enters circulation (92). A third possibility is 

polymorphisms in genes that are in the causal pathway of disease and are 

subsequently able to modify the effects of drugs (93). For example, in one study, 

a subgroup of coronary heart disease patients did not respond to simvastatin 

treatment. This study demonstrated that patients with high baseline synthesis of 

cholesterol showed simvastatin responsiveness, whereas those with low 

cholesterol synthesis were resistant (94). 

Our data show that cholesterol levels are not significantly different 

between C57BL/6 and 129/SvImJ BMMC. While, 129/SvImJ BMMC are resistant 



	  

	   117	  

to fluvastatin, they are suppressed by GGTI. We therefore propose that the 

variation is above the step of geranyl pyrophosphate in the mevalonic acid 

pathway. Thus, it is entirely plausible that the variation is at the level of HMG-

CoA, being either a polymorphism or alteration in expression between strains. 

We therefore sequenced HMGCR (HMG-CoA reductase) from C57BL/6 and 

129/SvImJ cDNAs, but found no variations between the strains (data not shown. 

We did however demonstrate that 129/SvImJ mast cells have greater than two-

fold increase in HMGCR following fluvastatin treatment. We therefore propose 

that this increase in HMGCR is at least in part responsible for fluvastatin 

resistance in 129/SvImJ mice. 

The alteration in fluvastatin responsiveness seen in murine mast cells 

correlates with variable responsiveness among primary human skin mast cells. 

Comparing various donors, we found 18% to 87% suppression by fluvastatin, 

when measuring IgE-mediated cytokine secretion. These data demonstrate both 

the possible utility of inhibting mast cells reposnses in patients, and the inherent 

variability that should be anticipated. Larger numbers of donors are needed to 

fully corroborate these findings. Understanding how fluvastatin and statins in 

general alter IgE-mediated mast cell signaling and the significance of genetic 

background could prove to be important for treating allergic disease. 
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Figure 52 

The proposed mechanism whereby fluvastatin suppresses the FcεRI 

signaling cascade.  

Following cross-linking of the FcεRI receptor, the Src family kinases Fyn and Lyn 

become activated. Fyn and lyn both actibvate Syk nnd subsequently LAT. Upon 

phosphorylation, this scaffold protein serves as a multimolecular signaling 

complex allowing for positive signaling down stream of the FcεRI receptor. Lyn 

can also act as a negative regulator my recruiting Csk, which inhibits Fyn. This 



	  

	   119	  

figure illustrates the observed signaling molecules inhibited and enhanced by 

fluvastatin treatment.  
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Part II 
 

The divergent roles of Wnt5a and Leptin on 
mast cell function 
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Abstract 

The prevalence of obesity has reached epidemic proportions in western 

countries. Increased levels of adipose tissue are strongly associated with disease 

states such as chronic heart disease, atherosclerosis, insulin resistance and type 

II diabetes (95). Obesity is also associated with increased risk of inflammatory 

conditions such as allergic asthma and allergic rhinitis (96) (97). The obese state 

has been described as chronic low-grade inflammation (95, 98). Thus, obesity 

and inflammation are inextricably linked. The role of mast cells in inflammatory 

disease is unequivocal. Mast cells are instrumental effector cells in IgE-mediated 

allergic diseases such as asthma (97, 99) and rhinitis (99) (96) The receptor for 

IgE is the high affinity multimeric Fc receptor FcεRI, which when activated 

through a IgE-antigen aggregation results in signal transduction. This yields 

degranulation and the production of inflammatory and chemotactic mediators. 

We hypothesize that the adipokine Wnt5a enhances IgE-mediated mast cell 

function and migration. We further hypothesize that the adipokine leptin 

suppresses IgE-mediated mast cell cytokine production. These effects may vary 

on different genetic backgrounds.  
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Chapter 1 - INTRODUCTION: 

The prevalence of obesity is on the rise and reaching epidemic 

proportions, with 75 million Americans considered obese (95, 100, 101). The 

implications of obesity are extensive, altering metabolic processes and immune 

responses associated with metabolic syndrome, chronic heart disease, 

atherosclerosis, insulin resistance and type II diabetes (95, 101, 102). Recent 

studies have explored the relationship between obesity and asthma, indicating 

that obesity antedates asthma (102) (103) (104). While the link between obesity 

and airway hyper-responsiveness (AHR) is now known, the relationship of 

obesity to other inflammatory diseases such as bronchitis, sinusitis, and rhinitis, 

the latter of which affects 40% of the American population, is less explored.  

Mast cells are instrumental in inflammatory disease. It has been 

demonstrated that in obese individuals mast cell numbers are significantly 

increased in white adipose tissue (WAT) compared to non-obese (105).  

Furthermore, since obesity had recently been described as chronic low-grade 

inflammation, it seems logical to explore the relationship between inflammatory 

cells and obesity (98, 106). While the role of adipocytes and their adipokines are 

well characterized in relation to obesity, their links to allergic inflammation are not 

well-understood (95, 107).  

The resistance or susceptibility of mice strains to various diseases such as 

asthma has been linked to differences in the transcription rates of several 

immunologically important molecules such as cytokines, chemokines and their 

receptors associated with Th1 and Th2 type immune responses. Using Th1-
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prone C57BL/6 and Th2-prone and 129/sv mice, we show that the adipokine 

leptin suppresses mast cells from C57BL/6 mice, but that mast cells from Th2-

prone mice are resistant to the effects of leptin (108, 109). We propose that like 

Th2-prone mice, there are Th2-prone individuals that are predisposed to allergic 

disease. And while this predilection is by no means the only contributing factor, 

we hypothesize that there is a change in the response of obese Th2-prone 

individuals that leads to increased incidence of allergic disease when compared 

to Th1-prone individuals. Outlining the role of the mast cell and its response to 

adipokines may prove to be crucial for the development of new therapies. 

 

Wnt5a has potential to augment mast cell function 

            Obesity elicits a dysregulation of adipokines released from adipocytes 

and an infiltration of immune cells into adipose tissue. Many adipokines have 

been characterized. Our first focus is the effects of Wnt5a on mast cell function. 

Wnt proteins are fundamental for basic developmental processes16. Wnt5a has 

been shown to signal via Frizzled receptors (Fz) with co-receptors LRP5/6 in the 

canonical pathway, and through Fz and Ror2/PTK7/RYK receptors in the non-

canonical pathway(110). However, Wnt5a has recently been implicated as 

having inflammatory activities, and is elevated in obese individuals (111-113) 

(114). Furthermore, the evolutionarily conserved Wnt5a has been implicated as 

being a link between the innate and adaptive immune system for microbial 

infection(115). It has also been suggested that the inflammatory Wnt5a signaling 

pathway is Beta catenin-independent, suggesting that other pathways are 
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involved (114). In addition, there is evidence to suggest that Wnt5a and Ror2 

activate JNK, contributing to the inflammatory response. For example, these 

factors can activate pro-inflammatory cytokine production in endothelial cells in 

individuals with Rheumatoid arthritis (114) (116-118). Taken together, these 

findings serve as a basis to investigate the inflammatory capabilities of Wnt5a on 

mast cell signaling. 
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Figure 53 

The 3 proposed Wnt signaling pathways. 

A) Canonical Wnt/β-catenin pathway. B) non- canonical Wnt/Ca2+ pathway and 

the C)  non-canonical Wnt/PCP pathway.  A) Canonical Wnt β-catenin pathway 

regulates cell fate decisions during development of vertebrates and 

invertebrates. Wnt binds to Frizzled receptors that recruit disheveled which, in 

turn results in a down stream signaling cascade that displaces GSK-3β from the 

APC/Axin/GSK-3β complex allowing β-catenin to move to the nucleus. In the 

absence of Wnt molecules binding frizzled, β-catenin is targeted for proteosomal 

degradation. B) In the non-canonical Wnt/Ca2+ pathway, Wnt binds to frizzled 

and increases intracellular calcium, which activates CAMKII and transcription 
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factors like NFAT and AP-1. C) the non-canonical Wnt/PCP pathway is 

characterized by asymmetric distribution of frizzled. This results in cell 

polarization. Additionally this pathway activates Rho GTPases such as Rac1, 

Cdc42 and RhoA, resulting is cytoskeleton rearrangement and can also activate 

JNK.  
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The complexities of leptin extend into mast cell homeostasis. 

Leptin is primarily produced and synthesized by adipocytes, but its 

receptors are found on many cell types, including monocytes and mast cells - 

and leptin effects are felt in many systems (119) (120). Leptin is most commonly 

known for its role in energy utilization and storage by regulating energy intake 

and expenditure. Leptin levels correlate with adipose tissue mass. Leptin also 

regulates metabolic, endocrine, bone metabolism and immune function (120, 

121). The leptin receptor knockout (KO) mice db/db, and ob/ob mice lacking 

leptin secretion, are not only obese but exhibit endocrine/immune deficiency 

(119). Of the 6 leptin isoforms, (Ob-Ra to Ob-Rf) only the long isoform Ob-Rb is 

fully functional and capable of downstream signaling through Jak2/Stat3, PI3K 

MAPK cascade and SOCS3 (119, 120, 122-124).  
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Figure 54  

The isoforms of the leptin receptor. 

All 6 leptin receptor isoforms share the same ligand binding domain, Cytokine 

Receptor Homolog (CRH). With the exception of the OB-Re, which is the 

secreted form, all other isoforms are membrane anchored. JAK’s associate with 

the conserved Box 1 motif, which is required for JAK2 activation. The OB-Rb 

isoform has the longest intracellular domain, which is vital for leptin signaling. 
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Although SOCS3 is a feedback inhibitor of leptin and is activated by the 

Jak2/Stat3 pathway, structurally, the leptin receptor is similar to the class I 

cytokine receptor (gp130) superfamily that include the inflammatory cytokine 

receptor IL-6. It also signals much like the IL-6 receptor, and has been 

demonstrated to act as a pro inflammatory mediator in macrophages (119, 125). 

Furthermore, leptin production is increased in inflammation (126), promoting a 

Th1 response. However, it has been shown that the loss of the leptin or its 

receptor results in exacerbated airway hyperresponsiveness, suggesting an 

inhibitory role for leptin also (127). 
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RESULTS: 

Wnt5a enhances IgE induced cytokine production in primary BMMC’s. 

We initially investigated the adipokines Wnt5a, leptin, adiponectn and 

resistin and found wnt5a and leptin to yield the most interesting results. Here, we 

show that IgE sensitized BMMC’s pretreated with Wnt5a for 3 show a significant 

increase in IL-and TNFα (Figure 55) production on the Th1 prone C57BL/6 mast 

cells. Interestingly Wnt5a did not significantly alter IL-10 production (Figure 56) 

on C57BL/6 mast cells. To determine the potential of genotype dependence, we 

treated BMMC’s from the Th2 prone 129/SvImJ with Wnt5a. Here, we show that 

129/SvImJ exhibit an increase in IL-6, TNFα, IL-13 and MCP-1 (Figure 57). We 

demonstrate that the effect of Wnt5a on murine mast cell is not genotype 

restricted.  
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Figure 55 

Wnt5a Enhances cytokine production from IgE activated BMMC’s. 

C57BL/6 were cultured in IL-3 and SCF, with or without Wnt5a for 3 days. 

BMMC’s were then sensitized with IgE over night and then activated with DNP-

HSA for 16 hours and supernatants were collected as described in the methods 

and materials and assessed by standard sandwich ELISA to determine IL-6 and 

TNFα concentrations. The results are expressed as the mean ± SEM of 3 

independent experiments. 
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Figure 56 

Wnt5a does not alter IL-10 production from IgE activated mast cells. 

C57BL/6 were cultured in IL-3 and SCF, with or without Wnt5a for 3 days. 

BMMC’s were then sensitized with IgE over night and then activated with DNP-

HSA for 16 hours and supernatants were collected as described in the methods 

and materials and assessed by standard sandwich ELISA to determine IL-10 

concentrations. The results are expressed as the mean ± SEM of 2 independent 

experiments. 
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Figure 57 

Wnt5a Enhances cytokines and chemokine production from IgE activated 

mast cells. 

129/SvImJ BMMC’s were cultured in IL-3 and SCF, with or without Wnt5a for 3 

days. BMMC’s were then sensitized with IgE over night and then activated with 

DNP-HSA for 16 hours and supernatants were collected as described in the 

methods and materials and assessed by standard sandwich ELISA to determine 

A) IL-6, B) TNFα, C) IL-13 D) MCP-1 concentrations. The results are expressed 

as the mean ± SEM of 3 independent experiments. 
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Wnt5a enhances mast cell migration   

Following Wnt5a’s ability to increase IgE mediated pro-inflammatory 

cytokines; and given that mast cells migrate to sites of infection, we wanted to 

investigate the ability of Wnt5a to alter mast cell migration and mast cell 

migration towards antigen. Here, we show that mast cells from C57BL/6 mice 

migrate towards Wnt5a (Figure 58 A), and more so in the presence of antigen 

(Figure 59 B).   
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Figure 58 

Wnt5a enhances mast cell migration. 

A) C57BL/6 BMMC’s were tested through 8µm transwell membrane for migration 

in response to media alone or Wnt5a (100ng/ml). Fold migration is in response to 

samples containing media alone. The results are expressed as the mean ± SEM 

of 2 independent experiments. B) C57BL/6 BMMC’s were cultures for 3 days IL-3 

(10ng/ml) and SCF (10ng/ml) ± Wnt5a (100ng/ml) and sensitized with IgE. 

BMMC’s were then tested through 8µm transwell membrane for antigen-induced 

migration. Fold migration is in response to samples containing media alone. The 

results are expressed as the mean ± SEM of 2 independent experiments. 
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Wnt5a enhances IgE induced cytokine production in basophils 

We next wanted to see if Wnt5a and leptin altered basophil cytokine 

production. Here, we show that Wnt5a increases IL-6 (Figure 59) and TNFα 

(Figure 60) production but pretreatment with leptin does not significantly alter 

basophil cytokine production. 

 

 

 

 

 

 

 

 



	  

	   137	  

 

 

Figure 59 

Wnt5a increases IgE mediated IL-6 production in basophils. 

Bone marrow derived basophils from C57/BL6 mice were cultured for 3 days in 

IL-3 (10ng/ml). On day 4 they were treated with ± Wnt5A (25ng/ml) or ± leptin 

(250ng/ml) and then cross-linked with IgE (0.5ug/ml) and DNP-HSA antigen (IgE 

XL) on day 7. Cytokines levels were measured intracellularly by flow cytometry. 
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Figure 60 

Wnt5a increases IgE mediated TNFα production in basophils. 

Bone marrow derived basophils from C57/BL6 mice were cultured for 3 days in 

IL-3 (10ng/ml). On day 4 they were treated with ± Wnt5A (25ng/ml) or ± Leptin 

(250ng/ml) and then cross-linked with IgE (0.5ug/ml) and DNP-HSA antigen (IgE 

XL) on day 7. Cytokines levels were measured intracellularly by flow cytometry. 
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Leptin suppresses IgE induced cytokine production on mast cells  

As mentioned previously, leptin plays a role in inflammation and thus we 

wanted to assess the ability of leptin to alter mast cell cytokine production whilst 

looking at any potential genotype dependence. Interestingly, we show that 

BMMC’s pretreated with or without leptin for 3 days that were then IgE sensitized 

and activated with antigen actually suppress cytokine production on C57BL/6 

mice but on the Th2 prone 129/SvImJ mice we see that BMMC’s are resistant to 

the suppressive capabilities of leptin. 
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Figure 61 

Leptin suppresses IL-6 production from IgE activated BMMC’s on the Th1 

prone C57BL/6 background but not the TH2 prone 129/SvImJ BMMC’s. 

C57BL/6 and 129/SvImJ IgE sensitized BMMC’s were cultured in IL-3 and SCF 

with or without Leptin for 3 days, then sensitized with IgE and then activated with 

antigen for 16 hours. Supernatants were collected as described in the methods 

and materials. The results are expressed as the mean ± SEM of 3 independent 

experiments. 
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Figure 62 

Leptin suppresses TNFα production from IgE activated BMMC’s on the Th1 

prone C57BL/6 background but not the TH2 prone 129/SvImJ BMMC’s. 

C57BL/6 and 129/SvImJ IgE sensitized BMMC’s were cultured in IL-3 and SCF 

with or without Leptin for 3 days, then sensitized with IgE and then activated with 

antigen for 16 hours. Supernatants were collected as described in the methods 

and materials. The results are expressed as the mean ± SEM of 3 independent 

experiments. 
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Figure 63 

Leptin suppresses MIP-1 production from IgE activated BMMC’s on the Th1 

prone C57BL/6 background but not the Th2 prone 129/SvImJ BMMC’s. 

C57BL/6 and 129/SvImJ IgE sensitized BMMC’s were cultured in IL-3 and SCF 

with or without Leptin for 3 days, then sensitized with IgE and then activated with 

antigen for 16 hours. Supernatants were collected as described in the methods 

and materials. The results are expressed as the mean ± SEM of 3 independent 

experiments. 
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Leptin receptor deficiency exacerbates anaphylaxis, but reduces histamine 

release  

We next wanted to investigate the effect leptin deficiency has on passive 

systemic anaphylaxis, which is dependent apon mast cell IgE mediated 

activation. We therefore assessed this response on leptin receptor knockout mice 

(db/db mice) and their Wilt type (WT) counterparts. While the difference between 

the KO and wild type is small, the KO mice take a significantly longer time to 

recover (Figure 64). The db/db mice also demonstrated a reduced 

responsiveness to histamine (Figure 65). 
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Figure 64 

Leptin receptor deficiency worsens anaphylaxis, but reduces histamine 

release.  

WT (C57BL/6) or Leptin receptor knockout mice (n=4) A) were sensitized with IV 

injection of IgE anti-DNP, and then injected with DNP-BSA the following day. 

Change in body temperature was measured by rectal probe. B) Mice were 

injected with 5mg histamine, i.v. Change in core body temperature was 

measured by rectal probe at regular intervals. 

 

 

 

0 1 2 3 4
-6

-5

-4

-3

-2

-1

0
Wild Type

Leptin Rec KO p=.005
p=.02

* *

Time (Hrs)

C
ha

ng
e 

in
 T

em
pe

ra
tu

re
 (°

C
)



	  

	   145	  

 

 

Figure 65 

Leptin receptor deficiency reduces histamine release. 

WT (C57BL/6) or Leptin receptor knockout mice (n=4) A) were sensitized with IV 

injection of IgE anti-DNP, then injected with DNP-BSA the following day. Change 

in body temperature was measured by rectal probe. B) Mice were injected with 

5mg histamine, IV, and change in temperature was measured. 
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DISCUSSION: 

The effects of Wnt5a and leptin on mast cells 

Recently it has been shown that adipokines play a role in 

immunomodulation, in particular that Wnt5a has inflammatory capabilities (95, 

111, 112) and that Wnt5a is implicated as being a link between the adaptive and 

innate immune system.  Here, we show that Wnt5a significantly enhances the 

release of inflammatory mediators from mast cells. Furthermore, these data 

suggest that Wnt5a also enhance mast cell migration. Additionally, our 

preliminary data show that pretreatment with leptin causes suppression of 

cytokine production on the Th1 prone genetic background but not the Th2 prone 

129/SvImJ background. Unfortunately, although interesting out data did not 

consistently repeat leading us to halt this investigation. 
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