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Prognosis for lung cancer patients remains poor.  For those receiving radiation therapy, 

local control and survival have been shown to improve with increased doses; however, 

deliverable dose is often limited by associated toxicity.  Therefore, methods that reduce dose to 

normal tissues and allow isotoxic escalation are desirable.  Adaptive radiation therapy seeks to 

improve treatment by modifying the initial plan throughout delivery, and has been shown to 



 

 

decrease normal tissue dose.  Studies to date suggest a trend of increasing benefit with increases 

in replanning frequency; however, replanning is costly in terms of workload and past studies 

implement at most weekly adaptation.  The purpose of this thesis is to quantify the benefit 

associated with daily replanning and characterize the tradeoff between replanning frequency and 

adaptive benefit.  A software tool is developed to facilitate planning studies and to introduce 

complimentary methods for evaluating adaptive treatments.  Synthetic images and contours are 

generated for each fraction of a typical fractionation schedule using principal component analysis 

and a novel method of sampling coefficients that preserves temporal trends in the data (e.g. 

tumor regression).  Using the synthetic datasets, a series of adaptive schedules ranging from no 

adaption to daily replanning are simulated and compared to quantify adaptive benefits and 

characterize tradeoffs with frequency.  Daily replanning resulted in significant reductions in all 

normal tissue planning metrics when compared to no adaptation, and incremental reductions 

were observed with each increase in replanning frequency while the magnitude of average 

reductions decreased with each step.  Modest correlation between absolute change in planning 

target volume over the course of treatment and reductions in both mean lung dose and mean 

esophageal dose were observed. 
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1 Introduction 

1.1 Problem statement 

Cancer ranks second, behind heart disease, among the leading causes of death in the United 

States for both men and women by a margin of less than 2%.  In 2009, the most recent year for 

which data is available, 567,628 cancer deaths were reported, accounting for 23.3% of all 

mortalities.[1]  For 2013, The American Cancer Society estimated 580,350 cancer-related deaths 

and projected 228,190 of those to be associated with malignancies of the lung, making lung 

cancer the number one cause of cancer-related death in the United States.[2] 

Treatment depends on type, site, and stage of disease, and may be influenced by patient 

specific preferences or comorbidities, but generally includes surgical resection, chemotherapy, 

radiotherapy, or a combination of the three.  In the case of lung cancer, radiotherapy is indicated 

in early stage disease where comorbidities or patient refusal preclude a surgical approach, and in 

advanced cases where tumor is unresectable, making it the treatment of choice for approximately 

40% of newly diagnosed lung cancer patients.[3]  

 Prognosis for those diagnosed with lung cancer remain poor; in their most recent report, 

The National Cancer Institute reports a 5 year survival rate of 16.6% for those with cancers of 

the lung.[4]  Low survival rates for the large portion of patients diagnosed with lung cancer 

coupled with the fact that 40% receive radiation therapy as the primary treatment modality make 

improvements in radiation therapy for lung cancer an important topic of research.  

For patients receiving radiation therapy, local tumor control and survival have been shown 

to improve with increased doses;[5,6] however, for most patients deliverable dose is limited by 
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associated normal tissue toxicity.  Reducing normal tissue dose for a given treatment regimen is 

a common theme in radiotherapy research and allows tumor doses to be escalated until an 

isotoxic effect is reached for the limiting normal structure.   

Advancements in the field that have lead to increased sparing of normal tissues include: 

conformal radiotherapy, intensity modulated radiation therapy (IMRT), and tools that reduce 

uncertainties associated with treatment and setup (e.g. image guidance).  Adaptive radiation 

therapy (ART), which is the subject of this thesis, utilizes these techniques in a dynamic 

approach to accommodate interfraction variation and may be utilized to further reduce exposure 

of relevant risk structures.   

A basic introduction to traditional radiation therapy, ART, and relevant advancements in 

the field are presented in this section as context for the work presented in later chapters.     

1.2 Radiation therapy 

Radiation therapy seeks to eradicate diseased tissue through the targeted administration of 

ionizing radiation while minimizing effects on surrounding normal tissues.  Biological effects of 

ionizing radiation include disruption of cellular DNA, resulting in mutations that may 

compromise cellular function or ultimately prove fatal for the cell.  Damage may result from 

direct action on the DNA, or indirectly through the production of free-radicals – principally, 

highly reactive oxygen species – which may subsequently lyse base pair bonds.  Irreparable 

damage may signal programmed cell death (apoptosis) or may inhibit cellular division (mitotic 

death) and thereby end the life of the cell. 

The type of radiation utilized may be either gamma-rays or particulate radiation (e.g. 

electrons) of various energies and is administered via a beam that originates outside of the 

patient (external-beam radiotherapy) or by placing radioactive sources inside or next to the 
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treatment site (brachytherapy).  For lung cancer, treatment usually involves external-beam 

radiotherapy that delivers gamma-rays in the megavoltage range.  

Common to all modalities of radiation therapy is the specification of robust target volumes 

to ensure tumor coverage with a high degree of probability.  In order to specify robust target 

volumes, geometric uncertainties inherent in the planning process must be appreciated and 

accounted for.  A description of the uncertainties associated with radiotherapy for lung cancer 

are given below.   

1.2.1 Uncertainties in radiotherapy for lung cancer 

The various uncertainties associated with specifying and localizing radiotherapy targets 

have traditionally been managed through the addition of safety margins to account for intra- and 

inter-fraction variations.  Specifically, uncertainties are related to: identifying and delineating 

tumor volumes as seen on planning CTs, ascertaining the extent of microscopic invasion and 

nodal involvement, patient positioning, and motion of target and surrounding anatomy.  

Anatomical change throughout treatment presents another challenge to accurately localizing 

structures of interest and may include: tumor regression, patient weight variations, and the 

development or resolution of local pathology (e.g. atelectasis, pleural effusion, etc.).   

1.2.1.1 Identifying and delineating gross tumor  

After acquisition of a diagnostic CT scan obtained with the patient in the intended 

treatment position, organs at risk and gross tumor are outlined by a physician using treatment 

planning software.  While tools exist to aid in segmentation, ultimately contours are based on 

clinical judgment and have been shown to vary significantly for different observers.  In one study, 

inter-observer variability as defined by the standard deviation of observer contour distances from 

a common region of interest (voxels designated as gross tumor by at least 50% of observers) was 
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1.02 cm for lung lesions when based on diagnostic CT alone.  This improved to 0.42 cm in a 

second phase of the study that incorporated FDG-PET to help distinguish gross tumor; however, 

variability of this magnitude still constitutes a significant uncertainty in radiotherapy.[7] 

Discrepancies at this stage of planning represent systematic errors that are propagated throughout 

treatment and for some patients may be the dominant source of uncertainty.  Causes of variability 

may include lack of knowledge, inconsistencies in methodology, and lack of contrast between 

gross tumor and surrounding normal structures or pathology (e.g. atelectasis). [8]      

1.2.1.2 Extent of microscopic disease 

By definition, the gross tumor volume delineated by the physician includes macroscopic 

disease; however, surrounding tissue may harbor cancerous cells that are not clinically detectable.  

The extent of subclinical disease represents an additional uncertainty in the planning process that 

is managed by adding a margin around the grossly detectable tumor.  Margins are based on 

histological evaluations of excised tumors and depend on, among other things, the type and grade 

of cancer.  In a study conducted by Giraud et al., microscopic extension from the gross tumor 

border for lung cancer ranged from 0.0 to 12.0 mm.  For patients included in the study, 8 and 6 

mm accounted for 95% of the observed microscopic disease in adeno- and squamous-cell 

carcinomas respectively.[9] 

1.2.1.3 Setup 

After regions of interest have been delineated and a plan developed, the patient is 

positioned for daily treatments with focus on reproducing the planning geometry.  A reference 

point within the patient is designated when the planning CT is first acquired, and marks are made 

on the patient’s skin for positioning in the coordinate system of the LINAC using in-room lasers.  

Relative motion of the skin and internal anatomy, the precision with which skin marks are made, 
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and the care with which marks are aligned, all contribute to setup error which is composed of 

both systematic and random components.  Though errors vary depending on institution, and from 

patient to patient, an estimation of 2 – 4 mm has been reported for lung cancer.[10]  

1.2.1.4 Respiratory motion and management 

The effects of respiration on tumor motion are complex and vary widely from patient to 

patient in magnitude, period, and trajectory, thus patient-specific analysis and management are 

recommended.[11]  In a study conducted by Stevens et al., tumor motion due to respiration in the 

superior-inferior direction ranged from 0.0 – 2.2 cm,[12] thus respiratory motion represents a 

significant uncertainty in radiation therapy.  In the planning process, respiratory motion can 

introduce image artifact in the simulation CT leading to systematic errors in both delineation and 

dose calculation.  During treatment, inter- and intra-fraction motion may cause further deviations 

in dose from the planned distribution.  

Motion management may include: additional target margins to encompass the range of 

motion throughout treatment; gating using a surrogate for tumor location (e.g. abdominal 

surface) to restrict beam-on time to a particular phase of motion; breath-hold using a spirometer 

and other forms of bio-feedback to isolate the tumor in a given location; forced shallow 

breathing with abdominal compression to limit movement; or tumor-tracking in which the beam 

position is dynamically modified.  Each method warrants separate analysis and appropriate 

margins for residual errors.   

1.2.1.5 Tumor regression  

Regression of the gross tumor volume throughout the course of radiotherapy has been 

observed by various authors.  Kupelian was one of the first to quantify this change in non-small-

cell lung cancer (NSCLC) reporting an average volume decrease of 1.2% (0.6 – 2.3%) per day.[13]  
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Britton et al. acquired weekly 4DCT datasets for 8 NSCLC patients receiving definitive 

radiotherapy and found a median decrease of 41.7% (8.1 – 71.3%).[14]  Finally, van Zwienen et al. 

performed a more extensive study consisting of 114 lung cancer patients with weekly cone-beam 

CTs (CBCT), 46 (40%) demonstrated tumor regression with an average volume change of 37% 

over the course of treatment.[15] 

1.2.1.6 Patho-anatomical change 

The development or resolution of local pathology throughout treatment may dramatically 

affect the anatomy of a given region and significantly alter planned dose distributions.  In lung 

cancer, two types of patho-anatomical change are of interest.  1) Atelectasis is a collapse of lung 

parenchyma that may be due to obstruction of a main airway.  Affected regions often have 

similar CT appearance to gross tumor which may make it difficult to distinguish between the two.  

2) Pleural effusion is an accumulation of excess fluid in the space between the visceral and 

parietal pleura that surround the lungs, compressing and displacing adjacent regions.    

1.2.2 Target volumes and planning 

Various volumes are specified in the planning process to effectively target diseased 

regions.  International Commission on Radiation Units (ICRU) report 50[16] formalizes target 

volume definitions and recommends the following volumes be specified: the gross tumor volume 

(GTV), which consists of grossly detectable disease; the clinical target volume (CTV), which is 

an appropriate expansion of the GTV to incorporate potential subclinical disease; and the 

planning target volume (PTV), which is an expansion of the CTV to account for residual errors 

in setup and motion.  While GTV and CTV specify regions of anatomy that presumably harbor 

disease, the PTV is a region of space that exists in the coordinate system of the linear accelerator 



 

 7 

(LINAC) specified to ensure a high probability of coverage in the presence of geometric 

uncertainty. 

After delineation of target volumes and risk structures on the CT image, planning is 

carried out using treatment planning software to specify a number of beams and calculate the 

resulting dose distribution within the patient.  Appropriate beam angles help avoid excessive 

irradiation of risk structures along with collimation to limit the extents of the beam to PTV. 

1.2.3 Conformal radiation therapy  

Conformal therapy is a technique that further modifies the beam to conform to the shape 

of the PTV as opposed to a rectangular field that is limited to the extents of the target volume.  

Beam shaping is achieved by inserting a custom cutout in the path of the beam that conforms to 

the 2D projection of the target volume as observed through the beams-eye-view or by using a 

multi-leaf collimator (MLC) which is mounted in the gantry of the linear accelerator.  The MLC 

consists of multiple leaf pairs that are manufactured of a high-Z material and can be inserted into 

or retracted from the path of the beam automatically to create custom apertures.  

 

1.2.4 Intensity modulated radiation therapy and inverse planning 

While beam shaping increases dose conformality, certain distributions may remain 

unachievable (e.g. concave dose distributions).  In intensity modulated radiation therapy (IMRT), 

non-uniform fluence patterns for a given beam angle and aperture are delivered; practically this 

is achieved by delivering multiple smaller beam segments (beamlets) to build up a fluence 

profile.  The superposition of multiple non-uniform fluence profiles allows a greater degree of 

flexibility in achievable iso-dose shapes, and may increase dose gradients and conformality, but 
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also increases treatment complexity.  The number of plan-design parameters are significantly 

increased in IMRT making manual parameter selection and design impractical. 

Computer assisted optimization of plan parameters is an essential element of modern 

IMRT.  Treatment intent is translated into n  mathematical objectives  Fk ,k = 1…n , that make up 

a composite cost function F τ( ) , where τ  is a set of planning parameters to be optimized.  

 F τ( ) = Fk
k=1

n

∑
  

(1.1)
 

Objective functions may be based on physical expressions of dose or more complicated 

biological models of treatment effect.  Additionally, a set of constraints C τ( )  may also be 

specified and the optimization seeks the solution: 

 

 
(1.2)

 

In this work, IMRT optimizations utilize dose volume criteria, and objective functions are of the 

general form: 

 
Fk = wk

di − dk
dk

⎛
⎝⎜

⎞
⎠⎟

2

Δvi
i∈V
∑

  
(1.3)

 

Where wk  is an importance weighting factor, V  is the volume of interest, di  is the current dose 

for voxel i , dk  is the intended dose for voxel i , and Δvi  is the fraction of volume V  represented 

by voxel i .  Weighting factors are specified by the planner and significantly affect resulting 

plans.   

The optimizer begins with an initial estimate of the discrete intensity map of beamlets, or  

opening density matrix (ODM), and iteratively seeks a solution.  For multi-modal cost functions,  

minτ F τ( ),
C τ( ) ≤ 0



 

 9 

solutions may converge to sub-optimal local minima depending on initial approximations and the 

search algorithm employed.   

1.2.5 Image-guidance 

The use of onboard imaging devices is an important advancement in modern radiation 

therapy.  Images acquired on the day of treatment and in the treatment geometry provide up-to-

date positional information on target and normal tissue structures, allowing deviations from the 

planning geometry to be detected and corrected for.  Increases in positional accuracy justify 

commensurate reductions in safety margins, which decreases dose to surrounding tissue, and 

potentially increases the therapeutic ratio of treatment. 

The frequency with which image-guidance is utilized is important in determining safety 

margin reductions.  Image-guidance strategies that are implemented periodically throughout 

treatment must allow for residual interfraction errors; when daily-guidance is utilized, safety 

margins need not include such considerations.   

The effect of using daily image-guidance on safety margins has been reported in the 

literature by various authors.  Yeung et al. commented on the significance of cone-beam CT in 

fractionated radiotherapy for lung, reporting a reduction of approximately 1.5 cm in PTV margin 

when compared to alignment protocols that relied on surface marks alone.[17]  In another study, 

Bissonnette et al. calculated population based margins assuming daily CBCT and remote-

controlled couch adjustments to setup the patient; they concluded that post-correction setup 

margins should be on the order of 2 to 3 mm.[18] 

Safety margins utilized in this work were based on a protocol produced by the Radiation 

Therapy Oncology Group (RTOG) assuming daily image-guidance, and are consistent with those 

suggested by Bissonnette.   
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1.2.6 Fractionation  

    In addition to conforming dose to target structures, fractionation (i.e. administering 

multiple fractions of prescribed dose over a period of time) maximizes the therapeutic ratio of 

treatment by capitalizing on inherent differences in radiosensitivity of clonogenic and non-

clonogenic cellular populations.  Briefly, tissue specific dynamics related to repair of damage, 

repopulation of cells, oxygenation of tissues, and assortment into radiosensitive stages of the 

cellular cycle, dictate differences in irradiated tissue response.  Repair of sub-lethal damage in 

normal tissues exceed that in the tumor, thus fractionation spares normal tissues while still 

eradicating clonogenic populations.  In addition to repair, repopulation of normal-tissue cells in 

the time between treatments enhances the sparing effect of fractionation.  For the tumor, 

fractionation increases free-radical production as oxygen is restored, and allows redistribution of 

cells into radiosensitive stages of the cell cycle, both of which increase the effectiveness of the 

delivered dose.   

1.3 Adaptive radiation therapy 

Traditionally, a single arrangement of beams and apertures based on an initial planning 

image are delivered throughout the course of treatment.  Plans are created to be robust against 

variation and other uncertainty through the addition of safety margins to the primary target 

volumes.   

Adaptive radiation therapy (ART) was first introduced by Yan et al.[19] and was defined as 

a feedback loop that incorporates measurements of treatment variation in modifying and re-

optimizing the treatment plan, as opposed to a fixed plan approach.  The early work of Yan 

focused on mitigating geometrical uncertainty as a means to escalate dose.[20,21]  However, in its 

most general sense, ART may incorporate any additional measurement in improving the different 



 

 1 

1 Introduction 

1.1 Problem statement 

Cancer ranks second, behind heart disease, among the leading causes of death in the United 

States for both men and women by a margin of less than 2%.  In 2009, the most recent year for 

which data is available, 567,628 cancer deaths were reported, accounting for 23.3% of all 

mortalities.[1]  For 2013, The American Cancer Society estimated 580,350 cancer-related deaths 

and projected 228,190 of those to be associated with malignancies of the lung, making lung 

cancer the number one cause of cancer-related death in the United States.[2] 

Treatment depends on type, site, and stage of disease, and may be influenced by patient 

specific preferences or comorbidities, but generally includes surgical resection, chemotherapy, 

radiotherapy, or a combination of the three.  In the case of lung cancer, radiotherapy is indicated 

in early stage disease where comorbidities or patient refusal preclude a surgical approach, and in 

advanced cases where tumor is unresectable, making it the treatment of choice for approximately 

40% of newly diagnosed lung cancer patients.[3]  

 Prognosis for those diagnosed with lung cancer remain poor; in their most recent report, 

The National Cancer Institute reports a 5 year survival rate of 16.6% for those with cancers of 

the lung.[4]  Low survival rates for the large portion of patients diagnosed with lung cancer 

coupled with the fact that 40% receive radiation therapy as the primary treatment modality make 

improvements in radiation therapy for lung cancer an important topic of research.  

For patients receiving radiation therapy, local tumor control and survival have been shown 

to improve with increased doses;[5,6] however, for most patients deliverable dose is limited by 
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associated normal tissue toxicity.  Reducing normal tissue dose for a given treatment regimen is 

a common theme in radiotherapy research and allows tumor doses to be escalated until an 

isotoxic effect is reached for the limiting normal structure.   

Advancements in the field that have lead to increased sparing of normal tissues include: 

conformal radiotherapy, intensity modulated radiation therapy (IMRT), and tools that reduce 

uncertainties associated with treatment and setup (e.g. image guidance).  Adaptive radiation 

therapy (ART), which is the subject of this thesis, utilizes these techniques in a dynamic 

approach to accommodate interfraction variation and may be utilized to further reduce exposure 

of relevant risk structures.   

A basic introduction to traditional radiation therapy, ART, and relevant advancements in 

the field are presented in this section as context for the work presented in later chapters.     

1.2 Radiation therapy 

Radiation therapy seeks to eradicate diseased tissue through the targeted administration of 

ionizing radiation while minimizing effects on surrounding normal tissues.  Biological effects of 

ionizing radiation include disruption of cellular DNA, resulting in mutations that may 

compromise cellular function or ultimately prove fatal for the cell.  Damage may result from 

direct action on the DNA, or indirectly through the production of free-radicals – principally, 

highly reactive oxygen species – which may subsequently lyse base pair bonds.  Irreparable 

damage may signal programmed cell death (apoptosis) or may inhibit cellular division (mitotic 

death) and thereby end the life of the cell. 

The type of radiation utilized may be either gamma-rays or particulate radiation (e.g. 

electrons) of various energies and is administered via a beam that originates outside of the 

patient (external-beam radiotherapy) or by placing radioactive sources inside or next to the 
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treatment site (brachytherapy).  For lung cancer, treatment usually involves external-beam 

radiotherapy that delivers gamma-rays in the megavoltage range.  

Common to all modalities of radiation therapy is the specification of robust target volumes 

to ensure tumor coverage with a high degree of probability.  In order to specify robust target 

volumes, geometric uncertainties inherent in the planning process must be appreciated and 

accounted for.  A description of the uncertainties associated with radiotherapy for lung cancer 

are given below.   

1.2.1 Uncertainties in radiotherapy for lung cancer 

The various uncertainties associated with specifying and localizing radiotherapy targets 

have traditionally been managed through the addition of safety margins to account for intra- and 

inter-fraction variations.  Specifically, uncertainties are related to: identifying and delineating 

tumor volumes as seen on planning CTs, ascertaining the extent of microscopic invasion and 

nodal involvement, patient positioning, and motion of target and surrounding anatomy.  

Anatomical change throughout treatment presents another challenge to accurately localizing 

structures of interest and may include: tumor regression, patient weight variations, and the 

development or resolution of local pathology (e.g. atelectasis, pleural effusion, etc.).   

1.2.1.1 Identifying and delineating gross tumor  

After acquisition of a diagnostic CT scan obtained with the patient in the intended 

treatment position, organs at risk and gross tumor are outlined by a physician using treatment 

planning software.  While tools exist to aid in segmentation, ultimately contours are based on 

clinical judgment and have been shown to vary significantly for different observers.  In one study, 

inter-observer variability as defined by the standard deviation of observer contour distances from 

a common region of interest (voxels designated as gross tumor by at least 50% of observers) was 
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1.02 cm for lung lesions when based on diagnostic CT alone.  This improved to 0.42 cm in a 

second phase of the study that incorporated FDG-PET to help distinguish gross tumor; however, 

variability of this magnitude still constitutes a significant uncertainty in radiotherapy.[7] 

Discrepancies at this stage of planning represent systematic errors that are propagated throughout 

treatment and for some patients may be the dominant source of uncertainty.  Causes of variability 

may include lack of knowledge, inconsistencies in methodology, and lack of contrast between 

gross tumor and surrounding normal structures or pathology (e.g. atelectasis). [8]      

1.2.1.2 Extent of microscopic disease 

By definition, the gross tumor volume delineated by the physician includes macroscopic 

disease; however, surrounding tissue may harbor cancerous cells that are not clinically detectable.  

The extent of subclinical disease represents an additional uncertainty in the planning process that 

is managed by adding a margin around the grossly detectable tumor.  Margins are based on 

histological evaluations of excised tumors and depend on, among other things, the type and grade 

of cancer.  In a study conducted by Giraud et al., microscopic extension from the gross tumor 

border for lung cancer ranged from 0.0 to 12.0 mm.  For patients included in the study, 8 and 6 

mm accounted for 95% of the observed microscopic disease in adeno- and squamous-cell 

carcinomas respectively.[9] 

1.2.1.3 Setup 

After regions of interest have been delineated and a plan developed, the patient is 

positioned for daily treatments with focus on reproducing the planning geometry.  A reference 

point within the patient is designated when the planning CT is first acquired, and marks are made 

on the patient’s skin for positioning in the coordinate system of the LINAC using in-room lasers.  

Relative motion of the skin and internal anatomy, the precision with which skin marks are made, 
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and the care with which marks are aligned, all contribute to setup error which is composed of 

both systematic and random components.  Though errors vary depending on institution, and from 

patient to patient, an estimation of 2 – 4 mm has been reported for lung cancer.[10]  

1.2.1.4 Respiratory motion and management 

The effects of respiration on tumor motion are complex and vary widely from patient to 

patient in magnitude, period, and trajectory, thus patient-specific analysis and management are 

recommended.[11]  In a study conducted by Stevens et al., tumor motion due to respiration in the 

superior-inferior direction ranged from 0.0 – 2.2 cm,[12] thus respiratory motion represents a 

significant uncertainty in radiation therapy.  In the planning process, respiratory motion can 

introduce image artifact in the simulation CT leading to systematic errors in both delineation and 

dose calculation.  During treatment, inter- and intra-fraction motion may cause further deviations 

in dose from the planned distribution.  

Motion management may include: additional target margins to encompass the range of 

motion throughout treatment; gating using a surrogate for tumor location (e.g. abdominal 

surface) to restrict beam-on time to a particular phase of motion; breath-hold using a spirometer 

and other forms of bio-feedback to isolate the tumor in a given location; forced shallow 

breathing with abdominal compression to limit movement; or tumor-tracking in which the beam 

position is dynamically modified.  Each method warrants separate analysis and appropriate 

margins for residual errors.   

1.2.1.5 Tumor regression  

Regression of the gross tumor volume throughout the course of radiotherapy has been 

observed by various authors.  Kupelian was one of the first to quantify this change in non-small-

cell lung cancer (NSCLC) reporting an average volume decrease of 1.2% (0.6 – 2.3%) per day.[13]  
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Britton et al. acquired weekly 4DCT datasets for 8 NSCLC patients receiving definitive 

radiotherapy and found a median decrease of 41.7% (8.1 – 71.3%).[14]  Finally, van Zwienen et al. 

performed a more extensive study consisting of 114 lung cancer patients with weekly cone-beam 

CTs (CBCT), 46 (40%) demonstrated tumor regression with an average volume change of 37% 

over the course of treatment.[15] 

1.2.1.6 Patho-anatomical change 

The development or resolution of local pathology throughout treatment may dramatically 

affect the anatomy of a given region and significantly alter planned dose distributions.  In lung 

cancer, two types of patho-anatomical change are of interest.  1) Atelectasis is a collapse of lung 

parenchyma that may be due to obstruction of a main airway.  Affected regions often have 

similar CT appearance to gross tumor which may make it difficult to distinguish between the two.  

2) Pleural effusion is an accumulation of excess fluid in the space between the visceral and 

parietal pleura that surround the lungs, compressing and displacing adjacent regions.    

1.2.2 Target volumes and planning 

Various volumes are specified in the planning process to effectively target diseased 

regions.  International Commission on Radiation Units (ICRU) report 50[16] formalizes target 

volume definitions and recommends the following volumes be specified: the gross tumor volume 

(GTV), which consists of grossly detectable disease; the clinical target volume (CTV), which is 

an appropriate expansion of the GTV to incorporate potential subclinical disease; and the 

planning target volume (PTV), which is an expansion of the CTV to account for residual errors 

in setup and motion.  While GTV and CTV specify regions of anatomy that presumably harbor 

disease, the PTV is a region of space that exists in the coordinate system of the linear accelerator 
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(LINAC) specified to ensure a high probability of coverage in the presence of geometric 

uncertainty. 

After delineation of target volumes and risk structures on the CT image, planning is 

carried out using treatment planning software to specify a number of beams and calculate the 

resulting dose distribution within the patient.  Appropriate beam angles help avoid excessive 

irradiation of risk structures along with collimation to limit the extents of the beam to PTV. 

1.2.3 Conformal radiation therapy  

Conformal therapy is a technique that further modifies the beam to conform to the shape 

of the PTV as opposed to a rectangular field that is limited to the extents of the target volume.  

Beam shaping is achieved by inserting a custom cutout in the path of the beam that conforms to 

the 2D projection of the target volume as observed through the beams-eye-view or by using a 

multi-leaf collimator (MLC) which is mounted in the gantry of the linear accelerator.  The MLC 

consists of multiple leaf pairs that are manufactured of a high-Z material and can be inserted into 

or retracted from the path of the beam automatically to create custom apertures.  

 

1.2.4 Intensity modulated radiation therapy and inverse planning 

While beam shaping increases dose conformality, certain distributions may remain 

unachievable (e.g. concave dose distributions).  In intensity modulated radiation therapy (IMRT), 

non-uniform fluence patterns for a given beam angle and aperture are delivered; practically this 

is achieved by delivering multiple smaller beam segments (beamlets) to build up a fluence 

profile.  The superposition of multiple non-uniform fluence profiles allows a greater degree of 

flexibility in achievable iso-dose shapes, and may increase dose gradients and conformality, but 
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also increases treatment complexity.  The number of plan-design parameters are significantly 

increased in IMRT making manual parameter selection and design impractical. 

Computer assisted optimization of plan parameters is an essential element of modern 

IMRT.  Treatment intent is translated into n  mathematical objectives  Fk ,k = 1…n , that make up 

a composite cost function F τ( ) , where τ  is a set of planning parameters to be optimized.  

 F τ( ) = Fk
k=1

n

∑
  

(1.1)
 

Objective functions may be based on physical expressions of dose or more complicated 

biological models of treatment effect.  Additionally, a set of constraints C τ( )  may also be 

specified and the optimization seeks the solution: 

 

 
(1.2)

 

In this work, IMRT optimizations utilize dose volume criteria, and objective functions are of the 

general form: 

 
Fk = wk

di − dk
dk

⎛
⎝⎜

⎞
⎠⎟

2

Δvi
i∈V
∑

  
(1.3)

 

Where wk  is an importance weighting factor, V  is the volume of interest, di  is the current dose 

for voxel i , dk  is the intended dose for voxel i , and Δvi  is the fraction of volume V  represented 

by voxel i .  Weighting factors are specified by the planner and significantly affect resulting 

plans.   

The optimizer begins with an initial estimate of the discrete intensity map of beamlets, or  

opening density matrix (ODM), and iteratively seeks a solution.  For multi-modal cost functions,  

minτ F τ( ),
C τ( ) ≤ 0
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solutions may converge to sub-optimal local minima depending on initial approximations and the 

search algorithm employed.   

1.2.5 Image-guidance 

The use of onboard imaging devices is an important advancement in modern radiation 

therapy.  Images acquired on the day of treatment and in the treatment geometry provide up-to-

date positional information on target and normal tissue structures, allowing deviations from the 

planning geometry to be detected and corrected for.  Increases in positional accuracy justify 

commensurate reductions in safety margins, which decreases dose to surrounding tissue, and 

potentially increases the therapeutic ratio of treatment. 

The frequency with which image-guidance is utilized is important in determining safety 

margin reductions.  Image-guidance strategies that are implemented periodically throughout 

treatment must allow for residual interfraction errors; when daily-guidance is utilized, safety 

margins need not include such considerations.   

The effect of using daily image-guidance on safety margins has been reported in the 

literature by various authors.  Yeung et al. commented on the significance of cone-beam CT in 

fractionated radiotherapy for lung, reporting a reduction of approximately 1.5 cm in PTV margin 

when compared to alignment protocols that relied on surface marks alone.[17]  In another study, 

Bissonnette et al. calculated population based margins assuming daily CBCT and remote-

controlled couch adjustments to setup the patient; they concluded that post-correction setup 

margins should be on the order of 2 to 3 mm.[18] 

Safety margins utilized in this work were based on a protocol produced by the Radiation 

Therapy Oncology Group (RTOG) assuming daily image-guidance, and are consistent with those 

suggested by Bissonnette.   
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1.2.6 Fractionation  

    In addition to conforming dose to target structures, fractionation (i.e. administering 

multiple fractions of prescribed dose over a period of time) maximizes the therapeutic ratio of 

treatment by capitalizing on inherent differences in radiosensitivity of clonogenic and non-

clonogenic cellular populations.  Briefly, tissue specific dynamics related to repair of damage, 

repopulation of cells, oxygenation of tissues, and assortment into radiosensitive stages of the 

cellular cycle, dictate differences in irradiated tissue response.  Repair of sub-lethal damage in 

normal tissues exceed that in the tumor, thus fractionation spares normal tissues while still 

eradicating clonogenic populations.  In addition to repair, repopulation of normal-tissue cells in 

the time between treatments enhances the sparing effect of fractionation.  For the tumor, 

fractionation increases free-radical production as oxygen is restored, and allows redistribution of 

cells into radiosensitive stages of the cell cycle, both of which increase the effectiveness of the 

delivered dose.   

1.3 Adaptive radiation therapy 

Traditionally, a single arrangement of beams and apertures based on an initial planning 

image are delivered throughout the course of treatment.  Plans are created to be robust against 

variation and other uncertainty through the addition of safety margins to the primary target 

volumes.   

Adaptive radiation therapy (ART) was first introduced by Yan et al.[19] and was defined as 

a feedback loop that incorporates measurements of treatment variation in modifying and re-

optimizing the treatment plan, as opposed to a fixed plan approach.  The early work of Yan 

focused on mitigating geometrical uncertainty as a means to escalate dose.[20,21]  However, in its 

most general sense, ART may incorporate any additional measurement in improving the different 
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Prognosis for lung cancer patients remains poor.  For those receiving radiation therapy, 

local control and survival have been shown to improve with increased doses; however, 

deliverable dose is often limited by associated toxicity.  Therefore, methods that reduce dose to 

normal tissues and allow isotoxic escalation are desirable.  Adaptive radiation therapy seeks to 



 

 

improve treatment by modifying the initial plan throughout delivery, and has been shown to 

decrease normal tissue dose.  Studies to date suggest a trend of increasing benefit with increases 

in replanning frequency; however, replanning is costly in terms of workload and past studies 

implement at most weekly adaptation.  The purpose of this thesis is to quantify the benefit 

associated with daily replanning and characterize the tradeoff between replanning frequency and 

adaptive benefit.  A software tool is developed to facilitate planning studies and to introduce 

complimentary methods for evaluating adaptive treatments.  Synthetic images and contours are 

generated for each fraction of a typical fractionation schedule using principal component analysis 

and a novel method of sampling coefficients that preserves temporal trends in the data (e.g. 

tumor regression).  Using the synthetic datasets, a series of adaptive schedules ranging from no 

adaption to daily replanning are simulated and compared to quantify adaptive benefits and 

characterize tradeoffs with frequency.  Daily replanning resulted in significant reductions in all 

normal tissue planning metrics when compared to no adaptation, and incremental reductions 

were observed with each increase in replanning frequency while the magnitude of average 

reductions decreased with each step.  Modest correlation between absolute change in planning 

target volume over the course of treatment and reductions in both mean lung dose and mean 

esophageal dose were observed. 
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1 Introduction 

1.1 Problem statement 

Cancer ranks second, behind heart disease, among the leading causes of death in the United 

States for both men and women by a margin of less than 2%.  In 2009, the most recent year for 

which data is available, 567,628 cancer deaths were reported, accounting for 23.3% of all 

mortalities.[1]  For 2013, The American Cancer Society estimated 580,350 cancer-related deaths 

and projected 228,190 of those to be associated with malignancies of the lung, making lung 

cancer the number one cause of cancer-related death in the United States.[2] 

Treatment depends on type, site, and stage of disease, and may be influenced by patient 

specific preferences or comorbidities, but generally includes surgical resection, chemotherapy, 

radiotherapy, or a combination of the three.  In the case of lung cancer, radiotherapy is indicated 

in early stage disease where comorbidities or patient refusal preclude a surgical approach, and in 

advanced cases where tumor is unresectable, making it the treatment of choice for approximately 

40% of newly diagnosed lung cancer patients.[3]  

 Prognosis for those diagnosed with lung cancer remain poor; in their most recent report, 

The National Cancer Institute reports a 5 year survival rate of 16.6% for those with cancers of 

the lung.[4]  Low survival rates for the large portion of patients diagnosed with lung cancer 

coupled with the fact that 40% receive radiation therapy as the primary treatment modality make 

improvements in radiation therapy for lung cancer an important topic of research.  

For patients receiving radiation therapy, local tumor control and survival have been shown 

to improve with increased doses;[5,6] however, for most patients deliverable dose is limited by 
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associated normal tissue toxicity.  Reducing normal tissue dose for a given treatment regimen is 

a common theme in radiotherapy research and allows tumor doses to be escalated until an 

isotoxic effect is reached for the limiting normal structure.   

Advancements in the field that have lead to increased sparing of normal tissues include: 

conformal radiotherapy, intensity modulated radiation therapy (IMRT), and tools that reduce 

uncertainties associated with treatment and setup (e.g. image guidance).  Adaptive radiation 

therapy (ART), which is the subject of this thesis, utilizes these techniques in a dynamic 

approach to accommodate interfraction variation and may be utilized to further reduce exposure 

of relevant risk structures.   

A basic introduction to traditional radiation therapy, ART, and relevant advancements in 

the field are presented in this section as context for the work presented in later chapters.     

1.2 Radiation therapy 

Radiation therapy seeks to eradicate diseased tissue through the targeted administration of 

ionizing radiation while minimizing effects on surrounding normal tissues.  Biological effects of 

ionizing radiation include disruption of cellular DNA, resulting in mutations that may 

compromise cellular function or ultimately prove fatal for the cell.  Damage may result from 

direct action on the DNA, or indirectly through the production of free-radicals – principally, 

highly reactive oxygen species – which may subsequently lyse base pair bonds.  Irreparable 

damage may signal programmed cell death (apoptosis) or may inhibit cellular division (mitotic 

death) and thereby end the life of the cell. 

The type of radiation utilized may be either gamma-rays or particulate radiation (e.g. 

electrons) of various energies and is administered via a beam that originates outside of the 

patient (external-beam radiotherapy) or by placing radioactive sources inside or next to the 
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treatment site (brachytherapy).  For lung cancer, treatment usually involves external-beam 

radiotherapy that delivers gamma-rays in the megavoltage range.  

Common to all modalities of radiation therapy is the specification of robust target volumes 

to ensure tumor coverage with a high degree of probability.  In order to specify robust target 

volumes, geometric uncertainties inherent in the planning process must be appreciated and 

accounted for.  A description of the uncertainties associated with radiotherapy for lung cancer 

are given below.   

1.2.1 Uncertainties in radiotherapy for lung cancer 

The various uncertainties associated with specifying and localizing radiotherapy targets 

have traditionally been managed through the addition of safety margins to account for intra- and 

inter-fraction variations.  Specifically, uncertainties are related to: identifying and delineating 

tumor volumes as seen on planning CTs, ascertaining the extent of microscopic invasion and 

nodal involvement, patient positioning, and motion of target and surrounding anatomy.  

Anatomical change throughout treatment presents another challenge to accurately localizing 

structures of interest and may include: tumor regression, patient weight variations, and the 

development or resolution of local pathology (e.g. atelectasis, pleural effusion, etc.).   

1.2.1.1 Identifying and delineating gross tumor  

After acquisition of a diagnostic CT scan obtained with the patient in the intended 

treatment position, organs at risk and gross tumor are outlined by a physician using treatment 

planning software.  While tools exist to aid in segmentation, ultimately contours are based on 

clinical judgment and have been shown to vary significantly for different observers.  In one study, 

inter-observer variability as defined by the standard deviation of observer contour distances from 

a common region of interest (voxels designated as gross tumor by at least 50% of observers) was 
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1.02 cm for lung lesions when based on diagnostic CT alone.  This improved to 0.42 cm in a 

second phase of the study that incorporated FDG-PET to help distinguish gross tumor; however, 

variability of this magnitude still constitutes a significant uncertainty in radiotherapy.[7] 

Discrepancies at this stage of planning represent systematic errors that are propagated throughout 

treatment and for some patients may be the dominant source of uncertainty.  Causes of variability 

may include lack of knowledge, inconsistencies in methodology, and lack of contrast between 

gross tumor and surrounding normal structures or pathology (e.g. atelectasis). [8]      

1.2.1.2 Extent of microscopic disease 

By definition, the gross tumor volume delineated by the physician includes macroscopic 

disease; however, surrounding tissue may harbor cancerous cells that are not clinically detectable.  

The extent of subclinical disease represents an additional uncertainty in the planning process that 

is managed by adding a margin around the grossly detectable tumor.  Margins are based on 

histological evaluations of excised tumors and depend on, among other things, the type and grade 

of cancer.  In a study conducted by Giraud et al., microscopic extension from the gross tumor 

border for lung cancer ranged from 0.0 to 12.0 mm.  For patients included in the study, 8 and 6 

mm accounted for 95% of the observed microscopic disease in adeno- and squamous-cell 

carcinomas respectively.[9] 

1.2.1.3 Setup 

After regions of interest have been delineated and a plan developed, the patient is 

positioned for daily treatments with focus on reproducing the planning geometry.  A reference 

point within the patient is designated when the planning CT is first acquired, and marks are made 

on the patient’s skin for positioning in the coordinate system of the LINAC using in-room lasers.  

Relative motion of the skin and internal anatomy, the precision with which skin marks are made, 
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and the care with which marks are aligned, all contribute to setup error which is composed of 

both systematic and random components.  Though errors vary depending on institution, and from 

patient to patient, an estimation of 2 – 4 mm has been reported for lung cancer.[10]  

1.2.1.4 Respiratory motion and management 

The effects of respiration on tumor motion are complex and vary widely from patient to 

patient in magnitude, period, and trajectory, thus patient-specific analysis and management are 

recommended.[11]  In a study conducted by Stevens et al., tumor motion due to respiration in the 

superior-inferior direction ranged from 0.0 – 2.2 cm,[12] thus respiratory motion represents a 

significant uncertainty in radiation therapy.  In the planning process, respiratory motion can 

introduce image artifact in the simulation CT leading to systematic errors in both delineation and 

dose calculation.  During treatment, inter- and intra-fraction motion may cause further deviations 

in dose from the planned distribution.  

Motion management may include: additional target margins to encompass the range of 

motion throughout treatment; gating using a surrogate for tumor location (e.g. abdominal 

surface) to restrict beam-on time to a particular phase of motion; breath-hold using a spirometer 

and other forms of bio-feedback to isolate the tumor in a given location; forced shallow 

breathing with abdominal compression to limit movement; or tumor-tracking in which the beam 

position is dynamically modified.  Each method warrants separate analysis and appropriate 

margins for residual errors.   

1.2.1.5 Tumor regression  

Regression of the gross tumor volume throughout the course of radiotherapy has been 

observed by various authors.  Kupelian was one of the first to quantify this change in non-small-

cell lung cancer (NSCLC) reporting an average volume decrease of 1.2% (0.6 – 2.3%) per day.[13]  
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Britton et al. acquired weekly 4DCT datasets for 8 NSCLC patients receiving definitive 

radiotherapy and found a median decrease of 41.7% (8.1 – 71.3%).[14]  Finally, van Zwienen et al. 

performed a more extensive study consisting of 114 lung cancer patients with weekly cone-beam 

CTs (CBCT), 46 (40%) demonstrated tumor regression with an average volume change of 37% 

over the course of treatment.[15] 

1.2.1.6 Patho-anatomical change 

The development or resolution of local pathology throughout treatment may dramatically 

affect the anatomy of a given region and significantly alter planned dose distributions.  In lung 

cancer, two types of patho-anatomical change are of interest.  1) Atelectasis is a collapse of lung 

parenchyma that may be due to obstruction of a main airway.  Affected regions often have 

similar CT appearance to gross tumor which may make it difficult to distinguish between the two.  

2) Pleural effusion is an accumulation of excess fluid in the space between the visceral and 

parietal pleura that surround the lungs, compressing and displacing adjacent regions.    

1.2.2 Target volumes and planning 

Various volumes are specified in the planning process to effectively target diseased 

regions.  International Commission on Radiation Units (ICRU) report 50[16] formalizes target 

volume definitions and recommends the following volumes be specified: the gross tumor volume 

(GTV), which consists of grossly detectable disease; the clinical target volume (CTV), which is 

an appropriate expansion of the GTV to incorporate potential subclinical disease; and the 

planning target volume (PTV), which is an expansion of the CTV to account for residual errors 

in setup and motion.  While GTV and CTV specify regions of anatomy that presumably harbor 

disease, the PTV is a region of space that exists in the coordinate system of the linear accelerator 
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(LINAC) specified to ensure a high probability of coverage in the presence of geometric 

uncertainty. 

After delineation of target volumes and risk structures on the CT image, planning is 

carried out using treatment planning software to specify a number of beams and calculate the 

resulting dose distribution within the patient.  Appropriate beam angles help avoid excessive 

irradiation of risk structures along with collimation to limit the extents of the beam to PTV. 

1.2.3 Conformal radiation therapy  

Conformal therapy is a technique that further modifies the beam to conform to the shape 

of the PTV as opposed to a rectangular field that is limited to the extents of the target volume.  

Beam shaping is achieved by inserting a custom cutout in the path of the beam that conforms to 

the 2D projection of the target volume as observed through the beams-eye-view or by using a 

multi-leaf collimator (MLC) which is mounted in the gantry of the linear accelerator.  The MLC 

consists of multiple leaf pairs that are manufactured of a high-Z material and can be inserted into 

or retracted from the path of the beam automatically to create custom apertures.  

 

1.2.4 Intensity modulated radiation therapy and inverse planning 

While beam shaping increases dose conformality, certain distributions may remain 

unachievable (e.g. concave dose distributions).  In intensity modulated radiation therapy (IMRT), 

non-uniform fluence patterns for a given beam angle and aperture are delivered; practically this 

is achieved by delivering multiple smaller beam segments (beamlets) to build up a fluence 

profile.  The superposition of multiple non-uniform fluence profiles allows a greater degree of 

flexibility in achievable iso-dose shapes, and may increase dose gradients and conformality, but 
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also increases treatment complexity.  The number of plan-design parameters are significantly 

increased in IMRT making manual parameter selection and design impractical. 

Computer assisted optimization of plan parameters is an essential element of modern 

IMRT.  Treatment intent is translated into n  mathematical objectives  Fk ,k = 1…n , that make up 

a composite cost function F τ( ) , where τ  is a set of planning parameters to be optimized.  

 F τ( ) = Fk
k=1

n

∑
  

(1.1)
 

Objective functions may be based on physical expressions of dose or more complicated 

biological models of treatment effect.  Additionally, a set of constraints C τ( )  may also be 

specified and the optimization seeks the solution: 
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In this work, IMRT optimizations utilize dose volume criteria, and objective functions are of the 

general form: 

 
Fk = wk

di − dk
dk

⎛
⎝⎜

⎞
⎠⎟

2

Δvi
i∈V
∑

  
(1.3)

 

Where wk  is an importance weighting factor, V  is the volume of interest, di  is the current dose 

for voxel i , dk  is the intended dose for voxel i , and Δvi  is the fraction of volume V  represented 

by voxel i .  Weighting factors are specified by the planner and significantly affect resulting 

plans.   

The optimizer begins with an initial estimate of the discrete intensity map of beamlets, or  

opening density matrix (ODM), and iteratively seeks a solution.  For multi-modal cost functions,  

minτ F τ( ),
C τ( ) ≤ 0
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solutions may converge to sub-optimal local minima depending on initial approximations and the 

search algorithm employed.   

1.2.5 Image-guidance 

The use of onboard imaging devices is an important advancement in modern radiation 

therapy.  Images acquired on the day of treatment and in the treatment geometry provide up-to-

date positional information on target and normal tissue structures, allowing deviations from the 

planning geometry to be detected and corrected for.  Increases in positional accuracy justify 

commensurate reductions in safety margins, which decreases dose to surrounding tissue, and 

potentially increases the therapeutic ratio of treatment. 

The frequency with which image-guidance is utilized is important in determining safety 

margin reductions.  Image-guidance strategies that are implemented periodically throughout 

treatment must allow for residual interfraction errors; when daily-guidance is utilized, safety 

margins need not include such considerations.   

The effect of using daily image-guidance on safety margins has been reported in the 

literature by various authors.  Yeung et al. commented on the significance of cone-beam CT in 

fractionated radiotherapy for lung, reporting a reduction of approximately 1.5 cm in PTV margin 

when compared to alignment protocols that relied on surface marks alone.[17]  In another study, 

Bissonnette et al. calculated population based margins assuming daily CBCT and remote-

controlled couch adjustments to setup the patient; they concluded that post-correction setup 

margins should be on the order of 2 to 3 mm.[18] 

Safety margins utilized in this work were based on a protocol produced by the Radiation 

Therapy Oncology Group (RTOG) assuming daily image-guidance, and are consistent with those 

suggested by Bissonnette.   
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1.2.6 Fractionation  

    In addition to conforming dose to target structures, fractionation (i.e. administering 

multiple fractions of prescribed dose over a period of time) maximizes the therapeutic ratio of 

treatment by capitalizing on inherent differences in radiosensitivity of clonogenic and non-

clonogenic cellular populations.  Briefly, tissue specific dynamics related to repair of damage, 

repopulation of cells, oxygenation of tissues, and assortment into radiosensitive stages of the 

cellular cycle, dictate differences in irradiated tissue response.  Repair of sub-lethal damage in 

normal tissues exceed that in the tumor, thus fractionation spares normal tissues while still 

eradicating clonogenic populations.  In addition to repair, repopulation of normal-tissue cells in 

the time between treatments enhances the sparing effect of fractionation.  For the tumor, 

fractionation increases free-radical production as oxygen is restored, and allows redistribution of 

cells into radiosensitive stages of the cell cycle, both of which increase the effectiveness of the 

delivered dose.   

1.3 Adaptive radiation therapy 

Traditionally, a single arrangement of beams and apertures based on an initial planning 

image are delivered throughout the course of treatment.  Plans are created to be robust against 

variation and other uncertainty through the addition of safety margins to the primary target 

volumes.   

Adaptive radiation therapy (ART) was first introduced by Yan et al.[19] and was defined as 

a feedback loop that incorporates measurements of treatment variation in modifying and re-

optimizing the treatment plan, as opposed to a fixed plan approach.  The early work of Yan 

focused on mitigating geometrical uncertainty as a means to escalate dose.[20,21]  However, in its 

most general sense, ART may incorporate any additional measurement in improving the different 
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aspects of treatment and delivery with the objective of improving patient outcome and care.  Lof 

et al. proposed an adaptive control algorithm incorporating characterizations of geometry, 

fluence, and biology obtained throughout treatment into a dynamic optimization of dose.[22]  As 

alluded to by Lof, de la Zerda later suggested that ART fits naturally into a control theory 

framework where closed-loop control produces actions based on measurements of a given 

system in order to drive the system to some desired state;[23] this is illustrated in Fig. 1.1.  

 

Fig. 1.1 Closed loop control as presented by de la Zerda. 

In the context of radiation therapy, additional measurement is facilitated by onboard imaging 

which allows routine monitoring of patient-specific setup error, motion, treatment response, and 

provides a means of calculating dose on daily anatomy.  

1.3.1 Margin reduction  

As mentioned, Yan et al. was the first to suggest ART as a method to decrease margins 

and escalate dose.  Specifically, they proposed replacing the standard population margin early on 

in treatment with a patient-specific model of random and systematic setup error based on an 

initial set of portal images.  They found that an adequate error estimate could be obtained after 

relatively few measurements, resulting in smaller margins and allowing additional dose for 64% 

of patients in their study.[21]  Later work by Martinez et al.[24] considered 150 prostate patients 

revealing an escalative benefit of 5% (2.5 - 10%) and 7.5% ( 2.5 - 15%) for 3D conformal and 
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intensity-modulated ART strategies respectively, ultimately concluding that achievable dose 

escalation is patient dependent.   

In 2007 Hugo et al.[25] extended the approach Yan used in prostate and evaluated various 

strategies that incorporated patient-specific margins for lung.  In total, the study compared 5 

different approaches including: a population based margin; a hybrid margin that incorporated 

patient-specific measurement of respiratory motion based on initial fluoroscopy, and population 

estimates of all other error; an offline adaptive strategy that used an initial set of images to 

estimate patient-specific inter- and intra-fraction variation; an online margin that performed a 

daily online correction for mean target position and incorporated a patient-specific measurement 

of respiratory motion based on initial fluoroscopy; and finally, an online adaptive margin which 

also performed a daily online correction of the mean target position but utilized an initial set of 

images to determine patient-specific variation.  The study reported a population margin of 

9.7mm and a reduction to 4.5 mm, 2.9 mm, and 2.8 mm for the offline adaptive, online, and 

online adaptive strategies respectively.  The authors conclude that the online strategies would be 

useful for patients exhibiting large variability while the offline strategy would be more 

appropriate for patients with less variability in the daily mean tumor position.  

Using four-dimensional cone beam computed tomography, Harsolia et al.[26] performed a 

similar study comparing 3D-conformal, 4D-union internal target volume (ITV), 4D-offline, and 

4D-online adaptive strategies, to account for setup error.  Compared with the 3D-conformal plan 

they reported reductions of 15%, 39% and 44% in PTV volumes for the above strategies 

respectively.  
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1.3.2 Re-planning  

In addition to estimations of patient specific setup error, frequent imaging allows 

monitoring of target volume dynamics (e.g. changes in size and shape) and other anatomical 

change (e.g. atelectatic resolution).  In cases of large anatomical deviations from the planning 

geometry, re-planning may be necessary to maintain proper coverage and acceptable levels of 

toxicity.  In cases where coverage and toxicity are acceptable, re-planning may have the potential 

to improve these endpoints.   

1.3.2.1 Adapting to tumor regression  

Treating regressing volumes with a static margin may result in unnecessary irradiation of 

normal tissue; a fact that may be exploited by ART.  Ramsey et al.[27] suggested a weekly 

adaptation to accommodate tumor regression and evaluated whether a dosimetric advantage 

existed for such a strategy.  The advantage of weekly ART over a non-adaptive plan was 

quantified by the reduction in the volume of ipsilateral lung receiving at least 20 Gy (V20) for 

both a geometric test case and a retrospective simulation carried out in 7 patients.  For the 

geometric test case, various spherical targets with initial volumes ranging from 25 – 1000 cc 

were utilized, and simulated ART yielded a mean reduction in V20 of 21.2% (17 – 24%).   For 

the patient simulations, adaptive plans and dose calculations were performed on the planning 

kilo-voltage CT (kVCT) in conjunction with adaptive PTVs derived from weekly mega-voltage 

CT (MVCT) scans.  Using this approach, a mean reduction in V20 of 17% (5 – 20%) was 

reported.  

Woodford et al.[28] examined the effect of various adaptive strategies on mean lung dose 

(MLD) and V20 for a subset of 3 patients in a study primarily concerned with quantifying tumor 

regression.  Adaptive plans were based on reduced-field-of-view MVCTs merged with an initial 



 

 14 

kVCT and used rigid registration for image alignment.  For a single patient exhibiting a pattern 

of early regression and a total decrease in tumor volume of 87%, adaptive plans corresponding to 

fractions 5, 15, and 22 were produced.  Adapting at these three time points for this patient 

reduced MLD and V20 by 15 and 13% respectively.  A single adaptation corresponding to 

fraction 16 was simulated for another patient, decreasing V20 by 7.4% and MLD by 4.1%.  For 

the remaining patient, re-planning was associated with fraction 21, reducing V20 and MLD by 

3.2% and 2.4% respectively.  While the population and analysis was limited, a trend of reduced 

lung-dose with increased adaptive-frequency is evident; furthermore, the pattern of regression 

and timing of adaptation are stated as important in determining derived benefits.  The authors 

recommend a threshold of 30% observed-regression occurring within the first 22 fractions as a 

“useful criterion” for determining which patients might benefit from ART.  However, patient 

selection using the criterion could only be applied after the 22nd fraction.  

The most recent study investigating tumor regression and ART was carried out by 

Guckenberger et al.[29] and included 13 patients with NSCLC receiving conventionally 

fractionated 3D conformal radiation therapy.  Weekly helical CTs were used for re-planning 

which was performed during the third and fifth weeks of treatment.  Dose accumulation was 

carried out using a surface-based deformable image registration (DIR) algorithm and was 

projected onto the planning dataset.  Average MLD for all patients was reduced from 17.7 ± 3.9 

Gy to 17.0 ± 3.9 Gy, 16.9 ± 3.9 Gy, and 16.5 ± 3.8 Gy using a single adaptation in week 3, a 

single adaptation in week 5, and an adaptation in both weeks 3 and 5 respectively.  The twice 

adaptive strategy allowed dose escalation from 66.8 ± 0.8 Gy to 73.6 ± 3.8 Gy using an isotoxic 

MLD criteria.        
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While gross tumor is readily distinguished by volumetric imaging, uncertainty remains 

regarding the presence and location of microscopic extension.  Hugo et al.[30] used deformable 

image registration to propagate planning contours to weekly helical CT image-sets for examining 

the effect of online GTV-based alignment on CTV coverage.  The study concluded that large 

errors in CTV localization may result in the context of significant or anisotropic tumor regression.  

In a follow up study, Guckenberger et al.[31] examined the effect of ART on CTV dosing 

for two extremes of CTV dynamics i.e. stationary microscopic disease (MD) and MD that 

shrinks commensurate with gross tumor regression.  For coverage at 50 Gy they found that their 

adaptive strategy achieved adequate dosing of the CTV for both simulated scenarios.  Coverage 

at 60 Gy was reduced from 92% ± 10% to 73% ± 19% for the stationary case, but was restored 

when applying an isotoxic boost.  Thus the authors conclude that ART as implemented in this 

study does not under-dose the microscopic extension.  

The studies mentioned here demonstrate an advantage for an adaptive strategy that 

accommodates tumor regression, and a general trend of increased benefit with additional 

adaptations can be observed.  

1.3.2.2 Online and offline strategies 

Re-planning consists of the same steps involved in the initial planning process including: 

image acquisition, segmentation, optimization of beams and apertures, dose calculation, quality 

assurance, and plan approval.  To date, only offline approaches, in which re-planning is carried 

out in the time between treatment fractions, have been implemented clinically.  Online strategies, 

in which image acquisition, planning, and treatment all occur while the patient is on the couch, 

have been suggested but are currently limited by various practical and technological 
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considerations.  Such an approach will presumably improve treatment by reducing setup error 

and improving consistency between planning and treatment geometries.  

1.3.2.3 Workload considerations 

Presumably adaptive benefit will increase with increasing frequencies of adaptation; 

however, frequent adaptation is currently costly requiring the same steps involved in the initial 

plan listed above.  Implementing daily replanning represents a large increase in associated 

workload.  It is important, therefore to characterize the tradeoff between adaptive frequency and 

resulting benefit to inform decisions regarding allocation of resources.  Methods to predict which 

patients may benefit from adaptive therapy are likewise desirable.  

1.4 Purpose and thesis overview 

The purpose of this dissertation is to assess the potential benefit of ART for lung cancer 

and to present tools to accommodate its implementation and evaluation.  While various studies 

have examined the benefits associated with a limited number of re-plans, this work examines the 

potential of ART in the limit of daily re-planning and analyzes the tradeoff between re-planning 

frequency and dosimetric advantage.  Furthermore, ART represents a shift in treatment and 

planning paradigms, thus evaluation tools that reflect this change are warranted. 

1.4.1 Overview of specific aims 

At the onset of this work the following specific aims were proposed in conjunction with 

the purpose stated above: 1) construct a software tool to facilitate implementation of adaptive 

radiation therapy in an existing treatment planning system; 2) generate a set of synthetic images 

and contours corresponding to each fraction of treatment for a cohort of lung cancer patients 

using principal component analysis (PCA); 3) quantify the benefit associate with daily adaption 
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for lung cancer and characterize the tradeoff between replanning frequency and adaptive benefit; 

and 4) investigate methods for identifying patients that may benefit from an adaptive therapy 

approach.  An overview of these aims is given below.  

1.4.1.1 Aim 1: Adaptive therapy software tool 

Develop a software tool as a plugin to an existing treatment planning system to facilitate 

implementation of adaptive radiation therapy and serve as a platform for conducting simulations 

of adaptive therapy treatments.  The tool will extend existing functionality in the temporal 

domain providing methods for organizing and managing large sets of planning objects inherent 

in adaptive treatments that incorporate multiple images and plans.  Methods for displaying and 

navigating temporal sequences of relevant planning metrics will also be included.   

1.4.1.2 Aim 2: Synthetic patient datasets 

Generate a set of synthetic images, contours, and mappings corresponding to each 

fraction of a 35 fraction treatment schedule for a cohort of lung cancer patients.  Datasets will be 

generated using PCA analysis and should exhibit regression trends of the primary tumor that are 

representative of those observed clinically.  Generated datasets will be utilized in simulations of 

various adaptive therapy schedules.  

1.4.1.3 Aim 3: Potential benefit of ART as a function of re-planning frequency 

Utilizing synthetic imagesets generated in the previous aim, conduct a series of planning 

studies with the objective of quantifying adaptive benefit associated with daily replanning and 

characterizing the tradeoff between adaptive frequency and resulting benefit.  Simulations will 

be carried out for different frequencies of adaptation from no replanning up to daily replanning.  

Benefit will be quantified in terms of dose sparing and allowable escalation.     
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1.4.1.4 Aim 4: Identifying patients that benefit from adaptation  

Using the results from the previous aim explore potential methods for identifying patients 

that may benefit from an adaptive therapy approach. 

1.4.2 Overview of thesis 

This document is based on additional works included here as appendices which serve as 

the primary documentation for the outlined specific aims.  Remaining chapters seek to 

summarize and supplement these documents while presenting the information in a cohesive form.  

Chapters 3 and 4 correspond to manuscripts intended for publication contained in appendices II 

and IV respectively; the reader is advised to first review the relevant appendix before proceeding 

with these chapters. 
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2 Treatment history browser 

Tools to facilitate adaptive radiotherapy planning on the scale implemented in this work 

were not readily available at the time of its writing and an initial effort was dedicated to this 

purpose.  Incorporation of additional data (images and contours) associated with time-points 

throughout treatment for the purpose of replanning represents a change in the current treatment 

paradigm.  Though the dynamic nature of treatment is appreciated and accounted for through the 

addition of treatment margins, planning and evaluation methods are inherently static i.e. they are 

based on a single instance of patient anatomy acquired prior to radiation delivery.  Workflows 

and data-objects reflect this static paradigm and are ill-equipped in an adaptive approach that 

carries out replanning at multiple time-points. 

Essential extensions of an effective treatment planning system (TPS) for ART include: 

1) temporal planning objects that reflect the four-dimensional nature of treatment, 2) methods for 

efficiently managing and navigating large amounts of treatment data, and 3) evaluation methods 

that accommodate multiple datasets corresponding to different time-points.  As part of this work, 

a software tool that incorporates these elements is developed as a plugin to the Pinnacle 

treatment planning system (Philips Oncology, Fitchburg, WI) using the Python programming 

language and Qt GUI toolkit; the tool is referred to here as the “Treatment History Browser” 

(THB).  A discussion of treatment planning system (TPS) elements that may facilitate adaptive 

workflows and their implementation in this work are given in the sections below.  Detailed 

information on installation, usage, and class-documentation for the THB can be found in the 

Users Guide located in Appendix I. 



 

 20 

2.1 Temporal planning objects 

In traditional radiation therapy a CT scan is acquired before treatment, and regions of 

interest (ROI), including target and risk structures, are delineated and approved by a physician. 

The CT scan and ROIs are used to develop a plan that consists of an arrangement of beams and 

apertures which are delivered throughout treatment. In the Pinnacle TPS, “trial” objects represent 

a proposed treatment plan based on a given CT image and consist of beam objects and the 

associated dose volume; additionally, ROI objects correspond to image volumes and may be 

associated with any trial that is based on the image. 

In an adaptive paradigm, trial objects are created for each image incorporated into the 

planning process each of which may be used to represent single or multiple treatment fractions.  

In the limit of daily imaging, a trial object is created for each fraction of treatment and provides 

an estimation of dose as calculated on the anatomy of the day regardless of whether re-planning 

is performed.  While trials may be used to represent treatment fractions, fraction specific data is 

not explicitly recorded by the system; to this end a “fraction” object is introduced in the software 

tool and is created for each fraction of treatment.  Each object is associated with a single trial, 

and naturally includes additional data such as fraction number, date, and whether or not 

replanning is carried out for the fraction.  Temporally-ordered collections of fraction objects 

make up a given treatment course and are represented by a “treatment” object.  Analogous to 

trials, multiple treatments may exist for each patient and represent proposed treatment options in 

the evolving adaptive-plan. 

Like the images they are associated with, individual ROI objects correspond to single 

instances of dynamic anatomy.  In an adaptive plan, multiple ROI instances associated with the 

same structure at different time-points exist and necessitate a means of organization and 
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management; to this end, the “ROI group” object is created.  Though intended for ROIs 

corresponding to the same structure, ROI groups may consist of any arbitrary set of ROIs which 

facilitates analysis of sub-regions or those otherwise related.  Newly introduced objects and their 

relation to existing Pinnacle objects are illustrated in Fig. 2.1. 

 

Fig. 2.1 Organizational diagram of THB (dotted border with blue fill) and Pinnacle (solid border with gray fill) software 
objects.  Treatment objects (top) consist of a collection of n temporally ordered fraction objects.  Fraction objects are 
associated with a Pinnacle trial object and include fields for fraction number, date, and adapt state (i.e. whether re-
planning is carried out).  ROI group objects (bottom) are a collection of related Pinnacle ROI objects.   

2.2 Managing large amounts of treatment data 

Implementation of temporal planning objects as described above provides an efficient 

scheme for managing the large amounts of treatment data inherent in an adaptive treatment.  

Manipulating individual instances as opposed to group objects (e.g. individual ROIs of an ROI 

group) is cumbersome and inefficient.  Furthermore, group management of objects associated 

with different time-points builds in a level of standardization in the display of individual 

instances (e.g. ROI color, image window levels, etc.) and in the evaluation of treatment data (e.g. 
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plot line-styles, etc.).  This type of consistency lends to greater clarity in treatment related tasks 

and facilitates the planning workflow. 

2.3 Methods for evaluating treatments that consist of multiple datasets 

2.3.1 Cumulative dose 

In an adaptive treatment, re-plans are based on recent images of patient anatomy which 

reflect any variation that has occurred since previous acquisitions and which modify the 

projected dose distribution of the initial plan.  One method for synthesizing data from multiple 

time-points is to sum individual dose distributions to a single reference image[32] using a mapping 

established by deformable image registration.  This method of evaluation has various 

advantages: 1) cumulative dose is directly comparable to the original plan which likewise 

corresponds to a single image, 2) dose-response data is largely based on projected cumulative 

metrics,[33] and 3) ambiguities related to comparing volume-based parameters (e.g. V20) in the 

presence of volumetric variation[34] are avoided if a common reference is utilized for both. 

 Dose accumulation utilizes mappings between imaging data to warp dose distributions to 

a given reference image.  Inaccuracies in image registrations will likewise affect deformed 

distributions, thus reliable dose accumulation depends on accurate mappings between image data.  

In this work consistency between images and mappings is achieved by generating synthetic 

displacement vector fields (DVF) using a PCA model and then warping the primary dataset to 

create images resulting in self-consistent images, contours, and mappings that correspond to 

intermediate time points (see chapter 3).   

 In cases where DVFs accurately map dose, any time-point may serve as a valid reference 

for dose accumulation assuming that mass is conserved between images.  In cases where mass is 
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not conserved, different images represent distinct structures as opposed to distinct poses of 

anatomy which presents a subtlety in reference image selection.  The following discussion 

illustrates this point. 

2.3.1.1 Cumulative dose in the presence of mass loss 

Consider an image Ia that consists of a single voxel Va acquired at time-point ta and that 

receives an initial fraction of radiation.  Assuming mass loss occurs as a result of the delivered 

radiation, the cellular population represented in Va may be divided into a group that survives and 

persists, denoted by S, and a group that is killed or otherwise cleared from the voxel, denoted by 

K.  After the initial irradiation, a second image Ib consisting of a single voxel Vb, and containing 

the surviving fraction, is acquired at time-point tb, and an additional fraction of radiation is 

delivered to population S.  The scenario is illustrated in Fig. 2.2. 

Dose delivered to the cellular population represented in Va at time ta considering separate 

populations of surviving and non-surviving cells is given by: 

 

 
(2.1)

 

where Es and Ek are the absorbed energy at a given time point for surviving and non-surviving 

fractions respectively, and ms and mk are the masses of the respective population.  Dose delivered 

to voxel Vb at time tb is as follows: 

 

 
(2.2)

 

Cumulative dose using image Ia  as reference is then given by: 

 

 
(2.3)

 

and incorporating equation (2.2 this becomes: 
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CDIa
=
Es ta( ) + Ek ta( ) + Es tb( )

ms +mk

= DVa
+
Es tb( )
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Cumulative dose using Ib as reference is given by: 

 

 
(2.5)

 

and assuming that 

 
 

(2.6)
 

equation (2.5 may be written as 

 
 

(2.7)
 

 

 

Fig. 2.2.  Dose accumulation in the presence of mass loss.  Voxels Va and Vb are irradiated at times ta and tb respectively.  
The surviving fraction of cells is denoted as S and the fraction that does not survive is denoted as K.  Dose accumulation is 
facilitated by a mapping between the two images Ia and Ib either of which may be selected as the reference image. 

 Equation(2.4 is consistent with a literal interpretation of cumulative dose, i.e. cumulative 

dose is equal to the actual mean dose received by the cellular population contained in the voxel. 

In this case, cells that receive less dose because they are eradicated and cleared from the voxel 

decrease the reported cumulative dose.  One may argue, that summing dose in this way may lead 
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to an erroneous conclusion that coverage was compromised throughout treatment when in reality 

coverage was maintained and mass-loss occurred.  An alternative then is to report the mean dose 

that would be received if all cells were to persist throughout treatment.  In this case cumulative 

dose reflects the dose received by surviving cells in each fraction as opposed to the actual dose 

received by all cells represented in the earlier image.  Using the latter definition, cumulative dose 

reported on the earlier image is equivalent to that reporter on the later image.  

 These subtleties highlight the limitations inherent in using a static image to summarize 

dose delivered to dynamic structures that experience mass loss which result from the 

compression of temporal data to a single time-point.  Such considerations motivate development 

of history-based methods to compliment assessments based on cumulative dose.  

2.3.2 History-based assessment methods 

As highlighted in the previous section, cumulative dose represents a compression of data 

which obscures the temporal details associated with treatment delivery, i.e. the dose distributions 

associated with each fraction are compressed to a single time-point.   

Temporal sequences of dose metrics, plotted as a function of treatment fraction, are 

presented here as a complimentary method to accumulating dose for evaluating and informing 

adaptive plans.  It is hypothesized that preserving the temporal course of metrics throughout 

treatment will provide insight into the dynamics of adaptive benefit i.e. Patterns and trends in 

temporal signals (e.g. changes in volume, mass, tumor centroid, etc.) may indicate advantageous 

times to adapt or serve to classify patients that benefit from an adaptive planning approach.   

Greater clarity and accuracy in evaluation methods are necessary to relate details of 

treatment delivery to clinical outcome;[35] likewise, it is anticipated that temporal tracking of 

relevant metrics will provide valuable perspective on treatment delivery and outcome and may 
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allow patient specific estimates of response through a correlation of various temporal signals (e.g. 

mass and cumulative dose), though correlative analysis of delivery metrics and response are not 

addressed in this thesis. 

2.4 Browser overview 

The main form of the software tool is pictured in Fig. 2.3.  The most prominent feature of 

the graphical user interface is a pair of independent plot areas used for display of signal data.  

Each plot corresponds to a single signal at any given time but may include data from multiple 

treatments and ROI groups.  Dual plot areas allow for flexible comparisons between different 

treatments, ROI groups, or signal types and each plot may be opened in an external editor for 

modifying and saving to disk. 

Signals for ROI groups as a function of treatment fraction include: volume, mass, centroid 

position, min dose, max dose, mean dose, and arbitrary dose-volume-histogram (DVH) based 

metrics (e.g. V20).  Additional signals include: single fraction DVHs, all fraction DVHs, and 

cumulative DVHs.    

Multiple fractions, treatments, ROIs, and signals, contribute to a large amount of data that 

may be cumbersome to navigate and display in a meaningful fashion.  To facilitate this, 

information is conceptualized as a multi-dimensional data space that may be browsed 

interactively by the user. 

Treatments, ROI groups, and signals are navigated using a group of combo boxes and arrow 

keys that reside below the plot areas.  Fractions are selected using the “Treatment Schedule” 

calendar which highlights dates associated with each fraction.  If a single-fraction signal is 

selected in the plot area, a change in fraction updates the plot to reflect the new selection; for 
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multi-fraction data, the plot is marked with a dashed line or corresponding data is made bold to 

distinguish the current fraction selection. 

 

Fig. 2.3  Main form of the "Treatment history browser" software plugin for the Pinnacle TPS 

Below the plot area and adjacent to the treatment calendar are three tabs: the “Main” tab, the 

“Data” tab, and the “Scripts” tab.  The “Main” tab indicates line-styles assigned to treatments, 

and colors associated with ROI groups, both of which are held constant in all plots.  On the same 

tab are a group of controls for an image viewer that reflects the current fraction selection which 

is included for convenience and may consist of axial, sagittal, and coronal views.  The “Data” tab 

gives a summary of image and plan names associated with a given treatment indicating which 

fractions are adaptive, and is used to initiate automatic replanning as implemented in the latter 
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portion of this work.  Lastly, a “Scripts” tab allows quick navigation of the file system to initiate 

relevant scripts. 

In addition to the main window, forms for managing ROI groups and treatment details (Fig. 

2.4) may be called from the “utilities” menu at the top of the main window; for detailed 

information on usage the reader is again referred to Appendix I.   

Upon exiting the tool, all data pertaining to the active session is saved to disk in a single file.  

This allows previous sessions to be restored even if underlying data no longer persists in the TPS.  

While active, signal data is stored in a python dictionary object and is updated only when 

retrieving new data or when forced by the user.  This model was implemented to increase 

responsiveness of data retrieval and decrease the memory burden associated with a large amount 

of treatment data i.e. image and planning data can be discarded after relevant metrics have been 

extracted. 
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Fig. 2.4  Treatment editor, ROI group manager, and ROI color forms. 
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3 Synthetic patient datasets 

CT datasets of patient anatomy in the treatment position currently serve two main 

purposes in radiation therapy planning: 1) datasets provide a geometric model of the patient that 

is used to localize risk and target structures, and arrange beams in a manner consistent with 

treatment objectives; and 2) CT datasets contain electron density information that is utilized in 

estimating the dose to target and risk structures associated with intended beams.   

In this chapter, planning studies investigate the dosimetric benefit associated with 

adapting the initial plan to accommodate interfraction variation.  This is carried out at different 

frequencies up to modifying each fraction and thus requires an image and set of contours for 

each day of the prescribed treatment regimen.  Daily images and contours for the patient cohort 

included in this thesis were not readily available and thus synthetic datasets based on existing 

data were generated. 

3.1 Statistical modeling of inter-fraction variation using principal 

component analysis 

A statistical model of interfraction variation was utilized to generate synthetic datasets 

corresponding to each fraction of a 35 fraction treatment regimen.  The model is derived from a 

temporal sequence of images and a set of mappings, which identify corresponding tissue 

locations in either a pair or group of images, using PCA.  The method is briefly described here; 

for a more detailed treatment, the reader is referred to Appendix II. 

For each set of patient images, a mapping is established between the first image in the 

sequence and all subsequent images using deformable image registration as illustrated in Fig. 3.1.   
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Fig. 3.1 Registration of a temporal series of n images.  Registrations are performed between first image in series and all 
subsequent images to identify corresponding tissue locations in the group of images. (mapping for single point illustrated). 

A common region of interest is used for each patient, resulting in DVFs of equal dimensions that 

track displacement of initial-image tissue elements throughout the course of treatment.  Each 

DVF is then reshaped into column vectors which are combined to make up a joint variation 

matrix containing homologous elements along each row and which proceed temporally from left 

to right.  The matrix is mean-corrected by subtracting row means from each row and a 

factorization of the matrix is performed using PCA.  This results in a set of basis vectors and 

weighting coefficients which may be utilized to reconstruct the original data; i.e. a weighted sum 

of basis vectors utilizing coefficients associated with a given transform produces the same 

transform.  Reasonable DVFs that are not observed in the original data may likewise be 

constructed using a summation of basis vectors by selecting appropriate weighting coefficients.  

 Relevant coefficients are drawn from the model by sampling from a statistical 

distribution in a way that preserves temporal trends in the original data.  This is accomplished by 

first plotting coefficients corresponding to all DVFs for a single basis vector against the elapsed 

time associated with each coefficient, and performing a linear fit of the data.  Fit residuals are 

then used to construct a vector-specific probability density function (PDF) using kernel density 

estimation from which samples may be drawn.  Synthetic coefficients are generated by 

evaluating the fit at time-points associated with each treatment fraction and adding a sampled 

component from the residual distribution. 
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 Fraction images and contours are then produced by deforming the first dataset in the 

series using corresponding transforms resulting in a set of images, contours, and mappings that 

are self consistent.  Inconsistent datasets, in which discrepancies exist between mappings and the 

actual position of tissue elements and contour boundaries, may lead to inaccuracies in deformed 

dose distributions and derived metrics which may lead to faulty conclusions regarding treatment 

delivery.  Therefore, consistent datasets are important in this work for two reasons: 1) cumulative 

measures of dose, which depend on underlying mappings, are utilized as a means of evaluating 

planning studies; and 2) ambiguities in dose coverage of the clinical target volume (CTV) 

associated with adapting to regressing target volumes are avoided if the initial CTV can be 

accurately tracked throughout treatment.    

3.2 Patient input data 

Statistical modeling to generate synthetic datasets is based on weekly images acquired 

throughout the course of radiation therapy treatment for 12 patients diagnosed with non-small-

cell lung cancer.  For each patient, 4 – 6 weekly helical CT scans are acquired under an active 

breathing control (ABC) protocol and relevant contours (gross tumor volume, lungs, cord, 

esophagus, heart and nodal involvement) are delineated on each scan by a qualified physician.    

Patients exhibited variation in size, location, and stage of disease as summarized in Table 3.1, 

and percent gross tumor volumes as a function of treatment week are illustrated in Error! 

Reference source not found..  The latter is of particular interest in this thesis as planning studies 

implementing adaptive re-plans presume benefit commensurate with tumor regression.   

Prior to deformable registration, a rigid alignment of weekly images is performed to align 

boney anatomy, and all images are resampled on to a grid associated with the first image in the 

series.   
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Table 3.1. Patient characteristics for the 12 NSCLC patients utilized in the work.  LUL = left upper lobe; LLL = left lower 
lobe; RUL = right upper lobe; RML = right middle lobe; RLL = right lower lobe.  

 

Fig. 3.2 Percent gross tumor volumes as a function of treatment week based on physician delineated contours. 

3.2.1 Deformable registration of weekly images 

 Ultimately, statistical models of inter-fraction variation reflect mappings between images 

used in the analysis as opposed to observable variation in the images themselves.  Though DVF 

PATIENT CHARACTERISTICS 

patient stage location nodes tumor vol 
(cc) 

 
patient stage location nodes tumor vol 

(cc) 
           

1 IIIA LUL Y 24  9 IIIA RUL Y 40 

3 IIIB Bilateral Y 100  14 IIIA RML Y 34 

4 IIB LLL N 65  17 IIIA RUL Y 216 

5 IIIB RUL N 1  18 IIIB RUL N 58 

6 IIIA RLL N 242  20 NA LLL Y 47 

8 IIB RUL N 11  21 NA LUL N 86 
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accuracy is not a primary objective of this work, potential DIR algorithms were evaluated on 

their ability to map the extents of visible tumor and preserve observed regression trends.  

Two deformable registration algorithms for use in generating synthetic datasets are 

considered in this work: 1) the Demons algorithm as implemented in the Pinnacle treatment 

planning system (Philips Oncology, Fitchburg, WI), and 2) a small deformation, inverse 

consistent, linear elastic (SICLE) algorithm.[36]  Evaluation consisted of propagating GTV 

contours from the first image to the last in the series using each algorithm and comparing them to 

the manually-drawn physician contours on the final image. 

Discrepancies between propagated and physician-drawn contours for a subset of the patient 

cohort are reported in Table 3.2 and were smallest for the Demons algorithm ( p = 0.02 paired t-

test ).  Based on this analysis, the Demons algorithm is utilized in registrations between existing 

weekly images for statistical modeling of inter-fraction variation and resulted in n – 1 DVFs for 

each patient with n weekly images.   

In summary, patient data utilized in statistical modeling of interfraction variation consisted 

of 3 – 5 DVFs, the first image in the series, and a set of contours corresponding to the first image 

for 12 NSCLC patients.   
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Table 3.2.  Gross tumor volumes corresponding to the first and last weekly images  for a subset of the patient cohort.  For 
the final image, gross tumor volumes are reported for the manually drawn physician contour, the propagated contour 
using the SICLE algorithm, and the propagated contour using the Demons algorithm.  Volume discrepancies between the 
propagated and manual contours on the final image are included in parentheses. Demons algorithm demonstrated 
smaller discrepancies between propagated and manual volumes on the final image (p = 0.02). 

3.3 Synthetic data 

Synthetic data generated from the 12 patients are reviewed here and consisted of a set of 

images, contours, and mappings for each fraction of treatment.  A selection of synthetic axial 

image slices corresponding to the centroid location of the GTV for the first, middle, and last 

fractions are presented in Fig. 3.3 and Fig. 3.4.  Regression of gross tumor is evident in the 

figures, and tumor volumes as a function of treatment fraction are reported in Fig. 3.5.  

Regression trends are linear for most patients and are devoid of large acute variation due to the 

sampling method employed in the modeling (see Appendix II).  Trends are consistent with those 

observed clinically,[28] and absence of acute variation is a desirable characteristic for the planning 

studies in this work. 

Artifacts were observed for a large portion of patients in the cranial and caudal extents of 

synthetic images as a result of registration uncertainties in these regions.  An example of artifacts 

associated with patient 1 are illustrated in Fig.  3.6.  Though artifacts of this nature are 

undesirable, all fell outside dose-grid regions constructed to contain the whole of the lungs and 

PROPAGATED AND MANUAL GROSS TUMOR VOLUMES (CC) 

patient manual 
(first image) 

manual  
(final image) 

SICLE 
(final image) 

Demons 
(final image) 

     

1 26 10 22 (+12) 16 (+6) 
3 100 70 82 (+12) 63 (-7) 
4 66 13 44 (+31) 40 (+27) 
6 250 127 180 (+53) 133 (+6) 
8 12 9 11 (+2) 5 (-4) 
17 207 98 132 (+34) 105 (+7) 
18 96 36 109 (+74) 33 (-3) 
20 49 23 38 (+15) 38 (+15) 
21 110 50 83 (+33) 57 (+7) 
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other relevant risk structures, thus the impact on planning studies is likely to be negligible.  

 

Fig. 3.3 Synthetic images for patients 1, 3, 4, 5, 6, and 8.  Axial slices corresponding to tumor centroid are presented for 
fractions 1, 18, and 35 (from left to right). 
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Fig. 3.4  Synthetic images for patients 9, 14, 17, 18, 20, and 21.  Axial slices corresponding to tumor centroid are presented 
for fractions 1, 18, and 35 (from left to right). 
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Fig. 3.5 Percent gross tumor volumes for propagated synthetic datasets as a function of treatment fraction. 

 

 

Fig.  3.6 Cranial (left) and caudal (right) artifacts in fraction 35 synthetic image for patient 1. 
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3.3.1 Synthetic patient cohort 

Though data was available for 12 patients, additional treatment volumes were derived 

from existing contours to simulate additional patients.  This is accomplished by either including 

or excluding nodal involvement and by separating bilateral tumors into separate volumes.  For 

the twelve patients in this study, 6 had nodal involvement and a single patient had both nodal 

involvement and bilateral tumors.  Dividing the dataset in this way resulted in a total of 20 

“patients” available for simulation which are referenced by the original patient number and the 

addition of an “N,” “L,” or “R” to denote nodes, left, and right respectively (e.g. 3LN to denote 

patient 3 that is based on the left tumor and includes nodes).  To ensure that study bias is not 

introduced through this procedure correlation of related patient results is analyzed (see section 

4.1).  

3.3.2 Patient target volumes 

For the 20 derived patients, volume measurements of the gross, clinical, and planning 

target-volume contours are reported in Appendix IV.  Individual plots for each are presented for 

the sake of clarity and to facilitate planning-study analysis of adaptive-benefit as it relates to 

volume regression.  Though related, GTV, CTV, and PTV do not necessarily follow the same 

regression trends and such subtleties are important to the analysis. 

3.3.3 Data validation 

In order to be suitable for use in planning studies, the following criteria associated with 

generated datasets were specified: 1) individual synthetic data should represent reasonable poses 

of patient anatomy; 2) regression trends should be consistent with those observed clinically; and 

3) the set of synthetic patient data should be representative of the range of variation observed in 
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practice.  These criteria are evaluated in Appendix II and the reader is referred to the same for an 

explanation of evaluation methods and results.  In this section, additional results are presented 

that are deemed useful in evaluating synthetic datasets. 

3.3.3.1 Synthetic mean surface distance distributions 

Composite distributions of minimum surface distances (MSD) are described in Appendix II 

and are utilized to assess similarity in the type and magnitude of variation observed in a 

sequences of images for a given structure.  Comparisons are made between synthetic and actual 

datasets to verify that the former represent reasonable poses of patient anatomy assuming that 

global variation can adequately be characterized by a set of contour surfaces and that similarity 

in variation suggests reasonability of synthetic data.  MSD distribution means are utilized in 

Appendix II to compare synthetic and actual data, and histograms of MSD distributions for each 

patient and structure are given here to supplement the aforementioned validation.    

 Agreement was good for the majority of contours and patients, with the largest 

discrepancies observed in contours that resided in low contrast regions where inter-observer 

variation in physician-drawn contours and registration uncertainties are likely. 
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4 Adaptive therapy study 

Utilizing the synthetic datasets described in the previous chapter, a study was performed 

with the purpose of quantifying adaptive benefit resulting from daily replanning, and 

characterizing the relationship between achievable benefit and replanning frequency.  The reader 

is directed to the study manuscript included in Appendix III before proceeding with the 

remainder of this chapter which includes supplemental results and discussion. 

4.1 Correlation of nodal and non-nodal treatment results derived from 

the same patient 

Additional sets of target contours were derived from an original set of 12 patients by 

separating bilateral tumors and by including and excluding nodal volumes in planning targets as 

described in 3.3.1.  This provided additional types of planning scenarios to be analyzed and 

allows direct comparison of paired node and non-node plans; however, one concern is that plans 

based on such datasets will be highly correlated and will therefore introduce bias into study 

results.   

Correlation of reported results for the full-adapt treatment are illustrated in Fig. 4.1.  

Though the number of data points are sparse, no strong correlations are observed.  Based on this 

analysis normal statistical methods are utilized to analyze the data.   
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Fig. 4.1 Correlation of dose-metric-difference for non-node and nodal simulations derived from the same patient.  Plots 
are devoid of any strong correlation.   

 

�1
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4.2 Supplemental results 

Dose volume histograms for CTV and all risk structures are included for all patients and 

simulations in Appendix VI. 

4.3 Identifying patients that benefit from adaptation 

Three patients in the studies exhibited no benefit from daily adaptation in terms of dose 

reductions to risk structures of interest including PT5, PT18, and PT20.  An additional three 

patients are identified as receiving a marginal benefit, defined here as a decrease in mean lung 

dose of less than 50 cGy, and included patients 3LN, 1N, and patient 14N.  

As part of the work conducted in Appendix III, various classifications were investigated as 

indicators of adaptive benefit including nodal status, initial PTV volume, and absolute reductions 

in PTV volume.  Of the three, only the latter proved to be useful in predicting adaptive benefit 

being modestly correlated with decreases in mean lung dose and mean esophageal dose.  

Two of the three patients receiving no benefit (PT5, PT20) from adaptation, and a single 

patient classified as receiving a marginal benefit (PT1N), exhibited increases in PTV over the 

course of treatment; however, the remaining patients (PT18, PT3LN, PT14N) all exhibited 

average decreases in absolute PTV.    

It was hypothesized that patterns of regression along with absolute volume changes may 

be important in predicting adaptive benefit e.g. large acute-variation toward the end of treatment 

is expected to differ from small daily variation in terms of observable benefit (Appendix IV 

provides a useful illustration of target volume changes over the course of treatment for all 

patients considered here).  Large variation in patterns of regression was not evident in synthetic 

datasets potentially due to a degree of imposed linearity in the sampling procedure as discussed 

in Appendix II.  This represents a limitation in detecting the effects of regression patterns in this 
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thesis however some variation was observed.   PT18 exhibited a unique pattern of volume 

change over the course of treatment showing a consistent decrease in PTV volume until about 

fraction 22 at which point a modest incremental increase was observed throughout the remainder 

of the simulation.  Gross tumor regression for the same patient leveled off in the lattermost 

portion of treatment but did not demonstrate an increase similar to the PTV.  While a larger 

sample size will be necessary to identify relevant predictors of adaptive benefit, PT18 suggests 

that patterns may indeed be important; furthermore, it highlights the potential for differences in 

volume change between target volumes for the same patient.  

Inter-fraction differences between GTV and CTV variation may produce errors when 

localizing CTV targets as described by Hugo et. al.[30]  These types of discrepancies were 

apparent for 4 patients in this study (PT1, PT1N, PT5, PT20N) for which CTV increased while 

gross tumor regressed.  In practice, accurate CTV volumes may not exist and adaptations may be 

implemented based on regression observed in detectable disease.  In this case it becomes 

increasingly important to gauge potential effects as underdosing of the CTV may occur.  This is 

discussed by Guckenberger et. al. who demonstrated that underdosing is mediated in scenarios 

where dose is escalated to the primary tumor.[31]  In a study conducted by Weiss et. al,[37] CTV 

contours were propagated to images associated with replanning time-points using deformable 

image registration.  Propagated contours were then used to develop adaptive plans and a 

simultaneous integrated boost to the primary tumor volume was implemented.  In this work, 

daily CTVs were readily available for all synthetic datasets providing a direct method for 

producing daily PTVs and avoiding ambiguities; however, this potentially represents smaller 

reductions in volume than adapting to gross tumor alone.  Effectively, reported dose escalation in 
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this work boosts dose to the CTV as opposed to primary tumor which may be one factor in the 

smaller amounts of sparing and associated escalation that were observed. 

4.4 Differences between planning and simulated-treatment dose 

distributions 

Traditional radiotherapy planning utilizes a single image acquired before treatment begins 

for planning purposes.  Dose estimations based on the planning image are expected to vary 

throughout treatment as plans are delivered to dynamic anatomy that change throughout the 

course of radiotherapy.  Accumulating calculations of dose on daily anatomy to a reference 

image as implemented in Appendix III provides an improved picture of delivered dose and is 

utilized as a point of comparison for all adaptive simulations.  Though not a primary objective of 

this thesis, comparisons between planned and accumulated distributions are included to 

emphasize the importance of using accurate estimations of delivered dose in evaluating adaptive 

treatments.  

Mean differences between the planned dose and cumulative no-adapt simulation for target 

dose and all normal-tissue metrics are listed in Table 3.1.  In general, average differences 

between planning and cumulative distributions were small; however a large amount of variation 

was observed for the majority.  Differences in mean esophageal dose were statistically 

significant, while all others were not.  For all metrics, differences similar in magnitude to those 

reported in the adaptive studies were observed.  Thus, using the planned distribution as opposed 

to the cumulative dose of the no-adapt simulation as a point of comparison had the potential to 

significantly alter patient results.   
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Table 4.1 Mean differences between planning dose distribution and cumulative dose for the no-adapt simulation.  Target 
coverage and normal-tissue dose metrics are included along with mean differences (Δ) and standard deviations (σ ) for 
each.  Statistical significance as measured by two-tailed paired t-tests is indicated in the final column for differences 
between planned and no-adapt distributions.   

   

MEAN DIFFERNECES BETWEEN PLANNED AND SIMULATED DOSE-DISTRIBUTIONS 

 planned  no-adapt  Δ " σ" p 
CTV D95 6942 cGy 6958 cGy 16 cGy 99 0.3 
cord max 3814 cGy 3754 cGy -60 cGy 349 0.7 

mean lung dose 1346 cGy 1363 cGy 17 cGy 89 0.25 
lung V20 23.9 % 24.1 % 0.3 % 1.9 0.1 

mean esophagus dose 2015 cGy 2107 cGy 92 cGy 122 0.003 
heart D66 514 cGy 504 cGy -11 cGy 98 0.3 
heart D33 1137 cGy 1174 cGy 37 cGy 155 0.15 
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5 Conclusion 

This thesis focused on quantifying the benefit of daily replanning for lung cancer patients 

and characterizing the tradeoffs of adaptive benefit with replanning frequency.  In addition to 

these main objectives, a software tool was created to facilitate an adaptive paradigm by 

extending data objects and evaluation methods in the temporal domain.  This provided a platform 

for conducting the research, and useful methods for evaluating planning data. 

The goal of adaptive therapy is to improve targeting and spare normal tissues by 

dynamically modifying treatment in response to observed variation.  Reductions in normal-tissue 

dose allow for target increases while maintaining acceptable levels of toxicity.  Dose escalation 

in lung cancer is desirable as it increases the probability of local control. 

Various studies have demonstrated dose sparing and associated escalation for an adaptive 

approach in lung cancer, and suggest an increased benefit with greater adaptive frequency; 

however, previous studies implement at most weekly replanning, leaving questions regarding the 

full potential of adaptive therapy. 

Daily adaptation requires images for each replanning time-point to provide up-to-date 

anatomic information and a basis for dose calculation.  In this work synthetic CT images were 

generated from an existing set of weekly images for a cohort of lung cancer patients using PCA.  

A novel method was implemented in the sampling process which preserved temporal trends such 

as tumor regression in the model and resulted in a set of image mappings that were used to map 

the first image in the weekly series.  The use of synthetic images was advantageous because 

images and contours associated with a given time-point were based on a common mapping to the 

initial image resulting in consistency between images, contours, and dose volumes; additionally, 
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extents of designated sub-clinical disease could be accurately tracked throughout treatment 

avoiding ambiguities regarding adequate target volumes for replanning time-points. 

Daily replanning resulted in statistically significant dose decreases for all risk structures 

considered in this work.  An average decrease in mean lung dose of 5% allowed average 

increases in tumor dose of 441 cGy when escalating to an isotoxic criteria, and escalation of 

approximately 17 Gy was achieved for a single patient.  Cord tolerances were not exceeded for 

any escalation in target dose.  These values were slightly  less than those observed by other 

authors implementing lesser amounts of replanning frequency.  In part the discrepancy may be a 

result of volumes to which dose was escalated.  In this work dose was escalated to the whole of 

the CTV as opposed to boosting dose to the residual gross disease. 

Additional planning studies were carried out that simulated a single adaptation at mid 

treatment and weekly replanning.  Sequential comparison of simulations from the non-adaptive 

to the full-adaptive revealed incremental reductions that were statistically significant for both 

mean lung dose and mean esophageal dose revealing an increase in adaptive benefit with each 

increase in replanning frequency.  Interestingly, the magnitude of benefit decreased as planning 

frequency increased with an average of 60% of mean lung dose reductions associated with daily 

replanning being achieved after a single mid-treatment replan, and 88% being realized after 

weekly replanning.  Understanding tradeoffs between replanning frequency and adaptive benefit 

are important because resources are limited and replanning is currently expensive in terms of 

workload.  Assuming that each instance of replanning is equally costly and that a given patient 

follows the averages stated above, four times the workload of weekly planning (i.e. 28 additional 

replans) would need to be expended to achieve the final 12% of potential benefit.  In addition to 

boosting CTV as opposed to primary tumor, the trend of decreasing returns may help explain 
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discrepancies between reported values of adaptive benefit in this thesis and the work reported by 

others. 

A final effort was made to explore potential methods of identifying patients that may 

benefit from an adaptive approach.  Correlations between reductions in mean lung dose and a 

variety of simple descriptors were investigated including: nodal status, initial PTV volume, and 

absolute change in PTV; of these, only the latter was found to be correlated with adaptive benefit.   

Relationships between patterns of target volume regression and adaptive benefit were 

investigated, noting that some irregularity (e.g. patterns of target volume regression followed by 

a trend of volume increase) seemed to be associated with patients that exhibited no adaptive 

benefit which suggests that temporal patterns may be important; however, sample size was not 

large enough to be conclusive.  

  Indicators of adaptive benefit are important to select which patients warrant allocation of 

additional resources inherent in replanning, and future work should be dedicated to this end.  The 

software tool described in chapter 2 enables analysis of multiple signals that could be used in 

such efforts including temporal course of volume, mass, or centroid positions. 

 The major contributions of this work are 1) it identifies a need for tools suited to an 

adaptive paradigm and gives an example of such tools; 2) it introduces a novel method for 

sampling of synthetic geometries that preserves temporal anatomic trends providing a basis for 

adaptive studies; 3) demonstrates the benefits associated with daily adaptation; and 4) it 

characterizes the tradeoff between adaptive frequency and workload.  These developments: 

provide insight into the value of adaptive radiation therapy for lung cancer, help inform decisions 

regarding it’s implementation, and provide a basis for future studies.    
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INTRODUCTION!
Traditional methods of radiation therapy planning typically utilize CT images associated with a 
single time-point acquired before treatment begins, and treatment planning systems (TPS) 
currently reflect this “static” workflow.  Adaptive radiotherapy (ART) is a treatment strategy that 
utilizes information acquired throughout the course of delivery to optimize target volumes and 
reduce treatment margins.  If additional volumetric imaging is performed, re-planning may be 
carried out to accommodate inter-fraction variation; however, clinically this is implemented on a 
very limited basis when large and acute changes are observed that may significantly affect the 
quality of the plan.  Routine implementation of adaptive planning at multiple treatment time-
points is currently an area of active research and represents a shift in the traditional treatment 
paradigm extending planning and evaluation into the temporal domain.  !!
The Treatment History Browser (THB) is a software tool that facilitates implementation of ART 
by likewise extending existing TPS functionality in a temporal dimension.  It is implemented as a 
plugin to the Pinnacle TPS (Philips Oncology, Fitchburg, WI) using the python scripting 
language and the Qt GUI toolkit, and is intended as a research tool to organize, conduct, 
navigate, and evaluate ART studies.!!
The tool was created as part of thesis work performed at Virginia Commonwealth University 
titled “Adaptive radiation therapy for lung cancer.”  As part of this research, synthetic datasets 
were generated for each fraction of a typical treatment regimen (35 fractions) resulting in a large 
number of displacement vector fields (DVF), images, contours, and trials.  To efficiently store 
and manage the data a dynamic approach was taken in which DVFs were stored to disk and all 
other data was generated as needed on demand.  While dynamic data need not be utilized, the 
management and creation of synthetic datasets is integrated into the tool’s functionality.     !!
Methods for displaying temporal signals are implemented as an alternative to cumulative 
approaches that sum dose to a reference dataset.  Temporal signals include conventional dose-
volume metrics (e.g. D95) tracked for each fraction of treatment, dose statistics, volume, mass, 
centroid position, and composite fraction dose volume histograms (DVH).  !!
This guide is intended for researchers that wish to make use of the tool in its current state, 
extend its functionality, or use it as an example and starting point for creating GUI plugin 
applications for the Pinnacle TPS using python scripting and the Qt GUI toolkit.!

Software requirements and dependencies!
The THB was developed as a plugin for the Pinnacle TPS and has only been tested with the 
following configuration:!

• Pinnacle TPS version 9.100 with python scripting plugin!
• Python 2.7 (Pinnacle specific build)!
• PyQt4 (Python bindings for the Qt GUI toolkit)!
• numpy (Python package for scientific computing)!
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  Plotting functionality utilizes xmgrace as a backend to produce .png image files and must be 
installed on the workstation in use.!

Package contents and installation!
The THB is a package of several python scripts and other resources that reside in a folder titled 
“txhsbr2.0” which contains the following directories and files: !!
! txhsbr2.0/!
! ! bin/!
! ! doc/!
! ! graphics/!
! ! library/!
! ! modules/!
! ! scripts/!
! ! templates/!
! ! thb_main.py!
! ! ui_files/!!
The single python script that resides at this level is “thb_main.py” and is initiated using the 
python script-tree plugin from within Pinnacle to start the application.  Modules that reside in the 
different subdirectories are referenced relative to the location of the main script file, thus the 
package directory may reside at any location on disk and may be moved at anytime without 

disrupting the applications functionality.  Python is an interpreted language thus no compiling is 
necessary in the installation process for the core functionality of the application.!!
After ensuring that the preliminary requirements described in the previous section are met, 
installation consists of simply copying the folder “txhsbr2.0” to disk.  As an alternative to locating 
and running the “thb_main.py” file to initiate the application, a traditional Pinnacle script may be 
written to invoke the main application file, and incorporated into the user’s hot-script list.!!
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  Apart from the “thb_main.py” file, the application directory contains various divisions of 
resources whose contents are outlined here.!!!
directory! contents!!
bin/! ! Though the core functionality is written in pure python, certain tasks may require !
! ! the efficiency of compiled code.  Such utilities are stored here.  !!
doc/! ! Contains class documentation for core python modules and scripts for!
! ! automatically generating the same using a python module named Sphinx.!!
graphics/! Contains all icon and graphics files included in the user interface.!!
library/! A collection of modules that are integral to the application’s functionality but that!
! ! operate independent of it and may be utilized in other applications.!!
modules/! Core application code for each of the application windows.!!
scripts/! User defined scripts to automate the applications functionality. !!
templates/! A group of templates for quickly setting up common treatments (e.g. adapt every !
! ! week, adapt every day)!!
ui_files/! Files that specify the appearance and behavior of the user interface most of !
! ! which are automatically generated using Qt Designer (Digia Plc, Helsinki Finland)  !
! ! to create .ui files that then may be converted to python code using the!
! ! “pyside-uic” utility.!!!!
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  !
! tx[‘Adapt’] !!
returns the treatment object named “Adapt”!!
! tx[‘Adapt’].fx[1]!!
returns the first fraction object associated with this treatment and!!
! tx[‘Adapt’].fx[1].date!!
returns the date associated with this fraction object.  !!!
ROI group object!!
Like trials, ROIs correspond to a single image and in a traditional paradigm are static 
representations of dynamic structures.  Incorporating multiple images into the planning process 
necessitates an additional object to manage all ROIs associated with a given anatomical 
structure.  ROI group objects inherit from standard python lists and incorporate the following 
additional attributes.!!
attribute! type ! description!!
color! ! string! color to be used for ROIs in group; all ROIs are set to this color when!
! ! ! displayed in Pinnacle and signals associated with the group are plotted in !
! ! ! the same color!!
display!! bool! designates whether the group as a whole should be displayed in Pinnacle!!
signals!! list! lists all signals associated with ROI group (e.g. volume, mass, etc.) that !
! ! ! may be plotted in the application. !!!
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DATA STRUCTURES!
To accommodate large sequences of temporal data that correspond to multiple treatment time-
points, various new data structures are created to extend the existing functionality of the TPS.  
In Pinnacle, the basic objects of planning and evaluation that correspond to single images are 
that of a trial and a region of interest (ROI).  Traditionally, plans associated with trial objects are 
delivered for the duration of treatment and thus trials correspond to a treatment regimen.  In an 
adaptive paradigm, plans associated with trial objects may correspond to a single fraction or a 
subset of fractions.  Having a single object that may refer to an entire treatment or a subset of 
fractions creates an ambiguity that is resolved by introducing “treatment” and “fraction” objects 
to reflect the dynamic planning workflow.  Single ROIs are grouped together into “ROI group” 
objects.!!
Fraction object!!
Fraction objects correspond to a single treatment time-point and are associated with a single 
trial object.  Multiple fractions may refer to the same image and trial, allowing flexibility in the 
number of images incorporated into the planning process and the amount of re-plans carried 
out.!!
Fraction object attributes are as follows: !!
attribute! type ! description!!
image! ! string! name of image used to represent the given fraction!!
trial! ! string ! name of pinnacle trial object associated with the fraction !!
date! ! date ! date of treatment associated with the fraction !!
adapt! ! bool ! value to specify whether re-planning will be carried out for the fraction!!!
Treatment object!!
Treatment objects provide a way to organize a set of fractions and are the temporal analogue of 
trials.  The main attribute of the treatment object is a python dictionary named “fx” whose keys 
correspond to the fraction number and whose values are the fraction objects themselves.  A 
treatment object may consist of an arbitrary amount of fractions each of which may correspond 
to different or the same images i.e. multiple fractions may be represented by a single image.  
Using a dictionary to organize the fraction object provides a natural and readable way to access 
fraction attributes. !!
Multiple treatment objects may be created to evaluate and compare multiple treatment courses.  
An additional python dictionary named “tx” (an attribute of the main object) is implemented to 
contain the different treatment objects.  Nesting multiple dictionary objects in this way results  !
in a convenient and readable method to access each of the objects.  For example, !
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USER INTERFACE!
Start Window!

!
All data associated with a given THB instance constitutes a “session” and is stored in a single 
file with the extension “.thb” in a directory titled “TxHsBr” which resides in the plan directory for a 
given patient.  Each time the THB is invoked, the start window is presented to the user and 
facilitates the creation, loading, and management of session files.  All .thb files located in the 
TxHsBr directory appear in the “load session” drop down box and may be deleted or loaded 
from this form.  An additional drop-down box lists templates that are found in the “templates” 
folder of the application directory.  Templates specify a specific setup for a given session (e.g. 
treatment, number of fractions, specification of adaptive fractions etc.) and provide a convenient 
method for initiating common regimens.  Alternatively, a new session may be created by 
entering a name and setting up at least one treatment in the entry fields in the bottom portion of 
the form. 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  Region of Interest Group Editor!

!
Group Management !!
The “ROI Group Editor” form is presented after creating a new session or may be accessed via 
the “utilities” menu on the “Main Window” form (see Main Window) and is used to manage all 
ROI groups.  The session name is displayed at the top left, and at the top right of the form a 
“check” button, “save” button, and “cancel” button are used to save and exit, save without 
exiting, and exit without saving respectively.  The current group name appears in the “Group” 
box under the session name and may be edited directly.  Adjacent to the “Group” box are 6 
action buttons including: left and right arrow buttons for cycling through existing groups; an 
“add” button for group creation; a “copy” button for duplicating the current group; a “delete” 
button for removing the current group; and a “color” button to bring up a separate form for 
specifying group colors (right form above).  !
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  !
ROIs that pertain to the current group are managed using the bottom portion of the form.  ROIs 
included in the current group are listed on the left in blue and search results are listed in red on 
the right.  Each list is directly editable and supports copy and paste functions.  Each new line 
represents an entry, and any valid entry (i.e. that matches the name of an ROI in Pinnacle) 
listed on the left will be added to the group.  !!
ROIs may be added by manually entering names in the left list or by using the search 
functionality of the form.  Queries are carried out using the “Search” box on the left or the image 
navigation on the right.  “Search” box queries support Unix-style wildcards to return ROIs that 
match the specified criteria (e.g. “PTV*1” would return a list of all ROIs whose names begin with 
“PTV” and end with “1”).  Image queries return all ROIs that reside on the listed image and are 
conducted by using the left and right arrow keys to cycle through Pinnacle volumes.  After a 
search is conducted search results appearing on the right in red may be incorporated into the 
current group by copying and pasting or by using the left arrow button between the two lists.  
This button will transfer all entries on the right to the current ROI group and they will then 
appear in blue on the left.  If either query returns results that the user wishes to exclude these 
may be manually deleted from the right list before transferring them to ROI group.  !!
To remove ROIs from a group, select them on the left and delete them manually or by pushing 
the “update” button (black, white, and blue pinwheel between the two lists) which will remove 
any highlighted text.  Alternatively, the “delete” button between the two lists will clear all ROI 
entries on the left.!!
Primary ROI group!!
For sessions that utilize dynamic data (i.e. propagation of image volumes and contours), a 
“PRIMARY” group must be populated and is used to specify those contours that should be 
included in propagation.  The user is presented with the ROI group form after creating a new 
session with the “PRIMARY” group waiting to be populated; when a session is created using a 
template the “PRIMARY” group is specified in the body of the script and the ROI group form is 
bypassed.  The “PRIMARY” group is accessible in the ROI group editor form however it is not 
included in the ROI groups used for querying image derived data and likewise is excluded from 
all other forms.  !!!!!!!!
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  !
Treatment Editor!

!
The “Treatment Editor” form displays all data related to a given treatment and facilitates 
management of all treatment objects pertaining to the session and, like the “ROI Group Editor” 
form, is presented to the user upon creating a new session unless a session template is used.      
The “Treatment” box specifies the current treatment name and is directly editable with left and 
right arrow keys for navigating between treatment objects.  Buttons for adding, copying, and 
removing treatments reside to the right of the navigation arrows; the “check” button at the top 
left saves and exits the form, while the adjacent “cancel” button exits without saving.  All fraction 
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  objects corresponding to the selected treatment are represented as are each of the fraction 
attributes.  Image name, whether the image is synthetic, trial name, whether the trial is adaptive, 
fraction date, and (for synthetic data) the DVF used to propagate the primary image and 
contours are listed.  Image names should correspond to existing Pinnacle volumes or be 
associated with an existing DVF according to Pinnacle naming conventions (e.g. 
PT1W1S1_PCAAFX35_Demons_10.dvf) and treatments may consist of any mixture of synthetic 
and existing images.  Trial names are automatically generated based on image volume and 
whether re-planning will be carried out for the fraction.!!
Though data may be entered manually, various autofill features are implemented to facilitate 
treatment setup.  When the “auto fill” check box is checked auto completion for images and 
dates become active.  For images, fraction two entries are used as a template and all 
subsequent image names are entered with incremented numbers (e.g. entering “PCAAFX2” 
autofills subsequent fractions with PCAAFX3, PCAAFX4, etc.).  As an alternative, the “Pinnacle 
Img Entry” section allows quick entry of existing images.  Up and down arrow keys move up and 
down the image section of the form and left and right arrows cycle through existing images.  
Dates are entered by clicking on the arrow to the shadowed-arrow at the right of each date box 
to reveal a current calendar.  When “auto fill” is checked, this results in automatically setting 
dates to subsequent business days.  After autofilling, manual modifications may still be made.  !!
Adaptive schedules are set by selecting the “adapt” check boxes next to each trial entry.  This 
may be done manually or by selecting a pre-defined schedule from the “adapt” drop-down box 
next to the “auto fill” check box.!!
After images, dates, and adaptive schedules have been set, the form should be updated so that 
trial and DVF names reflect the new entries.  This is accomplished by pushing the “update” 
button next to the “adapt” drop-down box (blue, white, and black pinwheel).  !
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  Main Window!

!
Basic functionality!!
After a session has been set up, the main window is initiated and presented to the user.  The 
central features of the application are two large plotting areas that are used to display the 
different temporal and fraction based signals supported by the tool.  The two plotting areas have 
the same functionality but operate independently and are utilized for comparisons between 
different signals.  Temporal signals include: ROI volume, mass, centroid magnitude deviation, 
and arbitrary dose volume parameters (e.g. dose to 95% of treatment volume) all of which are 
plotted as a function of fraction number.  Additional signals include individual fraction DVHs and 
composite DVHs that display all individual fraction DVHs on a single plot. !!
Multiple signals associated with multiple ROIs and treatments represents a large amount of data 
that may be conceptualized as a multi-dimensional signal space with treatment, fraction, ROI, 
and signal, representing the distinct dimensions.  A primary purpose of the tool was to provide a 
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  convenient method for navigating the large signal space and evaluating different treatments. For 
each dimension, with the exception of treatment fraction, a drop-down box displays the currently 
selected treatment, ROI, or signal respectively and allows the user to navigate quickly to a 
specific portion of the space.  Additionally, left and right arrow keys are used to decrement or 
increment along each dimension respectively.  The current selection of treatment, ROI group 
and signal are specified above the plot area.  !!
Treatment fractions may be navigated by selecting the associated day on the treatment 
calendar which has treatment days highlighted in blue or by using the arrow keys to increment 
and decrement treatment fraction.  For the current selection, data is displayed by clicking the 
plot icon at the lower right of each plot area.  Alternatively, an interactive mode may be activated 
by left-clicking in the plot area which reveals an orange border to indicate that interactive mode 
is set.  In interactive mode, any change to the current selection automatically updates the plot 
area.  Interactive mode is turned off by left-clicking in the plot area which clears the orange 
border.  Fraction number is displayed at the top of the form and is indicated in time-series plots 
by a dotted red line; in multi-fraction DVH plots, the current fraction is highlighted in bold.  !!
Signals are plotted by first retrieving data from the Pinnacle application and storing it in the 
signal data-object.  Before data retrieval, the signal dictionary is checked for the relevant 
information and if it is found it is loaded without an additional request from Pinnacle.  This 
enhances responsiveness of the tool but allows for the possibility that displayed data does not 
reflect the most recent data in Pinnacle if anything is modified.  To force update before plotting, 
the user may select the “update plot” option from the contextual menu by first right-clicking in 
the plot area.  !

!
If the user wishes to modify or save a plot, an external plot editor may be invoked by selecting 
“plot editor” from the context menu.  !!
Signal addition and selection !!
As mentioned, the tool allows the user to specify arbitrary dose-volume signals for plotting.  
These are specified by selecting “add dose or volume metric” under “signals” from the 
contextual menu. !
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  A “add signal” dialogue then appears and the user is prompted to specify the new signal by 
entering “D” or “V” for dose and volume respectively followed by a number to specify the 
percentage of the volume (in the case of dose metrics) or the dose in Gray (in the case of 
volume metrics).  !
!

Another useful feature of the tool is the ability to specify a set of signals for each ROI group.  
This allows efficient navigation of only relevant signals for each ROI.  Specifying ROI group 
signals is done by selecting “set ROI group signals” from the “signal” portion of the contextual 
menu.  A checkbox dialogue is then revealed for selection and signal drop-downs are 
repopulated based on the specific ROI group selected. !

!!
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  Reference data!!
While the tool may be used to interactively navigate individual signals, multiple treatments and/
or ROIs may be specified as reference data and will be plotted in addition to the selected signal.  
Reference data is specified by right clicking in the plot area to reveal the contextual menu and is 
specific to each area (i.e. different reference data may be set for the different plots).  Under the 
“reference” section, treatments, time-series ROI groups, and DVH ROI groups may be specified.!

Each selection reveals a checkbox dialogue for selecting the reference data.!

!
   !
To remove reference data, groups or treatments may be deselected manually or by selecting the 
“clear” option under “reference.” !!
Main tab!!
Next to the calendar is a tab section containing the “Main”, “Data”, and “Scripts” tabs.  The 
“Main” tab is the default tab and appears when the Main Window is initiated.  It contains a 
legend for signal data and a section for controlling a basic image viewer.  !!!!!
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To distinguish between different treatments and ROIs, line-styles and colors are assigned 
respectively and are held constant to avoid ambiguity in plots.  Colors may be adjusted using 
the ROI group color dialogue accessible via the Utilities drop-down menu at the top of the main 
form or through the ROI Group Editor; line-styles are assigned sequentially and automatically as 
new treatments are added and are not modifiable by the user.!!
Clicking the image view icon (image of CT scan with orange plus) creates a new Pinnacle image 
view instance that is controlled by the software tool.  The image view can have 1 to 3 windows 
each associated with axial, sagittal, and coronal views respectively.  The major convenience of 
the image view is that it reflects the current fraction selection and can be used in conjunction 
with the plot data to effectively evaluate fraction data. !
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  !
Data tab!!
The “Data” tab is used to summarize and manage treatment data.  The currently selected 
treatment is displayed in the drop-down box at the top of the form and image and trial names 
associated with each fraction are listed in the table below.  Blue text indicates that the image or 
trial currently exists in Pinnacle while grey text indicates that it is not currently found in Pinnacle 
(e.g. synthetic image names appear grey in the table until they are generated).  Adaptive 
fractions are indicated by an orange fill.  !!

!
In addition to data summary, creation of synthetic images and automatic treatment simulations 
are initiated using this tab.  The grey “imgs and ROIs” button creates all synthetic images using 
the associated DVFs previously specified in the treatment setup and propagates all contours in 
the “PRIMARY” ROI group using the same.  !!
The green “tx simulation” button carries out an adaptive simulation based on the adaptive 
schedule specified in treatment setup.  For adaptive fractions the most recent set of beams and 
apertures are copied to the trial and are re-optimized based on the corresponding planning 
target volume (PTV).  For non-adaptive plans, beams and apertures are copied and dose 
recalculated.  !!!!!!!!!!!!!!

�16



 

 73 

  Scripts tab!!
The scripts tab provides a column view of the path hierarchy for locating and calling scripts; 
calls are made by double clicking the the file name.!
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  CHAPTER

ONE

PINNLIB MODULE

pinnLib.accumWindow(PinObj)

pinnLib.accumulateDose(PinObj, trials, tgtimg, atrl)
Description: accumulates dose from trials in list trials to img tgtimg and renames accumlated trial to atril

pinnLib.addBeam(PinObj, beam, angle=None, poi=None)
Description: adds beam to current trial with name beam, gantry angle angle, and centered on point poi

pinnLib.addObjectives(PinObj, n)
Description: add n research objectives

pinnLib.addPOI(PinObj, poi, roi=None)
Description: adds POI with name poi; if roi given, poi is placed at center or ROI roi

pinnLib.addROIs(PinObj, roi1, roi2, margin, nroi)
Description: add roi1 and roi2 and expand by margin margin

pinnLib.allBeamsOff(PinObj)
Description: turns display off for all beams

pinnLib.allBeamsOn(PinObj)
Description: turns all display on for all beams

pinnLib.allROIsOff(PinObj)
Description: turns display off for all ROIs

pinnLib.applyDVFsToROI(PinObj, roi, dvfs)

Description: applies dvfs in list dvfs to roi roi and returns ordered list of new names

Arguments: PinObj - root pinnacle object

roi - str - name of roi to be warped

dvs - [] - ordered list of dvfs to apply to roi

pinnLib.applyDVFtoROIs(PinObj, mvgImg, fxdImg, dvf, rois)

Description: Applies dvf to deform each roi in rois(python list)

Arguments: PinObj - root pinnacle object

mvgImg - moving image name (e.g. PT1_W1_S1)

fxdImg - fixed image name (e.g. PT1_W5_S1)

dvf - str - dvf name (not full path)

rois[] - python list of rois to propagate
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Return: python list containing new roi names.

pinnLib.applyDVFtoVolume(PinObj, mvgImg, fxdImg, dvf, dvol=None)

Description: Applies dvf to deform mvgImg

Arguments: PinObj - root pinnacle object

mvgImg - moving image name (e.g. PT1_W1_S1) (must be an exisitng image)

fxdImg - fixed image name (e.g. PT1_W5_S1) (must be an exisitng image)

dvf - name of Pinnacle 9.1 dvf (assumed to be in patient dir)

Return: name of the deformed volume (e.g. PT1_W1_S1 (Demons) )

pinnLib.automouseExitPlan(win, save=False)
Description: exits plan by using automouse to click out of plan -requires automouse to be running and assumes
original window position has not changed

pinnLib.automouseoff()
Description: terminates automouse by deleteing file AUTOMOUSEON

pinnLib.automousestart(x, y)
Description: starts mouse clicks at screen position x,y

pinnLib.automousestop()
Description: suspends mouseclicks by deleteing file AUTOMOUSECMD

pinnLib.autoplacePOI(PinObj, poi, roi)
Description: automatically place point poi at centroid of region roi

pinnLib.calculateDose(PinObj, trial)
Description: calculates dose for trial trial

pinnLib.cleanROIs(PinObj, rois, min_area=0.2)
Description: cleans each roi in rois

pinnLib.clearDvfBuffer(PinObj, mvgImg, fxdImg, dvfLink, dvfFile)

Description: Clears DVF Buffer for the given dvfLink by renaming dvfLink, creating temp file with same
name and using Pinnacle to delte it (which also clears the buffer). Note: A more direct method should be
employed in the future.

Arguments: PinObj - root pinnacle object

mvgImg - moving image name

fxdImg - fixed image name

dvfLink - symbolic link to dvf file. Must have shortened dvf name following pinnacle conventions.

dvfFile - dvf file associated with

WARNING: This will only clear the buffer if the dvfLink corresponds to the DVF currently loaded into memory

pinnLib.clearObjectives(PinObj)
Description: clears all research objectives

pinnLib.clrRigidReg(PinObj, vol)
Description: clears rigid registration data for volume vol

pinnLib.colorROIs(PinObj, rois, color)
Description sets color of every roi in rois to color

pinnLib.combineROIs(PinObj, rois, margin, nroi)
Description: add rois in rois and expand by margin margin

4 Chapter 1. pinnLib Module
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pinnLib.constrainedMinimization(PinObj, trial, n=100)
Description: optimization approach that makes oar objective values equal in an effort to search a broader area
of the solution space.

pinnLib.contractROI(PinObj, roi, new_roi, simar, axmar)
Description: expand roi by margin (cm) and store as new_roi

pinnLib.coordTOind(PinObj, img, x, y, z)
Description: returns the nearest voxel indicies of coordinates x, y, z, in image img

pinnLib.copyTrial(PinObj, cptrial, trial, img=None)
Description: if trial doesn’t already exist, copies trial cptrial and names it trial

pinnLib.createIsodoseLines(PinObj, dose, fxs=1)
Description: creates a standard set of absolute isodose lines at 98,95,80,60,40,and 20% of dose dose

pinnLib.delAllButFirstPOI()
Description: deletes all POIs exept first in list

pinnLib.delPOI(PinObj, poi)
Description: removes poi poi

pinnLib.delTrials(PinObj, trials)

Description: deletes trials in list trials

Arguments: PinObj - root pinancle object

trials - list - list of pinnacle trials to be deleted

pinnLib.deleteROIs(PinObj, rois)
Description: deleter all rois in rois

pinnLib.displayROIs(PinObj, rois, value=’Contour’)
Description: sets display to contour for all rois in rois[]

pinnLib.displayROIsOnAll(PinObj, state)
Description: set display of ROIs on image sets that the ROI does not reside

pinnLib.doIMRT(PinObj, trial, max_itr)
Description: initiates IMRT optimization for trial trial with number of iterations set to max_itr optimization
type is set to DMPO with max number of segments = 50

pinnLib.doseColorWashOn(PinObj)
Description turns dose color wash display on

pinnLib.doseOff(PinObj)
Description turns dose display off

pinnLib.dvfExists(PinObj, dvf)
Description: returns True if dvf name exists in patient directory else returns false

pinnLib.exePinnCommand(PinObj, COMMAND)

Description: Writes COMMAND to a temporary .Script file in plan dir and executes it. Useful when having
trouble with python methods.

Arguments: PinObj - root pinnacle object

COMMAND - str - string to be executed (e.g. Echo = “Hello World”; )

pinnLib.exePinnScript(PinObj, SCRIPT)
Description: Executes traditional pinnacle script.
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Arguments: PinObj - root pinnacle object

SCRIPT - full path of .Script file to execute

pinnLib.exitPlan(PinObj, save=False)
Description: exits out of plan

pinnLib.expandROI(PinObj, roi, new_roi, simar, axmar)
Description: expand roi by margin (cm) and store as new_roi

pinnLib.genDemonsDVF(PinObj, mvgImg, fxdImg, RIGID=False, TAG=None)

Description: Initiates Pinnacle Demons registration and appends tag TAG if specified

Arguments: PinObj - root pinnacle object

mvgImg - moving image

fxdImg - fixed image

RIGID - rigid registration flag

TAG - tag to be appended to DVF name (e.g. .PINN)

pinnLib.genDemonsDVFs(PinObj, mvgImgs, fxdImgs, RIGID=False, TAG=None)

Description: Registers multiple image volumes using Pinnacle Demons Algorithm. fxdImgs and mvgImgs can
be lists of volumes or a single volume. If fxdImgs is a single volume and mvgImgs is a list (or visa versa)
all volumes in the list are registered to the single volume. If both are lists they must be of the same size
and volumes of the same index are registered

Arguments: PinObj - root pinnacle object

mvgImgs - moving image or list of moving images

fxdImgs - fixed image or list of fixed images

TAG - tag to be appended to dvf name (e.g. .PINN)

Return: Returns a list of names for the DVFs generated

pinnLib.genPCADVFs(PinObj)
Description: generates a set of dvfs to generate PCA model (Registers all PP images to primary)

pinnLib.getDVH(PinObj, trial, roi)
Description: returns x,y DVH values for trial trial and ROI roi and DVH stats min dose, max dose, mean dose,
std dev dose

pinnLib.getDemonsDvfName(PinObj, mvgImg, fxdImg, mvgFsn=None, fxdFsn=None)

Description: Returns the DVF file name according to Pinnacle conventions

Arguments: PinObj - root pinnacle object

mvgImg - str - moving image

fxdImg - str - fixed image

Note: Assumes first object in VolumeList is primary image. Pinnacle naming scheme incorporates a two digit
tag in the name specifying whether the fixed and moving images are primary or fusion volumes.

pinnLib.getFxdFromDVF(PinObj, dvf)
Description: returns fixed image name from dvf named according to pinnacle conventions

pinnLib.getMvgFromDVF(PinObj, dvf)
Description: returns moving image name from dvf named according to pinnacle conventions
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pinnLib.getNumberOfObjectives(PinObj)
Description: returns number of objectives for currently selected trial.

pinnLib.getObjective(PinObj, i)
Description: returns the pinnacle objective object with index i

pinnLib.getObjectiveDose(PinObj, i)
Description: gets dose setting for objective i

pinnLib.getObjectiveNames(PinObj)
Description: returns a list of objective names for the currently selected temporal trial

pinnLib.getObjectivePoint(PinObj, i)
Description: return x y coordinates and color of objective for plotting

pinnLib.getObjectiveROI(PinObj, i)

Description: get obejctive roi name for objective with index i

Arguments: i - int - index of objective to modify

pinnLib.getObjectiveType(PinObj, i)
Description: returns the pinnacle objective object with index i

pinnLib.getObjectiveVol(PinObj, i)
Description: gets objective volume setting

pinnLib.getObjectiveWeight(PinObj, i)
Description: returns objective weight for index i

pinnLib.getPatientDir(PinObj)

Description: returns the path of patient dir on disk

Warning: utilizes current working directory to build plan path. Use caution in the context of scripts that

manipulate working directory

pinnLib.getPatientNum(PinObj)
Description: returns the patient number as contained in the patient directory

pinnLib.getPlanDir(PinObj)

Description: returns the path of the current plan directory

Warning: utilizes current working directory to build plan path. Use caution in the context of scripts that

manipulate working directory

pinnLib.getPlanName(PinObj)
Description: returns current plan name

pinnLib.getROIDice(PinObj, roi1, roi2)

Description: Calculates a dice coefficient (range 0-1) for roi1 and roi2 by calculating 2 * the volume of the
intersection ROI / (roi1 volume + roi2 volume)

Arguments: PinObj - root pinnacle object

roi1 - str - name of first roi

roi2 - str - name of second roi

pinnLib.getROIcenter(PinObj, roi)

Description: retruns center coordinates of region roi

Arguments: roi - str - name of roi
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pinnLib.getRiskVolSparing(PinObj, rroi, troi1, troi2)

Description: calculates difference in risk structure volume included in two targets

Arguments: PinObj - root pinnacle object

rroi - str - risk structure

troi1 - str - name of first roi

troi2 - str - name of second roi

pinnLib.getRoiDoseStdDevs(self, roilist)

Description: returns the dose std dev for the ROIs in roilist

Note: roi list should be sorted in the correct order

pinnLib.getRoiMass(PinObj, roi)
Description: returns mass of roi roi - no partial volumes are accounted for at edge voxels

pinnLib.getRoiMaxDoses(self, roilist)

Description: returns the max dose for the ROIs in roilist

Note: roi list should be sorted in the correct order

pinnLib.getRoiMeanDoses(self, roilist)

Description: returns the mean dose for the ROIs in roilist

Note: roi list should be sorted in the correct order

pinnLib.getRoiMinDoses(self, roilist)

Description: returns the min dose for the ROIs in roilist

Note: roi list should be sorted in the correct order

pinnLib.getRoiVolumes(PinObj, roilist)
Description: returns the volumes for the ROIs in roilist Note: roi list should be sorted in the preferred order of
returned values

pinnLib.getTemporalIndices(PinObj)
Description: returns ordered list of images in temporal object list

pinnLib.getTrialTemporalIndex(PinObj, trial)
Description: returns index in TemporalObjectList of trial trial

pinnLib.getVolumesWithTag(PinObj, TAG, DETAG=None)

Description: Return a list of volumes that conform to search criteria. Volumes containing the substring TAG
will be included in the list but will be excluded if they also contain the substring DETAG

Arguments: TAG - search string

DETAG - search string (volumes will be excluded from list)

pinnLib.interp2d(x, y, x_eval)
Description: returns y value corresponding to intermediate value x_eval where x and y are python lists repre-
sents discrete ordered points of a function.

pinnLib.intersectROI(PinObj, rois, nroi)
Description: creates roi nroi representing the intersection of all rois in rois (excludes rois with 0 contours)

pinnLib.isRoiContained(PinObj, roi1, roi2, delta=1)

Description: returns True if roi2 is contained wholly or partially in roi1 else returns False
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Arguments:

delta - float - fractional tolerance i.e delta = 1 returns true if 100% of volume is contained, delta =
.85 returns true if %85 is contained in volume

pinnLib.isRoiExcluded(PinObj, roi1, roi2, delta=0.05)
Description: returns True if roi1 and roi2 are mutually exclusive exclusivity is determined by taking the inter-
section of the two ROIs; if fractional volume of the resulting ROI < delta rois are assumed to be exclusive

pinnLib.loadBeams(PinObj, tfile, trial)

Description: loads all beams (name, angle, energy) from plan.trial file tfile for trial trial assumed to be stored
in tfile

Arguments: tfile - str - full path of plan.trial file

trial - str - name of trial

pinnLib.loadTrial(PinObj, path, trial)

Description: load trial from disk

Arguments: path - str - full path of file to load

trial - str - name of trial to load

pinnLib.match(alist, s)
Description: similar to index for lists except searches for substring among entries i.e. doesn’t need to be exact
match

pinnLib.msgReassignROI()
Description: uses pymouse to click “Reassign ROI” button (screen coordinates x:1600,y:680) when moving an
ROI to a different image volume

class pinnLib.multViewWindow(PinObj, row=1, col=1, width=250, height=250, xpos=100, ypos=100)

close()
Description: closes view windows

setOrientation(win, orientation)

Description: Sets the volume orienation (axial,sagital,coronal) for view window vwName

Arguments: win - window number

orientation - string specifying orientation. Valid expressions: ‘axial’,’sagital’, or ‘coronal’.

setSlice(win, slicenum)

Description: sets slice for view window win

Arguments: win - window number (1-3)

slicenum - slice number

setSliceROI(win, roi)
Description: sets the slice of window win to a number containing roi roi

setTrialAll(trial)
Description: sets trial for all view windows to trial

setVolume(win, vol)

Description: Sets the volume to volume volName

Arguments: volName - name of volume to display
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setVolumeAll(vol)
Description: sets volume displayed to vol for all windows

pinnLib.normalizeOARObjectiveValues(PinObj, oar)
Description: normalizes weights of all objectives for organ organ

pinnLib.normalizeObjValues(PinObj, norm_value=0.001)
Description: sets all weights such that the value for each objective is = to norm_value

pinnLib.openDB(PinObj)
Description: LoadPatientList = “”; IF .#”!PatientReviewMode” .THEN .WindowList .LPPatientSelect .Cre-
ate .ELSE .WindowList .LPPatientSelect .CreateReadOnly = “”; LoadPlanList = “”; InstitutionList .Current
.EndMessageBatch = “”; EndMessageBatchAdd = “EndBatchModePatient”; EndMessageBatchAdd = “End-
BatchModePlan”; EndMessageBatchAdd = “EndBatchModeImage”;

WindowList.LPPatientSelect.Unrealize = “”; WindowList.LPPatientSelect.Create = “”;

pinnLib.openJaws(PinObj, trial, value)
Description: sets jaw positions to value for all beams in trial trial; used to open jaws before IMRT optimization

pinnLib.openPlan(PinObj, pat, plan)
Description: launchpad menu script opens patient plan plan (str) for patient pat (int)

pinnLib.outterRingROI(PinObj, roi, newroi, im, om)
Description: creates a ring roi with innermargin padding im and outter margin padding om

pinnLib.pinnAnswerInit(PinObj)
Description: writes path of current transcript file to “~/.pinnAnswerInit.txt”

pinnLib.pinnMsg(PinObj, msg)
Description: prints string msg to terminal window

pinnLib.poiCentroidSlice(PinObj, poi)
Description: returns axial, coronal, and and sagital slice numbers (int that order) associated with poi poi

pinnLib.poiPosition(PinObj, poi)
Description: returns coordinates of poi poi

pinnLib.radialDist(PinObj, roi, dv)
Description: returns the change in radius for change in vol dv assuming roi roi is a sphere or cylinder (depending
on ROI)

pinnLib.reassignROI(PinObj, roi, img)
Description: reassigns ROI roi to image img

pinnLib.removeBeams(PinObj, trial)
Description: removes all beams associated with trial trial

pinnLib.removeDVFsymlinks(PinObj)
Description: removes links to dvfs smybolic links

pinnLib.removeIsodoseLines(PinObj)
Description: removes all isodose lines

pinnLib.renameROIs(PinObj, oldRois, newRois)

Description: Renames entries in oldRois[] to entries in newRois[] that have the same list index.

Arguments: oldRois[] - python list of ROI names to change

newRois[] - python list of new ROI names

Notes: Corresponding ROI’s are assumed to have the same index in their respective lists.

pinnLib.renameVolume(PinObj, oldName, newName)
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Description: Renames Pinnacle volume from oldName to newName

Returns: True: if successful

False: if unsuccessful

pinnLib.reoptimizeMinimization(PinObj, trial, n=100)
Description: part of a constrained opitimization approach, OAR objectives are normalized and an optimization
is run. Weights are “smashed” and another optimization is run to bring target coverage back up.

pinnLib.reportObjectivesToFile(PinObj, trial, fname)
Description: writes objective settings for trial trial to a csv file with name fname

pinnLib.resetBeams(PinObj, trial=None)
Description: resets IMRT beam aperatures

pinnLib.residualVolume(PinObj, bnd_rois, rois)
Description: constructs a bounding region defined by the range of variation demonstrated by rois in bnd_rois.
returns residual volume of rois in rois lying outside the bounding region in the form of a dictionary where the
key is name of the roi and the value is volume.

pinnLib.rgdRegToTransFile(PinObj, vol, pat, wk, nimg1, nimg2)

Description: writes a file containing the x,y,z translations and rotations

Arguments: vol - str - secondary vol name

pat - int - patient number

wk - int - week number

nimg1 - int - primary imgset number

nimg2 - int - secondary imgset number

pinnLib.ringROI(PinObj, roi, newroi, margin=1)
Description: creates a ring expansion named newroi of roi roi with margin margin

pinnLib.roiMaskImg(PinObj, roi, imgset)

Description: intended to be used with external contour. expands contour roi by 1 cm creates binary mask and
masks image specified by imgset. saves masked image to <origfilename>.masked

Note: mask is currently saved in dimensions of primary image which will cause function to fail if all images
are not of the same size

pinnLib.roiSearch(PinObj, query)
Description: return an ordered list of rois that match a search query query (supports unix style wild cards e.g
GTV*)

pinnLib.roisExist(PinObj, rois)
Description: returns True if all rois in rois exist in pinnacle else returns False

pinnLib.roisOnAllImgs(PinObj, state)
Description: sets display of ROIs on all images

pinnLib.saveTrial(PinObj, path, trial)
Description: save trial trial to patb

pinnLib.setAccumTargetImg(PinObj, tgt)
Description: sets the target accumulation img to tgt

pinnLib.setBeamAngle(PinObj, beamid, angle)

Description: sets beam angle to angle for beam beamid
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Arguments: beamid - int or str - int: index of beam; str: name of beam

angle - int - beam angle in degrees (0-360)

pinnLib.setBeamIsocenter(PinObj, beamid, iso)

Description: sets beam angle to angle for beam beamid

Arguments: beamid - int or str - int: index of beam; str: name of beam

iso - str - name of poi to set as isocenter

pinnLib.setDVFsymlinks(PinObj)
Description: generates symbolic links for all dvf files with additional suffix (e.g. dvf.PINN) in patient directory
NOTE:REMOVES ALL FILES ENDING IN ”.dvf” before creating symlinks

pinnLib.setDVHdisplay(PinObj, trial, rois=None)
Description: returns x,y DVH values for trial trial and ROI roi

pinnLib.setDoseGrid(PinObj, rois, res, margin=1)
Description: sets dose grid to include rois

pinnLib.setDoseGridROIs(PinObj, rois)

Description: set dose grid to encompass rois

Arguments: rois - list - python list containing name of rois

pinnLib.setMinOARObjective(PinObj, oar, dose=100, volume=5)
Description: sets the volume setting to volume and dose to dose for all objectives pertaining to OAR oar

pinnLib.setObjectiveA(PinObj, i, a)

Description: sets EUD “a” value to a for objective i

Arguments: i - int - index of objective to modify

a - float - objective weight (typically between 0-1 or 0-100)

pinnLib.setObjectiveConstrain(PinObj, i, constrain)

Description: sets objective constraint with index i to contstrain (bool)

Arguments: i - int - index of objective to modify

constrain - bool - constrain state

pinnLib.setObjectiveDose(PinObj, i, dose)

Description: set objective dose value for objective i

Arguments: i - int - index of objective to modify

dose - float - target dose in cGy

pinnLib.setObjectiveROI(PinObj, i, roi)

Description: set obejctive roi to roi for objective with index i

Arguments: i - int - index of objective to modify

roi - str - roi name

pinnLib.setObjectiveType(PinObj, i, o_type)

Description: set obejctive type (Min Dose, Max Dose, Uniform Dose, Min DVH, Max DVH, Target EUD, Min
EUD, Max EUD, ...) to o_type for objective with index i
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Arguments: i - int - index of objective to modify

o_type - str - objective type

pinnLib.setObjectiveVol(PinObj, i, vol)

Description: set objectove volume value to vol for objective i

Arguments: i - int - index of objective to modify

vol - float - percent volume (should range between 0 and 100)

pinnLib.setObjectiveWeight(PinObj, i, weight)

Description: set objective i weight to weight

Arguments: i - int - index of objective to modify

weight - float - objective weight (typically between 0-1 or 0-100)

pinnLib.setPlanningObjectives(PinObj, roi_suffix, prescription=6000)
Description: sets standard planning objectives

pinnLib.setROIimg(PinObj, roi, img)
Description: reassigns ROI roi to image img using automouse to automatically respond to pinnacle confiramtion
message

pinnLib.setRoiColorScheme(PinObj)
Description: sets colors of major roi groups

pinnLib.setTemporalIndex(PinObj, i)

Description: sets the temporal selection to index i

Arguments: PinObj - root pinnacle object

i - int - temporal index

pinnLib.setTrial(PinObj, trial)
Description: sets current temporal index and trial

pinnLib.setTxTrials(PinObj, trials)

Description: sets trials to use in accumulation of dose and sets the weighting for each assuming a single fraction
prescription (188.6 cGy) and 35 fractions (total prescription 6600 cGy)

Arguments: PinObj - root pinnacle object

trials - list - python list of trials to be included for accumulation

pinnLib.smashWeights(PinObj)
Description: sets PTV weight to 100 and all other weights to orders of magnitude smaller

pinnLib.snapshot(PinObj, fname, img=None, trial=None, plane=’axial’, slc=50)

Description: saves .png file snapshot of trial trial, orientation plane, and slice slc to file fname

Arguments: trial - str - trial name

plane - str - axial, coronal, or sagittal

slc - int - slice number

fname - str - full path of file to be saved

pinnLib.sortDVFs(dvfs)
Description: sorts dvfs numerically assuming that the number is preceded by ‘FX’ and followed by ‘_’

pinnLib.subtractROI(PinObj, roi1, roi2, nroi)
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Description: subtract roi2 from roi1 to create nroi

Arguments: roi1 - str - name of roi1

roi2 - str - name of roi2

nroi - str - name of new roi

pinnLib.surfdist(PinObj, roi1, roi2)
“”Description:** writes vtk meshes to disk calls C implementation of surfdist and returns a list of distances(mm)
from mesh1 vertices to the closest vertice in mesh2

pinnLib.trialImage(PinObj, trial)
Description: returns image name associated with trial trial

pinnLib.trialSearch(PinObj, query)
Description: return an ordered list of trials that match a search query query (supports unix style wild cards)

pinnLib.unionROI(PinObj, rois, nroi)
Description: creates roi nroi representing the union of all rois in rois

pinnLib.volSearch(PinObj, query)
Description: return an ordered list of volumes that match a search query query (supports unix style wild cards)
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TWO

THB_DATABASE MODULE

class thb_database.TxHsBrDB

Description: main database object

DmetricFROMdb(tx, grp, metric)
Description: returns temporal dose volume metric from database e.g. D95 for group grp and treatment tx

DmetricTOdb(tx, grp, metric, UPDT=False)
Description:

Arguments: tx - str - name of treatment

grp - str - name of roi group

VmetricFROMdb(tx, grp, metric)
Description: returns temporal volume metric from database e.g. V95 for group grp and treatment tx

VmetricTOdb(tx, grp, metric, UPDT=False)

Description: commits volume metric to database e.g. V20

Arguments: tx - str - name of treatment

grp - str - name of roi group

add_roigroup(grp, rois, color=’red’)
Description: adds and roi group named grp containing ROIs rois and sets color to color

add_tx(name, nfxs)
Description: adds treatment to database with name name and number of fractions nfxs

all_rois()
Description: return all rois in roigrps

centroidFROMdb(grp)
Description: returns centroid magnitude deviations from db

centroidTOdb(grp)
Description: calculates centroid magnitude displacement from primary image as a function of fraction
and stores it in database. grp should be the base roi name e.g. PTV for PTV_1_1, PTV_PCAAFX2, etc.

clearData()
Description: clears database signal data ie.e self.signals and self.signalhst

copy_tx(orig, copy)

Description: copies treatment orig to new name copy
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Arguments: orig - str - name of tx to copy

copy - str - new name of copied tx

dateTOfx(tx, date)
Description: returns date associated with fraction fx

dbpath()
Description: Setup datbase path in patient plan diretory. If path exists return a list of session files (.thb)

del_tx(name)
Description: removes treamtent name from database

doseStatsFROMdb(tx, grp, stat)

Description: extract dose min stats for treatment tx and roi group grp

Arguments: tx - str - name of treatment

grp - str - name of roi group

stat - str - min,max,mean,std; specifies stat to retrieve

doseStatsTOdb(tx, grp, UPDT=False)
Description: commits dose stats (min max mean std) to db for treatment tx and group grp

fxDVHFROMdb(tx, grp, fx)

Description: extracts DVH for a ROI in ROI group grp which corresponds to fraction fx in treatment tx
(Normalized volume, absolute dose (cGy))

Arguments: tx - str - name of treatment

grp - str - name of roi group

fx - int - number of fraction

fxDVHSIGvalid(tx, grp, fx)
Description: returns True if signal exists in self.signals dictionary returns False if incomplete

fxDVHTOdb(tx, grp, fx)

Description: extracts DVH for a ROI in ROI group grp which corresponds to fraction fx in treatment tx

Arguments: tx - str - name of treatment

grp - str - name of roi group

fx - int - number of fraction

fxDmetric(tx, fx, grp, metric)
Description:

Arguments: fx - int - treatment fraction

grp - str - name of roi group

metric - float - dose metric to calculate i.e. 95 –> D95

fxVmetric(tx, fx, grp, metric)
Description:

Arguments: fx - int - treatment fraction

grp - str - name of roi group

metric - float - dose metric to calculate i.e. 95 –> D95
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imgsINtx(tx)
Description: returns a list of images in treatment tx

load()
Description: loads saved objects from file into current database

massFROMdb(tx, grp)
Description: returns x,y lists for plotting where x is the fx number and y is mass

massSIGvalid(grp)
Description: returns True if signal exists in self.signals dictionary returns False if incomplete

massTOdb(tx, grp, UPDT=False)
Description:

Arguments: tx - str - name of treatment

grp - str - name of roi group

rename_tx(oldname, newname)

Description: renames treatment object

Notes: use with care - new object is set to old object with new name and old object is deleted.

roiTOsigkey(tx, roi)

Description: return a list of signal key tuples ( format: tuple(roi,trial) ) for querying signal dicitionary
self.signal{}

Arguments: tx - str - name of treatment

roi - str - name of roi

roiTOtrials(tx, roi)
Description: return a dict of fxs and associated trials corresponding to roi roi

roisINtx(tx)

Description: returns that correspond to treatment tx

Arguments: tx - str - name of treatment

save()
Description: save db to pickle file with name self.name (with whitespace and other characters stripped to
make a suitable file name.

savedata(fname=None)
Description: save data in format that can be accessed outside of Pinnacle (using simple data structures)

set_file_name()
Description: sets attribute self.file based on attribute self.name which is the name of database / seesion. all
whitespace and special chars(-) are removed and a .thb extension is apppended. Returns True if succesful

trialDVHFROMdb(trial, grp)
Description: returns trial DVH and dose stats from database fro trial trial and group grp

trialDVHTOdb(trial, grp)
Description: commits DVH and dose stats to databse for trial trial

trialDmetric(trial, grp, metric)
Description: returns dose metric from database e.g. D95 for group grp and trial trial

trialDoseStat(trial, grp, stat)

Description: returns dose statistic for trial trial and group grp
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Arguments: stat - str - min dose, max dose, mean dose

trialVmetric(trial, grp, metric)
Description: returns volume metric from database e.g. V95 for group grp and trial trial

tx_doses_exist(tx)

Description: return True if dose has been calculated for all trials in treatment tx

Arguments: tx - str - name of treatment to check

tx_img_offsets(tx)

Description: return True if all synth img exist and offsets are 0 else return False

Arguments: tx - str - name of treatment to check

tx_imgs_exist(tx)

Description: return True if all images for a given treatment currently exist in Pinnacle

Arguments: tx - str - name of treatment to check

tx_trials(tx)
Description: returns all trials in treatment tx

tx_trials_exist(tx)

Description: return True if all trials for a given treatment currently exist in Pinnacle

Arguments: tx - str - name of treatment to check

updt_sig_rois()
Description: initialize subdicionaries for all rois in roigrps

volumeFROMdb(tx, grp)
Description: returns x,y lists for plotting where x is the fx number and y is volume (cc)

volumeSIGvalid(grp)
Description: returns True if signal exists in self.signals dictionary returns False if incomplete

volumeTOdb(tx, grp, UPDT=False)

Description: Extracts roi volumes from pinnacle for rois in roigroup grp that correspond to images in
treatment tx and stores them in database.

Arguments: tx - str - name of treatment

grp - str - name of roi group

class thb_database.dlist
Bases: dict

Description: python dictionary with ordered list of entries

append(key, value)
Description” append dicionary entry

insert(key, value, ikey)
Description: add new dictionary entry with key key and value value; insert key into self.list before ikey

remove(key)
Description: removes key key from dlist

class thb_database.fxobj

Description: fraction data structure
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Attributes: date(datetime) - date of fraction (datetime.date object)

img(str) - associated image name

trial(str) - associated trial name

thb_database.gen_fx_schedule(nfxs, start)

Description: Generates a list of datetime objects corresponding to a fractionation schedule containing nfxs and
beginning on date start. Fractions are scheduled sequentially on weekdays.

Arguments: nfxs - integer - number of fractions in treatment

start - datetime object - date associated with first fraction

Returns: fxdates - [] - list of datetime objects

thb_database.interpX(x, y, x_eval)
Description: interpolates function specified by x and y python lists at x_eval

thb_database.interpY(y, x, y_eval)
Description: interpolates function specified by x and y python lists at y_eval

class thb_database.roigroup
Bases: list

Description: python list containing roi names for a given roi group. Additional attributes include color and
display settings for the group

clear()
Description: clears all elements in list

update(rois)
Description: replaces current list with list rois

class thb_database.txobj

Description: fraction data structure

Attributes: name - str - treatment name

fx - {} - dict of fxobjs; key = fx num

trial(str) - associated trial name

def_art_sched()
Description: sets member attribute self.sched which is a dictionary of common adaptive schedules assum-
ing 35 fractions

dt_to_fx(date)
Description: return fx number for a given date (assumes no more than 1 fx per day)

roisInTx()
Description: returns a list of all rois corresponding to fractions in tx

updtFxRoiLsts(PinObj)
Description: updates roi lists for each fx
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  CHAPTER

THREE

THB_MAINWINDOW MODULE

class thb_mainwindow.MainWindow(PinObj, TxHsBrDB, txname=None, parent=None)

Description: Treatment History Browser main window form (subclass of QMainWindo)

Brws_quit_QPushButton_clicked()
Description: closes main window

Brws_save_QPushButton_clicked()
Description: saves session file

Brws_save_and_quit_QPushButton_clicked()
Description: saves session file and exits

Data_blue_QPushButton_clicked()
Description: generates snapshots and tx report DVHs for adaptive planning studies

Data_committ_all_data_to_db()
Description: committs all data to the database and saves the database DVH based data are not explicitly
commited because they can be derived from data committed via fxDVHTOdb()

Data_gray_QPushButton_clicked()
Description: generates all synthetic images and rois for currently selected treatment (self.tx)

Data_green_QPushButton_clicked()
Description: auto replanning based on primary plan and treatment specification of adaptive fractions

Data_red_QPushButton_clicked()
Description: runs all simulation steps - equivelant to pushing grey, green, and blue buttons for each tx

File_Quit_QAction_triggered()
Description: quits without saving database file

File_Save_session_QAction_triggered()
Description: saves database file

Fx_QCalendarWidget_selectionChanged()
Description: Slot function for selection changed signal from self.ui.Fx_QCalendarWidget. Updates all
fraction dependent fields i.e. fraction indicators, fraction statistics, image volume (if img view bound to
fx) etc

Fx_next_QPushButton_clicked()
Description: slot: increments current fx

Fx_prev_QPushButton_clicked()
Description: slot: decrements current fx
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Img_new_QPushButton_clicked()
Description: slot - brings up new image viewer

Img_rois_off_QPushButton_clicked()
Description: turns display of all ROIs off

Plot1_context_menu()
Description: builds context menu for plot 1

Plot1_open_in_editor()
Description: open plot in external editor

Plot1_plot_QPushButton_clicked()
Description: update plot in plot area one according to current selection

Plot1_update_data()
Description: forces data query from pinnacle before updating plot

Plot2_context_menu()
Description: builds context menu for plot 2

Plot2_open_in_editor()
Description: open plot in external editor

Plot2_plot_QPushButton_clicked()
Description: update plot in plot area one according to current selection

Plot2_update_data()
Description: forces data query from pinnacle before updating plot

ROIGrp_1_QComboBox_currentIndexChanged()
Description: slot: called when combo box selection is changed sets labels ...

ROIGrp_1_next_QPushButton_clicked()
Description: slot - increments ROIGrp_QComboBox selection

ROIGrp_1_prev_QPushButton_clicked()
Description: slot - decrements ROIGrp_QComboBox selection

ROIGrp_2_QComboBox_currentIndexChanged()
Description: slot: called when combo box selection is changed sets labels ...

ROIGrp_2_next_QPushButton_clicked()
Description: slot - increments ROIGrp_QComboBox selection

ROIGrp_2_prev_QPushButton_clicked()
Description: slot - decrements ROIGrp_QComboBox selection

Scripts_QColumnView_doubleClicked(index)
Description: slot for double click on script - executes selected python script

Signal_1_QComboBox_currentIndexChanged()
Description: slot: called when combo box selection is changed sets labels ...

Signal_1_next_QPushButton_clicked()
Description: slot - increments Signal_QComboBox selection

Signal_1_prev_QPushButton_clicked()
Description: slot - decrements Signal_QComboBox selection

Signal_2_QComboBox_currentIndexChanged()
Description: slot: called when combo box selection is changed sets labels ...
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Signal_2_next_QPushButton_clicked()
Description: slot - increments Signal_QComboBox selection

Signal_2_prev_QPushButton_clicked()
Description: slot - decrements Signal_QComboBox selection

Tx_1_QComboBox_currentIndexChanged()
Description: slot: called when combo box selection is changed sets labels ...

Tx_1_next_QPushButton_clicked()
Description: slot - increments Tx_QComboBox selection

Tx_1_prev_QPushButton_clicked()
Description: slot - decrements Tx_QComboBox selection

Tx_2_QComboBox_currentIndexChanged()
Description: slot: called when combo box selection is changed sets labels ...

Tx_2_next_QPushButton_clicked()
Description: slot - increments Tx_QComboBox selection

Tx_2_prev_QPushButton_clicked()
Description: slot - decrements Tx_QComboBox selection

Tx_QComboBox_currentIndexChanged()
Description: slot: called when combo box selection is changed sets labels ...

Tx_next_QPushButton_clicked()
Description: slot - increments Tx_QComboBox selection

Tx_prev_QPushButton_clicked()
Description: slot - decrements Tx_QComboBox selection

Util_Python_console_QAction_triggered()
Description: utilities menu action - bring up console

Util_ROI_group_colors_QAction_triggered()
Description: utilities menu action - bring up ROI color editor

Util_ROI_group_editor_QAction_triggered()
Description: utilities menu action - bring up ROI group editor

Util_Treatment_editor_QAction_triggered()
Description: utilities menu action - bring up treatment editor

add_signal()
Description: inititates dialogue to enter a new dose / volume metric (e.g. D95 / V20)

clear_msg()
Description: clears browser msg

clear_plot1_compare()
Description: clears all reference data settings (e.g. reference roi groups tx’s etc.)

clear_plot2_compare()
Description: clears all reference data settings for plot 2 (e.g. reference roi groups, tx’s etc.)

img_view_beams_ImgCheckBox_clicked()
Description: toggles beam display

img_view_dose_ImgCheckBox_clicked()
Description: toggles dose colorwash
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img_view_roi_ImgCheckBox_clicked()
Description: toggles display for all rois in all roi groups

objReport()
Description: prints primary trial objectives to file

popRoiGrpBoxes()
Descriptions: populates RoiGrp Comboboxes

popSignalBox1()
Descriptions: populates signal box associated with plot 1 - signal lists depend on selected roi group

popSignalBox2()
Descriptions: populates signal box associated with plot 2 - signal lists depend on selected roi group

popTxBoxes()
Description: populates all treatment comobo boxes from database

primaryROIgroup()
Description: script to set primary rois

refresh_form_db(txname=None)
Description: db dependent setup. called when new datebase is loaded to reinitiallize GUI.

refresh_form_tx()
Description: tx specific setup to be invoked anytime tx is changed.

setImageViewFx(tx, fx)
Description: changes the image and dose volume to those corresponding to treatment tx and fraction fx

setPlanningObjectives(fx)
Description: sets a standard group of planning objectives for fraction fx

set_cal_color(color)
Description: sets color to color for current treatment

set_msg(msg, mtype)

Description: displays browser message = msg with icon specified by mtype

Arguments: msg - str - message to display

mtype - str - icon to display: ‘warn’ or ‘info’

set_plot1_compare_dvh_roi_groups()
Description: opens dialog for plot 1 to set reference dvh roi groups

set_plot1_compare_roi_groups()
Description: opens dialog for plot 1 to set reference roi groups

set_plot1_compare_treatments()
Description: opens dialogue for plot 1 to set reference treatments

set_plot2_compare_dvh_roi_groups()
Description: opens dialog for plot 2 to set reference dvh roi groups

set_plot2_compare_roi_groups()
Description: opens dialog for plot 2 to set reference roi groups

set_plot2_compare_treatments()
Description: opens dialog for plot 2 to set reference treatments

set_roi_group_signals_from_plot1()
Description: opens dialog for plot 1 to set reference roi group signals
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set_roi_group_signals_from_plot2()
Description: opens dialog for plot 2 to set reference roi group signals

setupGUI()
Description: populates form icons and data

sig_to_slots()
Description: connects GUI signals to GUI class functions (slots)

standardROIgroups()
Description: script to set standar ROI groups

txReportDVHs()
Description: prints DVHs to file for all standard roi groups and treatments.

txReportImgs(txs)

Description: prints plan snapshot and DVHs to file

Arguments: txs - list - python list of treatment names

updateDataSummary()
Description: updates data table under the data tab

updatePlot(p, editor=False, save=None)

Description: plots data from from multiple tx’s and roigrps for a given signal

Arguments: p - int - plot index (1 or 2)

editor - bool - True brings up plot in external editor

save - str - full path of file to be saved if = None no file is saved

thb_mainwindow.get_signal_label(signal)
Description: returns a string containing the appropriate signal name and unit associated with signal signal

25



 

 99 

Appendix II 

Synthetic patient datasets for lung cancer radiotherapy research using principal 

component analysis. 



Synthetic patient datasets for lung cancer radiotherapy research using 

principal component analysis. 

Christian Dial*, B.Sc., Jeffrey V. Siebers†, Ph.D., Geoffrey D. Hugo*, Ph.D. 

*Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, 23298 

†Department of Radiation Oncology, University of Virginia, Charlottesville, VA, 22908 

 

Corresponding author 

Geoffrey D. Hugo, Ph.D. 

Department of Radiation Oncology 

Virginia Commonwealth University 

401 College Street 

PO Box 980058 

Richmond, VA 23298 

Phone: 804-628-3457 

Fax: 804-628-0271 

E-mail: gdhugo@vcu.edu 

 

Conflicts of interest 

The authors have no actual or potential conflicts of interest to disclose.  

 



Abstract 

Purpose: Present a method for sampling clinically relevant geometries that demonstrate temporal 

anatomical trends for use in radiation therapy research. 

Methods: Weekly images associated with the radiation treatment course of 13 non-small-cell cancer 

patients are each registered to the first in the series, and resulting displacement vectors are combined 

into a joint variation matrix.  Principal component analysis (PCA) of the matrix is performed resulting in 

a set of basis vectors and associated coefficients which may be used to reconstruct the original 

deformations.   A linear fit of temporally ordered coefficients is performed and fit-residuals are utilized 

to construct a patient-specific probability density function.  Coefficients that correspond to intermediate 

geometries are sampled by evaluating the fit and adding a random component from the patient-specific 

distribution; sampled coefficients are then utilized to generate intermediate deformations corresponding 

to each fraction of a radiation therapy schedule and used to deform the initial image and associated 

contours.  Synthetic datasets are validated by: 1) comparing regression trends in synthetic images to 

those reported in the literature for actual datasets, 2) comparing variation of relevant risk-structure 

contours (lungs, heart, esophagus, and spinal cord) in synthetic images to that observed in homologous 

structures warped using the original mappings, and 3) comparing the latter with physician drawn 

contours on the original datasets to demonstrate that they themselves are reasonable.  Differences are 

quantified dosimetrically in terms of cumulative dose-volume metrics, and geometrically in terms of the 

mean of minimum-surface-distance distributions (mean MSD).  

Results: For all risk-structures, 80% of all mean MSD differences between physician drawn contours 

and those warped with original mappings fell below 2mm.  For warped and synthetic contours, 95% of 

mean MSD differences were less than 2mm with 86% falling below 1mm.  Dosimetric differences 

between dose calculated on original images and that calculated on synthetic images were less than 5% 

for the majority of comparisons (89%).  Average gross tumor volume regression for synthetic datasets 

was 36.8% (11.8 – 76.4%), with average daily regression equal to 1.1%; these values are similar to those 

reported by others for in lung cancer. 



Conclusion: Synthetic datasets that demonstrate relevant temporal trends may be generated by sampling 

PCA coefficients using a linear fit of time-ordered coefficients and a patient-specific distribution of fit 

residuals.   

Key words 

Principal component analysis, synthetic dataset, tumor regression 

 

Introduction 

 Representations of intra- and inter-fraction anatomical variation are necessary in modern 

radiation therapy for quantifying dosimetric variation, specifying treatment margins, and informing new 

planning strategies such as adaptive radiation therapy.  However, it can be difficult to collect enough 

images to directly represent anatomical variability for a single patient or a population.  One way of 

simplifying this representation is by generating a low-dimensional statistical model based on a set of 

images from which synthetic geometries may be sampled. REFS  This approach was implemented by 

Söhn et al who used principal component analysis (PCA) to model inter-fraction variability in prostate 

cases, assuming an underlying Gaussian distribution, to examine the dosimetric consequences of 

geometric uncertainty.[1]  While this is appropriate in cases where variability is entirely stochastic and 

stationary, temporal trends in the data are not accurately modeled by this method.  In a study conducted 

by Badawi et al, PCA was used to retrospectively and prospectively reconstruct temporal trending data 

associated with a cohort of lung cancer patients to within several millimeters when three to four 

principal components were utilized;[2] however, a method for generating synthetic samples is not 

addressed.  

 A useful application of synthetic geometries that demonstrate temporal trends is in planning 

studies that adapt treatment to observed variation.  Periodic re-planning to accommodate regressing 

tumor volumes may decrease exposure to surrounding tissue or allow for isotoxic dose escalation.[3-6]  

One limit of such studies is the availability of datasets to characterize the anatomy of the day and 



examine the full potential of adaptive therapy.  Furthermore, cumulative measures of dose used to 

evaluate adaptive schedules are subject to mapping errors associated with image registration.  

 In this work we implement global statistical modeling of interfraction variability to produce 

synthetic CT datasets for each fraction of treatment that demonstrate temporal anatomical trends (e.g. 

tumor regression) and are consistent with an underlying mapping for use in adaptive radiotherapy 

planning studies. 

Methods 

Overview of methods 

 Statistical modeling of inter-fraction variability is accomplished using PCA to decompose 

observed variation into a basis set of transform vectors and a set of weighting coefficients which 

correspond to each input transform.  Resulting coefficients for each basis vector are plotted verses the 

elapsed time associated with the corresponding input transform and a linear fit is extracted.  Coefficients 

associated with arbitrary time-points are then generated by evaluating the fit at the desired time and  

sampling from a residual distribution generated using input residuals and kernel density estimation.  

This method preserves temporal trends in the sampling process and is utilized to generate a set of 

transforms, images, and contours associated with each fraction of treatment. 

Patient data 

Weekly fan beam CT scans, ranging from 4 – 7 per patient, are obtained throughout the course of 

a typical fractionation schedule for 13 non-small-cell lung cancer (NSCLC) patients undergoing 

definitive radiation therapy treatment.  Scans are acquired with a voxel size of 1.2 × 1.2 × 2.0 mm3 under 

active breathing control (ABC).[7]  Relevant structures are manually contoured on each weekly dataset 

by a qualified physician including: gross tumor, nodal involvement, spinal cord, lungs, heart, and 

esophagus. 

For each set of images for each patient, a bony alignment is performed and the first image in the 

series is registered to all subsequent images using the Demons deformable algorithm as implemented in 



the Pinnacle treatment planning system (Philips Oncology, Fitchburg, WI).  For each patient, a common 

region of interest and resolution are used for weekly registrations resulting in displacement vector fields 

(DVF) of the same size that contain data for homologous points in corresponding elements. 

PCA model of interfraction variation 

Each DVF containing m points is concatenated into a single vector p t( )  containing translations 

in the x, y, and z dimensions.  The n weekly DVFs for each patient are joined sequentially into a joint 

variation matrix V , 
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such that each row contains data for homologous points that are organized temporally from left to right.  

The matrix is then mean-corrected by subtracting the row means from each row. 

PCA is performed to decompose the joint variation matrix into a mean vector p  and a set of 

orthonormal basis vectors  q1,q2,…,qn{ } .  A weighted sum of the resulting basis vectors may be used to 

reconstruct a DVF associated with a given time-point as follows, 

 p t( ) = p + ci t( )qi ,
i=1

n

∑
 

( 2 ) 

where ci t( )  is the principal coefficient associated with basis vector i and time-point t defined as, 

 ci t( ) = p t( )− p( ) ⋅qi  
( 3 ) 

Synthetic datasets 

For each basis vector resulting from the analysis, associated principal coefficients for all weekly 

DVFs are plotted as a function of time and a linear fit of the data is performed.  Fit-residuals are used to 



construct a patient-specific probability density function f̂ x( )  via kernel density estimation according to 

the following equation:  

 
f̂ x( ) = 1

nh
K x − xi

h
⎛
⎝⎜

⎞
⎠⎟i=1

n

∑  
( 4 ) 

where xi is the ith fit residual, K is the kernel smoothing function, and h is a parameter known as the 

bandwidth which serves to scale the width of the kernel.  In estimating the residual distribution, a 

Gaussian kernel function is utilized in conjunction with a bandwidth parameter equal to the standard 

deviation of the fit residuals.  

After fitting coefficient data and estimating residual distributions, a set of coefficients associated 

with time-points corresponding to 35 fractions of a typical treatment regimen are produced by evaluating 

the linear fit at each time-point and adding a random component sampled from the associated 

distribution (example given in Fig. 1).  Resulting coefficients are used to generate synthetic DVFs 

according to Eq. (1), and a pseudo-inverse DVF is calculated as described by Yan et al. [8]  Pseudo-

inverse DVFs are used to warp the primary image and contours resulting in a synthetic image, a set of 

contours, and a DVF that are self consistent for each fraction.  

 

 

Fig. 1. Patient 6 PCA coefficients associated with 2nd eigenvector.  A linear fit of original PCA coefficients (circle marker) is 
calculated, PCA coefficients associated with intermediate time points are extracted by evaluating the line at the given time-point and 
sampling a residual from a patient specific PDF constructed using kernel density estimation. 



Validation of synthetic datasets 

In utilizing synthetic datasets in planning studies and other applications it is important that 

synthetic data represent reasonable poses of patient anatomy, and that time trends be both realistic and 

clinically relevant.  For each risk structure (lungs, heart, esophagus, and spinal cord), deformation over 

the course of treatment is characterized by calculating minimum surface distances (MSD) between 

primary and subsequent contours and is used to validate synthetic datasets.  For each point x in primary 

contour X, MSDx is defined as  

 MSDx = min d(x, y) | y∈Y{ } , ( 5 ) 

where  is the Euclidean distance between points x and y, and Y is the contour being compared.  

Each contour comparison results in a distribution of MSDs that are combined to create a composite 

distribution for each structure and sequence of images.  The mean MSD of the composite distribution for 

each patient and risk structure is then calculated on: 1) manually drawn physician contours on weekly 

imagesets (manual); 2) warped contours propagated using weekly registrations (warped); and 3) warped 

contours propagated using synthetic DVFs generated using PCA modeling (synthetic).   

Sampled anatomies are expected to vary from observed instances in statistically meaningful 

ways thus comparisons between individual images may not be used to validate synthetic datasets.  The 

mean MSD is a single metric that is used to characterize deformation over the entire course of treatment 

and is expected to be similar between synthetic and actual contours for a given risk structure. 

Synthetic datasets are validated by evaluating the difference between warped and synthetic mean 

MSDs.  Similarity in the magnitude of deformation over the course of treatment suggests that the 

synthetic datasets approximate actual anatomy in relevant poses under the assumption that warped 

datasets are themselves reasonable.  The latter is determined by carrying out a similar analysis between 

manual and warped mean MSDs for each patient and risk structure.  This analysis is an evaluation of the 

quality of the initial registrations upon which statistical sampling is based and utilizes physician 

contours as a gold-standard.  While accuracy of the employed deformation algorithm is not a primary 

d(x, y)



objective of this study, mean MSD comparisons are intended to reveal large failures in weekly 

registrations and to determine if resulting warped contours are reasonable. 

  In addition to geometric comparisons based on MSDs, dose based metrics between warped and 

synthetic datasets are reported to facilitate an acceptance criteria by articulating differences in terms of 

clinically relevant deviations in dose volume histograms (DVH).  Intensity modulated radiation therapy 

(IMRT) plans are developed for each patient on the primary image according to planning criteria 

specified in RTOG protocol 0839.  Dose is calculated on all warped and synthetic images, and is warped 

back to the primary imageset.  Differences between warped and synthetic data in the percent volume of 

lung receiving at least 20Gy (V20), the percent volume of heart receiving at least 45Gy (V45), the dose 

received by 2% of the cord volume (D2), and the mean dose received by the esophagus are reported.   

Results 

Manual and warped mean MSD comparison 

 Mean MSD differences between manual and warped contours for each patient and risk structure 

are summarized in Fig. 2.  The majority of structures demonstrated similar magnitudes of deformation 

over the course of treatment, with 80% of all mean MSD differences falling below 2mm.  The largest 

deviations were associated with physician contours that resided in low contrast regions with no one 

structure exhibiting large differences over the entire patient population. 

Synthetic and warped mean MSD comparison 

Differences between mean MSDs for warped and synthetic contours are reported in Fig. 3 and 

demonstrate good agreement in the magnitude of deformation observed; 95% of mean MSD differences 

are less than 2mm with 86% falling below 1mm for all contours.  The two patients exhibiting the largest 

deviations between warped and synthetic MSDs also demonstrated the largest amount of variation in 

warped contour geometry resulting in a wider sampling distribution. 



 

 

Dose comparisons 

Comparison of cumulative dose metrics between warped and synthetic datasets are summarized 

in Fig. 4, and DVHs for patients with the best and worst dosimetric agreement are illustrated in Fig. 5.  

Fig. 2. Mean MSD differences between physician-drawn (manual) contours and those 
warped with weekly registrations. 

Fig. 3. Mean MSD differences between warped and synthetic contours for each patient and 
risk structure. 



89% of dose-metric differences were less than 5% for all structures; the worst agreement over all 

contours for a single patient was found in the patient with the largest geometric variation.  

   

Fig. 4. Percent difference for lung V20, heart V45, cord D2, and esophagus mean dose between warped and synthetic contours. 

 

Fig. 5. Dose volume histograms associated with warped (solid) and synthetic (dotted) risk structures for patient 18 (left - demonstrated 
worst agreement) and patient 20 (right - demonstrated best agreement).  Plotted structures include: ipsa- and contra-lateral lung (blue), 
heart (red), cord (orange), and esophagus (purple).  

Volume regression 

 Percent of original gross tumor volume as a function of treatment fraction is reported in Fig. 6.  

The mean decrease over the course of treatment for all patients was 36.8% (11.8 – 76.4%), and average 

daily regression was 1.1%.  These values are consistent with those reported by others for lung (Table 1).  



 

Table 1. Average percent decrease in GTV volumes as reported in the literature. 

Absolute gross tumor volume as measured on the primary image had a median value of 53.2 cm3 for all 

patients and ranged between 0.6 – 377.3 cm3, with the smallest absolute tumor volume demonstrating 

the largest percent variation over treatment.   

 

Fig. 6. Percent gross tumor volumes as a function of treatment fraction for synthetic datasets. 

Discussion 

 To the knowledge of the authors, using a linear fit of time-ordered PCA coefficients to sample 

synthetic DVFs from a patient-specific PDF of fit residuals represents a novel method of generating 

clinically relevant anatomies that demonstrate temporal trends.  Using this method, a set of self-

GROSS TUMOR VOLUME REGRESSION 
author % decrease 

in GTV 
range 

Woodford et. al. 38% 12-87% 

Kupelian et. al. 42% 8-71% 

van Zwienen et. al.  37% - 

 



consistent contours, images, and mappings to the primary image, are generated for each fraction in a 

typical treatment regimen and are intended to be utilized in virtual trials of adaptive radiotherapy. 

Clinical relevance was validated by comparing synthetic contours to warped weekly contours, 

and warped weekly contours to weekly physician contours, to determine if synthetic data represents 

reasonable poses of patient anatomy.  Mean MSDs of a composite distribution for each structure, made 

up of MSD distributions calculated between the primary and all subsequent contours, were used to 

characterize deformation over the entire treatment course.  Comparison of distributions of contours via 

mean MSDs as opposed to direct comparisons between individual contours was preferred to assess the 

criteria of creating reasonable poses of patient anatomy verses the same poses as observed in reference 

images.  All synthetic contours exhibited similar magnitudes of interfraction variation to that observed 

in warped weekly contours (mean MSD differences < 2mm for 95%) suggesting that the synthetic 

datasets are indeed reasonable.   

While accuracy of weekly registrations was not a primary objective of this study, comparison 

between warped and manual contours were performed to verify that weekly warped datasets were 

themselves adequate representations of patient anatomy.  This was necessary because weekly warped 

data was used to validate synthetic datasets; furthermore, the comparison served as a quality assurance 

measure of registrations that were input to the PCA model.  Though a direct comparison between 

synthetic and manual contours could have been made, stepwise comparisons (i.e. comparing manual to 

warped and then warped to synthetic) distinguishes between variation due to the statistical model and 

that due to discrepancies between clinical judgment and image registration.  Mean MSD differences 

between warped and manual contours were less than 2mm for 80% of comparisons, and the largest 

discrepancies were observed in contours that resided in low contrast regions where inter-observer 

variation in physician-drawn contours and registration uncertainties are likely.     

Additionally, cumulative dose to risk structures on both warped and synthetic datasets were 

compared under the assumption that similar dose distributions should result over the course of treatment.  

This comparison provided a more clinically relevant metric for determining the suitability of synthetic 



images.  Dosimetric differences were likewise reasonable with 89% of comparisons differing by less 

than 5%.  The greatest discrepancies were observed in the cord metric (D2) due to the shallow slope in 

the region of variation; however, dose volume histograms associated with the cord were visually very 

similar. 

Average total and daily volume regression of the gross tumor in synthetic datasets was similar to 

that reported by others in the literature.  Simulated tumor regression for the majority of patients was 

linear after the first fraction (primary image) with a sometimes dramatic initial deformation (Fig 6).  

This larger change reflects a discrepancy between modeled and actual data that results from using a 

linear fit in the sampling of PCA coefficients and the primary image to represent the first fraction of 

treatment.  The implicit assumption is that temporal trends are stable over treatment which may not be 

true of all patients and thus the primary image may not coincide with the synthetic model.  A further 

limitation associated with imposed linearity, and the fact that synthetic images are deformed instances of 

the primary image, is that acute patho-anatomical change (e.g. development or resolution of atelectasis) 

is not easily incorporated into the model.  Large systematic discrepancies between the planning and on-

treatment images may be mitigated by excluding the former and sampling an additional time-point; 

however, existing mappings are between the primary image and all synthetic datasets, thus self-

consistent mappings are lost.  If observed in actual patient datasets, acute patho-anatomical change may 

potentially be incorporated into the synthetic model by splitting the data into pre and post groups for 

individual modeling and then joining the resulting sequences of data; however, this strategy was not 

implemented here. 

A final limitation associated with registration uncertainties in the cranial and caudal extents of 

the image resulted in artifacts in the same regions of the synthetic imagesets.  For all synthetic models in 

this study, image artifacts fell outside dose-grid regions constructed to contain the whole of the lungs 

and other relevant risk structures, thus the impact on planning is likely to be negligible.  

Statistical modeling of interfraction variation using PCA was first suggested by Sohn et. al. and 

has been utilized by various authors to predict cumulative dose, evaluate margin adequacy, or construct 



margins based on coverage probabilities, in the context of geometrical uncertainty; however, statistical 

sampling of PCA coefficients for generating synthetic anatomies implicitly negates temporal trends in 

the data though such trends may be present and relevant.  A PCA model that incorporates temporal 

trends has been demonstrated by Badawi et. al, though the purpose was to evaluate the ability of the low 

dimensional model to reconstruct instances of anatomy as opposed to sampling probable poses 

unobserved in the initial data.  In this work we present a method for sampling statistically likely 

anatomies that preserve temporal trends by performing a linear fit of ordered coefficients and 

constructing a patient-specific PDF from fit residuals.  Previous studies that utilize PCA typically 

analyze variation in a subset of points associated with contour surfaces; in this study we perform PCA of 

the entire deformation field to sample global DVFs for deforming images and contours with the intent of 

creating complete synthetic datasets for virtual trials of adaptive radiotherapy in lung cancer.    

Conclusion 

 Synthetic datasets that demonstrate relevant temporal trends may be generated by sampling PCA 

coefficients using a linear fit of time-ordered coefficients and a patient-specific distribution of fit 

residuals.  Sampled datasets consist of self-consistent images, contours, and mappings that are suitable 

for virtual trials of adaptive radiation therapy.  
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Abstract 

Purpose: To quantify the potential benefit associated with daily replanning in lung cancer in 

terms of normal tissue dose sparing, and to characterize the tradeoff between adaptive benefit 

and replanning frequency.   

Methods: A set of synthetic images and contours derived from weekly images of 12 patients 

undergoing radiation therapy treatment for non-small cell lung cancer (NSCLC) are generated 

for each fraction of treatment using principal component analysis (PCA) in a way that preserves 

temporal anatomical trends (e.g. tumor regression).  Daily synthetic images and contours are 

used to simulate 4 different treatment scenarios: 1) a “no-adapt” scenario that simulates delivery 

of an initial plan throughout treatment, 2) a “mid-adapt” scenario that implements a single re-

plan for fraction 18, 3) a “weekly-adapt” scenario that simulates weekly adaptations, and 4) a 

“full-adapt” scenario that simulates daily replanning.  An initial intensity modulated radiation 

therapy (IMRT) plan is created for each patient, and replanning is carried out in an automated 

fashion by re-optimizing beam apertures and weights.  Dose is calculated on each image and 

accumulated to the first in the series using deformable mappings utilized in synthetic image 

creation for comparison between simulated treatments.  

Results: Target coverage was maintained and cord tolerance was not exceeded for any of the 

adaptive simulations.  Average reductions in mean lung dose and volume of lung receiving 20 

Gy or more (V20lung) were 65 ± 49 cGy (p=0.00001) and 1.1 ± 1.2% (p=0.0006) respectively for 

all patients.  The largest reduction in mean lung dose for a single patient was 162 cGy which 

allowed an isotoxic escalation of target dose of 1668 cGy.  Average reductions in cord max dose, 

mean esophageal dose, dose received by 66 percent of the heart (D66heart), and dose received by 

33 percent of the heart (D33heart), were 158 ± 280 cGy, 117 ± 121 cGy, 37 ± 77 cGy, and 99 ± 

120 cGy respectively.  Average incremental reductions in mean lung dose for the mid-adapt, 

weekly-adapt, and full-adapt treatments were 38 cGy, 18 cGy, and 8 cGy respectively.  

Incremental reductions in mean esophageal dose for the same treatments were 57 cGy, 37 cGy, 



and 23 cGy.  Reductions in mean lung dose and mean esophageal dose for the full-adapt 

treatment were correlated with the absolute decrease in the planning target volume (r=0.34 and r 

= 0.26).   

Conclusion: Adaptive radiation therapy for lung cancer yields clinically relevant reductions in 

normal tissue doses for frequencies of adaptation ranging from a single replan up to daily 

replanning.  Increased frequencies of adaptation result in additional benefit while magnitude of 

benefit decreases.  

 

Key words 

Non-small-cell lung cancer, adaptive radiation therapy, tumor regression 

 

Introduction 

 Lung cancer is one of the leading causes of death for both men and women with 

approximately 570,000 deaths reported for the year 2009 in the United States.[1]  For the year 

2013, The American Cancer Society estimated approximately 580,000 cancer related deaths and 

projected nearly 230,000 of those to be associated with lung cancer making it the number one 

cause of cancer-related death.[2]  Radiotherapy is a mainstay of treatment and is the preferred 

modality for approximately 40% of newly diagnosed patients;[3] however, prognosis is poor for 

those receiving radiation therapy with 5 year survival around 17% as reported by The National 

Cancer Institute.[4] 

 Local control and survival have been shown to improve with increased doses,[5,6] but for 

many patients deliverable dose is limited by associated normal tissue toxicity.  Thus, strategies 

that limit normal tissue exposure while allowing isotoxic escalation of the prescription dose are 

desirable.  



 Re-planning to accommodate inter-fraction variation in lung cancer (i.e. regression of the 

gross tumor volume) to reduce treatment margins and allow for dose escalation has been 

investigated by various authors.[7-10]  These works implement various replanning schedules 

ranging from single to weekly adaptations and demonstrate a patient-specific benefit for adaptive 

plans in the context of tumor regression.  While a variety of schedules have been implemented 

by the respective authors, systematic comparisons between schedules of varying adaptive 

frequency have not been performed; furthermore, the nature of tradeoff between replanning 

frequency and adaptive benefit is not understood.  A final limitation of current studies is that 

they implement at most weekly adaptation, thus the benefit associated with daily replanning 

remains unclears.  

 The purpose of this work is to quantify the benefit associated with various frequencies of 

adaptation, up to daily replanning, for a cohort of lung cancer patients, and to characterize the 

tradeoff between adaptive benefit and replanning frequency.  

Methods 

  Four treatment schedules that implement different frequencies of replanning are 

simulated for a group of lung cancer patients.  Simulations are based on a set of synthetic images 

and contours that are deformed instances of the first in a sequence of weekly images, and are 

generated using principal component analysis (PCA).  Daily synthetic images are used for 

simulated re-planning and daily dose calculation after which dose is accumulated back to the first 

image for comparison of simulated schedules.   

Synthetic datasets 

Generation of synthetic datasets for each fraction of treatment from an existing sequence 

of temporally ordered images has been described previously. (REF to PCA paper)  Briefly, 

deformable registrations between the first and all subsequent images in a temporally ordered set 

result in a set of mappings that effectively track variation.  Displacement vector fields (DVF) that 



contain translations in the x, y, and z directions are reshaped into a single column vector and 

concatenated into a joint variation matrix with homologous points residing along rows of the 

matrix.  After mean-correcting the matrix by subtracting the row means from each row, the 

matrix is decomposed into a set of basis vectors and weighting coefficients using PCA.  

Synthetic weighting coefficients for each basis vector are generated for arbitrary time-points by 

evaluating a linear fit of coefficients associated with existing images and adding a random 

portion sampled from a patient-specific distribution of fit residuals approximated using kernel 

density estimation.  Sampling in this fashion preserves temporal trends in the data (e.g. tumor 

regression) and resulting coefficients are utilized to create synthetic DVFs associated with 

desired time-points.  A pseudo-inverse DVF is generated as described by Yan et al.[11] and is 

used to deform the first image in the series along with associated contours. 

Synthetic datasets generated in this work are based on an existing set of patient data 

corresponding to 12 non-small-cell lung cancer (NSCLC) patients undergoing external beam 

radiation therapy for stage II and III disease; patient characteristics are summarized in Table 1.  

For each patient 4 – 6 weekly helical CTs were obtained under an active breathing control (ABC) 

protocol to minimize respiratory motion, and structures of interest were delineated by a qualified 

physician including: gross tumor volume (GTV), lungs, spinal cord, heart, and esophagus.  

Registrations between weekly images utilized in the PCA analysis were performed using the 

Demons algorithm as implemented in the Pinnacle treatment planning system (Philips Oncology, 

Fitchburg, WI). 



 

Table 1.  Patient characteristics of 12 non-small-cell lung cancer patients used to generate a set of synthetic datasets.  LUL 
= left upper lobe; LLL = left lower lobe; RUL = right upper lobe; RLL = right lower lobe; RML  = right middle lobe. 

 PCA analysis and synthetic data generation resulted in a set of self-consistent images, 

contours, and mappings, corresponding to each fraction in a typical 35 fraction schedule.  For 

patients with delineated nodal volumes, two sets of simulations were carried out, the first of 

which excluded nodal targets and the second of which included them; simulations that included 

nodal volumes are referenced by appending an “N” to the patient identifier.  For the single 

patient that presented with bilateral tumors, treatments are derived based on each tumor 

separately.  This process resulted in 20 different sets of target contours based on 12 sequences of 

synthetic images for use in treatment simulations.   

Planning 

Intensity modulated radiation therapy (IMRT) plans are developed for each patient and 

target based on a synthetic image corresponding to the first fraction.  Planning assumed breath-

hold and image guidance throughout treatment to limit geometric uncertainty associated with 

respiratory motion and patient setup.  A margin of 5 mm was implemented to account for sub-

clinical disease, and PTV margins of 7mm in the superior-inferior direction, and 5mm in the 

axial plane, were utilized as recommended in radiation therapy oncology group (RTOG) protocol 

0839 for plans that implement breath-hold and image guidance. 

 After construction of target volumes, 5 – 8 coplanar beams were arranged around the 

patient in a manner as to avoid directly traversing risk structures when possible.  Nominal beam 

energy was set to 6MV and beams were prescribed to a dose of 66 Gy.  

PATIENT CHARACTERISTICS 

patient stage location nodes tumor vol 
(cc) 

 
patient stage location nodes tumor vol 

(cc) 
           

1 IIIA LUL Y 24  9 IIIA RUL Y 40 
3 IIIB Bilateral Y 100  14 IIIA RML Y 34 
4 IIB LLL N 65  17 IIIA RUL Y 216 
5 IIIB RUL Y 1  18 IIIB RUL N 58 
6 IIIA RLL N 242  20 NA LLL Y 47 
8 IIB RUL N 11  21 NA LUL N 86 

 



A simplified set of IMRT objectives are utilized in plan optimization that focus on target 

coverage and dose conformality as opposed to implementing individual objectives for each risk 

structure.  A 2 cm thick “rind” region of interest (ROI) beginning 2 mm from the surface of the 

PTV was utilized to suppress dose to surrounding risk structures and guide the optimization to a 

conformal solution.  Plans were deemed acceptable if they met criteria associated with PTV 

coverage and if cord tolerance was not exceeded.  Specifically, minimum dose to any volume 

associated with the PTV of at least 0.03 cc in magnitude (PTV min dose) was not to fall below 

95% of the prescription dose, 95% of the PTV dose (D95PTV) was to be greater than or equal to 

the prescription, and max dose to any volume of 0.03 cc associated with the spinal cord (cord 

max dose) was not to exceed 50.5 Gy.  In cases where spinal cord tolerances were exceeded, an 

additional constraint was added to the set of objectives and an additional optimization was 

carried out.  Additional criteria were considered in plan evaluation but were allowed to vary 

within clinical judgment; a summary of normal tissue planning criteria utilized in this work is 

given in Table 2. 

 

Table 2.  Plan criteria associated with risk structures.  * Plans not meeting this criteria were not deemed acceptable. 

Treatment simulation 

 Treatment simulations for each of the four adaptation schedules and patients are carried 

out in an automated fashion using a research version of the Pinnacle treatment planning system 

(TPS).  Simulated treatments include: 1) a “no-adapt” treatment for which the initial plan is 

delivered throughout the treatment course; 2) a “mid-adapt” treatment that implements 

NORMAL TISSUE PLAN CRITERIA 

ROI metric value  

    

cord max dose 5050 cGy * 

lungs mean dose 2000 cGy  

lungs V20 37%  

esophagus mean dose 4000 cGy  

heart max dose to 1/3 of volume 6000 cGy  

heart max dose to 2/3 of volume 4500 cGy  

 



replanning a single time for fraction 18; 3) a “weekly-adapt” treatment that implements 

replanning for fractions 6, 11, 16, 21, 26, and 31; and 4) a “full-adapt” treatment that implements 

daily replanning for each fraction. 

Initial beam angles are held constant throughout treatment, and re-planning is carried out 

for adaptive fractions by re-optimizing beam apertures and monitor units (MU) using the same 

set of objectives and weights implemented in the initial plan; the latter is important to ensure that 

benefit is due to anatomical variability and not to a re-appropriation of objective weights.  For 

non-adaptive fractions, the most recent plan (i.e. configuration of beam apertures and MUs) is 

transferred to the corresponding fraction image, and dose is recalculated on the same.  In all 

cases, the beam isocenter is set to the centroid of the propagated clinical treatment volume 

(CTV) simulating a soft-tissue image-guided setup.   

After simulation, dose is accumulated from each fraction to the first image in the series 

using the pseudo-inverse of the same DVF utilized in synthetic image creation. 

Adaptive benefit 

 Benefit in this study is primarily quantified in terms of reductions in planning metrics 

associated with dose to lungs though changes are also reported for cord, esophagus, and heart.  

Comparisons are made between full-adapt and no-adapt treatments along with incremental 

comparisons of each of the three adaptive treatments to the treatment implementing the next 

lowest amount of re-plans, e.g. the full-adapt treatment is compared to the weekly-adapt, and the 

weekly-adapt simulation is compared to the mid-adapt treatment.  To ensure that perceived 

benefits do not come at the expense of plan acceptability criteria, coverage of the CTV, and 

spinal cord tolerances, are first evaluated for all simulated treatments.   

 Isotoxic dose escalation afforded by achieved reductions are estimated by scaling dose 

distributions for the full-adapt treatment until MLD matches that of the no-adapt plan.  

Differences between the full-adapt cumulative target dose and scaled full-adapt cumulative target 

dose are reported. 



Statistical analysis 

 Paired t-tests are calculated for all inter-treatment dose-metric comparisons.  As a 

conservative measure to control for the familywise error rate associated with multiple 

comparisons, a Bonferroni correction is utilized.  Briefly, when carrying out multiple 

comparisons, the probability of committing a type I error increases with the amount of 

comparisons.  The Bonferroni correction entails using a statistical significance of α / n  for each 

test where n is the number of comparisons.   

Results 

Plan acceptance 

Plan acceptance criteria associated with target coverage and spinal cord tolerance for the 

initial plan was maintained for all patients and simulations.  D95CTV was greater than or equal to 

the prescription dose of 66 Gy with percent changes from the no-adapt simulation equal to 0.4 ± 

1.4%, 0.4 ± 1.0%, and 0.4 ± 1.0% for the full-adapt, weekly-adapt, and mid-adapt treatments 

respectively.  Mean CTV min dose was 65 ± 3 Gy for the no-adapt simulations and was 66 ± 2 

Gy for each of the adaptive treatments.  Spinal cord tolerance of 50.5 Gy was initially exceeded 

for four patients using the simplified objective scheme but was brought within range after adding 

an additional optimizer constraint for these patients to account for cord dose directly. 

Differences between no-adapt and full-adapt normal-tissue dose metrics are listed for all 

patients in Table 3.  A maximum decrease in mean lung dose of −162 cGy was observed with an 

average decrease of −65 cGy over the patient population.  V20 showed little variation between 

no-adapt and full-adapt simulations ranging between −2.96% and 1.06% with a mean decrease of 

−1.1%.  Average change in mean esophageal dose was −117 cGy with a maximum decrease of 

−415 cGy, and average decreases of −37 cGy and −99 cGy were observed for heart D66 and D33 

respectively.  Differences between reported metrics for full-adapt and no-adapt simulations were 



statistically significant using the Bonferroni criterion (p < 0.008) for mean lung dose, lung V20, 

mean esophageal dose, and heart D33. 

 

Table 3.  Absolute changes in full-adapt normal-tissue dose metrics compared to the no-adapt simulation.  Average 
changes are listed below along with p-values resulting from paired t-tests comparing full-adapt and no-adapt metrics.  

 Benefit associated with re-planning at different frequencies is illustrated for each normal 

tissue metric in Fig. 1.  Comparisons of adaptive simulations to next treatments of lower 

replanning frequency (i.e. full-adapt to weekly-adapt, weekly-adapt to mid-adapt, and mid-adapt 

to no-adapt) are listed in Table 4.  Statistically significant differences between all adaptive 

schedules and the no-adapt simulation were observed for mean lung dose, and lung V20.   

PATIENT CHANGES IN NORMAL TISSUE DOSES FOR FULL-ADAPT TREATMENT 

 cord max 
(cGy) 

mean lung 
dose (cGy) 

lung V20 
(% vol) 

mean esophagus 
dose (cGy) 

heart D66 
(cGy) 

heart D33 
(cGy) 

PT1 40  -48 -1.39 -415 -2 -3 
PT1N 132  -20 -0.61 -111 1 -1 
PT3L 259  -69 -1.12 -106 -3 -54 

PT3LN -560  -6 -0.15 -68 -5 -151 
PT3R -188  -106 -2.01 -128 -9 -128 

PT3RN -77  -117 -2.29 -55 -16 -320 
PT4 -243  -37 0.69 -72 -43 -148 
PT5 119  14 0.27 -2 0 0 
PT6 -325  -43 -0.44 -144 -337 -280 
PT8 -656  -162 -2.76 -186 -17 -49 
PT9 -250  -115 -2.96 -2 -2 -22 

PT9N -231  -80 -0.7 66 1 12 
PT14 -187  -92 -1.96 -159 -104 -170 

PT14N -91  -37 -0.7 -15 0 38 
PT17 -8  -54 1.06 -294 -27 -80 

PT17N -656  -100 -1.72 -253 -14 -54 
PT18 65  8 0 26 15 69 
PT20 311  10 0.05 1 -7 -7 

PT20N -363  -64 -2.43 -231 -39 -104 
PT21 104  -106 -2.22 -47 -87 -367 

mean change -158 -65 -1.1 -117 -37 -99 
p 0.04 0.00001 0.0006 0.0005 0.05 0.002 

 



 

Fig. 1.  Distributions of changes in normal-tissue dose metrics compared to the no-adapt simulation for mid-adapt, 
weekly-adapt, and full-adapt treatments.  Increases in planning frequency resulted in further reductions of dose for the 
majority of structures. *Differences between adaptive simulations and no-adapt treatment statistically significant using 
Bonferroni criteria (p < 0.008). 

�1



 

 

Table 4.  Incremental differences between dose metric averages for adaptive schedules and treatments of next lowest 
replanning frequency (e.g. full-adapt and weekly-adapt).  Associated p-values resulting from paired t-tests listed to the 
right of each comparison.  

The relationship between absolute decreases in PTV volume and decreases in both mean 

lung dose and mean esophageal dose are illustrated in Fig. 2; Pearson correlation coefficients 

were 0.34 and 0.26 for each comparison respectively.  

 

Fig. 2  Correlation of absolute changes in PTV volume with changes in both mean lung dose (a) and mean esophageal dose 
(b) as observed in the full-adapt treatment simulation.  Decreases in PTV volume were moderately correlated with 
reductions in both metrics; Pearson correlation coefficients (r) listed in upper left of each plot.   

Isotoxic escalation of dose resulted in average increases in CTV D95 of 294 (0 - 1304)  

cGy, 381 (10 - 1593) cGy, and 441 (31 – 1668) cGy for the mid-adapt, weekly-adapt, and full-

adapt simulations respectively.  

�1

AVERAGE CHANGE IN NORMAL TISSUE DOSE 

 mid – no p weekly – mid p full – weekly p 
cord max -52 cGy 0.3 -104 cGy 0.01 -1 cGy 0.9 

mean lung dose -38 cGy 0.0001 -18 cGy 0.002 -8 cGy 0.03 
lung V20 -0.68% 0.004 -0.37% 0.006 -0.09% 0.4 

mean esophagus dose -57 cGy 0.03 -37 cGy 0.02 -23 cGy 0.01 
heart D66 -7 cGy 0.09 -25 cGy 0.1 -5 cGy 0.2 
heart D33 -49 cGy 0.09 -45 cGy 0.03 -5 cGy 0.4 

 



Discussion 

 In this work we utilized a set of daily synthetic lung images and contours that exhibited 

temporal anatomical trends (e.g. tumor regression) to simulate different adaptive schedules with 

the objective of quantifying the benefit of a full-adapt treatment in lung cancer and to 

characterize the relationship between adaptive benefit and replanning frequency. 

 Daily adaptation to regressing tumor volumes yielded statistically significant reductions 

in dose for all reported averages of normal-tissue metrics considered in this work; however, 

reductions were not realized for all patients, reinforcing the notion that benefit associated with 

adaptation is ultimately patient dependent.  For the three patients (PT5, PT18, and PT20) 

exhibiting no reduction in mean lung dose as a result of daily adaptation, two had PTVs that did 

not decrease in volume over the course of treatment; the third exhibited an overall decrease in 

PTV with an initial pattern of regression followed by a period of increasing volume around 

fraction 22.   

 Using an isotoxic criteria based on mean lung dose, average allowable dose escalation 

was 441 cGy for the full-adapt plan, without exceeding cord tolerances, resulting from an 

average decrease in mean lung dose of 5%; a maximum escalation of 17 Gy was achieved for a 

single patient.  In a study consisting of 12 patients that implemented replanning twice at weeks 3 

and 5, Guckenberger et. al. reported an average escalation of 7 Gy based on a reduction in mean 

lung dose of approximately 8%[9]  In another study which adapted at weeks 2 and 4 conducted by 

Weiss et. al, an average increase of 13.4 Gy with a maximum of 23.4 Gy was achieved.[10]  These 

values are larger than those reported here for daily adaptation; differences may be attributed to 

volumes used to estimate escalation i.e. in this work dose was escalated to the CTV as opposed 

to primary tumor. 

Incremental reductions in all average dose metrics were observed with each increase in 

replanning frequency (Table 4); however, the magnitude of each reduction decreased with each 

step.  For mean lung dose, 60% of the average total reduction that resulted from the full-adapt 



plan was realized after a single mid-treatment adaptation, and 88% was realized using weekly 

adaptation.  For mean esophageal dose, 50% of benefit was achieved with a single mid-treatment 

adaptation, and 80% was realized after weekly adaptation.  Average increases in allowable target 

dose as a function of replanning frequency are summarized in Fig. 3.  Approximately 65% of the 

potential dose escalation was achievable with a single mid-treatment adaptation, and about 85% 

was achievable with weekly adaptation.  The last 15% of the reported average benefit is 

associated with a 6 fold increase in workload over weekly replanning which itself represents a 

large increase in cost over a single adaptation.  Considerations of this sort suggest that the 

workload associated with daily adaptation outweighs additional benefit, and weekly adaptation 

would be most favorable for the majority of patients.  However, as the workload associated with 

planning decreases through the development of automatic methods, daily replanning may be 

justified.   

  

Fig. 3 Percent of potential benefit (i.e. allowable dose to target) as a function of replanning frequency.  On average, 65% 
of benefit was achieved with a single mid-treatment adaptation, and 85% was realized after weekly adaptation.  

Due to the sampling method employed in the generation of synthetic datasets, trends of 

variation were devoid of large acute change which represents an important limitation of the study.  

In this work we simulated replanning at regular intervals; however, such a method is ultimately 

naïve and acute variation may warrant a more tailored approach.   



Though correlation was modest, reductions in both mean lung dose and mean esophageal 

dose were related to the absolute change in PTV (rMLD=0.34 and rMED=0.26).  Additional 

correlations of adaptive benefit were investigated including nodal status and size of the initial 

PTV, however, no relationship was observed.  Ultimately, the small sample size prevented a 

systematic evaluation of benefit versus patient characteristics; however, the methods employed 

in this work could be used to carry out such investigations.  Enumerating and articulating patient 

characteristics related to adaptive benefit will be the work of future studies. 

Conclusion 

Daily adaptation in lung cancer radiotherapy produced significant reductions in normal-

tissue dose metrics which allowed clinically relevant increases in target dose using an isotoxic 

mean lung dose criteria.  Normal-tissue dose sparing was likewise observed for a single mid-

treatment adaptation and weekly replanning when compared to a no-adapt simulation.  

Incremental reductions were realized for mean lung dose and mean esophageal dose with each 

increase in replanning frequency while magnitude of each reduction decreased.  
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Appendix IV 

Absolute volume measurements of synthetic gross, clinical, and planning target 

volumes associated with each fraction of treatment.  

 

 

GTV: gross tumor volume (blue) 

CTV: clinical target volume (green) 

PTV: planning target volume (maroon)  
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Appendix V 

Composite distributions of minimum surface distances calculated between 

contours propagated using original and synthetic displacement vector fields for 

cord, esophagus, heart, and lung contours. 
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Appendix VI 

Adaptive therapy study additional data: dose volume histograms 
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