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Deformable image registration (DIR) is an essential tool in medical image processing. It 

provides a means to combine image datasets, allowing for intra-subject, inter-subject, multi-

modality, and multi-instance analysis, as well as motion detection and compensation. One of the 

most popular DIR algorithms models the displacement vector field (DVF) as B-splines, a sum of 

piecewise polynomials with coefficients that enable local shape control. B-splines have many 

advantageous properties in the context of DIR, but they often struggle to adequately model steep 

local gradients and discontinuities. This dissertation addresses that limitation by proposing the 

replacement of conventional B-splines with a generalized formulation known as a Non-Uniform 

Rational B-Splines (NURBS). Beginning with the 1D fitting, heuristic rules are developed to 

determine the values of the additional free parameters introduced by NURBS. These rules are 

subsequently modified and extended to the 2D and 3D fitting of anonymized and publicly 

available patient DVFs. Based on the lessons learned from these increasingly complex test cases, 

a 2D DIR scheme is developed and tested on slices from a thoracic computed tomography (CT) 

scan. Finally, an automatic, non-uniform scheme is presented, and its registration performance is 

compared to the conventional uniform methods.



 

 

1. Introduction 

 

1.1 Background and Significance 

Over the last two decades, the use of advanced diagnostic imaging techniques has proliferated in 

the field of medicine, with evidence suggesting an acceleration of the trend [Smith-Bindman et 

al, 2012]. The ability to visualize 3D anatomical and functional information can improve the 

quality and accuracy of clinical treatments and interventions [Brock, 2003]. To fully exploit the 

additional information provided by these images requires methods to analyze the digital data. 

While this can be time consuming for physicians, modern computational systems make it both 

possible and preferable to develop automatic methods for image analysis. One tool essential to 

accomplishing this goal is image registration, which provides a means of combining and 

comparing image datasets [Hill. 2001]. 

This thesis presents a novel approach to image registration in the context of radiation 

therapy. Specifically, it focuses on adapting the well-known B-spline registration algorithm to a 

more general mathematical formulation through the use of Non-uniform Rational B-splines 

(NURBS). The motivation for this generalization is described with regards to the inherent 

geometric characteristics of B-splines and the displacement typically observed in thoracic 

computed tomography (CT) images. 

Image registration is the process of finding an optimal correspondence function mapping 

homologous points in an image pair [Brown, 1992]. Applications in the field of medicine include 

intra-subject, inter-subject, multi-modality, and multi-instance analysis, as well as motion 

detection and compensation.  The on-going trend of incorporating multi-modality (e.g. fusing 
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data from CT and MRI) and multi-instance imaging in treatment planning for external beam 

radiotherapy has underlined the need for fast and accurate deformable image registration 

techniques.  The majority of currently available commercial image registration methods provide 

rigid registration techniques, which are adequate when aligning anatomical sites in which not 

much motion is expected, such as the brain, but insufficient in general [Brock, 2010].  Because 

of this, non-rigid registration techniques, also referred to as deformable image registration (DIR), 

are the subject of on-going research and development [Sarrut, 2006].   

The fusion of information obtained from multiple imaging modalities and multiple 

instances throughout the radiation therapy treatment process enables a more conformal dose 

delivery by reducing uncertainty in the tumor's extent, motion, and position [Jaffray et al, 2007]. 

The increased conformality of the dose delivery allows higher doses to the tumor and lower 

doses to the surrounding normal tissues, thereby reducing toxicities and increasing tumor control 

probability. In order for this information to be properly integrated, the individual image data sets 

must be registered within a common geometry. Deformable image registration accomplishes this 

by producing a voxel-by-voxel displacement vector field (DVF) that maps points in a source 

image to the homologous points in a target image. The DVF is then used to map or transfer 

information (such as doses or contours) from one image to another. 

Deformable image registration models generally fall into two categories.  The first class 

of techniques involves modeling the deformation as a physical process, solving partial 

differential equations with respect to some energy minimization or other constraint.  Elastic 

registration, fluid registration, and other mechanical models are included in this class. These 

methods have the appealing property of being physically intuitive, but suffer from an assortment 

of drawbacks.  Elastic registration, for example, is limited by the inability to adequately model 
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highly localized deformations [Rueckert R, 2001].  Furthermore, these techniques rely on a 

priori knowledge about the expected deformations, such as elasticity and viscosity parameters 

[Schreibmann et al, 2006].  The second class, often referred to as parametric techniques, uses a 

linear combination of basis functions to create a free-form DVF to describe the image 

deformations. However, the complete free-form DIR problem is ill-conditioned--there are more 

degrees of freedom (displacement vectors) than constraining data. To make the problem tractable 

requires a model that regularizes (smoothes and interpolates) the DVF. Unfortunately, smoothing 

also reduces sensitivity to locally sharp deformations. If these local features are poorly modeled 

by the DVF, then there will be potentially large local errors in dose mapping and contour 

propagation [Kashani et al 2008].   

Kybic and Unser [Kybic and Unser, 2003] present an argument for cubic B-splines as the 

most adequate set of basis functions based on their reduced interdependency between 

coefficients, local support, and calculation speed. B-spline models are effective for regularizing 

the deformation model and thus reducing the number of degrees of freedom. In the conventional 

implementation of B-spline DIR, a uniform spatial grid of free parameters (control points) is 

used to model the DVF. This grid regularizes the DVF uniformly throughout the image. 

However, the spatial pattern of anatomical deformation is often irregular, with regions of slowly 

varying deformation combined with regions of sharp or even discontinuous deformation. This is 

commonly seen in the thorax, where breathing movement (i.e., deformation) becomes much 

greater near the diaphragm and abruptly terminates at the ribs [D’Angelo et al, 2004; Xie et al, 

2011; Demirovic et al, 2009; Wu et al, 2008].  A uniform control point grid over-smoothes the 

local irregularities, which reduces sensitivity to local details in the deformation. This causes 

large local errors in the registration, and can only be mitigated by the introduction of additional 
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control points. With a uniform grid, this requires an increase in the global number of control 

points. Global refinement to reduce large local errors is an inefficient use of free parameters, and 

increases computation time.  

Multiple studies have addressed the issue of adapting uniform B-splines to non-uniform 

DVF features. One technique is to segment the anatomy into subvolumes or motion masks and 

register them independently; however this requires additional regularization to ensure that the 

registered subvolumes match at their boundaries. Refinement schemes based on radial basis 

functions
 
(rather than B-spline basis functions) and hierarchical B-splines

 
have also been 

introduced [Rohde et al, 2003; Forsey et al, 1995; Schnabel et al, 2001; Xie and Farin, 2004].  

Recent work by Shusharina and Sharp has explored the possibility of adapting radial basis 

functions to local image features [Shusharina and Sharp, 2012].  These approaches produce non-

uniform control point grids, but still rely on partitioning the registration into multiple smaller 

registrations. 

It would be advantageous if truly non-uniform B-spline models in a single global 

geometry could be used for DIR, in the manner of the Non-Uniform Rational B-Splines 

(NURBS) that are routinely used to model complex surfaces in computer graphics
 
[Piegel and 

Tiller, 1997]. This could be done by using a non-uniform control point grid that is adapted to 

local irregularities in the deformation. A non-uniform B-spline DIR method should be able to 

automatically arrange the control point grid so that more control points are present near locally 

sharp discontinuities, and fewer control points are used in comparatively smooth regions.  The 

purpose of this project has been to develop such a method. 
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1.2 Hypothesis and Goals 

In this dissertation, it is hypothesized that replacing B-splines with Non-Uniform 

Rational B-splines (NURBS) in the deformable image registration process will result in greater 

registration accuracy.  The dissertation is divided into four specific aims. 

 Specific Aim 1: To develop an automatic NURBS fitting routine for known functions 

 Specific Aim 2: To demonstrate that NURBS provide a better fit to known functions than 

B-Splines 

 Specific Aim 3: To substitute NURBS for B-splines in the modeling of displacement 

vector fields.  

 Specific Aim 4: To show that the incorporation of NURBS in deformable image 

registration algorithms leads to fewer registration errors than the B-splines algorithms 

The mathematics of conventional B-splines is presented in Chapter 2. Chapter 3 defines NURBS 

and develops methods for NURBS fitting to 1D functions that are consistent with the DIR 

paradigm. Chapter 4 extends these fitting methods to NURBS 2- and 3D tensor products. 

Chapter 5 incorporates the newly created NURBS fitting methods to 2- and 3D DIR. Finally, 

Chapter 6 provides an overview of the novel contributions within this work. 
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2. B-spline Mathematics 

 

2.1 1D B-spline Functions 

B-splines are piecewise continuous functions generated by an interpolation scheme predicated by 

the basis functions. The basis functions are defined such that they span the vector space of all 

piecewise polynomial functions of a desired degree and continuity [Piegl and Tiller, 1997]. The 

first recursive definition for numerical calculation of the B-spline basis functions was developed 

by Cox and de Boor [Rogers, 2000]. Given n+1 control points, each basis function bi of degree p 

can be defined as: 

          
                      

                        
  (2. 1 ) 

 

   
 

        
    

       
          

        

           
            

(2. 2 ) 
 

   
        

The pth-degree B-spline function is then defined: 

 
               

 

   

 

 

(2. 3 ) 
 

   
where the coefficients ci are the scalar valued control points, and the pth-degree B-spline basis 

functions are defined on a non-decreasing, uniform knot vector U of m+1 knots. Distinct knot 

values ki represent breakpoints such that the half-open interval between two knot values [ki, ki+1) 

is called the ith knot span (or knot segment). Non-zero knot spans define individual polynomial 

segments. One can see from the recursion relation defined above that the chosen knot values 
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significantly impact the B-spline basis functions, and, by extension, the shape of the resultant B-

spline. 

The B-spline basis functions confer several properties onto B-spline curves and surfaces 

which make them desirable for geometrical modeling. The most notable of these is the property 

of local support. Given a B-spline curve of degree p and a knot vector U = {k0,…,km}, the basis 

function bi,p (x) = 0 if x is outside the interval [ki, ki+p+1). Similarly, in any given knot span, at 

most p+1 basis functions are nonzero. This means that changes to the resultant B-spline curve 

can be made locally without affecting the global shape. This is done through manipulation of the 

control points ci, which are effectively turned “on” and “off” by the basis functions. The local 

support property of the basis functions is clearly observed by plotting their values with respect to 

x. Consider the first-degree basis function b2,1(x), shown in Figure 1. It is only non-zero on the 

interval [k2, k4), which corresponds to the parameter values from 0.0 to 0.4. Figure 2 shows the 

non-zero basis functions for degree 2. Notice that higher degree basis functions are non-zero 

over a wider range of parameter values, and therefore have a larger area of influence. 
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2.2 B-spline Tensors 

Tensor products of two 1D B-spline functions with independent variables x and y can be used to 

define surfaces.  

 
                          

 

   

 

   

 

 

(2. 3 ) 
 

Similarly, a B-spline volume is defined as a tensor product of three 1D B-spline functions with 

independent variables x, y, and z. 

 

                                   

 

   

 

   

 

   

 

 

(2. 5) 
 

The B-spline basis functions are again defined on non-decreasing, uniform knot vectors which 

are independent of one another. These knot vectors subdivide the B-spline into rectilinear grids 

which determine the local support of the control points cijk. The effect of the knot spacing is 

discussed in detail in Chapter 3. 

 

2.3 Uses of B-splines in DIR 

 

B-Splines have been used extensively in the field of computer aided geometric design and 

computer graphics [Piegel and Tiller, 1997].  More recently, they have also been employed to 

model deformations in non-rigid image registration [Reukert et al, 1999;  Szeliski and Coughlan, 

1995].  The image registration problem, as framed by Szeliski et al, consists of two images 

locally displaced by horizontal and vertical displacement fields, ( , ) and ( , )t tu x y v x y , such that: 



 

 

10 

 

                      (2. 6) 
 

By minimizing the squared error over the set of pixels in the image, one arrives at the sum of 

squared differences formula: 

                                        
 

 

  (2. 7) 
 

In 2D-2D B-spline registration models, the displacement vector field (DVF) 

( , ) and ( , )u x y v x y  are represented as two-dimensional B-splines which lie on a grid of control 

points, cij.  Optimization of the control point values to minimize the sum of squared differences 

formula proceeds via an iterative method.  Choices for the iterative optimization typically 

include gradient methods such steepest descent and the more complex Levenberg-Marquardt 

non-linear minimization technique [Press, 1992], but use of non-gradient methods such as the 

Nelder-Mead downhill simplex has also been reported [Nelder and Mead, 1965]. 

B-splines exhibit an advantage over other spline representations such as thin plate splines 

in that their basis functions have local support.  This feature allows for local adjustments with no 

effect on global functional values.  However, in order to fully realize this advantage, the control 

point grid spacing must be decreased.  In uniform grid spacing, this can greatly increase the 

number of free parameters. In addition, uniform grid spacing may place control points in 

locations with no image intensity gradients. In these cases, the local support acts as a 

disadvantage because the control points are essentially unused free parameters.  

The inherent smoothness of B-splines becomes problematic in DIR when attempting to 

model steep gradients and discontinuous motion in the DVF.  This is observed, for example, with 

lung tissue sliding along the boundary with the lung wall. Because the basis functions of degree 

greater than 1 are defined to have continuous first derivatives across knot spans of non-zero 
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length, a DVF computed with the conventional representation of B-splines is constrained to be 

continuous everywhere. The spline knots are distributed at equal spacing throughout the 

registered volume, resulting in a uniform spatial resolution.  To resolve locally sharp features in 

the DVF, one must distribute a large number of control points throughout the image. This is 

inefficient and partially defeats the B-spline advantage of local support, and thus has motivated 

research into B-spline configurations that can be adapted to local structure in the DVF. 

An analogue of this limitation has been addressed in the field of computer graphics.  A 

technique known as recursive subdivision, which is based on knot insertion, has been employed 

to generate arbitrary surfaces.  Sederberg et al [Sederberg et al, 1998] have demonstrated the 

extra flexibility gained from the use of unequal knot intervals in a recursive subdivision scheme.  

Similarly, image registration techniques have incorporated subdivision via pre-segmentation of 

sites expected to exhibit discontinues in the displacement vector field. However, this is an 

unattractive solution to the problem as it decreases automation. To solve this problem, this 

project proposes the use of NURBS, combined with a method to automatically assign the non-

uniform control point grids.  
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3. Non-Uniform Rational B-splines 

 

A more general approach to parametric representation of functions is provided by non-uniform 

rational B-splines (NURBS).  Because NURBS are a generalization of B-splines, they carry 

forward nearly all the geometric and analytic properties of B-splines, while simultaneously 

providing additional degrees of freedom.  A pth-degree NURBS curve is defined by 

 
     

              
 
   

          
 
   

   

 

(2. 8) 
 

where the ci and bi,p(x) represent the control points, and pth-degree B-spline basis functions, 

respectively.  The additional free parameters are introduced by the control point weights, wi, and 

the non-uniform knot vector    on which the bi,p(x) are defined. The control point weights have 

the effect of multiplying the B-spline curve by a constant in the interval in which the associated 

control point is active. For example increasing w3 on a quadratic NURBS curve would increase 

the influence of the control point c3 in the interval [k3, k6). This is shown in Figure 3. If all other 

weights are held to unity, changing a control point’s weight wi effectively scales the basis 

function bi,p by the same factor (see Figure 4). Notice that because the sum of the B-spline basis 

functions for any value x must by definition equal 1 (i.e. the basis functions are defined as a 

partition of unity), increasing bi,p decreases the remaining non-zero basis functions evaluated at 

x. The knots also alter the B-spline curve through changes to the basis functions. Multiple knots 

reduce the range for which a given basis function is non-zero. Knots of multiplicity equal to the 

degree of the B-spline reduce the non-zero knot span to a single parameter value, at which the 

basis function is equal to 1, as shown in Figure 5. This has the effect of creating a cusp or corner 
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in the resultant B-spline curve (see Figure 6), and therefore enables NURBS to model 

discontinuities. 
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 By definition, each basis function bi is non-zero from knot i to knot i+p+1, where p is the 

degree of the B-spline. This confers local support to the B-spline coefficient ci (i.e., the control 

point) associated with each bi.  The knot spacing therefore constrains the level of local curvature 

the B-spline is able to represent. If the knot spacing is decreased, the local derivative of the curve 

can be increased, and sharper features can be represented. This is conventionally accomplished 

by increasing the number of knots (and corresponding control points) uniformly across the 

parameter space. However, one could influence the local derivative of the curve by spacing the 

knots non-uniformly. Decreasing the knot spacing in a region reduces the range of the basis 

functions in that region and allows the representation of higher curvature. This is demonstrated 

in figures 7 and 8 by assigning equal values to c3 and c7 and noting the resultant difference in the 

curve u(x) in the parameter space corresponding to the associated basis functions b3 (yellow) and 

b7 (blue). 
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Figure 7: A uniform B-spline curve (shown in red) is the weighted sum of the B-spline basis functions (shown in 

black). The spatial extent (i.e., local support) of each B-spline basis function is determined by the spacing of the 

knots (denoted by tick marks).  

 

 

Figure 8: A non-uniform B-spline curve (shown in red). The non-uniform spacing of knots can increase or decrease 

the local derivative of the curve. 
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3.1 NURBS Curve Fitting 

NURBS are one of the most common fitting models in computer aided design because of 

their stability, flexibility, and local modification properties [Leal et al, 2010]. The applications of 

NURBS approximation range from reconstruction of digitized data from 3D measurements of 

manufactured parts for the purpose of reverse engineering to simplification (i.e. reduction of 

space required in computer memory) of pre-existing mathematical models. The shape of a 

NURBS 1D or 2D function is determined by the order, the number of control points and the 

values of the control points, the control point weights, and the knot vector. The NURBS fitting 

process seeks to find values for these parameters which minimize an error at discrete data points, 

typically measured by the l2 norm (least-squares fitting). As it is not known in advance how 

many control points are required to obtain an accurate fit, NURBS fitting is an iterative process, 

with each iteration adding one or more control points (or, equivalently, knots). A crucial step in 

all NURBS fitting techniques is the computation of control point values. This is discussed in 

Section 3.2.1. As is the case with the control point values, the knots and weights can be solved 

separately. Section 3.2.2 discusses techniques for optimizing the control point weights and 

Section 3.2.3 discusses optimization of the knot vector. In practice, there is little advantage to 

higher-order NURBS. While higher order polynomial terms add more flexibility, they also 

introduce more uncontrollably undulations. It has been observed in computer aided design 

(CAD) that cubic (degree 3)  and quadratic (degree 2) NURBS offer the best trade-off between 

flexibility and fairness.  For these reasons, this work assumes NURBS with a fixed degree p = 3 

unless otherwise stated.  
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3.1.1 B-spline Fitting of 1D Functions 

Before going into the details of NURBS fitting, it is useful to first discuss the simpler 

case of B-spline fitting. B-spline fitting is the process of determining control points cij which 

minimize the sum of the squared distances at each point x in a function f(x). In computer-aided 

design, the control points of a B-spline curve are vector-valued points in R
2
. This representation 

intuitively reflects the relationship between control points and curve shape: moving a control 

point in the 2D plane has the ability to stretch and twist a parameterized curve into loops and 

closed curves. For the purposes of this work, control points will be regarded as scalar 

coefficients to the basis functions. The mathematics remains the same.  

Given a function f(x) evaluated at m+1 data points, n unknown control points cj, and 

assuming an order has been assigned and a knot vector has been computed, the least-squares 

error function between the resultant B-spline curve and the data points is 

 

     
 

 
                   

 

   

 

 
 

   

 

 

(3. 1) 
 

Equation 3.1 measures the squared distance between each point f(xh) and the B-spline evaluated 

at xh. The function E is quadratic in the control points and therefore has a parabolic shape whose 

vertex is a global minimum. This global minimum can be solved by setting the first-order partial 

derivatives to zero: 

 
     

   
                    

 

   

         

 

   

 

 

(3. 2) 
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(3. 3) 
 

Equation 3.3 can be written in equivalent matrix notation as 

             (3. 4) 
 

Minimization is therefore achieved by solving the linear system of equations above through 

direct inversion of the matrix TA A : 

              

 
 (3. 5) 
 

 The Schoenberg-Whitney condition [Piegel and Tiller, 1997] states that for a solution to be 

guaranteed existence and uniqueness, each evaluation point x must satisfy:  

             
             

 

 (3. 6) 
 

As Park [Park, 2004] notes, equation 3.5 provides reasonably good solutions when the 

number of parameter values m is equal to or much greater than the number of control points n. 

However, when the two are approximately equal, the Schoenberg-Whitney condition is not 

guaranteed, which results in unstable solutions sensitive to the parameterization. In addition, 

when m is less than n, the linear system of equations is under-specified. These situations will not 

be addressed because in deformable image registration the number of data points (voxels) is 

much larger than the number of control points used. Hence, this method produces an exact 

solution to least squares curve fitting with a uniform B-spline.  

B-spline curves can be described as a weighted sum of B-spline basis functions. The 

shape of the basis functions is determined by the knot vector and the order of the spline. 

Therefore, shape control of a uniform B-spline curve is determined solely by the values assigned 
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to the uniformly distributed control points. B-splines are piecewise continuous polynomials 

partitioned by the knot vector. In order to increase local curvature, the length of the spline 

segments must be decreased. In the case of uniform B-splines, this can only be achieved by 

increasing the number of control points. Figures 9-11 demonstrate this point. In each figure, a 

uniform cubic B-spline is fitted to a 1D Gaussian. This synthetic DVF simulates a situation in 

which motion is observed locally and abruptly. It is an instructive example in that it clearly 

demonstrates the inefficient use of the B-spline free parameters (the control points), and the 

advantage in shape control gained through the use of non-uniform knot placement. As the 

number of control points is increased, the uniform spacing is decreased, which in turn decreases 

the range of local support and allows the B-spline to better represent local complexities and steep 

gradients. Notice, however, that with uniform spacing many of the internal knots are redundant. 

In this example, the knots located on the tails of the Gaussian would be more beneficial to the 

fitting problem if they instead supported smaller segments of the B-spline near the center of the 

Gaussian. Methods to achieve a more optimal distribution are discussed in the next section. 
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Figure 9: A uniform B-spline (shown in blue) with 8 control points fit to a 1D Gaussian (shown in red).  

 

 

Figure 10: A uniform B-spline (shown in blue) with 13 control points fit to a 1D Gaussian (shown in red). 
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Figure 11: A uniform B-spline (shown in blue) with 19 control points fit to a 1D Gaussian (shown in red). 

 

3.2 Optimizing Weights for Rational B-Spline Fitting 

As rational functions, NURBS are algebraic fractions whose numerator and denominator 

are polynomials. A 1D NURBS is defined as  

 
     

              
 
   

          
 
   

   

 

(3. 7) 
 

where the ci and bi,p(x) represent the control points, and pth-degree B-spline basis functions 

defined on the non-uniform knot vector   . The normalization factor in the denominator makes 

NURBS fitting a nonlinear problem. Carlson presents a nonlinear least squares fitting of NURBS 

to data using the Gauss-Newton method [Carlson, 2009]. Alternatively, Ma and Kruth have 

developed a two-step algebraic solution which separates the weight calculations from the control 

point calculations [Ma and Kruth, 1998]. These methods are discussed in sections 3.2.1 and 

3.2.2, respectively. 
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3.2.1 Weight Optimization using Gradient Descent Method  

There are many well-known gradient-based algorithms for solving non-linear least 

squares. Some of the more commonly reported methods employed in NURBS fitting include 

Levenberg-Marquardt (LM), Broyden-Fletcher-Goldfarb-Shanno (BFGS), and Gauss-Newton 

(GN). Gradient-based methods are popular in B-spline fitting because the first derivatives are 

well-defined and can be determined without great computational burden. Minimizing the sum of 

squared distances between a set of points and the NURBS approximation leads to the objective 

function 

 
          

 

   

       
  

 

 

(3. 8) 
 

where u(x) is defined as in equation 3.7 and f(x) is the target function. 

In order to use a gradient-base optimization for NURBS curves, it is necessary to compute the 

derivatives of equation 3.7 with respect to the control points P and weights w. The partial 

derivative of the1D NURBS u(x) with respect to the control point ci is simply the rational basis 

      

   
       

         

          
 
   

        
(3. 9) 
 

   

The partial derivative with respect to wi is slightly more involved because the term appears in 

both the numerator and denominator. It is simplest to separate the terms, find their derivatives, 

and re-combine. The numerator and denominator written as functions of wi are 
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(3. 10) 
 

 
               

 

   

 
(3. 11) 
 

And their derivatives are 

                  (3. 12) 
 

                (3. 13) 
 

   

Re-combing the terms, the derivative with respect to wi is 

      

   
 

                     

     
 

(3. 14) 
 

 

This paper uses an implementation of the BFGS algorithm. 

The performance of an optimization scheme is dependent upon a good choice of initial 

parameter values. One possible approach is to first fit the target curve with all the weights set to 

1, which corresponds to a conventional B-spline fit. Optimization of the weights can then 

proceed with the control point values being held fixed. This approach was applied to fitting the 

1D Gaussian for 5, 10, and 15 control points. Figures 12-14 show that adjusting the weights 

while leaving the control points values fixed to their conventional B-spline least squares 

solutions decreases the fitting error slightly.  
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Figure 12: Control point weights are adjusted via gradient descent. The 5 control point values obtained from solving 

equation 3.5 are held fixed. 

 

 

Figure 13: Control point weights are adjusted via gradient descent. The 10 control points values obtained from 

solving equation 3.5 are held fixed 
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Figure 14: Control point weights are adjusted via gradient descent. The 15 control points values obtained from 

solving equation 3.5 are held fixed. 

 

The small variation observed in the previous test can be attributed to the fact that the 

vector of the fixed control point values is a stationary point of the cost function in the case that 

the weights are all approximately equal. One can expect to see more variation when the control 

point values and their weights are adapted in tandem. Figure 15 confirms that suspicion. 

Initializing 5 control points to 0 and their weights to 1, the rational B-spline is able to fit the 

Gaussian target function to within 0.01. This result is surprising until one considers the shape of 

the of the rational basis functions, shown in Figure 16. Recall that the b-spline basis functions are 

defined so that they exhibit a partition of unity—that is, for any parameter value, the basis 

functions must add to 1. Assigning large weights to a particular basis function has the effect of 

increasing its influence in the knot segments for which it is non-zero. This is apparent in the first 

and last basis functions displayed in Figure 16. The combination of comparatively large weights 

with control points values set to zero allows for exact duplication of the Gaussian’s tails. Setting 

large weight values for the first and last basis functions also reduces the influence of the 
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remaining non-zero basis functions in the same interval. This squeezes the internal basis 

functions towards the middle, and the linear combination of these polynomials can easily model 

the Gaussian’s curves. It turns out that this is a trivial test case for the rational B-spline, which 

was historically developed as an improvement over B-splines for representing conic sections and 

other analytic functions [Piegl and Tiller, 1997].  

  

Figure 15: The rational B-spline can fit the 1D Gaussian with just five control points. 

 

 

Figure 16: The rational B-spline can fit the 1D Gaussian with just five control points. 
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It is useful to test the algorithms on datasets that are more representative of real 

anatomical motion. For this purpose, two one-dimensional, single-component DVFs were 

generated from an existing 3D DVF computed by the Demon’s algorithm. The DVF profiles 

were obtained from the POPI dataset, which contains two thoracic CT volume images and the 

DVF describing the anatomical motion between them. A coronal slice was selected, and the z-

component of the motion was recorded for each voxel along a line in the x and z directions. 

The non-analytic DVFs provide a better gauge of the possible comparative benefits of 

optimizing weighted control points in curve fitting. Figures 17-24 compare the rational and 

conventional B-spline fits to the 1D DVF profiles in the z-direction and x-directions, using 5, 10, 

and 15 control points, respectively.  

 

 

Figure 17: Fitting the z-direction 1D DVF with a rational B-spline using the gradient descent method to compute 

five control point values and their associated weights decreases the fitting error by more than a factor of two 

compared to the conventional B-spline fit with the same number of control points 
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Figure 18: The inclusion of adjustable weights again demonstrates improved fitting accuracy as compared to the 

conventional B-spline fit using 15 control points 

 

 

Figure 19: The inclusion of adjustable weights again demonstrates improved fitting accuracy as compared to the 

conventional B-spline fit using 15 control points 
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Figure 20: Fitting the x-direction 1D DVF with a rational B-spline using the gradient descent method to compute 

five control point values and their associated weights decreases the fitting error by more than a factor of five 

compared to the conventional B-spline fit with the same number of control points 

 

 

Figure 21: The inclusion of adjustable weights again demonstrates improved fitting accuracy as compared to the 

conventional B-spline fit using 10 control points 
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Figure 22: The inclusion of adjustable weights again demonstrates improved fitting accuracy as compared to the 

conventional B-spline fit using 15 control points 

 

 Fitting the DVF with a rational B-spline using the gradient descent method to compute 

both the control point values and their associated weights consistently produces a smaller error 

than conventional B-splines whose shape control is dictated by control values alone. However, it 

is worth noting that the rational B-splines weights computed via gradient descent contribute a 

computational cost similar to the control point values. For each additional control point, one 

must compute the gradient with respect to the control point and with respect to its weight. It is 

therefore more reasonable to compare the fitting performance of a rational B-spline with a B-

spline containing twice as many control points. This puts the two methods on equal footing in 

terms of total number of free parameters to be optimized via gradient descent. When the two 

methods are compared this way, the advantage of using weighted control points disappears (see 

Fig 23, 24). 
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Figure 23: Comparison of errors of rational and conventional B-spline when fitted to the 1D DVF in the x direction. 

Conventional B-splines with twice as many control points exhibit similar fitting accuracy to rational B-splines with 

half the control points plus their associated weights (same number of total free parameters) 

 

Figure 24: Comparison of errors of rational and conventional B-spline when fitted to the 1D DVF in the z direction. 

Conventional B-splines with twice as many control points exhibit similar fitting accuracy to rational B-splines with 

half the control points plus their associated weights (same number of total free parameters). 
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The inconsistent performance observed in the rational B-spline fitting (most notably the second 

data point in figure 24) is attributable to a poor choice of initial values for the free parameters. 

The parameter space has many local minima, so it’s best to start optimization in the proximity of 

a solution good solution. As a method to avoid local minima, B-splines are often fit first with a 

coarse grid followed by subsequent refinement fitting in which an increasing number of control 

points are used. This strategy is referred to as multi-level B-spline fitting, and it is used widely in 

DIR [Xie and Farin, 2004]. At each step, the updated control point configuration is initialized by 

a least-squares fit to the previous B-spline, computed by a coarser resolution of control points. 

There is a well-known knot insertion algorithm [Piegl, 1997] for doing this with conventional B-

splines, but not much attention is paid in the literature to a method which would simultaneously 

solve for the optimal weights. A more general method of finding an algebraic fit to an arbitrary 

curve or surface is presented in the next section. 

 

3.2.2 Direct Solution for Control Point Weights 

 Suppose that one wishes to find the least squares NURBS fit to a 1D function f(x). 

Additionally, suppose that the degree p, the number of control points n, and the complete knot 

sequence U are known. Then, equation 3.8 can be written in compact matrix form as 

BP = DBw            (3. 15) 

where P = [w1c1, w2c2,.., wncn]
T
 represents the scalar product of control points and their 

associated weights w = [w1, w2,.., wn] represents the weight values, D = diag{f(x1), f(x2), …, 

f(xm)} represents a diagonal matrix of the functional values, and 
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(3. 16) 
 

represents the matrix of basis function values. Equation (3.15) can also be written as  

12
2 1

[ ]mm n
n




 
    

 

P
B DB 0

w
.        (3. 17) 

Fitting the function is now reduced to solving the overdetermined system in equation 3.17 for P 

and w. To further simplify this computation, Ma and Kruth manipulate the first matrix to 

separate the weights from the control points. Multiplying equation 3.17 by the transpose of the 

first block matrix yields 

 
2 2 1

2 12 2

T T

T T n

nn n





   
    
  

PB B -B DB
0

w-B DB B D B
.       (3.18) 

After eliminating the first element in the second row to make the matrix upper triangular, we 

have 

 
2 1

T T

n

   
    
  

PB B B DB
0

w0 M
                   (3.19) 

where M is the n × n matrix 

    
1

2T T T T


 M B D B B DB B B B DB .                  (3.20) 

Now the weights are separated from the control points as 
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 
1n

 M w 0 ,                      (3.21) 

and the weights and control points can be solved using equations 3.21 and 3.17, respectively. 

The nullspace of M might be larger than 1, in which case multiple solutions exist, or it could be 

of full rank, in which case no exact solutions exist. Ma and Kruth suggest least squares 

minimization for determining the weights w, and offer two numerical methods for solving this 

equation. First, they suggest singular value decomposition (SVD) of M, in which M is factorized 

as 

TM QDP ,                       (3.22)          

where D is a n × n diagonal matrix whose elements are the singular values of M. They are 

arranged in decreasing order, and the last non-negligible element dr determines the rank of M. 

The general solutions of w are given by linear combinations of the singular vectors 1{ }n

i rp  

contained in the matrix P: 

1

n

i i

i r


 

 w p  .         (3.23) 

With the proper selection of the coefficients αi, a set of positive weights can be found. 

Unfortunately, Ma and Kruth do not offer a method for choosing these values. Additionally, it is 

not clear what values should be considered “negligible” in the context of defining the rank of M. 

This ambiguity affects the goodness of fit even in simple one-dimensional cases. For example, 

fitting a one-dimensional Gaussian with 12 control points using the SVD method results in the 

following singular values in the diagonal matrix D: 
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1.432094568968276

0.204206878890761

0.002452125410338

0.000513991288032

0.000000036673866

0.000000031527862

0

0

 

If we consider all non-zero elements to be non-negligible, the rank is 6. If we consider the 5
th

 and 

6
th

 elements to be negligible, the rank is 4. This is not a trivial decision to make because the error 

of fit of the resulting rational B-spline varies largely for different rank values, as is illustrated in 

Table 1. 

 

Table 1: Fitting error variation with respect to rank of matrix M. 

Rank Error of fit 

3 1.223 

4 .2553 

5 .0267 

6 .6243 

 

The rational B-spline function with the smallest error is computed when the rank is assigned to 5. 

This is surprising and unfortunate because it does little in the way of developing an algorithm to 

decide which values are negligible.  
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The ambiguous distinction between negligible and non-negligible elements in D and the 

subsequent determination of the rank of M is a pervasive problem in the SVD method. For 

example, in the more complex case of fitting surface data, a small change in rank can produce 

appreciable differences in the 2D rational B-spline tensor product fit. Figures 25 and 26 show the 

NURBS fits to DVF data using 100 control points. Height differences can be seen throughout, 

most notably in the far left peak. This performance instability makes the SVD method 

undesirable.  

 

Figure 25: NURBS Surface fit with rank = 98. 
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Figure 26: NURBS surface fit with rank = 99. 

To the best of the author’s knowledge, the Ma and Kruth algebraic solution is the only 

solution available in the literature. The lack of a fast and reliable method to initialize weights in 

the hierarchical fitting scheme, combined with the absence of a performance gain per free 

parameter observed in fitting 1D DVF data via gradient descent, led the author to abandon the 

attempt to incorporate rational B-splines in DIR. Instead, the focus of the project shifted to the 

task of solving for the optimal non-uniform knot placement, which is discussed in the next 

section. 
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3.3 Non-uniform Knot Placement in B-spline Fitting 

As mentioned previously, the B-spline basis functions are defined by a recursive formula 

consisting of polynomial contributions determined by the order of the B-spline and by the values 

of the knot vector (see Equation 2.1, 2.2). The basis functions are then combined linearly with 

their associated coefficients (control points) in order to form the B-spline function. Therefore, 

optimizing the knot vector offers another method for B-spline shape control. By preferentially 

placing knots in regions of steep gradients and local complexity, it is possible to generate B-

spline fits with higher accuracy and fewer control points.  

Non-uniform knot placement is a powerful B-spline shape control method. It allows for 

knots to be distributed sparsely in flat regions and densely in areas of greater complexity. This 

increases local spatial resolution without increasing the number of control points globally. In 

addition, multiple internal knots can be used to reduce continuity and enable representation of 

discontinuities (see figure 6). Despite these advantages, there is no consensus on how to optimize 

knot placement in NURBS curve approximation.  

Knot nomenclature varies in the literature, but generally there are two varieties of knot 

vectors (periodic and open) with two sub-types (uniform and non-uniform). Open knot vectors 

differ from periodic knot vectors in that the first p+1 knots are equal to some constant α and the 

last p+1 knots are equal to β (α < β). Such a knot configuration “clamps” the B-spline curve to 

the first and last control points (see figure 27). Periodic knot vectors, on the other hand, have no 

duplicate knots. All knot vectors in this work are assumed to be open. “Uniform” and “non-

uniform” describe the spacing of the internal knots (Note: this is contrary to most of the B-spline 

DIR algorithms in the literature, which tend to prefer periodic knot vectors). Uniform knot 
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vectors have equally-spaced internal knots, but may still have duplicate knots at the endpoints. 

Formally, 

                                 
                              
                                

 

(3. 24) 
 

Non-uniform knot vectors are free to have unevenly-spaced knots. Computational methods of the 

non-uniform knot vector are discussed in this section. 

 

Figure 27: An open uniform quadratic B-spline. Below the curve is the basis functions defined on the knots ki . Each 

basis function has an associated control point displayed as a circle of the same color. The knot positions determine 

the shape of the basis functions, which in turn determine the local support of the control points. The vertical lines 

labelled ki represent the knots on this interval. Here, knots of multiplicity three are denoted by the bunched hash 

marks at either end of the interval. The knot multiplicity forces the basis function to be 1 and "clamps" the curve to 

its first and last control point. 
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As demonstrated in section 3.1.1, when the knots are fixed, the problem of least squares 

B-spline approximation is linear. In order to take advantage of this linearity, the NURBS 

approximation problem is formulated such that the knot vector is established first, followed by 

the solution of the control points. In naive implementations of NURBS curve fitting in CAD, the 

non-uniform knots are computed in tandem with the point parameterization such that there are 

nearly an equal number of parameters in each knot segment. This technique satisfies the 

Schoenberg-Whitney condition and ensures a solution, but does not explicitly seek to minimize 

the approximation error. However, the accuracy of the approximation is strongly dependent on 

the knot distribution. The constraints imposed on the knot optimization problem are of the form  

                            
 

(3. 25) 
 

   
These constraints appear innocuous, but the resulting optimization problem is non-linear and 

non-convex, with many local minima and stationary points [Beliakov, 2004]. 

 Optimal knot placement for approximation to data is an on-going area of research in  

Computer Aided Design (CAD), Computer Aided Engineering (CAE), and applied mathematics. 

A wide variety of approaches have been taken to find a satisfactory solution to this problem. One 

method is to fit the data with a large number of knots and iteratively remove redundant knots. 

This, however, is not useful for the purpose of DIR as it starts with too many free parameters. 

Other proposed methods include the introduction of logarithmic transformations and penalty 

functions to transform the problem into an unconstrained form [Jupp, 1978; Dierckx, 1995], 

stochastic methods such as genetic algorithms [Goldenthal and Bercovier, 2003] and simulated 

annealing [Javidrad and Rohollah, 2013], and a deterministic optimization method which 

guarantees a global minimum has been reached [cite Beliakov, 2004]. However, these methods 
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have only been applied to B-spline curve approximation; their extension to higher dimensions 

has not been demonstrated. Furthermore, the computational burden of these mathematically 

complex optimization techniques may be prohibitive for use in DIR. A separate, more intuitive 

set of approaches based on considerations of local geometry is examined by Razdan [Razdan, 

1999], Li et al [Li et al, 2005], and presented algorithmically by Park and Lee [Park and Lee, 

2007]. This method computes a knot vector which is iteratively refined through the selection of 

“dominant” feature points on the curve. Initial dominant points as defined by Park and Lee 

include the end points and points corresponding to local curvature extrema of the target curve. 

Once initial dominant points are chosen, the knot vector is computed by averaging the parameter 

values of the dominant points, and a least-squares B-spline curve approximation is generated. 

Additional dominant points are selected iteratively to refine the curve approximation until an 

error tolerance has been met.  The adaptive refinement paradigm followed by Park and Lee has 

motivated a similar method from Jacobson and Murphy [Jacobson and Murphy, 2011]. In the 

following sections, multiple non-uniform knot algorithms are implemented to fit 1D DVFs.  

 

3.3.1 Simplex Method for Knot Optimization 

As Xie and Qin note, the derivation of the gradient of a NURBS curve with respect to the knots 

is complicated by the local support properties of NURBS [Xie and Qin, 2001]. For example, 

moving a knot past its adjacent neighbor will alter the span interval over which a control point is 

active and may result in discontinuities. To avoid this issue, a gradient-free optimization method, 

the Nelder-Mead Downhill Simplex algorithm is used. The cost function to be minimized is the 

same as before (the sum of the squared differences), and the free parameters are the n-(p+2) 
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internal knot positions, where n is the number of control points and p is the degree of the B-

spline, both of which are specified prior to optimization. For each function evaluation, it is 

necessary to solve equation 3.5 using the basis values defined by the new test point (vector of 

free knots). Because the Simplex method requires a large number of function evaluations, this 

approach to optimizing the knot placement becomes computationally prohibitive for large 

datasets and would not be suitable for implementation in the DIR process. However, for simple 

cases it reliably converges to a reasonable solution and serves as a good basis of comparison for 

the other non-uniform knot methods.  

The optimal knot positions computed by the Simplex method were used as a gold 

standard for the novel knot placement techniques covered in the sections that follow. The 

challenge was to develop a set of heuristic rules which adapted the knot positions and closely 

followed the knot placement behavior observed in the solutions of the Simplex method. Figure 

28 displays the least squares solution for a cubic B-spline with one free knot, which is a single 

knot located in the center of the Gaussian. This is no different from the uniform knot distribution 

with a single free knot. However, the solution with two free knots, shown in Figure 29 is 

surprising. One would reasonably expect that the optimal knot distribution for a symmetric target 

function would also be symmetric. Instead, it was observed that duplicate knots, asymmetrically 

located on either side of the Gaussian, yielded the least square fit. This non-intuitive result, 

which was confirmed through brute force by solving equation 3.5 for every valid combination of 

knot values, hints at the difficulty of developing a heuristic rule for knot distribution. 
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Figure 28: Simplex solution for one free knot, which coincides with the uniform knot distribution. 

 

 

Figure 29: Simplex solution for two free knots, which exhibits advantage in asymmetric distributions even on 

symmetric target functions. The internal duplicate knot is indicated by the red hash mark. 

 

The best-fit cubic B-splines for the number of free knots ranging from 3 to 6 are displayed in 

figures 30 through 32. Repeated knot values and asymmetric knot distributions continue to 
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produce the best fit curves. With 6 free knots, the cubic B-spline is able to reproduce the 

Gaussian curve within a tolerance of 0.1% of the initial sum of squared errors. This result 

becomes the metric by which the proposed knot placement methods are evaluated.  

 

 

 

Figure 30: The solution for three free knots is repeated knot values at the central parameter value. Repeated internal 

knots are indicated by red hash marks on either side of the true knot value in black Knots values with multiplicity 

equal to the degree of the B-spline can produce cusps and discontinuities 
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Figure 31: The solution for four free knots, which again exhibits repeated knot values (in red) and asymmetry. 

 

 

 

Figure 32: The solution for five free knots, which again exhibits repeated knot values (in red) and asymmetry. 
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Figure 33: The solution for six free knots. There are no longer any repeated knots, and the spacing of the central 

knots closely resembles the spacing of the uniform distribution. 

 

 

 

3.3.2 Knot Insertion at Maximum Error 

The aforementioned dominant points method of knot optimization computes the knots through 

iterative samplings of feature points in the target function, such as areas of maximum curvature. 

This strategy relies upon a priori knowledge of the target function, which makes it incompatible 

with the DIR process where the underlying DVF is unknown. In the general DIR method, a DVF 

u(x) is used to map points x’ = x + u(x) in a source image A(x’) to points x in a target image B(x) 

such that  A(x+u(x)) = B(x). The DVF function u(x) is meant to approximate the true underlying 

DVF, which is unknown. Despite the fact that nothing is known about the true underlying DVF, 

one may still obtain information about where the DVF fit is deficient from the resultant 

difference image I(x)=A(x+u(x))-B(x). Using this observation, algorithms for B-spline fitting are 

developed which place knots based on the (absolute) difference between the target function f(x) 
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and the fitting function u(x).  The first proposed method is to simply insert a knot at the 

parameter value for which the squared distance between u(x) and f(x) is a maximum. For the 1D 

test case of the Knot Insertion at Maximum error method (KIM), an initial fit is made with a 

uniform one-dimensional B-spline                   . Distance to the target function f(x) is 

computed at each data point, and these values are squared to form the error function 

              –        . This process is repeated iteratively so that each subsequent B-spline 

fit contains an additional control point with an associated knot. In the event that two equal 

maxima exist, the first one is selected as the position of the inserted knot. Iteration proceeds until 

an error tolerance criterion is met. For this test (as well as those that follow), the error tolerance 

is set to the sum of squared errors with four control points (zero free knots) divided by 1000. 

Figures 34 through 36 demonstrate the method. 

 

 

Figure 34: The first three inserted knots are all placed at the same central parameter value. Duplicate knots are 

displayed in red.  
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The first three knots are inserted at the same central point. As discussed at the beginning of this 

chapter, a knot value k with multiplicity equal to degree p collapses the B-spline basis function at 

that location. Essentially, a curve segment is “lost”, and the curve is forced to interpolate through 

the control point associated with the collapsed basis function. In the case of only three free knots, 

this distribution is optimal, as verified by the Simplex method. However, as the number of 

control points increases, the benefit of repeated knots is reduced. Inserting knots at the point of 

maximum error quickly reduces the error at that point but is suboptimal for the global error. In 

short, the method overcompensates. Note that while the Simplex and KIM methods both contain 

repeated knots in their solution vectors, the Simplex method shows a trend towards reducing the 

multiplicity of its repeated knots. In fact, the knot vector which satisfies the specified tolerance 

criterion does not contain repeated knots. This observation motivates the next method, which 

introduces a means by which the knot positions are automatically adapted after knot insertion. 

 

 

Figure 35: The discontinuous kink created by the multiple knots reduces the shape control in the surrounding curve 

segments. 
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Figure 36: The KIM method overcompensates by adding too many knots in areas of high local gradient. 

 

3.3.3 Force Equilibration Method 

The Force Equilibration method (FE) adaptively refines the knot vector by allowing knots to 

migrate to areas in which a previous fit, computed with arbitrary knot spacing, produced the 

largest errors. Knot refinement is guided only by error information in order to make it compatible 

with the DIR process, where the underlying function the B-spline estimates is unknown. After an 

initial fit is made, distance to the target function f(x) is computed at each data point, and these 

values are squared to form the error function. A knot is inserted at the position x for which the 

error function is a maximum, as was the case in the KIM method. However, inserted knots are no 

longer required to remain at their initial position between iterations. Instead, the knots are free to 

redistribution according to a force equilibration scheme. The error ε
2
(x) at any particular position 

x exerts a force to pull the knots toward that point (or, conversely, resisting efforts to move the 

knot further away). The force is a simple spring-like resistance proportional to the product of the 
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distance of the knot from a particular error magnitude ε
2
(x) and the error magnitude itself. By 

summing over all of the restoring forces on a particular knot i over the range of points x bounded 

by knot i-1 and i+1, one obtains the knot position at which the forces are equilibrated. For each 

knot i, solve for the knot position ki that minimizes the sum of the contributions of each point of 

the error function contained in the knot segment belonging to ki 

                    
      

      

         
(3. 26) 
 

Starting with the first knot, each knot position was solved using the Nelder-Mead Downhill 

Simplex technique for minimization. The knot positions were found in sequence, such that the 

updated knot position ki was used in the calculation of knot position ki+1. 

 One can see intuitively that if a knot starts out somewhere between two symmetric error 

peaks, it will settle down half-way between them. If one of the two error peaks is larger, the knot 

will gravitate closer to it, but will still be restrained by the other errors, causing it to settle at a 

point that neutralizes the forces on it. The sum total of the restoring forces prevents the knots 

from piling up at the location of maximum error. 

 To mimic the hierarchical process of current B-spline DIR implementations, and also to 

underline the consistent advantage of the knot optimization method, the target DVF is fit 

iteratively. The initial fit is made with four control points (zero free knots). During each iteration, 

the error function is calculated and a knot is inserted at the point of largest error, the target is fit 

with the new knot vector, the error function is updated, knot placement is optimized by the force 

equilibration scheme, and finally the target is refit with the optimized knot vector. Iteration 

proceeds until a predetermined error tolerance criterion is met. Figures 37 through 44 show the 

first 4 iterations of the FE method. 
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Figure 37: The first two knots are inserted at the maximum error, located at center of the Gaussian.  

 

 

Figure 38: Force equilibration redistributes the two internal knots.  
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Figure 39: The third knot is placed at the midpoint of the Gaussian.  

 

 

 

Figure 40: Force equilibration redistributes the three internal knots. 
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Figure 41: Another knot is inserted at parameter value corresponding to the center of the Gaussian.  

 

 

Figure 42: The force equilibration scheme has prevented the knot pile up observed in the KIM method.  
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Figure 43: The largest error continues to reside at the center of the curve. 

 

 

 

Figure 44: The force equilibration scheme continues to spread the control points away from the center, thereby 

avoiding a knot distribution that is too narrow.  

 

 The inclusion of a redistributive step after knot insertion corrects for the KIM method’s 

tendency to place too many knots over a small segment of the B-spline curve. It’s worth noting 
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that the knot redistribution is not guaranteed to produce a better fit for the same number of 

control points. This can be seen in figures 37 and 38. Despite this fact, the force equilibration 

strikes a balance between the stability of the uniform knots and the flexibility of locally dense, 

non-uniform knots. This enables it to meet the error tolerance with fewer control points (Figure 

45). Figure 46 compares sum of squared errors produced by the uniform, simplex, KIM, and FE 

methods as a function of the number of control points. The non-uniform methods consistently 

out-perform the uniform knot fit. They also exhibit a monotonic decrease in error, whereas the 

uniform fit fluctuates. This is attributable to the placement of the uniform knots fortuitously 

coinciding with areas of high curvature. 

 

 

Figure 45: The final knot distribution for the force equilibration method. 
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Figure 46: Comparison of the sum of squared errors normalized to the initial error. 

 

To further evaluate the comparative efficacy of the knot placement methods, each 

algorithm was used to fit the 1D DVFs from section 3.2. Knots (or equivalently, control points) 

were added incrementally until the sum of squared errors was within one percent of the initial 

sum of squared error (the fit with zero free knots). Figure 47 shows the uniform B-spline fit to 

the first target DVF. This target curve is composed of the z-component of the DVF, sampled 

along a line parallel to the x-axis, and contains the structure of the breathing motion present in 

the lungs. Once again, the non-uniform knot distribution exhibits an efficiency gain. The 

Simplex method (figure 48) produces a better fit with 7 fewer control points. The KIM method 

with force equilibration (KIM+FE) also shows improved efficiency over uniform knots (figure 

49). However, without the equilibration step, it fails to converge. This test showed that 

repeatedly adding knots to the parameter value of worst fit is not always adequate to reduce the 



 

 

58 

 

error at that point. The algorithm eventually inserted too many knots at a single parameter value, 

which produced a knot vector that fails to satisfy the Schoenberg-Whitney condition (figure 50). 

In this case, the matrix TA A  is singular and the algorithm fails to solve equation 3.5. To mitigate 

this problem, a new knot insertion strategy was created. Instead of inserting the knot at the 

location of maximum error, the integral error of each segment is computed and a knot is inserted 

into the segment with maximum integral error such that it bisects the segment’s integral error. 

This method is referred to as the knot insertion by bisection of error method (KIB). 

 

 

Figure 47: The 1D DVF profile in the x-direction fitted with a uniform B-spline. 
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Figure 48: The 1D DVF profile in the x-direction fitted with a non-uniform B-spline computed by the Simplex 

method. 

 

 

Figure 49: The 1D DVF profile in the x-direction fitted with a non-uniform B-spline computed by knot insertion at 

location of maximum error followed by knot force equilibration (KIM+FE). 
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Figure 50: The 1D DVF profile in the x-direction fitted with a non-uniform B-spline computed by knot insertion at 

location of maximum error. The repeated knot insertion in a small region led to an algorithmic error, motivating a 

new knot insertion scheme. 

 

3.3.4 Knot Insertion by Bisection of Error 

As was shown in the previous section, the performance of the KIM method suffered from a 

tendency to place too many knots in a small region of the target function. To counteract this, a 

modification was made such that a knot was placed within the region that exhibited the largest 

error rather than at the point of the largest error. The regions were defined as the knot segments 

(or knot spans), i.e. all the points x between two consecutive knots k. The integral error is 

computed for each knot segment, and a new knot value is placed such that it bisects the segment 

with the largest error. This prevents the bunching seen in the KIM method because as more knots 

are added to a local region of large error, the knot segments within that region contain fewer 

points contributing to the integral error. As the number of points within a knot segment 

decreases, so does the integral error relative to those of larger knot segments. This creates a 
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balance in knot placement between dense knot regions with extreme outliers and sparse knot 

regions with many points having above average error. Subsequently, the KIB is less susceptible 

to overcompensating in a small region or single point. 

The fitting results using KIB are shown in Figure 51. Surprisingly, it achieves a better fit 

than the Simplex method for the same number of control points (figure 48). This reveals that the 

Simplex method does not necessarily find the optimal knot configuration, even in 1D. For this 

test case, the KIB method performs better on its own than when it is combined with the FE 

method. Figure 53 compares the normalized errors of the algorithms at the end of each knot 

insertion step. 

 

Figure 51: The 1D DVF profile in the x-direction fitted with a non-uniform B-spline computed by the KIB method. 
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Figure 52: The 1D DVF profile in the x-direction fitted with a non-uniform B-spline computed by KIB+FE. 

 

 

Figure 53: Comparison of the sum of squared errors of each algorithm fitting the 1D DVF profile in the x-direction. 
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A third 1D fitting test case was created by sampling the x-component of the DVF along 

the z-axis. This dataset contains a peak at towards its left end, and smaller, noise-like undulations 

throughout. The fine detail of these undulations requires that the B-spline have more knots than 

the previous case in order to reach the same tolerance criterion. With the exception of one data 

point with a small number of control points, the non-uniform methods continue to show an 

increase in efficiency in B-spline curve fitting. The outlying data point is indicative of the knot 

placement algorithms overcompensating for the large initial error at the left-most peak. However, 

the non-uniform algorithms consistently produce smaller sum of squared errors for larger number 

of control points (see figure 59). 

 

 

Figure 54: Uniform B-spline fit to 1D DVF profile in the z-direction. 
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Figure 55: Non-uniform B-spline fit using Simplex method. 

 

 

Figure 56: Non-uniform B-spline fit using KIB method. 
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Figure 57: Non-uniform B-spline fit using KIB+FE method. 

 

 

Figure 58: Non-uniform B-spline fit using KIM+FE method. 
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Figure 59: Comparison of the sum of squared errors of each algorithm fitting the 1D DVF profile in the z-direction. 

 

3.4 Summary of Investigation 

Chapter 3 introduced NURBS and investigated methods for fitting them to 1D functions. 

In Section 2, it was discovered that for the purpose of fitting 1D DVFs, the rational weights of 

NURBS offered no benefit over the same number of control points. This surprising result led to 

the discontinuation of weight optimization and shifted the focus of the study to optimizing the 

non-uniform knot vector.  Section 3 developed heuristic rules for adaptively inserting knots in 

areas of deficient fit. It was demonstrated that non-uniform knots allow additional shape control 

of 1D B-splines and eliminate the need for a large number of redundant uniform knots. The next 

section will investigate whether or not the same benefit is seen in 2- and 3D tensor product 

NURBS. 
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4. Non-Uniform B-Spline Tensor Products 

 

Tensor products of B-spline basis functions can be used to define surfaces and volumes. By 

using vector-valued control points, the B-spline tensor products can represent 2D and 3D DVFs. 

For cubic B-splines, the 3D representation takes the form:  

              

 

   

 

   

 

   

                  
(4.1 ) 
 

Where b represents B-spline basis functions and Pijk represents a 3D grid of vector-valued 

control points. The function represented by equation 4.1 (i.e., the displacement vector amplitude) 

is smoothly continuous across the full area or volume of the DVF.  It cannot represent 

discontinuities within the DVF. 

 

4.1 Non-Uniform Knot Placement for Tensor Product B-Splines 

Each basis function segment bi(x) contributes to the displacement vector amplitude in a 

sub area (or sub volume) of the DVF.  These local domains are marked off by the so-called knot 

positions (i.e., the knot vector) for the B-spline.  In a conventional B-spline formulation, the 

connected knot positions form a uniformly-spaced rectilinear grid.  Within each cell of the grid 

the DVF amplitude is shaped by one or more free control point parameters; conversely, each 

control point influences only the vectors in a small neighborhood of grid cells.   

 The spatial derivative of the displacement vector function represented by equation 4.1 is 

determined by the size of the DVF domain controlled by each particular basis function segment.  
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This domain is related to the knot grid.  If the domain is made smaller, the local derivative of the 

DVF can be increased, and sharper DVF features can be represented.  This is conventionally 

accomplished by increasing the number of knots (and corresponding control points) uniformly 

across the DVF, which reduces the size of each grid cell. However, one could influence the local 

derivative of the DVF by spacing the knots non-uniformly. Decreasing the knot spacing in a 

region reduces the range of the basis functions in that region and allows the representation of 

steeper gradients in the DVF. 

The knot vectors form a rectilinear grid over the surface that determines the control point 

support. Whereas the value of a point on a 1D B-spline is affected by p+1 control points, the 

value of a point on a 2D B-spline tensor product is affected by (p+1)
2
 control points. By 

definition, the knots are not permitted to move freely. Instead, they are constrained to move 

orthogonally as lines of knots in the 2D plane or planes of knots in a 3D volume. Furthermore, a 

single knot cannot be added without propagating it across the parameter space. For example, 

inserting a knot at position (a,b) requires adding the value a to the knot vector in the x direction 

and the value b to the knot vector in the y direction. This is illustrated in Figure 60. 
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Figure 60: Inserting a knot (in black) to the Cartesian point (a,b) requires adding the values a and b to the x and y 

knot vectors, respectively.  

 

Recalling that each additional knot requires a new control point associated with that knot, 

it is easy to see that an optimal knot grid could potentially lead to a substantial reduction of the 

total number of control points in tensor product B-splines. A major difficulty in optimizing a B-

spline fit with respect to the knots is that their values (along with the specified degree of the B-

spline) explicitly determine the basis functions. This means that the knots must be selected 

before any attempt is made to solve for the control points values, and any change to the knots 

would require a new optimization of the control points. The resulting “nested” optimization 

scheme is computationally expensive, and can be avoided by extending the heuristic rules 

developed in chapters 2 and 3 to higher dimensions. Given that each knot vector is constrained to 

move along one axis, it is sensible to re-use the 1D method. To do so, the error (distance to fit) at 

each point is summed along the x and y axes to obtain two 1D error profiles. The 1D fitting 
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methods are then applied directly to the error profiles, thus creating two independent knot 

vectors. This approach, in addition to being straight-forward and intuitive, has the advantage of 

reducing the computational complexity. 

The first two iterations of KIB-FE method extended to surfaces are presented in the 

figures below. An initial fit with a 4 by 4 control point grid is made to the target DVF surface, 

and the error surface is computed (figure 61). From this error surface, the error profiles are 

obtained, and the algorithm proceeds as in the 1D case. First, the integral error in each segment is 

computed, and the segment with the maximum error is selected. A knot is then inserted into this 

segment such that segment is bisected into regions of equal integral error. Using the updated knot 

vectors, the surface is re-fit, producing a new error profile (figure 62). Next, the knots are then 

equilibrated according to the force equation (figure 63), and the algorithm returns to the knot 

insertion step. This is repeated for a fixed number of control points or until a specified tolerance 

is met. 

 

Figure 61: The first free knot in each direction is placed such that it bisects the integral error of the projected 1D 

error profile. 
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Figure 62: The target surface is re-fit with the new knot vector. The fitting error is updated, and the knot is allowed 

to move according to the force equation. Here the initial knot position is represented by the unfilled circle and the 

new knot position is represented by the solid circle. 

 

 

Figure 63: New knots (in red) are again inserted according to the error bisection rule. 
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Figure 64: The target surface is once again re-fit, and the knots are allowed to move along the updated error profiles 

according to the force equation.  

 

4.2 DVF Surface Fitting with Non-Uniform B-Splines  

To evaluate the heuristic knot placement scheme for tensor products developed in section 

4.1, non-uniform B-splines were fitted to known DVF surfaces. These surfaces were generated 

by selecting a slice from a volume DVF, which was computed by the Demon’s algorithm and 

made publically available by Vandemeulebroucke et al [2007]. Slices were chosen in the 

coronal, axial, and sagittal planes, and target surfaces were generated from the z-component of 

DVF in each slice. The surfaces exhibit the shape features which motivated the use of non-

uniform B-splines, namely, areas of steep local gradients juxtaposed with regions of near-

uniformity. Ideally, the knot distribution should be arranged such that knots are preferentially 

placed in the regions of complexity and away from the smoothly varying regions. 

The non-uniform B-spline fits were compared to the uniform, and the Simplex method 

was once again taken as the gold standard. The top panel in figure 65 shows the target surface in 



 

 

73 

 

the coronal plane. In the panels below, the B-spline surfaces for each method are displayed. Each 

was computed with 6 free knots in each direction (shown as white lines), which corresponds to 

100 control points. All contours were plotted on identical color maps. Looking at the uniform fit, 

one can see qualitatively that the lack of knot density in the regions of steep gradient resulted in 

an inability to faithfully represent those regions. In terms of the DVF, the uniform B-spline 

overestimated the motion. This problem is reduced in the non-uniform cases, where both the size 

and separation of the lung lobes are more accurate. Figure 66 shows the surface fits with 12 free 

knots in each direction (256 control points). With this many control points, the decrease in error 

seen with the non-uniform knots is not as visually dramatic, but the fine details in the high 

gradient areas--particularly in the (patient) right lung--are still better represented by the non-

uniform methods. It is also worth noting that while the Simplex knot distribution differs vastly 

from the proposed knot insertion method, the fitting errors are nearly identical (see Figure 67). 

This suggests that the problem of B-spline fitting with knot optimization has many local minima. 
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Figure 65: Contour plot of the target surface (top panel) generated from a coronal slice with a qualitative 

comparison of the four B-spline fitting methods using 100 control points. 
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Figure 66: Contour plots of the surfaces generated by the four B-spline fitting methods applied to a coronal slice of 

the DVF data using 256 control points. 
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Figure 67: Comparison of fitting the error (sum of squared differences) to the coronal surface for each B-spline 

fitting method for a given number of control points. The errors are normalized to the fit with 16 control points (0 

free knots). 

 

 The surface fits of the axial (Figures 68 and 69)  and sagittal (figures 70 and 71) slices 

exhibit the same general trends as the coronal example; however, though the non-uniform 

methods maintain a slight advantage over the uniform fits, the performance gap has shrunk. For 

example, in the coronal case the uniform fit required 121 control points to match or surpass the 

fitting error achieved with just 64 control points with non-uniform knots. Meanwhile, in the axial 

and sagittal cases the uniform fitting error nearly matches the non-uniform fits at 81 and 64 

control points, respectively. Nevertheless, the uniform method never outperforms the non-

uniform method for the same number of control points. It is worth mentioning that due to its 

inherent smoothness, the B-spline fit with a reasonable number of control points (i.e. much less 

than the number of data points) cannot match the noisy target DVF that has been generated by 

the Demons algorithm. 
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Figure 68: Contour plot of the target surface (top panel) generated from an axial slice of the DVF data with a 

comparison of the four B-spline fitting methods using 100 control points. 
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Figure 69: Contour plots of the surfaces generated by the four B-spline fitting methods applied to an axial slice of 

the DVF data using 256 control points. 
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Figure 70: Comparison of fitting the error (sum of squared differences) to the axial surface for each B-spline fitting 

method for a given number of control points. The errors are normalized to the fit with 16 control points (0 free 

knots). 
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Figure 71: Contour plot of the target surface (top panel) generated from a sagittal slice of the DVF data with a 

comparison of the four B-spline fitting methods using 100 control points. 
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Figure 72: Contour plots of the surfaces generated by the four B-spline fitting methods applied to a sagittal slice of 

the DVF data using 256 control points. 
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Figure 73: Comparison of fitting the error (sum of squared differences) to the sagittal surface for each B-spline 

fitting method for a given number of control points. The errors are normalized to the fit with 16 control points (0 

free knots). 
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4.3 DVF Volume Fitting with Non-Uniform B-Splines 

 Having demonstrated the advantage of non-uniform knots in B-spline fits to surfaces in 

the previous section, the next step is to extend the heuristic knot placement rules to fitting 

volumes. To accomplish this, the slices in the volume data were averaged in three directions, 

producing an average coronal surface (Figure 74), an average sagittal surface (Figure 75), and an 

average axial surface (Figure 76). From these surfaces, 1D profiles were obtained, and the fitting 

routines were applied as before. The simplex method was abandoned for this volume fitting test 

because it was found to not converge reliably.  

 

Figure 74: Contour plot of the average coronal slice. 
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Figure 75: Contour plot of the average sagittal slice 

 

 

Figure 76: Contour plot of the average axial slice 
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The error comparison for the non-uniform and uniform methods is shown in Figure 77. The 

advantage of the non-uniform methods is still present for sparse control points, however as the 

number of control points increases, the modest gains are quickly diminished and soon 

nonexistent. In fact, the uniform knot distribution outperforms the non-uniform for certain 

number of control points. One reason for this is that the 1D error profiles are not a good 

surrogate for the overall 3D error. In the 1D case, a knot can be added where it is needed on an 

individual basis. However, because of the rectilinear knot structure created by the tensor product 

formalism of B-splines, adding a single knot is not possible in higher dimensions. Instead, one 

must add strings of knots that are propagated in all directions. This results in redundant knots, 

and also overcompensates for regions of maximum error at the expense of regions of slightly 

lower error. The same trend is evident in moving from the 1D case to the 2D case, and is 

exacerbated when extending to 3D. The confinement of the knots to a rectilinear grid diminishes 

the gains in shape control. Nevertheless, the advantage is still evident for a small number of 

control points, which suggests that the 1D profiles may be useful for initializing grid spacing in 

the DIR process.
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Figure 77: Comparison of the sum of squared differences between each B-spline fitting method and the z-

component DVF volume. The errors are normalized to the fit with 16 control points (0 free knots). 

 

A general shortcoming of these non-uniform B-spline fitting algorithms when applied to 

higher dimensions is that they insert an equal number of knots in each direction. On the other 

hand, the common practice for DIR with uniform knot vectors is to distribute knots with equal 

spacing. This results in the number of knots in each dimension being proportional to the number 

of voxels in that dimension. Figure 78 compares the fitting accuracy of a uniform B-spline with 

equal number of knots per axis and a uniform B-spline with equal spacing between each knot. 

There is a distinction between the two methods when the number of voxels is not the same in 

each direction. In this case, the data set is 235 by 176 by 141, and equal spacing produces a 

smaller error. This observation will be considered in section 5.2. 
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Figure 78: Comparison of the sum of squared differences of a uniform B-spline with equal knot spacing in each axis 

and a uniform B-spline with an equal number of knots per axis. Equal knot spacing is conventional method, and it is 

seen here to be superior to the knot distribution with an equal number of knots per axis. 

 

4.4 Summary of Investigation 

Chapter 4 extended the 1D non-uniform knot placement rules to tensor product B-spline 

fitting. This was accomplished by projecting the multidimensional error mapping into a pair or 

set of 1D error profiles. Optimization of the knots in this way was observed to offer increased B-

spline fitting accuracy on a per control point basis. However, the relative benefit decreased as the 

dimensions increased. One reason for this is that a single knot cannot be added to a 2D or 3D B-

spline knot grid without propagating the knot addition in every direction, so adding knots for 

local shape control impacted the number of knots globally. Another reason for the decreased 

benefit is that B-splines are by definition a linear combination of basis functions, and while the 

value of a point on a B-spline curve depends on just four control points and their associated basis 
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functions, a 3D tensor product B-spline depends on sixty four control points and their associated 

basis functions. Changing the shape of the basis functions through manipulation of the knots will 

have a larger impact on shape control when there are fewer control points to optimize.  
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5. Non-Uniform B-Spline Deformable Image Registration 

 

The transition from B-spline fitting to B-spline DIR introduces a new level of abstraction. 

Whereas in the fitting process the changes in the free parameters directly influence the cost 

function, the DIR process requires an intermediate step. The general DIR method uses a DVF 

u(x) to map points           in a source image A(x’) to points x in a target image B(x) such 

that               ). In B-spline DIR, the DVF is represented by the B-spline function 

                , and the coefficients are optimized such that the sum of the squared pixel 

intensities differences between the source and target images is minimized: 

 

   
 

 
            

 

               

 

 

   

 

 
(5. 1) 
 

The first term in the bracketed difference is often referred to as the test image. Because it is a 

function of the free parameters of the B-spline, an additional partial derivative must be computed 

in the optimization routine: 

 

  

   

 

  

 
 
 
 
 

           
 

               
   
   

      

 
 
 
 
 

 

 

 

 
(5. 2) 
 

A second consequence of the added level of abstraction is the inability to directly compare the 

current estimate of the DVF and the true underlying DVF which minimizes equation 5.1. For this 

reason, the heuristic rules for knot placement must again be adapted. Section 5.1 discusses the 
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methods used to incorporate non-uniform B-splines into 2D DIR and investigates the added 

benefits. Section 5.2 further adapts the methods to the full 3D DIR case.  

 

5.1 2D DIR 

 Typical uniform B-spline DIR methods  follow hierarchical steps, during which the 

control point grid (and the corresponding spatial resolution of the DVF) is repeatedly refined by 

adding knots and control points throughout the volume, which reduces the uniform grid spacing. 

This step is performed without regard to the spatial distribution of the errors in the previous 

estimate of the DVF. Instead, knowledge of this spatial distribution of the errors can be used to 

add new control points predominately to areas of registration mismatch. In intensity-based DIR, 

the control point values are optimized such that they minimize, e.g., the sum of the squared 

differences (SSD) of pixel intensities between the two images. This means that at each 

hierarchical step, the current difference image, D(x) = A(x+u(x))-B(x), can be computed by 

subtracting the intensity values at each corresponding pixel in the two images. The difference 

image serves as an error map and gives insight into the spatial distribution of the local details in 

the underlying deformation.  This information can be used to drive the placement of new control 

points. 

 The proposed algorithm begins by registering the two images using a coarse, uniform 

grid. Whereas the B-spline fitting methods used the error of fit to determine the knot placement, 

the difference image from the initial uniform registration is now used to add control points non-

uniformly in areas with the largest error. It was observed in Chapter 3 that simply adding control 

points to the maxima of the difference image produced poor results. Instead, the pixel intensities 
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are summed across the difference image in each direction to obtain two one-dimensional 

difference profiles. Each difference profile is sub-divided into segments delineated by the grid 

locations (i.e. the difference profile in the x direction is divided by the y-axis grids, and vice 

versa). The intensity differences in each segment are summed, and a control point is added to 

bisect the segment with the largest total intensity difference. This step is analogous to the KIB 

method in B-spline fitting. The images are then registered with the updated grid configuration, 

thus producing an updated difference image. The registration step optimizes the control points 

via a Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm. The maximum 

iterations are set to 500, and the minimum step size and functional change are set to 1e-6. 

 The control point grids are then further refined by allowing the grid lines to migrate 

according to an attractive force proportional to the local intensity differences (i.e., errors). The 

one-dimensional difference profiles are again computed for this purpose. The knots, which 

correspond to the grid lines, move along the difference profile towards regions of large error and 

away from regions of comparatively small error. To ensure that the algorithm does not 

overcompensate in regions of large error by moving knots too far from their original locations, a 

restoring spring-force counteracts the attractive force. Optimization of the knot vector is 

computed in the same way as it was for the KIB+FE method in B-spline fitting: for each knot i, 

equation 5.3 is solved for the knot position ki that minimizes the sum of the contributions of each 

point of the 1D squared error function ε2
(x) contained in the knot segment belonging to ki: 

 

 
                    

      

      

         
(5. 3) 
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This balancing of forces avoids having too many knots gravitate towards one region, leaving too 

few in another. The updated knot locations are determined by minimizing this equilibrant system 

using the downhill simplex method. It is important to note that performing optimization of the 

knot vectors in this way is a 1D problem which must be performed twice for 2D registration and 

three times for 3D registration. This introduces computational overhead to the registration 

process; however, because there are far fewer free parameters, and function evaluations of this 

problem are fast, its impact on total registration time is minimal in comparison to the time taken 

to optimize the control point values.  

The non-uniform hierarchical grid refinement process is repeated until the SSD is below a pre-

defined error tolerance. Figure 79 displays the flowchart of this scheme. 
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Figure 79: Flowchart of the non-uniform refinement algorithm 

 

   

 For the purpose of this study, a comparison is made between registration results of 

non-uniform and uniform two-dimensional control point grid sizes ranging from 4 by 4 to 20 by 

20 (8 by 8 to 24 by 24 knots). To ensure a fair comparison, the uniform grid registration was 

obtained using a refinement scheme that adds two control point grid lines (one in each direction) 

for each hierarchical step. The source image was a coronal slice of a thoracic CT taken from the 

POPI dataset. The target image was obtained by applying a known DVF to the source image. 

Specifically, a slice from the Demon’s-derived DVF of the POPI dataset was used. 
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 A qualitative comparison of the uniform and non-uniform registration results is 

provided in Figures 80-83. Each figure represents a snapshot of the results of the two registration 

algorithms for a particular number of control points. In each frame, color-mapped plots of the 

difference images resulting from the non-uniform and uniform registrations are displayed on the 

top- and bottom-left, respectively. On the right is a magnified view of the lower right lobe and 

diaphragm, which we designated as the region of interest (ROI). This region was selected 

because it encompasses an area where we can expect the largest deformation and steep motion 

gradients. The position of control point grids are indicated by white lines. Notice that the non-

uniform refinement algorithm produces a denser distribution of control points in the lungs and 

along the diaphragm. Denser control points allow for the B-splines to more closely model the 

sharp motion gradients present in those regions. By sacrificing control point density in static 

regions (where having a large number of control points is not advantageous), the non-uniform 

refinement algorithm is able to automatically reduce the large local registration errors present 

near the diaphragm while maintaining good accuracy elsewhere. This is shown quantitatively in 

Figure 84, which compares the number of control points required by the two algorithms to 

resolve the large local errors present in the ROI after the initial coarse-grid registration. The 

ability of the non-uniform grid to achieve denser control points in regions of large local error 

without increasing the number of control points globally results in better registration accuracy 

with fewer control points. This is most clearly seen in regions where coarse uniform grids are 

unable to model the sharp local gradients, as exemplified by the ROI. The reduction of error in 

the ROI occurs with fewer control points using the non-uniform control point grid because 

control points are more optimally distributed with respect to the underlying motion. It is also 

evident that additional control points have a diminishing return on the error: the non-uniform 
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registration with a 14 by 14 grid produced a smaller error in the region of interest than the 

uniform registration with a 40 by 40 grid.  

 

Figure 80: Comparison of the non-uniform (upper) and uniform (lower) registration errors in the lung with an 8 by 

8 control point grid. 
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Figure 81: Comparison of the non-uniform (upper) and uniform (lower) registration errors with a 10 by 10 control 

point grid. 

 

Figure 82: Comparison of non-uniform (upper) and uniform (lower) registration errors with 12 by 12 control point 

grid 
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Figure 83: Comparison of non-uniform (upper) and uniform (lower) registration errors with 15 by 15 control point 

grid 
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Figure 84: Non-uniform refinement results in a reduction of large local errors in the ROI. 

 The same general trend was observed for the global error, as shown in Figure 85. 

Again, the diminishing return on registration error begins with the 14 by 14 non-uniform control 

point grid and the uniform grid does not surpass that accuracy until 20 by 20. This confirms that 

preferentially placing control points in regions of anatomical motion and away from static 

regions (where they would be redundant) decreases large local errors without adversely affecting 

the accuracy of the global registration.  
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Figure 85: Non-uniform refinement results in an overall reduction of registration error. 
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5.2 3D DIR 

The previous section demonstrated that the non-uniform B-spline fitting methods can be 

integrated into the 2D DIR process in order to decrease registration errors. This section builds 

upon that proof of concept by modifying the algorithm to the 3D case. It was observed in Section 

4.3 that the straightforward extension of the non-uniform knot placement methods from 2D to 

3D resulted in a modest decrease in fitting error as compared to the uniform method. In essence, 

condensing a 3D error to three 1D error profiles obscured the true 3D distribution of errors. 

Similarly, the restriction of the rectilinear knot grid inhibited the ability of the knots to 

adequately mimic the 3D error distribution. These limitations, as well as other lessons learned in 

Chapter 4 , were taken into consideration when developing the 3D non-uniform B-spline DIR 

method.  

The added complexity of 3D DIR as compared to both 3D B-spline fitting and 2D DIR 

required numerous modifications to previous algorithms. The first major modification is to the 

heuristic rule for knot placement. In the 2D DIR method, the 2D difference image was projected 

into two 1D error profiles. However, projecting the difference volume in an analogous way 

resulted in a loss of structural information. The spatial distribution of the difference in voxel 

intensity between two CT volumes varies greatly from slice to slice. When directly applying the 

1D projection method, the differences seen in individual slices were obfuscated by noise and by 

averaging, thus diminishing the efficacy of the knot insertion method. In order to reduce this 

effect, a 3D map of the errors larger than two standard deviations from the mean voxel intensity 

difference was created. This mapping was used instead of the actual difference volume to 

compute the three 1D error profiles. As a result, the 1D error profiles were more smoothly 

varying, had larger relative peaks, and retained the structural information of the real anatomical 
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changes between the two CT volumes. Error maps and the associated 1D error profiles created in 

the axial, coronal, and sagittal planes can be seen in figures 86, 87, and 88, respectively.  

 

 

Figure 86: Axial error map with 1D projections and the resultant knot vectors. 
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Figure 87: Sagittal error map with 1D projections and the resultant knot vectors. 
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Figure 88: Coronal error map with 1D projections and the resultant knot vectors. 

5.2.1 Incremental Knot Insertion DIR Accuracy 

  A target CT is created by applying the Demon’s-generated DVF from the POPI dataset 

to the source CT. For this purpose, the DVF mapping the end-inhalation phase to the end-

exhalation phase was used. The CT was scaled to match the dimensions of the DVF, resulting in 

a 235 by 176 by 141 voxel image dataset. Creating a synthetic DVF made the two image sets 

noise consistent and also allowed for a comparison between the DVF generated by the various 

algorithms and the applied DVF. As a first approach, B-spline DIR using knots determined by 

the uniform, KIB, and KIB+FE methods were compared. Up to this point, the non-uniform 

methods have all incremented the number of knots uniformly in each direction. This is 
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unnecessary, and, as was observed in Section 4.2, is sub-optimal with respect to the fitting error 

per number of knots. Instead, after the initial fit, the knot grid is updated by bisecting the three 

knot segments containing the largest number of errors greater than two standard deviations from 

the mean error, irrespective of the axis in which they reside. That is, these three knot segments 

may all exist along the same directional axis. This results in knot vectors that are non-uniform in 

both knot spacing and number of knots per axis. In this experiment, rather than iteratively adding 

a single knot in each direction, the non-uniform knot methods placed three knots to bisect the 

three largest error segments according to the 1D error profiles. Figure 89 plots the DIR error 

versus the log of the number of control points for the three methods. The non-uniform methods 

exhibited slightly lower mean squared intensity differences as compared to the uniform method.  

 

Figure 89: Error comparison of the three incremental B-spline DIR methods. Error is plotted as a function of the log 

of the number of control points. 
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Figure 90 compares the initial difference image in the coronal plane with the difference 

images after registration via the uniform (second row), KIB+FE (third row), and KIB (fourth 

row) knot placement methods. The uniform method had a 10 by 10 by 10 control point grid for a 

total of 1000 control points while the KIB and KIB+FE methods each heuristically selected 11 

by 10 by 9 control point grids. The right hand column displays an overlay of the knot positions in 

yellow. There is a visually discernable difference in the quality of the registrations, particularly 

in the main airways.  However, with the use of 10,000 control points (figure 91), the three 

methods are qualitatively indiscernible from one another. Figure 89 confirms that with 10,000 

control points the three methods have nearly identical mean squared intensity differences.  
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Figure 90:  Difference images in a coronal slice of the CT pair before registration (top panel), and after registration 

with the three methods (uniform, KIB+FE, KIB). The frames on the right overlay the knot distribution with 6 free 

knots. The uniform method had a 10 by 10 by 10 control point grid, while both non-uniform methods selected a 

control point grid of 11 by 10 by 9. 
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Figure 91:  Coronal difference images resulting from registration using uniform, KIB+FE, and KIB methods with 

approximately 10,000 control points.  

A second qualitative investigation of the DIR methods is made by comparing the 

resultant DVFs with the Demon’s DVF used to generate the target CT. Once again, the 

difference between the uniform and non-uniform B-spline DVFs is apparent in the case with 

fewer control points. Specifically, the added shape control gained from the use of non-uniform 

knot placement allows the DIR to resolve the two lobes of the lung with fewer control points 

than the uniform method (figure 92). In general, it is observed that the non-uniform method 

results in a B-spline DVF with a higher level of fine detail, though neither can exactly model the 

underlying non-regularized Demon’s generated DVF. This can be seen in figures 96 and 100, 
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which contain DVF slices from the sagittal and axial planes, respectively. It is worth noting that 

a quantitative comparison between the DVFs (e.g. a sum of squared differences), will not 

necessarily yield a result indicative of overall the DIR accuracy. This is because the value of the 

B-spline DVF may differ from the underlying target DVF in regions with little or no image 

contrast without adversely affecting the sum of squared differences of the pixel intensities. 

Furthermore, the non-uniform method is expected to result in coarser grid spacing and shape 

control in those regions. This can be seen on the periphery of the DVF volumes in all three 

planar views.  

 

Figure 92:  Contour plots of a coronal plane containing the z-component of the DVF. The left panel is the DVF 

generated by the uniform B-spline method with 1,000 control points, the middle panel is the DVF generated by the 

non-uniform B-spline method with 990 control points, and the right panel is the target DVF generated by the 

Demon’s algorithm.   

 

Figure 93:  Contour plots of a coronal plane containing the z-component of the DVF. The left panel is the DVF 

generated by the uniform B-spline method with 10,000 control points, the middle panel is the DVF generated by the 
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non-uniform B-spline method with 990 control points, and the right panel is the target DVF generated by the 

Demon’s algorithm.   
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Figure 94:  Difference images in a sagittal slice of the CT pair before registration (top panel), and after registration 

with the three methods (uniform, KIB+FE, KIB). The frames on the right overlay the knot distribution with 6 free 

knots. The uniform method had a 10 by 10 by 10 control point grid, while both non-uniform methods selected a 

control point gird with dimensions of 11 by 10 by 9. 
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Figure 95:  Sagittal difference images resulting from registration using uniform, KIB+FE, and KIB methods with 

approximately 10,000 control points.  
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Figure 96:  Contour plots of a sagittal plane containing the z-component of the DVF. The left panel is the DVF 

generated by the uniform B-spline method with 1,000 control points, the middle panel is the DVF generated by the 

non-uniform B-spline method with 990 control points, and the right panel is the target DVF generated by the 

Demon’s algorithm.   

 

Figure 97:  Contour plots of a sagittal plane containing the z-component of the DVF. The left panel is the DVF 

generated by the uniform B-spline method with 10,000 control points, the middle panel is the DVF generated by the 

non-uniform B-spline method with 990 control points, and the right panel is the target DVF generated by the 

Demon’s algorithm.   
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Figure 98:  Difference images in a axial slice of the CT pair before registration (top panel), and after registration 

with the three methods (uniform, KIB+FE, KIB). The frames on the right overlay the knot distribution with 6 free 

knots. The uniform method had a 10 by 10 by 10 control point grid, while both non-uniform methods selected 11 by 

10 by 9 control point grid. 
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Figure 99:  Axial difference images resulting from registration using uniform, KIB+FE, and KIB methods with 

approximately 10,000 control points.  
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Figure 100:  Contour plots of an axial plane containing the z-component of the DVF. The left panel is the DVF 

generated by the uniform B-spline method with 10,000 control points, the middle panel is the DVF generated by the 

non-uniform B-spline method with 990 control points, and the right panel is the target DVF generated by the 

Demon’s algorithm.   

 

Figure 101:  Contour plots of an axial plane containing the z-component of the DVF. The left panel is the DVF 

generated by the uniform B-spline method with 10,000 control points, the middle panel is the DVF generated by the 

non-uniform B-spline method with 990 control points, and the right panel is the target DVF generated by the 

Demon’s algorithm.   
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5.2.2 Incremental Knot Insertion DIR Computation Time 

The time to compute the DIR with respect to the number of control points is displayed in 

Figure 102. The difference in the computation time is a consequence of the way that the knot 

grids are incremented. In the uniform method, a new knot vector is computed which subdivides 

the parameter space into equal segments. On this new knot vector domain, the previously 

computed control points are no longer valid. Instead, the control points associated with the new 

knot vector are computed by fitting the new B-spline to the previous B-spline (i.e. solving 

equation 3.5). The time required to solve this equation (matrix inversion) scales with the total 

number of control points. The KIB method, on the other hand, inserts a single knot    in the sth 

knot span (i.e.       
           without disturbing the position of the pre-existing knots   . Due 

to the local support property of B-splines, only p+1 control points need to be recomputed per 

dimension, where p is the degree of the B-spline. This is illustrated in Figure 102. This powerful 

property of the B-spline is well-known and exploited in computer aided design, but has not been 

explored in the context of DIR. As shown by Piegl [Piegl, 1997], the new control point set Q can 

be solved from the old control point set P by 

                    (5. 4) 
 

 

   

 
 

 
                              

     

       
                         

                               

  

 

(5. 5) 
 

This algorithm allows for a single knot to be added with very little computational burden. It can 

also be used recursively to add a large number of knots. When called recursively to bisect each 

knot segment in the uniform B-spline, the computation time for the KIB method was reduced by 
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a factor of two compared to the uniform incremental method. Because the KIB+FE method 

allows all of the knot values to change in its force equilibration step, it requires that all the 

control points be recalculated. In addition, it involves two optimizations per control point 

iterations (see Figure 79). Consequently, it requires the longest computation time.  

 

Figure 102:  Adding a knot to the B-spline curve will only affect p+1 basis functions. Because of this, it is only 

necessary to compute p+1 new control point values  
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Figure 103:  Comparison of the total time required to compute the three B-spline methods. The uniform B-spline 

method requires nearly twice as long to compute as the KIB non-uniform method. Note that from Figure 99, the 

error upon completion of the registration with 10,000 control points produces very nearly the same error. 
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5.2.3 Multiple Knot Insertion DIR 

 Increasing the number of control points by adding a few knots per iteration is useful for 

comparing the accuracy of uniform and non-uniform B-spline DIR on a per control point basis, 

but it is an impractical strategy for the purpose of fast DIR. Incrementing the number of knots in 

small steps results in redundant optimization of the control points. For example, inserting non-

uniform knots, even with the force equilibration step, was often not enough to dislodge the 

optimization from a local minimum (see Figure 89).  A common approach to correct for this 

shortcoming involves grid refinement with large steps, often doubling the control point grid 

resolution at each refinement step. This approach is referred to as multiscale or multilevel B-

spline DIR. This section develops methods for multiple knot insertion DIR. 

 Two uniform methods and one non-uniform method are compared. The first uniform 

method refines the grid by decreasing the knot spacing from 40 to 10 voxels in increments of 10 

voxels, and down to 5 on a final refinement step. The second uniform method starts with zero 

free knots and bisects every non-zero knot segment each iteration. The initialization of control 

points to the previous estimate of the DVF is computed by invoking equation 5.4 after each 

bisection. Similarly, the non-uniform method adds 3n
2

 knots per iteration, where n is the iteration 

number. This relationship was chosen based on the resulting exponential increase in control 

points, which mimics the effect of bisecting every non-zero knot segment. Again, equation 5.4 is 

used recursively after each knot insertion to solve for the initial control point values belonging to 

the new knot grid.  

 The multilevel B-spline DIR errors and the time to compute the DIR are compared in 

Figures 103 and 104, respectively. An important feature to note is that all three multilevel 
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techniques succeed in reducing the error at each refinement step. The large number of control 

points added per refinement avoids getting stuck in local minima on consecutive optimizations 

and ensures that fewer global control point optimizations are required to complete a registration 

with a larger number of control points. This is demonstrated in Figure 104. Despite computing an 

order of magnitude more control points, the multilevel techniques reduce the computation time 

by a factor of two.  

 

Figure 104:  Comparison of the mean squared intensity difference after each of the three multilevel B-spline DIR 

methods. The non-uniform method slightly out-performs the uniform methods until after 100,000 control points. 
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Figure 105:  Comparison of the total time required to compute the three B-spline multilevel methods as a function 

of the number of control points.   

 

 This experiment was repeated for each of the 9 breathing phases registered to the 

reference phase. The error, number of control points, and computation time were averaged over 

the breathing phases. Figure 105 plots the time to compute each method as a function of number 

of control points, and Figure 106 plots the mean squared intensity difference as a function of 

time. It was observed that the non-uniform multilevel method takes less time to produce the same 

(or better accuracy) than either of the uniform methods. Additionally, the uniform B-spline DIR 

algorithm’s speed is greatly improved by the use of the knot bisection method over a grid 

refinement scheme which requires the direct solution of control points between every refinement 

step. 
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Figure 106:  Comparison of the times to compute each multilevel registration, averaged over the 9 breathing phases. 

 

5.3 Summary of Investigation 

Chapter 5 incorporated the heuristic rules for knot placement into the DIR framework, 

first in 2D and then in 3D. Modifications were made to the algorithm so that the knots were 

placed preferentially in areas of large disagreement, as informed by the difference image 

computed at each refinement step. The benefit of non-uniform knots was demonstrated in 2D 

through use of the knot insertion technique with force equilibration. It was shown that the non-

uniform method correctly placed knots in areas corresponding to large anatomical displacements, 

resulting in better DIR accuracy than was achievable with uniform knots. As was the case with 

non-uniform B-spline fitting, diminishing returns were observed in higher dimension non-

uniform B-spline DIR. However, small improvements in DIR accuracy were demonstrated. In 
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addition, qualitative comparisons of the computed DVFs showed a higher level of fine detail in 

those resulting from the non-uniform B-spline method. Finally, a method for large, non-uniform, 

refinement steps was developed and its improved computational efficiency was demonstrated. 

 

 

Figure 107:  Comparison of the errors versus computation time, averaged over the 9 breathing phases. 
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6. Conclusions and Discussion 

 

6.1 Conclusions 

This work presented an investigation of a new approach to DIR based on NURBS. Despite being 

a more general and flexible formulation of B-splines, as well as a commonly implemented 

mathematical tool in CAD, no NURBS-based DIR algorithms have been documented in the 

literature to date. The motivation for the use of NURBS in the DIR framework was to use the 

additional free parameters associated with NURBS in an attempt to represent discontinuous 

DVFs, which are problematic for inherently smooth conventional B-splines. However, it was 

discovered early in the project that on a per-free parameter efficiency basis, the rational weights 

of NURBS offer no advantage over conventional B-spline control points when fitting DVFs. 

This discovery shifted the focus of the work to the creation of heuristic rules for knot placement 

of non-uniform tensor product B-splines (henceforth referred to as NUBS), which up until this 

study had also not been investigated in the context of DIR. In fact, the question of how to 

optimize NUBS knot placement has not been definitively answered even in the case of directly 

fitting curves and surfaces. It therefore became necessary to start from 1D function fitting and 

incrementally build up complexity to 3D DIR. The progression led to many challenges distinct 

from those addressed in the B-spline literature. For example, existing NUBS fitting algorithms 

rely upon information about the features of the target dataset in order to optimize knot 

placement, whereas in the DIR framework the underlying target function is unknown. This 

necessitated the creation of novel knot placement algorithms which are instead guided by the 

iterative error, irrespective of whether that error is the defined as the difference between two 
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functional values or the difference in image intensity between a registration image pair. To this 

end, a set of heuristic rules was created, and the efficacy was demonstrated in 1-, 2-, and 3D 

NUBS fitting. These rules eventually formed the basis for a novel NUBS DIR scheme. In 2D, the 

NUBS DIR scheme with knots placed according to the KIB+FE algorithm was found to reduce 

the registration error compared to a uniform B-spline DIR with the same number of control 

points. This demonstrated proof of concept of a NUBS-based DIR framework for the first time.  

In 3D, large datasets and long computation times motivated the search for a more efficient grid 

refinement step in the registration process. A knot insertion method was implemented which 

allows the ability to add a knot at any point along the existing directional knot vectors without 

changing the value of the B-spline tensor product. When performed recursively, it enables the 

efficient addition of a large number of knots. This powerful B-spline algorithm is used for 

interactive design in CAD. However, to the best of the author’s knowledge, it has not been 

explicitly mentioned in the medical imaging literature. Furthermore, prior to this work it had 

never been fully exploited to efficiently add knots in areas of deficient registration. 

 

6.2 Discussion and Future Work 

 NURBS were investigated as a way to model the discontinuities observed in the sliding 

motion of certain anatomical structures. Unfortunately, the rectilinear grid structure required by 

tensor product B-splines severely limited the efficacy of knot optimization. An ideal 

mathematical framework would allow the insertion of a single knot at an arbitrary location in the 

image space, thereby offering increased local DVF control without a large number of additional 

control points. There are existing methods that have been proposed to handle this problem. For 
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example, Shusharina and Sharp have investigated radial basis functions to produce “meshless” 

registration [Shusharina and Sharp, 2012]. Hierarchical B-splines have been developed which 

can overlay grids to produce nearly arbitrary topology. Additionally, T-splines, a variation of 

non-uniform B-splines which includes “T” shaped junctions in the knot grid, have been 

developed for use in CAD and CAE, with implications in finite element analysis [Sederberg et 

al, 2003]. At the time of writing and to the best of the author’s knowledge, T-splines have not 

been incorporated into a DIR framework, but it seems like a promising application for the new 

technique of B-spline shape control.   

This paper used the sum of squared pixel intensity differences in order to assess 

registration accuracy, which can be problematic. As Castillo et al point out [Castillo et al, 2013], 

“the goal in applying DIR is to obtain accurate spatial registration of the underlying anatomy, 

and not simply quantitative image similarity.” However, pixel intensity difference does not 

necessarily correspond to the accurate registration of anatomy and can be affected by image 

noise and artifacts. Instead, the trend is to use the location of landmark features identified by 

experts as a standard for comparison of DIR methods. This study would need to be done to verify 

the clinical viability of the non-uniform knot method placement.  In addition, using the pixel 

intensity difference in the cost function precludes the use of this method for the registration of 

images acquired by multiple modalities. This is required, for example, in the fusion of MRI and 

CT images, which can be performed by comparing the mutual information in the two images. 

The paper focused on creating a fully automated image registration algorithm, but a semi-

automated method with interactive insertion of knots to locally increase registration accuracy 

would be a useful tool. It was demonstrated that the insertion of knots without changing the 

values of the B-spline is both possible and efficient. Of course, re-optimization of the new 
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control point grid would remain computationally demanding, but Shackleford et al have shown 

orders of magnitude decrease in computation time by utilizing graphics processing units (GPU) 

[Shackleford et al, 2010]. Parallelizing the computation of the 3D B-spline DVF to take 

advantage of GPU speed increases would greatly reduce the computation time required by this 

algorithm. Combining the faster GPU computation with the knot insertion method could produce 

an interactive tool which could update the DIR in near real-time.  
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