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Under certain loading conditions, surfaces topography coupled with materials degree

of brittleness can significantly compromise the mechanical performance of structures. The

foregoing remains valid even if roughness is intentionally introduced for engineering rea-

sons. In either case, stress can concentrate. The case of the stress concentration in surfaces

having randomly distributed pits is a problem that, although being very practical, yet it

remains unsolved. The complexity of a random configuration renders difficult the problem

of analytically finding relationships between surface parameters and markers indicative of

mechanical failure. Another difficulty is the reproducibility of replicates of specimens pos-

sessing random rough surfaces, for destructive testing followed by statistical analysis.

An experimental technique to produce highly controlled replicates of random rough sur-

faces (including modeling of degradation growth) was developed. This method was used



to experimentally and statistically study the effects on fracture of early randomly degraded

surfaces of poly methyl methacrylate (PMMA) versus topographical parameters. Growth

of degradation was assumed to go from an engineering surface to one whose heights are

normally distributed. (Early stage of degradation is meant to be that level of roughness

which is in the neighborhood of the critical flaw size for a given material). Among other

findings, it was found that neither stress nor strain alone can be used to predict fracture

at this early stage of degradation. However, fracture location was found to be strongly

correlated to the ratio of root-mean-square roughness (RMS) to auto correlation length

(ACL), above some RMS threshold. This correlation decreases as the material becomes

less brittle (i.e., decrease of Young’s modulus or increase of percent of elongation). Simul-

taneously, a boundary-value problem involving traction-free random rough surfaces was

solved using a perturbation method, assuming elastic and isotropic conditions. For small

RMS/ACL ratio, the solution for the RMS stress concentration factor, kRMS
t was found to

be: kRMS
t = 1 + 2

√
2(RMS/ACL), which agrees very well with the experimental work.

Finally, a generalization of stress concentration factor formulas for several geometrical

configurations and loading conditions into the Modified Inglis Formula was proposed. Fi-

nite element analysis was carried out and comparison was made with both experimental

and analytical results.

Applications of these results are broad. In surface engineering, for example, our analytical

solution can be coupled with Fick’s Law to find critical conditions under which a film could

become unstable to random roughness. Additionally, in design and maintenance of surfaces

in service, it can be used to preliminarily assess how stress concentrates in surfaces where

well defined notches can not be used as an approximation.
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CHAPTER 1

INTRODUCTION

1.1 Executive Summary

The following are accomplishments of the present work:

i. Development and realization of a technique to produce replicates of random rough

surfaces at early stage of degradation, including simulation of degradation growth.

ii. Experimental and statistical study of the effects on mechanical failure of early ran-

domly degraded specimens of Poly Methyl Methacrylate (PMMA). Correlation be-

tween stress, strain and energy at fracture, as well as fracture location density (FLD)

was sought versus several topographical parameters. Strong correlation was found be-

tween FLD and the ratio RMS/ACL, under quasi-brittle conditions. For less brittle

conditions this correlation disappears; and values of Young’s modulus and percent of

elongation at which this occurs are reported.

iii. Set up of the boundary-value problem involving traction-free random rough surfaces

using first principles of generalized elasticity for a homogeneous, isotropic material.

Using the foregoing setup, derivation of an analytical solution of the stress concentra-

tion factor in 2-dimensions due to the presence of multiple random pits, via an ana-

lytical method that includes a perturbation method, Parseval’s theorem, and an energy

conservation principle.

iv. Generalization of stress concentration factor formulas for several geometrical config-

urations and loading conditions, into a proposed Modified Inglis Formula(MIF). Table

1



of parameters are provided.

v. Finite element analysis of the aforementioned experimental and analytical studies.

1.2 Overview

Regardless of the considerable advancement on our understanding of material fracture,

still structures are over-designed as to assure reliability, thus increasing their cost[1]. It has

been reported that a significant portion—as much as one–third—of the cost of fracture and

deformation could be eliminated over time through research and development: by acquir-

ing new knowledge of mechanical behavior of materials and applying this knowledge[1].

Also, advancing and changing technology aggregates new challenges to the engineer de-

signer, demanding more efficient use of materials. With the advent of nanotechnology

and its distinct governing principles, deeper understanding of the implications of surface

roughness is needed. Furthermore, with the repeating finding that introduced roughness

produces positive engineering outcomes in various surface systems, the engineer is faced

with the question: ”How much can this introduced roughness compromise structural in-

tegrity?

With just a few exceptions, in the field of fracture mechanics most of the research has

been advanced since after World War II, as a consequence of the catastrophic failures of

the Liberty ships [2]. Although a significant amount of work has been accomplished to

understand deformation and fracture due to discontinuities on materials, yet most of it in-

volves well-defined geometrical holes and notches[3]. However, many natural degrading

processes generate surface roughness characterized by having irregular shapes. For exam-

ple, natural weathering of structural materials in service nearly always generate random

roughness conditions on surfaces. Similarly, roughness is often intentionally introduced

on surfaces for engineering reasons. There remains the need, therefore, to further under-

stand brittle and ductile failure of materials possessing surfaces with degradation that more
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closely emulate what occurs in realistic service conditions.

1.3 Economic Motivation

A single scratch on a new article—e.g., paint of an automobile, or the screen of an

expensive smartphone—often causes depreciation in its final financial value that is much

greater than the cost of the real mechanical damage. Even though from the consumer’s

point of view, priority is commonly given to the subjective worth of surface material degra-

dation, one of the duties of the engineer is to characterize the mechanical implications of

the problem, to the point of providing predicting models of failure and to help to increase

lifetime of materials in service. Scribe is an intentional scratch through the coating for

testing; but for coatings in service, fracture (surface cracking, channeling, delamination,

or spalling) can occur due to weathering combined with high stresses, or cyclic strain as

occurs on bridges, for example. Unfortunately, at times, the implications of surface degra-

dation surpass mere aesthetic and lead to mechanical failures that could involve both human

life and material loss.

Despite the fact that catastrophic failure offers profits to attorneys and consulting engi-

neers, such events are damaging to the economy as a whole. Undoubtedly, the economic

cost of fracture and its prevention is quite large[1, 4]. One important aspect that increases

the costs is that related with overdesign of structures, as to assure reliability [5]. A study

by the Department of Commerce completed in past years showed that the annual cost of

fracture (not including the effects of wear or corrosion) of materials in the United States

represented about 4% of the Gross National Product (GNP), which infers a rather signifi-

cant use of resources and manpower[4]. According to similar studies, if wear and corrosion

effects were added to that noteworthy figure, costs would elevate to about 10% of the GNP

[1]. Europe has reported comparable percentages [6]. Therefore, it is quite reasonable to

assume that similar to higher values are likely to apply to all developed countries [1], and
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Fig. 1. At some scale all solid surfaces are rough.

perhaps strictly higher in underdeveloped regions.

1.4 Roughness on Surfaces

Roughness is one of the main factors that influence wear and crack initiation and

propagation [7]. Under some proper loading, valleys of rough surfaces can be thought of

as surface–crack initiators [8]. By surface, it is meant the geometrical boundary between a

solid and the environment. Now, random roughness has been defined as the standard error

of individual elevations after oriented roughness has been removed [9]. Or analogically

stated, random roughness can be described as the standard deviation of elevation from a

plane across a tilled surface, once oriented roughness is accounted for. The influence of

random roughness on surfaces is very important as it is a phenomenon that continuously

takes place in nature and on engineering surfaces [10]. It can reasonably be stated that

ultimately, under some fine-scale spatial resolution, random roughness is present almost

everywhere [11, 12], see figure 1. For instance, textures of most engineering surfaces,

which are a function of both its production process and the nature of the parent material,

are random [13]. Almost any known natural phenomenon can cause materials degradation.
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The synergistic effects of the accumulation of all these degrading phenomena cause random

roughness on surfaces of materials in service. It is, therefore, of much engineering interest

to clearly assess the effects of random roughness on mechanical material failure in order to

increase our level of predictability.

1.5 Impact on Performance of Surface Degradation and Roughness

Surface degradation can be characterized in terms of reduction in the level of perfor-

mance of an engineering system[14]. All structures in service at power plants, solar cells,

energy-harvesting micro electromechanical devices, lithium-ion anodes, turbine blades, are

but a few of a long list of exposed configurations whose outer surfaces can degrade and

hence hinder their functionality. For any of these items, there is a critical minimum level

of performance. Degradation proceeds at a rate that varies with local conditions and parent

material, and failure occurs if performance declines to below its critical level; alternatively,

decrease in efficiency occurs if performance decreases but remains above the critical level.

For instance, according to an IAEA 2009 report [15], as of year 2008, 327 (out of 439)

nuclear power plants had been in operation for 20 years or more. Consequently, the issues

of plant life management and license extension are receiving increasing emphasis in many

countries. Pipe corrosion, containment (and other concrete-made structures) weathering

and wearing, coatings degradation, reactor vessel embrittlement are some of the processes

that required deeper understanding to ensure continued efficient and safe operation of the

power plants.

Another important example of negative impact on performance due to surface degradation

is in the area of heteroepitaxial structures with semiconductor films[16, 17]. The prob-

lem arises from the fact that high stresses—in the order of 10 GPa—can be induced due

to lattice mismatch during film growth. Besides the direct negative effect on electronic or

optoelectronic performance by the devices, these residual loads can induce further surface
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evolution in a non-equilibrium manner. The progress of this mechanism can, in turn, lead

to mechanical failure of the structure. Even if the evolution of the surface comes to an equi-

librium, it is left roughened. This geometrical condition coupled with the aforementioned

high residual stresses can lead to fracture of this brittle structures.

1.6 Applications

Early predictions of mechanical failure on surfaces that roughen randomly will be ben-

eficial to several fields including energy and power[18], implant research[19, 20], micro/nanoelectro-

mechanics [21–23], coatings [24–26], mineralogy[27, 28], etc. Recently, it has been re-

ported that induced roughness on silicon-based solar cells increase light absorption, thus

increasing the efficiency of the cells[29]. However, this provoked roughness also introduces

mechanical weakness into the overall system which must be accounted for during design.

In the field of dentistry, it has been strongly emphasized the effects that surface roughness

has on the lifetime of dental implants [19, 20]. For example, from the dental laboratory per-

spective, one of the four most common causes of fractures in implant-supported removable

dentures is roughness and wear of the posterior teeth to the point of loss of vertical dimen-

sion of occlusion resulting in anterior teeth fracture/debonding[20]. On the other hand, in

the biomedical field, there is strong evidence that there is a positive correlation between sur-

face roughness and bone-to-implant contact (see figure 2): within certain micro-roughness

range, the higher the roughness the higher the contact [30]; this implies that osseointegra-

tion is expedited by the introduction of surface micro-roughness in the interface. Again,

this benefit of roughness competes with the mechanical strength of the implant material, a

dilemma that must be investigated and further understood for a random rough situation.

Much study has been done trying to characterize and predict the influence of roughness

on micro/nano electromechanical devices. For example, the influence of random roughness

on cantilever sensitivity and resonance frequency has recently been studied [21, 22] and
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Fig. 2. Roughness of bone-to-implant contact is strongly and positively correlated to bone
healing (within some range of roughness).

cantilever bending with rough surfaces was previously well studied by Jorg Weissmuller

et al., who concluded that roughness has a non-negligible effect on the cantilever sensitiv-

ity[23]. This piece of knowledge has important implications in biosensor design and use.

Another application involves the prediction of lifetime of protective coatings. Failure of

coating films (figure 3) takes place after the loss in barrier integrity due to the accumulated

damage of small scale weather-induced degrading events. These events imprint random

rough damage on the coating surface, which under some type of loading, could lead to

chain scission and then probably to coating fracture [2]. A hefty number of investors have

obvious interest in predicting the service life of polymeric products exposed to the environ-

ment, as these represent, for example, the protective coatings of many structures in service

[31]. It has been found that cracks in the coating of gas turbine blades act as an initiator

for the thermal fatigue crack in base metal[32]. Economical and safety reasons are among

the most important benefits to gain from more accurate service life predictions of coatings

[31]. These needs are more extensively expressed in a symposium entitled Service Life

Prediction [33], which for the sake of conciseness of the present document, have been left

to the choice of the reader.

Additionally, there are many other fields that could benefit from the present study such as:

tribology, forensic sciences, surface engineering, etc.
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Fig. 3. Failure of coating films can lead to subsequent failure of structures
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CHAPTER 2

FROM A SINGLE NOTCH TO RANDOMLY DEGRADED SURFACES:

LITERATURE REVIEW

2.1 Historical Background

One hundred years ago, on March 14, it was read at the Spring Meetings of the 54th

Session of the Institution of Naval Architects, a work which would become one the first1

quantitative evidence for the stress concentration effect of flaws[36]. Moved by a rec-

ommendation made in 1910 by B. Hopkinson [37], C.E. Inglis derived and delivered the

results of his analysis of elliptical holes in flat plates, which later Griffith used as the basis

to develop his now famous crack-criterion [38]. Consider a large flat plate with an elliptical

hole having major axis a and minor axis b, Fig. 4a; assumed that is loaded with a remote

normal stress σremote, sufficiently far—so that Saint Vernant’s principle applies[39]—from

the hole. Furthermore, the load is applied perpendicular to the major axis, Inglis found that

the local stress at either extremes of the hole along the major axis is magnified by a factor

of (1 + 2a
b ), and thus the stress concentration factor, SCF, is given by:

S CFInglis =
σextremes

σremote
= (1 +

2a
b

) (2.1)

This mathematical result was coupled with the so called soap-film method of stress esti-

mation developed by both Griffith and G.I. Taylor, and the First Law of Thermodynamics,

to find a solution for the remote stress at failure of an elastic flat plate possessing a crack

[38]. Thus, the most important difference between the two results was that while the King’s

1Neuber explicitly states[34] that Kolosov had developed a similar work and reported it
four years earlier[35] in a paper written in Russian.
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Fig. 4. (a) Elliptical hole in a infinite elastic thin plate. (b) Semi-elliptical notch in a semi-in-
finite elastic thin plate. In both cases, remote load is applied perpendicular to major
axis and at location very far from the discontinuity.

College lecturer applied his to the concentration of stress due to a hole—or notch—Griffith

directed his research to cracks. Unfortunately, although Griffith’s result was successfully

applied to brittle specimens, yet it failed to predict fracture of metals.

For the next 28 years, regrettably, engineers and scientists seemed to have lost interest to

understand the reasons behind the discrepancies between metallic fracture behaviour and

Griffith’s model. Those, almost, three decades of indifference towards research on the frac-

ture problem were interrupted, in Washington, D.C., by the fracture mechanics research

team led by G.R. Irwin at the Naval Research Laboratory who were motivated, most likely,

by the catastrophic failure of the Liberty ships—which the United States was supplying

to Great Britain under the Lend-Lease Act during World War II [2]. Irwin’s major con-

tribution to fracture mechanics was the extension of Griffith’s model for brittle materials

to apply to ductile materials, where plasticity reduces the impact of surface features that
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might lead to fracture[40].

After the reawakening of fracture mechanics, research was directed in two main areas: one

focusing on crack analysis and the other, on design of structural members. For the former,

the principal parameter—although not the only one—studied has been the stress intensity

factor (SIF), while for the latter, the stress concentration factor (SCF).

Rendering Caesar what is Caesar’s, if Griffith can be called the father of crack analysis,

Inglis should be called the father2 of the SCF. Furthermore, what makes the later–knighted

civil engineer’s result more significant is that it both preceded and served as basis to that

of Alan A. Griffith. Granted, the latter has directly impacted more fracture mechanics re-

search than the former,as it is obvious by the far larger number of citations[38]. However,

as it will be shown on this chapter, Inglis’ result is powerful enough to serve as a good esti-

mate for multiple cases ranging from non-elliptical single-notch, multiple periodic notches,

sinusoidal continuous surfaces, and even (as it will be shown in a later chapter) randomly

roughened surfaces—with proper restrictions in the type of loading and other conditions

which will be mentioned.

2.2 Single Notch

Inglis’s result (2.1) of the SCF due to a single hole on a plate can be applied directly to

the case of a single notch3 possessing a configuration of a half ellipse, see Fig. 4b. Another

version of (2.1) is that involving the radius of curvature (ρ) at the tip of the notch; so that

equation (2.1) can be written as:

S CFInglis =
σextremes

σremote
= (1 + 2

√
a
ρ

) (2.2)

2Or, at least he should be called one of the fathers of the SCF, to give credit to Neuber’s
account of the facts

3Provided that the notch is shallow. Otherwise, a factor of 1.12 must be introduced into
the equation
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Equations (2.1) and (2.2) could be used interchangeably. After (2.1) was reported, a

smorgasbord of single-notch cases have been studied[3, 34, 41] depending on type of

loading (e.g.,tensile, compression, torsion, bending, etc.) and geometric configuration

(e.g.,hyperbolic, v-notch, half-circle, rectangular, etc). Although, some solutions for the

single-notch case will be briefly considered in the next subsection, however, in this doc-

ument our goal is not to simply re-provide those solutions, as they can be found in the

references to be indicated. At this point our goal is to understand the operational envelopes

or limitations of those solutions. As it will be shown in the next subsections, some adjust-

ments to those single-notch solutions of the SCF must be considered in order to compensate

for heterogeneity of material, 3-dimensional conditions, Poisson’s ratio and plasticity ef-

fects.

2.2.1 Other Geometries

Besides the semi-elliptical and semi-circular notches for which either equation (2.1) or

(2.2) apply, there are analytical and/or empirical solutions for geometries such as v-notch,

rectangular, parabolic, hyperbolic, and so forth[3, 41]. Perhaps Peterson [3] was the first

to compile a comprehensive set of results of SCF’s for different configurations. Hardy and

Malik [41] reported a survey for a collection of solutions since after Peterson’s work and

until 1992. More recently, Noda and Takase [42, 43]derived and proposed consolidated

formula for both flat specimen and round bar useful for all notch shape. They reported

that their formula gave errors of only 1% or less in the SCFs for any shape of notch. How-

ever, the formula given are very lengthy, which does not serve the purpose of simplification

needed in preliminary designs or to couple with more involved ordinary differential equa-

tions (such as the Navier-Stokes in fluid dynamics). For example, for the case of a round
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Fig. 5. Round-notched bar.

bar under tension, Fig. 5, the consolidated formula suggested by Noda and Takase[42] is:

Kt

Km=2.8
tN

= (1.0001 + 0.0036g − 0.0065g2 + 0.0021g3

+(0.0116 + 1.404g − 1.28g2 + 0.1799g3)θ

+(−0.1311 − 8.165g + 9.687g2 − 2.124g3)θ2

+(0.4240 + 16.94g − 22.77g2 + 5.618g3)θ3

+(−0.5156 − 15.07g + 21.7g2 − 5.57g3)θ4

+(0.2112 + 4.890g − 7.332g2 + 1.896g3)θ5

(2.3a)

Where θ = 2a
D = relative notch depth; and the other quantities are as follows:

Km=2.8
tN =

(Kts − 1)(Ktd − 1)

((Kts − 1)2.8 + (Ktd − 1)2.8)
1

2.8

+ 1 (2.3b)
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Kts = S CFInglis(1.000 − 0.127ψ + 0.2908ψ2 − 0.1420ψ3)

(i f 0 ≤ ψ ≤ 1.0)
(2.3c)

Kts = S CFInglis(1.148 − 0.160η − 0.0345η2 + 0.0693η3)

(i f 0 ≤ η ≤ 1.0)
(2.3d)

ψ =

√
a
ρ
,

η =
1
ψ

(2.3e)

Ktd = S CFtH(1.0011 − 0.025485g + 0.00613g2

+0.00613g3)
(2.3f)

g =


dm
2ρ , when dm

2ρ < 1.0

2 − 2ρ
dm
, when 2ρ

dm
< 1.0

(2.3g)

S CFtH =
1
N

[(g0(
√

g0 + 1 + 1) + (0.5 + ν)g0

+(1 + ν)(
√

g0 + 1 + 1)],

N = g0 + 2ν
√

g0 + 1 + 2,

g0 =
dm

2ρ

(2.3h)

Besides being extensive,another limitation is that some of these formula are material-

dependent4—for example Noda and Takase [42] reported to have used a Poisson’s ratio (ν)

4As they should be if they are to be applied for conditions other than plane-stress
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of 0.3 in their derivation of the SCF formula for single notch and flat specimens. Thus, the

equations reported in [42], for instance, need to be derived for each material’s ν. On the

other hand, Inglis’ result, although simple, can only be applied to a limited number of single

geometries with minor errors, such as U-notch [3]. However, for some shallow notches, it

can provide reliable approximations as well. Furthermore, for periodic and even continuous

surfaces it proves to be reasonably accurate to a first-order, as it will be discussed later.

2.2.2 3-Dimensional Conditions

Initially, most of the equations obtained for SCF’s were developed assuming either

plane-stress or plane-strain conditions. In reality, these assumptions only can reliably and

validly estimate the SCF for cases with either very small or very large thickness, but not in-

between. Consider a finite thickness large plate that contains a hole; the plate is subject to a

normal load in the direction indicated (see Fig.6a). Depending on the length of the hole, it

Fig. 6. Top: hole through a solid block; bottom: groove on a solid block

has been shown via finite element method[44] that the maximum stress concentration factor
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can be located at a plane near the lateral surfaces at the ends of the holes, as opposed to

the mid-plane. Extending the same idea to a 3-D groove configuration like the one shown

in Fig. 6b, it is interpreted that there is a critical groove’s length above which the SCF is

not longer located at the midpoint—as it would be the case for either plane-stress or plane-

strain conditions. In [44] it was reported that the maximum SCF was located at a plane

located 1
8 of the thickness away from the surface; and that it was slightly higher (1%) to that

of the mid-plane, for a specimen’s thickness that was 4 times the size of the hole (or notch),

and a Poisson’s ratio of 0.3. This number would seem to increase for higher Poisson’s

ratio. Therefore, when dealing with finite thickness notched specimens, one must consider

the maximum SCF at a location nearer to the lateral surfaces perpendicular to the axis of

the notch (groove) than to the mid-plane. This is particularly important, for example, when

cutting out small lamillaes from mono-crystal Silicon substrate to produce specimens for

Scanning-Electron Microscopy (SEM) testing[45]. Since stress could concentrate the most

at a location close to the surface (depending on the thickness of the specimen), engraving

of lamellaes should be started at some line in the mid-plane to avoid silicon substrate to

chip off.

2.2.3 Poisson’s Ratio Effect

The effect of Poisson’s ratio on the SCF has been studied [44, 46–48]. It is known that

for plane-stress of an elastic solid, the SCF is independent of the Posisson’s ratio(ν)[3, 34,

44, 46–48]; On the other hand, for plane-strain it does depend on it. For a finite thickness,

the dependence on ν varies according to the thickness of the specimen until it reaches a

plateau, in a sigmoidal manner. Contrary to this knowledge, most design calculations rely

on SCF values that were originally obtained from photoelastic experiments [3, 49–51]. The

effect of Poisson’s ratio on the SCF is due to the fact that material in the third dimension

constrains the displacement of material in the other two dimensions. For isotropic, homo-
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geneous and elastic conditions, Grant et al [46] reported that the 3-D SCF is affected by

Poisson’s ratio under tensile and bending loading but not when subjected to torsional stress.

One could expect, however, that even under torsional loading, Poisson’s ratio could have an

effect on the SCF if the material is non-homogeneous, a hypothesis which yet need further

investigation.

2.2.4 Plasticity Effects

Plasticity deformation can radically decrease notch-sensitivity[3, 36, 38, 52, 53]. Con-

sequently the degree of brittleness should be accounted for in the formulations of stress

concentration factors. Load-carrying capacity could be underestimated if the SCF does not

consider, for example, percentage of elongation of the material in question. One could

think of plastic flow as an ”eraser” of surface irregularities, where the higher the potential

for plastic flow there is the greater its ”erasing” capabilities are. Thus, a relatively small

notch in a brittle material could have the same load-reducing capacity effects as a large

notch in a ductile material. This infers that a characteristic effective notch size dependent

not only on the actual notch size but also on the ductility of the material is needed to prop-

erly characterize notch-sensitivity.

In order to model the aforementioned mechanisms, an approach that renders localized

ductility as nonlinear springs has been reported and used in different applications[54–59].

Based on Cotrell’s model, Suo et al [59] proposed a way to simulate the brittle-to-ductile

transition at the root of a notch. Although the model was applied to composites, the idea

is applicable to other materials like metals in the sense that elasticity-plasticity dual phe-

nomena take place at the micro level, where grains and grain boundaries or different phases

possess dual properties.
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2.2.5 Heterogeneity

Homogeneous-material assumption serves well to a certain scale in metals and al-

loys, with regards to fracture mechanics and strength of materials analysis. However, at

smaller scales—but still under solid continuum assumption—homogeneity conditions tend

to model less validly the behavior of most engineering materials. This fact is particularly

crucial when trying to utilize results of SCF that were developed at the macro level on ap-

plications at smaller scales.

In a study that involved the experimental utilization of paper as a fiber composite, Bal-

ankin et al [60] investigated the long-range density correlations on the stress concentration,

among other aspects. In a rapid communication [60], they reported that the increase in SCF

due to a small disorder at the notch tip is simply the result of adding a geometrical defect

to the notch depth. This geometrical perturbation approach assumes fractal behavior on

the heterogeneity of the material. However, in metals, grain boundaries do not necessarily

appear in that type of pattern. More study, therefore, needs to be carried out in this regards.

The stress concentration in composites, however, have been readily studied for over half a

century [61–69]. Perhaps, Hedgepeth’s work [61, 62] has been among the most influential

studies on this area. First, he presented and solved for the SCF of a 2-D composite system

under elastic behavior [61] and later for the 3-D case taking into consideration plastic de-

formation [62]. In general, the SCF of a non-homogeneous material is location-dependent

and in general there is more than one location along the notch (es) where the stress becomes

critical as to reduce significantly the load-carrying capacity of the structure in question.

2.3 Multiple Discrete Notches

That the stress concentration is relaxed by the addition of neighbouring irregulari-

ties, it is a fact well-known for a long time[3, 52], Fig.7. Therefore, more realistic 3D-
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surfaces concentrate, fortunately, less stress than their idealized 2-D profile versions5. The

Finite element method has made the solving for the SFC due to complex and multiple

discontinuities a rather simple task. However, multi-physical problems required the need

of theoretical—or at least empirical—solutions, in order to couple mathematical relation-

ships that properly model the mechanical behaviour of complex discontinuities with those

related to fluid and thermodynamics, wave propagation, heat transfer, electricity, just to

name a few. Empirical relationships have been obtained for a large number of configura-

tions, as it can be readily corroborated through the literature [3, 34, 41, 52, 70–73].

Fig. 7. (a) Single-notch stress lines. (b) Periodic-discrete-notch configuration. Stress is
relaxed due to neighboring notches.

The multiple-periodic notch problem (Fig.7b) may be approximately reduced to a

single-notch configuration (Fig.7a). This was first suggested by Neuber [52], and then

5However, there are cases when the reserve can happen, theoretically. For example,
when the Poisson’s ratio is between (1 −

√
2) and 1/2
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others followed the idea[74, 75]. The German scholar proposed a method to relate the SCF

of a single-notch to that of a multiple-notch one, having spacing between notches λ, by

reducing the notch’s depth, d, via a factor, γ, to an effective depth, d∗, as follows:

γ =
λ

πd
tanh(

πd
λ

) (2.4)

and

d∗ = γd (2.5)

Thus, for a multiple-elliptical-notch configuration under normal tensional stress, for exam-

ple, the stress concentration factor at each notch can be safely estimated by equation (2.1),

where a is to be substituted by d∗ of (2.5) and in equation (2.4), d is to be equal to a.

For several decades this method was used with little to no modification despite the

fact that Neuber’s method can significantly overestimate the SCF[75], for some geometri-

cal configurations and loadings outside Neuber’s assumptions—his assumptions were sharp

shallow notches at the edge of a half plane under shear loading. Very recently, two modified

expressions were suggested[75] to correct the effective depth, d∗, mismatch. The correc-

tions, which does not modify the final form of the effectively single-notch simplification,

change equation (2.4) to the following two:

γ =
λ

2πd
tanh(

2πd
λ

) (2.6)

For shear stresses; and,

γ =
λ

3πd
tanh(

3πd
λ

) (2.7)

For notches under normal stresses. Therefore, the problem of multiple periodical notches

can be very well estimated using an equation similar to the form of Inglis’ result, either

equations (2.1) or (2.2), when the proper corrections suggested by equations (2.6) and (2.7)

are applied.
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A perhaps more difficult problem, that of closely located irregularities, has been re-

cently solved numerically by Savruk and Kazberuk [70], using well-known singular inte-

gral equations[76] for periodic curvilinear notches in an elastic plane. this problem, how-

ever, still remains unsolved analytically.

2.4 Continuous Periodic Configuration

It seems that Gao [16, 77] was the first to investigate the effect of continuous surfaces—

profiles—on the load-carrying capacity of bodies. In that outstanding development, Gao

employed some elastic Green’s functions[78] for a surface considered perfectly flat and

treated the sinusoidal surface (see Fig. 8) as being perturbed from that referential plane.

After the flat surface has been perturbed, the stress and displacements for the rough surface(Ti j

Fig. 8. A sinusoidal surface. The maximum SCF is found at the troughs of the waves [16].

and ui) can be defined in terms of the reference state values (T r
i j and ur

i ) and the perturbed

elements (δTi j and δui), as:

Ti j = T r
i j + δTi j

ui = ur
i + δui

(2.8)
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In order to solve eqn.(2.8), we need suitable expressions for the perturbed elements, δTi j

and δui. In [16] it was shown that the maximum stress concentration factor at the most

concave locations on a sinusoidal 3-D surface can be expressed as:

S CF3D = 1 + 2
√

2(1 + ν)π(
as

λs
) (2.9)

Where ν is the Poisson’s ratio, as is the amplitude of the sinusoidal wave, and λs is the

wavelength.

2.5 Randomly Degraded Surfaces: the Problem to Solve

Materials are endlessly experiencing alteration, both at atomic and macroscopical

regimes. The third law of thermodynamics elucidates—among other basic concepts—that,

unless at absolute zero temperature, atomic structures are intrinsically unstable and there-

fore prone to change to a more stable state; nevertheless, for many materials this rate is a

rather unhurried process. Both molecular and macroscopic changes can occur as a result

of energy input to the material system, introduced through the surface, or boundary, or

developed within the volume of the material.

Fig. 9. Random rough surface with a prescribed finite auto-correlation length and whose
heights are normally distributed
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Assuming only through-boundary interactions, it is generally the case that surfaces are

more susceptible to these morphological alterations than the interior part of the material.

Almost any known natural phenomenon can cause materials degradation: heat, light, short-

wavelength electromagnetic radiation, radioactive emissions, chemicals, mechanical stress

and interactions with bacteria, fungi or other life forms. Despite the need for understand-

ing the fundamental mechanisms of each particular physical, chemical, biological, etc.,

degrading phenomenon, the fact is that they seldom act individually. Instead, they seize the

structural integrity of surfaces by the accumulation of a large number of small destructive

events. Granted, most of these small attacks are usually of low probability, although the

magnitude of the impact would depend on the size of the surface; (Consider, for example,

the comparison of a corrosive attack on a bridge versus the same attack on a MEMS metal-

lic device). But the build-up effect of these low-probability events lead to morphological

changes on the surfaces that can be modeled mathematically using the Central Limit The-

orem[24, 79]. Using the foregoing physical fact, in chapter 6 we derive a solution to the

stress concentration factor for an elastic surface possessing a continuous height distribution

of the Gaussian type.
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CHAPTER 3

FUNDAMENTALS

In this chapter, we briefly discuss fundamental physical and mathematical insights consid-

ered crucial to our study.

3.1 Random Degradation

Materials are incessantly experiencing transformation, both at molecular and macro-

scopic levels. The third law of thermodynamics elucidates—among other basic concepts—

that, unless at absolute zero temperature, atomic structures are intrinsically unstable and

therefore prone to change to a more stable state; the foregoing applies even more when

atoms of a guest material are brought near to atoms of a host material. Both molecular and

macroscopic changes can occur as a result of energy input to the material system, intro-

duced through the surface, or boundary, or developed within the volume of the material(s).

Consequently, this can result in morphological changes that can drastically alter material

behavior and performance.

3.2 Internal Degradation

Let us consider first degradation within the volume of a solid body. There are mech-

anisms which can degrade the material within its volume, even if transport of degrad-

ing agents takes place through the boundary surface. As an example, nuclear-fuel pel-

lets, which could be made of Uranium dioxide—or other constituents—experience internal

changes due to mechanisms related to nuclear fission; over time, its stoichiometry changes

slowly, which leads to new material properties, cracking, and fission gas release[80]. Con-
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Fig. 10. (Top): Internal flaws in a solid due to internal degradation. (Bottom): A cross-sec-
tion cutout of an internally flawed solid can be viewed as rough surface

sequently, the thermal conductivity of the UO2 pellet decreases, as it is affected by porosity

and burn-up. In turn, this burn-up permits: the introduction of fission products being dis-

solved in the lattice, the precipitation of fission products such as palladium, the formation

of fission gas bubbles due to fission products such as xenon and krypton, and radiation

damage of the lattice[80].

For all our purposes, internal damage in materials introduces voids within its volume that

can be treated as internal flaws, which have always been an important topic in statistical

fracture mechanics. A proper cut out of a section of a material allows the internal cracks

to be analyzed as if it was a surface roughness, as presented in figure 10. In this case, we

have assumed there is some kind of orientation of the cracks, which could be the case when

only limited types of degrading phenomena are present, and this is what happens in mech-

anisms of degradation of a fuel pellet, for example. Moreover, as it will be seen in section

3.3, when the number of degrading events is large—whether they are random or not—the

cumulative effect of them can be mathematically simulated. However, there are situations

in which the degradation processes render the final degraded material non-homogeneous,

as it might occur in a nuclear fuel pellet; in that particular case, even hydrostatic stresses
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produce the same effects that deviatoric do. (Whatever the case may be, the mechani-

cal behavior and properties of degraded nuclear pellets can alternatively be studied using

molecular dynamics, but that is beyond the scope of the present work.) The approach to be

used herein includes the prediction of failure of bodies that can be assumed both to possess

such internal damage that it can be represented by a cutout surface similar to that of figure

10, and to remain homogeneous. Therefore, our analysis is reduced to surface degradation,

which it is discussed in the following section.

3.3 Surface Degradation

Assuming only through-boundary interactions, it is generally the case that surfaces are

more susceptible to these morphological alterations than the interior part of the material;

therefore, surface degradation is crucial in the understanding of the loss of performance of

components[14]. Almost any known natural phenomenon can cause materials degradation:

heat, light, short-wavelength electromagnetic radiation, radioactive emissions, chemicals,

mechanical stress and interactions with bacteria, fungi or other life forms. Despite the

need for understanding the fundamental mechanisms of each particular physical, chemi-

cal, biological, etc., degrading phenomenon, the fact is that they seldom act individually.

Instead, they seize the structural integrity of surfaces by the accumulation of a large num-

ber of small destructive events. Granted, most of these small attacks are usually of low

probability–although the magnitude of the impact would depend on the size of the surface

(Consider, for example, the comparison of a degrading attack on the surface of an aircraft

carrier versus the same attack on a micro engine). However, the sum effect of these events

of small likelihood lead to topographical alterations on the surfaces that can be mathemat-

ically modeled via the Central Limit Theorem.

As importantly, there are several applications for which it is desirable to introduce sur-

face roughness for engineering reasons. In the field of tribology for example, roughness
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is often beneficial for either contact or friction improvement. Likewise, in dental implant

research, it has been established that osteoclast and osteoblast activity is enhanced through

microroughness of titanium or titanium alloy implant surfaces.

3.4 Central Limit Theorem Applied to Surface Degradation

Let X1, X2...Xn, be a series of variables representing the size (depth, volume, etc.) of

material removed or displaced as a consequence of respective degrading events, E1, E2...En,

acting on a surface like the one shown in Fig. 1. In the same manner, let X
′

1, X
′

2...X
′

m, be a set

corresponding to synergistic events, E
′

1, E
′

2...E
′

n, that are obtained from the possible com-

bining attacks of two or more Xi. For example, X
′

1 = S C(X1, X2), where the function S C

maps individual events effect into their combined effects. Now, let us further assume that

all Xi’s are random independent variables. This is a very reasonable assumption, since one

expects that these environmental, damaging attacks often act independently one from the

other. (Even though there are some events that could be inter related, yet when the number

of independent Ei is considerably large then this assumption holds reasonably well). Then,

X
′

i , are also random variables since the sum and multiplication of two or more random vari-

ables is indeed another random variable. Now we can apply the Central Limit Theorem to

simulate random degradation, assuming a large number of degrading events. The Central

Limit Theorem (CLT) explains the behavior of the sum of random variables. Let Z1...Zn be

random variables such that Zi = Xi + X
′

i , with sum,S =
N∑

k=1
Zk,then CLT predicts that S will

have a Gaussian distribution provided that:

a. Each summand that is not negligible compared to the dispersion of the entire sum has a

distribution close to Gaussian.

b. The maximum of the absolute value of the negligible summands is itself negligible

compared to the dispersion of the sum.
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Fig. 11. A visual prove of how a random event when convoluted with itself grows into Gaus-
sian. Notice that it only takes 4 convolutions to clearly see bell-shape Gaussian
distribution.

Consider figure11. The upper left corner shows a random signal which could signify the

effects of a random attack of certain degrading event on a certain surfaces profile. The

other three figures (upper right, lower left, and lower right) show how when combining

this random effect with other random ones, the behavior of the combined effect makes the

degradation (distribution of depth) grow progressively into a bell-shape characteristic of

a Gaussian (normal) distribution. So for our study, the size of material removed will be

considered to eventually grow into a normally distributed random function. Consequently,

if the size of pieces removed, due to degradation, is normally distributed so is the size of

the pits left on the surface of the material.

3.5 Definition of Early Stage of Degradation

It is well known in fracture mechanics that materials may be weaken by the pres-

ence of flaws. Contrary to what the traditional strength of material analysis would predict,
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this phenomenon takes place at stresses below the material’s yield strength. In reality no

material is flawless but all possess some degree of impurities and flaws. However, when

dimensions of flaws are below certain critical value, strength of materials approach is suf-

ficient to predict failure. On the other hand, when flaws are above that critical dimension

then one must resort to fracture mechanics.

Above critical size, the presence of a flaw concentrates sufficient stress in its neighborhood

to cause nucleation of fracture under some loading. The critical size of a flaw, ac for a given

material of yield strength, σy, and fracture toughness, Kc, is given by:

ac =
1
π

(
Kc

σy
)2 (3.1)

In the next section the use of poly methyl methacrylate (PMMA) will be justified in the

experimental work developed. Using tabulated values of this polymeric material [81] of

σy = 70MPa and Kc = .7MPa
√

m, one gets, ac ≈ 30µm. This is of course for the case

of a single flaw. For multiple flaws or notches, this dimension must be a little higher since

neighboring pits tend to relax the stress concentration.

When dealing with random roughness with Gaussian distribution (our case), one is inter-

ested in finding a critical roughness or degradation which can make stress concentrate suffi-

ciently as to cause brittle failure due that particular level of damage. In such configuration,

it is expected to find pits that are below and above the critical size given by equation (3.1),

but not too far from it. So we define ”early stage of degradation” as the range of roughness

around the critical level roughness that would concentrate stress sufficiently as to localize

fracture. Based on our own previous studies [18], for PMMA, the critical root-mean-square

roughness was found empirically to be within the range ≈ 10 − 20µm.
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3.6 Implications of the Use of Poly Methyl Methacrylate

The challenge at this point was to physically produce surfaces modeled via the Cen-

tral Limit Theorem, as described before. A suitable material was needed to efficiently

accomplish the purpose. Poly methyl methacrylate (PMMA) was selected as the base ma-

terial[82]. The benefits of using this polymeric material are enormous. A polymer is a

synthetic or natural material consisting of molecules strung together to form a long chain.

The properties of a given polymer depends on the basic molecules (a mer unit, repeating

unit) making up the polymer, the length of the chain, and the arrangement of the polymeric

chains. In the particular case of PMMA, the repeating unit is COOCH3 −C2H2 −CH3, and

the chains are arranged in a random manner making this polymer amorphous[83]. PMMA

has been successfully used in many applications due to its excellent mechanical proper-

ties and low cost [84]. Except for micro scale applications, PMMA can be easily ablated

without causing secondary mechanical effects on the surface [85]; and it has been reported

that PMMA has a better cutting edge surface quality than, for example, polypropylene and

polycarbonate [86]. It can be found commercially with relatively low surface roughness

(10-200 nm) [84], so even minute damage caused on it (see previous section) could be dis-

tinguished. Also, at room temperature it behaves brittle and ductility starts to show above

approximately 30 degrees Celsius (see figure 2.4) [81]. Based on those characteristics, in

this study, PMMA is used to broaden the knowledge of mechanical failure of materials at

initial service surface conditions and during random surface damage accumulation and en-

vironmental degradation. This is accomplished by laser ablation of repeated random rough

surfaces on PMMA beams and their mechanical analysis.
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3.6.1 PMMA’s Mechanical Behavior Dependence on Temperature

In general, the mechanical properties of polymers not only vary from type to type, but

also they depend greatly on temperature and strain rate; and some properties change almost

discontinuously in the neighborhood of a critical temperature called the glass-transition

temperature (Tg). Tg has been defined by [83] as the temperature at which the forces hold-

ing the distinct components of an amorphous solid together are overcome by thermally-

induced motions within the time scale of the experiment, so that these components become

able to undergo large-scale molecular motions on this time scale, limited mainly by the

inherent resistance of each component to such flow. In other words, Tg is the tempera-

ture above which a thermoplastic polymer becomes a fluid free to flow. For uncrosslinked

PMMA, Tg has been found experimentally to be around 378 Kelvin (105oC) [83]; and

well below that value, it behaves as an organic glass, and elastic solid with a relative

high Young’s modulus of about 3.3 GPa (tension) at about room temperature and relatively

medium to low strain rates[[81]. There is a transition range around Tg in which viscoelas-

tic phenomena predominate. However, the present study will consider only cross-linked

PMMA and a temperature range from about 10 to about 30 degrees Celsius, which is well

below Tg (although most of the work carried out was at room temperature). In this range

of temperatures, the mechanical behavior of PMMA goes from very brittle to a slightly

ductile material. Figure 12a is a stress-strain curve for a type of an uncrosslinked PMMA

for a range of temperatures, as reported in the literature [81]. Notice that at 4o C, there is

no display of plastic deformation, and the material could be considered—at least for prac-

tical purposes—fully brittle. At room temperature (20o C), there is a very small amount of

plastic deformation, and the material can be taken as semi-ductile. For the present study,

however, crosslinked PMMA was studied at room temperature. Its mechanical behavior

is depicted in a plot of stress vs strain shown in figure 12b. Note that even though the
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Fig. 12. (Left): Brittle to ductile behavior as a function of temperature for poly methyl
methacrylate from [81]. Uniaxial tensile loading conditions; (right): PMMA me-
chanical bending behavior at room temperature. Three-point flexural loading con-
ditions. Deflection rate= 0.2 in/min.

temperature is much higher than 4o C, crosslinked PMMA presents a brittle behavior much

earlier. Therefore, lowering the temperature to obtain brittle behavior will only increase its

brittleness. Also, temperatures will be increased to obtain the desired ductile transition. At

low levels of ductility, it is expected a transition of correlations of the controlling param-

eters at brittle conditions. Another important aspect to consider here involves the fact that

since PMMA is an amorphous polymer—as opposed to a crystalline one—it seems to obey

a time-temperature superposition principle [87]. This principle might allow the extension

of data found at distinct temperatures by using it in a time range at a single temperature.

3.7 Linear Elasticity

Perhaps, the most important and most characteristic mechanical properties are called

the moduli. A modulus is a measure of how the material resists strain upon an applied

stress—i.e. the ratio of applied stress and the corresponding strain. If for a particular

material and within a given range, that ratio happens to be constant, then the material is said

to behave linearly elastic in that range. The three most important moduli are called bulk
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(K), shear (G), and Young’s (E), corresponding to volumetric, shear, and axial situations,

respectively. There are other moduli used depending on the application, such as the reduced

modulus for nanoindentation. For a bending test—present research—Young’s modulus of

elasticity applies. The reciprocal of these moduli are called compliances. Let us define k,

J, and C as the compliances corresponding to K, G, and E, respectively.

Fig. 13. Notable linear-elastic behavior at room temperature of PMMA used in the experi-
ments.

Based on experimental preliminary evidence, undamaged PMMA can be assumed

to behave perfectly linear-elastic for temperatures up to approximately 20o C. In case of

roughened PMMA, this temperature can be higher. Figure 13 shows a plot of data obtained

from a bending test of specimens of PMMA at room temperature. The tests were three-

point bending using a deflection rate of 0.2 in/min. The linear behavior of the material can

be notably observed. Additionally, E was found to be around 3.2 ± .2 GPa, which is in

complete agreement with modulus of elasticity reported in literature[81]. For this case, the

field equations of liberalized isotropic isothermal elasticity can be applied [87]:
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a. 3 equations of motion:
∂σi j

∂X j
+ ρ(T )bi = ρ(T )

∂2ui

∂t2 = 0 (3.2)

b. 6 Hooke’s Law equations:

σi j = λ(T )εkkδi j + 2µ(T )εi j (3.3)

c. 6 geometric equations:

εi j =
1
2

(
∂ui

∂X j
+
∂u j

∂Xi
) (3.4)

Equations (3.2) thru (3.4) constitutes a total of 15 equations, 6 stresses, 6 strains, and 3

displacements. Where σi j is the Cauchy stress tensor; X j are the Cartesian coordinates for

the material description, so that X1, X2, X3 represent parcels of material; ρ is the density of

the material; T is the temperature of the system; b represent the body forces; u is the dis-

placement of parcels in a given direction; t is time; λ and µ are material properties related

to the different moduli; εi j is the strain tensor; δi j is the Kronecker–delta function, equals to

unity when i=j, otherwise, zero. (Herein we call parcel the minimum volume that a contin-

uum can be divided into while still behaving as a continuum itself—others call it particle,

as in [87] for example). Notice that the material properties, λ, µ, and ρ are dependent on

temperature; thus, even though these equations were prescribed for isothermal conditions,

at each distinct temperature considered, they have different values. As mentioned, we will

use equations (3.2) thru (3.4) to develop our boundary-value problem and derivation in

chapter 6. However, since one may argue that there could be considerable stretching for

this polymeric material (figure 13), then finite-strain theory must be at least considered for

discussion. This state of affairs is exposed in the following section. However, as it will

shown, it was found that small-strain theory serves well for the range of conditions studied

in the present work(see Chapter 5)
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3.8 Finite Strain Theory

It is well know that small-strain theory applies very well to most metals. However, in

general when dealing with polymeric materials it is often, yet not always, required to take

into account the presence or larger strains. The equations of general linearized elasticity, as

traditionally developed [87] assume small-strain conditions. Therefore, if large-strain are

to be considered then strain must be re-formulated using a deformed state. (In this section,

we will use capital letters to describe referential undeformed stated coordinates, and lower

case for deformed material coordinates.) This difficulty is solved—not without bringing in

complexity—by relating the undeformed coordinates (Xi) to the deformed ones (xi). The

way this is done is by defining a tensor, F, called the deformation gradient tensor, as:

Fkm =
∂xk

∂Xm
(3.5)

In other words, F relates parcels of material that have been deformed to the undeformed

state of those parcels. This can be expressed, also, as dx = F · dX. By some simple

mathematical manipulation, and relating both F and the strain tensor of equation (3.4) to

the change in the squared length of the curve before and after deformation, one gets an

expression of E (strain tensor) with respect to F, as:

E =
1
2

(FT
· F − I) (3.6)

(Note that dx has been defined as the vector location occupied by the deformed expression

of material vector dX.)

As it will be seen, from the experimental work the strain values will be obtained at

a sufficient large number of points during the test. This can provide values for the dis-

placement gradient both in terms of the undeformed state (Piola-Kirchoff) and in terms of

the following immediate one (deformed state). Hence, we could couple equation (2.5) with
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Fig. 14. Stress-Strain behavior of a notched member showing distinct regions of mechanical
behavior [1].

Hookes law for the regions where the material remains linear. However, small-strain theory

was initially used as a preliminary tryout and it turned out to give consistent results when

experiments were compared with analytical work for simple well-known configurations.

Additionally, one may recall that finite-strain theory was initially developed for highly

stretchable materials such as hydrogels, human tissue, rubber, etc. In our case, deformation

does not exceed 3% strain, which although greater than for most structural metals, it is still

far below that of highly stretchable materials.

3.9 Effects of Multiple Well-defined Discontinuities:2-D Problem

Surface discontinuities impact failure of the entire volumes of material they bound,

depending on both the geometry of the discontinuity and the degree of brittleness of the

material in question.
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Fig. 15. Visual schematic of equal-stress lines distribution due to (a) a single discontinuity,
and (b) multiple discontinuities. Stress is relaxed due to the presence of neighboring
pits

It has been known for a long time that the presence of discontinuities in a material,

subject to a remote load, introduces stress concentrations which depend, to a great extent,

on the geometry, location and orientation of the discontinuity with respect to the overall

dimensions [1, 2]. At a local parcel of material, the stress concentration factor, Kt, is

defined as the ratio of the local stress to the remote stress:

Kt =
σlocal

σremote
(3.7)

This definition of Kt applies well only for linear–elastic materials behavior. This type

of behavior is usually seen in brittle materials, and therefore applies to the material and

conditions used in this study, see chapter 4. For more ductile behavior, equation (3.7) over-

estimates Kt, mostly because more energy gets stored into the larger plastic zone around

the discontinuity (e.g., notch). Consider the behavior of single-notch members over a wide

range of applied loads for a ductile material,as depicted in figure 14. For brittle materials,
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Fig. 16. Schematic-plot of stress concentration factor for tension of a flat member with pe-
riodic semicircular notches. r/H=18. Based on data from [3]

the behavior of a specimen is described simply by the linear section of the curve in figure

14. When two or more discontinuities are present in the material, the situation could change

completely. A neighbor material singularity could cause a relaxing effect on the stress ac-

cumulation due to another singularity—unless the separation between singularities is far

enough so that the effects can be neglected. This state of affairs can be visualized in figure

15. Equal-stress lines can be analogized to flow streamlines. One important aspect to keep

in mind is that the presence of multiple discontinuities causes a relaxation phenomenon

in all directions around a particular pit—except in the direction of the free surface. This

decrease in Kt can be better visualized using figure 16, which is a cartoon-plot (based on

data obtained from [3]) of Kt for a rectangular member with a multiple-notch configuration,

under simple tensile loading. Notice—among other interesting behaviors—that the value

of Kt decreases with the number of notches: the presence of a neighbouring discontinuity,

as long as it is within the concentration field, alleviates the stress concentration around a
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Fig. 17. Schematic of specimen with three grooves on its surface and under bending loading

particular discontinuity.

3.10 Effects of Multiple Discontinuities:3-D Problem

The previous analysis can be extended to 3-D configurations, with some warning lim-

itations. Consider the grooved member shown in figure 17 which possesses 3 equally-

separated grooves with one being in the center of the member. Notice that the grooves

are perpendicular to the bending moment applied to the system, and they are separated by

islands of material of more or less the same width. It has always been believed that stress

concentration will be relaxed from the center groove by the effect of the presence of the

other two grooves. Of course, the distance between grooves (that is the width of the islands)

could remarkably change the situation, in a way that, distant grooves might not cause any

effect on others, whatsoever. That this relaxation takes place can be observed from figure

18 obtained from finite element analysis. But, as stated previously, well-defined notches

are seldom present on realistic degraded surfaces. In-service surfaces present a rather ran-

dom configuration of discontinuities, as it will be extensively discussed in the foregoing

sections and chapters. The distribution of local Kt over the surface is expected to be more

complex than for a case with multiple equal-size discontinuities. To begin to perceive this

complexity, let us consider again our three-groove member of figure 18. As an example,

let us replace part of the middle groove with material as to form a tendon between islands

such that islands and tendon together look like a letter H, as shown in figure 19. When the
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Fig. 18. Finite element simulation of beam under bending. Stress along central groove is
relaxed due to presence of neighboring grooves
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width of the tendon is large enough, the relaxation phenomenon described previously takes

place, and the consequent reduction of stress concentration occurs in the middle groove.

However, when the tendon is sufficiently narrow, stress accumulates mostly in the tendon

itself, thus relaxing the stress that concentrates at the grooves. It is important to emphasize

again that for a random surface—which of course contains an unexpected irregular config-

uration of discontinuities—one would expect a more complex combination of parameters

that control where and when failure will occur. One of the goals of the present proposed

work is to find empirically surface and material parameters that control failure through ex-

perimental study. Additionally, we will also attempt to find an analytical solution of the

stress concentration factor of surfaces with random configuration of discontinuities, using

a perturbation method.

Fig. 19. When less simple discontinuities are introduced behaviors can vary. (Top): Thick
tendon relaxes middle groove and concentrates stress in neighboring ones; (Bot-
tom): Thin tendon concentrates stress around itself.
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3.11 Perturbation Method for Stress Concentration Problem

Perturbation theory allows the approximation to the solution of a problem with given

conditions B, by beginning with the exact solution of a related problem with conditions A.

It is required, therefore, that conditions B only deviate slightly from A. In other words, B

is a perturbed A.

In order to attempt to find an analytical solution for the stress concentration due to a random

rough surface on a nominally brittle material, a perturbation method on a half-plane will

be used. The method thinks of the non-flat surface as a perturbed flat one. Results will

be compared with the experiments performed at similar conditions of brittleness; hence,

linear-elastic behavior will be assumed. Since the surfaces to be considered are at early

stage of degradation, they can be considered as a small perturbation from a nominally flat

surface. Only to show the method to be used to find the stress concentration factor, let

us briefly present a summary of the problem setup (the complete derivation is presented

in chapter 6). Let figure 20, be a flat surface with Cartesian coordinates as shown, and a

rough surface which represent the deviation from the mean. Since bending loading is to

be used, the damage surface can be considered to be in tension in the neighborhood near

the flat surface (this is a reasonable assumption, since the maximum average roughness of

degradation is to be about 15 thousandths of the specimen’s bulk thickness.) Let d(x′)

Fig. 20. A random surface can be thought of as one previously flat but to which material has
been added and/or from which material has been removed randomly.

be the distance between the mean and the local spread at point x′. If a point force F is
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considered at an arbitrary point (x,y), and treating d(x′) as infinitesimal, the change in total

energy (∆Π) of the system is given by:

∆Π = Fi∆ui(x, y) +

−∞∫
∞

wd(x′)dx′ (3.8)

Where Fi∆ui(x, y) is the work done by the force at an incremental displacement ∆ui(x, y),

and w represents the strain energy density distribution along the surface. Solving equation

(3.8) involves quite a challenge since d(x′) is, at best, a Gaussian distribution function.

3.12 Flexural Tests on Slightly–Roughened Surfaces

Our goal of finding how a slightly damaged surface impacts the failure of a polymeric

body requires the use of flexural tests. Since the damage is small compared to the overall

thickness of the specimens to be used (in the order of 10 thousandth), the entire damaged

surface can be considered as outer fiber. Test methods to determine flexural properties of

plastics have been standardized since 1970 by ASTM [88–90]. These methods apply to

both rigid and semirigid materials. It is limited to materials that fail in the outer surface

of the specimen within certain limit of outer-fiber strain (5 %). Figure 21 shows a typical

three-point flexural set up with the corresponding parameters.

Following the standard procedure, calculation of certain flexural properties can be

made as follows:

3.12.1 Flexural Stress (σ f )

The flexural stress (σ f ) is the maximum stress in the outer surface of the specimen

which occurs in the midpoint of the span length (L). The way σ f is calculated depends on

the value of L-to-t ratio. In our case, L
t ≈ 25, thus it can be reasonably approximated as

[88]:
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Fig. 21. Three-point flexural test. L= span length and t=thickness of specimen. ASTM
D790 is the standard for acrylic testing.

σ f =
3
2

PL
Wst2 [1 + 6(

D
L

)2 − 4(
t
L

)(
D
L

)] (3.9)

where:

σ f = stress in the outer fiber at midpoint, MPa

P = load at a given point on the load-deflection curve, N

L = span length, mm

Ws = width of the specimen tested, mm

t = thickness of the specimen tested, mm

D = deflection of the centerline of the specimen at the middle of the span length, mm

From the above equation (3.9), one can also find the flexural stress at break (σ f B).

3.12.2 Flexural Strain (ε f )

It is defined as [88] ”the nominal fractional change in the length of an element of

the outer surface of the test specimen at midspan, where the maximum strain occurs”; the

formula of equation (3.10) may be used to calculate it:
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ε f = 6
Dt
L2 (3.10)

where the parameters involved are as described before.

3.13 Replicates of Random Surfaces. Statistical Analysis

The mathematical model introduced in section 3.4 and which is fully described in

chapter 4 allows us to control the different topographies to be realized on the specimens.

This adds great advantages to the study, and the impetus is very broad. Let us consider the

field of protective coatings, as an example of the applications. Investigation of the degra-

dation dynamics of surfaces have led to the manufacturing of, for instance, in–laboratory

accelerated weathering equipment, due to the accumulated knowledge and quantification

of the aforementioned stresses. Devices for artificial weathering of coatings are widely

used to simulate environmental parameters such as temperature, UV radiation, humidity

and gaseous pollutants. This type of equipment has, to some extent, served well in fa-

cilitating in-lab study of processes that otherwise would take enormous periods of time;

yet there is ongoing research to improve this procedure since they introduce a new set of

uncertainties related to acceleration factors and correlation with outdoor exposure. Also,

accelerated weathering chambers do not possess the capability of repeatability of the spec-

imens; instead, each specimen is distinct (although in some cases, statistically correlated),

which limits statistical analyses.

The advantage of carrying out experiments with replicates cannot be overemphasized. Ex-

perimental studies are scrutinized with respect to, at least, their validity and accuracy. In

the heart of the group of factors considered to validate experimental methods lies tests re-

peatability, which provides a—hopefully reasonable—variation in measurements obtained
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by a single experimenter or instrument, on replicates (for destructive tests) or the same

specimen (for nondestructive tests). These measurements, in turn, are then appropriately

organized, analyzed and interpreted using statistical methods. Hence, in experimental in-

vestigations the need of having replicate specimens is crucial. This need becomes even

more critical when destructive tests are required, as it is our particular case. As part of our

work, we developed a technique to generate and realize different levels of surface random

degradation. This method permits to the production of replicates of specimens in order to

statistically analyze our results. Traditionally, studies of random rough surfaces have been

carried out using single specimens and the results assumed to be equal for the same topog-

raphy. However, a preliminary related work previously done proves the contrary [18], and

this will be discussed fully in chapter 4.

3.13.1 Repeatability and Reproducibility

In the heart of the reliability of experimental results lies the concept of repeatability

and reproducibility [91]. The former is a measure of the deviation of a physical quantity

for n tests, given the conditions are identical in the n runs. These identical conditions refer

to: the same instrumentation, the same facilities (laboratory), the same experimenter, the

same replicated specimen, and within a short time period between tests. On the other hand,

reproducibility is a measure of the deviation of a physical quantity under more realistic

and diversified conditions. It is intuitive that reproducibility be larger than repeatability, in

general.

In order to guarantee reasonable levels of repeatability (r) and reproducibility (R), the

present work will make use of the recommended values reported in the standard literature

[88] for the acrylic material to be used. Tables 1 and 2 contains the recommended values

for variability, repeatability and reproducibility, as tabulated by ASTM[88] corresponding
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Table 1. Recommended values for variability, repeatability and reproducibility for flexu-
ral strength tests for various polymeric materials. ABS = Acrylonitrile butadiene
styrene, DAP = Diallyl Phthalate, GR = glass-reinforced, SMC = Sheet molding
compounds. Vr, VR, r and R are defined in the text.

Material Mean, MPa Vr VR r R

ABS 68.9 11.0 41.7 30.6 119

DAP thermoset 98.6 45.4 45.4 128 128

Cast acrylic 112 11.5 77.9 32.6 221

GR polyester 134 9.86 14.8 27.9 41.9

GR polycarbonate 145 35.6 41.7 101 118

SMC 179 32.8 49.6 93.1 141

to flexural strength and modulus measurements, respectively. Vr, VR, r, and R are given in

units of % MPa. As one can notice, PMMA is not in the list of materials recommended.

However, we can select other materials with similar properties. For flexural strength values,

ABS can be selected since it shows a similar average value as that found for flat PMMA

specimens (≈ 70MPa); as for the flexural modulus, DAP thermoset shows comparable

values as for PMMA (≈ 3.2GPa).

Where the Vr, VR, r, and R are as follows:

Vr = within-laboratory coefficient of variation for the indicated material. It is obtained by

first pooling the within-laboratory standard deviations of the test results from all of the

participating laboratories: S r = [[s2
1 + s2

2 + ... + s2
n]/n]1/2, then Vr = S r/(overall average of

material)×100.

Vr= between-laboratory reproducibility, expressed as the coefficient of variation: S R =
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Table 2. Recommended values for variability, repeatability and reproducibility for flexu-
ral modulus tests for various polymeric materials. ABS = Acrylonitrile butadiene
styrene, DAP = Diallyl Phthalate, GR = glass-reinforced, SMC = Sheet molding
compounds. Vr, VR, r and R are defined in the text.

Material Mean, MPa Vr VR r R

ABS 2330 33.0 53.0 93.8 150

DAP thermoset 3340 19.9 49.5 56.2 141

Cast acrylic 5580 94.5 111 268 313

GR polyester 5630 24.1 29.0 68.3 82.0

GR polycarbonate 12300 38.1 38.1 108 108

SMC 13400 75.2 95.1 212 270

(S 2
r +S 2

L)1/2 where S L is the standard deviation of laboratory means. Then:VR = S R/(overall

average of material)×100.

r = within-laboratory critical interval between two test results = 2.8 ×Vr.

R = within-laboratory critical interval between two test results = 2.8 ×VR.
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CHAPTER 4

METHODOLOGY

4.1 General Methodology

Figure 22 shows a flowchart of the general methodology used. Enclosed in the dotted

rectangle are the steps of a developed technique to produce replicates of random of rough

surfaces [79]. Since that technique is also a deliverable in the present work, we will dedicate

the first part of this chapter solely to it. In Part II, the methodology of the rest of the work

is described.

4.2 PART I: Technique to Produce Replicates of Random Rough Surfaces

4.2.1 Motivation

Validity and accuracy are crucial parameters that need to be carefully considered when

carrying out experimental studies. In the heart of the group of factors considered to validate

experimental methods lies tests repeatability[92], which provides a–hopefully reasonable–

variation in measurements obtained by a single experimenter or instrument, on replicates

(for destructive tests) or the same specimen (for nondestructive tests). These measure-

ments, in turn, are then appropriately organized, analyzed and interpreted using statistical

methods. The foregoing implies that, in experimental research it is crucial to run tests with

replicates of specimens. Furthermore, this is even more critical for studies that require

destructive tests, as it is the case of the present work. In the subsequent sections of this

chapter, we present a novel technique[79] to generate replicate specimens of surfaces, that
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Fig. 22. Flow diagram of general methodology used in the present study
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simulate random dynamic degradation. The impetus of this technique is explained next.

Structural materials which are exposed to natural weathering or service conditions undergo

small attacks of random damaging events which nearly always generate surface roughness.

These events, which take place individually, are ultraviolet photons, moisture molecules,

pollutant molecules, fast flows, neutron irradiation, thermal impacts, chemicals, biological

stressors, sand or dust impacts, and many others. Investigation of the degradation dynamics

of surfaces have led to the manufacturing of, for instance, in-laboratory accelerated weath-

ering equipment, due to the accumulated knowledge and quantification of the aforemen-

tioned stresses. Devices for artificial weathering of coatings are widely used to simulate

environmental parameters such as temperature, UV radiation, humidity and gaseous pol-

lutants [92–94]. This type of equipment has, to some extent, served well in facilitating

in-lab study of processes that otherwise would take enormous periods of time; yet there is

ongoing research to improve this procedure since they introduce a new set of uncertainties

related to acceleration factors and correlation with outdoor exposure[95]. Also, acceler-

ated weathering chambers do not possess the capability of repeatability of the specimens;

instead, each specimen is distinct (although in some cases, statistically correlated), which

limits statistical analyses.

Additionally, this method finds direct applications in many other fields.

For example, in the forensic sciences, where the safeguarding of evidence material is in-

dispensable for multi-testing purposes, replicates are crucial. A common practice of that

investigative field consists of obtaining 3-D laser scans of pertaining surfaces and their re-

spective conversion to digital format[96]. Coupling that procedure with this method, one

could obtain replicates of rough surfaces on materials that would represent a much less

costly alternative than modern 3-D printing, for which there is still, to present time, limited

types of base materials that can be used.
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As a second example, it is widely accepted that surface roughness and topology of implants

affect differentiation and proliferation of bone-producing cells[97–100]. However, the lack

of highly controlled replicates of random rough surfaces truncates statistical analysis of the

resulting data. In turn, this limitation impedes the proper correlation of surface topological

properties to osteo-integration markers. Replicates of random rough surfaces could be used

to statistically study bone formation as a function of highly controlled surface parameters

such RMS-roughness and autocorrelation length.

Evidently, the problem lies in developing repeatable random rough surfaces, and their re-

alization on specimens that can be then destructively tested and analyzed statistically. This

difficulty is due to the complexity and randomness of the small events that lead to surface

degradation[101]; yet, these have been stochastically modeled[102] using methods like,

Monte Carlo[103] and the Central Limit Theorem[24, 104]. Now, the actual realization of

rough surfaces requires a high degree of controllability, in order to produce the repeatabil-

ity that statistical analysis requires.

4.2.2 Algorithm of the Technique

Following is a set of steps that represent the pseudo-algorithm of the generation and

dynamic growth of the surface:

i. Generation of a surface in the form of a 2-D array, in which the entries represent the

depth of the surface at some discrete location from a horizontal plane. This plane is

represented, in turn, by the other two coordinates corresponding to the indexes of the

respective entries.

ii. The value of the depth is subtracted by a certain amount. This process is called here

truncation. After truncation, the resulting array represents the new initial surface at
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which degradation will start. This could represent a machined surface, consisting of

a large number of flat points and relatively smaller number of valleys. The level of

truncation would depend on the desired conditions that the new initial surface is to

have, which in turns depends on the particular application.

iii. The process of truncation is then reversed by adding values to the entries of the 2-D

array. This addition is done by steps. The size and nature of the step will depend on

the application. This process represents the growth of the surface. For linear growth,

the value of the step will be constant. For nonlinear growth, the step will vary as a

function dependent on the nature of the process of degradation. The number of the

steps however will be determined by how many levels of degradation are needed to be

modeled.

iv. Once all the surfaces are properly stored, these are conveniently translated to a for-

mat that can be interpreted by the etching system to be used, according to a proper

calibration function. Surfaces are then physically realized on a suitable substrate.

4.2.3 Generation of Normally Distributed Random Rough Surfaces

Based on the Central Limit Theorem and the arguments given in chapter 3, randomly

rough surfaces whose heights are normally distributed are to be generated. It is well known

that if a distribution follows the Gaussian (normal) behavior, then its probability distribu-

tion function is:

P(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (4.1)

where:

σ = standard deviation;

µ = mean of the distribution;
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Commonly equation (4.1) is normalized by making the following change of variable:

χ =
x − µ
σ

(4.2)

Carrying out this change of variables, one gets the normalized version of equation 4.1:

P(x)dx =
1
√

2π
e−

χ2
2 dχ (4.3)

Thus, the integral of the left hand side of equation (4.3), which is the probability of a

raw variable x, is equal to the probability of a normalized variable χ with mean zero and

standard deviation equals to unity.

Let the depth of the surface be a function of x and y, according to the coordinate system

shown in figure 23, such that:

z(x, y) = σ · random(x, y) (4.4)

where:

σ = (prescribed) standard deviation;

random(x,y) = a random value at each point on the x-y plane.

Notice that z is a random (normally distributed) variable with mean zero and standard

deviation, σ. Assuming isotropy in the x-y plane, then we defined the Gaussian filter g as:

g(x, y, ACL) = e−
r2

ACL2 (4.5)

where:

r =
√

x2 + y2, and

ACL = autocorrelation length.

ACL is defined [105] as the distance from a point beyond which there is no further cor-

relation of a physical property associated with that point. Values for a given property at
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Fig. 23. A typical surface produced in the present study, in a Cartesian coordinate system.

distances beyond the correlation length can be considered purely random. In our case, the

relevant physical property is height.

We now apply the so-called Direct Convolution Method [106]which leads to the following

array:

Fsur f ace =
2

√
π · N · ACL

L ·
1
N

N−1∑
k=0

[DFT (z) · DFT (g)]e
i2πkn

N (4.6)

where:

N = number of grids along each axis;

ACL = auto correlation length;

L = (in this application) same as N;

DFT = Discrete Fourier Transforms, such that in equation (4.6), the two respective expres-

sions can be written as:

DFT (z) =

N∑
k=0

z(n) · e−
i2πkn

N (4.7)

and similarly,

DFT (g) =

N∑
k=0

g(n) · e−
i2πkn

N (4.8)

Therefore, Fsur f ace is a 2-D array whose entries represent the heights (or depths) of the
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surface, and the respective indexes are the other two corresponding coordinates, as depicted

in figure 23.

4.2.4 Surface Damage Growth

Although the technique developed can be used to model nonlinear growth of damage

[79], however for the present work, linear degradation was assumed. This assumption can

be made since, at the end, what is important is the level of roughness attained and not how

the surface grew to that level. In order to model degradation growth, a process called herein

”truncation” is used. Surfaces obtained using (4.6) were truncated and replaced back by

taking the average location and only including values below that average. Di stands for

complete truncation and no replacement; D1, D2, D3 (and so on) represent, D1, D2, D3

points of replacement of surface after truncation, respectively. A simple pseudo algorithm

showing that, follows:

Begin loop;

For i = 0 until imax increased by step;

Fsur f ace(i) = Fsur f ace + Di;

S ur f ace(i) = (Fsur f ace(i) > 0) · Fsur f ace(i);

count;

end loop;

Let Dimax, for instance, equal to 45 and step = 5, then count = 10. So for a given ACL in

equation (4.6), 10 distinct levels of degradation are produced. One can always increase the

levels of degradation but this would be impractical if the resolution of the etching system

is not high enough or if the substrate is not appropriate (i.e., if the intrinsic roughness of

the substrate is not low enough). Then these Di are related to the roughness of the respec-

tive surfaces. Root-mean-square (RMS) roughness, being a more measurable value, is the

parameter used in substitution of D. Figure 24 shows a set of typical surfaces developed
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using the technique in discussion, at various levels of roughness. The plots are in gray

scale: the darker the spot the deeper the pit. Surfaces in the same row have the same ACL

but the roughness increases as one moves to the right, and ACL increases as one moves

downwards. Also, figure 25 shows 3-D plots of typical surfaces, in those plots more red

means flatter and more blue means deeper. The various features are obtained by varying

ACL and level of degradation.

Fig. 24. Surfaces in gray-scale at various ACL and roughnesses. Surfaces in a row have
the same ACL but increase in roughness to the right. ACL increases from top to
bottom. The darker the spot the deeper the pit.
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Fig. 25. Typical surfaces produced with the technique in discussion. Different features re-
sult from varying ACL and the level of degradation (or roughness). All surfaces
correspond to relative high level of roughness. The ACL for these surfaces are
(left) small, (center) medium, (right) high.

4.2.5 Realization of the Surfaces Using CO2 Laser System and PMMA

Next, the random surfaces were 3-D engraved using a CO2–laser machine of the type

Mini Epilog 30 watt (by Epilog Laser), with a resolution of 9 microns. This spot size

resolution limited the ACL used to a minimum of 10 microns. The laser beam was passed

on the PMMA surface using 3-D engraver mode which adjusts depth per pass (Dp) by

varying power (p) at a given speed (v), according the following relationship [107]:

Dp =
C
ρW

(
αp
v
−

Qth

W
) (4.9)

where:

C = constant of proportionality;

ρ = density;

W =width of laser beam;

α = absorptance;
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Qth = threshold heat.

Combining the material properties and constants into two parameters, we can write

equation (4.9) as:

Dp = m
p
v

+ b (4.10a)

m =
Cα
ρW

(4.10b)

b =
CQth

ρW2 (4.10c)

Figure 26 shows two pictures of actual replicates of surfaces etched on PMMA. The ablated

dimensions are 12.7 mm by 12.7 mm. The thickness of the specimen was 3 mm. The

maximum ablation depth was around 50 micrometers.

Fig. 26. Samples of two sets of replicates of specimens produced with the described tech-
nique. Unablated specimens were laser-cut from commercially available sheets of
PMMA.
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4.2.6 Characterization of Realized Surfaces

A benchtop scanning electron microscope(SEM) model TM3030 (by Hitachi) was

used to investigate the details and micro resolution of the laser on the acrylic beams, see

figure 27. Shown in figure 28 is a micrograph of the smallest features obtained with this

CO2 system. Note the wavelength of about 10 micrometers etched. Also note the tiny

Fig. 27. Benchtop Scanning Electron Microscope, model TM3030 (by Hitachi) used to pro-
duce micrographs of ablated surfaces. Equipment located in the Wright Center
Laboratory at the Virginia Commonwealth University.

circular shaped features (defects) produced by sparks which apparently would be non neg-

ligible if ACL was below 10 micrometers. One can easily notice that the largest defects

diameters are never bigger than distance between two adjacent peaks, in figure 28. In

fact, the average diameter of these defects was around 5 micrometers, and the maximum

diameter less than 10 micrometers. However, the amplitudes of these wave-like features

are about 1-2 µm, making them negligible if compared to the average pit depth considered

and studied here. One would expect different defect sizes for different power, speed, and

frequency configuration. Therefore, for smaller roughness levels, lower values of ACL are

limited by the resolution of the etching system to be used. If smaller RMS and ACL are
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Fig. 28. Micrograph of ablated feature on PMMA using a miniEpilog CO2 laser system
(by Epilog). Note that sparks cause negligible bubble-like damage on the surface.
Amplitudes of wave-like features, ≈ 1 − 2µm, are negligible compared to average
pit size in actual surfaces studied. Laser equipment located in the machine shop of
the School of Engineering at the Virginia Commonwealth University.

desired, other reported techniques could be incorporated. For example, the immersion of

a PMMA sample sheet in a water bath with a uniform temperature of about 80 ◦C has be

shown to reduce the amount of sparking bubbles, and hence reduce drastically the surface

roughness created due to laser cutting by up to one order of magnitude [108]. True, there

are high resolution lasers that could simply improve the roughness considerably, as well—

although adding to the research budget. A limitation, however, would be the base material

used, since other types of polymers result in rougher cut or ablated surfaces than with the

use of poly methyl methacrylate.

Next, an Ambios XP-1 stylus profiler 29 was used to compare the depth of ablation. Fig-

ure 30 shows a typical profile observed during the comparison process. Average of actual

depth values were compared to those predicted by the respective surface arrays given by

eqn. (4.6), and the difference is visually shown in figure 30. The margin of error was found

to be consistently below 5%.

A nanoindenter Ubi 1 (by Hysitron)was also used (see figure 31) to investigate me-
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Fig. 29. Ambios XP-1 stylus profiler used to characterize profiles of the surfaces. Profilome-
ter located in the Department of Mechanical and Nuclear Engineering at the Vir-
ginia Commonwealth University.

Fig. 30. Typical plot comparing profile measured with stylus profiler against that predicted
by digital model. The x-axis represents the scanned distance.

62



Fig. 31. Nanoindenter Ubi 1, by Hysitron, used to characterize surface’s hardness and re-
duced modulus. Equipment located in the east building of the Department of Me-
chanical and Nuclear Engineering at the Virginia Commonwealth University.

chanical changes near the surface, due to chemical reactions or physical insertions of laser

ablated regions. The hardness for ablated surfaces resulted within reasonable similarity (2-

5%) to that of non ablated surfaces. Other characterization techniques like optical profilers

could be used, as well, depending on the degree of reflectance of the base material to be

used.

4.2.7 Other Applications of this Technique

This technique complements the use of accelerated weathering chambers by offering

more controllability of the created surfaces and hence allowing the repeatability of them.

Among the benefits of producing in-lab repeatable random rough surfaces, is the ability to

carry out multiple (especially destructive) testing on replicates and hence allowing robust

statistical analyses. The extension of this technique to the study of several coating materi-

als is obvious and could only be limited by the type of etching process to be implemented,

which in turn would depend on the material to be etched.

In the forensic sciences, this technique can find direct applications, as well. Criminolo-

63



gists, for example, reckon crucial the safeguarding of evidence material for multi-testing

purposes. A common practice of that investigative field consists of obtaining 3-D laser

scans of crime scene surfaces and their respective conversion to digital format[96]. Our

technique would represent a much less costly alternative than modern 3-D printing, for

which there is still, to present time, limited types of based materials that can be used. Fur-

thermore, the study of fingerprints as evidence finds complications when they are left on

rough surfaces. Facilitation for the investigation of new methods to trace back fingerprints

could be accomplished by using replicates of rough surfaces on proper base materials.

Investigation of contact angle on random rough surfaces is an explicit example of a fun-

Fig. 32. Plot of contact angle vs. RMS roughness for replicates obtained with the developed
technique. This shows an example of the usefulness of producing highly controlled
replicates of random rough surfaces. Contact angles were measured with a water–
drop goniometer.

damental research for which the generation of surfaces with controlled topography can be

applied. Figure 32 shows a plot of water-drop contact angle versus roughness correspond-

ing to 14 replicated specimens developed using the proposed technique. Contact angle

measurements are nondestructive, but the often use of multiple liquids—e.g. methylene

iodide, hexane, and water—is common. Each chemical alters the subsequent contact angle
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measurement, even for repeated use of the same liquid. Nominally identical replicates al-

low the generation of standard deviation bars that quantify the impacts of the experimental

setup, thus removing the effects of extra chemical impacts on the surfaces caused by resid-

ual liquid nanofilms from previous measurements. The study of surface wettability via

contact angle offers promise to gain further understanding of surface degradation in coat-

ings, incorporating both ACL and roughness into service lifetime prediction of corrosion

protective coatings.

In the field of implant research, it has been widely accepted that surface roughness plays

a key role in the differentiation of bone-forming cells [99]. Studies on this field have de-

pended on the use of nonidentical specimens of surface roughness. Also, so far there has

not been any study that correlates ACL to bone-formation markers. A technique such as

this would provide researchers in the implant research field means to carry out statistical

studies and the addition of more geometrical parameters.

Other applications include the development of random controlled surfaces for tribologi-

cal studies combined with statistical analysis. For example, in studying the coefficient of

friction as a function of wear (undesired loss of material from a solid surface), one could

experiment with nominally exact replicates at the same stage of wear, by using the present

technique, thus allowing statistical study of the behavior.

4.3 PART II: Methodology for the Remainder of the Work

After the specimens were produced using the foregoing technique, the following steps

were carried out:

• Flexural and failure properties were determined from three-point bending tests based

on ASTM D790-10 standards, procedure B, using an Insight 30 MTS R© machine

(by MTS Systems Corporation). Identical replicates of the surface topography laser

etched on D790 samples were used to generate statistical distribution of stress/strain
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curves and stress, strain, and energy to fracture measurements. Temperature vari-

ation and control inside an environmental chamber allow the study of brittle and

quasi-ductile regions, as to simulate a variety of materials.

• Statistical analysis was performed using IBM SPSS R© software (by IBM). Bivariate,

multivariable, and partial correlations were carried out using linear correlation mod-

els.

• The generated surface topology template was imported into the finite element code,

COMSOL R©, in order to compare our experimental and analytical results with finite

element analysis.

• The perturbation method mentioned in chapter 3 was utilized in order to derive the

stress concentration factor due to random discontinuities.

4.3.1 ASTM D790 Procedure B, Flexural Tests

Flexural tests of the type ASTM D790, procedure B, were carried out using an Insight

30 MTS machine, see figure 33. Specimens produced with the technique described in the

first part of this chapter were bent to fracture at a deflection rate of 0.2 in/min. This rate

was kept constant throughout the experimental work. The dimensions of the specimens are

shown in figure 34. Samples with dimensions of 3 mm x 12.7 mm x 127 mm were cut

from acrylic sheets using a CO2 laser system. Power, speed and frequency were set in laser

so that smoothness was guaranteed during cutting. Set of samples with different rough-

ness were tested. The autocorrelation length and depth of ablation (related to roughness)

were used as characteristic parameters of these different surfaces. The engraved areas were

located at the center of the sample and had dimensions of 12.7 mm x 12.7 mm, having pat-

terns and depths based on the digital surfaces produced by equation (4.6). The span length

was 3 inches and cylindrical noses were used for both supporting points and application of
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Fig. 33. Insight 30 MTS machine used to carry out flexural tests. Equipment located in
the east building of the Department of Mechanical and Nuclear Engineering at the
Virginia Commonwealth University.

load. Flexural stress vs. strain data was obtained for a large number of specimens. A least

Fig. 34. D790 specimens with ablated surfaces in the central location

14 replicates for each type of surface were tested, but the majority of the sets of replicates

consisted of 24 specimens. Each type of surface was characterized by its ACL and depth

ablation, which in turn is a function of surface roughness. Three distinct ACL were consid-

ered: 10, 45 and 90 micrometers. Additionally, four levels of degradation were considered
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per ACL, namely, D=0, 15, 30, 45; and for each D, there corresponds a respective RMS

roughness depending on ACL used.

4.3.2 Flexural Energy at Fracture

Flexural energy at fracture (w f b) is defined as the area under the flexural stress-strain

curve, or:

w f b =

ε f b∫
0

σ f dε f (4.11)

where:

ε f b = flexural strain at fracture (b=break);

σ f = flexural stress;

ε f = flexural strain.

It provides a measurement of how much energy the surface of the specimen absorbs before

failing by fracture. For brittle or quasi-brittle materials (our case), this value gives a good

estimate of the tensional elastic energy at fracture of a slightly degraded surface. Since our

measurements provided a large number of data points then equation (4.11) can be very well

approximated by:

w f b =

N∑
i=2

σ fi(ε fi − ε fi−1) (4.12)

4.3.3 Statistical Analysis

Statistical analysis was performed using IBM SPSS software version 19. Bivariate,

multi-variable, and partial correlations were carried out using linear and nonlinear corre-

lation models. Previously[18], several surface geometrical parameters had been consid-

ered such as average roughness, standard deviation, variance, kurtosis, root-mean-square
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roughness, skewness, slope, curvature, maximum pit depth, and autocorrelation length.

Safety envelops for fracture location probability distribution and fracture toughness as a

function of topological parameters were directly derived from this analysis[18]. Bivariate

correlations were used to find Pearsons product-moment correlation coefficient. The Pear-

son Coefficient is a dimensionless index that can measure linear dependence between two

variables[109], in order words it is invariant to linear transformations of either compared

variable. Pearson initially formulated a mathematical relationship for this rather important

measure in 1895, as the ratio of the inner product of the variances (also called covariance)

into the product of the standard deviations. The foregoing ratio, called, Pearson’s cor-

relation coefficient, p, gives a measure of how strong the two given variables a linearly

correlated. If p = 1 for two variables A and B, it is said that A and B and perfectly corre-

lated in a positive manner: the higher A the higher B; although it does not establish direct

proportionality strictly speaking. Conversely, if p = −1, then A and B are still perfect

correlated but in a negative manner; that is, the higher A the smaller B, or vice-versa. Now,

if p = 0 then A and B are not correlated, at all. In that case, a scatter plot of, say, A vs. B

would be completely scattered. As p goes from 0 to 1, positive correlation increases, and as

it goes from 0 to -1, negative correlation increases. Empirical relationships were derived by

coupling the highest correlated parameters. The procedures described above were used to

corroborate the derived models based on surface topology (auto correlation length and level

of surface degradation) and temperature. The results of the experiments were compared to

the analytical model derived in chapter 6, and to some cases analyzed via FEA in chapter

7.

4.3.4 Topographical Parameters and Correlation

Several topographical parameters were studied in order to explore which best correlate

with the markers of mechanical failure. The parameters considered in this study have been
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included in standardized literature for many years [110–113]. They following parameters

can be applied to both surfaces and profiles:

m =
1
N

N∑
i=1

Zi (4.13a)

Ra =
1
N

N∑
i=1

|Zi − m| (4.13b)

V = s2 =
1
N

N∑
i=1

(Zi − m)2 (4.13c)

S k =
1

s3N

N∑
i=1

(Zi − m)3 (4.13d)

RMS 2 = R2
q =

1
N

N∑
i=1

(Zi − m)2 + m2 (4.13e)

K =
1

s4N

N∑
i=1

(Zi − m)4 (4.13f)

Z′(x) =
∂Z
∂x

=
1

N − 1

N−1∑
i=1

Zi+1 − Zi

∆x
(4.13g)

− Z”(x) = −
∂2Z
∂x2 =

1
N − 2

N−1∑
i=2

2Zi − Zi+1 − Zi−1

(∆x)2 (4.13h)

where:

m = arithmetic mean of the surface height as measured from a flat surface;

Ra = Average roughness around m;

s = Standard deviation of the surface peaks and valleys around m;

V = variance of the heights;
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S k = Skewness of the surface;

RMS = Rq = root-mean-square roughness of surface;

K = Kurtosis of the surface;

Z′(x)= slope of surface in the x direction. (So, Z′(y) would be the slope in the y direction);

Z”(x) = curvature of the surface in the x direction.(So, Z”(y) would be the curvature in the

y direction.)

Besides the aforementioned parameters, the autocorrelation length (ACL) was pescribed in

the generation of the surfaces (see chapter 4), and therefore must be included in the list of

surface parameters.

In order to examine correlation between topographical variables and markers of failure

of material, scatter plots were obtained and the respective Pearson’s correlation coefficient

computed. Scatter plots provide a visual way to observe the correlation behavior between

any two given parameters. The two parameters considered were RMS roughness and ACL.

Also, plots showing behavior of p with level of degradation (RMS roughness) were devel-

oped.

The markers of failure considered were stress, strain and energy at fracture, and the fracture

location density (FLD). FLD provides the probability distribution of where fracture takes

place on the roughened surface along the axis of loading.

4.3.5 Division of Ablated Area into Profiles for Fracture location Density Measure-

ments

In order to study how stress concentrates along profiles which are perpendicular to the

axis of loading, the ablated area was divided into 20 equally-spaced profiles (or lines). The

two lines that coincided with the flat-to-rough interfaces were excluded from consideration

based on Saint-Vernant principle [39] which motivates the studies of effects or mechanisms

away from the boundaries of the region of interest.
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Figure 35 shows the aforementioned state of affairs. For each specimen tested until fracture,

the fracture location distance, xi, was measured and recorded. Fracture location density

for each location i (FLDi)—which can also be understood as a theoretical probability—is

simply defined as the ratio of the number of specimens fractured at location i divided by the

total number of fractured specimens. In order to correlate FLDi with appropriate statistical

parameters, the RMS roughness and ACL of each individual profile i were obtained, as

well. Other statistical parameters were discarded based on previous studies [18]. All the

results from the experimental work are presented in chapter 5.

Fig. 35. Division of ablated area into 20 equally-spaced lines or profiles.
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CHAPTER 5

EXPERIMENTAL RESULTS

This chapter is solely dedicated to results and discussion of experimental work1.

5.1 How to Read Scatter Plots

The scatter plots of fracture location density (FLD) versus parameters of profiles were

developed. These plots are intended to show the probability of fracture at certain pro-

files depending on the characteristics of those profiles. Each plot contains 18 data points

which indicate the 18 possible locations where the surface can break at. So since there are

locations where the surface never breaks, these corresponding points lie on the x-axis. Ad-

ditionally, the sum of the probabilities add up to 1 for each plot, as it should. The number

of specimens for each plot varies, as indicated; moreover, this number was increased for

more stochastic behavior of FLD and depending on how many specimens fractured at the

flat-to-rough interface.

5.2 Flexural Properties at Fracture

Flexural stress and strain at fracture were measured from ASTM D790 tests on repli-

cates of random rough surfaces ablated on PMMA beams. The energy at fracture was

calculated as described in chapter 4. Characteristic values of the results are shown in fig-

ures 36 through 40. These sets of values are but a small sample of the hundreds of tables

1For analytical results see chapter 6 and for the finite element analysis results see chap-
ter 7
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produced.

Fig. 36. Table of a selected group of data points obtained for stress at fracture, strain at
fracture, and the calculated, energy at fracture. Energy at fracture is defined as the
area under the curve of the stress-strain curve until the point of fracture. This plot
correspond to flat specimens. The total number of specimens were 30.
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Fig. 37. Table of a selected group of data points obtained for stress at fracture, strain at
fracture, and, the calculated, energy at fracture. Energy at fracture is defined as the
area under the curve of the stress-strain curve until the point of fracture. ACL= 10,
RMS= 9 micrometers. The total number of specimens were 24.

Fig. 38. Table of a selected group of data points obtained for stress at fracture, strain at
fracture, and, the calculated, energy at fracture. Energy at fracture is defined as the
area under the curve of the stress-strain curve until the point of fracture. ACL= 10,
RMS= 11 micrometers. The total number of specimens were 24.
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Fig. 39. Table of a selected group of data points obtained for stress at fracture, strain at
fracture, and, the calculated, energy at fracture. Energy at fracture is defined as the
area under the curve of the stress-strain curve until the point of fracture. ACL= 10,
RMS= 14 micrometers. The total number of specimens were 24.

Fig. 40. Table of a selected group of data points obtained for stress at fracture, strain at
fracture, and, the calculated, energy at fracture. Energy at fracture is defined as the
area under the curve of the stress-strain curve until the point of fracture. ACL= 10,
RMS= 16 micrometers. The total number of specimens were 24.
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5.2.1 Stress at Fracture

Using the result values similar to those contained in figures 36 through 40, plots of

flexural stress at fracture for replicates of surfaces at various ACL were obtained and are

shown in figures 41, 42, 43, 44, and 45. Each one of these plots were obtained using data

from 24 replicates of each kind of surface. The y-axes represent the ratio of stress at frac-

ture for a given surface to the average stress at fracture for flat specimens (we will refer to

that ratio as RSF). The x-axes represent the level of degradation via RMS roughness of the

surface. Some plots include only the range of degradation at early stage since that is the fo-

cus of the present study. Other plots are shown starting at a flat condition (no degradation),

that is when RMS=0. A few plots shown do include a further level of degradation—RMS

roughness levels higher than those characteristic of early degradation, as understood in the

context of the present study. A characteristic ACL is included in each plot. Of course,

when flat specimens are included, the ACL does not correspond to them.

Figures 41 and 42 show two plots of RSF vs. RMS starting with a flat surface, for

ACL=10. In the plot of figure 41 the x-axis starts with a flat condition, while in figure 42

it only covers early stage of surface degradation. As it can be noticed, in average there

is a decrease in the stress required to fracture roughened specimens compared to that of

flat specimens; the standard deviations are significantly high and the decrease in stress at

fracture seem to range from about 10 to 20 %. Focusing on the plot of figure 42 the relative

stress at fracture as the RMS progresses do not seem to change significantly. However,

there seems to be a point of relaxation at RMS ≈ 11 µm where the surface seem to prolong

the point of stress where it fractures. In fact, as it can be noticed in the next plots, this

relaxation location is related not only to the RMS but also to the ACL.

Figures 43 and 44 show plots of RSF versus RMS roughness for ACL=45.
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Fig. 41. Flexural stress at fracture versus RMS roughness of surface, starting with a flat
surface. RMS = 0 means a flat surface. For each roughness included in this plot
there correspond 14 replicates of the exact same surface. ACL = 10.
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Fig. 42. Flexural stress at fracture versus RMS roughness of surface. For each roughness
included in this plot there correspond 14 replicates of the exact same surface. ACL
= 10.
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Fig. 43. Flexural stress at fracture versus RMS roughness of surface, starting with a flat
surface. RMS = 0 means a flat surface. For each roughness included in this plot
there correspond 14 replicates of the exact same surface. ACL = 45.
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Fig. 44. Flexural stress at fracture versus RMS roughness of surface. For each roughness
included in this plot there correspond 14 replicates of the exact same surface. ACL
= 45.
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Fig. 45. Flexural stress at fracture versus RMS roughness of surface, starting with a flat
surface. RMS = 0 means a flat surface. For each roughness included in this plot
there correspond 14 replicates of the exact same surface. ACL = 90.
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5.2.2 Strain at Fracture

Following are a set of plots of strain at fracture versus RMS roughness of surface.

The y-axes correspond to the ratio of strain at fracture of a roughened specimen to that of

a nominally flat one. RMS roughness is expresses in micrometers, as before. The plots

correspond to sets of 14 replicates for each surface. More specimens were also tested and

showed the same trend. The plots are divided by the ACL of the surface. Some plots only

cover the range within the early stage of degradation, and others start with a flat specimen

(RMS = 0).

Fig. 46. Flexural strain at fracture versus RMS roughness of surface, starting with a flat
surface. RMS = 0 means a flat surface. For each roughness included in this plot
there correspond 14 replicates of the exact same surface. ACL = 10.
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Fig. 47. Flexural strain at fracture versus RMS roughness of surface. For each roughness
included in this plot there correspond 14 replicates of the exact same surface. ACL
= 10.
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Fig. 48. Flexural strain at fracture versus RMS roughness of surface, starting with a flat
surface. RMS = 0 means a flat surface. For each roughness included in this plot
there correspond 14 replicates of the exact same surface. ACL = 45.
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Fig. 49. Flexural strain at fracture versus RMS roughness of surface. For each roughness
included in this plot there correspond 14 replicates of the exact same surface. ACL
= 45.
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Fig. 50. Flexural strain at fracture versus RMS roughness of surface, starting with a flat
surface. RMS = 0 means a flat surface. For each roughness included in this plot
there correspond 14 replicates of the exact same surface. ACL = 90.
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5.2.3 Energy at Fracture

Following are a set of of plots of energy at fracture versus RMS roughness of surface.

The y-axes correspond to the ratio of energy at fracture of a roughened surface to that of

a nominally flat one. The x-axes correspond to the RMS roughness in micrometers. The

first plot, figure 51, covers the entire range starting from a nominally flat surface, passing

through the stage of early degradation, and beyond that stage (about 35 micrometers of

RMS roughness). Notice not only that the energy decreases, as expected, but that the

process becomes less stochastic since the standard deviation decreases.

Fig. 51. Energy at fracture versus RMS roughness of surface, starting with a flat surface
until a level of degradation well passed the early stage. As expected, energy de-
creases with degradation level. RMS = 0 means a flat surface. Notice the almost
constant behavior of energy at the four points of degradation in the range of 8-15
micrometers. ACL = 45
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Fig. 52. Energy at fracture versus RMS roughness of surface, starting with a flat surface
until the early stage of degradation, which is the focus of the present study. ACL =

10. RMS = 0 means a flat surface.
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Fig. 53. Energy at fracture versus RMS roughness of surface, only for early stage of degra-
dation considered in the present study. ACL = 10
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Fig. 54. Energy at fracture versus RMS roughness of surface, starting with a flat surface
until the early stage of degradation. ACL = 45. RMS = 0 means a flat surface

Fig. 55. Energy at fracture versus RMS roughness of surface, only for early stage of degra-
dation considered in the present study. ACL = 45
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Fig. 56. Energy at fracture versus RMS roughness of surface, starting with a flat surface
until the early stage of degradation. ACL = 45. RMS = 0 means a flat surface.
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5.2.4 Discussion about Stress, Strain and Energy at Fracture Plots

There are several interesting observations that need to be addressed with regards to

the behavior of stress, strain and energy at fracture versus RMS roughness. First of all,

it is observed that the early degradation produced to the specimens is sufficient to reduce

the stress, strain and consequently the energy a fracture for all kinds of surfaces (all ACL)

when compared to a nominally flat specimen. Secondly, the different degradation levels

can not significantly distinguish themselves from each other with regards to the stress,

strain, or energy at fracture; however, when compared to an even deeper degradation level

(for example, see figure 51), one can observed the expected energy reduction. Thirdly,

there seems to be a relaxation point or region (RMS value or range) at which the stress,

strain, and thus energy at fracture seems to increase. This is in accordance to traditional

results of the SCF for multiple periodic notches, wherein it tends to decrease as number

of notches increases; this state of affairs can be observed, for example, in figure 16 from

chapter 3. Furthermore, this relaxation point or region is apparently dependent on both

ACL and RMS of the surface, since one can observe that it takes place at a smaller RMS

value for surfaces having ACL=90 than for those having ACL=10, for example. Finally, it

is definitely observable that neither stress, strain, nor energy at fracture are distinguishing

markers of failure at the various level of early degradation. This is remarkably important,

since in traditional strength of materials these are the first parameters sought to assess or

predict fracture for nominally flat surfaces; however, early stage of degradation being small

often times is ignored. Of course, most metals are considerably less brittle than PMMA

at room temperature and therefore early degradation can be ignored; but when service

conditions involve an important decrease of temperature, then even metals become brittle

and no longer early stage of degradation can be ignored.
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5.3 Fracture Location Density (FLD)

Based on the previous results, it was concluded that stress, strain, or energy at frac-

ture showed low to no correlation to the geometrical parameters considered, namely RMS

roughness and autocorrelation length (ACL). Therefore, we pursued the study of fracture

location as a means to predict failure of the damaged specimens. As explained in chapter 4,

the rough area was divided into 20 sections, reserving two of those lines for the rough-to-

flat interface. The RMS roughness of each line was computed using the original developed

xyz-data. Figures 57 through 60 show a series of plots corresponding to surfaces with

ACL=10 and RMS= 9 to 16 microns, respectively. For ACL=10 and RMS =9 microns

(figure 57), fracture location was found to be highly scatter and therefore no correlation

was found between the fracture location density (FLD) and the RMS of profiles. For the

case of ACL=10 and RMS=11 microns, the corresponding FLD vs. RMS line plot (figure

58) seems to be less scatter than that corresponding to RMS= 9 microns, shown in plot

of figure 57. In figure 59 a surface with ACL=10 and RMS= 14 microns shows a much

higher correlation of FLD with RMS linethan the previous two surfaces. Finally, the afore-

mentioned trend is corroborated by a deeper ablation, as it is shown in the plot of figure 60,

corresponding to ACL=10 and RMS=16 microns.

These plots show that FLD increases its positive correlation with RMS of the lines as the

surface grows. This trend is in agreement with traditional results for more regular surfaces.

If one reckons RMS-roughness as a depth dimension, then it would be expected that: (a)

there is a critical depth (critical RMS of surface, in our case) beyond which the location

of fracture becomes positively dependent on the depth (RMS-roughness of lines); and, (b)

Below that critical RMS, fracture location is not predictable based on the RMS. An analogy

in cracked members is that of the critical crack size, ac, beyond which a crack would grow

under the stress, σ = KIC/
√
πac, crack having sizes smaller than ac would not provoke
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fracture, as explained in details in chapter 3.

Fig. 57. Scatter plot of fracture location density(FLD) versus RMS roughness of profiles
at discrete lines on the surface. Surface’s RMS = 9 micrometers and ACL = 10.
Notice the highly stochastic behavior. This plot was developed from 20 replicates.
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Fig. 58. Scatter plot of fracture location density(FLD) versus RMS roughness of profiles
at discrete lines on the surface. Surface’s RMS = 11 micrometers and ACL = 10.
Notice even though behavior is still non-deterministic, yet it is less scatter than that
of Fig. 57. This plot was developed from 24 replicates.
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Fig. 59. Scatter plot of fracture location density(FLD) versus RMS roughness of profiles
at discrete lines on the surface. Surface’s RMS = 14 micrometers and ACL = 10.
Notice the increasing trend of FLD that starts to appears as the profile roughness
increases. This plot was developed from 22 replicates. Notice that there are two
locations with the same roughness and FLD.
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Fig. 60. Scatter plot of fracture location density(FLD) versus RMS roughness of profiles
at discrete lines on the surface. Surface’s RMS = 16 micrometers and ACL = 10.
The positive correlation between FLD and profile RMS roughness is even more
evident than that for RMS=16, plot of figure 59. This plot was developed from 24
replicates.
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Fig. 61. Scatter plot of fracture location density(FLD) versus RMS roughness of profiles at
discrete lines on the surface. Surface’s RMS = 8.1 micrometers and ACL = 45.
FLD is unpredictable with respect to RMS roughness, at this level of degradation.
This plot was developed from 24 replicates. 2 specimens that broke at the rough–
to-flat interface are included in the statistics.
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Fig. 62. Scatter plot of fracture location density(FLD) versus RMS roughness of profiles
at discrete lines on the surface. Surface’s RMS = 10.2 micrometers and ACL =

45. FLD is still unpredictable with respect to RMS roughness, at this level of
degradation. This plot was developed from 24 replicates. 2 specimens that broke at
the rough-to-flat interface are included in the statistics.
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Fig. 63. Scatter plot of fracture location density(FLD) versus RMS roughness of profiles at
discrete lines on the surface. Surface’s RMS = 12.5 micrometers and ACL = 45.
There appears to be a medium correlation between FLD and RMS roughness. This
plot was developed from 24 replicates.
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Fig. 64. Scatter plot of fracture location density(FLD) versus RMS roughness of profiles
at discrete lines on the surface. Surface’s RMS = 15 micrometers and ACL = 45.
It is clear that there is a positive correlation between FLD and RMS roughness,
after some threshold roughness. This plot was developed from 20 replicates. 2
specimens that broke at the rough-to-flat interface were included in the statistics.
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Fig. 65. Scatter plot of fracture location density(FLD) versus RMS roughness of profiles at
discrete lines on the surface. Surface’s RMS = 5.1 micrometers and ACL = 90. At
this level of degradation there is no clear correlation. This plot was developed from
22 replicates.
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Fig. 66. Scatter plot of fracture location density(FLD) versus RMS roughness of profiles
at discrete lines on the surface. Surface’s RMS = 12 micrometers and ACL = 90.
Even at this considerable roughness, the correlation is not as strong as that for other
ACL. This plot was developed from 22 replicates.
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5.3.1 Discussion on Correlation with RMS of Profiles

In all the scatter plots of the fracture location density (FLD) versus RMS roughness

of lines (or profiles) shown there is a common observation: that the correlation between

FLD and RMS-line increases as the surface becomes rougher. The dynamics of this growth

seems to be dependent on the ACL of the surface. That the probability of fracture is higher

at larger RMS should be expected since it behaves as an asymptotic approach to the tradi-

tional deterministic fracture mechanics solution to the critical flaw problem. The rougher

the surface, the higher the likelihood of breaking at the most probable location (i.e., the

roughest profile). This means that the process becomes less stochastic as the surface gets

rougher.

For less rough surfaces, however, even at particular profiles that are about 50% rougher

than the overall surface, the likelihood of fracture is still remarkably small.

5.3.2 Correlation with ACL

The graphs contained in figures 67, 68, 69, and 70 are scatter plots of fracture location

density versus ACL ratio (ACLr). The ACLr is the ratio of the ACL of a line (or profile)

to the ACL of the entire surface. The latter is simply prescribed during the design of the

surfaces. The former is obtained by averaging the distances between correlated pit depths.

As it has been stated before, the auto correlation length is the average distance between two

local pit depths of a surface (or it can be any physical quantity depending on the system

being studied) beyond which the depths of those pits are not longer correlated but are ran-

dom. That distance was measured for each one of the 20 lines used to divide the surfaces.

Then those ACLline were divided by the general ACL of the entire surface.

That there is an increasing negative correlation between FLD and ACLline as degradation

increases is evident from plots of figures 67–70. Although for the two surfaces correspond-
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ing to RMS=9 micrometers (figure 67) and RMS=11 micrometers, this trend might not

appear too clear, yet for the following two degradation levels, namely, RMS=14 microm-

eters (figure 69) and RMS = 16 micrometers (figure 70) the high correlation is obvious.

The Pearson’s correlation coefficient of that latter plot is above 0.9—being this a negative

value, of course.

Fig. 67. Scatter plot of fracture location density(FLD) versus ACL of line, or profile, for a
surface’s RMS= 9 micrometers. There appears to be a negative correlation between
FLD and ACL line, in this case weak but not negligible. This plot was developed
from 20 replicates.
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Fig. 68. Scatter plot of fracture location density(FLD) versus ACL of line, or profile, for
a surface’s RMS= 11 micrometers. There appears to be a negative correlation be-
tween FLD and ACL line, in this case weak but not negligible. This plot was
developed from 24 replicates.
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Fig. 69. Scatter plot of fracture location density(FLD) versus ACL of line, or profile, for
a surface’s RMS= 14 micrometers. The negative correlation is definitely stronger
than those for plots in figures 67 and 68. This plot was developed from 22 repli-
cates. Noticed that two locations have same FLD and ACL.
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Fig. 70. Scatter plot of fracture location density(FLD) versus ACL of line, or profile, for
a surface’s RMS= 16 micrometers. At this level of degradation, a strong negative
correlation between FLD and ACL line is evident. This plot was developed from
24 replicates.
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5.3.3 Discussion on Correlation with ACL of Profiles

The scatter plots of FLD with ACL of profiles show the reciprocal correlation behavior

seen previously versus RMS-line. As the surface becomes rougher, the probability of the

specimen fracturing at profiles with smaller ACL increases. This observation is remark-

ably important. Traditional fracture mechanics have focused on the geometrical aspects of

the notch(es), almost neglecting the geometry related to the tendons (islands) that connect

them. The ACL length of a profile can be thought of as an average measure of the ten-

don width perpendicular to the loading axis (if the load can be thought of as tension being

applied at the ends of a rough film). Therefore, at least for the conditions studied herein,

we can conclude that the tendon width (perpendicular to load) is inversely proportional to

stress concentration: the smaller the tendon the higher stress concentrates.

To further understand this, we observe the FEA’s surface stress distributions shown in fig-

ure 71, corresponding to a beam with 3 grooves, subjected to bending load. When a thick

tendon is located at the center of the middle groove the stress relaxes there which reduces

the probability of fracture at that location. However, when a thin tendon is placed at the

same location, the stress concentrates thus increasing the likelihood of failing there.

Fig. 71. Finite element simulation of beam under bending with 3 grooves and (a) no tendon,
(b) a thick tendon, and (c) and thin tendon. Stress concentrates more due to the thin
tendon than the thick one.
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5.3.4 Discussion on Stress Concentration and RMS/ACL

Since the likelihood of fracture, for our quasi-brittle material has been shown to in-

crease with increase of RMS roughness and with decrease of ACL, then our main con-

clusion is that the FLD, and more importantly the stress concentration factor must be a

function of RMS/ACL, or:

FLD = Function(
RMS
ACL

) (5.1a)

S CF = Function(
RMS
ACL

) (5.1b)

This insight leads us to plot FLD versus the ratio RMS/ACL, which should be expected to

show even higher correlation. Following there are four scatter plots shown in figures 72,

73, 74, and 75 to demonstrate this state of affairs.

Fig. 72. Scatter plot of fracture location density(FLD) versus the ratio RMS/ACL (times a
constant) of line, or profile, for a surface’s RMS = 9 micrometers. This plot was
developed from 20 replicates.
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Fig. 73. Scatter plot of fracture location density(FLD) versus the ratio RMS/ACL (times a
constant) of line, or profile, for a surface’s RMS = 11 micrometers. This plot was
developed from 24 replicates.
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Fig. 74. Scatter plot of fracture location density(FLD) versus the ratio RMS/ACL (times a
constant) of line, or profile, for a surface’s RMS = 14 micrometers. This plot was
developed from 22 replicates.
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As expected, the FLD correlation with the ratio RMS/ACL is much evidently higher

than with RMS or ACL individually. This empirical result could be refined by least-squared

methods; but more importantly, one wonders if there is an analytical solution that can be

pursued in order to corroborate this empirical result. In fact, this is carried out successfully

and presented in chapter 6 of this document. Comparison of the experimental results and

analytical predictions are also carried out and shown.

Fig. 75. Scatter plot of fracture location density(FLD) versus the ratio RMS/ACL (times a
constant) of line, or profile, for a surface’s RMS = 16 micrometers. This plot was
developed from 24 replicates.

5.4 Variation of Brittleness and its Effect on Correlation

By varying the temperature inside an environment chamber, PMMA beams were

tested to fracture using ASTM D790 standard procedure B. The results shown in this sec-

tion correspond to temperatures at 10 ◦C, 23 ◦C (a.k.a. room temperature), 25 ◦C, 27 ◦C,
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and 30 ◦C. Undamaged (nominally flat) specimens were used to correlate temperatures

with mechanical properties of the material in order to describe the behavior of brittleness.

Two mechanical properties were considered, namely, % of elongation (% EL) and Young’s

modulus of elasticity (E). %EL is described as the maximum percent of elongation that a

specimen can experience before it breaks. Since three-point bending tests expose the outer

fibers to tension, then it can be said that our %EL is the maximum strain attained by the

rough surface before it gives in to fracture. It coincides with the strain at fracture only when

the material fractures before yielding. Figure 76 shows a plot of %EL versus temperature

for PMMA. As it would be expected, the higher the temperature the higher the strain the

specimens can stretch before fracturing; nonetheless, this increase is not linear. Similarly,

figure 77 shows a plot of E versus temperature. Again, as expected Young’s modulus of

elasticity decreases with temperature increase. Even though the same number of flat speci-

mens were used to obtain the aforementioned data, it seems that E delivers a more precise

way of characterizing changes in brittleness or ductility. Notwithstanding, we will use both

E and %EL to characterize our thermally controlled test results. As an additional piece of

information, we have included a plot of %EL versus E as shown in figure 78.

Our goal is to find the how correlation between FLD and RMS (or ACL) changes as

brittleness is decreased (i.e., as E decreases or as %EL increases). In order to accomplish

this, we selected among all the configurations tested, the ones that showed the highest

correlation at room temperature. Then, that particular surface configuration was tested at

the various values of E and %EL described before. The selected surface was ACL=45 with

RMS=15 micrometers, for which the scatter plot at E = 3.38± .15GPa was shown in figure

64. Scanned pictures of specimens tested at various E or %EL were produced.

It was found that even at a temperatures between 27 to 30 ◦C the correlation between

FLD and RMS/ACL vanishes and all specimens fracture at the location of maximum load,

that is, the center of the specimen. This means that when PMMA has an elastic modulus

115



Fig. 76. Plot of percent of elongation (%EL) versus temperature of PMMA. Flat
(non-rough)specimens were used to produce this plot.

Fig. 77. Plot of Young’s modulus of elasticity versus temperature of PMMA. Flat specimens
were used to produce this plot.
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Fig. 78. Plot of percent of elongation (%EL) versus Young’s modulus of elasticity. Flat
specimens were used to produce this plot.

of about 2-2.7 GPa—or similarly, a % EL of about 4-5 %—early degradation, as described

before, does not induce significant concentration of stress due to the rough surface.
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5.5 General Discussion and Conclusions of Experimental Work

We have carried out three-point flexural tests on D790 replicated specimens of PMMA

according to procedure B of the ASTM’s respective standard. The specimens possessed

random rough surfaces on a half-inch span at the central location. These rough surfaces

were characterized by their root-mean-square (RMS) roughness and auto correlation length

(ACL). Mainly the experimental work was carried out at room temperature, but degree of

brittleness was varied via temperature change. The sole purpose of the latter was to assess

the level of ductility of PMMA at which correlation between FLD with RMS/ACL vanishes

at early stage of degradation.

i. At the early stage of degradation studied, prediction of fracture location is stochastic

yet predictable in the probabilistic sense.

ii. The slight degradation produced to the specimens was sufficient to reduce the stress,

strain and consequently the energy a fracture for all kinds of surfaces (all ACL) when

compared to a nominally flat specimen.

iii. There seems to be a relaxation point or region (RMS value or range) at which the

stress, strain, and thus energy at fracture seem to increase. This is in accordance to

traditional results of the SCF for multiple periodic notches, where it tends to decrease

as number of notches increases.

iv. Neither stress, strain, nor energy at fracture are distinguishing markers of failure at the

various level of early degradation. This is remarkably important, since in traditional

strength of materials these are the first parameters sought to assess or predict fracture

for nominally flat surfaces; however, early stage of degradation being small often times

is ignored. Of course, most metals are considerably less brittle than PMMA at room

temperature and therefore early degradation can be ignored; but when service condi-
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tions involve an important decrease of temperature, then even metals become brittle

and no longer early stage of degradation can be ignored.

v. For quasi-brittle PMMA surfaces, prediction of failure location can be carried out even

under random degradation at early stages, and it is partially dependent of the charac-

teristic parameters of the surface, namely RMS roughness and ACL.

vi. There was found correlation between FLD and RMS roughness. This dependence of

the location of fracture on RMS roughness indicates that the rougher the surface, the

higher the likelihood of breaking at the roughest profile. This means that the process

becomes less stochastic as the surface gets rougher. For less rough surfaces, however,

even at particular profiles that are about 50% rougher than the overall surface, the

likelihood of fracture is remarkably small.

vii. An increasing reciprocal correlation behavior between FLD and ACL was found, as

RMS increases. As the surface becomes rougher, the probability of the specimen frac-

turing at profiles with smaller ACL increases. This observation is remarkably impor-

tant. Traditional fracture mechanics have focused on the geometrical aspects of the

notch(es), almost neglecting the geometry related to the tendons (islands) that connect

them. The ACL length of a profile can be thought of as an average measure of the

tendon width perpendicular to the loading axis (of the load can be taken as tension

being applied at the ends of a rough film). Therefore, at least for the conditions studied

herein, we can conclude that the tendon width (perpendicular to load) is inversely pro-

portional to stress concentration: the smaller the tendon the higher stress concentrates.

viii. It is concluded that the stress concentration factor must be a function of the ratio

RMS/ACL.

ix. Additionally, as degradation penetrates randomly and roughness (height) becomes nor-
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mally distributed, according to the CLT, the multi-pit problem can be very well approx-

imated using a single average pit.

x. When the value of Young’s modulus is about 2-2.7 GPa—or similarly, a % EL of about

4-5 %—early degradation, as described before, does not induce sufficient concentra-

tion of stress due to the rough surface at an early stage of degradation, and therefore

the correlation described above vanishes.

xi. In order to extend this knowledge obtained from the experimental work, an analytical

solution of the problem is pursued in chapter 6.
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CHAPTER 6

ANALYTICAL SOLUTION

6.1 Problem Description

It is widely accepted that the first1 quantitative result for stress concentrations fac-

tor (kt) was developed by Inglis [2, 36], who studied elliptical holes in flat plates. Since

then, kt values have been developed for a smorgasbord of configurations [3]. Although

periodic-discontinuity arrangements have been well studied, rarely continuous-irregularity

cases have been considered. Two exceptions are studies of kt at slightly perturbed peri-

odic surfaces for a homogeneous elastic material[16, 77] and for a film-substrate system

[17]. In a pioneering work, Gao[16] employed some elastic Greens functions for a surface

considered perfectly flat and treated the sinusoidal surface as being perturbed from that ref-

erential plane, to develop first-order solutions of the stress concentration factor. Later and

as a continuation to Gao’s work, Grekov and Makarov reported an algorithm that provides

any-order approximation for the single-wave condition[114]. However, to the best of our

knowledge, no theoretical studied has been carried out to formulate kt for a surface with

random roughness. Therefore, combining the aforementioned first-order perturbation ap-

proach with the Hilbert Transform and the Parseval’s theorem, in this chapter, we develop

an analytical solution of kt for the case of a randomly slightly rough surface. The motiva-

tion of this work is as follows.

For instance, solar panels are exposed to a large number of low-impact-random events

which by the central limit theorem lead to a Gaussian distribution of pit size [24, 82]. The

1 Actually Neuber[34] affirms that in a Russian published document, Kolosov had ar-
rived to a similar result four years earlier[35]

121



damage level might be small, yet when laminates of semiconductor layers with different

crystal configurations are brought together, lattice mismatch causes strain at the interface

thus leading to residual stresses. Reckoning either surfaces as nominally flat or discontinu-

ities as well-defined could be misleading, mostly when the approximation of a given rough-

ness does not accurately fit a well-defined configuration or when the scale of the damage

is within certain regime. At best, overestimations of stress concentrations, although safe,

lead to unnecessary increase of costs. Therefore, it is of interest to understand more accu-

rately the mechanical effects that random roughness on surfaces poses on the load-capacity

performance of volumes.

In chapter 5 , we suggested a first-order empirical approximation for kt based on experimen-

tal results, which are now available in the literature[82]. In that study, replicates of rough,

slightly damage surfaces were designed and realized on a large number of brittle acrylic

specimens using a reported technique [79] which was presented in chapter 4. In that model,

the surfaces grow linearly from an engineering surface to one whose heights are normally

distributed, and which is autocorrelated with auto correlation length, ACL. In the afore-

mentioned study, ACL was varied in order to portray different sizes of damage features.

The experimental results showed that kt–on discrete profiles perpendicular to the load—

was a function of the RMS-to-ACL ratio, where RMS is the root-mean-square roughness

of the profile at each discrete line (see chapter 5 and reference [82]). Herein, we develop

an analytical solution which to a first-order approximation agrees with the aforementioned

experimental results.

6.2 Normally distributed surface damage

In this section, we present our motivation of using surfaces having normal height dis-

tribution. Materials are incessantly experiencing transformation, both at molecular and

macroscopic levels. The third law of thermodynamics elucidates—among other basic
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concepts—that, unless at absolute zero temperature, atomic structures are intrinsically un-

stable and therefore prone to change to a more stable state; nevertheless, for many materials

this rate is a rather unhurried process. Both molecular and macroscopic changes can occur

as a result of energy input to the material system, introduced through the surface, or bound-

ary, or developed within the volume of the material. Assuming only through-boundary in-

teractions, it is generally the case that surfaces are more susceptible to these morphological

alterations than the interior part of the material. Almost any known natural phenomenon

can cause materials degradation: heat, light, short-wavelength electromagnetic radiation,

radioactive emissions, chemicals, mechanical stress and interactions with bacteria, fungi

or other life forms. Despite the need for understanding the fundamental mechanisms of

each particular physical, chemical, biological, etc., degrading phenomenon, the fact is that

they seldom act individually. Instead, they seize the structural integrity of surfaces by the

accumulation of a large number of small destructive events. Granted, most of these small

attacks are usually of low probability, although the magnitude of the impact would depend

on the size of the surface; (Consider, for example, the comparison of a corrosive attack

on a bridge versus the same attack on a MEMS metallic device). But the build-up effect

of these low-probability events lead to morphological changes on the surfaces that can be

modeled mathematically using the Central Limit Theorem. Let X1, X2...Xn, be a series of

variables representing the size (depth, volume, etc.) of material removed or displaced as a

consequence of respective degrading events, E1, E2...En, acting on a surface like the one

shown in Fig. 79. In the same manner, let X
′

1, X
′

2...X
′

m, be a set corresponding to synergistic

events, E
′

1, E
′

2...E
′

n, that are obtained from the possible combining attacks of two or more

Xi. For example, X
′

1 = S C(X1, X2), where the function S C maps individual events effect

into their combined effects. Now, let us further assume that all Xi’s are random independent

variables. This is a very reasonable assumption; since one expects that these environmen-

tal, damaging attacks often act independently one from the other. (Even though there are
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Fig. 79. Cartoon depicting some of the different sources of small destructive events from
environment on surfaces. Based on the Central Limit Theorem these lead to Gaus-
sian-distributed heights (or depths).

some events that could be associated with others, yet when the number of independent Ei is

considerably large then this assumption holds reasonably well). Then, X
′

i , are also random

variables since the sum and multiplication of two or more random variables is indeed an-

other random variable. Now we can apply the Central Limit Theorem to simulate random

degradation, assuming a large number of degrading events. The Central Limit Theorem

(CLT) explains the behavior of the sum of random variables. Let Z1...Zn be random vari-

ables such that Zi = Xi + X
′

i , with sum,S =
N∑

k=1
Zk,then CLT predicts that S will have a

Gaussian distribution provided that:

a. Each summand that is not negligible compared to the dispersion of the entire sum has a

distribution close to Gaussian.

b. The maximum of the absolute value of the negligible summands is itself negligible

compared to the dispersion of the sum.
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6.3 First-Order Perturbation for Slightly Damaged Surfaces

Consider an originally elastic flat surface with conditions as shown in Fig. 80(a).

Then, consider that small amounts of material are added to or taken from that elastic surface

in a random manner so that it becomes as that shown in Fig. 80(b), whose height is a

continuous random variable having a Gaussian distribution, with autocorrelation length,

ACL. (We can say that the 2-D surface shown in Fig. 80(b) can represent the profiles of the

discrete lines of the surface as explained in chapters 3 and 4).

After the flat surface has been perturbed, we can define the stress and displacements for the

Fig. 80. (Top): An original flat surface; (Bottom):A random perturbation of the originally
flat surface.

rough surface(Ti j and ui) in terms of the reference state values (T r
i j and ur

i ) and the perturbed

elements (δTi j and δui), as:

Ti j = T r
i j + δTi j

ui = ur
i + δui

(6.1)

In order to solve Eqn. (6.1), we need suitable expressions for the perturbed elements, δTi j

and δui. Actually, since our interest is to find kt then the stress is our main objective.

We formulate our problem by considering that the surface in Fig.80 is loaded with tensile

stress σt, just as it was carried out in the experiments, see chapter 5 and reference [82].
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For the remainder of this section, we employ the first-order perturbation method developed

by Gao [77]. In the next section, we will apply these results to derive our particular con-

figuration of interest. Following Gao [77] we also consider a concentrated point force F

acting at an arbitrary location (x,y). The purpose of using a point force is only to utilize

the well-known solution for the surface stress Green’s function, and the magnitude of F

will be shown to be irrelevant. Since we are considering only linear elastic materials, the

strain energy density (w) is given in terms of the stress (Ti j) and strain (εi j) tensors, and the

compliance tensor, Ci jkl, as :

w =
1
2

Ti jεi j (6.2)

w =
1
2

Ci jklTi jTkl (6.3)

Along the surface, where the traction vanishes, w becomes:

w =


1

2E T 2
xx, for plane stress

1−ν2

2E T 2
xx, for plane strain

(6.4)

Where E and ν are the modulus of elasticity and Poisson’s ratio, respectively. Let’s define

E′ as:

E′ =


E, for plane stress

E
1−ν2 , for plane strain

(6.5)

We then differentiate (6.4) with respect to the point force F and obtain:

∂w
∂Fi

=
Txx

E′
∂Txx

∂Fi
= Txx

Gi
xx

E′
(6.6)

By noticing that,

Gi
xx(χ; x, y) =

∂Txx

∂Fi
(6.7)

is identified as the surface stress at χ due to a concentrated point force located at (x,y) and

acting in the i direction.
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Referring again to Fig.80, the change in total energy (δΠ) has been defined [77] as:

δΠ = Fiδui(x, y) +

∞∫
−∞

wδp(χ)dχ (6.8)

The first term in the right hand side represents the ith component of virtual work, performed

by the ith component of the point Force, Fi, through a small displacement δui, in that same

direction. The second term represents the total strain energy due to the addition or removal

of material at each location χ, that is due to the perturbed quantity δp(χ) at each χ. Since

Π is a state variable, then

Fiδui(x, y) = −

∞∫
−∞

wδp(χ)dχ (6.9)

Which after some straightforward manipulation 2 can be transformed into:

δui(x, y) = −

∞∫
−∞

∂w
∂Fi

δp(χ)dχ (6.10)

We now substitute Eq. (6.6) into Eq. (6.10):

δui(x, y) = −

∞∫
−∞

Txx
Gi

xx

E′
δp(χ)dχ (6.11)

For the particular case when there is no concentrated force, the material is only exposed to

the bulk stress, and T F=0
xx = T r

xx = σ, so (6.11) becomes:

δui(x, y) = −
σ

E′

∞∫
−∞

Gi
xxδp(χ)dχ (6.12)

The form for the stress variation due to the perturbed material is obtained by using (6.12)

put into the constitutive equation for an isotropic linear elastic material (for details see [16,

2Legendre’s transformation and Maxwell’s reciprocal
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77]):

δTi j(x, y) = −σ

∞∫
−∞

Ĝi jδp(χ)dχ (6.13)

Notice that in (6.13) Ĝi j is a tensor representing a kernel function which can be derived

from the Green’s function, Gi
xx, in the following manner:

Ĝi j =
1
E′

[µ(
∂Gi

xx

∂x j
+
∂G j

xx

∂xi
) +

2µνδi j

1 − 2ν
∂Gk

kk

∂xk
] (6.14)

Where, in this case, δi j is the Kronecker delta, and µ is the shear modulus.

Therefore, the Green’s function above can be used to find the kernel of Eq. (6.14), which

in turned can be used to find the contribution of the stress due to the perturbation. Finally,

this perturbation part of stress can be used to find the stress increased from the bulk stress,

according to part (a) of Eq. (6.1).

Extracting the Green’s functions Gi
i j from the point force solutions for a half-plane from

[78], Gao derived the kernel in (6.14), which after is substituted into (6.13), gives:

δTxx(x, y) = σ

∞∫
−∞

2
π(χ − x)2 δp(χ)dχ (6.15)

and (6.15) can be substituted into (6.1) with T r
i j = σ, to yield the following expression

which is applicable to a first-order accuracy:

Txx = Ti j = σ[1 +
2
π

∞∫
−∞

δp(χ)dχ
(χ − x)2 ] (6.16)

using The Cauchy’s Principal Value and our definition of δp(χ) = p(χ)−p(x), the tangential

stress component of (6.16) can be expressed as:

Txx = σ[1 +
2
π

PV

∞∫
−∞

( dp(χ)
dχ )dχ

(χ − x)
] (6.17)

We will use (6.17) in the next section in order to derive an analytical solution for the stress
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concentration factor at slightly randomly roughened surfaces for the 2-D case.

6.4 Solution to the Stress Concentration at Slightly Randomly Roughened Surfaces

The ratio of the tangential stress concentration distribution to the bulk stress—from

which the desired stress concentration factor will be obtained—can be expressed, from

(6.17), as:

kt =
Txx

σ
= [1 +

2
π

PV

∞∫
−∞

( dp(χ)
dχ )dχ

(χ − x)
] (6.18)

Furthermore, and for convenience, let km = kt − 1, which is the ratio of stress increased

locally to bulk stress, then:

km =
Txx − σ

σ
=

2
π

PV

∞∫
−∞

(dp(χ)
dχ )dχ

(χ − x)
(6.19)

We now apply the Hilbert transform(HT) to (6.19). The HT is defined as follows

[115]:

H f (t) = ˆf (t) = −
1
π

PV

∞∫
−∞

f (η)dη
η − t

=
1
π

PV

∞∫
−∞

f (η)dη
t − η

(6.20)

Which is a linear operator that, contrary to Fourier transform, does not change the domain

of the independent variable. At its core, the HT of a function f is a convolution of f with

the distribution d(t) = 1
πt , or:

ˆf (t) = ( f ∗ d)t =

∞∫
−∞

f (τ)d(t − τ)dτ (6.21)

Applying (6.20) to (6.19), one obtains:

km = 2H(−
dp(χ)

dχ
) = 2H[−p

′

(χ)] (6.22)

Where again, p represents a continuous, real-valued, random height having a having a
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Gaussian distribution with mean zero, by definition. We then make use of the following

property which indicates that the double application of HT leads to the negative of the

original function:

HH f = − f (6.23)

Applying HT on both sides of (6.22), and using (6.23), yields:

Hkm = 2[p
′

(χ)] (6.24)

Obviously equation (6.24) implies that, as expected, the stress concentration factor pos-

sesses a distribution related in some manner with the distribution of the slope of the per-

turbed height. We will pursue the RMS value of km. In order to do so, let’s square both

sides of (6.24) and integrate with proper limits:

lim
X→∞

1
X

X
2∫

− X
2

(Hkm)2dχ = lim
X→∞

1
X

X
2∫

− X
2

(2[p
′

(χ)])2 = 4 lim
X→∞

1
X

X
2∫

− X
2

([p
′

(χ)])2dχ (6.25)

Solving equation (6.25) follows next. We will first focus our development on the right

hand side of (6.25), and then explore the left hand side.

It was previously stated that our surfaces were assumed to be Gaussian, meaning that

heights are normally distributed. Thus, following [116] a relationship between the root-

mean-square slope, the ACL, and the root-mean-square roughness can be established.The

development that follows immediately is applicable to a 3-D surface, although afterwards

it will be applied to our particular 2-D case. This will be done using an exponential auto-

correlation function of the form:

f (x, y) = s2e−
x2+y2

ACL2 (6.26)
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Where s is the standard deviation. Equation (6.26) has the same form of the Gaussian

filter used for the generation of the random rough surfaces for the experimental part (see

chapter 5 and references [79, 82]) against which the theoretical results obtained here are to

be compared.

Let z be the surface height as a function of position along the surface. Furthermore, assume

that the surface maintains its properties infinitely. Then the root-mean-square slope, m2, is

defined as:

m2 = lim
X,Y→∞

1
X

1
Y

X
2∫

− X
2

Y
2∫

− Y
2

(
∂z
∂x

)2dxdy (6.27)

In (6.27), it has been assumed that both z2 and ( ∂z
∂x )2 are non-infinite everywhere on

the surface. Following [116] we convert (6.27) to a proper form for the application of the

Parseval relation, in order to derive the desired relationship for m2 in terms of RMS and

ACL, which involves the Fourier transform of (6.26).

We initiate our conversion by a change of variables as:

z∗ = z(x, y) × g(x) × h(y) (6.28)

Where g(x) and h(y) control the behavior of z∗ outside the regions x ∈ (−X/2, X/2) and

y ∈ (−Y/2,Y/2).

Now, consider an expression involving the new variable z∗ such that:

L = lim
X,Y→∞

1
X

1
Y

∞∫
−∞

∞∫
−∞

(
∂z∗

∂x
)2dxdy (6.29)

Where L is simply a dummy variable. (Notice the remarkable difference between (6.27)

and (6.29))

Applying the change of variable (6.28) to expression (6.29):
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L = lim
X,Y→∞

1
X

1
Y

∞∫
−∞

∞∫
−∞

h2(y)[(
∂z
∂x

)2g2(x) + 2z(
∂z
∂x

)g(x)
dg(x)

dx
+ z2(

dg(x)
dx

)2]dxdy (6.30)

Next, we define g(x) and h(y) in terms of an arbitrary small constant ε, X, and Y , such that:

g(x) =



( X
X+ε

)[( x
ε
) + ( X

2ε ) + 1], for − (X/2) − ε < x < −X/2

( X
X+ε

), for |x| < X/2

( X
X+ε

)[−( x
ε
) + ( X

2ε ) + 1], for (X/2) < x < X/2 + ε

0, elsewhere

(6.31)

and,

h(y) =


1, for |y| < Y/2

0, for |y| > Y/2
(6.32)

It can be verified that using (6.31) and (6.32) in (6.30), L becomes identical to (6.27), or:

m2 = lim
X,Y→∞

1
X

1
Y

∞∫
−∞

∞∫
−∞

(
∂z∗

∂x
)2dxdy (6.33)

Which by Parseval’s theorem becomes:

m2 = lim
X,Y→∞

1
X

1
Y

∞∫
−∞

∞∫
−∞

[F(
∂z∗

∂x
)(v,w)]2dvdw (6.34)

Where F indicates the Fourier transform. Additionally, by expanding z∗ = F−1[F(z∗)], it

can be extracted that:

F[(
∂z∗

∂x
)(v,w)] = 2πivF(z∗)(v,w) (6.35)

Substituting (6.35) into (6.34)
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m2 = lim
X,Y→∞

1
X

1
Y

(4π2)

∞∫
−∞

∞∫
−∞

v2[F(z∗)(v,w)]2dvdw (6.36)

Let’s analyze the integrand of (6.36). The term v2 yields both the second moment with

respect to v and the zeroth moment with respect to w. Additionally, the term [F(z∗)(v,w)]2

yields the Fourier transform of correlation of the modified random function z∗ with itself;

or, better said, the FT of the autocorrelation function of z∗—F[ACF(z∗)]. Thus, if we call

M2
v , the second moment with respect to v, and M0

w, the zeroth moment with respect to w,

then m2 can be expressed in terms of the F[ACF(z∗)], as:

m2 = (4π2)M2
v M0

wF[ACF(z∗)] (6.37)

Using the ACF given in (6.26), and substituting it in (6.37), it yields:

m2 = (4π2)

∞∫
−∞

∞∫
−∞

v2[s2π(ACL)2e−π
2(ACL)2(v2+w2)]dvdw (6.38)

Which after integration yields:

m2 = 2(
s

ACL
)2 (6.39)

The root-mean-square slope obtained in (6.39) is used in equation (6.25). By using the

RMS -roughness of the surface, instead of the standard deviation in (6.39), we get the fol-

lowing expression:

lim
X→∞

1
X

X
2∫

− X
2

(Hkm)2dχ = 8(
RMS
ACL

)2 (6.40)

Now we focus on the left hand side of equation (6.40). The following property that relates

the HT with FT is used:

(FH f )(ω) = −isgn(ω)(F f )(ω) (6.41)
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Which we apply to the left hand side of (6.40) and get:

lim
X→∞

1
X

X
2∫

− X
2

(Hkm)2dχ = lim
X→∞

1
X

X
2∫

− X
2

(F−1(−iS gn(ω)(Fkm)(ω)))2dχ (6.42)

Where S gn(ω) is the signum function:

S gn(ω) =



1, for ω > 0

0, for ω = 0

−1, for ω < 0

(6.43)

And F−1 stands for the Inverse Fourier Transform. In order to apply energy conservation

principles to (6.42) integration must be modified to the interval (−∞,∞). Here we make

two reasonable assumptions: that the roughened area (RA) −X/2, X/2 is finite, and that the

integrand in (6.42) vanishes everywhere outside RA. With that said, we now notice that

(6.41) implies that there is a shift change of −90 deg to every positive frequency, and a shift

of 90 deg to every negative frequency. The total effects of those shifts raised to the power

of two in the interval (−∞,∞) cancels out. This also agrees with the Titchmarsh formulas

of the Parseval type [117]. Therefore, (6.42) can be expressed as:

lim
X→∞

1
X

X
2∫

− X
2

(F−1(−iS gn(ω)(Fkm)(ω)))2dχ = lim
X→∞

1
X

X
2∫

− X
2

(km)2dχ (6.44)

And noticing that the left hand side of (6.44) is simply the definition of the squared of the

RMS value, we get:

lim
X→∞

1
X

X
2∫

− X
2

(km)2dχ = (kRMS
m )2 (6.45)
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Fig. 81. Three-dimensional plot of stress concentration factor, RMS and ACL based on the
derived equation (6.46)

Now, we can couple this result with the left hand side of equation (6.40) and get:

kRMS
t = 1 + 2

√
2

RMS
ACL

(6.46)

Recalling that km + 1 = kt. This completes our derivation.

6.5 Comparison with experimental results

The RMS stress concentration factor equation (6.46) shows some interesting results

which explain the experimental results presented in chapter 5 as well as those reported in

[82], which will be discussed in this section. Since equation (6.46) was derived for condi-

tions such that RMS/ACL � 1, then kRMS
t is expected to be relatively low. For example,

RMS/ACL = 0.2 would signify a kRMS
t = 1.57; while for RMS/ACL = 0.1, kRMS

t = 1.28.

In chapter 5 it was presented that profile’s RMS-roughness values were produced in the

range of about 5 − 16 µ meters, and the autocorrelation length was varied from 10 − 90 µ

meters. Figure 81 shows a 3-dimensional plot based on the formula of (6.46). As it is

shown, kt does not change significantly which means that the stress at fracture of a slightly
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roughened surface—with the previously prescribed conditions—would not significantly

differ from that of a nominally flat specimen. Figure 82 shows a plot, from experimental

tests, of stress at fracture ratio (ratio of stress at fracture of a roughened surface to that of a

nominally flat one) versus strain at fracture ratio. As it can be observed, the stress at frac-

ture does not vary significantly which corroborates what is predicted by equation (6.46).

Additionally, kt − 1 shows an inverse proportionality to ACL. Figure 83 shows plots of

the Pearson’s correlation between the fracture location probability—the probability that

fracture will occur at certain profile perpendicular to the load—and the factor kRMS
t as the

system goes from an engineering surface (characterized by having no peaks) to a surface

whose heights are normally distributed (a.k.a., Gaussian surface). Note in Figure 83 the two

values of ACL = 10, 90. As predicted by equation (6.46), it takes much more roughness to

weaken the profile that possesses larger ACL values. This is evident by noticing that despite

both conditions (ACL = 10 and 90) reaching Gaussian distribution as the level of degra-

dation (D) increases[82], yet, in the case of ACL = 90, kt is too small—as predicted by

(6.46)—to weaken the material at the profiles, thus keeping the process somewhat stochas-

tic still.

Additionally, comparing to Gao’s result for periodic sinusoidal slight surfaces[16], it is

observed that for random rough profiles—having heights normally distributed—tend to

relax much more than the former. For example, a sinusoidal profile with amplitude-to-

wavelength ratio equal to the ratio RMS/ACL will result in a much higher stress concen-

tration than for the random profile case. If RMS/ACL = A/λ = 0.1, for instance, then

kRMS
t = 2.26, for the periodic case, but only kRMS

t = 1.28, for the random situation.

6.6 Modified Inglis Formula: Generalization of Inglis’ result

Equation (6.46) is similar in form to Inglis’ formula (IF) of the stress concentration

factor. The same can be noticed for, at least, the various geometrical configurations re-
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Fig. 82. Plot of flexural stress ratio vs. flexural strain ratio. It shows that stress does not
decrease considerably in between the different levels of early degradation studied.
The legend on the left hand side is to be read as: ”Unablated” means a flat surface;
”D = 0” means RMS =8.1 micrometers; ”D = 15” means RMS = 10.2; ”D = 30”
means RMS = 12.5 micrometers; and, ”D = 45” means RMS = 15 micrometers.

Fig. 83. Plot of Pearson’s correlation factor of fracture density versus roughness, as the
surface progresses to Gaussian. ACL = 10 and 90
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viewed in chapter 2. This leads us to a generalization of the IF into a proposed Modified

Inglis Formula (MIF) as a unified way of estimating the stress concentration factor (S CFn)

for a variety of notch configurations. The MIF can be written as:

S CFn = 1 + G
A
B

(6.47)

Where G is a function of the geometry in question. Table 3 shows the value of G

for different configurations that range from a single-notch to periodic notches, sinusoidal

surfaces, and even random rough surfaces—with normally distributed heights and isotrop-

ically autocorrelated.

Table 3. Values of G from the modified Inglis Formula, for different Loading and geometri-
cal configurations. T=Tensile, B=Bending, S=Shear.

Case G Geometrical and Loading Config.

I 2 U-notch (T & B)

Elliptical-notch (T & B)

semi-circular notch (T & B)

Very shallow single-notch (T & B)

II λ
πa tanh( 2πa

λ
) Discrete,Periodic-notch (T)

III 2λ
3πa tanh( 3πa

λ
) Discrete, periodic-notch (S)

III 4π 2-D Sinusoidal surface (T)

IV 2
√

2(1 + ν)π 3-D Sinusoidal surface (T)

V 2
√

2 Random Gaussian surface (T)
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Table 4. Values of A and B from the modified Inglis Formula, for different geometrical
configurations

Case A B

I notch depth notch width

II any notch depth any notch width

III any notch depth any notch width

III wave amplitude wavelength

IV wave amplitude wavelength

V RMS roughness Auto-correlation length

6.7 Discussion

Equation (6.47) in combination with Tables 3 and 4 can be used to either exactly

or approximately find the respective SCF. Note that for the case of a sinusoidal surface,

the MIF provides the maximum SCF located at the troughs of the wave. For the case

of the random Gaussian surface, the formula gives the root-mean-squared SCF. The latter

provides a ”feeling” of how the stress is distributed along the surface—or profile. An actual

distribution density of the SCF is currently under study by the author.

The MIF, although simple in form, shows some remarkable facts: the form of Inglis’s result

can be used to:

1. Predict the SCF due to a single half-elliptical or semi-circular notch, for shallow

notches.

2. Approximate accurately the SCF due to a single U-notch, or most shallow notches.

3. Approximate the maximum SCF at the troughs of a sinusoidal surface.
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4. Provide the root-mean-square SCF at the slightly roughened surfaces, provided that

the heights of the surface are normally distributed and that the surface is isotropically

auto-correlated.

However, the MIF have several limitations in terms of geometrical and loading con-

figurations. For example, it has not been proved to apply to V-notch situations for which

the opening angle is obtuse, or where the depth of the notch is not shallow. Additionally,

the loading conditions are limited to mostly tensile or bending.

Another aspect worth mentioning is that, based on the values from Table 3, the geometrical

function G apparently can be a constant, a function of geometry or of material properties.

For finite-thickness or plane-strain conditions, one would expect G to be always a func-

tion of both geometry and material properties. Finally, further studies are recommended to

strengthen confidence in the use of the MIF.
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CHAPTER 7

FINITE ELEMENT SIMULATIONS

This chapter covers finite element analysis of some of the experimental work, mostly that

part that coincides with the analytical study presented in chapter 6. The idea is to compare

the three results whenever possible.

7.1 Building Model

In order to build up a geometrical model, we use the surfaces produced with the tech-

nique described in chapter 4. For clarity, we rewrite below the surface-producing array:

Fsur f ace =
2

√
π · N · ACL

L ·
1
N

N−1∑
k=0

[DFT (z) · DFT (g)]e
i2πkn

N (7.1)

where:

N = number of grids along each axis;

ACL = auto correlation length;

L = (in this application) same as N;

DFT = Discrete Fourier Transforms, such that in equation (7.1), the two respective expres-

sions can be written as:

DFT (z) =

N∑
k=0

z(n) · e−
i2πkn

N (7.2)

and similarly,

DFT (g) =

N∑
k=0

g(n) · e−
i2πkn

N (7.3)

Thus, surfaces produced by (7.1) were converted into xyz-format files and imported into

commercially available finite element code COMSOL R©. Since arrays produced by (7.1)
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had constant dimensions of 600 × 600, then the xyz-files contained three columns of

360, 000 depth (z)values. Importation of those files was carried out using an interpola-

tion function, which takes discrete points and interpolates as many points as necessary in

order to create a smooth surface. Due to the very highly dense imported data points, linear

interpolation was sufficient. Figure 84 shows four different perspectives of the same sur-

face after importation and interpolation was carried out. Note that there is an extra edge

added on two sides of the surfaces for reasons which will be later explained. Not including

that extra edge, all surfaces are 12.7mm × 12.7mm in the xy-dimensions; This is meant to

model the real surfaces on PMMA with identical dimensions. After interpolation, surfaces

Fig. 84. Four perspective views of a surface imported into and plotted in COMSOL

were parametrized. A parametric surface is a surface in 3D where two parameters (s1, s2)
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only are used to define the coordinates of the surface. In our case, x = s1, y = s2 and

z = interpolation(s1, s2). Afterwards, a solid block was created such that the bottom part

of it was sufficiently below the deepest pit of the surface (at least 50µm below it). That state

of affairs is shown in figure 85. Notice that the surface, although difficult to distinguish,

coincides with the internal curve observed on the block. After this, the whole material was

converted to a solid using the convert to solid feature.

Fig. 85. Solid block that includes the parametrized surface. Note that the surface is near the
bottom of the block.

Using a boolean operator (delete entities), the upper part of the block was subtracted

from the entire solid, thus leaving a surface with a substrate underneath it. Finally, form

union was used to convert remainder into a single entity.

7.2 Material Selection

Experimental work was carried out using PMMA with properties as given in table

5. This same properties were incorporated in our finite element model. Our material is
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assumed to be elastic, isotropic and homogenous; therefore, besides density, ρ, our model

is completely defined material-wise with only two properties, namely, modulus of elasticity

(E) and Poisson’s ratio (ν). From the materials library in COMSOL, we selected acrylic

and put in the properties shown in table 5.

Table 5. Properties of PMMA used in the present study

Property Value Units

Density 1160 Kg/m3

Modulus of elasticity 3.0 GPa

Poisson’s ratio 0.38 dimensionless

7.3 Physics and Meshing

Under the Structural Mechanics branch and the Solid Mechanics interface, linear elas-

tic material model was chosen. This is actually corroborated by the experimental work

(recall linear elastic behavior shown in figure 13 in chapter 3). Therefore, the governing

equations of generalized linear elasticity apply.

Our end goal here is to corroborate our experimental and analytical knowledge on the stress

concentration due to random rough surfaces. To accomplish this, we apply a tensile load on

thin films containing such surfaces. How much does this compare to the experiments? In

the experimental part of this work, flexural tests were carried out. The goal of these types

of tests is to reveal the impact that the surface has on the entire structure. In a flexural test,

the upper outer fibers of the specimen are under compression, while the lower outer fibers

are under tension. Now, let us imagine that one removes a central section of the flexural

specimen at the lower outer side, as depicted in figure 86 . This piece can be thought of as
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a small film with a rough surface being subjected to a tensional load, T . The magnitude of

this T is irrelevant since we are mostly concern about finding the stress concentration on

the surface. Thus, our model can be very well approximated using a thin film possessing

Fig. 86. In a three-point flexural test, the lower outer rough surface can be viewed as a film
under tension

a random rough surface on one of its two sides and being subjected to a constant tensional

load, as shown in figure 87

Fig. 87. A film with a rough surface subjected to a tensile load

So, boundary loads were applied to both lateral sides of the film. A free-track condi-

tion was applied on the rough side. Perhaps, the most challenging part of this model is how

to agree on the boundary condition right below the film of figure 87. After trial an error
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runs, the closest approximation found was that of a roller. Therefore, our final model is that

shown in figure 88.

Fig. 88. Model of our surfaces, loading and boundary conditions for finite element analy-
sis. The roller condition implies no motion in the direction normal to the plane of
material. The free-traction condition is implied to be normal to the random surface.

The main justification of using the model depicted in figure 88 as opposed to the

complete D790 specimen has to do with mesh limitations. Since the level of degradation is

very small in comparison to the overall dimensions of the specimen, even very fine mesh

does not deliver acceptable results. However, model of figure 88 offers reasonable outputs

even at fine mesh level. Nonetheless, because of the random variation of surface features, a

physics-controlled mesh (PCM) was selected. When PCM is selected, COMSOL examines

the physics and automatically calculates size attributes and sequences operations needed to

create a mesh adapted to the situation [118]. Across all models, there was an estimated

average of 75, 000 mesh elements. This number is justified based on convergence plots

which are shown in a later section. The elements were tetrahedral Lagrangian.

7.4 Depth Surface Plots

Surface plots were produced in COMSOL for several ACL and levels of roughness. A

set of four plots corresponding to ACL = 45 and RMS=8.1, 10.2, 12.5 and 15 micrometers,

are shown in figures 89 through 92, respectively. Notice that because of linear growth, it is

assumed that all pits grow at the same rate. In the surface of figure 89, for example, it can
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be observed that the maximum pit depth is around 36 micrometers, while in the one shown

in figure 92 it is around 46 micrometers. Either of these maximum pits on the surface of an

elastic, homogeneous material, possessing the mechanical properties of PMMA—as shown

in table 5—would be enough to cause fracture at that location in a deterministic manner, in

a single-pit configuration, under plane-stress conditions.

Fig. 89. FEA’s surface plot for ACL = 45 and RMS = 8.1 micrometers. The maximum pit
depth was around 36.4 micrometers.

7.5 Stress Concentration Surface Plots

The boundary conditions, boundary loads, and constraints described in the previous

sections were applied to the model shown in figure 88. Surface plots for local stress con-

centration factor(LSCF) distribution were obtained. Calculation of LSCF were based on

the von Mises stress criterion. Based on knowledge learned from the experimental work, it

is assumed that the material is linear elastic. The LSCF are obtained as follows:

LS CF =
σvm

local

σremote
(7.4)
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Fig. 90. FEA’s surface plot for ACL = 45 and RMS = 10.2 micrometers. The maximum pit
depth was around 39.6 micrometers.

Fig. 91. FEA’s surface plot for ACL = 45 and RMS = 12.5 micrometers. The maximum pit
depth was around 43.1 micrometers.
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Fig. 92. FEA’s surface plot for ACL = 45 and RMS = 15 micrometers. The maximum pit
depth was around 46.1 micrometers.

where: σvm
local = Local stress based on Von Mises, and;

σremote = Stress applied at a remote location

It is well known that σvm
local is one the most widely accepted stress criteria for ductile

materials and can be obtained from the principal stresses as:

σvm
local =

1
√

2

√
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2 (7.5)

where σ1, σ2, and σ3 are the principal stresses at each local parcel on the surface. Granted,

Von Mises stresses given by equation (7.5) traditionally are applied to yielding of ductile

materials, but it can be applied to fracture of brittle materials when the state of stress is such

that the second and third principal stresses are negligible. In our case, the latter applies.

Values of the maximum principal stresses were found to be considerably much higher than

the other two. For example, figures 93 and 94 contain one contour plot each for the same
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surface roughness and ACL. For both simulations, the remote applied load was 1000 Pa.

In the first, figure 93, the stresses were obtained based on the maximum principal stress;

for the other contour plot (figure 94), the stresses were found using Von Mises (equation

(7.5)). It was found that the difference at any location does not exceed 1.5%. In any case,

the interest here is to find the distribution of the local stress concentration factors on the

surface, thus as long as consistency is maintained, any of the two routes leads to our goal,

and we have selected the Von Mises approach.

Fig. 93. Contour plot of stress distribution on the surface having ACL = 45 and RMS = 15
micrometers, using the maximum principal stress. Values are in Pa. The boundary
load applied was 1,000 Pa

Figures 95, 96, 97, and 98 show contour plots of LSCF versus depth of pit for ACL=45

and various values of RMS. Note that the maximum stress concentration(kmax
t ) for each

plot. For RMS= 8.1 micrometers, kmax
t was found to be around 1.28 and for RMS=15

micrometers, kmax
t =1.53. This range of values are in the neighborhood of those observed

experimentally.
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Fig. 94. Contour plot of stress distribution on the surface having ACL = 45 and RMS = 15
micrometers, using Von Mises stress. Values are in Pa. The boundary load applied
was 1,000 Pa

7.6 Stress Concentration 2-D Plots

Using the data from surface plots, 2-D graphs were also produced in order to visualize

the general trend of the LSCF on the surface. These plots were obtained as follows. From

finite element analysis stress distribution based on Von Mises were obtained and the local

stress concentration was computed using equation (7.4)). Data were exported using the

export plot feature in COMSOL to text files. These files were then processed and plots

obtained. Figures 99–102 show plots of LSCF versus depth of pit for ACL=45 at various

RMS. A few observations can be concluded from these plots. First of all, as traditionally

known, local stress concentration factor increases quasi-linearly with pit depth. However, a

rather unexpected phenomenon is observed for the plot corresponding to RMS=15 microns,

figure 102. Beyond pits of around 35 micrometers of depth, there is dual behavior of the

stress concentration factor for the same value of pit depth. This implies that for after some

critical degradation level, a surface can contain deep pits with low stress concentration as
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Fig. 95. FEA’s contour plot of the stress concentration on a surface having ACL = 45 and
RMS = 8.1 micrometers. Stress is based on Von Mises. Boundary load applied in
tension was 1 KPa.
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Fig. 96. FEA’s contour plot of the stress concentration on a surface having ACL = 45 and
RMS = 10.2 micrometers. Stress is based on Von Mises. Boundary load applied in
tension was 1 KPa.
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Fig. 97. FEA’s contour plot of the stress concentration on a surface having ACL = 45 and
RMS = 12.5 micrometers. Stress is based on Von Mises. Boundary load applied in
tension was 1 KPa.
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Fig. 98. FEA’s contour plot of the stress concentration on a surface having ACL = 45 and
RMS = 15 micrometers. Stress is based on Von Mises. Boundary load applied in
tension was 1 KPa.
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well as with high stress concentration. In other words, not all deep pits concentrate stress

as much. In fact, there seems to be similar values of the stress concentration for deep and

shallow pits for the particular case of the surface having ACL=45 and RMS=15, as shown

in figure 102.

Fig. 99. Plot of local stress concentration factor on a surface vs. local depth. ACL = 45,
RMS = 8.1 micrometers.

7.7 Convergence Plots

Convergence of solutions was sought using the so called H-method. This method uses

simple shape functions while varying the number of mesh elements. Based on a reference

(previously expected) value of a given parameter, the number of elements is increased from

run to run until there is a clear convergence towards the reference value; that is, until there

is very little change in the value from a run to another.

Using the aforementioned method and the maximum stress concentration factor as the ref-

erence parameter, convergence was achieved in our FEA. This state of affairs is shown in

the plot of figure 103.
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Fig. 100. Plot of local stress concentration factor on a surface vs. local depth. ACL = 45,
RMS = 10.2 micrometers.

Fig. 101. Plot of local stress concentration factor on a surface vs. local depth. ACL = 45,
RMS = 12.5 micrometers.
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Fig. 102. Plot of local stress concentration factor on a surface vs. local depth. ACL =

45, RMS = 15 micrometers. Note the double trend at pits deeper than about 35
micrometers

Fig. 103. Convergence plot using the stress concentration factor as the reference parame-
ter. As it can be observed after 50,000 tetrahedral elements the maximum stress
concentration factor clearly converges to around 1.4, for a particular surface.
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7.8 Comparison with Experimental and Analytical Results

A logical step to take is to compare the present results for the SCF found via FEA

against the values obtained from both experimental and analytical means. Figure 104 shows

a comparison of the stress at fracture based on experimental versus FEA results. As one

can verily notice the results agree very well. The values of the stress at fracture for FEA,

σFEA were calculated using the following relationship:

σFEA =
σ f lat

kMAX
FEA

(7.6)

where σ f lat = stress at fracture for a nominally flat specimen, and kMAX
FEA is the maximum

stress concentration based on Von Mises from FEA.

Fig. 104. Plot showing a comparison of some experimental values against Finite Element
Analysis

Additionally, figure 105 shows a comparative plot similar to that figure 104 but in-

cluding values obtained from the analytical solution derived in chapter 6. The theoretical
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stress at fracture was calculated via the following relationship that counts on the theoretical

stress concentration factor derived before:

σtheory =
σ f lat

ktheory
=

σ f lat

1 + 2
√

2RMS
ACL

(7.7)

Fig. 105. Plot showing a comparison of some experimental values against Finite Element
Analysis

7.9 Discussion and Conclusion of FEA

Finite element analysis has been carried out in order to bring in other means of under-

standing and corroborating our experimental and analytical work. The model considered

assumes that a small strip is taken off from the outer fibers in tension from a three-point

flexural test. Under the strip a roller condition was applied and the rough surface was

considered free of tractions. Isotropic, elastic, homogeneous conditions were assumed.

• Contour plots of distribution of local stress concentration factors based on Von Mises

stress were developed for several surfaces.
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• The values of the maximum stress concentration factor was found to be very similar

to that found from the experimental work.

• Comparison of stress at fracture for experimental work against FEA results show

strong agreement.

• Comparison of FEA stress at fracture against its theoretical counterpart, show ini-

tially some agreement for small RMS but deviation was observed for higher values

of RMS.

• Convergence was obtained via the H-method and using the maximum stress concen-

tration factor (or similarly the maximum Von Mises from the stress distribution).
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Mechanics Reviews. Accepted May 2014.

• Medina, H., and Hinderliter, B., Use of Poly Methyl (Methacrylate) in the Study

of Fracture of Randomly Damaged Surfaces: I. Experimental Approach. Polymer

(2012), Vol. 53, pp. 4525-4532.

• Medina, Hector, and Hinderliter Brian, Method for Generating and Realizing Repli-

cates of Randomly Roughened Surfaces, Tested on Poly Methyl (Methacrylate), Ex-

perimental Techniques (2013), Wiley.

• Medina, H. and Hinderliter, B., Stress, Strain, and Energy at Fracture of Degraded

Surfaces: Study of Replicates of Rough Surfaces . J. Eng. Gas Turbines Power

(2013).

• Medina, Hector, and Hinderliter, Brian, Where do Random Rough Surfaces Fail?

Part I: Fracture Loci Safety Envelopes at Early Stages of Degradation. Journal of

Energy and Power Engineering 7 (2013) pp. 907-916.
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Peer-Reviewed Proceedings Papers

• Medina, H., and Hinderliter, B., Generation and Mechanical Analysis of Repeatable

Random Rough Surfaces, Proceedings of the ASMEs ICONE20POWER 2012 Inter-

national Conference, held in Anaheim, CA.

• Medina, H., and Hinderliter, B., Stress, Strain and Energy at Fracture of Degraded

Surfaces. Proceedings of ASMEs ICONE21 International Conference 2013, held in

Chengdu, China.
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Program. Proceedings of ASMEs ICONE21 International Conference 2013, held in

Chengdu, China.

163



Appendix B

PSEUDO CODE USED TO DEVELOP DIGITAL SURFACES

Declare: All variables

x = linspace(−rL/2, rL/2,N);

y = linspace(−rL/2, rL/2,N);

[X,Y] = meshgrid(x, y);

Z = h. ∗ randn(N,N);

F = exp(−((X.2 + Y.2)/(clx2/2)));

fBergstrom = 2/
√

(π)*rL/N/clx*ifft2(fft2(Z).*fft2(F));

Arraymain=fBergstrom;

Begin loop A for j=0 to number of surfaces, increased by 1

f Bergstrom( j) = f Bergstrom + j ∗ steps;

End loop A

Begin loop B for i=0 to 45, increasing i by steps

Array1 = ( f Bergstrom > 0). ∗ f Bergstrom;

Arrayi = (( f Bergstrom + i) > 0). ∗ ( f Bergstrom + 1);

End loop B
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Appendix C

ON THE HILBERT TRANSFORM

This appendix contains a definition, properties and some well known solutions of the

Hilbert Transform (HT). For more details one could refereed to specialized literature such

as [115, 119].

C.1 Definition

In its most elementary form, the HT of a function, f (η), is defined as the convolution

between f and the distribution 1/t, or:

H f (t) = ˆf (t) = −PV

∞∫
−∞

f (η)dη
η − t

= PV

∞∫
−∞

f (η)dη
t − η

(C.1)

Which is a linear operator that, contrary to Fourier transform, does not change the domain

of the independent variable. Traditionally for convenience a factor of 1/π is prefixed, and

thus equation (C.1) can be rewritten as:

H f (t) = ˆf (t) = −
1
π

PV

∞∫
−∞

f (η)dη
η − t

=
1
π

PV

∞∫
−∞

f (η)dη
t − η

(C.2)

In both (C.1) and (C.2) PV stands for Cauchy’s Principal Value and therefore the

integral is to be evaluated in such a sense.
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C.2 Properties

C.2.1 Inverse

The inverse HT of a function g, H−1, is defined as:

H
−1g = −HHg (C.3)

So the inverse HT, or the negative of the double application of the HT returns the original

function.

C.2.2 Complex Conjugation Property

The HT operator commutes with complex conjugation:

(H f ∗) = (H f )∗ (C.4)

where * denotes the complex conjugate operation

C.2.3 Linearity

The HT operator is linear. For constants γ and κ which are allowed to be complex, and

functions f and g, linearity implies that:

H f [γ f (x) + κg(x)] = γH f (x) + κHg(x) (C.5)

C.2.4 Hilbert Transform of Derivative

The HT of the derivative of a function is the derivative of the HT of the function, or:

H[
dn f (x)

xn ] =
dn

xnH( f (x)) (C.6)
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C.2.5 Hilbert Transform and Fourier Transform Connection

The HT and the Fourier Transform (FT) are related through the following formula:

FH f (x) = −iS gnxF f (x) (C.7)

where F denotes the FT;

i =
√

(−1), that is, the imaginary i;

S gn is the Signum function such that:

S gn(x) =



1, for x > 0

0, for x = 0

−1, for x < 0

(C.8)

C.3 Selected Functions and their Hilbert Transforms

Table 6. Selected pair of functions and their respective HT

Function HT

sin(πx) − cos(πx)

cos(πx) sin(πx)

sin2(πx) −1
2 sin(2πx)

x+a
(x+a)2+b2 , b > 0 − b

(x+a)2+b2

eiax −iS ign(a)eiax
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