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Abstract 

 

MODELING ACUTE CHANGES IN BLADDER WALL 

TENSION, SHAPE AND COMPLIANCE DURING 

FILLING 

 

by FIRDAWEKE GORAW HABTEYES 

 

A thesis submitted in partial fulfillment of the requirements for the degree of 

Master of Science at Virginia Commonwealth University. 

 

Virginia Commonwealth University, Richmond, Virginia, 2014 

 

Director: John E. Speich, Ph.D 

Associate Professor and Associate Chair, Department of Mechanical and Nuclear Engineering 

 

The bladder wall consists primarily of detrusor smooth muscle. Tension-sensitive nerves in the 

bladder wall are responsible for providing bladder fullness information that is interpreted as 

urgency. Bladder wall tension, and therefore nerve output, is a function of bladder volume, shape 

and material properties. Studies have shown that the bladder wall exhibits acutely regulated 

detrusor compliance. In addition, bladder shape throughout filling depends on intra-abdominal 

forces and material properties of the bladder wall, such as regulated detrusor compliance. This 

thesis focused on modeling the potential influence of acute changes in bladder compliance, shape 

and bladder wall tension during filling. Laplace’s Law was used to demonstrate how wall tension 

can vary significantly with geometry in a vessel with uniform internal pressure and constant 

volume. A finite deformation model of the bladder was previously used to show that wall tension 

can increase significantly during filling with relatively little pressure change. In this thesis, 

published experimental data were used to determine ranges for regulated detrusor compliance, 

and the finite deformation model was expanded to illustrate the potential effects of regulated 

 



xi 
 

 
 

detrusor compliance on filling pressure and wall tension. Also, a geometric model was used to 

demonstrate that constraining a perfectly spherical bladder to fill as an oblate sphere increases 

wall tension, and therefore should increase nerve output, for a given volume. In addition, a 

spheroidal model consisting of three orthogonal circular rings was developed to predict the 

increase in pressure and wall tension associated with deforming a spherical bladder into an oblate 

spheroid. Together, these models demonstrate that defects in regulated detrusor compliance 

and/or acute or chronic changes in bladder shape due to changes in compliance or intra-

abdominal forces could contribute to changes in wall tension for a given volume that could lead 

to urgency.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

1 
 

Chapter One: Introduction and background 

1.1. Motivation 

Overactive bladder (OAB) is a symptom syndrome identified as elevated urinary urgency 

usually with increased daytime voiding frequency and nocturia (waking to voiding) in the 

absence of identifiable causes (Abrams & Wein, 2000). The prevalence of OAB in the US adult 

population is estimated at nearly 20% (Hashim & Abrams, 2007).  OAB can result from bladder 

muscles that do not relax correctly during filling, and increased spontaneous muscle activity can 

cause an increased urgency ( Abrams et al., 2002).  OAB has a significant impact on the quality 

of life, such as restrictions or difficulties when it comes to travel and physical or athletic 

activities. Studies indicate that people with OAB have to void their urine more than eight times 

in a 24 hours period, and often have an urgent need to urinate that may cause them to rush to the 

toilet (Abrams et al., 2002).  Due to the seriousness of this problem, it is important to investigate 

the root causes of OAB. 

 Clinical urodynamic studies are currently used to diagnose OAB by measuring pressure during 

bladder filling (Ockrim et al., 2005).  There is a generally a small change in pressure during 

bladder filling (Frenkl et al., 2011; Watanabe, Akiyama, Saito, & Oki, 1981), however the 

change in wall tension is expected to be significant. Tension-sensitive nerves in the bladder wall 

are responsible for providing bladder fullness information that is interpreted as urgency (Kanai & 

Andersson, 2013). Therefore, wall tension during filling may give better information regarding 

urgency than pressure. Bladder wall tension, and therefore nerve output, is a function of bladder 

volume, shape and material properties. The overall objective of this study is to model bladder 

wall tension and stress during filling. This may provide valuable information for the study and 

diagnosis of OAB, including improved diagnostic methods or drugs used to treat OAB which 

target bladder smooth muscle. 

The following sections give important background information about the function of the urinary 

bladder, bladder wall tension and pressure, smooth muscle structure and mechanics, regulated 

bladder compliance and bladder shape. The chapter concludes with a presentation of the thesis 

objectives.   
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1.2. Function of the bladder  

The human urinary bladder is a hollow, distensible (or elastic), muscular organ positioned near 

the pelvic floor. The main function of the bladder is to collect urine excreted by the kidneys 

before disposal by urination. Urine enters the bladder by way of the ureters and exits through the 

urethra. Anatomically, the bladder is divided into three parts: the apex, the body and the fundus. 

The fundus consists of the trigone and the neck (Fig. 1.1) and is imbedded in the musculofibrous 

tissue in females and in the prostate in males and is intimately attached to the internal urinary 

sphincter through the neck (Miftahof & Nam, 2013). The neck is the funnel-shaped extension of 

the body (Miftahof & Nam, 2013).   

 

Fig. 1.1 Anatomical divisions of the human urinary bladder (Reproduced and modified from seek 

wellness, Urinary bladder and kidneys – how they works, by Newman, January 2002, retrieved 

from http://www.seekwellness.com). 

1.3. Bladder wall tension and pressure 

Clinical urodynamic testes quantify the pressure-volume relationships during filling, but do not 

measure bladder wall tension. These tests are used to assess detrusor activity, sensation, capacity, 

and compliance. Urodynamics (or cystometry) includes  the study urine flow in the bladder, the 

urinary sphincter, and the urethra (Miftahof & Nam, 2013). Rose first studied and reported the 

cystometric technique in 1927 (Rose, 1927) and it has been extensively used since then for both 

Trigone 

 

http://www.seekwellness.com/
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research and clinical purposes. Today, urodynamic investigations remain “the gold standard” 

(Miftahof & Nam, 2013), and researchers conduct a series of tests which employ the real time 

monitoring of changes in abdominal pressure (Pabd), vessel pressure (Pves),  and bladder capacity 

during the filling phase of the bladder  (Andersson & Arner, 2004). Cumulative bladder capacity 

and detrusor pressure (Pdet = Pabd - Pves) are calculated using the data acquired from a urethral 

catheter with a pressure transducer and a rectal pressure transducer (Miftahof & Nam, 2013). 

These calculations provide valuable quantitative information about the overall behavior of the 

bladder, and are employed in the evaluation of the functionality of the bladder.  

 

 

Fig. 1.2 A 48 year’s old female normal human bladder filling Cytometery. FD (first desire to 

void); ND (normal desire to void); SD (strong desire to void); U (urgency); CC (cystometric 

capacity or permission to void given) (Reproduced from Bladder Urogynaecology Prolapse, 

Bladder filling cytometery, by Bernard T. Haylen, 2014, retrieved from 

http://www.bladder.com/glossary). 

From the Fig. 1.2 above the detrusor pressure is relatively constant or low throughout the filling 

regardless of the volume. The filling detrusor pressure increase does not usually exceed 5—10 

 

http://www.bladder.com/glossary
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cm-H2O (Frenkl et al., 2011) due to the viscoelastic properties of the bladder. Pdet remains low 

until the voluntary voiding phase as in Fig. 1.2. Rises in Pdet may be caused by involuntary 

detrusor contractions coughing, sneezing and/or impaired compliance.  

Tension-sensitive nerves in the bladder wall provide fullness information that is interpreted as 

urgency (Kanai & Andersson, 2013). Bladder wall tension, and therefore nerve output, is a 

function of bladder volume, wall compliance and shape. Clinical urodynamics studies are used to 

quantify the pressure-volume relationship throughout filling with a catheter and the overall 

bladder compliance (Δvolume/Δpressure) for a particular fill (Mahfouz et al., 2012); however, 

these studies often reveal only small increases in filling phase pressures (Frenkl et al., 2011) in 

patients with or without heightened urgency. These standard pressure measurements do not 

necessarily reflect the underlying wall tension, which may correlate better with urgency.  

The bladder wall undergoes large changes in extension during normal filling and emptying 

(Andersson & Arner, 2004). The increase of stress due to the stiff collagen fibers cause a small 

increase in pressure resulting during cystometry. These collagen fibers are kinked and coiled 

when the bladder is relaxed and begin to stretch during filling (Korkmaz & Rogg, 2007). Isolated 

strips of the bladder wall can be examined in vitro to determine the relation between length and 

wall tension. These data for the relation between length and force can be converted to volume 

and pressure data using the law of Laplace and assuming a model for the bladder shape and for 

how the wall stretch is distributed in the bladder wall. An assumption of spherical bladder shape, 

with an incompressible wall and isometric homogenous stretch, can give a good description of 

the bladder mechanics during filling (Andersson & Arner, 2004).  

 The first objective of this thesis is to use relatively simple physical and mathematical models to 

demonstrate that wall tension and stress (tension/cross-sectional area) can vary significantly with 

geometry in a vessel with uniform internal pressure. This will provide motivation for the 

investigation of a potential correlation between bladder wall stress parameters and patient-

reported fullness sensations throughout bladder filling. 



 
 

5 
 

1.4. Bladder smooth muscle  

Muscles are the contractile tissues of the body. They relax and contract to generate force for a 

particular movement. There are three types of muscles; skeletal, cardiac, and smooth muscle. 

Skeletal muscle is voluntary muscle mounted to the bone which supports skeletal movement 

during locomotion and in maintaining posture.  Cardiac muscle is involuntary muscle found only 

in the heart. Like cardiac muscle, smooth muscle is involuntary muscle. Smooth muscle is non-

striated muscle located in the walls of hollow structures and organs such as urinary bladder, 

esophagus, stomach, and uterus. Smooth muscle cells are not striated, which means the 

myofibrils are not arranged in easily distinguished sarcomeres. Smooth muscle in the urinary 

bladder is called detrusor smooth muscle (DSM).   

Smooth muscle tissues are small and tapered-with the ends reducing in size, in contrast with the 

cylindrical shape of skeletal muscle. Each smooth muscle tissue has a single centrally located 

nucleus. The cells range in size from 5 to 10 µm in diameter in the center of the cell and from 

300 to 600 µm in length (Miftahof & Nam, 2013). A substantial portion of the volume of the 

cytoplasm of smooth muscle cell is taken up by the molecules myosin and actin. Myosin is a 

motor protein and actin is either a globular or filamentous protein. The filamentous actin 

interacts with myosin (Schwartz & Mecham, 1995). Myosin lever arms pull on actin filaments to 

shorten the muscle cells and contract the tissue. 

The process of muscle shortening can be explained in the following stages: 

a. Myosin head attaches to actin (high energy ADP + P configuration) forming a cross-

bridge. 

b. Power stroke: myosin head pivots pulling the actin filament toward the center.  

c. The cross-bridge detaches when a new ATP binds with the myosin.  

d. Cocking of the myosin head occurs when ATP → ADP + P so another cross-bridge can 

form.  

The various motor neurons to a whole muscle fire asynchronously. While some motor units are 

active others are inactive. This pattern of activity prevents muscle fatigue and produces smooth 

movements.  
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1.5. Regulated bladder compliance 

Strips of rabbit detrusor smooth muscle exhibits regulated bladder compliance characterized by 

strain softening: a loss of stiffness on a stretch to a new length distinct from viscoelastic behavior 

(Speich et al., 2006). Several studies have demonstrated that repeated stretches of “passive” 

rabbit or mouse bladder strips (Ratz & Speich, 2010;  Speich et al., 2006;  Speich, Borgsmiller, 

Call, Mohr, & Ratz, 2005) or repeated filling of isolated mouse bladders (Speich et al., 2012) can 

strain-soften or increase the compliance of the bladder (Almasri, Ratz, & Speich, 2010; Speich et 

al., 2006;  Speich, Almasri, Bhatia, Klausner, & Ratz, 2009; Speich et al., 2005; Speich et al., 

2007), just as repeated stretches of a latex balloon make it easier to inflate. Moreover, unlike a 

latex balloon, an increase in compliance due to strain softening can be reversed by active 

contraction at short muscle lengths (Almasri, Ratz, Bhatia, Klausner, & Speich, 2010; Speich et 

al., 2006, 2009, 2005; Speich et al., 2007). Thus, bladder wall compliance is strain-history-

dependent and activation-history-dependent.  Most importantly, the change in regulated 

compliance associated with repeated passive filling is greater in a partial bladder outlet 

obstructed (PBOO) mouse model of detrusor overactivity (Speich et al., 2012). This preclinical 

data provides evidence that detrusor overactivity, and potentially overactive bladder in humans, 

may be associated with regulated compliance.  The second objective of the present study, is to 

use published experimental data (Speich et al., 2007) to determine ranges for regulated detrusor 

compliance and to expand a finite deformation model of bladder filling to illustrate the potential 

effects of acute regulation of compliance on filling pressure and wall stress (Janz, Kubert, Pate, 

& Moriarty, 1980; Saito & Oki, 1982; Watanabe et al., 1981). 

1.6. Bladder shape 

Normal bladders vary in shape as shown in Fig. 1.3 (Zhang, Wu, Xi, Wang, & Jiang, 2012), and 

bladder compliance has been shown to depend on shape (Margot S Damaser & Lehman, 1993; 

Margot S. Damaser & Lehman, 1995). Ultrasonic estimation of bladder volume can be affected 

by the variations in bladder shape (Bih, Ho, Tsai, Lai, & Chow, 1998). 

For a vessel containing a given volume of liquid, the shape with the smallest surface area is a 

sphere. Thus, any clinically observed condition that makes a normally spherical bladder less 
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spherical (e.g. pregnancy (van Brummen, Bruinse, van de Pol, Heintz, & van der Vaart, 2006), 

obesity (Chancellor, Oefelein, & Vasavada, 2010), or constipation (Kim, Lee, Jung, & Lee, 

2011)) increases surface area, and therefore could increase the strain on tension-sensitive nerves, 

leading to an overestimate of bladder fullness for a given volume and urgency. One objective of 

this thesis is to develop a simple geometric model to examine the potential effect of bladder 

shape and constrained filling on wall tension and fullness sensation.   

Different stimuli, such as position (lying or sitting) can lead to urgency. Stand up urgency (SUU) 

caused by a change in position, could be related to detrusor overactivity. Other causes to SUU 

may be the insufficiency of sphincter and urethral closure mechanisms (Hubeaux et al., 2012), 

which could be affected by pressure changes due to deformation of the bladder upon standing.  

As part of this thesis, a bladder deformation model will be developed to examine the increased 

pressure and wall tension caused by bladder deformation. 
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Fig. 1.3 Schematic diagram of bladder shapes: (A) sphere-shaped; (B) banana-shaped; (C)oval-

shaped ; (D) pear-shaped; (E) triangular-shaped; (F)irregular-shaped (Zhang et al., 2012). 

1.7. Thesis objectives 

The first objective of this thesis is to develop relatively simple physical and mathematical models 

to demonstrate that wall tension and stress (tension/cross-sectional area) can vary significantly 

with geometry in a vessel with uniform internal pressure, and therefore motivate the 

investigation of a potential correlation between bladder wall stress parameters and patient-

reported fullness sensations throughout bladder filling. (Chapter 2) 

The second objective of this thesis  is to use published experimental data  (Speich, Dosier et al. 

2007) to determine ranges for regulated detrusor compliance and to expand a finite deformation 

model of bladder filling (Janz et al., 1980; Saito & Oki, 1982; Watanabe et al., 1981) to illustrate 

the potential effects of acute regulation of compliance on filling pressure and wall stress. 

(Chapter 3) 

The third objective of this thesis is to develop models to demonstrate that changes in bladder 

shape due to changes in compliance or intra-abdominal forces could contribute to changes in 

wall tension for a given volume that could lead to urgency.  (Chapter 4) 

The fourth objective of this thesis is to further study the change in bladder shape using a three-

ring spheroidal bladder model to examine pressure and wall tension changes during deformation. 

(Chapter 5) 
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Chapter Two: Pressure and wall tension during bladder filling 

2.1. Significance of bladder wall tension during filling 

Bladder fullness information that is interpreted as urgency is provided by tension-sensitive 

nerves in the bladder wall (Kanai & Andersson, 2013). Bladder wall tension, and therefore nerve 

output, is a function of bladder volume, wall compliance and shape. Clinical urodynamics studies 

are used to quantify the pressure-volume relationship throughout filling with a catheter and the 

overall bladder compliance (Δvolume/Δpressure) for a particular fill (Mahfouz et al., 2012); 

however, these studies often reveal only small increases in filling phase pressures (Frenkl et al., 

2011) in patients with or without heightened urgency. These standard pressure measurements do 

not necessarily reflect the underlying wall tension, which may correlate better with urgency. The 

first objective of this thesis is to use relatively simple physical and mathematical models to 

demonstrate that wall tension and stress (tension/cross-sectional area) can vary significantly with 

geometry in a vessel with uniform internal pressure. This will motivate the investigation of a 

potential correlation between bladder wall stress parameters and patient-reported fullness 

sensations throughout bladder filling.  

2.2. Laplace’s Law 

Pascal's principle requires that the pressure is the same everywhere inside a balloon at 

equilibrium. However, experiments reveal that there are great differences in wall tension on 

different parts of a balloon. The variation is described by Laplace's Law. The larger the vessel 

radius, the greater the wall tension required to withstand a given internal fluid pressure.  

According to Laplace’s Law, the wall tension, T, in a thin-walled fluid-filled cylindrical or 

spherical vessel with homogeneous isotropic material properties is proportional to the product of 

the uniform internal pressure, P, and the radius of the vessel, R (Chancellor, Rivas, & Bourgeois, 

1996; Fata et al., n.d.; Watanabe et al., 1981): 

       2.1 

http://hyperphysics.phy-astr.gsu.edu/hbase/pasc.html#pp
http://hyperphysics.phy-astr.gsu.edu/hbase/ptens.html#lap
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In addition, the wall stress, σ, in a thin-walled spherical vessel with a uniform wall thickness, t, 

can be calculated using the following equation (Hibbeler, 2011).  

   
   

  
 2.2 

The thin wall assumption is typically used for vessels with a wall thickness of less than one-tenth 

of the vessel radius (t < R/10) (Hibbeler, 2011). 

2.3. Demonstration of Laplace’s Law using a rubber balloon 

A typical cylindrical rubber balloon (Fig. 2.1A, Qualatex.com) was used to demonstrate 

Laplace’s Law.  The air in the relaxed balloon was removed by completely displacing it with 

water.  Then, the balloon was partially filled with ~120 ml of water using a large syringe and the 

opening was sealed by tying the end of the balloon into a knot (Fig. 2.1B). Later, the balloon was 

manually squeezed to displace the bolus of water to different regions of the balloon (Fig. 2.1C-

D) and then to divide the bolus into two roughly equal parts (Fig. 2.1E).  The balloon was 

manually bent at the smaller radius between the divided bolus and released to an equilibrium 

position (Fig. 2.1F) and subsequently bent near the center of a single bolus and released to a 

second equilibrium position (Fig. 2.1G). 

The balloon experiment in this chapter demonstrates that for a given fill volume, stress at a 

particular area can change; this indicates the potential for a change in stress measured by tension-

sensitive nerves on the wall of the bladder without a change in volume. This example also 

demonstrated that external applied energy can create different stress points along the cylindrical 

balloon. This may imply an external deformation force applied to the bladder to change the shape 

and further increase the wall stress and nerve output at particular locations of the bladder. 
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Fig. 2.1 Photographs of a rubber balloon demonstration. (A) An open, cylindrical, relaxed red 

balloon and a 5 cm black scale bar. (B) The balloon at equilibrium after ~120 ml of water was 

added and the balloon opening was sealed. Internal pressure was constant throughout the 

balloon; however, one region had a larger radius (RL) and another region had a smaller radius 

(RS). (C) The balloon was squeezed to provide energy to move the water to another region. (D-

E) Other equilibrium positions showing that the region with the greater RL was relocated by 

transient external forces. (F) The region with Rs was easily bent and remained bent when 

released. (G) The region with RL required greater effort to bend and did not remain bent when 

released.  
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Chapter Three: Modeling the effect of regulated bladder compliance on 

bladder filling 

3.1. Acute regulation of bladder compliance  

Several studies have demonstrated that repeated stretches of “passive” rabbit or mouse bladder 

strips (Ratz & Speich, 2010; Speich et al., 2006, 2005) or repeated filling of isolated mouse 

bladders (Speich et al., 2012) can strain-soften or increase the compliance of the bladder (Speich, 

Borgsmiller et al. 2005, Speich, Quintero et al. 2006, Speich, Dosier et al. 2007, Speich, Almasri 

et al. 2009, Almasri, Ratz et al. 2010), just as repeated stretches of a latex balloon make it easier 

to inflate. Moreover, unlike a latex balloon, an increase in compliance due to strain softening can 

be reversed by active contraction at short muscle lengths (Speich, Borgsmiller et al. 2005, 

Speich, Quintero et al. 2006, Speich, Dosier et al. 2007, Speich, Almasri et al. 2009, Almasri, 

Ratz et al. 2010). Thus, bladder wall compliance is strain-history-dependent and activation-

history-dependent.  Most importantly, the change in regulated compliance associated with 

repeated passive filling is greater in a partial bladder outlet obstructed (PBOO) mouse model of 

detrusor overactivity (Speich et al., 2012). This preclinical data provides evidence that detrusor 

overactivity, and potentially overactive bladder in humans, may be associated with regulated 

compliance. The second objective of this thesis, is to use published experimental data (Speich, 

Dosier et al. 2007) to determine ranges for regulated detrusor compliance and to expand a finite 

deformation model of bladder filling to (Janz et al., 1980; Saito & Oki, 1982; Watanabe et al., 

1981) illustrate the potential effects of acute regulation of compliance on filling pressure and 

wall stress.  

3.2 Hyperelastic Materials 

Elasticity is the tendency of solid materials to return to their original shape and size after being 

deformed by application of a force. Linear elastic models do not accurately describe the observed 

material behavior for many materials (Muhr, 2005). For example, the stress-stain relationship for 

material such as, rubber can be defined as nonlinear, isotropic, and incompressible. In this thesis, 

the stress-strain relationship for the model is derived by assuming the bladder is made of an 

incompressible, isotropic, and hyperelastic material like a rubber.  
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This kind of material is considered a hyperelastic continuum with a strain energy density 

function W represented by a scalar valued function of deformation gradient F. W can be 

represented in terms of the three invariants I1, I2, and I3 which are defined through the principal 

stretches (strains)              for isotropic materials (Bechir, Chevalier, Chaouche, & Boufala, 

2006). It is possible to assume that the material is incompressible when the material is not 

subjected to too large hydrostatic loadings and I3 = 1 for incompressible materials.  For such 

materials Valanis and Landel (1967) have proposed a simple form of the strain energy density W 

which is separable symmetric function of the stretches;    (  )   (  )   (  ) (Valanis, 

1967) and the principal stresses in the material can be obtained by taking the derivative of W 

with respect to the strains,   . Equations 3.1 and 3.2 in the following section were derived using 

this simple approach.   

3.3. Continuum model for regulated detrusor compliance 

Watanabe et, al., used finite deformation theory to develop a hyperelastic continuum model for 

the bladder, which was assumed to be spherical and made of an isotropic incompressible material 

(Janz et al., 1980; Saito & Oki, 1982; Watanabe et al., 1981). For uniaxial extension, the 

relationship between uniaxial stress   , and the uniaxial extension ratio (strain)   , was given by 

the equation: 

       (    )(   )  
 

√  
(  

 

√  
)(   ) 3.1 

Constant material property parameters a and b were determined by fitting this equation to data 

from a uniaxial length-tension experiment performed on strips of canine bladder (Watanabe et 

al., 1981).  For spherical bladder filling, the relationship between wall stress,  , the extension 

ratio of the bladder radius (strain),  , and the material property parameters, a and b, was given by 

the equation: 

     (   )(   )  
 

  (  
 

  )
(   ) 3.2 

In addition, bladder filling pressure, P, was defined as a function of wall stress; bladder mass, m; 

bladder density,  ; and volume, V, using the equation: 
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 3.3 

This model produced a relatively flat pressure-volume curve, as typically observed in a clinical 

cystometery (Mahfouz et al., 2012; Rose, 1927), and a wall stress curve that continued to rise 

with increasing volume.  

For this thesis, equations 3.1—3.3 were used to predict the effect of acutely regulated detrusor 

compliance on filling pressures and wall stresses.  First, uniaxial length-tension data from a 

previous study revealing regulated detrusor compliance in rabbit detrusor strips (Speich, Dosier 

et al. 2007) was converted to stress-strain data (Fig. 3.1A) using an estimated undeformed cross-

sectional area of 0.9 mm
2 

(Speich et al., 2007). Next, the first ten data points of the ascending or 

lower compliance curve (LCC) were fit to a linear curve, and this line was extrapolated to 

estimate the point of zero stress and a strain ratio of one (Fig. 3.1B).  Then, equation 3.1 was fit 

separately to the lower compliance curve and the  higher compliance (descending) curve (HCC) 

to determine the range or the constant material property parameters a and b for the range of 

regulated detrusor compliance revealed in this particular experiment. The curve fit was done 

using Graphpad Prism 6.0 software and the best-fit values for the lower compliance curve were; 

a = 0.1242 N/cm
2
 and b = 4.066 with standard error of 0.009513 and 0.09050 respectively. 

Likewise the higher compliance curve had values of a = 0.000001138 N/cm
2
 and b = 16.06 with 

standard error of 1.264x10
-6

 and 1.236 respectively. A change in the value of a will shift the 

magnitude of the stress at each strain. The constant b is the exponent in equation 3.1 and a 

change in the value will affect the curvature of the curve fit in Fig. 3.1. 
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Fig. 3.1 (A) Stress-strain curves calculated from previously published uniaxial tension-strain 

curves for rabbit DSM strips (solid symbols) illustrating an acute change in this material property 

relationship due to regulated bladder compliance (RBC).  Pseudo-steady-steady state stress 

measured at each length during a sequence of increasing length steps (pre-strain softening, 

maximal RBC, LCC) was typically much greater than stress at the same length during a 

subsequent set of decreasing length steps (post-strain softening, minimal RBC, HCC) due to 

RBC (Speich et al., 2007). (B) The LCC was extrapolated to a strain ratio of one using a linear fit 

to the first ten data points of the LCC. Then, the stress-strain equation (equation 3.1) for the 

finite deformation model was fit separately to the LCC and HCC (A). 

Pressure-volume curves and wall-stress-volume curves (Fig. 3.2) were produced using equations 

3.2 and 3.3 for a volume range for a rabbit of 2-90 ml (Matsumoto, Chichester, Bratslavsky, 

Kogan, & Levin, 2002).  Bladder density and mass were estimated to be 1.05 gm/cm
3 

and 2.5 

gm, respectively, as in previous studies (Speich et al., 2007). Wall thickness, t, was calculated 

using the relationship: 

 

           
 

      3.4 
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Fig. 3.2 Pressure-volume and stress-volume curves for rabbit DSM with (A) lower regulated 

bladder compliance (pre-strain softening, lower compliance curve in Fig. 3.1) and with (B) 

higher regulated bladder compliance  (post-strain softening, higher compliance curve in Fig. 3.1) 

corresponding to the data calculation from Fig. 3.1 for pressure and stress for LCC (A) and HCC 

(B). 

 

 

 

Lower Compliance Curve 

Higher Compliance Curve 
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Fig. 3.3 Pressure-volume curves (A) and stress-volume curves (B) corresponding to the LCC and 

HCC. Shaded areas show ranges of pressure (A) and wall stress (B) permitted by regulated 

detrusor compliance. 

From Fig. 3.3 it is possible to observe the changes in pressure and stress associated with the 

acutely regulated changes in compliance due to adjustable preload stiffness in Fig. 3.1.   

For comparison, wall stress was also calculated using equation 3.3 for a bladder with a constant 

pressure of 14.14 cm-H2O (Fig. 3.4) corresponding to the maximum pressure in Fig. 3.2A.  

According to equation 3.3, if pressure is constant, the stress and volume will have linear 

relationship as shown in Fig. 3.4B. This example demonstrates that wall stress increases 

significantly even if filling pressure remains constant.  
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Fig. 3.4 Pressures (A) and corresponding wall stresses (B) for the lower compliance curve from 

Fig. 3.1 and for a constant pressure of 14.14 cm-H2O.  

Generally, the model results in this chapter show that as the volume increases the pressure shows 

relatively a small change whereas the wall stress is significantly increasing. Furthermore, a finite 

deformation continuum model is compared with a constant pressure model. Choosing an 

appropriate model which approximates the experimental data and the clinical measurements to 

describe the behavior of the bladder is very important.   
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Chapter Four: Modeling the effect of a change in bladder shape 

4.1. Importance of bladder shape change during filling 

Normal bladders vary in shape, and bladder compliance has been shown to depend on shape (M 

S Damaser & Lehman, 1993; Margot S. Damaser & Lehman, 1995). For a vessel containing a 

given volume of liquid, the shape with the smallest surface area is a sphere. Thus, any clinically 

observed condition that makes a normally spherical bladder less spherical (e.g. pregnancy (van 

Brummen et al., 2006), obesity (Chancellor et al., 2010), or constipation (Kim et al., 2011)) 

increases surface area, and therefore could increase the strain on tension-sensitive nerves, leading 

to an overestimate of bladder fullness for a given volume and urgency. One objective of this 

thesis is to develop a simple geometric model to examine the potential effect of bladder shape 

and constrained filling on wall tension and fullness sensation.   

The filling pressure-volume curve of the urinary bladder is called cystometrogram (CMG), and 

is measured by increasing the contained volume and measuring the pressure response. The CMG 

depends on the constitutive properties of the bladder tissue and the wall thickness.  Mathematical 

models have been developed by researchers to infer material constitutive properties from whole 

bladder properties. Most existing models assume isotropy, homogeneity and incompressibility of 

the bladder wall material (M S Damaser & Lehman, 1993; Margot S. Damaser & Lehman, 

1995). In this chapter, a model will be developed to show the potential importance of bladder 

shape.  

4.2. Model for bladder shape change 

Mathematical models of the urinary bladder are used to obtain material parameters, such as stress 

and strain, from measurable whole bladder parameters, such as pressure and volume. Because of 

its mathematical simplicity, spherical model of the bladder has been used (M S Damaser & 

Lehman, 1993; Margot S. Damaser & Lehman, 1995). However, normal bladders vary 

considerably in their shape (M S Damaser & Lehman, 1993; Margot S. Damaser & Lehman, 

1995). In this chapter a model is developed to investigate shape change, keeping material 

properties constant.   
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A spheroidal geometric model was used demonstrate the potential effect of bladder shape change 

on bladder wall stress (Fig. 4.1).  The volume, V, of a spheroid is a function of the three principal 

axis radii, R1, R2 and R3 as given by the equation: 

   
 

 
        4.1 

 

 

 

Fig. 4.1 A spherical bladder (left) and a bladder constrained (arrows) in one radial direction to 

form an oblate spheroid (right).  Both have equatorial wall strips equal to one half of the 

circumference (solid and dashed lines, respectively). 

 

For a perfectly spherical bladder, the radii are equal (R1 = R2 = R3).   However, if the spheroidal 

bladder is externally constrained such that two radii, R2 and R3, are a fraction, β, of the other 

radius (R1 = βR2 = βR3), then the bladder fills as an oblate sphere (Fig. 4.1) (M S Damaser & 

Lehman, 1993; Margot S. Damaser & Lehman, 1995).  For both the perfect and oblate spheroids, 

the largest radius for each volume, Rmax, is defined by the equation:  

      √
  

   

 
 4.2 

In this equation, β = 1 for the perfect sphere and β < 1 for the oblate sphere. The oblate spheroid 

has one circular cross-section with radius R1 and two ellipsoidal cross-sections, one with radii R1 

& R2 and the other with radii R1 & R3. As β decreases from 1.0, the radius of the circular cross-

section R1 increases and the other radii R2 and R3 decrease. 
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For each spheroid model, a detrusor strip along the largest circumference was examined (Fig. 

4.1), and the length of this strip was defined as half of the largest circumference using the 

equation:  

   
 

 
       √    

  

 
 4.3 

 

Fig. 4.2 The circular circumference for a sphere with a volume of 400 ml is identical for the top, 

side and front views (A). An oblate spheroid with the same volume and β = 0.75 has one circular 

cross-section (B, solid line, top view) and two identical ellipsoidal cross-sections (B, dashed line, 

front and side views).  The larger radius of each of these cross-sectional views of the oblate 
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spheroid (B, solid and dashed lines) is greater than the radius of the circular cross-section of the 

sphere (B, dotted line). 

As an example, a value of β = 0.75 was selected for the following oblate spheroid calculations.  

A spherical bladder is assumed to reach its micturition threshold at 400 ml with an equatorial 

wall strip length equal to ½ the circumference, or 14.36 cm (Fig. 4.1 solid line strip and Fig. 4.2 

point A). If this bladder is constrained by 25% in one radial direction to form an oblate spheroid 

(Fig. 4.1 arrows), it reaches the same threshold strip length (14.36 cm) at only 300 ml (Fig. 4.1 

dashed line strip, Fig. 4.2 point B).  This example illustrates that a change in shape due to 

external constraints could substantially decrease the volume at which a person experiences a 

strong desire to void, which would lead to more frequent voiding. 

 

 

Fig. 4.3 Human bladder wall strip length during filling from 0 to 400 ml.  A spherical bladder is 

assumed to reach its micturition threshold at 400 ml with an equatorial wall strip length equal to 

½ the circumference, or 14.36 cm (point A). If the same bladder is constrained in one radial 

direction to form an oblate spheroid with β = 0.75, it reaches the same threshold strip length 

(14.36 cm) at only 300 ml (point B).  
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Chapter Five: Orthogonal Three-ring Spheroid Model for bladder shape 

change 

Bladder tissue shows viscoelastic, non-linear behavior, and is non-isotropic and non-

homogenous; therefore, studying the bladder’s mechanical properties is extremely sophisticated  

(Fung, 1993; Korkmaz & Rogg, 2007; Miftahof & Nam, 2013). Bladder wall includes layers of 

muscle bundles arranged in particular directions (Fujii, Takagi, Arimoto, Ootani, & Ueeda, 

2000). Strips or bundles from the bladder wall of animals can be excised and tested in a uniaxial 

tensile testing apparatus to characterize the mechanical properties and approximate the behavior 

of the urinary bladder during filling (Miftahof & Nam, 2013). In this chapter, a model with three 

orthogonal muscle rings (strips) was developed (Fig. 5.1). The three strips were assumed to 

support all the internal pressure and external forces acting on the bladder. Homogeneous bladder 

material, uniaxial loading in the circumferential direction, and stress-free lateral edges were 

assumed. The objective of this model is to predict the change in vessel pressure, wall tension and 

external deformation force required to uniaxially deform an isovolumetric spherical bladder into 

an oblate spheroid.  

5.1. Development of an isovolumetric deformation model    

The goal of this section is to give a mathematical model consisting of three equivalent bladder 

strips that overlap each other to form a sphere. The model will be used to predict the change in 

vessel pressure and external deformation force required to uniaxially deform an isovolumetric 

spherical bladder into an oblate spheroid and estimate the change in wall tension. In order to 

develop this mathematical model, a particular volume and the corresponding vessel pressure 

must be selected.  These values can be arbitrarily selected, taken from another model, or taken 

from urodynamics test. In addition, uniaxial stress-strain data for the tissue (equation 3.1) is used 

to calculate the area of the strips.  Model results such as, tension and stress for each strip, 

pressure increase upon deformation, and deformation force are displayed in the next section of 

this chapter.  
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The bladder was assumed to fill without any external forces applied as a sphere consisting of 

three equivalent orthogonal strips as shown in Fig. 5.1. The first step in the development of this 

model was to estimate the volume of the strips (volume of tissue) based on a particular fluid 

volume and vessel pressure.  For the example in this chapter, a fluid volume of 60 ml and 

pressure of 10.25 cm-H2O were used based on the rabbit bladder example in Fig. 3.4.  

 

 

Fig. 5.1 Three equivalent rings representing a spherical bladder shape. (Note: rings overlapped 

each other). 

Each ring was assumed to undergo uniaxial extension along its circumference and follow a 

relationship between strain and stress that can be evaluated from a uniaxial extension test using 

equation 3.1.  From the geometry of a sphere, the area of the fluid cross-section, Afluid (Afluid = πr
2
) 

and length of the strip, Lstrip (Lstrip = 2πr) can be evaluated (Fig. 5.2), where r is the radius of the 

sphere.  
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Fig. 5.2 Geometric analysis of the cross-sectional area of the fluid and the circumference (length) 

of the ring (strip) for the spherical model.  

The sphere was cut to produce a hemisphere with two strips as indicated on Fig. 5.3. The 

pressure, p, inside the sphere is acting to force the strip-hemisphere in the upward direction (Fig 

5.3). This total force must be the product of the pressure and the area of the imaginary circular 

plane formed by the strip hemisphere (Fig. 5.2). The upward total force, T, acting on the wall due 

to the pressure inside the fluid cross sectional area is calculated as: 

           ( ) 5.1 

This total force must be balanced by the tension in the strips.  The tension in each strip must be 

equal T/4 due to symmetry (Fig. 5.3). The uniaxial stress, σ, in the each strip can be calculated 

using equation 3.1 for the same material properties a and b (a = 0.1242 N/cm
2
and b = 4.066).  

The tension (Fig. 5.3 downward force) on the bladder wall will be: 

 
 

 
             5.2 

The cross-sectional area of each strip        can be computed using equations 5.1 and 5.2, then 

the volume of tissue in the three strips can be evaluated as: 

           (              ) 5.3 

𝐴𝑓𝑙𝑢𝑖𝑑(𝑐)  𝜋𝑟𝑐
  

𝐿𝑠𝑡𝑟𝑖𝑝(𝑐)   𝜋𝑟𝑐 
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The constant coefficient 3 is to indicate that there are three equivalent strips holding the pressure.  

Now, the length, cross-sectional area and volume of each strip are known.  This geometric 

information, along with the uniaxial stress-strain relationship (eq 3.1) will be used to examine 

bladder deformation in the following section. 

 

 

 

 

Fig. 5.3 Force analysis for the front view of the spherical strip model with a side-to-side cut with 

tension on the strips and the vertical force due to the vessel pressure.   

4.2. Isovolumetric deformation model  

The strip volume and fluid volume from the above model will be adopted here to develop an 

isovolumetric deformation model. This particular section focuses on the prediction of the change 

in vessel pressure and external deformation force required to uniaxially deform an isovolumetric 

spherical bladder into an oblate spheroid and estimate the change in wall tension.  

A homogeneous isotropic strip membrane was deformed so that its eccentricity (deviation from 

circularity) changes, when an external force, F, is applied normal to the surface of the sphere in 

addition to the uniform hydrostatic pressure is applied to its interior surface.  The force is 

assumed to deform the bladder from a sphere into a spheroid such that one radius, rc, is a 

fraction, β, of the other two radii (re = βrc) to form an oblate spheroid as described in Chapter 4.  

The model requires selection of a volume, pressure and a uniaxial stress-strain curve for a tissue 

strip and enables calculation of the change in pressure and stress and the deformation force 

necessary for a particular change in shape beta (β).  

 

𝑇
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Fig. 5.4 An external perpendicular force F applied to deform the bladder and change the shape. 

In this particular case the three strips will not have the same length because of the external 

deformation force, F applied on the wall as shown in Fig. 5.4.  Assume the top view is a circle 

and the front and side views are ellipses and the volume of each strip is the same as calculated in 

equation 5..3 and as shown in Fig. 5.5. Assume the same volume of fluid V and tissue        (i.e., 

the bladder is filled with the same amount of fluid for both sphere and oblate spheroid). 

   
 

 
     

 

 
         

 

 
     

  5.4 

               ( )        ( )   
       

 
  

In equation 5.4, r is radius of the sphere,    (  )    (  )       (  ) are radii of the oblate 

spheroid, and            stand for radius of circle and smaller radius of the ellipse respectively as 

shown in Fig 5.5. The deformation force exerted externally causes the principal radius to reduce 

in one direction and increase in the other direction, i.e., one radius is β fraction of the other, 

        and β is any fraction less than one and greater than zero. When β = 1 all the radii will 

be equal and the spheroid will be a perfect sphere. For the oblate spheroid, the length of the strip 
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is different for circle and ellipse, and the corresponding uniaxial stress is also varies. From 

equation 3.1, these uniaxial stresses for circular and ellipsoidal strips can be calculated as:  

       (    )(   )  
 

√  
(  

 

√  
)(   ) 5.5 

       (    )(   )  
 

√  
(  

 

√  
)(   )  

    
      ( )

    
      

      ( )

    
 

where      √
  

  

 

    is the initial fluid radius, which is calculated from the initial fluid volume of 2 

cm
3,

 defined in Chapter 3, and           are extension ratios of the ellipsoidal and circular strips, 

respectively. From the geometry relationships, the cross-sectional area of the fluid and length of 

the strips for the circular and ellipsoidal regions can be determined.  

       ( )                 ( )     
  5.6 

      ( )       

      ( )     (     )  √(      )   (  
    

 )  

      ( ) in equation 5.6 is the Ramanujan approximation for circumference of an ellipse 

(Villarino, 2005). 
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Fig. 5.5 Geometric of the cross-sections of the circular and elliptical planes of the oblate 

spheroid.  

The cross-sectional area of each strip can be evaluated from the volume and length of each strip 

(equation 5.4 and 5.6) and given as: 

       ( )   
      ( )

      ( )
         ( )   

      ( )

      ( )
 5.7 

 

Fig. 5.6 Force analysis for the top view of the oblate spheroid model with a front–to-back 

midline cut through a circular strip and an ellipsoidal strip.  
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The pressure    inside the oblate spheroid is calculated using the hemisphere cut parallel to the 

external force. This total force due to the pressure must be the product of the pressure and the 

area of the circular plane formed by the hemisphere, i.e.,         . This force must be balanced 

by the sum of the tensions on each end of the circular strip and each end of the ellipsoidal strip.  

The tension on the end of the circular strip is the product of the circular uniaxial stress     and 

the cross-sectional area of the circular strip, i.e.,          ( )  and the tension on the end of the 

ellipsoidal strip is the product of ellipsoidal uniaxial stress   , and the cross-sectional area of the 

ellipsoidal strip, i.e.,          ( )    The force balance for the free body diagram in Fig. 5.6 is 

defined by the equation:   

          ( )            ( )             ( )   5.8 

 

 

 

 

 

 

 

Fig. 5.7 Analysis of tension on the strips, vessel pressure and  external deformation force for side 

view or side view of the oblate spheroid model with a side-to-side cut of two elliptical strips.     

Considering the force diagram in Fig. 5.7, the  upward forces are balanced by the downward 

forces. The upward force due to the pressure is equal to     times the cross-setional area of the 

fluid  (       
 ). On the other hand, the tensile force    on the wall of the strips resisting the 

force due the pressure is given as the product of the ellipsiodal uniaxial stress and the cross-

sectional area of the strip. i.e.,           ( )  for the four strips. The downward force holding the 
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upward pressure is the sum of the the forces in the strips and the external force, F, applied to the 

model.  

 
  ( )

 
           ( )   

  ( )

 
           ( )     5.9 

      ( )     ( )            ( )   

           ( )     

A particular fluid volume of 60 ml and undeformed pressure of 10.25 cm-H2O were used to 

generate the model results in Fig. 5.8. The pressure and external force are increasing as the 

bladder is deformed from its original sphere shape. In addition, the length of the circular strip 

and ellipsoidal strips also increase as β increases.  For β = 0.75, the pressure increased from 

10.25 cm-H2O to 16.86 cm-H2O (64.49%). The wall stress in the top plane (circular strip) 

increased from 387.34 to 1077.40 cm-H2O (178.53%) and increased to 547.09 cm-H2O (41.24%) 

for the ellipsoidal strip. The external deformation force at the given β was 2.03 N.  
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 Fig. 5.8 Radius-β (A), Strip length-β (B), uniaxial wall stress-β (C) wall tension-β (D), pressure-

β (E), and external force=β (F) curves predicted by the DSM model at a constant volume of V = 

60 ml, and undeformed pressure P = 10.25  cm-H2O, for deforming ratios ranging from 0.4 to 1 

(40 – 100%), using the LCC stress-strain relationship from Fig. 3.1.  

Oblate spheroid can be formed under the limits of 0<β<1. The reason why the model results only 

show a lower β range of 0.4 is because of the limitation of the approximation used to calculate 

the length of the ellipsoidal strip in equation 5.6 (Villarino, 2005). The exact formula to calculate 

the length of the ellipsoidal strip requires an infinite series of calculations.  The β range 0.04 to 

1.0 is sufficient to show the effects of deformation in Fig. 5.8.  

In this model the change in the vessel pressure and wall tension were investigated when the 

shape is changed from sphere to an oblate spheroid using an external deformation force. The 

model results predict the change in stress and pressure when the bladder changes its shape 

acutely due to an intra-abdominal force.   
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Chapter Six: Conclusion 

6.1. Measurement of bladder wall stress could be a valuable clinical tool 

Clinical urodynamic studies currently used to diagnose overactive bladder (OAB) by measuring 

pressure during bladder filling.  Our modeling results suggest that measurement of bladder wall 

stress during filling might provide valuable information for the study and diagnosis of OAB. As 

shown in Fig. 6.1, the model predicts that the relative change in wall stress is greater than the 

change in pressure during filling. Because pressure changes little during filling, we will 

anticipate that tension-based compliance measurements would be much more reflective of the 

actual tension sensor output (urgency) than standard Δvolume/Δpressure calculations. Therefore, 

bladder wall stress changes during filling may be a better indicator of bladder function and may 

correlate more closely with changes in sensation than filling pressure. 

 

Fig. 6.1 Panel A from Fig. 3.2 showing modeling results for the pressure-volume and stress-

volume curves for DSM with lower regulated bladder compliance. 
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6.2. Regulated bladder compliance could lead to urgency 

The shaded area in Fig. 6.2 shows the range of wall stresses permitted by regulated detrusor 

compliance. A defect in regulated compliance could contribute to changes in wall stress for a 

given volume that could lead to urgency. Measurement of changes in regulated compliance could 

correlate to changes in the urgency.  

 

 

Fig. 6.2 Data from Fig. 3.3B showing model predictions for stress-volume curves for lower 

compliance (LCC) and higher compliance (HCC) stress-strain curves. The shaded area shows the 

range of wall stresses permitted by regulated detrusor compliance. 
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6.3. Bladder shape may be important to urgency 

The model developed in chapter 4 demonstrates that constraining a bladder during filling can 

increase wall strain for a given volume (Fig. 6.3), and therefore increase wall tension and output 

from tension-sensitive nerves, potentially contributing to urgency. Acute or chronic changes in 

bladder shape due to changes in compliance or intra-abdominal forces could contribute to 

changes in wall stress for a given volume that could lead to urgency. Bladder shape can be 

measured using ultrasound and the images could be used to determine if bladder shape correlates 

with OAB. 

 

Fig. 6.3 Model results from Fig. 4.3 showing that bladder wall strip length during filling from 0 

to 400 ml.  A spherical bladder is assumed to reach its micturition threshold at 400 ml with an 

equatorial wall strip length equal to ½ the circumference, or 14.36 cm (point A). If the same 

bladder is constrained by 25% in one radial direction to form an oblate sphere, it reaches the 

same threshold strip length (14.36 cm) at only 300 ml (point B). 
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6.4. Bladder deformation may be important to urgency 

Deformation of a spherical bladder into an oblate spheroid at a constant or increasing volume 

leads to an increase in the wall stress (Fig. 6.4) in the model developed in chapter 5. This 

increase in tension would be expected to increase sensation from tension-sensitive nerves and 

potentially increase or cause urgency.  

 

Fig. 6.4 Model results from Fig. 5.8C showing an increase in wall stress as a spherical bladder 

with β=1 is deformed by an external force into an oblate spheroid with the same volume and 

β<1.  
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Chapter Seven: Discussion and future work 

7.1. Discussion 

This thesis focused on modeling acute changes in bladder wall tension, shape and compliance 

during filling. A balloon experiment and Laplace’s law were used to demonstrate that wall 

tension can vary significantly with geometry in a vessel with uniform pressure. The results show 

that the larger vessel radius had a bigger stress when it is compared to the smaller radius. 

Damaser et al., (Margot S Damaser & Lehman, 1993; Margot S. Damaser & Lehman, 1995). 

developed a model to compare filling pressure of spherical, oblate spheroid and prolate spheroid 

bladders at several levels of eccentricity and the model predicted that oblate bladders were more 

compliant than spherical or prolate bladders. The model developed in this thesis examined a 

shape change from a spherical bladder to an oblate spheroidal bladder by an external deformation 

force.  Both of these studies conclude that bladder shape does matter.   

Consider two rubber balloons with homogeneous material properties, one manufactured to be 

spherical and the other manufactured to be cylindrical.  If the spherical balloon is filled with 

water to a particular volume of water, wall tension will increase, and if unconstrained, the 

balloon will maintain a spherical shape.  However, if this spherical balloon is constrained to fill 

in a cylindrical shape, wall tension for a given volume will be elevated.  Considerable effort 

would be required to force an isovolumetric spherical water balloon into a cylindrical shape. 

Likewise, if the originally cylindrical balloon is filled with water, wall tension will increase, and 

if unconstrained, the balloon will maintain a cylindrical shape.  However, if this cylindrical 

balloon is constrained to fill as a sphere, wall tension for a given volume will be elevated.  Thus, 

the initial relaxed shape of the balloon material affects the wall tension during either constrained 

or unconstrained filling. Thus, for a bladder with a relaxed shape that is not spherical, filling in 

the shape of a sphere would increase wall stress. Therefore, studying bladder shape change 

during filling may be more important than the shape itself. 

Published experimental data  (Speich, Dosier et al. 2007) were used to determine ranges for 

regulated detrusor compliance and to expand a finite deformation model of bladder filling to 

illustrate the potential effects of acute regulation of compliance on filling pressure and wall stress 
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(Janz et al., 1980; Saito & Oki, 1982; Watanabe et al., 1981). Watanabe et al. concluded from 

their experimental and modeling results that the relatively flat pressure-volume curve observed 

during clinical cystomety could be produced by the elasticity of the bladder itself, without the 

need for neural feedback (Watanabe, Akiyama et al. 1981). In this thesis, a finite deformation 

continuum model was compared with a constant pressure model. The results from the continuum 

model show that a defect in regulated compliance could contribute to changes in wall stress for a 

given volume that could lead to urgency.      

A geometric model was used to demonstrate that changes in bladder shape due to changes in 

compliance or intra-abdominal forces could contribute to changes in wall tension for a given 

volume that could lead to urgency. A three-ring spheroidal bladder model was developed to 

examine pressure and wall tension changes during deformation. The results show that for a 

particular fluid volume and initial pressure, the pressure and external force increase as the 

bladder is deformed from its original spherical shape into an oblate spheroid. In addition, the 

circumference (length) of circular and ellipsoidal strips rise as the bladder is deformed. The 

minor radius of ellipsoidal strip is β fraction of the major radius of the ellipsoidal strip, the rate 

of increase of the major radius is greater than the rate of decrease of the minor radius; therefore 

the circumference increases. Thus, both the stresses on circular and ellipsoidal strips are increase 

with bladder deformation, and since the bladder does not likely have uniform properties 

everywhere within the wall, it is probable that any tension sensors positioned throughout the wall 

of the bladder sense different stresses, which could affect bladder fullness information 

transmitted to the brain. Thus, deformation leads to increased wall stresses which would be 

expected to increase bladder sensation and potentially cause urgency.  

7.2. Future work   

The model developed in this thesis was based on experimental uniaxial tension data.  In a 

uniaxial extension test for a sample clamped at the ends, the other dimensions of the strip are not 

constrained. However, this is not the case in an intact bladder; therefore, a biaxial extension test 

could be employed to better approximate true behavior in the model. Furthermore, during filling 

the bladder experiences three dimensional shape changes, i.e., the length, the thickness and the 
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width of a strip change. Therefore, measuring the stress-strain relationship in intact bladders may 

provide better data for developing models to simulate the behavior of the bladder during filling.     

The modeling results in chapter 3 showed that there was a small change in pressure but wall 

stress was significantly increasing with volume during filing, and wall stress may give better 

information about the change in bladder compliance during filling.  As a result, measuring wall 

stress during clinical urodynamics may be a good research topic to work on the future. This will 

require a development of a method of measuring wall tension directly, like a strain gauge, or 

approximating wall tension from pressure data obtained from the usual urodynamics procedure 

and the addition of bladder geometry information, possibly from ultrasound images.   

Normal bladders vary in shape, and bladder compliance has been shown to depend on shape 

(Zhang, Wu, Xi, Wang, & Jiang, 2012). Ultrasonic estimation of bladder volume can be affected 

by the variations in bladder shape (Bih, Ho, Tsai, Lai, & Chow, 1998). Bladder shape can be 

measured using ultrasound and the images could be used to determine if bladder shape correlates 

with OAB. The effect of shape change in bladder compliance was shown in chapter 5 for a case 

when a bladder changes its original sphere shape to an oblate one due to an external deformation 

force. This effect may be observed in other bladder shapes mentioned in Fig. 1.3 and therefore, 

three-ring spheroidal model can be extended for these non-spheroidal bladder shapes. 

The experimental stress-strain data used to develop the models in this thesis were taken from 

rabbit bladder strips (Speich et al., 2007). In addition, an assumption can be made that the 

experimental stress-stain curve from rabbit bladder in Fig. 3.1 has the same properties as human 

bladder. Then these data can be used to predict possible changes in pressure and stress in human 

bladder as performed for rabbit bladder in chapter 3.  However, measurement of stress-strain 

curves for human bladder tissue and quantifying any regulated bladder compliance in humans 

would improve the quality of model and simulations of how regulated compliance and shape 

change could affect wall stresses during human bladder filling.  
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