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Abstract

RAMP LOSS SVM WITH L1-NORM REGULARIZATION

By Eric J. Hess, M.S.

A Thesis submitted in partial fulfillment of the requirements for the degree of Master of
Science at Virginia Commonwealth University.

Virginia Commonwealth University, 2014.

Director: Thesis Paul Brooks,
Associate Professor, Department of Mathematical Sciences

The Support Vector Machine (SVM) classification method has recently gained pop-

ularity due to the ease of implementing non-linear separating surfaces. SVM is an opti-

mization problem with the two competing goals, minimizing misclassification on training

data and maximizing a margin defined by the normal vector of a learned separating surface.

We develop and implement new SVM models based on previously conceived SVM with

L1-Norm regularization with ramp loss error terms. The goal being a new SVM model that

is both robust to outliers due to ramp loss, while also easy to implement in open source and

off the shelf mathematical programming solvers and relatively efficient in finding solutions

due to the mixed linear-integer form of the model. To show the effectiveness of the models

we compare results of ramp loss SVM with L1-Norm and L2-Norm regularization on hu-

man organ microbial data and simulated data sets with outliers.



CHAPTER 1

INTRODUCTION

Classification, the task of assigning objects to one of several predefined categories, is a

pervasive problem that encompasses many diverse applications [1]. There are many differ-

ent classification methods that have good predictive qualities including: Decision Trees,

Ruled-Based classifiers, Nearest-Neighbor classifiers, Bayesian classifiers, Artificial Neu-

ral Networks, and Support Vector Machines (SVM). Each of these classification methods

have unique benefits and drawbacks; SVM, in particular, has become increasingly popular

due to an ease of programming and application of many nonlinear discriminants described

in section 1.4. There are several variations on Support Vector Machines; traditional SVM

or C-SVM is described herein. Traditional SVM is very popular but performance is di-

minished with the presence of outliers for the linear classifying SVM, many solutions lack

generalizability due to the trade-off between loss and margin in the objective. Brooks [2]

presents a solution to this outlier problem with two mixed quadratic-integer programming

(MQIP) formulations of C-SVM that give less weight to these problematic training points

and therefore better generalizability as compared to traditional C-SVM. Although perfor-

mance is greatly improved, these MQIPs are NP-hard and therefore many classification

tasks may be time consuming or impossible with Brooks’ approach. Studies of robustness

on SVM with ramp loss, also known as robust hinge loss is limited as of yet. Methods for

training SVM with ramp loss differ from traditional SVM in that the all training observa-

tions that fall outside of the margin of the opposite class have a loss of 2 on the objective

function, while observations that fall in the margin are given a continuous measure of error

between 0 and 2 depending on the distance to the correctly classified margin boundary [2].
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Shen et al. [3] and Wang et al. [4] use optimization methods for SVM with the ramp loss

that do not guarantee global optimality. In order to improve algorithm efficiency, Brooks

[2] presents a family of facets to cut off fractional solutions for the linear kernel and intro-

duces some heuristics to find good integer feasible solutions at nodes in the branch and cut

tree for SVM with ramp loss.

Robust linear programming formulations for finding optimal hyperplanes for discrim-

ination of linearly inseparable sets have been studied in the early 1990’s prior to papers

on SVM being printed in English. Bennett and Mangasarian [5] proposed a single linear

programming formulation which generates a plane that minimizes an average sum of mis-

classified points belonging to two disjoint sets of observations in n-dimensional real space.

Mangasarian [6] introduced a generalized SVM formulation that could be used for both

quadratic and linear programming formulations. Hadzic [7] and Kecman [8] provide a for-

mulation that utilizes the L1-norm of the separating hyperplane for maximizing the margin

which performed well in several empirical tests. Zhou, Zhang, and Jiao [9] introduces a

linear programming SVM formulation in which the margin is defined as the right hand side

of the constraint, yi (w · xi + b) ≥ 1, with an unknown in place of 1. This is unique be-

cause the right hand side of these constraints is representative of the margin width of the

separating hyperplanes.

The classification method that is unique this paper is a SVM with Ramp Loss trained

via mixed integer-linear programming. In the study of SVM with ramp loss, Brooks [2]

used the L2-Norm of the margin boundary for training the maximum margin hyperplane.

Since this is the Euclidean length of the vector, ‖w‖, where as the new formulations dis-

cussed herein minimize an L1-Norm of some measure of the primal variable, w’s or dual

variable, α’s (via Mangasarian[10], Hadzic [7], and Zho [9]), Brooks’ SVMs are quadratic

programming problems. To create SVM models integer-linear programming problems we

introduce ramp loss error terms, and in turn these problems can be solved using a branch

2



and bound framework with each subproblem solvable by simplex or any possibly any other

popular solution algorithm for SVM. The expected benefit for the change from L2-Norm

SVM to the L1-Norm SVM are two-fold; this means finding optimal solutions quicker

than Brooks’ ramp-loss SVM and providing more robust methodology for building SVM

discriminants than the L1-Norm SVM. This paper describes all variations of linear pro-

gramming SVM with ramp loss in Chapter 3 to quantify the quality the qualities of each

method via empirical evidence of both the Human Microbiome Project data [11] and sim-

ulated data. Results in Chapter 5 show that there are benefits to these new SVM models.

1.1 Traditional Support Vector Machines

A support vector machine (SVM) is a binary classification method which defines a

hyperplane that (at best) separates all possible observations by class label developed by

Vapnik [12]. This hyperplane is solved for using training data which consists of a paired

observation as shown in Figure 1.1. These observations are defined by a training vector

of common attributes xi ∈ Rn, i = 1, ..., l which have an associated class label yi. It is

assumed that there exists some unknown probability distribution P (x, y) from which these

data are drawn, i.e. independently drawn and identically distributed (P is the cumulative

probability distributions) which allows for approximation of actual error of the true mis-

classification rates with empirical error. The support vector machine learns a mapping,

xi ∈ Rn 7→ yi ∈ {−1, 1}, with the goal of maximizing a classification margin 2/ ||w||

and minimizing some measure of training error. The vector w is the normal vector to

the separating hyperplane and is used to define the maximal margin of the SVM (i.e. the

distance between two distinct hyperplanes that are equidistant from and parallel to the op-

timal separating surface). Testing for the parameter that controls the balance of margin and

misclassification is typically done empirically by testing the SVM solution on unseen ob-

servations. The traditional formulations and derivations of, for separable and non-separable

3
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2||w||

Fig. 1. Separable case of applied SVM.

SVM are briefly described in this chapter.

1.2 Separable Support Vector Machines

Given a training set of data points consisting of the tuple (xi, yi) ∈ Rn x {−1, 1}, i =

1, ..., n, where yi is the class label and xi is the parameter values of the ith observation, we

can find planar and high-dimensional continuous surfaces that separate the classes well[13].

The random variables X and Y can be taken from a unknown conditional distribution

P (Y = h|X = X) [2]. Given these data points a function f : xi ∈ Rn → yi ∈ {−1, 1} is a

classifier for data with unknown class labels. In the case in which all training observations

one possible hyperplane that can separated based on class label completely and correctly,

the traditional SVM math model can be implemented. A hyperplane for discrimination

purposes will be the result of implementing SVM which is defined as w · x + b = 0,
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in which |b|/ ||w|| is the perpendicular distance from the hyperplane to the origin, and

||·|| is the Euclidean norm. The support vectors are points within 1/ ||w|| units from the

classification hyperplane. There are at least n + 1 points that will be defined by SVM

what will be support vectors in the case that all data are separable, of which, at least one

point satisfies w· x + b = −1 for the support vectors in which yi = −1 and one point

satisfies w· x + b = 1 for the support vectors in which yi = 1. These support vectors

more specifically help define the boundaries of sets of correctly classified observations,

the distance between these sets is 2/ ||w||. It is optimal for generalization performance to

maximize this margin, but we use a computationally simpler quadratic objective which we

minimize, 2/ ||w||2 = 1
2
w · w. This is the objective provided that all training observations

can be classified correctly. The standard SVM formulation is (1.1).

[Linear Separable SVM]
min
w,b

1
2
||w||2 ,

subject to yi(w · xi + b) ≥ 1, i = 1, 2, ..., n.

(1.1)

A drawback to using this formulation is that it only allows for finding linear discrim-

inants. An easy way to formulate a nonlinear discriminant is applied with use of the La-

grangian formulation (1.2) and Karush-Kuhn-Tucker (KKT) conditions. This trick for to

produce these nonlinear discriminants is called a nonlinear mapping and is discussed in

section 1.4. To create this nonlinear mapping of factors we first need to have the points in

the form of dot products which conveniently so, the dual formulation has. The first step to

finding the dual SVM is to solve for the Lagrangian, which have new unknowns called the

Lagrange multipliers (i.e. dual variables), αi, i = 1, ..., l; there is one dual variable for each

constraint in the LP (1.2).

LP =
1

2
||w||2 −

l∑
i=1

αi (yi(xi · w + b)− 1) (1.2)

5



The optimal solution the primal and the dual formulations will be the same (1.7) by

the strong duality theorem. This dual formulation is obtained by taking the derivative

of LP with respect to w and b and setting each of the resulting formulations to zero, as

shown in (1.3) and (1.4). These derivations became very important in solving for nonlinear

discriminants.

∂LP
∂w

= 0⇒ w =
N∑
i=1

αiyixi (1.3)

∂LP
∂b

= 0⇒
N∑
i=1

αiyi = 0 (1.4)

The KKT conditions also apply nonnegative constraints on all of the Lagrange Mul-

tipliers (αi ≥ 0). The formulation that has the training vectors as dot products is the Dual

Lagrangian, which can easily be found by appropriately plugging (1.3) and (1.4) into (1.2)

which is the maximization problem (1.5).

LD =
∑
i

αi −
1

2

∑
i,j

αiαjyiyjxi · xj (1.5)

The separable SVM Problem is convex and all KKT conditions are necessary and

sufficient for w, b, and α to be a solution to both the LP and LD optimization problem [14].

The dual problem is typically solved with the LD as the objective, (1.4) as the lone set of

constraints, and non-negativity on the αi’s. For many cases the dual problem can be solved

more quickly than the primal problem, although this is not the most important property

of the dual problem. In fact, the importance of deriving and solving the problem with

respect to the dual formulation is that the attribute vectors are presented as dot products,

the necessary property for nonlinear application of SVM. The discriminant can also be

calculated from the resulting dual variables values.

The discriminant defined by the solution of LP is, f : w · x + b = 0. Although w is

6



missing in the dual solution, the equivalence of w is found using the first KKT condition,

(1.3); replacing w with
∑n

i=1 yiαixi gives us the discriminant in (1.6).

[SVM Discriminant]
n∑
i=1

yiαixi · x + b = 0, (1.6)

This leaves only solving for the offset variable, b. This is typically found by solving

for b with KKT condition, αi [yi (w · xi + b)− 1] = 0, where w should be replaced by

wj =
∑i=n

i=1 yiαixij for each support vector. The b values for each of the support vectors,

(i.e. αi 6= 0) are typically not unique [13] and the common practice for selecting b is to

take the average of the values found.

The next section introduces the problem in which we allow inclusion of misclassified

training observations.

1.3 Nonseparable Support Vector Machines

For most classification problems, it is not just sufficient to produce a classifier that per-

forms well on trained observations, but also perform well on unseen data. Improvements in

generalization performance and ease of finding solutions are the main focus for the intro-

duction of Nonseparable SVM formulations. Creating this model involves the introduction

of slack variables ξi for each constraint from (1.7) as yi (w · xi + b) ≥ 1 − ξi where ξi’s

are nonnegative. An example is shown in Figure 1.3. As seen in the figure, ξ is a product

of the L2-Norm of w (i.e. the inverse of the perpendicular distance between the parallel

hyperplanes that define the SVM, otherwise known as the margin) and the distance that the

misclassified point is from the hyperplane on the vector’s side of the separating surface. By

this interpretation of ξ, it can easily be shown that bigger margins produce smaller values

for individual ξ’s but more points may be associated with positive ξs.

It is possible to only modify the original constraints and not at ξ’s to the objective

7
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Fig. 2. Nonseparable case of applied SVM.

function which is to minimize ||w||2 /2, but this formulation will produce the null solution,

i.e. w = 0. This solution is meaningless, therefore any classification problem that produces

only these null solution are most likely unclassifiable with the given factors. In an attempt

to minimize the likelihood of this outcome, we add a penalty to the objective function for

each misclassified observation, f (ξ). The typical Nonseparable SVM formulation is (1.7).

[Nonseparable SVM]

min
w,b

1
2
||w||2 + C

N∑
i=1

ξi,

subject to yi(w · xi + b) ≥ 1− ξi, i = 1, 2, · · · , n.

ξi ≥ 0, i = 1, 2, · · · , n.

(1.7)

The variable C is a constant specified prior to finding the solution. Selection of the

value of C is typically done through empirical methods for each instance. Just like the

8



formulation for separable SVM, (1.2), we can find the dual using the KKT conditions in

order to produce nonlinear discriminants, beginning with finding the Lagrangian of (1.7).

LP =
1

2
||w||2 + C

N∑
i=1

ξi −
N∑
i=1

αi (yi(xi · w + b) + ξi − 1)−
N∑
i=1

µiξi (1.8)

The first two terms are the objective function to be minimized, the third term represents

the inequality constraints associated with the slack variables, and the last term is the result

of the non-negativity requirements on the values of ξi’s. We also have the following KKT

conditions to satisfy:

ξi ≥ 0, αi ≥ 0, µi ≥ 0, (1.9)

αi{yi (w · xi + b)− 1 + ξi} = 0, (1.10)

µiξi = 0 (1.11)

The Lagrange multiplier αi given in (1.10) is non-zero only if the training instance

resides along the planes w · xi + b = ±1 or if the corresponding slack variable ξi > 0.

In fact, for any observation that is on the correctly classified boundary w · xi + b = ±1

or on the wrong side of it, the training point is deemed a support vector. Again we apply

the KKT conditions to the SVM formulation by taking the partial derivatives of LP with

respect to w, b, and ξ to zero, we get the following equations:

∂LP
∂w

= 0⇒ w =
N∑
i=1

αiyixi (1.12)

∂LP
∂b

= 0⇒
N∑
i=1

αiyi = 0 (1.13)

∂LP
∂ξi

= 0⇒ C − αi − µi = 0 (1.14)
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Substituting equations (1.12), (1.13), and (1.14) into LP correctly produces the fol-

lowing dual Lagrangian:

LD =
1

2

∑
i,j

αiαjyiyjxi · xj + C
∑
i

ξi

−
∑
i

αi

(
yi

(∑
j

αjyjxi · xj + b

)
− 1 + ξi

)

−
∑
i

(C − αi) ξi,

=
N∑
i=1

αi −
1

2

∑
i,j

αiαjyiyjxi · xj.

(1.15)

which is identical to the LD for linearly separable data. The only difference between

the separable and nonseparable dual formulations is that equation (1.14) constrains αi to a

maximum of C since µi and αi are both nonnegative. Therefore, the Lagrange multipliers

are constrained to 0 ≤ αi ≤ C. The discriminant for LD of nonseparable SVM is the same

as that from separable SVM (1.6). The offset b is also found in the same fashion it is for

(1.5).

1.4 Nonlinear Support Vector Machines

Popularity and importance of SVM in classification is linked to the property for learn-

ing nonlinear separating surfaces easily. This is done through a method referred to as the

kernel method in which all of the training points are mapped onto higher dimensional space

to create a linear separating surface under these new dimensions. This mapping can then

be replaced by the original dimensions as a nonlinear surface. This is done in SVM using

LD by mapping the training data on a higher dimensional space H using Φ : Rk 7−→ H.

Since the dual algorithm depends on the dot products of the training points, we can map

the observations onH by replacing xi · xj with Φ(xi) · Φ(xj).
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The higher dimensional mapping that is done via SVM is through the use of a kernel

function, K(xi,xj) = Φ(xi) · Φ(xj). We replace xi · xj with K(xi,xj) in the dual for-

mulation to allow for finding nonlinear separating surfaces. The kernel trick can then be

described as a method for computing similarity in the transformed space using the origi-

nal attribute set. An example of this transformation on two input vectors u and v in the

transformed space can be written as follows:

Φ (u) · Φ (v) =
(
u21, u

2
2,
√

2u1,
√

2u2, 1
)
·
(
v21, v

2
2,
√

2v1,
√

2v2, 1
)
,

= u21v
2
1 + u22v

2
2 + 2u1v1 + 2u2v2 + 1,

= (u · v + 1)2 .

(1.16)

This is a simple example which shows that the dot product in the transformed space

can be expressed in terms of a similarity function in the original space: K (u,v) =

Φ (u) ·Φ (v) = (u · v + 1)2. This function is known as the kernel function and must satisfy

Mercer’s theorem for validity. This conditions ensures that the kernel function can always

be expressed as the dot product between two input vectors in some high-dimensional space.

Functions that satisfy Mercer’s Theorem are called positive definite kernel functions. Ex-

amples of well known and often deployed kernels are the Polynomial (1.17), Radial (1.18),

and Sigmoidal Neural Network (1.19) kernels shown below.

K (x,y) = (x · y + 1)p (1.17)

K (x,y) = e−||x−y||
2/(2σ2) (1.18)

K (x,y) = tanh (kx · y − δ) (1.19)
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These are just a few kernels that are often employed, there are more possible and some

other SVM formulations can be implemented with discontinuous kernels. The nonlinear

discriminant is obtained with the same transformation. That is, the original coordinate

space in x is transformed into the new space Φ (x) so that a linear decision boundary can

be used to separate the instances in the Hilbert space using the kernel trick. The nonlinear

decision boundary obtained for SVM is then defined as shown in (1.20):

n∑
i=1

yiαiΦ (xi) · Φ (x) + b = 0

n∑
i=1

yiαiK (xi,x) + b = 0

(1.20)

Many nonlinear kernels can be deployed to produce various high performance clas-

sifiers for various problems giving the same problem many possible solution with modifi-

cation to the kernel matrix. This is an important factor in the popularity of SVM in that

many new solutions can be implemented with ease. The chief drawback of with high di-

mensional kernels is a discriminant of higher VC Dimension; as the transformed space

gets larger the bounds on generalizability become greater [13]. The next section covers

the literature describing various methodologies used for SVM with ramp loss and linear

programming SVM.

12



CHAPTER 2

LITERATURE REVIEW

2.1 Linear Programming SVM

Linear programming formulations of Support Vector Machines are not new to the

machine learning community. In fact both linear and quadratic formulations of separa-

ble SVMs were introduced in the 1960’s. The documented concept creator of SVM, O.L.

Mangasarian introduced a linear programming formulation for discrimination of linearly

separable sets in 1965[15]. Several other formulations for linear programming SVM have

been introduced; some of these formulations are discussed herein. Mangasarian [10] in-

troduced a generalized SVM formulation that could be used for both quadratic and linear

programming formulations. Hadzic [7] and Kecman [8] provide a formulation that utilizes

the L1-norm of the separating hyperplane for maximizing the margin which performed

well in several empirical tests. Zhou, Zhang, and Jiao [9] introduces a linear programming

SVM formulation in which the margin is defined as the right hand side of the constraint,

yi (w · xi + b) ≥ 1, with an unknown in place of 1. This is unique because the right hand

side of these constraints is representative of the margin width of the separating hyperplanes.

Empirical result of these linear programming formulations as well as their ramp loss MIP

formulation counterparts are described in Chapter 4.

2.1.1 Bennett and Mangasarian’s Robust Linear Programming Discrimination of

Linearly Inseparable Sets

Linear Programming Support Vector Machines are a general classification method

with origins linked to the formulation developed by Kristin Bennett and O.L. Mangasarian
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[5]. This formulation of classification (linear programming SVM) is used far less often than

traditional C-SVM. Lack of popularity of this classification method maybe due to reduced

interpretability of result due to the lack of margin in the objective function. Without the

margin in the object function, outliers can have a great impact of the result. The claim in

this paper is that we can create an optimal discriminant for two linearly independent sets of

observations using the formulation presented in (2.1).

[Robust LP] min
w,b

1

|m|
∑
i∈m

(yixi ·w − yib+ 1)+ +
1

|k|
∑
j∈k

(yjxj ·w − yjb+ 1)+

(2.1)

In this formulationm ∈ {i = 1, 2, · · · , n : yi = −1} and k ∈ {j = 1, 2, · · · , n : yj = 1}.

The choice of weights 1/|m| and 1/|k| in (2.1) is believed to be a “natural” choice for

avoiding the null solution (w = 0) under practical circumstances. Like traditional SVM

the separating hyperplane learned is w ·x = b. This formulation does not take into account

the objective of maximizing the margin directly, but does so indirectly with the penalties

on the points violating respective class boundaries: yi (w · x + b) < 1. Sometimes a sec-

ondary one-dimensional optimization problem (2.1c) in [5] can be used to improve the

location of the separating surface by modifying the threshold b.

Limited performance testing was reported on the Wisconsin Breast Cancer Database

using 9-dimensional real space and the Cleveland Heart Disease Database using 13-dimensional

real space. In both cases, the formulation (2.1) out performed two other linear programming

methodologies. No comparison between quadratic and linear programming discriminants

is presented.
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2.1.2 Mangasarian’s Generalized SVM

Mangasarian [10] describes a generalized SVM formulation (2.2) that can be used to

obtaining a linear or nonlinear separating surface (2.3). The practical importance of this

formulation is in the diversity of separating surfaces that can be solved for with various

functions in place of f (u) in (2.2); several possibilities are presented in [10] including the

derivation for the traditional convex quadratic formulation of SVM.

min
u,b,ξ

f (u) + C

n∑
i=1

ξi

subject to yi

n∑
j=1

(yjK (xi,xj)uj + b) ≥ 1− ξi, i = 1, 2, · · · , n.

ξi ≥ 0 i = 1, 2, · · · , n.

(2.2)

Recall that w · xi 7→
∑n

j=1 yjK (xi,xj)αj from the dual of traditional SVM. By

comparison sake, uj’s are then dual variables in (2.2) in the same sense as the dual variables

described in (1.5) and (1.15). Therefore the separating surface produced from the solution

of GSVM shown in (2.3) is the same as that for the nonlinear separable surface shown in

(1.20).

n∑
i=1

(yiK (x,xi)ui) = 0 (2.3)

Mangasarian offers two different options for f(u) to make a linear programming SVM

from (2.2). Both of these functions are studied emperically. The first is the L1-norm of the

dual variables, u, and the second absolute value of
∑j=n

j=1 (yjK (xi,xj)uj) as shown in

(2.4). The formulation shown in (2.4) is used as the basis for a linear programming SVM

with ramp loss formulation described in section 3.2.

In examining (2.4), the first set of constraints can be seen as equivalent to the soft

margin constraints on each training observation in traditional SVM. And the second set of
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constraints produces the absolute value of our general function in the objective f(u). Un-

fortunately, there is limited empirical evidence that (2.4) has good classification properties,

therefore the quality of this classifier is examined extensively in.

min
u,b,ξ,s

n∑
i=1

si + C
n∑
j=1

ξj,

subject to yi

j=n∑
j=1

(yjK (xi,xj)uj + b) ≥ 1− ξi, i = 1, 2, · · · , n.

si ≥
j=n∑
j=1

(yjK (xi,xj)uj) ≥ −si, i = 1, 2, · · · , n.

ξi ≥ 0 i = 1, 2, · · · , n.

(2.4)

2.1.3 Hadzic and Kecman’s Linear Programming SVM for Classification

Hadzik [7] and Kecman [8] present formulations for LP-SVM which result in either

linear or nonlinear discriminants. The first formulation, (2.5), is a derived from classical

SVM with the only exception being we use of the L1 as a regularization term instead of the

L2 Norm of the discriminant.

min
w+,w−,b,ξ

n∑
i=1

(
w+
i + w−i + Cξi

)
,

subject to yi (xi ·w+ − xi ·w− + b) ≥ 1− ξi, i = 1, 2, · · · , n.

w+,w− ≥ 0 i = 1, 2, · · · , n+ 1.

(2.5)

In this SVM formulation (2.5) the attribute vector w is split into positive w+ and

negative w− so that the generalization terms in the objective function are linear instead of

quadratic. This new measure is referred to as the L1-Norm because the sum of w+ and w−

equates to the absolute value of all parts of the vector w.

There is another high performing LP SVM formulation (2.6), described in the text.

This model lacks the typical trade-off parameter ξi used to account for misclassification and
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to improve the performance of the classifier. Analysis of adding this trade-off parameter

to the formulation is still a work in progress according to Kecman [8], although it is noted

that anyone adding these parameters should do so with caution. Even though there is no

trade-off parameter used for the problem, a gender recognition task is presented by Hadzic

and Kecman as evidence of the performance of the formulation.

min
w+,w−,b

n∑
i=1

(
w+
i + w−i

)
,

subject to yi

(
j=n∑
j=1

(
K (xi,xj)w

+
j −K (xi,xj)w

−
j

)
+ b

)
≥ 1, i = 1, 2, · · · , n.

w+
i , w

−
i ≥ 0 i = 1, 2, · · · , n.

(2.6)

The gender recognition task contained 1668 data pairs comprising 18-dimensional in-

put vector x and result for male and female class labels. Kecman performed both QP-SVM

and LP-SVM approaches to the data with 96.4% and 92.8% performance on test data cor-

rectly identified for these approaches respectively. This is in comparison to a Gaussian

Basis Function Network which only performed at a 79% rate on images not used for train-

ing the classifier.

2.1.4 Zhou, Zhang, and Jiao’s LP-SVM

Weida Zhou, Li Zhang, and Licheng Jiao [9] produce highly competitive linear pro-

gramming SVM with both linear and nonlinear kernel formulations. The first formulation

presented is (2.7), which replaces the metric representing the magnitude of the classifier

margin in the objective function with r in the equation for the margin, d = 2r
||w||2

. By re-

placing the right hand side of the bounding constraints in traditional SVM with r (in place

of 1), we allow for the substitution of terms in the objective function. Bounds are placed

on w to have a magnitude no greater than 1 in order avoid an unbounded problem.
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max
w,b,r

r

subject to yi (w · xi + b) ≥ r, i = 1, 2, · · · , n.

−1 ≤ wi ≤ 1 i = 1, 2, · · · , l.

r ≥ 0

(2.7)

The decision function takes the same form as that for traditional SVM, f(x,w, b) =

w · x + b with result being the sign of this decision function.

For the nonseparable case with linear classifier,(2.8), the problem is modified for use

of a minimization problem. To establish a minimization problem we take the negative of r

and sum the slacks, ξi, weighted by the user parameter C. Introducing these slack variables

in the first set of constraints allows for training points to lie on either side of the margin but

penalize points on the wrong side accordingly.

min
w,b,r,ξ

−r + C
n∑
i=1

ξi

subject to yi (w · xi + b) ≥ r − ξi, i = 1, 2, · · · , n.

−1 ≤ wi ≤ 1 i = 1, 2, · · · , l.

r ≥ 0

(2.8)

This objective would have the same decision function as the separable SVM. Finding

the nonlinear LPSVM is similar to finding the nonlinear SVM for traditional SVM. Since

we are looking for Φ : Rn 7→ H , we can map xi · xj to Φ (xi) · Φ (xi) with K(xi,xj)

if Mercer’s condition holds true. Based on the KKT conditions of traditional SVM we

can perform the substitution, w =
∑n

j=1 αjyjΦ (xj) in the set of classification bounding

constraints. This substitution is made in (2.9), as well as the replacement of bounds on w

with bounds on α.
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min
α,b,r,ξ

−r + C
n∑
i=1

ξi

subject to yi

(
n∑
j=1

αjyjK (xj,xi) + b

)
≥ r − ξi, i = 1, 2, · · · , n.

−1 ≤ αi ≤ 1 i = 1, 2, · · · , n.

r ≥ 0

ξi ≥ 0 i = 1, 2, · · · , n.

(2.9)

Four experiments were performed on these formulations. For linear LPSVMs, sepa-

rable data sets were created to show that there would be no loss in performance using the

linear LPSVM in place of the QPSVM with a substantial improvement in solution speed.

To test performance of the nonlinear LPSVM, the dual-spiral data, handwritten digital data,

and the DS-CDMA multiuser detection data were used. Dual-spiral data is a popular test

case to test classification problems; the goal of this classification problem is to separate two

intertwined spirals of two-dimensional points in which each spiral containing points of a

respected class.

With the use of 252 training points, both a traditional quadratic programming SVM

and linear programming SVM correctly classify 628 remaining test points under the dual-

spiral data problem (both with Gaussian kernel k (xi,xj) = e(−|xi−xj |2/2p2) with p=8).

The training time improvement for this LPSVM and QPSVM solution of 199.7 and 4103.5

seconds is made only with compromise of approximately three times the VC dimension. A

higher VC dimension generally correlates to lesser generalization performance.

The test for classification of handwritten digits was performed using “6’s” and “9’s”

from the MNST database. Again the Gaussian kernel was implemented, this time with

p = 30. In this test several sizes of training sets were used: 200, 400, 600, 800, and 1000

points. The point of this test is to show how an increase in the sample size will increase
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Fig. 3. Solution time of Traditional SVM compared to Zhou’s LPSVM for handwritten data
classification.

the solution speed of QPSVM exponentially, whereas, the solution speed for the LPSVM

problem would not be impacted as greatly with additional training points. In fact, the

training times for the LPSVM increase almost linearly with an increase in sample size as

shown in Figure 3.

In the fourth experiment, a modern communication transmission technologies known

as DS-CDMA (Direct Sequence Code Division Multiple Access) which allows for multi-

ple users to transmit communication over the same band of frequencies is used to compare

the quality of distinguishing signals with LPSVM and QPSVM. Two cases are tested, syn-

chronous and asynchronous signals from ten and six users of the band from the respective

synchronicity. The test being, is the signal being detected from the expected user or an

interfering user. With varying levels of noise and both linear and radial basis function ker-

nels being utilized, user recognition are nearly the same for both LPSVM and QPSVM

formulations.

Zhou, Zhang, and Jiao’s have provided an LPSVM formulation that can greatly reduce
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the solution speed of the binary classification problem with experimental results as evidence

of the quality of solutions as compared to traditional SVM.

2.2 Ramp Loss

One of the focuses of this paper is to find the benefits we get from applying ramp loss

(robust loss) to the error terms in place of traditional hinge loss to linear programming SVM

formulations. Figure 4, shows examples of the two types of losses with respect to traditional

SVM. Ramp loss error terms are typically applied to learning machines in which outliers

may shift the inferred formulation learned. Essentially the impact of outliers is limited due

when ramp loss is applied to machine learning problems. In Support Vector Machines, this

limit is typically 2 which corresponds to the margin boundary of the opposite class.

Hinge Loss

Loss

2

0

-1 1

margin

Ramp Loss

yi (w · xi + b)-1 1

margin

Fig. 4. Comparison of Ramp Loss and Traditional Hinge Loss used for Statistical Models

2.2.1 Wang and Vucevic’s Fast Online Training Algorithm of Ramp Loss SVM

Since SVM with ramp loss creates instances that are NP-Hard in the MIQP framework,

an interesting approach to reduce solution time for each instance is with an online algo-

rithm. Zhuang Wang and Slobodan Vucetic describe a fast online algorithm OnlineSVMR

in [4]. Online learning involves a learning as data is presented procedure, as opposed to
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all training data presented initially. This training algorithm produces optimal solutions for

SVM with ramp loss on t + 1 training data using the existing optimal solution on t previ-

ous examples. The algorithm retains the Karush-Kuhn-Tucker conditions on all previously

observed examples using an SMO-style incremental learning and decremental unlearning

approach under the ConCave Convex Procedure (CCCP) framework.

To produce a ramp loss function the errors have to be weighted as shown in (2.10).

R (xif (yi, f(xi)) =


0, yif (xi) > 1

1− yif (xi) , −1 ≤ yi (xi) ≤ 1

2, yif (xi) ≤ 1

(2.10)

The formulation for finding an optimal hyperplane with ramp loss SVM is shown in

(2.11).

min PR (w) = min

(
1

2
||w||2 +

n∑
i=1

R (yi, f (xi))

)
(2.11)

which is solved using CCCP, an algorithm involving a sequence of approximate con-

vex problems with a convergence guarantee. This procedure can be used with the dual for-

mulation, therefore nonlinear classifiers can still be found using CCCP. An offline CCCP

procedure for solving SVMR would involve the training of SVM from scratch for every

iteration which is computationally expensive. Reducing the computational complexity for

finding the solution is the reason OnlineSVMR is proposed.

The online algorithm, OnlineSVMR, involves the incremental learning and decremen-

tal unlearning of support vectors to guarantee the KKT conditions are satisfied with the

additional of each unseen observation. In addition to this proposed algorithm, a set selec-

tion strategy is proposed to minimize kernel computations to achieve faster convergence.

Additionally, for each iteration non-SVs that are far from the decision boundary are re-

moved due to the fact that they are very unlikely to become SVs for future iterations of the
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OnlineSVMR.

Another modification to the algorithm is introduced as an online active learning ap-

proach, OnlineASVMR. The algorithm, OnlineASVMR differs from OnlineSVMR by only

querying the examples within the ramp region of the previous iteration. The argument for

including only examples that lie in the ramp region of the previous solution is that the

dual variable, αi, for this observation will be set to zero in the old solution, therefore it is

unlikely that adding any examples not meeting this criteria will change the result.

Empirical testing results of OnlineSVMR and OnlineASVMR are compared against

two online and one offline learning algorithms of SVM with hinge loss:

• IDSVM: an online SVM algorithm which guarantees optimality.

• Online Passive Aggressive (PA) algorithm: algorithm based on perceptron-style up-

dating.

• LibSVM: offline SVM algorithm with hinge loss.

Experiments on 9 benchmark binary classification data sets were utilized. The multi-

class data sets were converted to two-class sets as follows. For the digit dataset USPS

we converted the original 10-class problems to binary by representing digits 1, 2, 4, 5,

7 (non-round digits) as negative class and digits 3, 6, 8, 9, 0 (round digits) as positive

class. For 3-class DNA data set class 3 was separated from the other 2 classes. Class 1

in the 3-class Waveform was treated as negative and the remaining two as positive. For

Cover type data the class 2 was treated as positive and the remaining 6 classes as negative.

Adult, Banana, Checkerboard and Gauss were originally 2-class data sets. NCheckerboard

is a noisy version of Checkerboard where class assignment was switched for 15% of the

randomly selected examples. For both data sets, we used the noise-free Checkerboard as

the test set. Attributes in all data sets were scaled to mean 0 and standard deviation 1.
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For all the examples, the RBF-kernel was used, k (xi,xj) = exp
(
− ||xi − xj||2 /2δ2

)
.

Hyper-parameters C and δ2 were selected via cross-validation for every combination. The

considered values for these parameters were C = {0.1, 1, 5, 10, 50, 100, 500} and δ2 =

{M/2− 1, M/20, M/21, M/22, M/24, M/26}, whereM is the number of dimensions.

2.2.2 ψ-Learning by Shen et. al.

The development of ψ-Learning [3] is the result of an effort to retain the interpretation

of large margins for separable cases, while producing improved performance for nonsepa-

rable cases by appropriately controlling the training errors in the objective. In the learning

framework, the primary goal is to seek a classifier, Sign(f). In this sense, traditional SVM

seeks this goal by minimizing a combination of training error and the reciprocal of the mar-

gin, 1
2
||w||2 (regularization). The general ψ-Learning is an unconstrained version of SVM

as shown in (2.12).

1

2
||w||2 + C

n∑
i=1

ψSVM (yif (xi)) . (2.12)

where C represents the relative importance of training error and margin width as used

in traditional SVM. ψ-Learning involves the solution of a machine learning formulation

in which the loss function can be piece-wise linear, nonlinear, or discontinuous. If we

use the piecewise linear function, ψSVM = 0 if x ≥ 1 and ψSVM (x) = 1 − x other-

wise, the formulation is equivalent to traditional SVM. Also noted is that a loss function

ψSVM (yif (xi)) = 1− Sign (yi (xi)) is an undesirable cost function because any positive

scaling transformation of f leaves its sign unchanged forcing ||w|| of the solution to be 0.

To correct for this outcome, and in turn attempting to maximize the distance for correctly

classified training instances away from the decision boundary a limit on ψ is introduced in

(2.13).
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U ≥ ψ (x) > 0 ifx ∈ (0, τ ]

ψ (x) = (1− Sign (x)) otherwise.
(2.13)

where 0 < τ ≤ 1 and U > 0 are some constants. Empirical tests were performed

using U = 2 which eliminates the scaling problem. Two variants of ψ are used, ψ0 which

is defined as 0 if x ≥ 1, 1 − x if 0 ≤ x ≤ 1, and 2 otherwise and ψ1 which is defined

as 0 if x ≥ 1, 1 − x if 0 ≤ x ≤ 1, and 2 otherwise. Because ψ1 is continuous convex

programming can be used to find globally optimal solutions, whereas, this is not possi-

ble with ψ0. Although ψ-learning produces a nonconvex cost functions, it has very good

learning properties (approaching that of a Bayes classifier) even when the solution cannot

be proven to be optimal. For nonlinear problems, one can replace the decision function

f (x) = w · x + b can be replaced by
∑n

i=1 αiK(x,xi) + b with a kernel function. As

long as Mercer’s condition is satisfied we can replace the regularized term in the objective

function of (2.12) with ||g||2K =
∑n

i=1

∑n
j=1 αiαjK (xi,xj). Instances can be solved via

concave programming which involve decomposing the problem into convex and concave

functions. A direct-search complex algorithm together with an initial guess is applicable.

An initial guess may be chosen from other other machine learning tools such as traditional

SVM or a stochastic search such as a genetic algorithm. Theory with [3] suggests that it is

unnecessary to obtain the exact global minimizer as long as a reasonably good local min-

imizer can be found. The first simulation considered is 2-dimensional linear classification

in which f (x) =
∑2

i=1wixi + b. Random training samples are created {xi1,xi2, yi}ni=1 is

generated. Fist {xi1,xi2}ni=1 are sampled uniformly over the disk {(x1,x2) : x2
1 + x2

2 ≤ 1}

and yi is assigned to 1 if xi ≥ 0 and -1 otherwise. Random observations have their class

label flipped generating nonseparable cases. The test cases have flips of various counts; 0,

1, 2, and 10% of observations have flips each with three different values of C being 10, 103,

and 107. Sample sizes for each of these cases are 25, 50, 100, 200, and 400. Results from
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100 runs of each case show that ψ-learning outperforms SVM in terms of generalization

error in all the nonseparable and separable cases, except when there are identical results

fro large C in separable cases. Performance is shown to become more significant for large

n and C, which up to a 425% improvement in error rates in the case 10%-flip with n=400

and C = 107.

Tests were also conducted on the Wisconsin Breast Cancer database (WBCD) which

features the results from fine-needle aspirates taken from patients. The data is in theo form

of nine-dimensional diagnostic characteristics with values in the range of 1 and 10, which

lesser values representing normality and larger values indicating abnormality. The goal is

to determine whether a sample is benign or malignant. Applying the ψ-learning produces

improved performance over traditional SVM in 9 out of 10 cases. The case in which there is

not a performance improvement, the results are the same for both ψ-learning and traditional

SVM. Another positive result of the studies on ψ-learning is that the optimal parameter for

C has a wider range than that of traditional SVM, indicating less training to for parameter

tuning is needed.

2.2.3 JP Brooks’ Ramp Loss SVM

Brooks’ [2] presents formulations and empirical results from solving SVM with ramp

loss error terms. These formulations are similar to traditional SVM formulation with the

only difference being that indicator variables are utilized for training observations that are

outside of the margin of the opposite class. These indicator variables zi’s are set to 1 if the

training point is misclassified outside of the margin boundary. Any observations in which

the indicator variable is utilized, the corresponding slack variable ξi’s are zero and boundary

constraints do not have to be satisfied. These changes from traditional SVMs gives us

Brooks’ SVMIP1(Ramp) in (2.14) in which the limit on error from each observation is

limited to 2 as shown in the objective function.
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min
w,b,ξ,z

1
2
||w||2 + C

n∑
i=1

(ξi + 2zi),

subject to yi

(
w · xi − b

)
= 1− ξi if zi = 0, i = 1, 2, ..., n,

0 ≤ ξi ≤ 2, i = 1, 2, ..., n,

zi ∈ {0, 1}.

.

(2.14)

Just like traditional C-SVM Brooks’ LPSVM1 (ramp loss) formulation can accom-

modate nonlinear discriminants by replacing primal variables with dual variables, i.e. w =∑n
i=1 (yixiαi), and replacing xi with Φ (xi). Replacement of these variables, as well as

application of the kernel trick, i.e. xi · xj 7→ Φ (xi) · Φ (xj) = K (xi,xj) gives us (2.15).

min
α,b,ξ,z

1
2

n∑
i=1

n∑
j=1

yiyjK (xi,xj)αiαj + C
n∑
i=1

(ξi + 2zi),

subject to yi

(
n∑
j=1

αjyjk(xi,xi)− b

)
= 1− ξi if zi = 0, i = 1, 2, ..., n,

0 ≤ αi ≤ C, i = 1, 2, ..., n,

0 ≤ ξi ≤ 2, i = 1, 2, ..., n,

zi ∈ {0, 1}.

(2.15)

The conditional constraints can be linearized by replacing the right hand side with 1−

ξi−Mzi for all training vectors whether or not they are misclassified outside of the margins.

The value for M should be large enough to not cut into the convex hull of integer feasible

solutions. Keeping theM as small as possible is also important for reducing solution times.

The method used for choosing a good M is not directly discussed in [2].

Brooks’ presents solution methods that provide savings in computational time. These

methods are utilized in sample classifications problems using ILOG CPLEX 11.1 Callable
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Library with implementation of facet cuts of the convex hull of integer feasible solutions

and heuristics for finding integer feasible solutions within the branch and bound framework.

These facet cuts, created at each node in the branch and bound framework, constrain the

values for an observations slack variables for a subset of training points. Implementation

is done by finding points of one class that lie in the convex hull of a subset of points of

the opposite class. For whatever points this scenario is true at least of the points in the

set of points H utilized in the cuts problem is on the wrong side of the margin, hence∑
i∈H (ξi + zi) ≥ 1 is a cut that can be added to the original formulation. Obtaining these

cuts is done by solving [CONV − SEP ] in [2] at the nodes of the branch and cut tree.

Additionally, Brooks’ uses a heuristic for finding initial feasible solutions. This heuris-

tic is a three pronged approach: first a null solution is found, second a “zero error” solution

is validated; and finally use of every positive-negative pair of observations to serve as the

sole support vectors such that their conditional constraints hold at equality (i.e., they define

the margin boundary). Findings presented show increased solution speed with this heuris-

tic implemented on problems that have smaller C’s and kernels with lower ranked kernels.

The ”zero error“ solution is optimal for training cases used with a Gaussian Kernel ap-

plied. This is an indication that SVM with ramp loss is the same as traditional SVM when

Gaussian or other high ranked kernels are applied to the training set.

The classification performance of SVM with ramp loss and hard margin loss is com-

pared to traditional SVM on simulated and real-world data sets. Simulated data is sampled

from Gaussian distributions, each using the identity matrix as the covariance matrix. The

mean for group 1 is the origin, and the mean for group 2 is (2/
√
d, 2/
√
d, · · · , 2/

√
d)

so that the Mahalanobis distance is 2. The data sets are contaminated with outliers in

two ways. In Type A data sets, outlier observations are sampled for group 1 using a

Gaussian distribution with covariance matrix 0.001 times the identity matrix and mean

(10/
√
d, 10/

√
d, · · · , 10/

√
d), so that the Mahalanobis distance between outliers and non-
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outliers is 10. In Type B data sets, outlier observations are sampled from both class distri-

butions with exception that the covariance matrix is multiplied by 100. Outliers comprise

10% of the observations in the training set, and are not present in the validation or test-

ing data sets. Using ramp loss function confers an advantage over hinged loss when using

the linear kernel for all data sets tested. Support Vector Machines with ramp loss mini-

mize the effect of Type A outliers clustered together. Using traditional SVM, the solution

is influenced by Type A outliers by shifting the separating surface towards these outliers.

Advantages to using a ramp loss error function is minimal when a higher-ranked kernel is

used. SVM with a robust loss function outperforms SVM with hinge loss on 9 of 12, 3

of 12, and 5 of 12 data sets with degree-2 polynomial, degree-9 polynomial, and Gaussian

kernels respectively. For Type B outliers using a robust loss function does not appear to

confer an advantage over the hinge loss.

Nine real-world data sets from the UCI Machine Learning Repository are used as

shown in Table 1. Result for all of these tests are shown in Figure 2 in [2]. The ramp losss

performs at least as well as traditional SVM on 28 or 36 tests and the largest difference in

misclassification rates is 4.6%. SVM with ramp loss has misclassification rates comparable

to traditional SVM when applied to training set with no outliers. All problems were solved

with a maximum solution time of 10 minutes, therefore the solutions presented for SVM

ramp loss may still not be optimal. Therefore it may be optimal to produce ensemble

classifiers with subsets of the validation data set to reduce computational time.

2.3 Human Microbiome Project

The Human Microbiome Project (HMP) is a multidisciplinary study on the microbial

communities living inside humans [11]. This study is an expansion of the Human Genome

Project for which it is now well known that our health and makeup of the human body are

not only established through or genetics but this microbial community living inside each
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Table 1. Real World Training Data Sets

Label Name in UCI Repository n d

Adult Adult 500 88

Australian Statlog (Australian Credit Approval) 326 46

Breast[24] Breast Cancer Wisconsin (Original) 341 9

Bupa Liver Disorders 172 6

German Statlog (German Credit Data) 500 24

Heart Statlog (Heart) 135 19

Sonar Connectionist Bench (Sonar, Mines vs Rocks) 104 60

WDBC[24] Breast-Cancer Wisconsin (Diagnostic) 284 30

WPBC[24] Breast-Cancer Wisconsin (Prognostic) 97 30

and every one of us [16]. In fact, the estimates of our microbes outnumber our somatic

and germ cells by 10-fold. It could be also established as fact that the genetics of both the

microbial communities and humanity have evolved in unison with each other.
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CHAPTER 3

SVM WITH RAMP LOSS AND L1-NORM REGULARIZATION

There are several Support Vector Machine formulations studied herein; Traditional Dual-

SVM [13], Brooks’ SVM with Ramp Loss [2], Mangesarian’s Generalized SVM [10], Kec-

man’s linear programming SVM [7], and Zhou’s LPSVM [9]. Comparisons of the perfor-

mance for the solutions to not only these formulations, but also the case studies against LP

machines with ramp loss error terms. We are interested in comparing the speed of finding

solution using an off the shelf mathematical programming solver in addition to comparing

the resulting discriminants. The formulations are modified by weight of the error terms

in accordance to their class relative frequency in the training sets in order increase the

likelihood of optimal solutions as not null, i.e. ||w|| 6= 0 →
∑n

i=1 (αiyiK (xi,x)) 6= 0.

Additionally, I talk about a L1-norm SVM with ramp loss for variable selection.

3.1 Achieving Non-null Solutions

Null solutions can be a problematic result of SVM with unequal frequency for classes

in training. To avoid this outcome, we weight the error terms in the objective function

quantized by relative frequency of class label. Cases in which one class label group is

larger than the other can result in null solutions often, therefore implementing a weight for

making this outcome less probable is advantageous. Requirements for the weights are as

follows, the loss parameter C must maintain meaning by setting the average weight equal

to 1 as shown in (3.1).

min
w

1
2
||w||2 + C

(
n

2n+

∑
i∈I−

ξi +
n

2n−

∑
i∈I+

ξi

)
. (3.1)
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The weights of the errors according to class label should be n/2n+ and n/2n− for

positive and negative training observations respectively, with n, n+, and n− are the cardi-

nality of all, positive and negative training entities respectively. And the I− and I+ are the

set of negative and positive training entities respectively, i.e. I− ∈ {1, 2, · · · , n|yi = −1}

and I+ ∈ {1, 2, · · · , n|yi = 1}.

These same weights can be utilized for all of the SVM formulation discussed herein

with the exception of traditional dual SVM because slack variables, ξ’s, are not present

in the objective function. The new SVM models are discussed without class size based

weights on ξ’s even though these weights were added to the models in the analysis of each

models performance.

3.2 Generalized SVM with Ramp Loss

Mangasarian [10] does not provide strong evidence of the strength of prediction of

GSVM, but the simple idea may have properties that produce quality robust discriminates

for difficult classification problems quickly. Herein we study and compare the performance

of Mangasarian’s LP GSVM (2.2) with the same models formulated with ramp loss error

terms. The modified GSVMRL model, GSVM-RL (3.2), is this Mangasarian’s LP-GSVM

in (2.4) with binary variables from Brooks’ SVMIP(RAMP).

min
u,b,ξ,µ

f (u) +
n∑
i=1

(ξi + 2zi) ,

subject to yi

(
j=n∑
j=1

yjK (xi,xj)uj + b

)
≥ 1− ξi +Mzi, i = 1, 2, · · · , n.

ξi ≥ 0 i = 1, 2, · · · , n.

zi ∈ {0, 1} i = 1, 2, · · · , n.

(3.2)

where f (u) is typically some norm or seminorm of the dual variables[10]. The sim-
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plest choice of f is the L1-norm of the dual variables, ui’s. This is shown in (3.3) with

si being the absolute value of ui. This is done by replacing f in the objective with
∑
si

and adding constraint 2 in (3.3) which bounds the value to si to the magnitude of ui. The

value of M is important because making it too small may bias the resulting discriminant

towards outliers. On the other hand making M too large may mean making the branch

and bound tree unmanageable. An option for controlling the size of M may be to solve

the linear problem for the magnitudes of the ξ’s, and adjusting M as necessary. It may

be noticed that unlike traditional dual SVM, GSVM variables are not sign restricted, and

therefore can produce highly nonlinear solutions; depending on the problem this trait for

the problem statement may be a benefit or a detriment.

min
u,s,b,ξ,µ

n∑
i=1

si +
n∑
i=1

(ξi + 2zi) ,

subject to yi

(
j=n∑
j=1

yjK (xi,xj)uj + b

)
≥ 1− ξi +Mzi, i = 1, 2, · · · , n.

si ≥ ui ≥ −si, i = 1, 2, · · · , n.

ξi ≥ 0 i = 1, 2, · · · , n.

zi ∈ {0, 1} i = 1, 2, · · · , n.

(3.3)

Another possible substitution of f is the magnitude of
∑n

j=1 (yjK (xi, xj)uj) as shown

in (3.4). If the kernel is linear then it is interesting to note that we are minimizing the

(w · xi)’s. In this way, the function that we are minimizing parallels the L2-Norm tradi-

tional SVM more closely than (3.3).
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min
u,s,b,ξ,µ

n∑
i=1

si +
n∑
i=1

(ξi + 2zi) ,

subject to yi

(
j=n∑
j=1

yjK (xi,xj)uj + b

)
≥ 1− ξi +Mzi, i = 1, 2, · · · , n.

si ≥
n∑
j=1

(yjK (xi, xj)uj) ≥ −si, i = 1, 2, · · · , n.

ξi ≥ 0 i = 1, 2, · · · , n.

zi ∈ {0, 1} i = 1, 2, · · · , n.

(3.4)

The separating surface for (3.3) and (3.4) are the same as the linear programming

formulations defined in (2.3) and traditional SVM in (1.20). Predicting the class of new

observations is simply defined as sign(
∑n

i=1 (yiK (x,xi)ui) + b).

3.3 V. Kecman and I. Hadzic LP SVM with Ramp Loss

Another formulation for LPSVM is discussed in Section 2.1.3 is V. Kecman and I.

Hadzic’s highly effective linear programming classifier [7]. The model (3.5) produces the

linear discriminant that parallels (2.5). This is the model called L1-Norm RLSVM most

closely resembles comparing all the models present. It is important to note the that resulting

discriminant is not the same as for traditional SVM, because the regularization terms have

changed; we want to minimize |w| =
∑n

i=1

(
w+
i + w−i

)
instead of ||w|| in order to modify

the traditional SVM problem into a linear program. In the new case the discriminant is the

same as it is for traditional SVM sign (w · x + b), where w+ − w− = w. The obvious

complication to the SVM model is that there will be an additional n constraints,
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min
w+,w−,b,ξ

n∑
i=1

(
w+
i + w−i + Cξi + 2Czi

)
,

subject to yi (xi ·w+ − xi ·w− + b) ≥ 1− ξi −Mzi, i = 1, 2, · · · , n.

w+,w− ≥ 0.

z ∈ {0, 1}

(3.5)

This is formulation is the closet literal transition from L2-Norm regularization of SVM

to L1-Norm with ramp loss error terms.

3.4 Zhou’s SVM with Ramp Loss

Weida Zhou [9] come up with an ingenious method for producing linear programming

SVM models with a slight tweak to the regularization objective. We will call this RSVM

from this point forward. In traditional SVM we want to maximize the distance between two

parallel planes, 2/ ||w||, in which 2 is arbitrary to what’s being optimized. Zhou instead

says that 2 can be replaced by a decision variable r, so that we are instead maximizing,

r/ ||w||β in which β is signifies any vector norm.

This is implemented in a SVM model by adding this new decision variable r to the

objective by minimizing negative r and replacing 1 in the right hand side of the support

vector constraints with r as shown in (3.6). This does make the problem unbounded with

respect to w in the primal problem or α in the dual problem. This problem is solved by

bounding theses constraints to a magnitude of 1, i.e. −1 ≤ αi ≤ 1.
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min
α,b,r,ξ

−r + C
n∑
i=1

(ξi + 2zi)

subject to yi

(
n∑
j=1

αjyjK (xj,xi) + b

)
≥ r − ξi −Mzi, i = 1, 2, · · · , n.

−1 ≤ αi ≤ 1 i = 1, 2, · · · , n.

r ≥ 0

ξi ≥ 0 i = 1, 2, · · · , n.

zi ∈ {0, 1} i = 1, 2, · · · , n.

(3.6)

The formulation shown in (3.6) is the only RSVM model with ramp loss tested herein.

3.5 L0-norm SVM

One of the main sources of discontent with SVM and many other predictor based

statistical models is selection of variable that are best for improving over all accuracy and

effectively minimizing noise. That is why, an SVM formulation in which a generalization

of the limit on the number of parameters would be highly effective establishing which

variable produce the best performing classifier. We call this formulation RLSVM++, it is

shown in equation (3.7)

min
w,b,ξ,z,γ

n∑
i=1

(ξi + 2zi)

subject to yi (w · xi + b) ≥ 1− ξi −Mzi, i = 1, 2, · · · , n.

−Mγi ≤ wi ≤Mγi i = 1, 2, · · · , n.
n∑
i=1

γi ≤ k i = 1, 2, · · · , n.

ξi ≥ 0 i = 1, 2, · · · , n.

zi, γi ∈ {0, 1} i = 1, 2, · · · , n.

(3.7)

The new variable introduced in this SVM methodology, γ, is an indicator variable
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which is 1 when when the corresponding coefficient is used for the resulting separating

surface. And γ is bounded by the training variable k, which produces an upper limit on

attributes that influence the boundary. Because of this new training variable and application

of ramp loss with in the context of the problem, the trade-off of margin width and error

is deemed to add unnecessary complexity to the problem. The trade-off can simply be

added back into the problem set or other classification methods can be implemented on

the variable selected data set. Even though RLSVM++ may be the most useful statistical

model discussed in this paper, it was not tested herein.
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CHAPTER 4

DATA SETS

4.1 Microbiome Data

A multinational and multidisciplinary project has been started to increase humanities

understanding of the communities of microorganisms living inside the human body. [11]

There are several specific sites of interest in which these tiny creature can greatly influence

the health of individuals for both good and bad. The questions being asked about these

microorganism vary from dietary to genetic. It may be possible for a physician to look at an

individuals microbiotic community, then come up with a valid cause quickly and solution

of physical alignments for long term health. In this particular study we are focusing our

attention on two sites being studied, the throat and the tongue. We would like to see if

we can differentiate from which the microbial communities originated, either the tongue or

throat of individuals using Support Vector Machines described in Chapter 3.

This microbiotic data was compiled at Professor Patrick Schloss’ Lab at the University

of Michigan. Of this data set, there are 582 unique observations; 277 from the tongue and

305 from the throat. Figure 5 is a stacked bar chart that shows the diversity and similarity

of the microorganism found in theses samples (it is unknown which half of the figure rep-

resents the communities on the throat and which half is from the tongue, but, but the two

are separated in halves as can be seen by sorting by percentage of Corynebacterium, “dark

orange”, in the sample [17]. This image is the basis for considering this data set as a quality

instance for evaluating our SVM models. We did some data cleaning prior to testing the

data, additional duplicates were discarded and of the 604 Phylotypes, 111 were left after

discarding the scarcely recognized types. The data is converted to proportions to diminish
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the influence of more frequently recorded phylotypes have on the classifiers and as a way

of standardizing the individual samples which is necessary because of the variance in reads

between these samples.
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Actinomyces
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Streptococcus
Propionibacterium
unclassified
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Dolosigranulum
Lactobacillus
Catonella
Veillonella
unclassified
unclassified
Gardnerella
unclassified
Selenomonas
unclassified
unclassified
unclassified
Bifidobacterium
unclassified
Subdoligranulum
Granulicatella
unclassified
unclassified
Staphylococcus
Neisseria
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Campylobacter
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Clostridium
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Listeria
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Fig. 5. Stacked Bar Chart for the percentage of reads for phylotypes taking from samples
from study participant’s throat and tongue.

4.2 Simulated Data

We also used some two-group simulated data sampled from Gaussian distributions

with the identity matrix as the covariance matrix, which is taken from [2]. Brooks cites the

mvtnorm package in the R programming language and environment for statistical comput-

ing as his resource for creating these samples. Data is primarily comprised of two-groups

both are randomly created using a mean for group 1 as the origin and the mean for group
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2 as
(

2/
√
d, 2/
√
d, · · · , 2/

√
d
)

, so that the Mahalanobis distance between the two groups

is 2, a classic Breiman’s “twonorm” benchmark model. Noise is intentionally added to

create a problem set that could alter the performance of the decision linear boundary found

using a traditional SVM model. It is mentioned in [2] that the Bayes rule for the (non-

contaminated) distributions places observations in the group for which the mean is closest,

therefore the Bayes error is P (z > 1) ≈ 15.87%, where z ∼ N (0, 1). The first data

sets, which we call Type A, noise is created with observations sampled from both class

distributions with the exception that the covariance matrix is multiplied by 100. In Type

B data sets, provide noise in the form of outlier observations randomly created using a

Gaussian distribution with covariance matrix 0.001 times the identity matrix and mean

of
(

10/
√
d, 10/

√
d, · · · , 10/

√
d
)

, so that the Mahalanobis distance between outliers and

non-outliers in 10. Outliers comprise 10% of the observations in the training set, and are

not present in the testing data set. The test sets are comprised of combinations of sizes

in terms of observations and variables. For each data set type we have made training and

validation data set for ever combination of 60, 100, 200, 500 observations and 2, 5, 10

variables. Our first instinct is to believe that the smaller test set such as the ones with 60

observations and 2 variables will result in quicker but worse solutions, where as, the larger

test sets such as the ones with 500 observations and 10 variable will result in slower but

better solutions. This may be true for some formulations but not others. The next section

provides a discussion of the results from all of these tests.
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CHAPTER 5

RESULTS

5.1 Computing

All Support Vector Machine instances were created and solved using Gurobi 5.0 C API

on a machine with an Intel Core 2 Duo CPU E8400 3.00GHz with 4 GB RAM. Training

instances were each allowed 20 seconds to find the best solution within the branch and

bound tree with no cuts allowed. In the validation phase, each formulation given best

parameter settings was given at most fifteen minutes to find the best solution.

The user parameter M was set to 10 for each instance to create an environment in which

most or all possible solutions are feasible. A larger value for M is usually recommended

but under the gurobi parameter settings utilized, a large M can produces small non-integer

solutions for some of these discrete variables z. Any time ξi is nonzero then zi should be

zero and visa versa. These small fractional solutions for z break this rule therefore making

the model invalid. It is recommended to test for these type of constraint errors during the

test phase of classification. A methodology for selecting quality M values has not been

included in this document.

Methodologies outside of the branch and bound, and linear programming framework were

not tested, but it is not outside of reason that other untested algorithms will converge on the

optimal solution more quickly and more robustly (no infeasible solutions i.e. ξi > 0 and

zi > 0).
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5.2 Microbiome Test

As it turns out, distinguishing from which body site (tongue or throat) is not as difficult

as it may appear to be from the quantity of type of organisms and similarity in proportions

of these organisms on these body sites as shown in Figure 5. The validation results for

testing the quality each formulation are shown in Tables 2, 7, and 8. The formulation key

can be found in Table 3 where formulations 1 and 2 are Brooks’ formulations for SVM

with Ramp loss [2]; formulations 3 and 4 are O.L. Mangasarians Generalized SVM [10]

with ramp loss; formulations 5 and 13 are Kecman’s linear programming SVM [7] with

and without ramp loss respectively; formulations 6 and 14 are Zhou’s linear programming

SVM [9] with and without ramp loss respectively; formulation 10 is the traditional dual

SVM [13]; formulations 11 and 12 are Mangasarian’s linear generalized SVMs.

Table 2.: Results for Linear Kernel on Saliva-Throat Phylo-

type Data

Formulation C Time Status Accuracy StdError LCL UCL

1 1000 1034.744 Best 0.937 0.0183 0.901 0.973

2 10000 14.956 Best 0.926 0.0198 0.887 0.965

3 10 153.258 Best 0.914 0.0212 0.873 0.956

4 1000 862.003 Best 0.931 0.0191 0.894 0.969

5 10 16.881 Optimal 0.891 0.0235 0.845 0.938

6 0.01 36.914 Optimal 0.903 0.0224 0.859 0.947

10 10000 0.207 Optimal 0.926 0.0198 0.887 0.965

11 10 6.273 Optimal 0.903 0.0224 0.859 0.947

12 1000 2.062 Optimal 0.903 0.0224 0.859 0.947

13 100 0.116 Optimal 0.909 0.0218 0.866 0.951
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Table 2.: (continued)

Formulation C Time Status Accuracy StdError lcl ucl

14 10 1.054 Optimal 0.886 0.0241 0.839 0.933

The validation and test set are comprised of the 582 unique observations containing

proportions of the 111 microbiotic phylotypes (selected from data cleaning) taken from

Professor Patrick Schloss’ Lab. Of these 407 and 175 comprised the validation and test

sets respectively. It is interesting to note that all classifier’s 95% confidence intervals on

accuracy overlap one another. This is true for each pair of formulations in this test. These

95% confidence intervals on the produced discriminant are calculated using the equation

for confidence intervals on proportions. There is at least one tested methodology for calcu-

lating confidence intervals on SVM models by B. Jiang et al., [18].

The time limit for instances with linear kernels was set to 25 minutes, where as only

5 minutes were allowed for instances with Gaussian or polynomial kernels. It is noted in

[2] that high dimensional kernels have properties that make the solution for the ramp loss

SVM converge to the solutions for traditional hinge loss SVM. This is shown in Tables 7

and 8, in which the solution for Mangasarian’s LP SVM formulation (2.2) produces the

same result as the same formulation with hinge loss (3.3). Additionally it can be seen that

Brooks’ CSVM with ramp loss (2.15) and Mangarian’s LP SVM formulation with ramp

loss (3.4) both have Gaussian kernel instances with the same parameters (C = 100, γ = 1)

that converge on the solution of the traditional SVM formulation (1.15). Although these

formulations do not produce the same separating surface exactly, the surface classifies the

same points correctly and incorrectly.

One of the goals for a new formulation is that that be faster if not significantly faster

than Brooks’ SVMIP1 (2.14) and SVMIP2 (2.15). Speed to the optimal or best solution is
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are significantly different for each formulation. The only MIP formulation that were able

find optimal solution for the linear kernel are Kecman’s formulation with ramp loss (formu-

lation 5) at under 17 seconds versus the next best Zhou’s SVM with ramp loss (formulation

6) at just under 37 seconds. Optimality for resulting linear separating surfaces did not

impact classification performance as the best performer was Brooks’ SVMIP1 (2.14) with

an accuracy of 9.37% in a maximum time for finding a best incumbent solution of 1034

seconds. Mangasarian’s linear SVM models with ramp loss (formulation 3 and 4) prove

substantially more likely to find better incumbent solutions the longer the model runs. The

best performing models for these formulations 3 and 4 were above 91% with a reasonable

assumption that the finally incumbent solution are in fact the optimal solutions, then we

can use this as evidence that ramp loss will improve these SVMs.

The improvement in efficiency should not mean we sacrifice the performance im-

provement over the SVMs with hinge loss as the regularization term in the objective. This

increase in performance is not found in the test to classify body site from microorganism

data, with that performance increase being due to a shift and rotation of the discriminant

away from outliers decreasing the magnitude of an effect on the result. The best comparison

we have in models are Kecman’s linear programming SVM formulation (13) in equation

(2.5) and same model with ramp loss error terms (5) in equation (3.5)(formulation 5 and 13

can only produce linear discriminants). Of the 111 phylotypes modeled only 22 and 19 are

found in the solutions to formulations 13 and 5 respectively (i.e. w+
i − w−i 6= 0), with 13

of these phylotypes in both. Instead of the shift or rotation that we would expect to see for

the new models, we see that these models can select a new set of variable to be important

to the model. This may seem inconsequential, but an outlier may only be an outlier due

to one or very few variables relative to an abundance of variables. And because of this we

may see an increase in performance when we add ramp loss to SVM models due to a form

of unanticipated variable selection by the model. This is not the case for the SVMs with
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ramp loss applied to the simulated data with outliers of Type B because these outliers are

applied in all directions. This we see in the following section.

5.3 Simulated Data

Training on the simulated data is described in Appendix B with results from parameter

tuning each model are in Table 9 and 10. The validation results are in Table 11 and Table

12, which are left out of this section due to the size of the tables. We are able to compare

the 2-dimensional simulated data results in scatter plots shown in Figures 6, 7, 8, 9, and

10. As shown in [2], these 2-dimensional data sets are where SVM with ramp loss shine in

comparison to traditional SVM models. With type A outliers Brooks’ outperforms standard

dual SVM for 3 of the 4 2-dimensional test sets, with the one exception being the largest

test set with 500 observations. There are only three other test sets that the traditional dual

SVM model outperforms Brooks’ models. Brooks’ ramp loss SVM models do much better

than traditional SVM when considering the type B outliers. In fact, for all but three of the

type B outlier training sets, running the dual SVM model results in the null solution, with

the other three surfaces being shifted far from the optimal separating boundary. Brooks’

SVMIP1 and SVMIP2 find solutions that are all in between 80% and 85% accuracy with

only 3 of the solutions proven to be optimal.

Figures 7 and 8 display the result from Mangasarian’s generalized SVM formulations

with and without ramp loss. Type A outliers seemed to make little difference between the

formulations with and without ramp loss. The results are mixed because both formulations

with and without ramp loss had instances in which the null solution was the best one found.

When the L1-Norm of the dual variables, |u|, is used as the regularization term the results

for the model with hinge loss is null for 60 observations, as well as, the one with 100

observations when we applied ramp loss error. Other than these null solutions and three

additional, the outliers play little role in the solution for instances with Type A outliers.
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Only six instance (which ramp loss was applied and Type A outliers added) conducted left

an accuracy under 80%, leaving a total of 37 test achieving accuracies above 80% on the

data set with Type A outliers. The Type B outliers again have a significant influence on the

result of non robust SVM. The tests conducted on 2-dimensional data shown in Figure 7

provide evidence to suggest that the separating surfaces from Mangasiarian’s LPSVM do

not shift over towards the outliers but instead rotate about the center of the main cluster of

data. The separating surface does this on four of the eight 2D test conducted, where as,

when ramp loss is applied the separation boundary appears to be consistently near optimal.

Again, null solutions are scattered throughout these results. There were seven null solutions

for Mangasiarians LPSVM with hinge loss and five with ramp loss. Of the 24 test on

the Mangasiarian’s formulation with ramp loss and Type B outliers 19 were above 80%

accuracy. Only 8 of the 24 tests conducted on the Mangasiarian’s LPSVM performed better

that 80%.

Performance of Kecman’s linear programming SVM, equation (2.5), can be seen in

Figure 9. As discussed in the previous section on the classification of body sites based

on phylotypes sampled, Kecman’s formulation has a way of finding optimal solutions that

leave out certain variables as a sort of quasi variable selection. This is shown in the scatter

plots with 100 and 500 observations and Type B outliers in the data. In both of these figures

and for both cases in which ramp loss and hinge loss is used as the error term in objective,

the second variable (y on the graph) does not influence the boundary of the separating

surface. This model may need to be studied for this benefit specifically, even though this

data is constructed in a way in which removing the effects of any variable will harm the

performance. In comparing the results on Kecman SVM models, adding ramp loss seems

to make the model more influence by the outliers. Figure 9 shows the boundary of the

separating surface rotated and widened towards these outliers in all the plots with Type A

outliers added. This may be the one case in which not only does ramp loss not benefit
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the SVM but instead harms the performance. None of the Kecman SVMs with ramp loss

achieved a performance of above 80% and six out of the twelve were above a threshold of

70%. One of the test conducted with Kecman’s linear programming SVM achieved above

80% accuracy.

When we look at the performance of Zhou’s SVM model, we see very strange results

as shown in Figure 9. The objective is to minimize the reciprocal of boundary variable

r and the error, but this results in a value of zero, with zero error and zero for r. There

may be an issue with either the computation of this model or an error in the model itself.

This happens in 18 of the models that do not include ramp loss error and 19 of the models

that do. This even occurs when we can see that some of the observations are obviously

misclassified in Figure 9, as with the green separating surface in the top left figure which is

the boundary from the ramp loss model should perfectly split the data. This is obviously not

the case. More work needs to be put in to find out if this is just a natural result of the model

or if it is a miscalculation. Although the performance testing is not optimal for both the

Kecamn and Zhou LPSVM formulations with ramp loss, it appears that the formulations

do solve much more rapidly than the ramp loss counter parts.

We begin to see the gains that can be made in time commitment in both testing and

validation of SVM with ramp loss as we look at Figure 11. This figures shows that for

each and every simulated test the ramp loss models for both Kecman (5) and Zhou (6) are

dramatically faster than Brooks’ SVMIP1 and SVMIP2. For each test these formulations

were solved in under one second, where as, the other formulations time to best solution

was up to 10,500 seconds.

47



60 Observations with A Type Outliers

−5
0
5

10
15

0 10 20

** *** ** *************** *
*

*** ***

*

*

*

*** ***
** **** **

***
*** ****

*

*

*

** *** ** *************** *
*

*** ***

*

*

*

*** ***
** **** **

***
*** ****

*

*

*

** *** ** *************** *
*

*** ***

*

*

*

*** ***
** **** **

***
*** ****

*

*

*

100 Observations with A Type Outliers

−5
0
5

10
15

0 10 20

*** **
***
*** ** *****
**

*** *
*
* ******** ****

*

*

* *
*

*** **
*
** *******
******
*

**
** **

*
*
*** ***** *

******* *** ***

* *

*

*

* *** **
***
*** ** *****
**

*** *
*
* ******** ****

*

*

* *
*

*** **
*
** *******
******
*

**
** **

*
*
*** ***** *

******* *** ***

* *

*

*

* *** **
***
*** ** *****
**

*** *
*
* ******** ****

*

*

* *
*

*** **
*
** *******
******
*

**
** **

*
*
*** ***** *

******* *** ***

* *

*

*

*

200 Observations with A Type Outliers

−5
0
5

10
15

0 10 20

* *******
*****

***
***
*

*
* **
*

***
***** **** *

*******
**
*

******
* **

*
*****

*
****
***

*
** * **** **

***
**** **** **

**
*

* **

*

*

*

**

*

*
** *** ****
* ** ***** *** **

*
* *** *** *

* ************** **
*
** ***** ***** ***** *

* **
** **

****** ** *

*

*

*

*

*

*

*

*

*

*

* *******
*****

***
***
*

*
* **
*

***
***** **** *

*******
**
*

******
* **

*
*****

*
****
***

*
** * **** **

***
**** **** **

**
*

* **

*

*

*

**

*

*
** *** ****
* ** ***** *** **

*
* *** *** *

* ************** **
*
** ***** ***** ***** *

* **
** **

****** ** *

*

*

*

*

*

*

*

*

*

*

* *******
*****

***
***
*

*
* **
*

***
***** **** *

*******
**
*

******
* **

*
*****

*
****
***

*
** * **** **

***
**** **** **

**
*

* **

*

*

*

**

*

*
** *** ****
* ** ***** *** **

*
* *** *** *

* ************** **
*
** ***** ***** ***** *

* **
** **

****** ** *

*

*

*

*

*

*

*

*

*

*

500 Observations with A Type Outliers

−5
0
5

10
15

0 10 20

****** ****
**** **
**** *
*** ********* **** ** ***

***
*

*
*
** *
**

*
*

***
**** ***** *******

*** * **
*
***** *
*

* *** ****** ** ** *
**

* * ***
** ****** * **** *****
*
** *** **** **** ***

****
*

* **
*
* ** ***
*
**
*

***
* **** ***** *** ****** *

*
*** ****** ** ****
*****
**

***
**

****

*

*

*

*

*
*

*

*

*

*

* **

*

*

**

*
*

*

*

*

*

*

*
**** **
*

*
***

*
*

**
* *** ***

** ***** **
***

* ****
*** ***

* *** ***
*
* ** ******* **** *

*
*** ***

*
*
******* *
*

******* ***** ** *
*** ******* ******* *****

* *** ***
*

* ** **
**

**** **
* ****** *** **
***** ***** **** **
**
*
******
***

* **** ******* ***** *
*** ******* ********** **** *

*** *
*

*

*

**

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

* *

****** ****
**** **
**** *
*** ********* **** ** ***

***
*

*
*
** *
**

*
*

***
**** ***** *******

*** * **
*
***** *
*

* *** ****** ** ** *
**

* * ***
** ****** * **** *****
*
** *** **** **** ***

****
*

* **
*
* ** ***
*
**
*

***
* **** ***** *** ****** *

*
*** ****** ** ****
*****
**

***
**

****

*

*

*

*

*
*

*

*

*

*

* **

*

*

**

*
*

*

*

*

*

*

*
**** **
*

*
***

*
*

**
* *** ***

** ***** **
***

* ****
*** ***

* *** ***
*
* ** ******* **** *

*
*** ***

*
*
******* *
*

******* ***** ** *
*** ******* ******* *****

* *** ***
*

* ** **
**

**** **
* ****** *** **
***** ***** **** **
**
*
******
***

* **** ******* ***** *
*** ******* ********** **** *

*** *
*

*

*

**

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

* *

****** ****
**** **
**** *
*** ********* **** ** ***

***
*

*
*
** *
**

*
*

***
**** ***** *******

*** * **
*
***** *
*

* *** ****** ** ** *
**

* * ***
** ****** * **** *****
*
** *** **** **** ***

****
*

* **
*
* ** ***
*
**
*

***
* **** ***** *** ****** *

*
*** ****** ** ****
*****
**

***
**

****

*

*

*

*

*
*

*

*

*

*

* **

*

*

**

*
*

*

*

*

*

*

*
**** **
*

*
***

*
*

**
* *** ***

** ***** **
***

* ****
*** ***

* *** ***
*
* ** ******* **** *

*
*** ***

*
*
******* *
*

******* ***** ** *
*** ******* ******* *****

* *** ***
*

* ** **
**

**** **
* ****** *** **
***** ***** **** **
**
*
******
***

* **** ******* ***** *
*** ******* ********** **** *

*** *
*

*

*

**

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

* *

60 Observations with B Type Outliers

−5
0
5

10
15

0 10 20

* **** ****
* **

*
* ********** **** *** *** *******

*
**** ** ** ****

******

* **** ****
* **

*
* ********** **** *** *** *******

*
**** ** ** ****

******

* **** ****
* **

*
* ********** **** *** *** *******

*
**** ** ** ****

******

100 Observations with B Type Outliers

−5
0
5

10
15

0 10 20

****
* *** **** *

*
***** * ** ** ***** ******
*

***** ***
* ** **
* ***** **
*
** ******

* *** *** **** ***** *
** *****

**********

****
* *** **** *

*
***** * ** ** ***** ******
*

***** ***
* ** **
* ***** **
*
** ******

* *** *** **** ***** *
** *****

**********

****
* *** **** *

*
***** * ** ** ***** ******
*

***** ***
* ** **
* ***** **
*
** ******

* *** *** **** ***** *
** *****

**********

200 Observations with B Type Outliers

−5
0
5

10
15

0 10 20

*
*

* **** *
***
**** *******

* *** ***** ** *** **** **** * **** **
****
*** ***** ****

**** **** * **
** *** ***
*****

******** *
*

* *** ****
*** **
*******
** *

*
****** **** **
** **** ********* **
** *******
*** **
***

*
*
* ***

*
* *

********************

*
*

* **** *
***
**** *******

* *** ***** ** *** **** **** * **** **
****
*** ***** ****

**** **** * **
** *** ***
*****

******** *
*

* *** ****
*** **
*******
** *

*
****** **** **
** **** ********* **
** *******
*** **
***

*
*
* ***

*
* *

********************

*
*

* **** *
***
**** *******

* *** ***** ** *** **** **** * **** **
****
*** ***** ****

**** **** * **
** *** ***
*****

******** *
*

* *** ****
*** **
*******
** *

*
****** **** **
** **** ********* **
** *******
*** **
***

*
*
* ***

*
* *

********************

500 Observations with B Type Outliers

−5
0
5

10
15

0 10 20

******
***

**** **** ***
*****

*
******* *** ***

***
***** **

*
***

*** *
* *

**** ***
***** **
*
* *** **** *

*
**
** *** **** ***
*
**

**
***********

*** **
** *
***

*
*** ***

*
***
***

** **
***
**

*
**** ***** *** *** ***

*******
**
* ********* ****

**** **
*
*

** *** *
** ** *
************

*
*

* *
* *

**
** ** *** **** *** **** ****** ** ****** ***** *** **** ***** **** **

****
*

**
** *******
*********
*
*** **** *** ** **

**** **
**

* *** **** **
********* *** **

** *
*
** ***
*
***

** ** ***
*** ***** ****
**** *** ** ***
****** * *

**** **
*
** ** *****
*
*
**** *** ** ***
*
****
****
***

**************************************************

** ****
***

**** **** ***
*****

*
******* *** ***

***
***** **

*
***

*** *
* *

**** ***
***** **
*
* *** **** *

*
**
** *** **** ***
*
**

**
***********

*** **
** *
***

*
*** ***

*
***
***

** **
***
**

*
**** ***** *** *** ***

*******
**
* ********* ****

**** **
*
*

** *** *
** ** *
************

*
*

* *
* *

**
** ** *** **** *** **** ****** ** ****** ***** *** **** ***** **** **

****
*

**
** *******
*********
*
*** **** *** ** **

**** **
**

* *** **** **
********* *** **

** *
*
** ***
*
***

** ** ***
*** ***** ****
**** *** ** ***
****** * *

**** **
*
** ** *****
*
*
**** *** ** ***
*
****
****
***

**************************************************

** ****
***

**** **** ***
*****

*
******* *** ***

***
***** **

*
***

*** *
* *

**** ***
***** **
*
* *** **** *

*
**
** *** **** ***
*
**

**
***********

*** **
** *
***

*
*** ***

*
***
***

** **
***
**

*
**** ***** *** *** ***

*******
**
* ********* ****

**** **
*
*

** *** *
** ** *
************

*
*

* *
* *

**
** ** *** **** *** **** ****** ** ****** ***** *** **** ***** **** **

****
*

**
** *******
*********
*
*** **** *** ** **

**** **
**

* *** **** **
********* *** **

** *
*
** ***
*
***

** ** ***
*** ***** ****
**** *** ** ***
****** * *

**** **
*
** ** *****
*
*
**** *** ** ***
*
****
****
***

**************************************************

Fig. 6. The separating surfaces from three different models. The green line represents the
boundary from the Brooks’ SVMIP1 (2.14) surface, blue from the Brooks’ SVMIP2
(2.15) surface, and black from the dual SVM model.

48



60 Observations with A Type Outliers

−5
0
5

10
15

0 10 20

** *** ** *************** *
*

*** ***

*

*

*

*** ***
** **** **

***
*** ****

*

*

*

** *** ** *************** *
*

*** ***

*

*

*

*** ***
** **** **

***
*** ****

*

*

*

100 Observations with A Type Outliers

−5
0
5

10
15

0 10 20

*** **
***
*** ** *****
**

*** *
*
* ******** ****

*

*

* *
*

*** **
*
** *******
******
*

**
** **

*
*
*** ***** *

******* *** ***

* *

*

*

* *** **
***
*** ** *****
**

*** *
*
* ******** ****

*

*

* *
*

*** **
*
** *******
******
*

**
** **

*
*
*** ***** *

******* *** ***

* *

*

*

*

200 Observations with A Type Outliers

−5
0
5

10
15

0 10 20

* *******
*****

***
***
*

*
* **
*

***
***** **** *

*******
**
*

******
* **

*
*****

*
****
***

*
** * **** **

***
**** **** **

**
*

* **

*

*

*

**

*

*
** *** ****
* ** ***** *** **

*
* *** *** *

* ************** **
*
** ***** ***** ***** *

* **
** **

****** ** *

*

*

*

*

*

*

*

*

*

*

* *******
*****

***
***
*

*
* **
*

***
***** **** *

*******
**
*

******
* **

*
*****

*
****
***

*
** * **** **

***
**** **** **

**
*

* **

*

*

*

**

*

*
** *** ****
* ** ***** *** **

*
* *** *** *

* ************** **
*
** ***** ***** ***** *

* **
** **

****** ** *

*

*

*

*

*

*

*

*

*

*

500 Observations with A Type Outliers

−5
0
5

10
15

0 10 20

****** ****
**** **
**** *
*** ********* **** ** ***

***
*

*
*
** *
**

*
*

***
**** ***** *******

*** * **
*
***** *
*

* *** ****** ** ** *
**

* * ***
** ****** * **** *****
*
** *** **** **** ***

****
*

* **
*
* ** ***
*
**
*

***
* **** ***** *** ****** *

*
*** ****** ** ****
*****
**

***
**

****

*

*

*

*

*
*

*

*

*

*

* **

*

*

**

*
*

*

*

*

*

*

*
**** **
*

*
***

*
*

**
* *** ***

** ***** **
***

* ****
*** ***

* *** ***
*
* ** ******* **** *

*
*** ***

*
*
******* *
*

******* ***** ** *
*** ******* ******* *****

* *** ***
*

* ** **
**

**** **
* ****** *** **
***** ***** **** **
**
*
******
***

* **** ******* ***** *
*** ******* ********** **** *

*** *
*

*

*

**

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

* *

****** ****
**** **
**** *
*** ********* **** ** ***

***
*

*
*
** *
**

*
*

***
**** ***** *******

*** * **
*
***** *
*

* *** ****** ** ** *
**

* * ***
** ****** * **** *****
*
** *** **** **** ***

****
*

* **
*
* ** ***
*
**
*

***
* **** ***** *** ****** *

*
*** ****** ** ****
*****
**

***
**

****

*

*

*

*

*
*

*

*

*

*

* **

*

*

**

*
*

*

*

*

*

*

*
**** **
*

*
***

*
*

**
* *** ***

** ***** **
***

* ****
*** ***

* *** ***
*
* ** ******* **** *

*
*** ***

*
*
******* *
*

******* ***** ** *
*** ******* ******* *****

* *** ***
*

* ** **
**

**** **
* ****** *** **
***** ***** **** **
**
*
******
***

* **** ******* ***** *
*** ******* ********** **** *

*** *
*

*

*

**

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

* *

60 Observations with B Type Outliers

−5
0
5

10
15

0 10 20

* **** ****
* **

*
* ********** **** *** *** *******

*
**** ** ** ****

******

* **** ****
* **

*
* ********** **** *** *** *******

*
**** ** ** ****

******

100 Observations with B Type Outliers

−5
0
5

10
15

0 10 20

****
* *** **** *

*
***** * ** ** ***** ******
*

***** ***
* ** **
* ***** **
*
** ******

* *** *** **** ***** *
** *****

**********

****
* *** **** *

*
***** * ** ** ***** ******
*

***** ***
* ** **
* ***** **
*
** ******

* *** *** **** ***** *
** *****

**********

200 Observations with B Type Outliers

−5
0
5

10
15

0 10 20

*
*

* **** *
***
**** *******

* *** ***** ** *** **** **** * **** **
****
*** ***** ****

**** **** * **
** *** ***
*****

******** *
*

* *** ****
*** **
*******
** *

*
****** **** **
** **** ********* **
** *******
*** **
***

*
*
* ***

*
* *

********************

*
*

* **** *
***
**** *******

* *** ***** ** *** **** **** * **** **
****
*** ***** ****

**** **** * **
** *** ***
*****

******** *
*

* *** ****
*** **
*******
** *

*
****** **** **
** **** ********* **
** *******
*** **
***

*
*
* ***

*
* *

********************

500 Observations with B Type Outliers

−5
0
5

10
15

0 10 20

******
***

**** **** ***
*****

*
******* *** ***

***
***** **

*
***

*** *
* *

**** ***
***** **
*
* *** **** *

*
**
** *** **** ***
*
**

**
***********

*** **
** *
***

*
*** ***

*
***
***

** **
***
**

*
**** ***** *** *** ***

*******
**
* ********* ****

**** **
*
*

** *** *
** ** *
************

*
*

* *
* *

**
** ** *** **** *** **** ****** ** ****** ***** *** **** ***** **** **

****
*

**
** *******
*********
*
*** **** *** ** **

**** **
**

* *** **** **
********* *** **

** *
*
** ***
*
***

** ** ***
*** ***** ****
**** *** ** ***
****** * *

**** **
*
** ** *****
*
*
**** *** ** ***
*
****
****
***

**************************************************

** ****
***

**** **** ***
*****

*
******* *** ***

***
***** **

*
***

*** *
* *

**** ***
***** **
*
* *** **** *

*
**
** *** **** ***
*
**

**
***********

*** **
** *
***

*
*** ***

*
***
***

** **
***
**

*
**** ***** *** *** ***

*******
**
* ********* ****

**** **
*
*

** *** *
** ** *
************

*
*

* *
* *

**
** ** *** **** *** **** ****** ** ****** ***** *** **** ***** **** **

****
*

**
** *******
*********
*
*** **** *** ** **

**** **
**

* *** **** **
********* *** **

** *
*
** ***
*
***

** ** ***
*** ***** ****
**** *** ** ***
****** * *

**** **
*
** ** *****
*
*
**** *** ** ***
*
****
****
***

**************************************************

Fig. 7. The separating surfaces from two different models. The green line represents the
boundary from Mangasarian’s linear SVM formulation (2.4) regularized by |u| in
blue and equivalent formulation but with ramp loss in green.
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Fig. 8. The separating surfaces from two different models. The green line repre-
sents the boundary from Mangasarian’s linear formulation (2.4) regularized by∣∣∣∑n

j=0

∑n
i=0 (yiK (xi,xj) yi)

∣∣∣ in blue and equivalent formulation but with ramp loss
in green.
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Fig. 9. The separating surfaces from two different models. The green line represents the
boundary from Kecman’s linear formulation (2.5) in green and equivalent formula-
tion but with ramp loss in green.
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Fig. 10. The separating surfaces from two different models. The green line represents the
boundary from Zhou’s linear formulation (2.9) in green and equivalent formulation
but with ramp loss in green.
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Fig. 11. Dot plots of the time in seconds to find the best solution to each mixed-integer classification problem. The plots are
grouped by outlier class and sorted from longest to shorts time for finding the best solution.
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Appendix A

CROSS VALIDATION RESULTS ON MICROBIOME DATA

Table 3 list the results from parameter tuning of the support vector machines from 582

observations of microbiome data described in Chapter 4. This data waw split up at random

into testing and validation sets first in which 30% of the data (175 observations) left for

testing, leaving 407 observations for validation and parameter tuning. The performance

from the 10-fold cross-validation are shown in follow tables: Table 4 for linear kernel or

primal problems starting on 56; Table 5 for the Gaussian kernel problems starting on 57;

and Table 6 for the Polynomial kernel problems starting on 57. Each of these tables has a

column with a formulation number on it; each of these numbers correspond to a Support

Vector Machine listed in Table 3.
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Table 3. Microbiome Throat vs. Tongue Paramater Tuning Results

Support Vector Machine
Paramaters

Equation
Reference

Cross
Reference

Linear Gaussian Polynomial
C C γ C α β π

Brooks’ Ramp Loss SVM
w/ Primal Variables

(2.14) 1
1000

N/A
90.9%

Brooks’ Ramp Loss SVM
w/ Dual Variables

(2.15) 2
10000 100 1 0.1 1 5 6
90.2% 90.2% 90.4%

Ramp Loss Generalized SVM
Regularized by |u| (3.3) 3

10 100 10 1 5 1 6
86.7% 82.8% 79.9%

Ramp Loss Generalized SVM
Regularized by

∑n
j=1 (

∑n
i=1 (yiK (xi,xj)ui))

(3.4) 4
1000 100 1 1 5 100 2

89.9% 88.5% 89.9%

Ramp Loss Kecman SVM (3.5) 5
10

N/A
89.2%

Ramp Loss Zhou SVM (3.6) 6
0.01 0.01 1 0.01 1 0 2

88.5% 87.7% 83.5%

Traditional Dual SVM (1.5) 10
10000 100 1 0.01 0.1 10 6
90.2% 88.7% 90.4%

Generalized SVM
Regularized by |u| (2.4) 11

10 1 10 1 5 1 6
84.5% 82.8% 79.9%

Generalized SVM
Regularized by

∑n
j=1 (

∑n
i=1 (yiK (xi,xj)ui))

(2.4) 12
1000 100 1 10 5 10 2

90.2% 88.7% 91.2%

Kecman SVM (2.5) 13
100

N/A
91.2%

Zhou SVM (2.9) 14
10 0.01 0.1 0.1 1 0 6

84.5% 88.0% 84.8%
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Table 4.: Cross-Validation Results for Linear Kernel on

Saliva-Throat Phylotype Data

Formulation C truepos falsepos trueneg falseneg total Accuracy StdError LCL UCL

1 10000 178 20 191 18 407 0.907 0.0144 0.878 0.935

2 10000 21 1 16 3 41 0.902 0.0463 0.812 0.993

3 10 131 21 152 22 326 0.868 0.0187 0.831 0.905

4 1000 178 18 193 18 407 0.912 0.0141 0.884 0.939

5 10 183 40 171 13 407 0.870 0.0167 0.837 0.902

6 0.01 178 25 186 18 407 0.894 0.0152 0.864 0.924

10 100 178 18 193 18 407 0.912 0.0141 0.884 0.939

11 10 170 31 180 26 407 0.860 0.0172 0.826 0.894

12 1000 180 20 191 16 407 0.912 0.0141 0.884 0.939

13 100 181 17 194 15 407 0.921 0.0133 0.895 0.948

14 0.01 178 25 186 18 407 0.894 0.0152 0.864 0.924
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Table 5.: Cross-Validation Results for Gaussian Kernel on

Saliva-Throat Phylotype Data

Formulation C Gamma truepos falsepos trueneg falseneg total Accuracy StdError LCL UCL

2 100 1 183 21 190 13 407 0.916 0.0137 0.890 0.943

3 10 10 167 34 177 29 407 0.845 0.0179 0.810 0.880

4 100 10 172 22 189 24 407 0.887 0.0157 0.856 0.918

6 0.01 0.1 178 26 185 18 407 0.892 0.0154 0.862 0.922

10 100 1 180 17 194 16 407 0.919 0.0135 0.892 0.945

11 10 10 167 32 179 29 407 0.850 0.0177 0.815 0.885

12 100 1 178 19 192 18 407 0.909 0.0142 0.881 0.937

14 0.01 0.1 178 26 185 18 407 0.892 0.0154 0.862 0.922

Table 6.: Results for Polynomial Kernel on Saliva-Throat

Phylotype Data

Formulation C Alpha Beta Pi truepos falsepos trueneg falseneg total Accuracy StdError LCL UCL

2 10 5 5 2 183 19 192 13 407 0.921 0.0133 0.895 0.948

575757



Table 6.: (continued)

Formulation C Alpha Beta Pi truepos falsepos trueneg falseneg total Accuracy StdError LCL UCL

3 10 5 1 6 169 40 171 27 407 0.835 0.0184 0.799 0.871

4 0.1 1 100 2 34 3 42 3 82 0.927 0.0288 0.870 0.983

6 0.01 1 0 2 164 14 197 32 407 0.887 0.0157 0.856 0.918

10 10 5 5 2 183 19 192 13 407 0.921 0.0133 0.895 0.948

11 10 5 1 6 169 40 171 27 407 0.835 0.0184 0.799 0.871

12 10 10 1 2 185 20 191 11 407 0.924 0.0131 0.898 0.950

14 0.01 1 0 2 164 14 197 32 407 0.887 0.0157 0.856 0.918

Table 7.: Results for Gaussian Kernel on Saliva-Throat Phy-

lotype

Formulation C Gamma Time Status Accuracy StdError LCL UCL

2 100 1 256.607 Best 0.909 0.0218 0.866 0.951

3 1 10 8.680 Best 0.886 0.0241 0.839 0.933

4 100 1 83.557 Best 0.909 0.0218 0.866 0.951
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Table 7.: (continued)

Formulation C Gamma Time Status Accuracy StdError LCL UCL

6 0.01 1 97.185 Best 0.903 0.0224 0.859 0.947

10 100 1 0.818 Optimal 0.909 0.0218 0.866 0.951

11 1 10 7.074 Optimal 0.886 0.0241 0.839 0.933

12 100 1 2.371 Optimal 0.931 0.0191 0.894 0.969

14 0.01 0.1 0.457 Optimal 0.903 0.0224 0.859 0.947

Table 8.: Results for Polynomial Kernel on Saliva-Throat

Phylotype

Formulation C Alpha Beta Time Status Accuracy StdError LCL UCL

2 0.1 1 5 146.553 Best 0.914 0.0212 0.873 0.956

3 1 5 1 225.838 Best 0.891 0.0235 0.845 0.938

4 1 5 100 92.622 Best 0.931 0.0191 0.894 0.969

6 0.1 10 0 1.923 Optimal 0.869 0.0255 0.819 0.919

10 0.01 0.1 10 0.807 Optimal 0.926 0.0198 0.887 0.965
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Table 8.: (continued)

Formulation C Alpha Beta Time Status Accuracy StdError lcl ucl

11 1 5 1 7.137 Optimal 0.891 0.0235 0.845 0.938

12 10 5 10 2.377 Optimal 0.920 0.0205 0.880 0.960

14 0.1 1 0 1.645 Optimal 0.869 0.0255 0.819 0.919
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CHAPTER 6

RESULTS ON SIMULATED DATA

The cross-validation results for simulated data described in Chapter 4 are shown in Tables 9

and 10 for type A and B outlier infused training data test sets. Descriptions of the distribu-

tion of these two types of data sets can be found in Chapter 4 as well. The test set consists

of 50,000 observations distributed randomly of each class, only without any outlier obser-

vations. The results of the classifier training indicate that the Type B outliers do influence

the classic SVM model towards the null solution, therefore some form of robustness in the

model. Some of the training was performed twice inadvertently, that explains the rows in

Tables 9 and 10 that list 100,000 as the number of tested observations.

The accuracies listed Tables 9 and 10 are the overall accuracy of 5 runs per training

data type for each variable and observation count setting. The formulation number can be

found in Appendix A in Table 3, where Formulations 1 and 2 represent Brooks’ ramp loss

SVM, 3 through 6 represent linearized SVM with ramp loss making each a MIP, 10 being

the standard dual SVM formulation, and 11 through 14 are linearized SVM.

The last two tables, Tables 11 and 12, in this appendix are the validation results for

classification performance for simulation data with Type A and B outliers respectively.

These tables differ from Tables 9 and 10 in that they only contain the overall accuracy of

the resulting discriminant, as well as time to completion and status of the program session.

The status has two results indicated by a number, these are Gurobi status codes, which are

2 for an ”optimal solution” and 9 for ”time limit elapsed”.
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Table 9.: 10-fold Cross-Validation results on Simulated Data

of Type A

Formulation Variables Observations C Truepos Falsepos Trueneg Falseneg Total Accuracy

1 2 60 0.01 195636 36115 213885 54364 500000 0.819

2 2 60 0.01 195636 36115 213885 54364 500000 0.819

3 2 60 100 125470 43154 106846 24530 300000 0.774

4 2 60 0.1 124201 32510 117490 25799 300000 0.806

5 2 60 0.1 199935 197071 52929 50065 500000 0.506

6 2 60 1 113742 91762 158238 136258 500000 0.544

10 2 60 100 248818 103804 196196 51182 600000 0.742

11 2 60 10 203167 73678 176322 46833 500000 0.759

12 2 60 0.01 208187 71082 178918 41813 500000 0.774

13 2 60 0.1 206248 66493 183507 43752 500000 0.780

14 2 60 1 232420 277364 222636 267580 1000000 0.455

1 5 60 0.01 202043 39728 210272 47957 500000 0.825

2 5 60 0.01 202043 39728 210272 47957 500000 0.825

3 5 60 10 41433 10349 39651 8567 100000 0.811
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Table 9.: (continued)

Formulation Variables Observations C Truepos Falsepos Trueneg Falseneg Total Accuracy

4 5 60 1 204452 55353 194647 45548 500000 0.798

5 5 60 10 132484 59469 190531 117516 500000 0.646

6 5 60 10 116511 103627 146373 133489 500000 0.526

10 5 60 0.01 198306 45584 204416 51694 500000 0.805

11 5 60 100 414404 126750 373250 85596 1000000 0.788

12 5 60 0.01 207389 56840 193160 42611 500000 0.801

13 5 60 10 207860 62545 187455 42140 500000 0.791

14 5 60 1 234194 163138 336862 265806 1000000 0.571

1 10 60 0.1 206930 52215 197785 43070 500000 0.809

2 10 60 0.1 206930 52215 197785 43070 500000 0.809

3 10 60 100 38923 14396 35604 11077 100000 0.745

4 10 60 0.1 202622 62642 187358 47378 500000 0.780

5 10 60 0.1 189251 54275 195725 60749 500000 0.770

6 10 60 0.1 151308 94368 155632 98692 500000 0.614

10 10 60 0.1 176705 54545 195455 73295 500000 0.744
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Table 9.: (continued)

Formulation Variables Observations C Truepos Falsepos Trueneg Falseneg Total Accuracy

11 10 60 100 365998 125370 374630 134002 1000000 0.741

12 10 60 0.1 191816 67042 182958 58184 500000 0.750

13 10 60 1 377712 131566 368434 122288 1000000 0.746

14 10 60 0.1 135433 101949 148051 114567 500000 0.567

1 2 100 0.01 210902 43365 206635 39098 500000 0.835

2 2 100 1 414326 79824 420176 85674 1000000 0.835

3 2 100 0.01 150000 150000 100000 100000 500000 0.500

4 2 100 0.1 210248 41338 208662 39752 500000 0.838

5 2 100 0.1 167074 104479 145521 82926 500000 0.625

6 2 100 1 119017 93188 156812 130983 500000 0.552

10 2 100 0.1 211090 45091 204909 38910 500000 0.832

11 2 100 100 406182 72678 427322 93818 1000000 0.834

12 2 100 0.1 204842 37476 212524 45158 500000 0.835

13 2 100 10 205089 37870 212130 44911 500000 0.834

14 2 100 0.01 123086 56883 193117 126914 500000 0.632
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Table 9.: (continued)

Formulation Variables Observations C Truepos Falsepos Trueneg Falseneg Total Accuracy

1 5 100 0.01 206244 43306 206694 43756 500000 0.826

2 5 100 0.1 208684 46391 203609 41316 500000 0.825

3 5 100 100 82826 20760 79240 17174 200000 0.810

4 5 100 1 163481 41398 158602 36519 400000 0.805

5 5 100 10 132753 80521 169479 117247 500000 0.604

6 5 100 1 121019 113107 136893 128981 500000 0.516

10 5 100 0.01 201306 44262 205738 48694 500000 0.814

11 5 100 100 411960 95632 404368 88040 1000000 0.816

12 5 100 0.1 206574 47423 202577 43426 500000 0.818

13 5 100 1 412080 95928 404072 87920 1000000 0.816

14 5 100 0.01 102087 98482 151518 147913 500000 0.507

1 10 100 0.1 203211 48229 201771 46789 500000 0.810

2 10 100 10 41007 9352 40648 8993 100000 0.817

3 10 100 100 196259 57089 192911 53741 500000 0.778

4 10 100 100 200798 58328 191672 49202 500000 0.785
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Table 9.: (continued)

Formulation Variables Observations C Truepos Falsepos Trueneg Falseneg Total Accuracy

5 10 100 10 198029 93158 156842 51971 500000 0.710

6 10 100 0.1 122794 70018 179982 127206 500000 0.606

10 10 100 0.01 202595 54302 195698 47405 500000 0.797

11 10 100 100 397916 112252 387748 102084 1000000 0.786

12 10 100 0.1 196877 53975 196025 53123 500000 0.786

13 10 100 1 398112 112126 387874 101888 1000000 0.786

14 10 100 0.01 145957 109863 140137 104043 500000 0.572

1 2 200 0.1 207637 37809 212191 42363 500000 0.840

2 2 200 0.1 207011 37331 212669 42989 500000 0.839

3 2 200 10 40379 9333 40667 9621 100000 0.810

4 2 200 10 211420 41597 208403 38580 500000 0.840

5 2 200 0.1 95950 53196 196804 154050 500000 0.586

6 2 200 1 121349 146963 103037 128651 500000 0.449

10 2 200 0.01 40787 6691 43309 9213 100000 0.841

11 2 200 100 412100 78128 421872 87900 1000000 0.834
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Table 9.: (continued)

Formulation Variables Observations C Truepos Falsepos Trueneg Falseneg Total Accuracy

12 2 200 0.1 205349 38479 211521 44651 500000 0.834

13 2 200 1 411092 77346 422654 88908 1000000 0.834

14 2 200 0.1 121860 111024 138976 128140 500000 0.522

1 5 200 0.01 204564 41775 208225 45436 500000 0.826

2 5 200 0.01 211810 52309 197691 38190 500000 0.819

3 5 200 100 199111 42120 207880 50889 500000 0.814

4 5 200 100 204287 45854 204146 45713 500000 0.817

5 5 200 0.1 129821 43834 206166 120179 500000 0.672

6 5 200 0.1 122735 95191 154809 127265 500000 0.555

10 5 200 0.01 87303 21184 78816 12697 200000 0.831

11 5 200 100 409918 95480 404520 90082 1000000 0.814

12 5 200 0.01 206616 46401 203599 43384 500000 0.820

13 5 200 100 410486 95916 404084 89514 1000000 0.815

14 5 200 1 245256 273000 227000 254744 1000000 0.472

1 10 200 0.01 208286 47722 202278 41714 500000 0.821
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Table 9.: (continued)

Formulation Variables Observations C Truepos Falsepos Trueneg Falseneg Total Accuracy

2 10 200 0.1 203962 49176 200824 46038 500000 0.810

3 10 200 100 235955 59834 240166 64045 600000 0.794

4 10 200 0.1 207463 53398 196602 42537 500000 0.808

5 10 200 1 188018 133457 116543 61982 500000 0.609

6 10 200 0.1 123234 74679 175321 126766 500000 0.597

10 10 200 0.01 164945 43317 156683 35055 400000 0.804

11 10 200 100 398976 108078 391922 101024 1000000 0.791

12 10 200 0.01 203022 55018 194982 46978 500000 0.796

13 10 200 0.1 201177 55625 194375 48823 500000 0.791

14 10 200 0.01 172489 70551 179449 77511 500000 0.704

1 2 500 0.01 212883 46271 203729 37117 500000 0.833

2 2 500 0.1 210965 44882 205118 39035 500000 0.832

3 2 500 10 151566 111305 138695 98434 500000 0.581

4 2 500 100 202656 42763 207237 47344 500000 0.820

5 2 500 0.1 205499 193888 56112 44501 500000 0.523
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Table 9.: (continued)

Formulation Variables Observations C Truepos Falsepos Trueneg Falseneg Total Accuracy

6 2 500 0.1 123260 140839 109161 126740 500000 0.465

10 2 500 0.1 214230 45336 204664 35770 500000 0.838

11 2 500 100 419188 80070 419930 80812 1000000 0.839

12 2 500 1 419900 80746 419254 80100 1000000 0.839

13 2 500 1 420162 81004 418996 79838 1000000 0.839

14 2 500 0.1 123638 106232 143768 126362 500000 0.535

1 5 500 0.01 204854 43027 206973 45146 500000 0.824

2 5 500 10 158709 31207 168793 41291 400000 0.819

3 5 500 100 242013 91662 308338 157987 800000 0.688

4 5 500 10 189236 43243 206757 60764 500000 0.792

5 5 500 0.1 191388 100772 149228 58612 500000 0.681

6 5 500 1 125263 95038 154962 124737 500000 0.560

10 5 500 0.1 205884 41929 208071 44116 500000 0.828

11 5 500 100 408108 78208 421792 91892 1000000 0.830

12 5 500 0.01 204154 39229 210771 45846 500000 0.830
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Table 9.: (continued)

Formulation Variables Observations C Truepos Falsepos Trueneg Falseneg Total Accuracy

13 5 500 10 204156 39294 210706 45844 500000 0.830

14 5 500 0.1 124333 96848 153152 125667 500000 0.555

1 10 500 0.01 207238 44562 205438 42762 500000 0.825

2 10 500 10 160431 39588 160412 39569 400000 0.802

3 10 500 100 298194 76433 323567 101806 800000 0.777

4 10 500 0.01 200689 45429 204571 49311 500000 0.811

5 10 500 0.1 92603 14012 235988 157397 500000 0.657

6 10 500 0.1 124546 96763 153237 125454 500000 0.556

10 10 500 0.01 195212 38310 211690 54788 500000 0.814

11 10 500 100 402556 90730 409270 97444 1000000 0.812

12 10 500 0.01 201289 45179 204821 48711 500000 0.812

13 10 500 1 402500 91318 408682 97500 1000000 0.811

14 10 500 0.1 123963 110248 139752 126037 500000 0.527
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Table 10.: 10-fold Cross-Validation results on Simulated

Data of Type B

Formulation Variables Observations C Truepos Falsepos Trueneg Falseneg Total Accuracy

1 2 60 0.1 198940 33293 216707 51060 500000 0.831

2 2 60 0.1 198940 33293 216707 51060 500000 0.831

3 2 60 10 35064 5110 44890 14936 100000 0.800

4 2 60 0.1 119311 19300 130700 30689 300000 0.833

5 2 60 10 213987 196953 53047 36013 500000 0.534

6 2 60 10 120513 124335 125665 129487 500000 0.492

10 2 60 0.1 215424 221488 28512 34576 500000 0.488

11 2 60 100 384832 148246 351754 115168 1000000 0.737

12 2 60 0.1 191978 69449 180551 58022 500000 0.745

13 2 60 10 193238 72820 177180 56762 500000 0.741

14 2 60 0.1 115300 104695 145305 134700 500000 0.521

1 5 60 0.1 201317 37289 212711 48683 500000 0.828

2 5 60 0.1 201317 37289 212711 48683 500000 0.828

3 5 60 10 37738 7614 42386 12262 100000 0.801
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Table 10.: (continued)

Formulation Variables Observations C Truepos Falsepos Trueneg Falseneg Total Accuracy

4 5 60 0.01 82988 14699 85301 17012 200000 0.841

5 5 60 100 128361 130158 119842 121639 500000 0.496

6 5 60 0.1 121642 119572 130428 128358 500000 0.504

10 5 60 0.01 184861 186263 13737 15139 400000 0.496

11 5 60 100 287704 273042 226958 212296 1000000 0.515

12 5 60 0.1 147366 113109 136891 102634 500000 0.569

13 5 60 10 143890 119787 130213 106110 500000 0.548

14 5 60 0.1 117026 103217 146783 132974 500000 0.528

1 10 60 0.1 193573 38381 211619 56427 500000 0.810

2 10 60 0.1 193573 38381 211619 56427 500000 0.810

3 10 60 0.01 150000 150000 50000 50000 400000 0.500

4 10 60 0.01 80756 13628 86372 19244 200000 0.836

5 10 60 0.1 185160 155276 94724 64840 500000 0.560

6 10 60 1 120083 130659 119341 129917 500000 0.479

10 10 60 0.01 28146 28981 21019 21854 100000 0.492

727272



Table 10.: (continued)

Formulation Variables Observations C Truepos Falsepos Trueneg Falseneg Total Accuracy

11 10 60 0.1 0 0 250000 250000 500000 0.500

12 10 60 0.01 187635 120028 129972 62365 500000 0.635

13 10 60 0.1 177184 134314 115686 72816 500000 0.586

14 10 60 0.1 121538 143681 106319 128462 500000 0.456

1 2 100 0.01 197819 30707 219293 52181 500000 0.834

2 2 100 0.01 197323 30323 219677 52677 500000 0.834

3 2 100 0.01 250000 250000 0 0 500000 0.500

4 2 100 0.01 124762 22650 127350 25238 300000 0.840

5 2 100 10 159488 109187 140813 90512 500000 0.601

6 2 100 10 121519 91549 158451 128481 500000 0.560

10 2 100 0.01 250000 250000 0 0 500000 0.500

11 2 100 100 363494 135360 364640 136506 1000000 0.728

12 2 100 0.01 203840 40333 209667 46160 500000 0.827

13 2 100 0.1 193808 57194 192806 56192 500000 0.773

14 2 100 0.01 206150 44528 205472 43850 500000 0.823

737373



Table 10.: (continued)

Formulation Variables Observations C Truepos Falsepos Trueneg Falseneg Total Accuracy

1 5 100 0.01 196616 31467 218533 53384 500000 0.830

2 5 100 0.1 202045 38335 211665 47955 500000 0.827

3 5 100 0.01 50000 50000 0 0 100000 0.500

4 5 100 0.1 206815 45150 204850 43185 500000 0.823

5 5 100 0.1 156187 99097 150903 93813 500000 0.614

6 5 100 0.1 120774 99500 150500 129226 500000 0.543

10 5 100 0.01 216780 196368 53632 33220 500000 0.541

11 5 100 100 294030 263956 236044 205970 1000000 0.530

12 5 100 0.01 125075 52740 197260 124925 500000 0.645

13 5 100 0.1 157803 76586 173414 92197 500000 0.662

14 5 100 0.01 206615 52161 197839 43385 500000 0.809

1 10 100 0.1 198521 42148 207852 51479 500000 0.813

2 10 100 0.1 195826 38949 211051 54174 500000 0.814

3 10 100 100 139400 113392 136608 110600 500000 0.552

4 10 100 0.01 37680 4717 45283 12320 100000 0.830

747474



Table 10.: (continued)

Formulation Variables Observations C Truepos Falsepos Trueneg Falseneg Total Accuracy

5 10 100 10 115376 114183 135817 134624 500000 0.502

6 10 100 1 121985 96055 153945 128015 500000 0.552

10 10 100 0.1 137657 146128 103872 112343 500000 0.483

11 10 100 0.1 0 0 250000 250000 500000 0.500

12 10 100 0.01 126669 63207 186793 123331 500000 0.627

13 10 100 0.01 150000 150000 100000 100000 500000 0.500

14 10 100 0.01 155240 39214 210786 94760 500000 0.732

1 2 200 100 416926 77908 422092 83074 1000000 0.839

2 2 200 1 417268 77610 422390 82732 1000000 0.840

3 2 200 10 56783 25277 74723 43217 200000 0.658

4 2 200 0.1 42612 8491 41509 7388 100000 0.841

5 2 200 0.1 166495 167279 82721 83505 500000 0.498

6 2 200 0.1 123382 83889 166111 126618 500000 0.579

10 2 200 0.01 50000 50000 0 0 100000 0.500

11 2 200 100 328078 188670 311330 171922 1000000 0.639

757575



Table 10.: (continued)

Formulation Variables Observations C Truepos Falsepos Trueneg Falseneg Total Accuracy

12 2 200 0.1 172621 89140 160860 77379 500000 0.667

13 2 200 1 338766 173986 326014 161234 1000000 0.665

14 2 200 0.1 122957 116430 133570 127043 500000 0.513

1 5 200 0.1 198353 32753 217247 51647 500000 0.831

2 5 200 0.1 190650 29231 220769 59350 500000 0.823

3 5 200 100 249713 88224 261776 100287 700000 0.731

4 5 200 10 201068 35678 214322 48932 500000 0.831

5 5 200 0.1 184025 121575 128425 65975 500000 0.625

6 5 200 0.1 122860 139065 110935 127140 500000 0.468

10 5 200 0.01 50000 50000 0 0 100000 0.500

11 5 200 100 297394 183420 316580 202606 1000000 0.614

12 5 200 0.01 165337 29769 220231 84663 500000 0.771

13 5 200 0.1 160111 66587 183413 89889 500000 0.687

14 5 200 0.01 122293 108235 141765 127707 500000 0.528

1 10 200 0.01 194581 30402 219598 55419 500000 0.828

767676



Table 10.: (continued)

Formulation Variables Observations C Truepos Falsepos Trueneg Falseneg Total Accuracy

2 10 200 0.1 198128 38544 211456 51872 500000 0.819

3 10 200 100 141712 135862 164138 158288 600000 0.510

4 10 200 0.1 118123 23443 176557 81877 400000 0.737

5 10 200 0.1 128066 119943 130057 121934 500000 0.516

6 10 200 10 123567 103889 146111 126433 500000 0.539

10 10 200 0.01 156132 164228 35772 43868 400000 0.480

11 10 200 100 289940 273274 226726 210060 1000000 0.517

12 10 200 0.01 175801 75557 174443 74199 500000 0.700

13 10 200 0.1 144683 119227 130773 105317 500000 0.551

14 10 200 1 245876 257944 242056 254124 1000000 0.488

1 2 500 0.1 204804 35157 214843 45196 500000 0.839

2 2 500 1 406141 116337 383663 93859 1000000 0.790

3 2 500 100 26438 15545 34455 23562 100000 0.609

4 2 500 100 186544 26318 223682 63456 500000 0.820

5 2 500 0.1 166076 102368 147632 83924 500000 0.627

777777



Table 10.: (continued)

Formulation Variables Observations C Truepos Falsepos Trueneg Falseneg Total Accuracy

6 2 500 0.1 124314 82262 167738 125686 500000 0.584

10 2 500 0.01 200000 200000 0 0 400000 0.500

11 2 500 100 350252 158020 341980 149748 1000000 0.692

12 2 500 0.01 205381 39409 210591 44619 500000 0.832

13 2 500 0.1 195481 61248 188752 54519 500000 0.768

14 2 500 0.1 123706 119890 130110 126294 500000 0.508

1 5 500 1 407443 71213 428787 92557 1000000 0.836

2 5 500 0.1 166440 67216 182784 83560 500000 0.698

3 5 500 100 202943 163579 186421 147057 700000 0.556

4 5 500 10 151426 65109 184891 98574 500000 0.673

5 5 500 0.1 147486 103851 146149 102514 500000 0.587

6 5 500 1 124190 124547 125453 125810 500000 0.499

10 5 500 1 324460 328769 21231 25540 700000 0.494

11 5 500 100 307566 209506 290494 192434 1000000 0.598

12 5 500 0.01 182830 81089 168911 67170 500000 0.703

787878



Table 10.: (continued)

Formulation Variables Observations C Truepos Falsepos Trueneg Falseneg Total Accuracy

13 5 500 0.1 169063 90550 159450 80937 500000 0.657

14 5 500 0.01 124275 89235 160765 125725 500000 0.570

1 10 500 0.01 203239 36081 213919 46761 500000 0.834

2 10 500 0.1 174105 83507 166493 75895 500000 0.681

3 10 500 100 247528 193108 206892 152472 800000 0.568

4 10 500 0.1 187367 78149 171851 62633 500000 0.718

5 10 500 0.1 180954 124088 125912 69046 500000 0.614

6 10 500 1 124441 67289 182711 125559 500000 0.614

10 10 500 0.01 250000 250000 0 0 500000 0.500

11 10 500 100 339648 191756 308244 160352 1000000 0.648

12 10 500 0.01 193914 71873 178127 56086 500000 0.744

13 10 500 0.1 179919 89173 160827 70081 500000 0.681

14 10 500 1 248830 211180 288820 251170 1000000 0.538

797979



Table 11.: Test Results on Simulated Data of Type A

Attributes Observations Formulation C Time Status Accuracy LCL UCL

2 60 1 0.1 4.91e+01 2 0.799 0.797 0.802

2 60 2 10 1.08e+01 2 0.813 0.811 0.816

2 60 3 100 1.98e+01 2 0.814 0.812 0.816

2 60 4 0.1 1.42e+01 2 0.813 0.811 0.816

2 60 5 0.1 9.17e-02 2 0.500 0.497 0.503

2 60 6 1 3.90e-01 2 0.360 0.357 0.363

2 60 10 0.1 2.15e-03 2 0.744 0.741 0.747

2 60 11 0.1 3.18e-03 2 0.500 0.497 0.503

2 60 12 100 4.74e-03 2 0.756 0.754 0.759

2 60 13 0.01 9.99e-04 2 0.500 0.497 0.503

2 60 14 10 1.35e-03 2 0.688 0.685 0.691

2 100 1 0.01 6.05e+02 9 0.841 0.838 0.843

2 100 2 0.01 6.00e+02 9 0.841 0.838 0.843

2 100 3 0.01 6.00e+02 9 0.500 0.497 0.503

2 100 4 0.01 6.00e+02 9 0.834 0.832 0.837

808080



Table 11.: (continued)

Attributes Observations Formulation C Time Status Accuracy LCL UCL

2 100 5 0.1 1.14e-01 2 0.801 0.798 0.803

2 100 6 10 5.84e-01 2 0.371 0.368 0.374

2 100 10 0.01 3.09e-03 2 0.825 0.823 0.827

2 100 11 100 7.59e-03 2 0.837 0.834 0.839

2 100 12 0.01 1.20e-02 2 0.836 0.833 0.838

2 100 13 0.1 2.24e-03 2 0.834 0.832 0.836

2 100 14 0.01 4.42e-03 2 0.835 0.832 0.837

2 200 1 100 6.00e+02 9 0.842 0.840 0.844

2 200 2 1 6.00e+02 9 0.842 0.840 0.844

2 200 3 10 6.00e+02 9 0.834 0.832 0.836

2 200 4 0.1 6.00e+02 9 0.842 0.840 0.844

2 200 5 0.1 1.48e-01 2 0.500 0.497 0.503

2 200 6 1 1.09e+00 2 0.587 0.584 0.590

2 200 10 0.01 7.44e-03 2 0.837 0.835 0.839

2 200 11 100 1.08e-01 2 0.840 0.838 0.843

818181



Table 11.: (continued)

Attributes Observations Formulation C Time Status Accuracy LCL UCL

2 200 12 0.1 9.40e-02 2 0.839 0.837 0.841

2 200 13 1 7.33e-03 2 0.839 0.837 0.841

2 200 14 0.1 4.98e-03 2 0.630 0.627 0.633

2 500 1 0.1 6.00e+02 9 0.835 0.833 0.837

2 500 2 1 6.00e+02 9 0.835 0.833 0.837

2 500 3 100 6.00e+02 9 0.835 0.832 0.837

2 500 4 100 6.00e+02 9 0.835 0.833 0.837

2 500 5 0.1 7.52e-01 2 0.692 0.689 0.695

2 500 6 0.01 2.63e+02 2 0.500 0.497 0.503

2 500 10 0.01 2.95e-02 2 0.837 0.834 0.839

2 500 11 100 5.11e-01 2 0.836 0.834 0.839

2 500 12 0.01 7.08e-01 2 0.837 0.834 0.839

2 500 13 0.1 2.82e-02 2 0.836 0.834 0.839

2 500 14 0.1 1.36e-01 2 0.586 0.583 0.589

5 60 1 0.1 3.65e+01 2 0.831 0.829 0.833

828282



Table 11.: (continued)

Attributes Observations Formulation C Time Status Accuracy LCL UCL

5 60 2 0.1 7.63e+01 2 0.831 0.829 0.833

5 60 3 10 6.00e+02 9 0.788 0.785 0.791

5 60 4 0.01 3.45e+02 2 0.811 0.809 0.813

5 60 5 10 1.14e-01 2 0.658 0.655 0.661

5 60 6 0.1 3.22e+00 2 0.828 0.825 0.830

5 60 10 0.01 2.24e-03 2 0.828 0.826 0.830

5 60 11 100 4.45e-03 2 0.828 0.826 0.830

5 60 12 0.1 5.00e-03 2 0.828 0.826 0.830

5 60 13 10 1.21e-03 2 0.828 0.826 0.830

5 60 14 0.1 1.91e-03 2 0.305 0.302 0.308

5 100 1 0.01 6.00e+02 9 0.829 0.826 0.831

5 100 2 0.1 6.00e+02 9 0.823 0.821 0.825

5 100 3 0.01 6.00e+02 9 0.500 0.497 0.503

5 100 4 0.1 6.00e+02 9 0.794 0.791 0.796

5 100 5 0.1 1.13e-01 2 0.674 0.671 0.677

838383



Table 11.: (continued)

Attributes Observations Formulation C Time Status Accuracy LCL UCL

5 100 6 0.1 9.76e-01 2 0.416 0.413 0.419

5 100 10 0.01 3.10e-03 2 0.820 0.817 0.822

5 100 11 100 9.63e-03 2 0.814 0.812 0.817

5 100 12 0.01 1.64e-02 2 0.824 0.822 0.827

5 100 13 0.1 3.47e-03 2 0.803 0.800 0.805

5 100 14 0.01 5.05e-03 2 0.500 0.497 0.503

5 200 1 0.1 6.00e+02 9 0.812 0.809 0.814

5 200 2 0.1 6.00e+02 9 0.812 0.809 0.814

5 200 3 100 6.00e+02 9 0.804 0.802 0.807

5 200 4 10 6.00e+02 9 0.802 0.800 0.805

5 200 5 0.1 2.01e-01 2 0.504 0.501 0.507

5 200 6 1 1.85e+00 2 0.316 0.313 0.319

5 200 10 0.01 7.47e-03 2 0.785 0.782 0.788

5 200 11 100 1.19e-01 2 0.761 0.759 0.764

5 200 12 0.01 1.30e-01 2 0.781 0.778 0.783

848484



Table 11.: (continued)

Attributes Observations Formulation C Time Status Accuracy LCL UCL

5 200 13 0.1 7.28e-03 2 0.769 0.767 0.772

5 200 14 0.01 1.72e-02 2 0.637 0.634 0.640

5 500 1 1 6.00e+02 9 0.814 0.811 0.816

5 500 2 0.1 6.00e+02 9 0.814 0.812 0.816

5 500 3 100 6.00e+02 9 0.814 0.812 0.816

5 500 4 10 6.00e+02 9 0.814 0.811 0.816

5 500 5 0.1 7.51e-01 2 0.696 0.693 0.699

5 500 6 1 4.63e+00 2 0.632 0.629 0.635

5 500 10 1 3.34e-02 2 0.824 0.822 0.827

5 500 11 100 5.33e-01 2 0.829 0.827 0.831

5 500 12 0.01 7.06e-01 2 0.829 0.826 0.831

5 500 13 0.1 2.74e-02 2 0.829 0.827 0.831

5 500 14 1 1.49e-01 2 0.536 0.533 0.540

10 60 1 0.1 2.39e+00 2 0.817 0.815 0.819

10 60 2 0.1 1.03e+01 2 0.817 0.815 0.819

858585



Table 11.: (continued)

Attributes Observations Formulation C Time Status Accuracy LCL UCL

10 60 3 0.01 6.00e+02 9 0.500 0.497 0.503

10 60 4 0.01 2.83e+02 2 0.822 0.820 0.825

10 60 5 0.1 2.09e-01 2 0.805 0.803 0.807

10 60 6 10 1.00e+00 2 0.632 0.629 0.635

10 60 10 0.01 2.67e-03 2 0.783 0.780 0.785

10 60 11 0.1 5.55e-03 2 0.500 0.497 0.503

10 60 12 0.01 8.14e-03 2 0.747 0.744 0.749

10 60 13 0.1 1.83e-03 2 0.733 0.730 0.735

10 60 14 0.1 2.21e-03 2 0.404 0.401 0.407

10 100 1 0.1 6.00e+02 9 0.818 0.816 0.821

10 100 2 0.1 6.00e+02 9 0.818 0.816 0.821

10 100 3 100 6.00e+02 9 0.799 0.796 0.801

10 100 4 0.01 6.00e+02 9 0.819 0.816 0.821

10 100 5 1 1.94e-01 2 0.709 0.707 0.712

10 100 6 0.01 3.33e+00 2 0.706 0.703 0.709

868686



Table 11.: (continued)

Attributes Observations Formulation C Time Status Accuracy LCL UCL

10 100 10 0.1 1.18e-02 2 0.773 0.770 0.776

10 100 11 0.1 1.26e-02 2 0.500 0.497 0.503

10 100 12 0.01 2.52e-02 2 0.666 0.663 0.669

10 100 13 0.01 1.98e-03 2 0.500 0.497 0.503

10 100 14 0.01 4.04e-03 2 0.512 0.508 0.515

10 200 1 0.01 6.00e+02 9 0.829 0.827 0.831

10 200 2 0.1 6.00e+02 9 0.826 0.824 0.828

10 200 3 100 6.00e+02 9 0.827 0.824 0.829

10 200 4 0.1 6.00e+02 9 0.825 0.823 0.828

10 200 5 0.1 3.68e-01 2 0.734 0.732 0.737

10 200 6 100 3.12e+00 2 0.376 0.373 0.379

10 200 10 0.01 8.82e-03 2 0.832 0.830 0.834

10 200 11 100 1.10e-01 2 0.829 0.827 0.832

10 200 12 0.01 1.24e-01 2 0.830 0.828 0.833

10 200 13 0.1 8.40e-03 2 0.828 0.826 0.830

878787



Table 11.: (continued)

Attributes Observations Formulation C Time Status Accuracy LCL UCL

10 200 14 1 9.63e-03 2 0.376 0.373 0.379

10 500 1 0.01 6.00e+02 9 0.804 0.801 0.806

10 500 2 0.1 6.00e+02 9 0.773 0.770 0.775

10 500 3 100 6.00e+02 9 0.798 0.795 0.800

10 500 4 0.1 6.00e+02 9 0.790 0.788 0.793

10 500 5 0.1 1.57e+00 2 0.723 0.720 0.725

10 500 6 10 7.85e+00 2 0.681 0.679 0.684

10 500 10 0.01 3.89e-02 2 0.809 0.807 0.812

10 500 11 100 5.42e-01 2 0.809 0.807 0.812

10 500 12 0.01 8.71e-01 2 0.811 0.808 0.813

10 500 13 0.1 3.78e-02 2 0.804 0.802 0.807

10 500 14 1 1.38e-01 2 0.681 0.679 0.684

888888



Table 12.: Test Results on Simulated Data of Type B

Attributes Observations Formulation C Time Status Accuracy LCL UCL

2 60 1 0.1 2.22e+02 2 0.821 0.819 0.824

2 60 2 10 4.21e+01 2 0.812 0.810 0.815

2 60 3 100 1.03e+02 2 0.812 0.810 0.815

2 60 4 0.1 1.72e+02 2 0.822 0.820 0.824

2 60 5 1 1.06e-01 2 0.724 0.721 0.727

2 60 6 0.1 4.10e-01 2 0.311 0.309 0.314

2 60 10 0.1 9.44e-03 2 0.500 0.497 0.503

2 60 11 100 4.03e-03 2 0.806 0.804 0.809

2 60 12 0.1 5.37e-03 2 0.842 0.839 0.844

2 60 13 10 1.15e-03 2 0.806 0.804 0.809

2 60 14 0.1 1.42e-03 2 0.311 0.308 0.314

2 100 1 0.01 6.00e+02 9 0.837 0.835 0.840

2 100 2 0.1 6.00e+02 9 0.841 0.838 0.843

2 100 3 0.01 6.00e+02 9 0.500 0.497 0.503

2 100 4 0.1 6.00e+02 9 0.841 0.839 0.843

898989



Table 12.: (continued)

Attributes Observations Formulation C Time Status Accuracy LCL UCL

2 100 5 0.1 1.02e-01 2 0.761 0.758 0.763

2 100 6 0.1 5.83e-01 2 0.616 0.613 0.619

2 100 10 0.01 2.65e-03 2 0.500 0.497 0.503

2 100 11 100 9.46e-03 2 0.584 0.581 0.587

2 100 12 0.01 1.36e-02 2 0.831 0.828 0.833

2 100 13 0.1 2.34e-03 2 0.756 0.753 0.759

2 100 14 0.01 4.29e-03 2 0.807 0.805 0.810

2 200 1 100 6.00e+02 9 0.841 0.839 0.843

2 200 2 1 6.00e+02 9 0.841 0.839 0.843

2 200 3 10 6.00e+02 9 0.833 0.830 0.835

2 200 4 0.1 6.00e+02 9 0.837 0.835 0.839

2 200 5 0.1 1.60e-01 2 0.462 0.459 0.465

2 200 6 1 1.09e+00 2 0.537 0.533 0.540

2 200 10 0.01 6.81e-03 2 0.500 0.497 0.503

2 200 11 100 1.12e-01 2 0.449 0.446 0.452

909090



Table 12.: (continued)

Attributes Observations Formulation C Time Status Accuracy LCL UCL

2 200 12 0.1 9.46e-02 2 0.449 0.446 0.452

2 200 13 1 9.41e-03 2 0.449 0.446 0.452

2 200 14 0.1 8.00e-03 2 0.564 0.561 0.567

2 500 1 0.1 6.00e+02 9 0.838 0.835 0.840

2 500 2 1 6.00e+02 9 0.839 0.837 0.842

2 500 3 100 6.00e+02 9 0.837 0.835 0.840

2 500 4 100 6.00e+02 9 0.840 0.838 0.842

2 500 5 0.1 6.78e-01 2 0.760 0.757 0.763

2 500 6 0.01 2.41e+01 2 0.500 0.497 0.503

2 500 10 0.01 2.84e-02 2 0.500 0.497 0.503

2 500 11 100 5.28e-01 2 0.689 0.686 0.692

2 500 12 0.01 6.11e-01 2 0.842 0.840 0.844

2 500 13 0.1 3.26e-02 2 0.760 0.757 0.762

2 500 14 0.1 1.45e-01 2 0.568 0.565 0.571

5 60 1 0.1 3.36e+01 2 0.838 0.836 0.841

919191



Table 12.: (continued)

Attributes Observations Formulation C Time Status Accuracy LCL UCL

5 60 2 0.1 7.69e+01 2 0.838 0.836 0.841

5 60 3 10 6.00e+02 9 0.826 0.824 0.828

5 60 4 0.01 6.00e+02 9 0.840 0.837 0.842

5 60 5 10 1.07e-01 2 0.776 0.774 0.779

5 60 6 0.1 6.12e-01 2 0.482 0.479 0.485

5 60 10 0.01 2.55e-03 2 0.500 0.497 0.503

5 60 11 100 5.81e-03 2 0.612 0.609 0.615

5 60 12 0.1 6.48e-03 2 0.807 0.805 0.810

5 60 13 10 1.70e-03 2 0.771 0.769 0.774

5 60 14 0.1 2.25e-03 2 0.677 0.674 0.680

5 100 1 0.01 6.00e+02 9 0.834 0.832 0.836

5 100 2 0.1 6.00e+02 9 0.837 0.835 0.839

5 100 3 0.01 6.00e+02 9 0.500 0.497 0.503

5 100 4 0.1 6.00e+02 9 0.837 0.834 0.839

5 100 5 0.1 1.12e-01 2 0.663 0.660 0.666

929292



Table 12.: (continued)

Attributes Observations Formulation C Time Status Accuracy LCL UCL

5 100 6 0.1 9.80e-01 2 0.570 0.567 0.573

5 100 10 0.01 2.65e-03 2 0.592 0.589 0.595

5 100 11 100 1.35e-02 2 0.450 0.446 0.453

5 100 12 0.01 1.58e-02 2 0.500 0.497 0.503

5 100 13 0.1 3.18e-03 2 0.663 0.660 0.666

5 100 14 0.01 4.09e-03 2 0.793 0.790 0.795

5 200 1 0.1 6.00e+02 9 0.831 0.828 0.833

5 200 2 0.1 6.00e+02 9 0.831 0.828 0.833

5 200 3 100 6.00e+02 9 0.825 0.823 0.828

5 200 4 10 6.00e+02 9 0.828 0.826 0.830

5 200 5 0.1 1.68e-01 2 0.712 0.710 0.715

5 200 6 1 1.85e+00 2 0.530 0.527 0.533

5 200 10 0.01 7.45e-03 2 0.500 0.497 0.503

5 200 11 100 1.14e-01 2 0.598 0.595 0.601

5 200 12 0.01 1.21e-01 2 0.831 0.829 0.833
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Table 12.: (continued)

Attributes Observations Formulation C Time Status Accuracy LCL UCL

5 200 13 0.1 8.60e-03 2 0.722 0.719 0.724

5 200 14 0.01 1.64e-02 2 0.722 0.719 0.724

5 500 1 1 6.00e+02 9 0.840 0.838 0.843

5 500 2 0.1 6.00e+02 9 0.840 0.838 0.842

5 500 3 100 6.00e+02 9 0.835 0.833 0.837

5 500 4 10 6.00e+02 9 0.840 0.838 0.842

5 500 5 0.1 1.30e+00 2 0.767 0.764 0.770

5 500 6 1 4.63e+00 2 0.295 0.293 0.298

5 500 10 1 3.01e-02 2 0.500 0.497 0.503

5 500 11 100 5.36e-01 2 0.774 0.771 0.776

5 500 12 0.01 7.06e-01 2 0.826 0.823 0.828

5 500 13 0.1 3.56e-02 2 0.794 0.792 0.797

5 500 14 0.01 1.48e-01 2 0.535 0.532 0.538

10 60 1 0.1 3.53e+01 2 0.802 0.800 0.804

10 60 2 0.1 8.02e+01 2 0.802 0.800 0.804
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Table 12.: (continued)

Attributes Observations Formulation C Time Status Accuracy LCL UCL

10 60 3 0.01 6.00e+02 9 0.500 0.497 0.503

10 60 4 0.01 6.00e+02 9 0.836 0.834 0.838

10 60 5 0.1 1.10e-01 2 0.596 0.593 0.599

10 60 6 10 9.93e-01 2 0.493 0.490 0.496

10 60 10 0.01 2.42e-03 2 0.605 0.602 0.608

10 60 11 0.1 5.89e-03 2 0.500 0.497 0.503

10 60 12 0.01 8.28e-03 2 0.500 0.497 0.503

10 60 13 0.1 1.42e-03 2 0.641 0.638 0.644

10 60 14 0.1 2.57e-03 2 0.521 0.518 0.525

10 100 1 0.1 6.00e+02 9 0.827 0.825 0.829

10 100 2 0.1 6.00e+02 9 0.827 0.825 0.829

10 100 3 100 6.00e+02 9 0.789 0.786 0.792

10 100 4 0.01 6.00e+02 9 0.839 0.837 0.841

10 100 5 1 3.13e-01 2 0.645 0.642 0.648

10 100 6 0.01 1.62e+00 2 0.560 0.556 0.563
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Table 12.: (continued)

Attributes Observations Formulation C Time Status Accuracy LCL UCL

10 100 10 0.1 1.15e-02 2 0.573 0.570 0.576

10 100 11 0.1 1.16e-02 2 0.500 0.497 0.503

10 100 12 0.01 2.81e-02 2 0.841 0.838 0.843

10 100 13 0.01 1.90e-03 2 0.500 0.497 0.503

10 100 14 0.01 4.81e-03 2 0.823 0.820 0.825

10 200 1 0.01 6.00e+02 9 0.825 0.823 0.828

10 200 2 0.1 6.00e+02 9 0.804 0.802 0.807

10 200 3 0.01 6.00e+02 9 0.500 0.497 0.503

10 200 4 0.1 6.00e+02 9 0.808 0.806 0.811

10 200 5 0.1 2.66e-01 2 0.450 0.447 0.453

10 200 6 100 3.12e+00 2 0.559 0.556 0.562

10 200 10 0.01 1.01e-02 2 0.484 0.481 0.487

10 200 11 100 1.10e-01 2 0.467 0.464 0.470

10 200 12 0.01 1.23e-01 2 0.677 0.674 0.680

10 200 13 0.1 1.06e-02 2 0.446 0.443 0.449
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Table 12.: (continued)

Attributes Observations Formulation C Time Status Accuracy LCL UCL

10 200 14 1 1.04e-02 2 0.528 0.525 0.531

10 500 1 0.01 6.00e+02 9 0.830 0.828 0.833

10 500 2 0.1 6.00e+02 9 0.824 0.822 0.827

10 500 3 100 6.00e+02 9 0.829 0.826 0.831

10 500 4 0.1 6.00e+02 9 0.822 0.820 0.825

10 500 5 0.1 1.43e+00 2 0.566 0.563 0.569

10 500 6 10 7.85e+00 2 0.396 0.393 0.399

10 500 10 0.01 3.49e-02 2 0.500 0.497 0.503

10 500 11 100 5.56e-01 2 0.500 0.497 0.503

10 500 12 0.01 8.57e-01 2 0.580 0.577 0.583

10 500 13 0.1 4.24e-02 2 0.594 0.591 0.597

10 500 14 1 1.35e-01 2 0.517 0.514 0.520
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