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Abstract

LATENT VARIABLE MODELS GIVEN INCOMPLETELY OBSERVED SURROGATE OUT-

COMES AND COVARIATES

By Chunfeng Ren

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor
of Philosophy at Virginia Commonwealth University

Virginia Commonwealth University, 2014

Director: Yongyun Shin, Ph.D., Assistant Professor, Department of Biostatistics

Latent variable models (LVMs) are commonly used in the scenario where the outcome of the main

interest is an unobservable measure, associated with multiple observed surrogate outcomes, and

affected by potential risk factors. This dissertation develops an approach of efficient handling

missing surrogate outcomes and covariates in two- and three-level latent variable models. How-

ever, corresponding statistical methodologies and computational software are lacking efficiently

analyzing the LVMs given surrogate outcomes and covariates subject to missingness in the LVMs.

We analyze the two-level LVMs for longitudinal data from the National Growth of Health

Study where surrogate outcomes and covariates are subject to missingness at any of the levels. A

conventional method for efficient handling of missing data is to reexpress the desired model as

a joint distribution of variables, including the surrogate outcomes that are subject to missingness

conditional on all of the covariates that are completely observable, and estimate the joint model

by maximum likelihood, which is then transformed to the desired model. The joint model, how-

ever, identifies more parameters than desired, in general. The over-identified joint model produces

biased estimates of LVMs so that it is most necessary to describe how to impose constraints on



the joint model so that it has a one-to-one correspondence with the desired model for unbiased

estimation. The constrained joint model handles missing data efficiently under the assumption of

ignorable missing data and is estimated by a modified application of the expectation-maximization

(EM) algorithm.

There is evidence that reduced class size causes higher academic achievement for both African-

American and white students. African-American students benefit more than white students from

reduced class size. Studying the expected class size is interesting and contributes to moderate

differences in academic achievement between African-American and white students. To draw

causal inferences, three-level LVMs with an instrumental variable (IV) for the cluster-randomized

study from the Tennessee Class Size Study are developed where the class size as an IV and class

size as an endogenous regressor interacts with African-American student indicator. The approach

extends the three-level multivariate causal effect model (Shin and Raudenbush, 2011; Shin, 2012),

and is more powerful to identify causal effects and random effects across schools. The results show

that the reduced class size provides higher achievement scores for African-American students than

for white students, and there is no evidence that the causal minority differences are significantly

different across schools.
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1 Introduction

The missingness mechanism, in general, is of concern if the missingness is related to the study

variables. Little and Rubin (1987) categorized the mechanism into three classes: missing com-

pletely at random (MCAR), missing at random (MAR), and not missing at random (NMAR). Let

complete data Y = (Yobs, Ymis) where Yobs and Ymis are observed and missing variables, respec-

tively. Define a missing pattern matrix M with elements ones and zeros indicating the missing

values. The MCAR, MAR, and NMAR are defined as if M is independent of Y , given Yobs if M

is conditionally independent of Ymis, and if M associated with Y , respectively. This dissertation

is about maximum likelihood (ML) estimation of latent variable models (LVMs) in longitudinal or

cluster-randomized studies given multivariate observed continuous surrogate outcomes and covari-

ates MAR. The dissertation consists of four topics: the theoretical and practical investigation of

two-level LVMs given surrogate outcomes MAR, two-level LVMs given surrogate outcomes and

covariates MAR, three-level LVMs with surrogate outcomes MAR, and multivariate instrumental

variable (IV) estimators in three-level LVMs with IV and surrogate outcomes MAR.

Different observed surrogate outcomes are often used to characterize an overall effect of in-

terest. Specifically, the endpoint of the interest is a construct and cannot be directly measured.

Instead, various observed surrogate outcomes are measured with error from different perspectives

to quantify the overall endpoint (Pocock, Geller, and Tsiatis, 1987; Roy and Lin, 2000; Sammel

and Ryan, 1996). It is also interesting to examine the covariate effects on the endpoint. There

are some challenges to analyze this situation such as the chief unobservable endpoint, the various

observed surrogate outcomes subject to missingness, and some potential risk factors affecting the

central endpoint. The analysis of LVMs becomes most challenging if the covariates are also sub-

ject to missingness in longitudinal or high-level cluster-randomized studies and, to our knowledge,

little work has studied the effects in this scenario.
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Researchers commonly fit linear mixed models (LMM) for a single surrogate outcome in lon-

gitudinal studies. However, limited work has been done for multivariate surrogate outcomes. Some

analysts have combined the different surrogate outcomes into a single composite and others have

separately fitted the LMM for each of the surrogate outcomes. While simple and informative, the

former does not reflect the uncertainty of the overall variable, and the latter fails to capture the

correlation among the manifold surrogate outcomes. These univariate analyses are inefficient, not

powerful to identify coefficient effects as well as they may result in biased inferences. Some au-

thors have extended the LMM to multifarious surrogate outcomes by allowing that each surrogate

outcome had different covariate effects (Shah, Laird, Schoenfeld, 1997; Shin and Raudenbush,

2011; Shin, 2012). Although this approach is desirable in some applications, it does not account

for the feature that the different observed surrogate outcomes quantify the endpoint and is not ro-

bust enough to test coefficient effects or random effects unless a sample size is large enough. Roy

and Lin (2000) proposed the LVMs approach for multiple continuous surrogate outcomes repeat-

edly measured over time. This approach provided a straightforward way to test the global covariate

effects. It is useful for completely observed covariates or covariates MCAR. With the assumption

of data MCAR, this process is subject to loss of information: loss of precision and bias, unless

the missing data are MCAR or the completely observed observations are a random sample of all

observations. In addition, this approach ignores some possible systematic difference between the

total cases and incomplete cases. The biased conclusion becomes severe, in particular, with a small

number of completely observed cases.

Some researchers developed methods of estimation for incomplete data according to the like-

lihood function under a mild assumption MAR. Under this assumption, model-based methods for

missing data (Orchard and Woodbury, 1972), especially the expectation-maximization (EM) algo-

rithm (Dempster et. al., 1977; Wu, 1993), provide the efficient estimation of parameters of the

complete data through analysis of the observed data. The analysis of the LVMs, given surrogate

outcomes MAR, has been well-established in some existing software such as Amos (Arbuckle,

2



2003), EQS (Bentler, 2007), and Mplus (Muthén and Muthén, 2010). However, to my knowledge,

no work has been done given surrogate outcomes and covariates MAR for the LVMs in longitudi-

nal studies. The idea is to reexpress hierarchical models as a joint model with the joint distribution

of all variables and the surrogate outcomes subject to missingness, conditional on all completely

observed variables, and to estimate the joint model in the normality framework. The unconstrained

joint model over-identifies the LVMs so that it results in biased estimates. One-to-one transforma-

tions between the constrained joint model and LVMs are derived to correct the bias.

The examples that motivate the dissertation are National Growth of Health Study (NGHS) and

Tennessee’s Student/Teacher Achievement Ratio study (STAR). The NGHS was initiated in 1987

by the National Heart, Lung, and Blood Institute to study racial disparities in child obesity and

obesity-related diseases. Though physicians usually screen obesity or obesity-related diseases via

body mass index (BMI), a number of authors have detailed the disadvantages of BMI as a measure

of child obesity (Garn et. al, 1986; Livingstone, 2001; Wang, 2004). The disadvantages include:

(1) Unlike adults, children and adolescents have age- and gender- specific BMI. Consequently, nu-

tritional status is identified based on percentiles; (2) BMI reflects both fat and fat-free components

of body weight and it measures excess weight rather than excess fat; (3) No consensus cut-point

is used to define obesity in children and adolescents since BMI does not measure fat directly. The

definition of obesity is excess body fat and the other measures of body fat distribution, such as

percent body fat, waist circumference, and skinfolds can also account for child obesity. The STAR

randomly assigned teachers and students to small class size (13-17 classmates) and regular class

size (22-25 classmates) whose objectives included studying the causal effects of racial differences

in academic achievement. In these two studies, the two endpoints of our interest are child obesity

and academic achievement which are associated with multiple observed surrogate outcomes and

affected by some potential risk factors.

We consider the situation where surrogate outcomes measure two latent variables, child obesity

and academic achievement, with error from different perspectives in the two studies, respectively.

3



It is beneficial to use scoring to classify obesity or achievement via LVMs to identify subjects

with high obesity scores or low academic achievement. The approach provides optimal means

of combining information and allows empirical assessment of the validity of the measures. The

predictions for a unit not only depend on the measurement for that unit, but also rely on the likely

distribution of the latent variables for the population of units. Prediction for a given component

borrows strength from the measurements of other units because the latent variable distribution is

calculated using information from all components (Rubin, 1983; Morris, 1983).

We organize the remainder of the dissertation as follows. Chapter 2 investigates the risk fac-

tors of child obesity and identifies its surrogate outcomes via a modified parameter expansion EM

(PX-EM) algorithm based on the LVMs approach developed by Roy and Lin (2000) and the PX-

EM algorithm proposed by Liu, Rubin and Wu (1998). Chapter 3 extends the LVMs in Chapter 2

to two-level LVMs given surrogate outcomes and covariates subject to missingness at any of the

levels. An approach is developed efficiently to handle missing surrogate outcomes and covariates

and to obtain unbiased estimates in the LVMs. A simulation study illustrates that an unconstrained

joint model produces biased inference. The method is applied to NGHS to identify risk factors of

latent child obesity given surrogate outcomes and covariates MAR. Chapter 4 expands the two-

level LVMs to three-level LVMs for the STAR study where students nest within classes and classes

nest within schools. It analyzes that a treatment (small class size) effect decreases the race dif-

ferences of potential academic achievement. Chapter 5 continues three-level multivariate causal

effect models (Shin and Raudenbush, 2011; Shin, 2012) to three-level latent variable causal effect

models where class size as an IV and class size as an endogenous regressor interacts with African-

American student indicator. The model is more robust to identify causal effects and significant

differences randomly across schools than three-level multivariate causal effect models. Finally,

chapter 6 concludes the dissertation with a short discussion.

4



2 Identifying Covariate Effects on Child Obesity via a Latent Variable Approach Given

Incompletely Observed Biomarkers

2.1 Introduction

In the last three decades, obesity has increased rapidly among school-age children (Ogden et al.,

2002). Because child obesity is associated with seminal diseases, for example, hypertension (Sabo

et al., 2010), metabolic syndrome (Sun et al., 2008), cardiovascular diseases (Siervogel et al.,

2000), and type 2 diabetes (Dean and Flett, 2002), the increased rate of child obesity demotes

public health. It is well-known that an excess body fat defines obesity. Hu (2008) described

some easy, inexpensive, but inaccurate measures of body fat and some reliable, but expensive

means. The former includes body mass index (BMI), waist circumference, waist-to-hip ratio,

skinfold thicknesses, and bioelectric impedance. The latter consists of underwater weighing, air-

displacement plethysmography, dilution method, dual energy x-ray absorptiometry, computerized

tomography, and magnetic resonance imaging. Many researchers have tried to identify the risk

factors for child obesity which is measured by at least one of these surrogate outcomes (Biro

et al., 2003; Huenemann,1969; Tybor et al., 2010; Mahoney, 2011; Patterson et al., 1997; Sue

et al., 2005; Kiess, Marcus, and Wabitsch, 2008; Kriemler et al., 2010; Vani, 2007). Although

useful and simple, some of these surrogate outcomes do not differentiate the fat mass from body

mass, and some of them can be just measured with error. For example, BMI, the ratio of body

weight in kilograms to height in meters squared, is widely used to define obesity (BMI≥30) for

men and women (WHO, 2000). Consequently, it is a broadly examined outcome variable as a

surrogate body fat, but it is not an accurate assessment of body fat, in particular, for children and

adolescents (Krebs et al., 2007; Maynard et al., 2001; Prentice and Jebb, 2001). The BMI of a

muscular athlete, for example, will categorize the person as obese due to his/her heavy weight.

Many studies have reported that body fat distribution is a more powerful predictor of diseases than

5



BMI (Laurie, 2002; Bjorntorp, 1988; Maynard et al., 2001; Tybor et al., 2010; Zamboni et al.,

1992; Zeng et al., 2012). Other investigators analyzed the impact of covariates on multivariate

surrogate outcomes and viewed the observed surrogate outcomes as measures of the latent variable

with error (Sammel and Ryan, 1996; Pocock et al. 1987; Roy and Lin, 2000). Motivated by these

findings and considering no surrogate outcomes of obesity accurately measuring child obesity,

we use multiple observed surrogate outcomes to quantify child obesity and study its risk factors

simultaneously.

In this chapter, we implement simultaneous two-level LVMs: a measurement model where

multivariate surrogate outcomes measure the latent child obesity with error and a structural model

where the latent obesity is related to time-varying as well as time-invariant covariates (Laird and

Ware, 1982; Roy and Lin, 2000). The data for analysis include girls of age 9 to 19 years from

NGHS. National Heart, Lung, and Blood Institute initiated the NGHS to investigate ethnic dis-

parities in dietary, family, psychosocial and physical activity factors of obesity about 2,379 girls

in 1985. It collected data on development of obesity and factors associated with the development

from 1,213 African-American and 1,166 white girls. NGHS followed the subjects from 1987-1988

when they were 9 to 10 years old until 1996-1997 when they were 18 to 19 years old. The sub-

jects were assessed on development of obesity and related factors annually (Morrison, 1992). The

surrogate outcomes to describe the development of obesity are BMI, sum of skinfolds (SUMKIN),

maximum below waist circumference (MAXBLOAV), percent fat by skinfolds (PCTFATSF), per-

cent fat by bioelectrical impedance analysis (PFBIA), upper thigh circumference (UPTHIGAV),

waist circumference (WAISTMIN). Covariates found to influence the development of obesity are

age, race, number of parents in family, maturation stages, maximum parental education, household

income, TV watching, and overall physical activity pattern score. Girls were ages 9 to 10 years

at the first visit (1987-1988) and 18 to 19 years (1996-1997) at the tenth annual visit. Some girls

missed visits or at least one of the covariates. Consequently, in this longitudinal study, occasions

are nested within 2231 girls, and the number of times within each girl varies from one to seven
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visits. We estimate these models simultaneously to produce efficient inferences by ML via the EM

algorithm (Roy and Lin 2000). This process extends mixed linear models (Laird and Ware, 1982;

Shah, Laird and Schoenfiled, 1997) to LVMs that efficiently calculate parameters.

EM algorithm (Dempster, Laird and Rubin, 1977) and EM-type algorithms (Fessler and Hero,

1994; He and Liu, 2009; Meng and Rubin 1993; Meng and Van Dyk, 1998) are easy to pro-

gram and converge stably, but there are criticisms for their slow convergence. Many researchers

have developed algorithms to hasten the convergence of EM and EM-type algorithms, for exam-

ple, PX-EM algorithm (Liu, Rubin, and Wu, 1998), Aitken’s acceleration method (Laird, Lange

and Stram, 1987), conjugate gradient acceleration (Jamshidian and Jennrich, 1993), and Quasi-

Newtonian acceleration (Lang, 1995a, 1995b). Among these algorithms, the PX-EM algorithm

makes convergence dramatically faster than EM and EM-type algorithms and keeps their stability

with simple modifications (Lewandowski, Liu, and Wiel, 2010; Liu, Rubin, and Wu, 1998). Sem-

inal studies have implemented the algorithm to different scenarios (Gelman et al., 2008; Ghosh,

Reid, and Frasser, 2010; Lavielle and Meza, 2007; Liu and Wu, 1999; Martin, Hwang, and Liu,

2010; Martin, Zhang, and Liu, 2010; Qi and Jaakkola, 2007; Yu and Meng, 2010; Zhang and Liu,

2011), but no studies extended it to LVMs for identifying risk factors of child obesity.

The objectives of this chapter are (1) to identify surrogate outcomes associated with child obe-

sity, (2) to identify risk factors of child obesity, and (3) to define unit-specific scores of child

obesity. It is challenging to achieve these goals due to the unobservable obesity and the various

surrogate outcomes measured repeatedly over time with error. Section 2.2 introduces the LVMs.

Section 2.3 describes the EM and PX-EM algorithms. With the assumption of surrogate outcomes

MAR (Little and Rubin, 1987) or MCAR (Heitjan and Basu, 1996; Little and Rubin, 1987), Sec-

tion 2.4 analyzes the NGHS data via the two algorithms. Section 2.5 concludes the chapter with a

brief discussion. Finally, Section 2.6 describes detailed mathematical derivations.
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2.2 Models

This section introduces the LVMs (Roy and Lin, 2000). The structural model for the latent child

obesity is

Uik = Xikα + Zikai + εik, (2.1)

where Uik is a univariate latent variable of child obesity; Xik is a vector of covariates having

fixed effects α; and Zik is a vector of covariates having level-2 unit-specific random effects ai
iid∼

N(0, D) independent of a level-1 unit-specific random error εik
iid∼ N(0, 1) for level-1 unit or

occasion k = 1, · · · , ki nested within level-2 unit or girl i = 1, · · · , n. If the latent variable Uik

were observable, we would be able to estimate the model by standard multilevel software. With

the response variable unobservable, there are seven observable surrogate outcomes that are highly

correlated and predict the latent score with accuracy. That is, the latent score is related to the

surrogate outcomes by

Yijk = β0j + β1jUik + bij + eijk, (2.2)

where Yijk (j = 1, · · · , 7) are seven observable surrogate outcomes; βj = [β0j β1j]
T is a vector

of regression coefficients for the jth surrogate outcome; bij ∼ N(0, ξj) is a level-2 unit-specific

random effect independent of level-1 unit-specific random error eijk ∼ N(0, τj) for j = 1, · · · , 7.

To make parameters identifiable, we assume εik is distributed as N(0, 1) and Xik does not contain

an intercept. Figure 2.1 illustrates the feature of the models. At each time point, the vertical arrows

indicate the covariates Xik affect the latent variable Uik, which then affects the seven surrogate

outcomes (Yi1k Yi2k · · ·Yi7k). The coefficients α and β1j characterize the correlations of latent

variable Uik with covariates Xik and the jth observed surrogate outcomes Yijk, respectively. The

horizontal arrows show that how we model the random effects on the longitudinal multiple surro-

gate outcomes and the latent variable. Specifically, the jth random intercept bij is associated with

the jth surrogate outcome with variance parameter ξj and the random effect ai is associated with
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the latent variable Uik with covariance parameter D.

It is essential to aggregate the models at the individual level for deriving estimators and their

standard errors. DefineUi = [Ui1 Ui2 · · ·Uiki ]T , Yij = [Yij1 Yij2 · · ·Yijki ]T , and Yi = [Y T
i1 Y

T
i2 · · ·Y T

i7 ]T ,

with εi,Xi, ei, and Zi defined similarly. Let β0 = [β01 β02 · · · β07]T with β1 similarly defined. Then

we can write models (2.1) and (2.2) in matrix notation as

Yi = β0 ⊗ 1ki + β1 ⊗ Ui + bi ⊗ 1ki + ei,

Ui = Xiα + Ziai + εi,
(2.3)

where ⊗ represents Kronecker product (Walter and Samuel, 2007), bi = [bi1 bi2 · · · bi7]T follows

N(0, R) with R(ξ) = diag(ξ1, ξ2 · · · , ξ7)
∆
= ⊕7

j=1ξj . For the unit i, suppose we have kij ≤ ki

repeated measures on the jth surrogate outcome. Let Oij be an index matrix to indicate the time

points when the jth (j = 1, 2, · · · , 7) surrogate outcome is observed. Specifically, Oij is a kij × ki

matrix constructed by deleting rows of Iki which are corresponding to the missing observations on

the jth surrogate outcome. Hence, Y ◦ij = OijYij . Given Oi = ⊕7
j=1Oij , then the observed data

Y ◦i = OiYi. The observed aggregate model (2.3) can be expressed as

Y ◦i = Oi(β0 ⊗ 1ki + β1 ⊗ Ui + bi ⊗ 1ki + ei),

Ui = Xiα + Ziai + εi,
(2.4)

2.3 EM and PX-EM Algorithms

It is difficult to estimate the model (2.3) directly via its actual log likelihood since β1 enters both

the marginal mean and variance of Yi. Roy and Lin (2000) proposed the EM algorithm to esti-

mate the LVMs. One advantage of using EM algorithm is that the multiple observed surrogate

outcomes are conditionally independent given the latent variable. In the EM algorithm, we treat
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the latent variables Ui, the random effects ai and bi as missing data. Therefore, the complete data

are (Yi, Ui, ai, bi) and the observed data are Y ◦i . Given the initial values of the parameters, the EM

algorithm iterates between its E- and M-steps until convergence. The E-step takes expectations of

the sufficient statistics of the complete-data log likelihood, given the observed data. The M-step

maximizes the expected complete-data log likelihood given parameters from the previous iteration.

The method (see details in Sections 2.6.1 and 2.6.2) includes

E step: Calculate the conditional expectations related to Ui, ai, bi, eij , εi and UT
i eij;

M step: Maximize the model parameters from the complete-data log likelihood.

The variances of the parameter estimators are computed by the expected Fisher information matrix

(Section 2.6.3) based on the marginal log likelihood of the observed data Y ◦i at convergence. A

criticism of the EM algorithm is its slow convergence to maximum likelihood estimators (MLE).

Liu, Rubin, and Wu (1998) developed a PX-EM algorithm by extending EM algorithm. We im-

plement the PX-EM algorithm and extend it to the LVMs. The PX-EM algorithm is applied to the

models (2.1) and (2.2) where the only change is an extension of the parameter εik
iid∼ N(0, σ2). The

PX-EM algorithm (see details in Section 2.6.4) is

PX-E step: This is unchanged from EM;

PX-M step: Model parameters are estimated in the expanded space as

γt? =
(
βt0, β

t
1, αt, τt, Dt, ξt, σ

2
t

)
and then γt? is transformed to the desired model parameter space as

γt =

(
βt0, β

t
1σt,

αt
σt
, τt,

Dt

σ2
t

, ξt, σ
2 = 1

)
.
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2.4 Data Analysis

In this section, we analyze the NGHS data described in Section 2.1 through the EM and PX-EM

algorithms. First, we delineate how to choose the initial values of the two algorithms. Secondly,

we summarize the data for analysis. Finally, we interpret the results.

The algorithms iterate the E- and M-steps given the initial values of parameters. It is crucial to

choose their starting values carefully. In the LVMs, if we knew the latent variable, we could use

standard statistics approaches to evaluate the models. We first perform a principal component anal-

ysis (PCA) to estimate latent obesity scores, called common factors or factor scores. A weighted

least squares method is used to summarize the factor scores (Johnson and Winchern, 2007) based

on the first factor, which explains 90% of the sample variance. Defining the factor scores as the

latent scores and using PROC MIXED in SAS, we fit the models to estimate the initial values of

the algorithms. The carefully estimated initial values help accelerate the convergence to MLE.

An IML SAS program is written to implement the EM and PX-EM algorithms to estimate model

parameters and their standard errors. The convergence criterion is the difference in log likelihoods

of observed data between two-consecutive iterations, which is set as less than 10−6.

The seven surrogate outcomes are highly correlated with correlations ranging from 0.53 to 0.98,

and are useful to assess child obesity. Covariates associated with obesity include age, TV viewing

and video game playing (hours per week), physical activity, maturation stages (prepuberty, puberty,

post menarche,≥ 2 years post menarche), maximum parental education (high school or less, some

college or more), household yearly income (≤ $19, 999, $20, 000 − $39, 999, ≥ $40, 000), race

(white/black), and the number of parents in a family (two/one). We create dummy variables for the

maturation stages, maximum parental education, household income and race by using prepuberty,

high school or less, ≤ $19, 999, Black, and two-parent families as the references, respectively.

Table 2.1 displays the summary statistics of the surrogate outcomes for analysis. It indicates the

number of missing values up to 30.12% for upper thigh circumference. Therefore, it encourages
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to analyze the data assuming surrogate outcomes MAR.

The PX-EM algorithm converges 10 times faster than the EM-algorithm. We only present

the results generated by the PX-EM algorithm in Tables 2.2 and 2.3 because the EM algorithm

produces practically identical results. Table 2.2 shows the estimates of the random-intercept and

-coefficient model (2.1) with Zik = 1 and Zik = [1 Ageik], respectively. Under the assumption of

surrogate outcomes MCAR, the parameters are overestimated, and their standard errors are larger

than these under the assumption of surrogate outcomes MAR regardless of the random-intercept

or -coefficient model (2.1). Likelihood ratio tests, which has test statistics 184.38 and 2666.5∼ χ2
2

with p-value< 0.0001, indicate that the random-coefficient model fits more adequately than the

random-intercept model for both assumptions of surrogate outcomes MCAR and MAR, respec-

tively. Compared with the counterparts in the random-coefficient model (2.1) in both assumptions

of surrogate outcomes MCAR and MAR, the parameters in the random-intercept model (2.1) are

underestimated. Tables 2.3 and 2.4 list the estimates and their standard errors of the measurement

model (2.2) assuming surrogate outcomes MAR or MCAR under random-intercept and -coefficient

model (2.1). Our analysis shows all seven outcomes are positively associated with the latent child

obesity for both cases, but under the assumption of surrogate outcomes MCAR, it appears to un-

derestimate all β1j (j = 1, 2, · · · , 7)-the slopes of latent obesity for the seven surrogate outcomes.

In addition, the parameters in the model (2.2) are overestimated under the random-intercept model

(2.1) than the counterparts under the random-coefficient model (2.1).

In the following, we explain the results in Table 2.2 assuming surrogate outcomes MAR for

the random-coefficient model (2.1). The results show that controlling the other measures constant

in the model (2.1), on average, one unit addition to physical activity scores decreases child obe-

sity by 0.003 (p-value< 0.0001); girls’ obesity significantly changes from prepuberty stage to the

other three stages and units raise by 0.277 (p-value< 0.0001), 1.149 (p-value< 0.0001), and 1.191

(p-value< 0.0001), respectively; girls from families with household income greater than $40, 000

have 0.423 units (p-value=0.022) higher obesity scores than girls from families with lower house-
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hold income; girls from single-parent families have 0.393 units (p-value=0.005) higher obesity

scores than girls from two-parent families. However, unlike the overwhelming research, parental

education is not associated with child obesity. The effects of age and race are displayed in Figure

2.2 due to the significant effects of age squared and the interaction between age and race. Figure

2.2 indicates that controlling the other measures constant in the model (2.1), the latent obesity

scores for African-American students are higher than these for white students through age 9 to

19 and the difference of the latent obesity scores increases in age. It is of substantial interest to

identify subjects whose latent obesity scores are higher than some typical points. The feature of

the analysis provides the estimates of the latent obesity scores via posterior mean in equation (2.1)

that can identify the subjects with high obesity scores at each age. Figure 2.3 shows the estimated

unit-specific obesity score against age for African-American and white students. Subjects with the

highest obesity score are on the top of the figure. The 2.5th and 97.5th percentiles for age 9 to 19

are included in the graph so that subjects with the highest obesity score can be easily identified.

2.5 Discussion

In this chapter, we implemented the measurement model where seven surrogate outcomes mea-

sure latent child obesity with error and the structural model where the child obesity is related to

covariates (Roy and Lin, 2000). We analyzed girls with 9 to 19 years of age from NGHS and si-

multaneously estimated the models to yield efficient inferences by ML via the PX-EM algorithm.

The convergence to ML by the PX-EM algorithm was shown to be 10 times faster than that by

the conventional EM algorithm. Complete-case analysis stems from the loss of information in dis-

carding incomplete cases, which has the loss of precision and bias if missing surrogate outcomes

are not MCAR, and the complete cases are not a random sample for all cases. Assuming surrogate

outcomes MAR, we calculated the parameters by conditional on observed data to reduce bias due

to missingness and improve precision.
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Child obesity was positively associated with the seven surrogate outcomes. Age, race, TV

watching, physical activity, household income, maturation stages significantly were risk factors of

child obesity. Our findings indicated that household income was inversely associated with child

obesity, and some authors have reported this since 1969 (Huenemann, 1969; Sobal and Stunkard,

1989). These findings imply that a greater number of exercises is beneficial, increasing physical

activity and decreasing the daily hours to watch TV and play video games are recommended as

strategies for preventing obesity or obesity-related diseases in youth. Public funding of quality

physical education and sports facilities are also helpful to decrease the prevalence of obesity in

youth.

Though physicians screen overweight children through the 95th percentile of a BMI-for-age

chart, other variables of body fat distribution have been studied about their association with dis-

eases related to obesity. Roy and Lin (2000) concluded that it was challenging to perform global

testing for continuous outcomes because the outcomes were often measured at different scales and

units. The structural latent variable model provides a framework to address this issue and enables

a global examination of covariate effects on child obesity. The PX-EM algorithm has all advan-

tages of the EM algorithm, and, in addition, greatly speeds up the slow convergence of the EM

algorithm.

We should note some limitations in this section. This chapter is limited to analyze thoroughly

observed covariates. It will be interesting to investigate if ignoring the missing covariates leads to

biased inferences. However, it is not our intention here to discuss the problems in depth. The next

chapter analyzes the simultaneous equations and the latent obesity by handling missing surrogate

outcomes and covariates efficiently under the assumption of data MAR. Girls in NGHS were re-

cruited from three sites- San Francisco in California, Cincinnati in Ohio, and Washington, D.C.

Therefore, the inferences drawn are not for the general adolescent girls, nor are for boys.
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2.6 Miscellanea

2.6.1 Conditional Expectations in E-step

The conditional expectations in E-step are

Ũi = E(Ui|Y ◦i ) = Xiα + ΛT
i O

T
i (V ◦i )−1(Y ◦i − µ◦i ),

E(UT
i Ui|Y ◦i ) = ŨT

i Ũi + trace(cov(Ui|Y ◦i )),

ãi = E(ai|Y ◦i ) = (β1 ⊗ ZiD)TOT
i (V ◦i )−1(Y ◦i − µ◦i ),

E(aia
T
i |Y ◦i ) = ãiã

T
i +D − (β1 ⊗ ZiD)TOT

i (V ◦i )−1Oi(β1 ⊗ ZiD), (2.5)

b̃i = E(bi|Y ◦i ) = (R⊗ 1ki)
TOT

i (V ◦i )−1(Y ◦i − µ◦i ),

E(bib
T
i |Y ◦i ) = b̃ib̃

T
i +R− (R⊗ 1ki)

TOT
i (V ◦i )−1Oi(R⊗ 1ki),

cov(Ui, eij|Y ◦i ) = −ΛT
i O

T
i (V ◦i )−1Oiν

T ,

ε̃i = E(εi|Y ◦i ) = βT1 ⊗ IkiOT
i (V ◦i )−1(Y ◦i − µ◦i ),

ẽij = E(eij|Y ◦i ) = νOT
i (V ◦i )−1(Y ◦i − µ◦i ),

E(eTijeij|Y ◦i ) = ẽTij ẽij + trace(τjIki − νOT
i (V ◦i )−1Oiν

T ),

where
Λi = β1 ⊗ (Iki + ZiDZ

T
i ),

cov(Ui|Y ◦i ) = Iki + ZiDZ
T
i − ΛT

i O
T
i (V ◦i )−1OiΛi,

ν = [0ki×(j−1)ki τjIki 0ki×(7−j)ki ],

E(Yi) = µi = β0 ⊗ 1ki + β1 ⊗Xiα,

cov(Yi) = Vi = (β1β
T
1 )⊗ (Iki + ZiDZ

T
i ) +R⊗ (1ki1

T
ki

) +⊕7
j=1τjIki ,

µ◦i = Oiµi,

V ◦i = OiViO
T
i .
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2.6.2 Parameter Estimates in the M-step

The complete-data log likelihood for (Yi, Ui, bi, ai) is, apart from a constant,

l(β0, β1, α, ξ, τ,D) =
n∑
i=1

(l(Yi|Ui, bi) + l(Ui|ai) + l(ai) + l(bi)) , (2.6)

where ξ = [ξ1 ξ2 · · · ξ7], τ = [τ1 τ2 · · · τ7], and

l(Yi|Ui, bi) =
J∑
j=1

(
−ki

2
log τj −

1

2τj
ϑTϑ

)
,

l(Ui|ai) = −1

2
(Ui −Xiα− Ziai)T (Ui −Xiα− Ziai),

l(ai) = −1

2
(log |D|+ aTi D

−1ai),

l(bi) = −1

2
(log |R|+ bTi R

−1bi),

where ϑ = Yij − β0j1ki − Uiβ1j − bij1ki .

Differentiating (2.6) with respect to the parameters β0, β1, α, ξ, τ and D, respectively, taking

expectations of the resulting forms conditional to the observed data Y ◦i , setting them equal to zero,

and solving these equations, we know

β̂
(k)
j = β̂

(k−1)
j +

(
n∑
i=1

E(UT
i∗Ui∗|Y ◦i )

)−1 n∑
i=1

E(UT
i∗eij|Y ◦i ),

τ̂j =
1∑n
i=1 ki

×
n∑
i=1

E(eTijeij|Y ◦i ),

ξ̂j =
1

n

n∑
i=1

E(b2
ij|Y ◦i ), (2.7)

α̂(k) = α̂(k−1) +

(
n∑
i=1

XT
i Xi

)−1 n∑
i=1

XT
i ε̃i,

D̂ =
1

n

n∑
i=1

E(aia
T
i |Y ◦i ),
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where j = 1, · · · , 7, βj = [β0j β1j]
T , Ui∗ = [1ki Ui], E(b2

ij|Y ◦i ) is the jth diagonal element in

E(bib
T
i |Y ◦i ) and

E(UT
i∗Ui∗|Y ◦i ) =

 ki 1TkiŨi

1TkiŨi E(UT
i Ui|Y ◦i )

 ,
E(UT

i∗eij|Y ◦i ) =

 1Tki ẽij

Ũi
T
ẽij + tr(cov(Ui, eij|Y ◦i ))

 .

2.6.3 Calculations of the Information Matrix

The information matrix is obtained by differentiating twice the log likelihood for the observed data

Y ◦i with mean and variance given in (2.5) and taking the expectation of the resulting form. Let

Gi = Oi(I7⊗ 1ki), Hi = Oi(β1⊗Xi), and Mi = Oi(I7⊗Xiα). The expected information matrix

for the MLE of θ1 = (β0, β1, α) is

Iθ1θ1 =
n∑
i=1


GT
i (V ◦i )−1Gi GT

i (V ◦i )−1Mi GT
i (V ◦i )−1Hi

MT
i (V ◦i )−1Gi A+MT

i (V ◦i )−1Mi MT
i (V ◦i )−1Hi

HT
i (V ◦i )−1Gi HT

i (V ◦i )−1Mi HT
i (V ◦i )−1Hi

 , (2.8)

where A has its (i, k)th element 1
2
tr ((V ◦i )−1(∂V ◦i /∂β1i)× (V ◦i )−1(∂V ◦i /∂β1k)).

Let θ2 = (τ,D, ξ). Then we know

Iθ2iθ2k = 1
2

n∑
i=1

tr
(

(V ◦i )−1∂V
◦
i

∂θ2i

(V ◦i )−1 ∂V
◦
i

∂θ2k

)
,

Iθ2iβ1k = 1
2

n∑
i=1

tr
(

(V ◦i )−1∂V
◦
i

∂θ2i

(V ◦i )−1 ∂V
◦
i

∂β1k

)
,

(2.9)
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and Iθ2β0 = Iθ2α = 0, where

∂V ◦i
∂D

= Oi

(
(β1β

T
1 )⊗ (ZiZ

T
i )
)
OT
i ,

∂V ◦i
∂ξj

= Oi

(
(∆j∆

T
j )⊗ (1ki1

T
ki

)
)
OT
i ,

∂V ◦i
∂β1j

= Oi

(
(∆jβ

T
1 + β1∆T

j )⊗ (Iki + ZiDZ
T
i )
)
OT
i ,

∂V ◦i
∂τj

= Oi

(
(∆j∆

T
j )⊗ Iki

)
OT
i .

where ∆j is a 7× 1 vector with the jth element equal to one and zero otherwise.

2.6.4 Parameter Estimates in the PX-EM Algorithm

For the E-step in the PX-EM algorithm, besides all the conditional expectation in Section 2.6.1,

we also estimate the conditional expectations related to εi as

ε̃i = E(εi|Y ◦i ) = βT1 ⊗ (Ikiσ
2)OT

i (V ◦i )−1(Y ◦i − µ◦i ),

E(εTi εi|Y ◦i ) = ε̃Ti ε̃i + tr
(
σ2Iki − (βT1 ⊗ Iki)OT

i (V ◦i )−1Oi(β1 ⊗ Iki)
)
.

(2.10)

For the M-step in the PX-EM algorithm, the estimated parameters are β̂tj = β̂j with β̂tj = [β̂t0 β̂
t
1]T ,

α̂t = α̂, τ̂t = τ̂ , D̂t = D̂, ξ̂t = ξ̂ and σ̂2
t = 1∑n

i=1 ki

∑n
i=1 E(εTi εi|Y ◦i ). The estimated variances of

the parameters in the PX-EM algorithm are same as these in the EM algorithm.
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Figure 2.1: Illustration of the structure of the latent variable models

Table 2.1: Summary statistics of the seven surrogate outcomes

surrogate outcomes N Nmiss(%) Mean S.E.a

BMI 20580 320(1.53) 22.42 5.81

SUMSKIN 20104 796(3.81) 45.11 24.88

MAXBLOAV 18078 2822(13.50) 93.95 12.87

PCTFATSF 20322 578(2.77) 26.03 10.29

PFBIA 19419 1481(7.09) 24.59 17.86

UPTHIGAV 14604 6296(30.12) 53.61 8.88

WAISTMIN 18134 2766(13.23) 71.60 11.60

astandard error
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Table 2.2: Parameter estimates and their estimated standard errors in model (2.1)

Variables Random-intercept model Random-coefficient model

MCAR MAR MCAR MAR

age 0.475 (0.025) 0.365 (0.009) 0.656 (0.036) 0.531∗∗ (0.014)

age2 -0.048 (0.007) -0.010 (0.002) -0.056 (0.008) -0.013∗∗ (0.002)

age×white -0.043 (0.020) -0.076 (0.006) -0.080 (0.031) -0.125∗∗ (0.016)

TV viewing 0.006 (0.001) 0.005 (0.001) 0.007 (0.002) 0.005∗∗ (0.001)

physical activity -0.006 (0.002) -0.004 (0.001) -0.005 (0.002) -0.003∗ (0.001)

pubertal 0.418 (0.183) 0.027 (0.049) 0.629 (0.228) 0.277∗∗ (0.061)

postmenarchal 1.161 (0.200) 0.540 (0.070) 1.655 (0.252) 1.149∗∗ (0.087)

≥ 2 years post-menarchal 1.293 (0.222) 1.850 (0.086) 1.850 (0.279) 1.191∗∗ (0.106)

some college or more -0.054(0.161) -0.151 (0.122) -0.011 (0.207) 0.108 (0.144)

$20, 000− $39, 999 0.096(0.150) 0.110 (0.116) 0.129 (0.193) 0.154 (0.135)

≥ $40, 000 0.611 (0.206) 0.564 (0.157) 0.629 (0.267) 0.423∗ (0.185)

white -0.728 (0.142) -0.606 (0.108) -1.027 (0.191) -1.052∗∗ (0.161)

single-parent family 0.432 (0.157) 0.312 (0.120) 0.588 (0.202) 0.393∗ (0.141)

∗p-value< 0.05

∗∗p-value< 0.0001
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Table 2.3: Parameter estimates and their estimated standard errors in model (2.2)
Given Random-intercept Model (2.1)

Assumption Biomaker Coefficient Variance

β̂0j (S.E.a) β̂1j (S.E.a) τ̂j (S.E.a) ξ̂j (S.E.a)

MAR BMI 22.75 (0.32) 1.97 (0.01) 0.28 (0.01) 0.88 (0.04)

SUMSKIN 46.63 (1.20) 7.42 (0.07) 61.95 (0.90) 50.18 (2.02)

MAXBLOAV 94.46 (0.75) 4.68 (0.04) 7.07 (0.12) 11.53 (0.47)

PCTFATSF 26.71 (0.52) 3.22 (0.03) 9.74 (0.14) 7.02 (0.30)

PFBIA 26.13 (0.55) 3.39 (0.03) 15.73 (0.23) 20.39 (0.74)

UPTHIGAV 56.10 (0.58) 3.60 (0.03) 4.18 (0.09) 3.41 (0.19)

WAISTMIN 71.40 (0.60) 3.71 (0.03) 2.54 (0.05) 9.63 (0.35)

MACR BMI 21.29 (0.40) 1.44 (0.02) 0.30 (0.01) 0.97 (0.05)

SUMSKIN 41.33 (1.82) 6.58 (0.10) 57.75 (1.60) 36.25 (2.24)

MAXBLOAV 89.93 (0.95) 3.44 (0.05) 7.17 (0.21) 6.00 (0.36)

PCTFATSF 24.10 (0.75) 2.71 (0.04) 8.65 (0.24) 6.52 (0.37)

PFBIA 22.62 (0.80) 2.90 (0.05) 14.96 (0.41) 20.12 (0.89)

UPTHIGAV 54.18 (0.69) 2.49 (0.04) 2.28 (0.07) 3.25(0.17)

WAISTMIN 68.62 (0.76) 2.76 (0.04) 3.27 (0.10) 8.81 (0.36)

astandard error
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Table 2.4: Parameter estimates and their estimated standard errors in model (2.2)
Given Random-intercept Model (2.1)

Assumption Biomaker Coefficient Variance

β̂0j (S.E.a) β̂1j (S.E.a) τ̂j (S.E.a) ξ̂j (S.E.a)

MAR BMI 22.14 (0.27) 1.31 (0.01) 0.22 (0.01) 0.86 (0.04)

SUMSKIN 44.38 (1.01) 4.94 (0.05) 62.71 (0.90) 50.59 (2.04)

MAXBLOAV 93.04 (0.64) 3.11 (0.03) 7.22 (0.12) 11.88 (0.48)

PCTFATSF 25.73 (0.44) 2.14 (0.02) 10.00 (0.14) 7.07 (0.30)

PFBIA 25.10 (0.47) 2.24 (0.02) 16.17 (0.23) 20.49 (0.74)

UPTHIGAV 55.00 (0.49) 2.41 (0.02) 4.29 (0.09) 3.27 (0.18)

WAISTMIN 70.27 (0.51) 2.48 (0.02) 2.58 (0.05) 9.51 (0.35)

MACR BMI 21.14 (0.38) 1.08 (0.02) 0.27 (0.01) 0.97 (0.05)

SUMSKIN 40.68 (1.73) 4.93 (0.12) 57.82 (1.59) 36.04 (2.23)

MAXBLOAV 89.60 (0.90) 2.57 (0.06) 7.34 (0.21) 5.93 (0.36)

PCTFATSF 23.83 (0.71) 2.03 (0.05) 8.72 (0.24) 6.47 (0.37)

PFBIA 22.34 (0.76) 2.17 (0.05) 15.11 (0.41) 20.07 (0.89)

UPTHIGAV 53.93 (0.65) 1.87 (0.04) 2.36 (0.07) 3.23 (0.17)

WAISTMIN 68.34(0.72) 2.07 (0.05) 3.21 (0.10) 8.78 (0.36)

astandard error
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Figure 2.2: Age and race effects in model (2.1)

Figure 2.3: Estimated latent scores at each age for each race
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3 Longitudinal Latent Variable Models Given Incompletely Observed Biomarkers and

Covariates

3.1 Introduction

In Chapter 2, we investigated risk factors of latent child obesity given missing surrogate outcomes

and completely observed covariates. Our analysis in this chapter aims to identify the risk factors of

child obesity, given the surrogate outcomes and covariates MAR. Specifically, we want to control

for ethnic and social disparities in the growth of child obesity, and ask how environmental factors

such as TV watching and mother’s BMI influence the development of child obesity. Because child

obesity is not directly observable, in Chapter 2 we used the seven surrogate outcomes to quantify

it. Considering the highly correlated surrogate outcomes make the rate of convergence slow, we

characterize the child obesity by the four surrogate outcomes: BMI, skinfold thickness, percent

body fat, and waist circumference. We formulate LVMs where surrogate outcomes, given the latent

obesity, are independent in a measurement model, and the obesity is regressed on covariates in a

structural model (Catalano and Ryan, 1992; Cox and Wermuth, 1992; Fitzmaurice and Laird, 1995;

Roy and Lin, 2000; Sammel, Ryan, and Legler, 1997; Sammel, Lin, and Ryan, 1999; Moustaki,

2003; Moustaki and Steele, 2005; Zhu, Eickhoff, and Yan, 2005; Song, Xia, and Lee, 2009).

Given completely observed covariates and surrogate outcomes having ignorable missing data

(Little and Rubin 2002), LVMs may be estimated by ML via standard LVMs software such as

Amos (Arbuckle, 2003), EQS (Bentler, 2007), and Mplus (Muthén and Muthén, 2010). However,

little work has been done given surrogate outcomes and covariates MAR in LVMs for longitudinal

studies. This chapter focuses on a longitudinal multilevel model where occasions at level 1 nest

within individuals at level 2 and where missing data are present at both levels under the assumption

of ignorable missing data (Rubin, 1976; Little and Rubin, 2002). Recent advances handle ignor-

able missing data in a hierarchical linear model (Raudenbush and Bryk 2002; Goldstein 2003)
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efficiently by ML (Schafer and Yucel, 2002; Shin and Raudenbush 2007, 2010, 2011, 2013) or

Bayesian approaches (Goldstein and Browne, 2002; Schafer and Yucel, 2002; Yucel, 2008; Gold-

stein et al., 2009; Goldstein and Kounali, 2009). Shin and Raudenbush (2007) reexpressed a

univariate hierarchical linear model as a joint normal distribution of the variables, including the

response, subject to missingness at both levels, conditional on the completely observed covariates,

efficiently estimated the joint model by ML via the EM algorithm (Dempster, Laird, and Rubin,

1977), and then transformed the estimated joint model to the hierarchical model. They showed

that the unconstrained joint model, in general, over-identifies the hierarchical model and that the

over-identified hierarchical model may lead to biased inferences. Shin and Raudenbush estimated a

constrained joint model to identify the hierarchical model for unbiased estimation. In this section,

we extend this approach to efficient analysis of a longitudinal LVMs given multilevel incomplete

data.

We analyze the LVMs given surrogate outcomes and covariates that are subject to missingness

with a general missing pattern at any of the levels. A conventional method for efficient handling

of the missing data is to reexpress the LVMs as a joint distribution of the variables, including the

surrogate outcomes, which are subject to missingness conditional on all of the covariates that are

completely observed, and estimate the joint model which is then transformed to the LVMs. We

show that the unconstrained joint model overidentifies the LVMs leading to biased estimation of

the LVMs, and explain how to characterize the joint model so that it is a one-to-one transformation

of the LVMs for unbiased estimation. We efficiently estimate both the joint model and the LVMs

via the EM algorithm, constraining the joint model according to the LVMs within each iteration of

the EM algorithm, and demonstrate that the constrained joint model produces unbiased estimation

of the LVMs.

The next section introduces a latent variable model of our interest given incomplete data. Sec-

tion 3.3 explains a joint model for efficient handling of missing data in the LVMs and shows how

to impose proper constraints on the joint model for unbiased estimation of the LVMs. Section 3.4
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describes the EM algorithm for efficient handling of the constrained joint model. Section 3.5 sim-

ulates simple LVMs to show that the conventional method produces biased estimation of the LVMs

and that our approach corrects the bias. Section 3.6 illustrates unbiased and efficient analysis of the

desired LVMs given the NGHS data. Section 3.7 discusses the limitations and future extensions of

our method. Section 3.8 describes detailed mathematical derivations.

3.2 Latent Variable Models

The LVMs are the same as these in Chapter 2 except for some notations. The structural model is

Uik = XT
uikα + ZT

uikai + εik, (3.1)

where Uik is a univariate latent obesity score, Xuik is a vector of covariates having fixed effects

α, Zuik is a vector of known covariates having level-2 unit-specific random effects ai
iid∼ N(0, D)

independent of a level-1 unit-specific random error εik
iid∼ N(0, 1), and level-1 unit or occasion k

is nested within level-2 unit or subject i for k = 1, · · · , ki and i = 1, · · · , n. This model cannot be

directly estimated due to unobservable Uik. However, Uik is related to surrogate outcomes by

Rik = βr0 + βr1Uik + ari + erik, (3.2)

where Rik is a vector of J surrogate outcomes, βr0 is a vector of J intercepts, βr1 is a vector of

the J effects or factor loadings of Uik, and subject-specific random effects ari
iid∼ N(0,⊕Jj=1ξj)

are independent of level-1 random errors erik
iid∼ N(0,⊕Jj=1τj) for a diagonal matrix ⊕J`=1A` =

diag(A1, A2, · · · , AJ) with diagonal elements or submatrices (A1, A2 · · · , AJ) and all other ele-

ments equal to zero. To make parameters identifiable, we assume that var(εik)=1 and that Xuik

does not contain an intercept. The feature of the LVMs with missing covariates is demonstrated in

Figure 3.1 which can be described similarly as Figure 2.1 in Section 2.2 except for the four com-
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ponents of covariates (Section 3.3). They include level-1 and -2 covariates subject to missingness

and completely observed ones whose effects on the latent variable are separately displayed due to

the effects from missing covariates can not be directly estimated.

3.3 Efficient Handling of Missing Data

Our analysis involves Xuik and Rik subject to missingness. To handle the missing data efficiently,

we decompose XT
uik = [STik Y T

2i W T
1ik W T

2i ] having fixed effects α = [αT1 α
T
2 α

T
3 α

T
4 ]T for vectors

of p1 level-1 covariates Sik and p2 level-2 covariates Y2i subject to missingness, and vectors of p3

level-1 covariates W1ik and p4 level-2 covariates W2i completely observed. For a positive integer

m, let Im and 1m denote a m-by-m identity matrix and a vector of m unities. If Uik were observed,

the missing data in model (3.1) would be efficiently handled by


Uik

Sik

Y2i

 =


βTu1 βTu2

βs1 βs2

0 β22


 W1ik

W2i

+


ZT
uik 0 0

0 Ip1 0

0 0 Ip2



bui

bsi

b2i

+


εuik

εsik

0

 , (3.3)

where βTu1 and βs1 are 1-by-p3 and p1-by-p3 matrices of the fixed effects of W1ik on Uik and Sik,

respectively, βTu2, βs2 and β22 are 1-by-p4, p1-by-p4 and p2-by-p4 matrices of the fixed effects of

W2i on Uik, Sik and Y2i, respectively, and


bui

bsi

b2i

 iid∼ N

0,


Tuu Tus Tu2

Tsu Tss Ts2

T2u T2s T22


 are independent of

εuik
εsik

 iid∼ N

0,

Σuu Σus

Σsu Σss


. We center level-1 Sik and W1ik around respective sample means

and level-2 Y2i andW2i around respective weighted sample means
∑

i kiY2i∑
i ki

and
∑

i kiW2i∑
i ki

in equation

(3.3), except for Zuik that is centered around its group mean for precise estimation of the variance

matrix (Raudenbush and Bryk, 2002). The centering ensures that we identify the model (3.1) with
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no intercept and model (3.2). Shin and Raudenbush (2007) expressed [βTu1 β
T
u2]

W1ik

W2i

 = βTuWuik,

βs1W1ik + βs2W2i = (Ip1 ⊗W T
uik)βs and β22W2i = (Ip2 ⊗W T

2i)β2, and efficiently estimated the

model (3.3) given Uik observed by ML via the EM algorithm.

Because Uik is unobservable, the model (3.3) cannot be directly estimated. Instead, we formu-

late the joint distribution of (Ri, Si, Y2i) subject to missingness given completely observed covari-

ates for Ri = [RT
i1 R

T
i2 · · ·RT

iki
]T and Si = [STi1 S

T
i2 · · ·STiki ]

T based on the aggregate models (3.2)

and (3.3)


Ri

Si

Y2i

 =


1ki ⊗ βr0 + (Wuiβu + Zuibui + εui)⊗ βr1

Wsiβs + (1ki ⊗ Ip1)bsi + εsi

X2iβ2 + b2i

+


1ki ⊗ ari

0

0

+


eri

0

0

 , (3.4)

for Wui = [Wui1 Wui2 · · ·Wuiki ]
T , Zui = [Zui1 Zui2 · · ·Zuiki ]T εui = [εui1 εui2 · · · εuiki ]T , eri =

[eTri1 e
T
ri2 · · · eTriki ]

T , Wsi = [Ip1 ⊗Wui1 Ip1 ⊗Wui2 · · · Ip1 ⊗Wuiki ]
T , εsi = [εTsi1 ε

T
si2 · · · εTsiki ]

T , and

X2i = Ip2 ⊗W T
2i . To derive estimators, we reexpress model (3.4) parsimoniously as

 Y1i

Y2i

 =

X1i 0

0 X2i


 β1

β2

+

Z1i 0

0 Ip2


 b1i

b2i

+

 ε1i

0

+

 a1i + e1i

0

 , (3.5)

for Y1i =

Ri

Si

,X1i =

IJ×ki Wui ⊗ IJ 0

0 0 Wsi

, β1 =


1ki ⊗ βr0

βu ⊗ βr1

βs

, Z1i =

Zui ⊗ IJ 0

0 1ki ⊗ Ip1

,

b1i =

bui ⊗ βr1
bsi

, ε1i =

εui ⊗ βr1
εsi

, a1i =

1ki ⊗ ari

0

, and e1i =

eri
0

, where var(b1i, b2i) =
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τ11 τ12

τT12 τ22

, var(ε1i) =

Iki ⊗ (Σuuβr1β
T
r1) Iki ⊗ (βr1Σus)

Iki ⊗ (Σsu ⊗ βTr1) Iki ⊗ Σss

, var(a1i) =

(1ki1
T
ki

)⊗ (⊕Jj=1ξj) 0

0 0

,

and var(e1i) =

Iki ⊗ (⊕Jj=1τj) 0

0 0

 for τ11 =

Tuu ⊗ (βr1β
T
r1) Tus ⊗ βr1

Tsu ⊗ βTr1 Tss

, τ12 =

 Tu2 ⊗ βr1

Ts2

,

and τ22 = T22.

Although the conditional model (3.1) expresses a single effect of each covariate in Sik on Uik,

the joint model (3.3) expresses a distinct covariance at each level between the covariate and Uik to

identify more parameters than desired in the model (3.1). The consequence is biased estimation

of the LVMs as will be illustrated by a simulation study in this chapter. To correct the bias, we

impose constraints on the joint model so that it is a one-to-one transformation of the LVMs. For

clarity, we describe the constraints for a random-intercept model (3.1) having Zuik = 1. Section

3.8.1 explains the constraints for a random-coefficient model (3.1). To simplify the notation, let

cov(bui, bsi |b2i) =

Tuu|2 Tus|2

Tsu|2 Tss|2

. Given Y2i, we constrain the covariances between Uik and each

covariate in Sik to equal, i.e.

αT1 = Tus|2T
−1
ss|2 = ΣusΣ

−1
ss , (3.6)

which says that, given Y2i, the association between Uik and the missing level-1 covariate is the

same at each level. The constraints imply cov(Uik, Sik|Y2i)[var(Sik|Y2i)]
−1 = (Tus|2 +Σus)(Tss|2 +

Σss)
−1 = αT1 for Tus|2 = αT1 Tss|2 and Σus = αT1 Σss, and the one-to-one transformations between

the LVMs and the joint model (3.5) as

α1 = Σ−1
ss Σsu,

α2 = T−1
22 (T2u − T2sα1),

α3 = βu1 − βTs1α1,

α4 = βu2 − βTs2α1 − βT22α2, (3.7)
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1 = Σuu − αT1 Σssα1,

D = Tuu − αT2 T22α2 − 2αT1 Ts2α2 − αT1 Tssα1.

To efficiently handle missing data, let O1i and O2i be matrices of zeros and ones indicating the

observed values in Y1i and Y2i such that the observed values are Y ◦1i = O1iY1i and Y ◦2i = O2iY2i,

respectively (Shin and Raudenbush, 2007). The model (3.5) for the observed data is

 Y ◦1i

Y ◦2i

 =

X◦1i 0

0 X◦2i


 β1

β2

+

Z◦1i 0

0 O2i


 b1i

b2i

+

 a◦1i + ε◦1i + e◦1i

0

 , (3.8)

for X◦1i = O1iX1i, X◦2i = O2iX2i, Z◦1i = O1iZ1i, a◦1i = O1ia1i, ε◦1i = O1iε1i, and e◦1i = O1ie1i.

Then Y ◦i ∼ N(µ◦i , V
◦
i ) for Y ◦i = [Y ◦T1i Y ◦T2i ]T ,

µ◦i =

X◦1iβ1

X◦2iβ2

 , V ◦i =

Z◦1iτ11Z
◦T
1i +O1i(var(ε1i) + var(a1i) + var(e1i))O

T
1i Z◦1iτ12O

T
2i

O2iτ21Z
◦T
1i O2iτ22O

T
2i

 . (3.9)

3.4 Estimation via the EM Algorithm

This section sketches efficient estimation of the joint model (3.5) by a modified application of

the EM algorithm (Dempster et al., 1977). The modification is due to the fact we efficiently

determine the LVMs to find the constraints (3.6) that will be imposed on the estimated joint

model (3.5) within each iteration of the EM algorithm. See Sections 3.8.2, 3.8.3 and 3.8.4 for

details. Let (Y1, Y2, U, bu, bs, ar) and Y ◦ aggregate (Y1i, Y2i, Ui, bui, bsi, ari) and Y ◦i , respectively,

for Ui = [Ui1 Ui2 · · ·Uiki ] in the entire sample. We view (Y1, Y2, U, bu, bs, ar) as the complete

data and Y ◦ observed. The constraints (3.6) require to evaluate the parameters α of the LVMs.

Within each iteration of the EM algorithm, we estimate the parameters α and translate them
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into the parameters of the joint model (3.5) according to the transformations (3.7). To esti-

mate α, let Xui = [Xui1 Xui2 · · ·Xuiki ]
T , εi = [εi1 εi2 · · · εiki ]T , βj = [βr0j βr1j]

T , U∗ik =

[1 Uik]
T , ε1ik = [εuik εsik]

T , ε∗1i = [εui εsi] for the LVMs; b∗1i = [bui bsi]
T , b∗i = [b∗1i b2i]

T ,

β∗1 = [βu βs]
T , T11 =

Tuu Tus

Tsu Tss

, T12 =

Tu2

Ts2

, T =

T11 T12

T T12 T22

, Σ =

Σuu Σus

Σsu Σss

,

Wusi =

Wui 0

0 Wsi

, and T2|1 = T22 − T21T
−1
11 T12 for the joint model. The complete data ML

estimators are α̂(k) = α̂(k−1) +
(∑n

i=1

∑ki
k=1 E(XuikX

T
uik|Y ◦i )

)−1∑n
i=1

∑ki
k=1E(Xuikεik|Y ◦i ) and

D̂ =
∑

iE(aia
T
i |Y ◦i )/n for the structural model (3.1) and

β̂
(k)
j = β̂

(k−1)
j +

(
n∑
i=1

ki∑
k=1

E(U∗ikU
∗T
ik |Y ◦i )

)−1 n∑
i=1

ki∑
k=1

E(U∗ikerikj|Y ◦i ),

ξ̂j =
1

n

n∑
i=1

E(a2
rij|Y ◦i ),

τ̂j =
1∑n
i=1 ki

n∑
i=1

ki∑
k=1

E(e2
rikj|Y ◦i ),

Σ̂ =
1∑n
i=1 ki

n∑
i=1

ki∑
k=1

E(ε1ikε
T
1ik|Y ◦i ), (3.10)

T̂ =
1

n

n∑
i=1

E(b∗i b
∗T
i |Y ◦i ),

β̂
∗(k)
1 = β̂

∗(k−1)
1 +

(
n∑
i=1

Σ−1 ⊗ (W T
usiWusi)

)−1 n∑
i=1

Σ−1 ⊗ (W T
usiε̃
∗
1i),

β̂
(k)
2 = β̂

(k−1)
2 +

(
n∑
i=1

T−1
2|1 ⊗ (W2iW

T
2i)

)−1 n∑
i=1

T−1
2|1 ⊗W2i

(
b̃2i − T21T

−1
11 b̃

∗
1i

)

for the joint model (3.5). At E step, we obtain conditional expectations,E(XuikX
T
uik|Y ◦i ),E(Xuikεik|Y ◦i ),

E(aia
T
i |Y ◦i ),E(Uik|Y ◦i ),E(U2

ik|Y ◦i ),E(Uikerikj|Y ◦i ),E(erikj|Y ◦i ),E(e2
rikj|Y ◦i ),E(a2

rij|Y ◦i ),E(ε1ikε
T
1ik|Y ◦i ),

E(b∗i |Y ◦i ), E(b∗i b
∗T
i |Y ◦i ), and E(ε∗1i|Y ◦i ) from the distribution of Y1i, Y2i, Ui, eri, ε∗1i, b

∗
i , ari|Y ◦i . Let
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V (A) denote a vector of distinct elements in a variance covariance matrix A. At convergence,

the expected Fisher information matrix is obtained from the observed log-likelihood of parameters

(βr0, βr1, β
∗
1 , β2, τ, Tuu, V (Tss), V (T2s), V (T22), ξ, V (Σss), α1, α2). The variance matrix associ-

ated with the parameter estimates in the constrained joint model (3.5) is produced by inverting the

expected Fisher information matrix. We obtain the standard errors associated with the parameter

estimates of the LVMs by the delta method.

The next two sections illustrate the approach by analysis of simulated and NGHS data. The

convergence is taken to be the difference in the observed log-likelihoods between two consecutive

iterations, which is set as less than 10−6.

3.5 Simulation

In this section, we simulate the simple LVMs which involve two surrogate outcomes (J = 2), a

single level-1 covariate Sik, and a single level-2 covariate W2i. The purpose of the simulation is to

show that the over-identified joint model (3.5) of (Rik, Sik) given W2i leads to biased estimation

of the LVMs and that the constrained joint model (3.5), according to equations (3.6), corrects the

bias. Five occasions (ki = 5) are nested within each of 1000 subjects (n = 1000) in the simulated

LVMs

Uik = Sik +W2i + ai + εik, ai
iid∼ N(0, 1), εi

iid∼ N(0, 1),

Rik = 12 + 12Uik + ari + erik, ari
iid∼ N(0, 0.25I2), erik

iid∼ N(0, 0.25I2),
(3.11)

where α2 = α3 = 0, α1 = α4 = D = βr01 = βr02 = βr11 = βr12 = 1, τ1 = τ2 = ξ1 = ξ2 = 0.25,

Sik ∼ N(0, 1), and W2i ∼ Bernoulli(0.5). Given the simulated data, we estimate the LVMs by

three different ML methods via the EM algorithm: the direct estimation of the LVMs; the evalu-

ation of the corresponding unconstrained joint model (3.5); and the estimation of the constrained

joint model (3.5) according to equations (3.6). We call the three approaches benchmark, over-
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identified, and just-identified estimation methods. An estimation method works well if it produces

all point estimates close to the benchmark counterparts. To illustrate that the over-identification

problem causes biased inferences, we simulate no missing data.

Table 3.1 displays the results. The benchmark estimates are shown under column heading

“Benchmark”. All point estimates are close to their true values. The standard errors are relatively

small. The next column under “Over-identified” shows the over-identified LVMs estimates. It is

apparent that all point estimates of the model (3.1) and their standard errors are comparatively

underestimated while the effects of Uik and their standard errors in the model (3.2) appear over-

estimated relative to the benchmark counterparts. On the other hand, the just-identified LVMs

estimates and their standard errors in the next column under heading “Just-identified” are identical

to the benchmark counterparts.

3.6 Analysis of NGHS Data

Now, we estimate just-identified LVMs to analyze the NGHS data. Each subject in the study was

scheduled to visit a clinic for measurement once a year, but a number of subjects missed their

visits to produce unit-nonresponse or had item-nonresponse. We consider multiple surrogate out-

comes of obesity: BMI, sum of skinfolds at triceps, subscapular, and suprailiac sites (Skinfold),

maximum below-waist circumference (Waist), and percent fat by bioelectrical impedance analysis

(PercentFat). Many investigators have tried to identify the risk factors of childhood obesity where

the obesity outcome variable is one of these surrogate outcomes (Patterson et al., 1997; Biro et al.,

2003; Kimm et al., 2005; Vani, 2007; Kriemler et al., 2010; Mahoney, 2011). Although each sur-

rogate outcome is a broadly examined obesity outcome variable, it is not an accurate measurement

of body fat or obesity, in particular, for children and adolescents (Maynard et al., 2001; Prentice

and Jebb, 2001; Krebs et al., 2007). These surrogate outcomes, however, have high correlations

ranging from 0.81 to 0.92. We reason that the high positive correlations result because they are
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the surrogate outcomes of obesity. The previous studies identified influential covariates of the obe-

sity as age, race, the number of parents in a family (NumParents), maturation stages (Maturation

categorizing prepuberty, puberty, post menarche, and ≥ 2 years after post menarche), maximum

parental education (ParentEd classifying high school or less and some college or more), household

yearly income (Income categorizing≤ $19, 999, $20, 000−$39, 999, and≥ $40, 000), the number

of weekly hours of TV watching (TV), overall physical activity pattern score (PhysicalAct), and

mother’s BMI (MotherBMI). Household income and maturation stages are coded as 0, 1, 2 and 0,

1, 2, 3, respectively, based on the preliminary analysis. We analyzed dummy indicator variables for

white students (White), single-parent family (OneParent), and some college or more (ParentEd).

The surrogate outcomes and covariates for analysis are summarized in Table 3.2. Nine variables

are subject to missingness with each one missing up to 32% of the values. We use all available

data efficiently to analyze a random-intercept model (3.1) and a random-coefficient model (3.1) in

this section.

We use all available data efficiently to analyze the random-intercept LVMs and the random-

coefficient LVMs (3.1). The random-intercept LVMs haveRik=[BMI Skinfold PercentFat Waist]T ,

Sik=[Maturation TV PhysicalAct]T , Y2i=[MotherBMI Income]T , W1ik=[AGE AGE2 AGE ×

White]T , W2i=[ParentEd White OneParent]T , and Zuik = 1, while the random-coefficient LVMs

have every component the same as the random-intercept counterparts except for Zuik=[1 AGEik]T

and D =

D00 D01

D10 D11

. We compare the fitted models by the likelihood ratio test.

The estimated structural and measurement models of the random-intercept LVMs appear in

the third column of Table 3.3 and the sixth-ninth rows of Table 3.4, respectively. From the fitted

structural model, TV, maturation stage, mother′s BMI, age and single-parent family are positively

associated while the physical activity score, quadratic age and age by a white girl indicator inter-

action and the white girl indicator are negatively associated with obesity, ceteris paribus. Control-

ling for other covariates, the effects of household income and maximum parent education are not
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statistically significant. The estimated measurement model in Table 3.4 shows that all surrogate

outcomes are highly significant and, thus, predictive of the latent child obesity.

The estimated random-coefficient LVMs are displayed in the fourth column of Table 3.3 and

the second-fifth rows of Table 3.4. The statistical inferences on all fixed effects stay the same as

they are in the random-intercept LVMs. However, the effects of linear and quadratic ages, age by

white interaction and white girl indicator strengthen, compared to the random-intercept counter-

parts. In particular, the negative gap of while girls′ obesity relative to the African-American girls′

triples. Besides, the variance of the random intercept in the random-coefficient LVMs doubles from

that of the random-intercept LVMs. The measurement model in Table 3.4 shows that the surro-

gate outcomes have attenuating effects on child obesity, comparatively with the random-intercept

counterparts. Under the null hypothesis H0 : D01 = D11 = 0, the likelihood ratio test yields the

p-value< 0.01 to show that the age effects vary randomly across individuals.

Figure 3.2 displays the effects of age for African-American and white girls based on the

random-coefficient LVMs. Controlling for other measures in the model constant, age has a posi-

tive association with obesity overall (Obarzanek et al., 1994; Patterson et al., 1997; Chambers and

Swanson, 2010). However, we find that the positive relationship weakens more rapidly for white

girls than for African-American girls toward the later stage of adolescence, thereby widening the

racial gap in obesity between the two subpopulations of girls. The gap starts extending rapidly

from about age 14 where the 95% confidence interval −0.32± 0.27 (0.05, 0.59).

Obesity scores are evaluated by the posterior distribution of the latent variable Ui. Apart from

the need of the measure and the help of the model interpretation, another motivation of obtaining

the scores is classification of units. Figure 3.3 demonstrates the plot of obesity scores against age

in years for African-American and white students. The two green lines are the 2.5th and 97.5th

percentiles which are the function of age because child obesity is age- and gender-specific. The

subjects above the top green line and below the bottom green line have higher and lower obesity

scores than the others, respectively. More African Americans than whites above the top green
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line indicates that African Americans are more likely obese. Identifying these subjects and taking

early prevention promote the public health and decrease the health care cost of obesity and obesity-

related diseases.

3.7 Discussion

This chapter presented methods for efficient and unbiased analysis of LVMs given incomplete data

with a general missing pattern at any of the levels under the assumption of ignorable missing data.

Our process produces efficient estimation of the LVMs given surrogate outcomes and level-1 and

level-2 covariates subject to missingness. To handle missing data efficiently, we reexpressed the

LVMs as a joint distribution of the variables, including the surrogate outcomes, subject to miss-

ingness conditional on completely observed covariates. The joint model, however, over-identifies

the desired LVMs when level-1 covariates are subject to missingness. The consequence is that the

over-identified LVMs may provide considerably biased inferences as was illustrated in this chapter.

To overcome the problem of over-identification, we constrained the joint model to be a one-to-one

transformation of the LVMs and efficiently estimated the constrained joint model to produce un-

biased and efficient estimation of the LVMs. We simulated LVMs to show that the just-identified

LVMs estimates are unbiased while the over-identified LVMs counterparts are biased. We used

a program written in SAS PROC IML in order to estimate both constrained and unconstrained

joint models, which were then transformed to the desired LVMs via the multivariate Delta method.

The convergence criterion was the difference in observed log likelihoods between two-consecutive

iterations, which was set as 10−6.

The EM algorithm (Dempster et al., 1977) and its extensions ( Meng and Rubin, 1993; Fessler

and Hero, 1994; Meng and Van Dyk, 1998; He and Liu, 2009) converge stably to ML, but slowly.

Researchers have improved the slow convergence of the EM algorithm (Laird, Lang, and Stram,

1987; Jamshidian and Jennrich, 1993; Lang, 1995a, 1995b; Liu, Rubin, and Wu, 1998). In par-
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ticular, the PX-EM algorithm speeds up the convergence with comparatively simple modifications

of the EM algorithm (Liu et al., 1998; Liu and Wu, 1999; Lavielle, 2007; Lewandowski, Liu, and

Wiel, 2010). We calculated the benchmark LVMs in Table 3.1 by the PX-EM algorithm, using the

same convergence criterion. The computation time was increased by 10%, compared to that of the

EM algorithm.

An alternative approach to our current method for the efficient estimation of LVMs, given

incomplete data, is via multiple imputations (Rubin, 1987). Given the ML estimated joint distri-

bution of variables subject to missingness conditional on covariates completely observed, we may

randomly generate multiple imputations of completed data for subsequent analysis of the LVMs

(Shin and Raudenbush, 2007, 2013). The multiple imputations may include the latent obesity. We

would like to take on this research in the near future.

A limitation of the current approach is our assumption that the covariate having a random effect

is completely observed. When such a covariate has missing values, it should be modeled on the

left-hand side of the joint model in order to handle missing data efficiently. At the same time, the

covariate should appear on the right-hand side of the joint model for estimation of the variance of

the random effect. Such a joint model is non-normal so that the normal factorization of the joint

model that leads to the desired LVMs as a conditional distribution of surrogate outcomes given

covariates does not apply. Relaxing this assumption is beyond the current research.

Another limitation is that our approach bases on the multivariate normal joint model to handle

missing data efficiently. We analyzed discrete covariates, household income and maturation stages,

subject to missingness. Although it is not appropriate to handle such discrete missing values under

the joint normality, the identified model is the desired LVMs we want to investigate, and previous

studies dealt with the similar scenarios (Sammel et al., 1997; Moustaki, 2003; Song et al., 2009).

The advantage is that we analyze the covariates subject to missingness by the efficient missing

data method (Cox and Wermuth, 1992; Schafer, 1997; Shin and Raudenbush, 2007, 2011). Robust

handling of a mixture of discrete and continuous missing data is in our future agenda of research.
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3.8 Miscellanea

3.8.1 Derivation of one-to-one transformations between models (3.1) and (3.3)

It is easy to derive that the responses in models (3.1) and (3.3) are distributed as

Uik|Sik, Y2i ∼ N(µ1ik, V1ik), (3.12)

[Uik S
T
ik Y

T
2i ]

T ∼ N(µ2ik, V2ik), (3.13)

respectively, where

µ1ik = STikα1 + Y T
2iα2 +W T

1ikα3 +W T
2iα4,

V1ik = ZT
uikDZuik + 1,

µ2ik =


βTu1W1ik + βTu2W2i

βs1W1ik + βs2W2i

β22W2i

 ,

V2ik =


ZT
uikTuuZuik + Σuu ZT

uikTus + Σus ZT
uikTu2

TsuZuik + Σsu Tss + Σss Ts2

T2uZuik T2s T22

 .

Let us express model (3.3) such that it recognizes the latent random effect bsi of Sik as

[Uik (Sik − bsi)T bTsi Y
T

2i ]
T ∼ N(µ3ik, V3ik) (3.14)
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with

µ3ik =



βTu1W1ik + βTu2W2i

βs1W1ik + βs2W2i

0

β22W2i


, V3ik =



ZT
uikTuuZuik + Σuu Σus ZT

uikTus ZT
uikTu2

Σsu Σss 0 0

TsuZuik 0 Tss Ts2

T2uZuik 0 T2s T22


.

Then, a regression of Uik on the other variables leads to

Uik|Sik − bsi , bsi , Y2i ∼ N(µ4ik, V4ik) (3.15)

where

µ4ik = (ZT
uikTus|2T

−1
ss|2 − ΣusΣ

−1
ss )bsi + STikΣ

−1
ss Σsu + Y T

2i T
−1
22

(
Tu2 − T2sT

−1
ss|2Tsu|2

)
Zuik

+W T
1ik(βu1 − βTs1Σ−1

ss Σsu) +W T
2i

(
βu2 − βT22T

−1
22 (T2u − T2sT

−1
ss|2Tsu|2)Zuik − βTs2Σ−1

ss Σsu

)
,

V4ik = Σuu − ΣusΣ
−1
ss Σsu + ZT

uik(Tuu|2 − Tus|2T−1
ss|2Tsu|2)Zuik.

Model (3.15) implies model (3.12) if bsi = 0. Model (3.15) with bsi = 0, however, has too strong

assumption that Sik does not vary across level-2 unit. The violation of the assumption leads to

substantially biased inferences. Alternatively, model (3.15) implies model (3.12) if

αT1 = ZT
uikTus|2T

−1
ss|2 = ΣusΣ

−1
ss ,

Σuu − αT1 Σssα1 = 1.
(3.16)

In the following, we discuss constraints and transformation formulas for two cases: Zuik = 1 and

Zuik = [1 XT
dik]

T with p5 covariates Xdik having random slopes in the structural model (3.1). If
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Zuik = 1, then the one-to-one transformations between models (3.12) and (3.15) are

α1 = Σ−1
ss Σsu,

α2 = T−1
22 (T2u − T2sα1),

α3 = βu1 − βTs1α1,

α4 = βu2 − βTs2α1 − βT22α2, (3.17)

D = Tuu − αT2 T22α2 − 2αT1 Ts2α2 − αT1 Tssα1,

1 = Σuu − αT1 Σssα1,

Tus = αT1 Tss + αT2 T2s.

If ZT
uik = [1 XT

dik], then let bui = [bu0i b
T
u1i

]T , Tuu =

Tu0u0 Tu0u1

Tu1u0 Tu1u1

, Tus =

Tu0s
0

, Tsu = T Tus,

and Tu2 =

Tu02

0

. Note that we assume cov(bu1i, bsi) = cov(bu1i, b2i) = 0. Non-zero covariances

can be estimated, but they introduce extraneous terms and make interpretable difficulty. Let T̃ =αT2 T22α2 + 2αT1 Ts2α2 + αT1 Tssα1 0

0 0

. The one-to-one transformations for α2, D, and Tu0s are

α2 = T−1
22 (T2u0 − T2sα1),

D = Tuu − T̃ , (3.18)

Tu0s = αT1 Tss + αT2 T2s,

and the others keep same as these in (3.17).
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3.8.2 Estimation

The complete data (Y1, Y2, U, bu, bs, ar) discussed in Section 3.4 can be also viewed as (Y1, U, bu,

bs, b2, ar) for b2 aggregating b2i in the entire sample and Y1 = (R, S). The log likelihood of the

complete data is, apart from a constant,

`(θ|R,U, S, bu, bs, b2, ar) =
n∑
i=1

{`(Ri|U, ar) + `(Ui, Si|bui, bsi) + `(ari) + `(bui, bsi, b2i)},

where

`(Ri|U, ar) =
J∑
j=1

(
−ki

2
log τj −

1

2τj
ϑTϑ

)
,

`(Ui, Si|bui, bsi) = −1

2

ln|Σ⊗ Iki |+ [εTui ε
T
si](Σ

−1 ⊗ Iki)

εui
εsi


 ,

`(ari) = −1

2
(log |R|+ aTriR

−1ari),

`(bui, bsi, b2i) = −1

2
(log |T |+ b∗Ti T

−1b∗i ).

where ϑ = Rij − β0j1ki − Uiβ1j − arij1ki .

Differentiating the log likelihood with respect to the parameters, taking the expectation condi-

tion to the observed data, setting them equal to zero, and solving the equations, we know the MLEs

of the complete data are

α̂(k) = α̂(k−1) +

(
n∑
i=1

ki∑
k=1

E(XuikX
T
uik|Y ◦i )

)−1 n∑
i=1

ki∑
k=1

E(Xuikεik|Y ◦i ),

D̂ =
1

n

n∑
i=1

E(aia
T
i |Y ◦i ),

β̂
(k)
j = β̂

(k−1)
j +

(
n∑
i=1

ki∑
k=1

E(U∗ikU
∗T
ik |Y ◦i )

)−1 n∑
i=1

ki∑
k=1

E(U∗ikerijk|Y ◦i ),
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ξ̂j =
1

n

n∑
i=1

E(a2
rij|Y ◦i ),

τ̂j =
1∑n
i=1 ki

n∑
i=1

ki∑
k=1

E(e2
rijk|Y ◦i ), (3.19)

Σ̂ =
1∑n
i=1 ki

n∑
i=1

ki∑
k=1

E(ε1ikε
T
1ik|Y ◦i ),

T̂ =
1

n

n∑
i=1

E(b∗i b
∗T
i |Y ◦i ),

β̂
∗(k)
1 = β̂

∗(k−1)
1 +

(
n∑
i=1

Σ−1 ⊗ (W T
usiWusi)

)−1 n∑
i=1

Σ−1 ⊗ (W T
usiε̃
∗
1i),

β̂
(k)
2 = β̂

(k−1)
2 +

(
n∑
i=1

T−1
2|1 ⊗ (W2iW

T
2i)

)−1 n∑
i=1

(T−1
2|1 ⊗W2i)

(
b̃2i − T21T

−1
11 b̃1i

)
.

Note that the β2 was estimated based on the distribution of Y2|bu, bs.

Given α̂ and D̂, for the random-intercept model (3.1) we update the estimators, Σ̂us, Σ̂uu, T̂uu,

β̂u1, β̂u2, T̂u2, and T̂us in the joint model (3.5) according to the transformation formulas (3.17).

Given α̂ and D̂, for the random-coefficient model (3.1) we update the estimators, Σ̂us, Σ̂uu, T̂uu,

β̂u1, β̂u2, T̂u02, and T̂u0s in the joint model (3.5) according to the transformation formulas (3.18)

and set Tu12 = Tu1s = 0.

At E-step, we estimate the following conditional expectations.

(I) Calculate the conditional expectations for the latent variable Ui

Ũik = E(Uik|Y ◦i ) = βTu1W1ik + βTu2W2i + ∆u(V
◦
i )−1(Y ◦i − µ◦i ),

E(U2
ik|Y ◦i ) = Ũ2

ik + var(Uik)−∆u(V
◦
i )−1∆T

u ,
(3.20)

where ∆u =
[
∆u1 ∆u2 ZT

uikTu2

]
OT
i and var(Uik) = ZT

uikTuuZuik+Σuu for ∆u1 = (ZT
uikTuuZ

T
ui+

[01×(k−1) Σuu 01×(ki−k)])⊗ βTr1 and ∆u2 = 1Tki ⊗ (ZT
uikTus) + [01×(k−1)p1 Σus 01×(ki−k)p1 ].
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(II) Calculate the conditional expectation for erikj , e2
rikj , and Uikerikj as

ẽrikj = E(erikj|Y ◦i ) = ∆er(V
◦
i )−1(Y ◦i − µ◦i ),

E(e2
rikj|Y ◦i ) = ẽ2

rikj + var(erikj)−∆er(V
◦
i )−1∆T

er,

E(Uikerikj|Y ◦i ) = Ũikẽrikj −∆u(V
◦
i )−1∆T

er,

(3.21)

where var(erikj) = τj and ∆er = [01×((k−1)J+j−1) τj 01×(J−j) 01×((ki−k)J+p1ki+p2)]O
T
i .

(III) Calculate the conditional expectation for arij as

ãrij = E(arij|Y ◦i ) = ∆a(V
◦
i )−1(Y ◦i − µ◦i )

E(a2
rij|Y ◦i ) = ã2

rij + ξj −∆a(V
◦
i )−1∆T

a ,
(3.22)

where ∆a = [01×(j−1)ki 1Tkiξj 01×((J−j)ki+p1ki+p2)]O
T
i .

(IV) Calculate the conditional expectations of ε∗1i = [εTui ε
T
si

]T and ε1ik = [εuik εsik ]T

E(ε∗1i|Y ◦i ) = ∆es(V
◦
i )−1(Y ◦i − µ◦i ),

ε̃1ik = E(ε1ik|Y ◦i ) = ∆e(V
◦
i )−1(Y ◦i − µ◦i ),

E(ε1ikε
T
1ik|Y ◦i ) = ε̃1ik ε̃

T
1ik + cov(ε1ik)−∆e(V

◦
i )−1∆T

e ,

(3.23)

where given ∆k a vector with the kth element equal to 1 and zero otherwise, cov(ε1ik) = Σ,

∆es =

Iki ⊗ Σuu ⊗ βTr1 Iki ⊗ Σus 0

Iki ⊗ Σsu ⊗ βTr1 Iki ⊗ Σss 0

OT
i , and ∆e =

Σuu ⊗∆T
k ⊗ βTr1 ∆T

k ⊗ Σus 0

Σsu ⊗∆T
k ⊗ βTr1 ∆T

k ⊗ Σss 0

OT
i .

(V) Calculate the conditional expectations of the random effects b∗i as

b̃∗i = E(b∗i |Y ◦i ) = ∆b(V
◦
i )−1(Y ◦i − µ◦i )

E(b∗i b
∗T
i |Y ◦i ) = b̃∗i b̃

∗T
i + T −∆b(V

◦
i )−1∆T

b ,
(3.24)
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where ∆b =


(TuuZ

T
ui)⊗ βTr1 1Tki ⊗ Tus Tu2

(TsuZ
T
ui)⊗ βTr1 1Tki ⊗ Tss Ts2

(T2uZ
T
ui)⊗ βTr1 1Tki ⊗ T2s T22

OT
i .

In addition, we calculate E(XuikX
T
uik|Y ◦i ), E(Xuikεik|Y ◦i ), and E(aia

T
i |Y ◦i ) in the LVMs. Let

∆s = [∆s1 ∆s2 1Tki ⊗ Ts2]OT
i for ∆s1 =

(
(TsuZ

T
ui) + [0p1×(k−1) Tsu 0p1×(ki−k)]

)
⊗ βTr1 and ∆s2 =

1Tki ⊗ Tss + [0p1×(k−1)p1 Σss 0p1×(ki−k)p1 ], ∆y = [(T2uZ
T
ui) ⊗ βTr1 1Tki ⊗ T2u T22]OT

i , ∆ec =

[01×(k−1)J β
T
r1 01×(kiJ−kJ+p1ki+p2)]O

T
i , and ∆ac = [(DZT

ui)⊗ βTr1 0 0]OT
i .

E(XuikX
T
uik|Y ◦i ) =



E(SikS
T
ik|Y ◦i ) E(SikY

T
2i |Y ◦i ) S̃ikW

T
1ik S̃ikW

T
2i

E(Y2iS
T
ik|Y ◦i ) E(Y2iY

T
2i |Y ◦i ) Ỹ2iW

T
1ik Ỹ2iW

T
2i

W1ikS̃
T
ik W1ikY

T
2i W1ikW

T
1ik W1ikW

T
2i

W2iS̃
T
ik W2iỸ

T
2i W2iW

T
1ik W2iW

T
2i


, (3.25)

E(Xuikεik|Y ◦i ) =



S̃Tik ε̃ik −∆s(V
◦
i )−1∆T

ec

Ỹ T
2i ε̃ik −∆y(V

◦
i )−1∆T

ec

W1ik ε̃ik

W2iε̃ik


, (3.26)

where

S̃ik = E(Sik|Y ◦i ) = βs1W1ik + βs2W2i + ∆s(V
◦
i )−1(Y ◦i − µ◦i )

E(SikS
T
ik|Y ◦i ) = S̃ikS̃

T
ik + Tss + Σss −∆s(V

◦
i )−1∆T

s ,

Ỹ2i = E(Y2i|Y ◦i ) = β22W2i + ∆y(V
◦
i )−1(Y ◦i − µ◦i )

E(Y2iY
T

2i |Y ◦i ) = Ỹ2iỸ
T

2i + T22 −∆y(V
◦
i )−1∆T

y ,

E(SikY
T

2i |Y ◦i ) = S̃ikỸ
T

2i + Ts2 −∆s(V
◦
i )−1∆T

y ,

ε̃ik = E(εik|Y ◦i ) = ∆ec(V
◦
i )−1(Y ◦i − µ◦i ),

ãi = ∆ac(V
◦
i )−1(Y ◦i − µ◦i ),
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E(aia
T
i |Y ◦i ) = ãiã

T
i +D −∆ac(V

◦
i )−1∆T

ac.

3.8.3 Calculation of the Information Matrix

The expected Fisher information matrix is obtained by differentiating twice the observed marginal

multivariate normal log-likelihood with mean and covariance given in (3.9), but we introduce new

parameters α1 and α2, which are defined in (3.7). Consequently, parameters Σus, Tu2, Tus, and Σuu

are the function of α1, α2 and the other elements in Σ and T as

Σus = αT1 Σss,

Tu2 = αT2 T22 + αT1 Ts2, (3.27)

Tus = αT1 Tss + αT2 T2s,

Σuu = 1 + αT1 Σssα1.

Let W (A) denote a vector by horizontally arranging the elements in the matrix A and γ =

(βr0, βr1, β
∗∗) in which β∗∗ = [βTu W (βs1)T W (βs2)T W (β22)T ]T . The arrangement makes us eas-

ily extract the covariances between W (βs1), W (βs2), W (β22) and α1, α2 to estimate the variances

of α3, α4 and D by Delta method. let Hi = Oi ⊕3
j=1 Hij with Hi1 = [1ki ⊗ IJ (Wuiβu)⊗ IJ ],

Hi2 = [1ki ⊗ Ip1 W1i ⊗ Ip1 W2i ⊗ 1ki ⊗ Ip1 ], and Hi3 = [Ip2 Ip2 ⊗ W2i], Fi = Oi ⊕3
j=1 Fij

with Fi1 = [1ki ⊗ IJ Wui ⊗ βr1], Fi2 = Hi2, and Fi3 = Hi3, Gi = Hi

 IJ

0(J+p3p1+p4p2)×J

,

Mi = Hi


0J×J

IJ

0(p3p1+p4p2)×J

, and Qi = Fi

 0J×(p3+p3p1+p4p2)

Ip3+p3p1+p4p2

. The expected Fisher informa-
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tion matrix for the MLE of γ = (βr0, βr1, β
∗∗) is

Iγγ =
n∑
i=1


GT
i (V ◦i )−1Gi GT

i (V ◦i )−1Mi GT
i (V ◦i )−1Qi

MT
i (V ◦i )−1Gi A+MT

i (V ◦i )−1Mi MT
i (V ◦i )−1Qi

QT
i (V ◦i )−1Gi QT

i (V ◦i )−1Mi QT
i (V ◦i )−1Qi,

 (3.28)

where A has its (j, k)th component 1
2
tr
(

(V ◦i )−1 ∂V
◦
i

∂βrj
(V ◦i )−1 ∂V

◦
i

∂βrk

)
.

Define V (A) is a vector by vertically arranging the distinct elements in a matrix A. Let δ =

(ξ, τ, Tuu, V (Tss), V (T2s), V (T22), V (Σss), α1, α2), then

Iδjβrk =
1

2

n∑
i=1

tr
(

(V ◦i )−1∂V
◦
i

∂δj
(V ◦i )−1 ∂V

◦
i

∂βrk

)
, (3.29)

Iδjδk =
1

2

n∑
i=1

tr
(

(V ◦i )−1∂V
◦
i

∂δj
(V ◦i )−1∂V

◦
i

∂δk

)
, (3.30)

and Iδβr0 = 0, Iδβ∗∗ = 0, where

∂V ◦i
∂βrj

= Oi


(
(ZuiTuuZ

T
ui

+ ΣuuIki)⊗ (βr1∆T
j + ∆jβ

T
r1)
)

M1 (ZuiTu2)⊗∆j

MT
1 0 0

(T2uZ
T
ui)⊗∆T

j 0 0

OT
i ,

∂V ◦i
∂ξj

= Oi


(1ki1

T
ki

)⊗∆j 0 0

0 0 0

0 0 0

OT
i ,

∂V ◦i
∂τj

= Oi


Iki ⊗∆j 0 0

0 0 0

0 0 0

OT
i ,

∂V ◦i
∂V (Tuu)j

= Oi


(
Zui

∂Tuu
∂V (Tuu)j

ZT
ui

)
⊗ (βr1β

T
r1) 0 0

0 0 0

0 0 0

OT
i ,
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∂V ◦i
∂V (Σss)j

= Oi


(
αT1

∂Σss

∂V (Σss)j
α1Iki

)
⊗ (βr1β

T
r1) Iki ⊗ (βr1α

T
1

∂Σss

∂V (Σss)j
) 0

Iki ⊗ ( ∂Σss

∂V (Σss)j
α1β

T
r1) Iki ⊗ ∂Σss

∂V (Σss)j
0

0 0 0

OT
i ,

∂V ◦i
∂V (Tss)j

= Oi


0 M2 0

MT
2 (1ki1

T
ki

)⊗ ∂Tss
∂V (Tss)j

0

0 0 0

OT
i ,

∂V ◦i
∂V (Ts2)j

= Oi


0 M3

(
Zuiα

T
1

∂Ts2
∂V (Ts2)j

)
⊗ βr1

MT
3 0 1ki ⊗ ∂Ts2

∂V (Ts2)j(
∂T2s

∂V (Ts2)j
α1Z

T
ui

)
⊗ βTr1 1Tki ⊗

∂T2s
∂V (Ts2)j

0

OT
i ,

∂V ◦i
∂V (T22)j

= Oi


0 0

(
Zuiα

T
2

∂T22
∂V (T22)j

)
⊗ βr1

0 0 0(
∂T22

∂V (T22)j
α2Z

T
ui

)
⊗ βTr1 0 ∂T22

∂V (T22)j

OT
i ,

∂V ◦i
∂α1

= Oi


(
2δT1jΣssα1Iki

)
⊗ (βr1β

T
r1) M4 (Zuiδ

T
1jTs2)⊗ βr1

MT
4 0 0

(T2sδ1jZ
T
ui)⊗ βTr1 0 0

OT
i ,

∂V ◦i
∂α2j

= Oi


0 M5 (Zuiδ

T
2jT22)⊗ βr1

MT
5 0 0

(T22δ2jZ
T
ui)⊗ βTr1 0 0

OT
i ,

where ∆j, δ1j, δ2j are J-by-1, p1-by-1, and p2-by-1 vectors with jth element equal to one and zero

otherwise, M1 = ((ZuiTus)⊗∆j) (1Tki ⊗ Ip1) + Iki ⊗ (∆jΣus), M2 =
(

(Zuiα
T
1

∂Tss
∂V (Tss)j

)⊗ βr1
)

(1Tki⊗Ip1),M3 =
(

(Zuiα
T
2

∂T2s
∂V (Ts2)j

)⊗ βr1
)

(1Tki⊗Ip1),M4 = Iki⊗(βr1δ
T
1jΣss)+

(
(Zuiδ

T
1jTss)⊗ βr1

)
(1Tki⊗Ip1), andM5 =

(
(Zuiδ

T
2jT2s)⊗ βr1

)
(1Tki⊗Ip1). Note that the above formulas have unknown

terms ∂Σss

∂V (Σss)j
, ∂Tss
∂V (Tss)j

, ∂Ts2
∂V (Ts2)j

, and ∂T22
∂V (T22)j

. We know for any p-by-p matrix $1 the first deriva-
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tive of the (l, k)th (k > l) element is

∂$1

∂$1kl

=


δkδ

T
l + δlδ

T
k k > l

δkδ
T
l k = l,

(3.31)

and for any p-by-q (p 6= q) matrix $2 the first derivative of the (l, k)th element is

∂$2

∂$2kl

= δkη
T
l , k = 1, · · · , p, l = 1, · · · , q (3.32)

where δh and ηh are p-by-1 and q-by-1 vectors with the hth element equal to one and zero otherwise,

respectively. After we vertically arrange the distinct elements in $1 and $2, the first derivative of

the jth element for j = 1, · · · , p(p + 1)/2 or j = 1, · · · , pq has a one-to-one transformation with

equations (3.31) and (3.32), respectively.

3.8.4 The Variance Calculation of the Parameters in the LVMs

The variances of the estimators α1, α2, β0, β1, ξ and τ in the LVMs can be estimated from Sec-

tion 3.8.3. The variances of the other estimates can be calculated by Delta method. Let θ1 =

[βTu1 W (βs1)T αT1 ]T , θ2 = [βTu2 W (βs2)T W (β22)T αT1 α
T
2 ]T , and θ3 = [Tuu V (Tss)

T V (Ts2)T V (T22)T

αT1 αT2 ]T . From the transformation formulas (3.7) and Delta method, the covariances of α̂3, α̂4,

and D̂ with Zuik = 1 are calculated as

covα̂3 = ∇̂f 1covθ̂1∇̂f
T

1 ,

covα̂4 = ∇̂f 2covθ̂2∇̂f
T

2 , (3.33)

covD̂ = ∇̂f 3covθ̂3∇̂f
T

3 ,
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where covθ̂i (i = 1, · · · , 3) can be extracted from the inverse of the expected Fisher information

matrix in Section 3.8.3 and

∇f1 =
[
Ip3 − αT1 ⊗ Ip3 − βTs1

]
,

∇f2 = [Ip4 −
(
αT1 ⊗ Ip4

)
−
(
αT2 ⊗ Ip4

)
− βTs2 − β

T
22],

∇f3 =

[
1

(
∂D

∂V (Tss)

)T (
∂D

∂V (Ts2)

)T (
∂D

∂V (T22)

)T (
∂D

∂α1

)T (
∂D

∂α2

)T]

with

∂D

∂V (Tss)j
= −αT1

∂Tss
∂V (Tss)j

α1,

∂D

∂V (Ts2)j
= −2αT1

∂Ts2
∂V (Ts2)j

α2,

∂D

∂V (T22)j
= −αT2

∂T22

∂V (T22)j
α2,(

∂D

∂α1

)T
= −2αT2 T2s − 2αT1 Tss,(

∂D

∂α2

)T
= −2αT2 T22 − 2αT1 Ts2.

The terms ∂Tss
∂V (Tss)j

, ∂Ts2
∂V (Ts2)j

, and ∂T22
∂V (T22)j

are described in Section 3.8.3. Similarly, using multi-

variate Delta method, we could derive the variances of distinct elements V (D) of D if we fit a

random-coefficient (3.1).
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Figure 3.1: Illustration of the structure of the latent variable models

50



Table 3.1: Estimation of the simulated LVMs (11) by three different estimation methods

Model Para. True value Estimate (S.E.a)

Benchmark Just-identified Over-identified

(1) α 1 1.031 (0.075) 1.032 (0.075) 0.901 (0.065)

1 1.007 (0.024) 1.007 (0.024) 0.882 (0.021)

D 1 0.999 (0.069) 0.999 (0.069) 0.751 (0.052)

(2) βr0 1 0.993 (0.054) 0.993 (0.054) 0.993 (0.054)

1 1.026 (0.055) 1.026 (0.055) 1.026 (0.054)

βr1 1 0.987 (0.014) 0.987 (0.014) 1.129 (0.016)

1 0.987 (0.014) 0.987 (0.014) 1.129 (0.016)

ξ 0.25 0.268 (0.035) 0.268 (0.035) 0.267 (0.035)

0.25 0.291 (0.035) 0.291 (0.036) 0.291 (0.036)

τ 0.25 0.240 (0.018) 0.240 (0.018) 0.240 (0.018)

0.25 0.258 (0.019) 0.258 (0.019) 0.258 (0.018)

astandard error

Table 3.2: NGHS data for analysis

level variable description mean (S.E.) missing (%)

BMI BMI(kg/m2) 22.42 (5.81) 308 (1.5)

Skinfold sum of skinfolds (mm) 45.11 (24.88) 783 (3.8)

Waist max. below-waist circumference(cm) 93.95 (12.87) 2807 (13.5)

level 1 PercentFat percent fat by BIA 25.29 (11.49) 1694 (8.1)

AGE age in years at time of visit 14.36 (2.99) 0 (0.0)

TV TV watching (hours/week) 31.35 (21.32) 4834 (23.2)

PhysicalAct physical activity pattern score 17.35 (17.75) 6573 (31.5)

Maturation maturation stages 2.10 (1.03) 1063 (5.1)

MotherBMI mother’s BMI 27.35 (6.91) 6772 (32.4)

ParentEd maximum parental education 0.75 (0.43) 0 (0.0)

level 2 Income household income 1.06 (0.83) 1156 (5.5)

RACE race (white/black) 0.48 (0.50) 0 (0.0)

NumParents the number of parents 0.31 (0.46) 0 (0.0)
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Table 3.3: Parameter estimates and their estimated
standard errors in model (3.1)

Parameter Covariate Estimate(S.E.)

Random intercept Random slope

α1 TV 0.004∗∗(0.001) 0.004∗∗(0.001)

PhysicalAct -0.003∗∗(0.001) -0.002∗(0.001)

Maturation 0.347∗∗(0.021) 0.387∗∗(0.024)

α2 MotherBMI 0.150∗∗(0.011) 0.133∗∗(0.013)

Income -0.183 (0.096) 0.078 (0.114)

α3 AGE 0.502 (0.020) 0.713 (0.024)

AGE2 -0.025∗∗ (0.005) -0.031∗∗ (0.005)

AGE×White -0.057∗ (0.026) -0.124∗∗ (0.033)

α4 ParentEd 0.012 (0.155) 0.144 (0.179)

White -0.309 (0.137) -0.938 (0.186)

OneParent 0.380∗(0.159) 0.568∗∗(0.185)

Da
00 8.040 (0.386) 16.482(0.560)

D01 0.942 (0.043)

D11 0.155 (0.006)

a D00 = D in a random-intercept model (3.1)
∗

p-value< 0.05, ∗∗ p-value< 0.01

Table 3.4: Parameter estimates and their estimated standard errors in model (3.2)

Model (3.1) with Biomarker β̂r0j β̂r1j τ̂j ξ̂j

BMI 22.74 (0.09) 1.46 (0.01) 1.06 (0.02) 1.07 (0.09)

random Skinfold 47.30 (0.37) 5.24 (0.04) 75.05 (0.83) 73.38 (2.73)

intercept Waist 93.46 (0.29) 4.37 (0.03) 2.02 (0.10) 29.72 (1.16)

PercentFat 25.88 (0.19) 2.69 (0.02) 15.29 (0.18) 21.00 (0.75)

BMI 22.74 (0.09) 1.08 (0.01) 0.54 (0.01) 0.86 (0.08)

random Skinfold 47.37 (0.38) 3.95 (0.03) 65.06 (0.73) 69.98 (2.56)

coefficient Waist 93.49 (0.28) 3.04 (0.02) 6.04 (0.11) 24.79 (0.97)

PercentFat 25.85 (0.19) 1.95 (0.02) 15.40 (0.18) 21.88 (0.76)
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Figure 3.2: Obesity growth curves for blacks and whites

Figure 3.3: Estimated latent scores at each age for each race
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4 Three-Level Latent Variable Analysis Given Incompletely Observed Multivariate

Markers in a Cluster-Randomized Study

4.1 Introduction

Multilevel data arise when units nest within clusters. It is of interest to study what risk factors and

surrogate outcomes are associated with a latent variable like academic achievement or treatment

effectiveness, in the setting of multilevel data. It is necessary to develop multilevel methods for

this scenario, in particular, we cannot expect to include all cluster-specific influences as covariates

in the analysis. This chapter is to extend the two-level LVMs to three-level LVMs that are imple-

mented to study racial disparities in the academic achievement. Disparities in achievement scores

between African-American and white students have been published for several decades. They de-

clined steadily for most of the 20th century, but this progress has been halted or even reversed in

recent years (Neal and Johnson, 1996). Understanding the reasons and utilizing effective strategies

are crucial for designing policies to reduce racial inequality in achievement score and, therefore,

potentially improves the well-being of African-American students later. A meta-analysis of sev-

eral hundred studies by Glass and Smith (1978) and review by Robinson (1990) summarized that

the small class size had a positive effect on student achievement. Many of the studies have poor

quality, however, and none of them was a randomized experiment.

Tennessee’s Student/Teacher Achievement Ratio Study (STAR) has been widely regarded as

one of the most important experiments on education research (Mosteller, 1995). The data are

publicly available and have been intensively investigated the relationship between small class size

and academic achievement. Education researchers reported that there was a significant relation-

ship between small class size and high academic performance, and small class size was beneficial

to minority (Finn and Achilles, 1990; Goldstein and Blatchford, 1998; Goldstein et al., 2000;

Krueger, 1999; Krueger and Whitmore, 2001; Mosteller, 1995; Nye et al., 1999, 2000, 2004; Shin,

54



2012; Shin and Raudenbush, 2011), though some other researchers disagreed with this proposi-

tion (Hanushek, 1999; Milesi and Gamoran, 2006). Some of these studies generated results from

the analysis of a univariate outcome by completely observed cases or an ad hoc imputation like

sample mean substitution. Such estimation requires a strong assumption of data MCAR (Heitjan

and Basu, 1996; Little and Rubin, 2002; Rubin, 1976; Schafer, 1997). The univariate analysis

under the assumption of MCAR is, in general, inefficient and might result in biased inferences.

The other studies proposed multivariate simultaneous equation model to investigate the relation-

ship between class size and achievement scores (Shin, 2012; Shin and Raudenbush, 2011) with a

comparatively weak assumption of data MAR (Little and Rubin, 2002; Rubin, 1976). This method

has three limitations. First, it neglects to address a covariate effect on the overall achievement

score. Secondly, it does not account for the feature that the surrogate outcomes measure an overall

interest, and, therefore, can not provide an estimate of a unit-specific achievement score. Finally, it

needs more degrees to test coefficient effects and cannot identify if the treatment effect is random

across schools. Although one can perform an analysis assuming a common effect on all outcomes,

this assumption is inappropriate and misleading especially when the outcomes are measured on

different scales and units.

In this chapter, we formulate simultaneous three-level LVMs: a measurement model where

multivariate surrogate outcomes measure the latent achievement score with error and a structure

model where the latent achievement score is associated with some potential risk factors (Laird and

Ware, 1982; Pocock, Geller, and Tsiatis, 1987; Roy and Lin, 2000; Sammel and Ryan, 1996). We

use these models to analyze third graders attending 75 elementary schools in Tennessee. In the fall

before the school year started, the third graders were randomly assigned to classes of the treatment

group (small class size) or control group (regular class size) within each school in STAR. Four

surrogate outcomes are reading (R1), math (R2), listening (R3), and word recognition (R4) skill

scores, which are highly correlated and thought to measure academic achievement accurately. Race

(black/white) and treatment (yes/no) are possible risk factors for the academic achievement. Some
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subjects have missed all scores. Consequently, in this cluster-randomized study, the data consist of

1270 third graders attending 310 classes in 75 schools. We estimate these models simultaneously to

produce efficient estimates by ML via the PX-EM algorithm. The method extends the mixed linear

models from Laird and Ware (1982) and Shah, Laird and Schoenfiled (1997), and EM-algorithm

for LVMs in a longitudinal study proposed by Roy and Lin (2000).

The objectives of this chapter are (1) to identify surrogate outcomes associated with academic

achievement, (2) to identify risk factors of academic achievement, and (3) to provide a unit-specific

achievement score. Chapter 2 has discussed that it is challenging to achieve these goals due to the

latent variable and the various surrogate outcomes measured with errors. The approach becomes

challenging for three-level LVMs. In this section, we apply the EM and PX-EM algorithms to the

three-level LVMs by assuming the multiple surrogate outcomes MCAR or MAR. In both cases,

competing models are compared to identify if the magnitude of minority advantages vary signifi-

cantly across schools. Section 4.2 introduces the model. Section 4.3 describes the EM and PX-EM

algorithms. Section 4.4 analyzes the STAR data by the two algorithms. Section 4.5 concludes the

chapter with a short discussion. Finally, Section 4.6 describes some detailed mathematical deriva-

tions.

4.2 Three-level Latent Variable Models

This section extends the two-level simultaneous equation models developed by Roy and Lin (2000)

to three-level data. The structural model for the academic achievement is

Uikl = Xiklα + Eiklλi + Ziklaik + εikl, (4.1)

where Uikl is a univariate latent score, Xikl is a vector of covariates having fixed effects α, Eikl is

a vector of covariates having level-3 unit-specific random effects λi
iid∼ N(0,Γ), Zikl is a vector

of covariates having level-2 unit-specific random effects aik
iid∼ N(0, D). Both λi and aik are
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independent of a level-1 unit-specific random error εikl
iid∼ N(0, 1) for level-1 unit l = 1, 2, · · · , nik

nested within level-2 unit k = 1, 2, · · · , ni nested within level-1 unit i = 1, 2, · · · , n. If the latent

score Uikl were observed, we would be able to estimate the model by standard multilevel software.

With the response variable unobservable, there are observable surrogate outcomes that are highly

correlated and supposed to predict the latent score with accuracy. That is that the latent score is

related to the surrogate outcomes by

Rijkl = β0j + β1jUikl + cij + bijk + eijkl, (4.2)

where Rijkl are observable surrogate outcomes, βr = [β0j β1j]
T is a vector of regression coeffi-

cients for the jth surrogate outcome, cij
iid∼ N(0, Tj), bijk

iid∼ N(0, ξj), and eijk
iid∼ N(0, τj) are

level-3, level-2, and level-1 unit-specific random effects, respectively. Given the latent variable

Uikl, the surrogate outcomes Rijkl are mutually independent. We further assume the bijk are inde-

pendent. To make parameters identifiable, we assume εikl is distributed as N(0, 1) and Xikl does

not contain an intercept.

It is essential to aggregate models (4.1) and (4.2) at individual level for deriving estimates

and their variances. For k = 1, 2, · · · , ni and J = 1, 2, · · · , J , let Uik = [Uik1 Uik2 · · ·Uiknik
]T ,

Ui = [UT
i1 UT

i2 · · ·UT
ini

]T , Rijk = [Rijk1 Rijk2 · · ·Rijknik
]T , Rij = [RT

ij1 RT
ij2 · · ·RT

ijni
]T , Ri =

[RT
i1 R

T
i2 · · ·RT

iJ ]T and εi, Xi, ei, bi, ci, Ei defined similarly. Let β0 = [β01 β02 · · · β0J ]T with β1

similarly defined. Then we can write models (4.1) and (4.2) in matrix notation as

Ri = β0 ⊗ 1mi
+ β1 ⊗ Ui + ci ⊗ 1mi

+ (IJ ⊗Wi)bi + ei,

Ui = Xiα + Eiλi + Ziai + εi,

(4.3)

where⊗ represents Kronecker product, bi = [bi1 bi2 · · · biJ ]T ∼ N(0, R(ξ)⊗Ini
), mi =

∑ni

k=1 nik,

ai = [ai1 ai2 · · · aini
]T , Zi = ⊕ni

k=1Zik, and Wi = ⊕ni
k=11nik×1 for bij = [bij1 bij2 · · · bijni

]T ,
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R(ξ) = ⊕Jj=1ξj , Zik = [Zik1 Zik2 · · ·Ziknik
]T , and⊕Jj=1Aj = diag(A1, A2, · · · , AJ) representing a

diagonal matrix with diagonal elements or submatrices (A1, A2, · · · , AJ) and all the other elements

equal to zero. It follows Ri ∼ N(µi, Vi) with

µi = β0 ⊗ 1mi
+ β1 ⊗ (Xiα),

Vi = (β1β
T
1 )⊗ cov(Ui) +R(T )⊗ (1mi

1Tmi
) +R(τ)⊗ Imi

+R(ξ)⊗ (WiW
T
i )

(4.4)

where cov(Ui) = ZiDZ
T
i + EiΓE

T
i + Imi

, R(T ) = ⊕Jj=1Tj , and R(τ) = ⊕Jj=1τj .

Following Shin and Raudenbush (2007), for unit i suppose we have mij ≤ mi students on

the jth surrogate outcome. Let Oij be an index matrix to indicate the students when the jth (j =

1, 2, · · · , J) surrogate outcome is observed. Specifically, Oij is a mij × mi matrix constructed

by deleting rows of Imi
which are corresponding to the missing observations on the jth surrogate

outcome. Hence, R◦ij = OijRij . Given Oi = ⊕4
j=1Oij , then R◦i = OiRi. It follows that the

marginal distribution of R◦i is multivariate normal with mean and covariance

µ◦i = E(R◦i ) = OiE(Ri),

V ◦i = cov(R◦i ) = Oicov(Ri)O
T
i .

(4.5)

4.3 EM and PX-EM Algorithms

Like the two-level LVMs, it is challenging to estimate the model (4.3) by directly using the ac-

tual log likelihood since β1 enters both the marginal mean and variance of Ri. EM algorithm is

implemented to estimate the model because Ri is conditionally independent given Ui. In the EM

algorithm we treat the latent variables Ui, the random effects ai, bi, ci and λi as missing data.

Therefore, the complete data are (Ri, Xi, Zi, Ui, ai, bi, ci, λi) and the observed data are R◦i . Given

the initial values of the parameters, the EM algorithm iterates between its E- and M-steps until
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convergence. The E-step takes expectations of the sufficient statistics of the complete-data log

likelihood, given the observed data. The M-step maximizes the expected complete-data log likeli-

hood given parameters from the previous iteration. The method (detailed in Subsections 4.6.1 and

4.6.2) is

E step : Calculate the conditional expectations related to the latent variable Ui, and

the random terms ai, bi, eij, εi, λi, cij and UT
i eij;

M step : Maximize the model parameters from the complete-data log likelihood.

The variances of the parameter estimators are computed by the expected Fisher information

matrix (Section 4.6.3) based on the marginal log likelihood of R◦i at convergence.

A criticism of the EM algorithm is its slow convergence to MLEs, which has already demon-

strated for NGHS longitudinal study in Chapter 2. We implement the PX-EM algorithm and extend

it to the three-level LVMs for the cluster-randomized STAR data to check how faster the PX-EM

algorithm is than the EM-algorithm. The PX-EM algorithm is applied to the models (4.1) and (4.2)

where the only change is an extension of the parameter εik
iid∼ N(0, σ2). The PX-EM algorithm is

PX-E step: This is unchanged from EM;

PX-M step: Estimate model parameters in the expanded space

γt? =
(
βt0, β

t
1, αt, τt, Dt, ξt, σ

2
t ,Γt, Tt

)
and reduce γt? to the desired model parameters by the following modification

γt =

(
βt0, β

t
1σt,

αt
σt
, τt,

Dt

σ2
t

, ξt, σ
2 = 1,

Γt
σ2
t

, Tt

)
.

Note that the general idea of two-level and three-level LVMs are similar except for estimating more

components in the three-level LVMs.
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4.4 Data Analysis

In this section, we implement the EM and PX-EM algorithms to analyze the STAR data described

in the Introduction. Their initial values are calculated by the same approach as these in Chapter

2 for the two-level LVMs. Because the class type is randomly assigned to a class, it may have

school-level confounders. In order to assess if such confounding seriously biases inferences, two-

level LVMs are assessed and compared, which control for all school-level covariates by fixing

school effects.

Surrogate outcomes R1, R2, R3, R4 are highly correlated with correlations ranging 0.49 to

0.87, and are useful to assess academic achievement. We are interested in if African-American

and white students have a differential treatment effect on the latent score and if this differential

effect is random across classes. Therefore, we fit the models (4.1) and (4.2) simultaneously by ML

via the EM and PX-EM algorithm for two cases: (1) Zik` = 1, and (2) Zik` = [1 Bik` × Tik`] and

D =

[
D00 D01

D10 D11

]
forXik` = [Bik` Tik` Bik`×Tik`]. We call the LVMs with these two cases model

A and model B, respectively. We analyze dummy indicator variables for treatment and African-

American students. The surrogate outcomes and race-specific scores are summarized in Table 4.1.

All race-specific scores are subject to missingness ranging from 11% to 25%. We analyze them

under the assumption of MAR or MCAR and compare the results under these two assumptions.

We only shows the results by the PX-EM algorithm in Table 4.2 because the EM algorithm

produces practically identical results. Table 4.2 lists the parameter estimates and their standard

errors of the LVMs given surrogate outcomes MAR or MCAR. Under H0 : D01 = D11 = 0,

likelihood ratio tests give test statistics 0.1∼ χ2
2 and 0.01∼ χ2

2 with p-values> 0.05 under the

assumptions of MCAR and MAR, respectively. The results show that the race-treatment effect is

not randomly across classes. Our analysis shows four surrogate outcomes are positively associated

with the latent score for both assumptions, but with the assumption of MCAR, all slopes of the
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latent score appear to be underestimated, and the standard errors of the slopes are exaggerated.

There is a significant interaction effect between race and treatment. The point estimate and its

standard deviation under the assumption of MCAR are overestimated. Table 4.3 gives the treatment

versus control effect on the latent score. We interpret the results under the comparatively weak

assumption of MAR. African-American students in the treatment group have 0.32 units higher

achievement score than these in the control group. After treatment, African-American students

have 0.33 units higher achievement score than white students. Treatment seems not to have a

significant effect on the achievement score for white students.

The estimation of unit-specific achievement scores is a by-product of the algorithms. Figure

4.1 shows the scatter plot of the scores against schools and Figure 4.2 is their QQ-plot. In Fig-

ure 4.1, the two horizontal yellow lines indicate the 2.5th and 97.5th percentiles of the academic

achievement. While 2.5% of the subjects above the top line have higher achievement score than the

others, 2.5% of the subjects below the bottom line have lower achievement score than the others.

Identifying these subjects and studying their characteristics may be beneficial to reduce the gap of

achievement between African-American and white students. The QQ plot of the academic achieve-

ment (Figure 4.2) allows researchers to examine the assumptions graphically and to identify cases

for which the models provide a particularly poor fit. It appears to follow a 45-degree straight line

fairly through the origin. Therefore, the assumption of normality for the latent variable might be

tenable, and there is no evidence of some potential outliers.

To rule out confounders between Tik and school-level covariates, two-level LVMs are fitted as

Rkjl = β0j + β1jUkl + ckj + ekjl, ckj ∼ N(0, ξj), ekjl ∼ N(0, τj), (4.6)

Ukl = Xklα + Zklak + εkl, ak ∼ N(0, D), εkl ∼ N(0, 1) (4.7)

where k = 1, 2, · · · , n and l = 1, 2, · · · , nk, Xkl = [Bkl Tk Bkl × Tk Sk] with Tk is a vector

of school indicators. If confounding is severe, then the results are differential between the two-
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and three-level LVMs. Like three-level LVMs, two competing models are fitted under the assump-

tions of MAR and MCAR. The results are summarized in Table 4.4. Likelihood ratio test shows

that the race-treatment effect is not randomly across classes for either the assumption of MAR

or MCAR with p-value=0.62 and p-value=0.76, respectively. In Model (1), the results under the

assumption of MCAR seem underestimate these under the assumption of MAR. In Model (2), the

results appear under the assumption of MCAR overestimate these under the assumption of MAR.

The estimated effects are in close range to their counterparts under three-level LVMs. The stan-

dard errors are relatively inflated under two-level LVMs, which indicates that three-level models

are more efficient than two-level models. In addition, three-level models are more powerful to

test coefficient effect than two-level model. Because the estimates are close to each other across

the two- and three-level LVMs, the treatment effect due to the confounder of school-level variable

seems implausible.

4.5 Discussion

In this chapter, we formulated a measurement model where four highly correlated observed sur-

rogate outcomes measure the academic achievement with error and a structural model where the

academic achievement is related to covariates (Roy and Lin, 2000). We analyzed third grade stu-

dents from STAR and simultaneously estimated the models to yield valuable inferences by ML

via the PX-EM algorithm. The convergence to ML by the PX-EM algorithm was shown to be

10% faster than that by the conventional EM algorithm. Complete-case analysis suffers from a

loss of information due to discarding incomplete cases, which leads to a loss of precision and bias

if missing surrogate outcomes are not MCAR, and the complete cases are not a random sample

of all the cases. Under the assumption of surrogate outcomes MAR, we estimated the parameters

conditionally on observed data to reduce bias due to missingness and to improve precision.

It is challenging to perform global testing for the outcomes since they are often measured at
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different scales and units. In this chapter, we considered the LVMs as providing a framework to

address this issue and enable a global examination of covariate effects on academic achievement.

The results showed that the achievement score was positively associated with the four surrogate

outcomes. Race and small class size were significantly associated with academic achievement.

These findings imply policy makers that the reduced class size may be an important factor at

improving African American education which is eventually useful to narrow or close the education

gap between African American and white students. Small class may be introduced to be more

inclusive of African American. Narrowing the gap not only moves the United States toward racial

equality, but also has a significant positive economic and social impact.

Our estimates are based on ML assuming multivariate normality for the random effect at each

level and constant variances for each surrogate outcome. The conclusions based on the LVMs

depend for their validity on the tenability of assumptions about the structural and random parts.

We generated QQ plots and scatter plots of empirical Bayesian residuals graphically to identify

cases for which the models fit poorly. Overall the plots exhibited no clear pattern against normality,

constant variance, and linearity.

Some limitations of this study should be noted. First, although the study is cluster-randomized,

the substantial imbalance in baseline variables might occur by chance. The conclusions on the

treatment effect might be confounded by such imbalance if not properly adjusted (Wei and Zhang,

2001). Therefore, we might account for baseline covariates and demographic characteristics in

Model (4.1) to examine the treatment effect. Second, our study is limited to completely observed

covariate analysis. The race-treatment effect on academic achievement in this article might not be

the only or most interesting thing we want to evaluate. There is suggestive evidence that gender

and social, economic status are reported to be significant for academic achievement (Goldstein and

Blatchford, 1998; Guryan, Hurst, and Kearney, 2008; Krueger, 1999; Pamela, 2005). It will be in-

teresting to develop an approach of handling missing surrogate outcomes and covariates. However,

it is not our intention here to discuss these problems in depth. In our future agenda of research,
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we will examine the simultaneous equations and the latent outcome by handling missing covari-

ates efficiently under the assumption of data MAR. It is also of interest to extend the simultaneous

equation models with discrete/ordinal surrogate outcomes (Zhang, Chen, and Albert, 2012). In this

chapter, we found that the small class size caused higher academic achievement scores. In the next

Chapter, we will continue our work to find if reduced class size has a causal effect on the academic

achievement (Shin, 2012; Shin and Raudenbush, 2011).

4.6 Miscellanea

4.6.1 Conditional Expectations

The conditional expectations in E-step are

Ũi = E(Ui|R◦i ) = Xiα + ΛiO
T
i (V ◦i )−1(R◦i − µ◦i ),

E(UT
i Ui|R◦i ) = ŨT

i Ũi + tr(cov(Ui|R◦i )),

ãi = E(ai|R◦i ) = (βT1 ⊗ ((Ini
⊗D)ZT

i ))OT
i (V ◦i )−1(R◦i − µ◦i ),

E(aia
T
i |R◦i ) = ãiã

T
i + Ini

⊗D −∆ai(V
◦
i )−1∆T

ai
,

b̃ij = E(bij|R◦i ) = ν1O
T
i (V ◦i )−1(R◦i − µ◦i ),

E(bijb
T
ij|R◦i ) = b̃ij b̃

T
ij + tr

(
ξjIni

− ν1O
T
i (V ◦i )−1Oiν

T
1

)
, (4.8)

E(UT
i eij|R◦i ) = ŨT

i ẽij − tr(ΛiO
T
i (V ◦i )−1Oiν

T
2 ),

ε̃i = E(εi|R◦i ) = βT1 ⊗ Imi
OT
i (V ◦i )−1(R◦i − µ◦i ),

ẽij = E(eij|R◦i ) = ν2O
T
i (Vi)

−1(R◦i − µ◦i ),

E(eTijeij|R◦i ) = ẽTij ẽij + tr(τjImi
− ν2O

T
i (V ◦i )−1Oiν

T
2 ),

λ̃i = E(λi|R◦i ) = βT1 ⊗ (ΓET
i )Oi(V

◦
i )−1(R◦i − µ◦i ),

E(λiλ
T
i |R◦i ) = λ̃iλ̃

T
i + βT1 ⊗ (ΓET

i )OT
i (V ◦i )−1Oiβ1 ⊗ (EiΓ),
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c̃i = E(ci|R◦i ) = R(T )⊗ 1Tmi
OT
i (V ◦i )−1(R◦i − µ◦i ),

E(cTi ci|R◦i ) = c̃ic̃
T
i +R(T )− (R(T )⊗ 1Tmi

)OT
i (V ◦i )−1Oi(R(T )⊗ 1mi

),

where

∆ai = (βT1 ⊗ ((Ini
⊗D)ZT

i ))OT
i ,

Λi = βT1 ⊗ (Imi
+ ZiDZ

T
i + EiΓE

T
i ),

cov(Ui|Ri) = Imi
+ ZiDZ

T
i + EiΓE

T
i − ΛiV

−1
i ΛT

i ,

ν1 =
[
(0ni×(j−1)ni

ξjIni
0ni×(J−j)ni

)(IJ ⊗W T
i )
]
,

ν2 = [0mi×(j−1)mi
τjImi

0mi×(J−j)mi
].

4.6.2 CD ML Estimates

The complete-data log likelihood for (Ri, Ui, bi, ai, ci, λi) is, apart from a constant,

l =
n∑
i=1

(l(Ri|Ui, bi, ci) + l(Ui|ai, λi) + l(ai) + l(bi) + l(ci) + l(λi)), (4.9)

where ξ = (ξ1, · · · , ξJ), τ = (τ1, · · · , τJ), T = (T1, · · · , TJ), and

l(Ri|Ui, bi, ci) =
J∑
j=1

(
−mi

2
log τj −

1

2τj
eTijeij

)
,

l(Ui|ai, λi) = −1

2
εTi εi,

l(ai) = −1

2
(ni log |D|+ aTi D

−1ai),

l(bi) = −1

2
(mi log |R(ξ)|+ bTi R(ξ)−1bi),

l(ci) = −1

2
(n log |R(T )|+ cTi R(T )−1ci),
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l(Γ) = −1

2
(n log |Γ|+ λTi Γ−1Λi).

Differentiating (4.9) with the parameters β0, β1, α, ξ, τ , Γ, T and D, respectively, taking

expectations of the resulting forms conditional to the observed data R◦i , setting them equal to

zeros, and solving these equations, we know

β̂
(k)
j = β̂

(k−1)
j +

(
n∑
i=1

E(UT
i∗Ui∗|R◦i )

)−1 n∑
i=1

E((UT
i∗eij)|R◦i ),

τ̂j =
1∑n

i=1 mi

×
n∑
i=1

E(eTijeij|R◦i ),

ξ̂j =
1∑n
i=1 ni

n∑
i=1

E(b2
ij|R◦i ), (4.10)

α̂(k) = α̂(k−1) +

(
n∑
i=1

XT
i Xi

)−1 n∑
i=1

XT
i ε̃i,

D̂ =
1∑n
i=1 ni

n∑
i=1

E(aia
T
i |R◦i ),

Γ̂ =
1

n

n∑
i=1

E(λiλ
T
i |R◦i ),

T̂j =
1

n

n∑
i=1

E(cijc
T
ij|R◦i ),

where j = 1, · · · , J , βj = [β0j β1j]
T , Ui∗ = [1ki Ui], E(b2

ij|R◦i ) is the jth diagonal element in

E(bib
T
i |R◦i ) and E(UT

i∗Ui∗|R◦i ) =

[
mi 1Tmi

Ũi

1Tmi
Ũi E(UT

i Ui|R◦i )

]
, E(UT

i∗eij|R◦i ) =

[
1Tki ẽij

E(UT
i eij|R◦i ))

]
.

4.6.3 Calculations of the Information Matrix

The information matrix is obtained by differentiating twice the log likelihood for the observed data

R◦i with mean and variance given in (4.5) and taking an expectation of the resulting form. Let

Gi = Oi(IJ ⊗ 1mi
), Hi = Oi(β1 ⊗ Xi), and Mi = Oi(IJ ⊗ (Xiα)). The expected information
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matrix for the MLE of θ1 = (β0, β1, α) is

Iθ1θ1 =
n∑
i=1

G
T
i (V ◦i )−1Gi GT

i (V ◦i )−1Mi GT
i (V ◦i )−1Hi

MT
i (V ◦i )−1Gi A+MT

i (V ◦i )−1Mi MT
i (V ◦i )−1Hi

HT
i (V ◦i )−1Gi HT

i (V ◦i )−1Mi HT
i (V ◦i )−1Hi

 , (4.11)

where A has its (i, k)th element 1
2
tr ((V ◦i )−1(∂V ◦i /∂β1i)× (V ◦i )−1(∂V ◦i /∂β1k)).

Let θ2 = (D,Γ, ξ, T, τ 2), then

Iθ2iθ2k =
1

2

n∑
i=1

tr
(

(V ◦i )−1∂V
◦
i

∂θ2i

(V ◦i )−1 ∂V
◦
i

∂θ2k

)
, (4.12)

Iθ2iβ1k =
1

2

n∑
i=1

tr
(

(V ◦i )−1∂V
◦
i

∂θ2i

(V ◦i )−1 ∂V
◦
i

∂β1k

)
, (4.13)

and Iδ2β0 = Iδ2α = 0, where

∂V ◦i
∂V (D)k

= (β1β
T
1 )⊗

(
Zi

∂D

∂V (D)k
ZT
i

)
,

∂V ◦i
∂ξj

= (∆j∆
T
j )⊗ (1mi

1Tmi
),

∂V ◦i
∂β1j

= (∆jβ
T
1 + β1∆T

j )⊗ (Iki + ZiDZ
T
i + EiΓE

T
i + Imi

),

∂V ◦i
∂τj

= (∆j∆
T
j )⊗ Imi

,

∂V ◦i
∂Γ

= (β1β
T
1 )⊗ (EiE

T
i ),

∂V ◦i
∂Tj

= (∆j∆
T
j )⊗ Imi

,

where j = 1, · · · , J , k = 1, · · · , n1(n1+1)
2

) (n1 is the dimension of D), ∆j is a J × 1 vector with

the jth element equal to one and zero otherwise.
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4.6.4 Parameter Estimates in the PX-EM Algorithm

For the E-step in the PX-EM algorithm, besides all the conditional expectation in Section 4.6.1,

we also estimate the conditional expectations about εi as

ε̃i = E(εi|R◦i ) = βT1 ⊗ (Imi
σ2)OT

i (V ◦i )−1(R◦i − µ◦i ), (4.14)

E(εTi εi|R◦i ) = ε̃Ti ε̃i + tr
(
σ2Imi

− (βT1 ⊗ Imi
)OT

i (V ◦i )−1Oi(β1 ⊗ Imi
)
)
. (4.15)

For the M-step in the PX-EM algorithm, the estimated parameters are β̂tj = β̂j with β̂tj = [β̂t0 β̂
t
1]T ,

α̂t = α̂, τ̂t = τ̂ , D̂t = D̂, ξ̂t = ξ̂ and σ̂2
t =

∑n
i=1

1
mi
E(εTi εi|R◦i ). The estimated variances of the

parameters in the PX-EM algorithm are same as these in the EM algorithm.
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Table 4.1: Data for analysis

Level Variable Description All Available Data Observed Data

Mean(Std.), missing % Mean(Std.)

Child Bik` 1 if black 0.40 (0.49), 0% 0.42 (0.49)

Rilk` score 1 605 (37), 21% 606 (37)

Bik` = 0 614 (37), 25% 614 (37)

Bik` = 1 593 (33), 16% 594 (33)

Ri2k` score 2 608 (37), 20% 608 (37)

Bik` = 0 615 (37), 22% 615 (37)

Bik` = 1 597 (35), 17% 598 (35)

Ri3k` score 3 617 (31), 21% 617 (32)

Bik` = 0 624 (30), 23% 624 (30)

Bik`= 1 607 (31), 18% 608 (31)

Ri4k` score 4 600 (43), 13% 600 (42)

Bik` = 0 609 (43), 15% 609 (43)

Bik` = 1 587 (38), 11% 587 (38)

Class Zik 1 if treated 0.40 (0.5), 0% 0.38 (0.44)

Table 4.2: Model coefficient estimates and their standard errors

LVM Coef. MCAR MAR

Model A Model B Model A Model B

MLE (S.E.) MLE (S.E.) MLE (S.E.) MLE (S.E.)

α1 -0.63 (0.10) -0.64 (0.10) -0.67 (0.09) -0.67 (0.21)

Model (4.1) α2 -0.05 (0.10) -0.05 (0.10) -0.01 (0.09) -0.01 (0.17)

α3 0.46 (0.17) 0.47 (0.17) 0.33 (0.15) 0.33 (0.41)

β11 32.62 (0.90) 32.59 (0.91) 33.06 (0.87) 33.07 (1.89)

Model (4.2) β12 24.49 (0.95) 24.47 (0.97) 24.72 (0.94) 24.72 (2.01)

β13 17.56 (0.84) 17.54 (0.85) 17.63 (0.83) 17.63 (1.76)

β14 33.60 (1.06) 33.57 (1.08) 34.08 (1.03) 34.08 (2.20)

−2logL -14699.26 -14699.16 -15527.26 -15527.25

# of Para. 25 27 25 27
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Table 4.3: The treatment versus control effect

contrasta effect latent scoreb

MCAR MAR

Est. 95% CI Est. 95% CI

NC 0 0 0 0 0
BC α̂1 -0.63 (-0.83, -0.43) -0.67 (-0.85, -0.49)

NT α̂2 -0.05 (-0.25, 0.15) -0.01 (-0.19, 0.17)

BT-BC α̂2 + α̂3 0.41 (0.09, 0.67) 0.32 (0.03, 0.55)

(BT-BC)-(NT-NC) α̂3 0.46 (0.13, 0.79) 0.33 (0.04, 0.62)

a B: black students, T: treatment, N: nonblack students, C: control

b Û = α̂1Bij + α̂2Tj + α̂3Bij × Tj .

Table 4.4: Two-level fixed model coefficient estimates and their standard errors

LVM Coef. MCAR MAR

Model A Model B Model A Model B

MLE (S.E.) MLE (S.E.) MLE (S.E.) MLE (S.E.)

β11 32.53 (0.90) 31.86 (0.86) 32.97 (0.87) 32.31 (0.84)

Model (4.6) β12 24.50 (0.95) 24.13 (0.93) 24.71 (0.94) 24.37 (0.92)

β13 17.69 (0.84) 17.40 (0.83) 17.77 (0.83) 17.51 (0.81)

β14 33.54 (1.06) 32.99 (1.03) 34.04 (1.02) 33.51 (0.99)

α1 -0.67 (0.09) -0.48 (0.13) -0.70 (0.09) -0.58 (0.13)

Model (4.7) α2 -0.07 (0.11) 0.006 (0.10) -0.04 (0.09) 0.06 (0.09)

α3 0.45 (0.18) 0.44 (0.17) 0.32 (0.16) 0.29 (0.15)

−2logL -14901.94 -14837.61 -15746.05 -15677.24

# of Para. 20 93 20 93
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Figure 4.1: Unit-specific achievement score against school

Figure 4.2: QQ Plot for the latent achievement score
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5 A Latent Variable Approach for Multivariate Instrumental Variable Estimators with

Ignorable Missing Data

5.1 Introduction

Chapter 4 implied that the academic achievement score was associated with small class size espe-

cially for African-American students. The findings have found that reduced class size increases

academic achievement scores, especially, for this minority. In this chapter, the causal effects of the

academic achievement simultaneously studied by discussing two issues. Does reduced class size

cause higher academic achievement score? If so, how large is the effect and does the magnitude

of the effect vary significantly across schools? We discuss the two questions by an instrumental

variable (IV) approach (Angrist and Imbens, 1995; Angrist, Imbens, and Rubin, 1996; Bollen,

Kirby, Curran, Paxton, and Chen, 2007; Ecob and Goldstein, 1983; Greene, 2002; Krueger, 1999;

Krueger and Whitmore, 2001; Nye, Konstantopoulos, and Hedges, 2004; Pearl, 2000; Rubin,

1978; Stolzenberg and Waite, 1977). The IV is the randomized assignment of students and teach-

ers to a small or regular class. There is evidence that the reduced class size improves academic

achievement (Finn and Achilles, 1990; Goldstein and Blatchford, 1998; Goldstein, Yang, Omar,

Turner, and Thompson, 2000; Krueger,1999; Krueger and Whitmore, 2001; Mosteller, 1995; Nye,

Hedges, and Konstantopoulos, 1999, 2000) or increases the likelihood of the students to take col-

lege entrance exams (Krueger and Whitmore, 2001). The results are based on univariate outcome

analysis assuming data MCAR ( Little and Rubin, 2002; Rubin, 1976; Schafer, 1997) or using

ad-hoc imputation to deal with missing data. Such estimations may, in general, be inefficient and

result in biased inferences. Shin and Raudenbush (2012, 2013) proposed a three-level multivariate

simultaneous equation model (3LMSE) efficiently to handle missing data with a relatively mild as-

sumption MAR. This 3LMSE evaluated the causal effects more efficiently than the two-stage least

square method (2SLS; Bollen, 1996; Imbens and Rubin, 1997a, 1997b; Little and Yau, 1998).
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However, there are two main disadvantages of this analysis: (1) it needs more degrees to test

coefficient effects, and (2) it cannot provide a unit-specific achievement score.

In this chapter, three-level LVMs with an IV are developed to estimate the causal effects of

reduced class size on the academic achievement given the observable reading, math, listening,

and word recognition skills scores via PX-EM algorithm. The approach is built on model-based

missing data at a single level (Dempster, Laird, and Rubin, 1977; Little and Rubin, 2002; Or-

chard and Woodbury, 1972; Rubin, 1976, 1987; Schafer, 1997), two levels (Dempster, Rubin, and

Tsutakawa, 1981; Liu, Taylor, and Belin, 2000; Schafer and Yucel, 2002; Shin and Raudenbush,

2007), three levels (Shin and Raudenbush, 2011; Shin, 2012), and LVMs via EM algorithm (Roy

and Lin, 2000). Under the ML framework, the causal effects, the heterogeneity of class size effect

across schools, and the heterogeneity of treatment and class size across schools are more efficiently

estimated and more powerfully tested. Section 5.2 introduces the models. Section 5.3 describes

the algorithm. Section 5.4 analyzes the STAR data. Section 5.5 concludes the chapter with a short

discussion. Finally, Section 5.6 describes detailed mathematical derivations.

Shin (2012) demonstrated that the conventional approach of causality analysis was laborious

with complicated constraints in the estimation of a reduced-form structural model. He continued

the single-population approach of Shin and Raudenbush (2011) to three-level causal inference

involving multiple subpopulations (Angrist et al., 1996; Hong and Raudenbush, 2006; Imbens and

Angrist, 1994; Shin and Raudenbush, 2011; Raudenbush, 2010) with the following assumptions:

1. Intact school: Given an observed school assignment A = a, Sik(T,B,A|A = a) =

Sik(T,B), Uikl(S, T,B,A|A = a) = Uikl(S, T,B);

2. No interference between classes: Sik(T,B) = Sik(Tik, Bik) for all T and all B,

Uikl(S, T,B) = Uikl(Sik, Tik, Bik) for all S, for all T , and for all B;

3. Exclusion restriction: Uikl(S, T,B) = Uikl(Sik, T
′, B) for all S, all T and T ′, and for

all B;

4: Random treatment assignment: The class type assignment Tik is random;
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5: Nonzero average causal effect of class type on class size: E[Sik(Tik)− Sik(T ′ik)] 6= 0 for

all Tik 6= T ′ik;

6: Linearity of academic achievement in class size: The achievement is linearly dependent

on the class type size.

With the same assumptions, the new approach developed by Shin (2012) is extended to LVMs

framework as

Uikl = γu1Bikl + γu2(αs1Tik) + γu3(αs1Tik)Bikl + λuiEuikl + auikZuikl + εuikl,

Sik = αs0 + αs1Tik + λsiEsik + asik, (5.1)

where Uikl is a univariate latent score, Bikl is a black student indicator, class size Sik is an en-

dogenous regressor, class type Tik is randomly assigned class type to students, αs1Tik explains

the causal variability in class size induced by Tik,

[
λui

λsi

]
∼ N

(
0,

[
Σuu Σus

Σsu Σss

])
,

[
auik

asik

]
∼

N

(
0,

[
Λuu Λus

Λsu Λss

])
, and εuikl ∼ N(0, 1) for students l = 1, · · · , nik attending classrooms

k = 1, · · · , ni in school i = 1, · · · , n. Random effects are independent across different levels.

The desired causal effects are γu2 and γu3 controlling for the pretreatment gaps γu1 in academic

achievement. Reduced class size causes higher academic achievement overall if both γu2 < 0 and

γu2 + γu3 < 0 and moderates a minority disparity of interest in academic achievement if γu3 < 0.

The structural models (SMs) (5.1) suggest the reduced-form models

Uikl = αu1Bikl + αu2Tik + αu3BiklTik + λuiEuikl + auikZuikl + εuikl,

Sik = αs0 + αs1Tik + λsiEsik + asik, (5.2)

for αu1 = γu1, αu2 = γu2αs1, and αu3 = γu3αs1. Therefore, the desired causal effects are γu2 =

αu2/αs1 and γu3 = αu3/αs1. If the academic achievement Uikl were observed, we would be able to
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estimate the model by standard multilevel software. With the response variable unobservable, there

are observable surrogate outcomes that are highly correlated and believed to predict the academic

achievement with accuracy. That is, the academic achievement is related to the surrogate outcomes

by

Rijkl = β0j + β1jUikl + cij + bijk + eijkl, (5.3)

where Rijkl are observable surrogate outcomes, βr = [β0j β1j]
T is a vector of regression coeffi-

cients for the jth surrogate outcome, cij
iid∼ N(0,Γj), bijk

iid∼ N(0, ξj), and eijk
iid∼ N(0, τj) are

level-3, level-2, and level-1 unit-specific random effects, respectively. Given the unobserved vari-

able Uikl, the J surrogate outcome Rijkl are mutually independent. We further assume the bijk

are independent. To make parameters identifiable, we assume εikl is distributed as N(0, 1) and

Xikl does not contain an intercept. The illustration of the three-level LVMs is in Figure 5.1 which

implies that the exogenous IV Zik has a nonzero causal effect αs1 on the endogenous regressor Sik

and affect Uikl only through its effect on class size. The latent achievement Uikl has nonzero effect

β1j on the jth observed surrogate outcome Rijkl which has three-level random effect terms cij ,

bijk, and eijkl.

It is essential to aggregate models (5.2) and (5.3) at school level to derive estimates and their

variances. Aggregating the models by student and then by class, we can write models (5.2) and

(5.3) at school level in matrix notation as

[
Ui

Si

]
=

[
Xui

Xsi

][
αu

αs

]
+

[
Eui

Esi

][
λui

λsi

]
+

[
⊕ni
k=1Zuik

1

][
aui

asi

]
+

[
εui

0

]
, (5.4)

and

Ri = β0 ⊗ 1mi
+ β1 ⊗ Ui + ci ⊗ 1mi

+ (IJ ⊗Wi)bi + ei, (5.5)

where Ui = [UT
i1 U

T
i2 · · ·UT

ini
]T with Uik = [Uik1 Uik2 · · ·Uiknik

]T , Xui = [XT
ui1 X

T
ui2 · · ·XT

uini
]T

withXuik = [XT
uik1 X

T
uik2 · · ·Xuiknik

] andXuikl = [Bikl Tik BiklTik],Xsi = [XT
si1 X

T
si2 · · ·XT

sini
]T ,
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αu = [αu1 αu2 αu3]T , αs = [αs0 αs1]T , Eui = [ET
ui1 E

T
ui2 · · ·ET

uini
]T with Euik = [Euik1 Euik2

· · ·Euiknik
]T and Euikl = [Euik1 Euik2 · · ·Euikni

]T , Esi = [Esi1 Esi2 · · ·Esini
]T , ⊕ni

k=1Ak repre-

sents a diagonal matrix with diagonal elements or submatrices (A1, · · · , Ani
) and all the other

elements equal to zero, Zuik = [Zuik1 Zuik2 · · ·Zuiknik
]T with Zuikl = [Zuik1 Zuik2 · · ·Zuikni

]T ,

εui = [εTui1 ε
T
ui2 · · · εTuini

]T with εuik = [εuik1 εuik2 · · · εuiknik
]T and εuikl = [εuik1 εuik2 · · · εuikni

]T ,

Ri = [Ri1 Ri2 · · ·RiJ ] with Rij = [RT
ij1 R

T
ij2 · · ·RT

ijni
]T and Rijk = [Rijk1 Rijk2 · · ·Rijknik

]T ,,

β0 = [β01 β02 · · · β0J ]T , ⊗ represents Kronecker product, mi =
∑ni

k=1 nik, β1 = [β11 β12 · · · β1J ]T ,

ci = [ci1 ci2 · · · ciJ ]T , Wi = ⊕ni
k=11nik

, bi = [bi1 bi2 · · · biJ ]T with bij = [bij1 bij2 · · · bijni
]T ,

ei = [eTi1 eTi2 · · · eTiJ ]T with eij = [eTij1 eTij2 · · · eTijni
]T and eijk = [eijk1 eijk2 · · · eijknik

]T for

i = 1, · · · , n, k = 1, · · · , ni, and l = 1, · · · , nik. Since Ui is unobservable, the aggregate joint

model for the multiple observed surrogate outcomes is

[
Ri

Si

]
=

[
β0 × 1mi

+ β1 × (Xuiαu)

Xsiαs

]
+

[
β1 × (Euiλui)

Esiλsi

]
+

[
β1 ⊗⊕ni

k=1(Zuikauik)

asi

]

+

[
β1 ⊗ εui

0

]
+

[
ci ⊗ 1mi + (IJ ⊗Wi)bi + ei

0

]
. (5.6)

Let Yi =

[
Ri

Si

]
. It follows that Yi ∼ N(µi, Vi) with

µi =

[
β0 ⊗ 1mi

+ β1 ⊗ (Xiα)

Xsiαs

]
,

Vi =

[
(β1β

T
1 )⊗ cov(Ui) β1 ⊗ (EuiΣusE

T
si +⊕ni

k=1(ZuikΛus))

βT1 ⊗ (EsiΣsuE
T
ui +⊕ni

k=1(ΛsuZ
T
uik)) EsiΣssE

T
si + Ini

⊗ Λss

]

+

[
R(T )⊗ (1mi

1Tmi
) +R(τ)⊗ Imi

+R(ξ)⊗ (WiW
T
i ) 0

0 0

]
,

where cov(Ui) = ZuiΣuuZ
T
ui + EuiΓE

T
ui + Imi

for Zui = ⊕ni
k=1Zuik, R(Γ) = ⊕Jj=1Γj , R(τ) =

⊕Jj=1τj , and R(ξ) = ⊕Jj=1ξj .
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To efficiently handle missing data, define indicator matrices O1i and O2i of zeros and ones

indicating the observed values in Ri and Si such that R◦i = O1iRi and S◦i = O2iSi, respectively.

Let Oi =

[
O1i

O2i

]
. It follows that the observed data Y ◦i ∼ N(µ◦i , V

◦
i ) with µ◦i = Oiµi and

V ◦i = OiViO
T
i .

5.2 PX-EM Algorithm

It is challenging to estimate the model (5.6) by directly using the actual log likelihood since β1

enters both the marginal mean and variance of Yi. Chapters 2 and 4 have implemented the EM

algorithm (Roy and Lin, 2000) and the PX-EM algorithm (Liu, Rubin, and Wu, 1998) to estimate

the two-level LVMs and the three-level LVMs. It has been showed that the PX-EM algorithm con-

verged faster than the EM-algorithm. In this chapter, we just apply the PX-EM algorithm to esti-

mate models (5.2) and (5.3) where the only change is an extension of the parameter εik
iid∼ N(0, σ2).

The PX-EM algorithm is developed based on the complete data (Ri, Si, λui, λsi, aui, Ui, bi, ci) and

the observed data Y ◦i . Given the initial values of the parameters, the PX-EM algorithm iterates be-

tween its E-, M-steps in the expanded parameter space, and then reduces to the original parameter

space until convergence. The E-step takes expectations of the sufficient statistics of the complete-

data log likelihood, given the observed data. The M-step maximizes the expected complete-data

log likelihood given parameters from the previous iteration. The method (detailed in Sections 5.6.1

and 5.6.2) is described as

PX-E step: Calculate the conditional expectations, E(UT
i Ui|Y ◦i ), E(UT

i eij|Y ◦i ), E(eTijeij|Y ◦i ),

E(εTuiεui|Y ◦i ), E(εui|Y ◦i ), E(bTijbij|Y ◦i ), E(λiλ
T
i |Y ◦i ), E(aika

T
ik|Y ◦i ), E(a2i|Y ◦i ), and

E(c2
ij|Y ◦i ) for λi =

[
λui

λsi

]
and aik =

[
auik

asik

]
.

PX-M step: Estimate model parameters in the extended space
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γt? =
(
βt0, β

t
1, α

t
u, α

t
s, τ

t,Σt, ξ
t, σ2

t ,Γ
t,Λt

)
and reduce γt? to the desired model parameters by the following transformation

γt =

(
βt0, β

t
1σt, ,

αtu
σt
, αts,

Σuu

σ2
t

,
Σus

σt
,Σt

ss,
Λt
uu

σ2
t

,
Λt
us

σt
,Λt

ss, τ
t, ξt, σ2 = 1,Γt

)
.

At convergence, the variance of the parameter estimates are computed by the expected Fisher

information matrix (see details in Section 5.6.3) based on the marginal log likelihood of Y ◦i .

The next section shows the approach to STAR data. The desired SMs are estimated by the

PROC IML in SAS via ML. The convergence criterion is the difference in the observed log-

likelihood between two consecutive iterations taken to be less than 10−6. The statistical signif-

icance of an effect estimate is discussed at a significant level 0.05.

5.3 Data Analysis

This section explains the causal analysis to begin with the causal intent-to-treat (ITT) effect on

the academic achievement in the LVMs. The model is the Uikl equation of the reduced-form SMs

(5.2) and is called “3L ITT LVMs (5.2)”, three-level ITT LVMs to assess the causal impact of the

ITT intervention to treat a student to reduced class size controlling for the pretreatment effect of

race ethnicity. Next, the SMs (5.1) is estimated to study if reduced class size causes higher aca-

demic achievement overall and moderates a difference in academic achievement between African-

American and white students. This model is referred to as a “3L Rand-Int LVMs (5.1)”, three-level

random-intercept LVMs. Two-level ITT LVMs are also analyzed by including school as an indi-

cator variable. Finally, the analysis then extends to estimation of three-level random-coefficient

LVMs, “Random Coef. LVMs (5.1)”.
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5.3.1 ITT Causal Effects

This analysis examines if the ITT intervention of assigning a student to reduced class size causes

higher academic achievement overall and moderates a difference in academic achievement between

African-American and white students. The ITT model is the first equation in the SM (5.2) where

the desired causal effects are E[Uikl|Bikl = 0, Tik = 1] − E[Uikl|Bikl = 0, Tik = 0] = αu2 and

E[Uikl|Bikl = 1, Tik = 1] − E[Uikl|Bikl = 1, Tik = 0] = αu2 + αu3. Their difference αu3 is the

causal minority disparity in academic achievement caused by the randomized ITT intervention.

The αu3 of the ITT LVMs displays significant pretreatment minority gaps in academic achieve-

ment scores (Finn and Achilles, 1990; Fryer and Levitt, 2004; Goldstein and Blatchford, 1998;

Krueger, 1999; Word et al., 1990). The results are summarized in the second column in Table

5.1. For white students, the ITT treatment does not cause higher academic achievement while, for

African-American students, it causes higher academic achievement, controlling for the effects of

pretreatment race ethnicity fixed. The minority differences are pronounced in third-grades achieve-

ment. The ITT is subject-specific. An African-American third grader assigned to reduced class

size, for example, improves his or her academic achievement score by 0.321 units on average.

The improvement is similar to the corresponding expected pretreatment minority gap in academic

achievement, 0.533 points lower than that of a white student.

To rule out a confounder between Tik and a school-level covariate, two-level ITT LVMs are

fitted as

Rkjl = β0j + β1jUkl + ckj + ekjl, ckj ∼ N(0, ξj), ekjl ∼ N(0, τj) (5.7)

Ukl = αu1Bkl + αu2Tk + αu3BklTk + αu4Ak + auk + εukl, (5.8)

Sk = αs0 + αs1Tk + ask,
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where Ak is a vector of school indicators having fixed effects αu4,

[
auk

ask

]
∼ N

(
0,

[
Λuu Λus

Λsu Λss

])
,

εukl ∼ N(0, 1), and all others are defined similarly as in the three-level counterparts in the LVMs

(5.2) for student l attending the class k. If the confounder is severe, then the results are differential

between the two- and three-level ITT LVMs. The results are summarized in the third column in

Table 5.1. The estimated effects are in a close range to their counterparts under three-level ITT

LVMs. The standard errors of some coefficients are relatively inflated under two-level LVMs,

which indicates that the three-level model is more efficient than the two-level model. In addition,

three-level model is more powerful to test coefficient effect than two-level model. Because the

estimates are close to each other across the two- and three-level LVMs, the treatment effect due to

the confounder of school-level variable seems implausible.

5.3.2 Causal Effects of Reduced Class Size

In this section, we examine if reduced class size causes higher achievement score overall and

moderates a difference in academic achievement between African-American and white students.

The LVMs (5.1) are the desired models where the causal effects are γu2 and γu2 + γu3 for African-

American and white students controlling for the pretreatment minority gap γu1 in academic achieve-

ment. Their difference γu3 is the causal disparity induced by reduced class size. Models (5.1) with

random-intercept effect, i.e. Euikl = Esik = Zuikl = 1, are first fitted to identify the causal effects.

To examine if the causal disparities randomly vary across schools, three more competing models

are compared with the random-intercept model by defining (a) Euikl = [1 Bikl Tikl Bikl × Tikl]

and Esik = Zuikl = 1, (b) Euikl = [1 Tikl Bikl × Tikl] and Esik = Zuikl = 1, (c) Euikl = [1 Tikl]

and Esik = Zuikl = 1.

Likelihood ratio tests indicate that the random-intercept model fits adequately than the random-

coefficient models (a), (b), and (c) with p-values 1, 0.97, and 0.96, respectively. The results for the

random-intercept model (5.1) are presented under Rand-Int (5.1) in Table 5.2. The pretreatment
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minority gap in academic achievement γu1 is statistically significant. For white students, reduced

class size does not cause higher academic achievement while, for African-American students, it

causes higher academic achievement score, controlling for the pretreatment effects of race ethnic-

ity. The causal disparity is the most noticeable because of no causal effect for white students.

To eliminate confounders between Tik and school-level covariates, the three-level LVMs with

a random-intercept effect are compared to an alternative LVMs controlling for the school effect

Rkjl = β0j + β1jUkl + ckj + ekjl, ckj ∼ N(0, ξj), ekjl ∼ N(0, τj) (5.9)

Ukl = γu1Bkl + γu2(αs1Tk) + γu3(αs1Tk)Bkl + γu4Ak + auk + εukl, (5.10)

Sk = αs0 + αs1Tk + ask,

where Ak is a vector of school indicators having fixed effects γu4,

[
auk

ask

]
∼ N

(
0,

[
Λuu Λus

Λsu Λss

])
,

εukl ∼ N(0, 1), and all others are defined similarly as in the three-level counterparts in the LVMs

(5.1) for student l attending the class k. The models are called 2L LVMs, two-level models with

school fixed effects. The estimates are displayed under 2L LVMs (5.10) in Table 5.2 where the

estimated effects of 3L Rand-Int (5.2) are in close range to their counterparts under 2L LVMs

(5.10). No significant differences are due to no school-level confounders. With similar inferences,

the overestimates of statistical inferences in the two-level models are mainly due to the relative

inefficiency of the two-level approach.

5.3.3 Surrogate Outcomes on Child Academic Achievement

In the measurement model (5.3), the most interesting parameters are β1j (j = 1, · · · , 4)- the

slopes of academic achievement for the four various observed scores. The point estimates under

3L LVMs (5.3) in Table 5.3 indicate that the four subjects’ scores are positively associated with

academic achievement. Though we may draw the similar inferences from the 2L LVMs (5.7), the
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point estimates of β1j (j = 1, · · · , 4) are underestimated compared with the counterparts of the 3L

LVMs (5.2).

5.3.4 Unit-Specific Child Academic Achievement Score

Like the previous three chapters, we impute the latent variable via estimating its posterior proba-

bility in the LVMs and demonstrate it in Figures 5.2 and 5.3. These scores are well-summarized

and can serve as a vehicle for the further study of middle school graduation rates, middle school

drop-out rates, and classification of subjects. The 2.5th and 97.5th percentiles are used reference

curves to categorize students with low, normal, and high achievement scores. Efforts to improve

performance could focus on the subjects whose scores are well below the typical curve, e.g. the

2.5th percentile. The QQ plot of the latent variable appears not to depart from a straight line with

slope 1. Therefore, it is tenable for the normality of the latent variable and no potential outliers.

5.4 Discussion

The analysis in this chapter continued Shin and Rauderbush’s three-level causal modeling frame-

work to three-level LVMs having a continuous mediator whose value indicates the degree of com-

pliance or the received treatment dosage and whose effects on the outcome variables may differ

across multiple subpopulations of students. The extension enabled this study more powerfully to

identify that reduced class size causes higher academic achievement for the African-American stu-

dents in third grade at Tennessee. Hypothesis tests revealed that African-American students benefit

more from reduced class size than white students in terms of academic achievement in third grade.

The analysis was then extended to three-level random-coefficient LVMs where the minority dif-

ferences in the causal effects of reduced class size on academic achievement were hypothesized to

be heterogeneous across schools. This chapter did not find evidence that the minority differences

varied randomly across schools for third graders.
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The causal analysis in this chapter is based on six assumptions. Cases may be made to violate

each assumption (Shin and Raudenbush, 2011). If students with prior exposure to a particular class

type are more likely to study better in the class type, then they bias the causal effect. The assump-

tion, however, appears reasonable within the context of the current application. The intact school

assumption is realistic with existing school assignments. The assumption of no interference be-

tween class seems reasonable because students share academic experiences with classmates. The

random treatment assignment assumption was violated due to the randomization within schools.

This violation was shown to yield no bias in the causal inferences. The exclusion restriction as-

sumption is reasonable because randomly labeling each student by class type cannot affect aca-

demic achievement unless it induces the dosage in class size. The assumption of nonzero average

causal effect of class type on class size is very reasonable from the sample average dosage greater

than 7. The no compliance-effect covariance assumption seems plausible from the fact that both

students and teachers were randomly assigned to the class type so that their differences in ability

to learn and teach are also randomized across class types. Consequently, the violating cases of this

assumption above are unlikely. School differences due to randomization within schools have been

shown to cause no serious bias in the causal inferences.

5.5 Miscellanea

5.5.1 Conditional Expectations in E-step

The conditional expectations in E-step are

Ũi = E(Ui|Y ◦i ) = Xuiαu + Λui(V
◦
i )−1(Y ◦i − µ◦i ),

E(UT
i Ui|Y ◦i ) = ŨT

i Ũi + tr(Λ1i − Λui(V
◦
i )−1ΛT

ui),

ãi = E(ai|Y ◦i ) = Λai(V
◦
i )−1(Y ◦i − µ◦i ),

E(aia
T
i |Y ◦i ) = ãiã

T
i + Ini

⊗ Λ−∆ai(V
◦
i )−1∆T

ai
,
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b̃ij = E(bij|Y ◦i ) = ν1(V ◦i )−1(Y ◦i − µ◦i ),

E(bijb
T
ij|Y ◦i ) = b̃ij b̃

T
ij + tr

(
ξjIni

− ν1(V ◦i )−1νT1
)
,

E(UT
i eij|Y ◦i ) = ŨT

i ẽij − tr(Λui(V
◦
i )−1νT2 ),

ε̃ui = E(εui|Y ◦i ) = ν3(V ◦i )−1(Y ◦i − µ◦i ), (5.11)

E(εTuiεui|Y ◦i ) = ε̃Tuiε̃ui + tr(σ2Imi
− ν3(V ◦i )−1νT3 ),

ẽij = E(eij|Y ◦i ) = ν2(Vi)
−1(Y ◦i − µ◦i ),

E(eTijeij|Y ◦i ) = ẽTij ẽij + tr(τjImi
− ν2(V ◦i )−1νT2 ),

λ̃i = E(λi|Y ◦i ) = ν4(V ◦i )−1(Y ◦i − µ◦i ),

E(λiλ
T
i |Y ◦i ) = λ̃iλ̃

T
i + ν4(V ◦i )−1νT4 ,

c̃i = E(ci|Y ◦i ) = ν5(V ◦i )−1(Y ◦i − µ◦i ),

E(cTi ci|Y ◦i ) = c̃ic̃
T
i +R(Γ)− ν5(V ◦i )−1νT5 ,

where

Λui = [βT1 ⊗ Λ1i EuiΣusE
T
si +⊕kik=1(ZuikΣus)]O

T
i ,

∆ai =

[
βT1 ⊗ [(Ini

⊗ Λuu)Z
T
ui] Ini

⊗ Λus

βT1 ⊗ [(Ini
⊗ Λsu)Z

T
ui)] Ini

⊗ Λss

]
OT
i ,

ν1 =
[
(0ni×(j−1)ni

ξjIni
0ni×(J−j)ni

)(IJ ⊗W T
i ) 0ni×1

]
OT
i ,

ν2 = [0mi×(j−1)mi
τjImi

0mi×(J−j)mi
]OT

i ,

ν3 = [βT1 ⊗ (Imi
σ2) 0mi×1]OT

i ,

ν4 =

[
βT1 ⊗ (Σuu ⊗ ET

ui) Σus ⊗ ET
si

βT1 ⊗ (Σsu ⊗ ET
ui) Σss ⊗ ET

si

]
OT
i ,

ν5 = [R(Γ)⊗ 1Tmi
0]OT

i ,
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for ai = [aTui a
T
si]
T and Λ1i = Imi

σ2 + EuiΣuuE
T
ui +⊕kik=1(ZuikΣuuZ

T
uik).

5.5.2 Parameter Estimates in the M-step

The complete-data log likelihood for (Yi, Ui, Si, bi, ai, ci, λi) is, apart from a constant,

l =
n∑
i=1

(l(Yi|Ui, bi, ci) + l(Ui|aui, λui) + l(ai) + l(bui) + l(ci) + l(λi) + l(Si|λsi, aui)) , (5.12)

where ξ = [ξ1 · · · ξJ ]T , τ = [τ1 · · · τJ ]T , Γ = [Γ1 · · ·ΓJ ]T , and

l(Yi|Ui, bi, ci) =
J∑
j=1

(
−mi

2
log(τj)−

1

2τj
eTijeij

)
,

l(Ui|aui, λui) = −1

2
εTuiεui,

l(ai) = −1

2
(ni log |Λ|+ aTi Λ−1ai),

l(bi) = −1

2
(mi log |R(ξ)|+ bTi R(ξ)−1bi),

l(ci) = −1

2
(n log |R(Γ)|+ cTi R(Γ)−1ci),

l(λi) = −1

2
(n log |Σ|+ λTi Σ−1Λi),

l(Si) = −1

2

(
ni log |Vs|+ (Si − µs)TV −1

s (Si − µs)
)
,

for µs = Xsiαs + E2iλ2i + [Iki ⊗ (Λ2uΛ
−1
uu )]aui and Vs = Iki ⊗ Λss − Iki ⊗ (ΛsuΛ

−1
uuΛus).

Differentiating (5.12) with respect to the parameters β0, β1, α, ξ, τ , Λ, Γ and Σ, respectively,

taking expectations of the resulting forms conditional to the observed data Y ◦i , setting them equal

to zeros, and solving these equations, we know

β̂
(k)
j = β̂

(k−1)
j +

(
n∑
i=1

E(UT
i∗Ui∗|Y ◦i )

)−1 n∑
i=1

E(UT
i∗eij|Y ◦i ),
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τ̂j =
1∑n

i=1mi

×
n∑
i=1

E(eTijeij|Y ◦i ),

ξ̂j =
1∑n
i=1 ni

n∑
i=1

E(b2
ij|Y ◦i ),

α̂(k)
u = α̂(k−1)

u +

(
n∑
i=1

XT
uiXui

)−1 n∑
i=1

XT
uiε̃ui, (5.13)

Λ̂ =
1∑n
i=1 ni

n∑
i=1

tr
(
E(aia

T
i |Y ◦i )

)
,

Σ̂ =
1

n

n∑
i=1

E(λiλ
T
i |Y ◦i ),

Γ̂j =
1

n

n∑
i=1

E(cijc
T
ij|Y ◦i ),

α̂(k)
s = α̂(k−1)

s +

(
n∑
i=1

XT
siV

−1
s Xsi

)−1 n∑
i=1

XT
siV

−1
s

(
asi − [Iki ⊗ (Λ2uΛ

−1
uu )]aui

)
,

σ̂2
t =

n∑
i=1

1

mi

E(εTi εi|Y ◦i ),

where j = 1, · · · , J , βj = [β0j β1j]
T , Ui∗ = [1ki Ui], E(b2

ij|Y ◦i ) is the jth diagonal element in

E(bib
T
i |Y ◦i ), E(UT

i∗Ui∗|Y ◦i ) =

[
mi 1Tmi

Ũi

1Tmi
Ũi E(UT

i Ui|Y ◦i )

]
, andE(UT

i∗eij|Y ◦i ) =

[
1Tki ẽij

E(UT
i eij|Y ◦i ))

]
.

5.5.3 Calculation of the Information Matrix

The information matrix is obtained by differentiating twice the log likelihood of the observed

data Y ◦i with mean and variance given in section 5.2 and taking the expectation of the resulting

form. Let Gi = Oi

[
IJ ⊗ 1mi

01×J

]
, Mi = Oi

[
β1 ⊗Xui

01×J

]
, Ni = Oi

[
IJ ⊗ (Xuiαu)

01×J

]
, and Hi =
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Oi

[
0Jmi×2

Xsi

]
. The expected information matrix for the MLEs of θ1 = (β0, β1, αu, α2) is

Iθ1θ1 =
n∑
i=1


GT
i (V ◦i )−1Gi GT

i (V ◦i )−1Mi GT
i (V ◦i )−1Ni GT

i (V ◦i )−1Hi

MT
i (V ◦i )−1Gi A+MT

i (V ◦i )−1Mi MT
i (V ◦i )−1Ni MT

i (V ◦i )−1Hi

NT
i (V ◦i )−1Gi NT

i (V ◦i )−1Mi NT
i (V ◦i )−1Ni NT

i (V ◦i )−1Hi

HT
i (V ◦i )−1Gi HT

i (V ◦i )−1Mi HT
i (V ◦i )−1Ni HT

i (V ◦i )−1Hi

 , (5.14)

where A has its (i, k)th element 1
2
tr
(

(V ◦i )−1 ∂V
◦
i

∂β1i
× (V ◦i )−1 ∂V

◦
i

∂β1k

)
.

Let θ2 = (Σ,Λ, ξ,Γ, τ), then

Iθ2iθ2k = 1
2

n∑
i=1

tr
(

(V ◦i )−1∂V
◦
i

∂θ2i

(V ◦i )−1 ∂V
◦
i

∂θ2k

)
,

Iθ2iβ1k = 1
2

n∑
i=1

tr
(

(V ◦i )−1∂V
◦
i

∂θ2i

(V ◦i )−1 ∂V
◦
i

∂β1k

)
,

(5.15)

and Iδ2β0 = Iδ2αu = Iδ2αs = 0, where

∂V ◦i
∂V (D)k

= (β1β
T
1 )⊗

(
Zi

∂D

∂V (D)k
ZT
i

)
,

∂V ◦i
∂ξj

= (∆j∆
T
j )⊗ (1mi

1Tmi
),

∂V ◦i
∂β1j

= (∆jβ
T
1 + β1∆T

j )⊗ (Iki + ZiDZ
T
i + EiΓE

T
i + Imi

),

∂V ◦i
∂τj

= (∆j∆
T
j )⊗ Imi

,

∂V ◦i
∂Γ

= (β1β
T
1 )⊗ (EiE

T
i ),

∂V ◦i
∂Tj

= (∆j∆
T
j )⊗ Imi

,

for j = 1, · · · , J , k = 1, · · · , n1(n1+1)
2

) (n1 is the dimension of D), ∆j is a J × 1 vector with the

jth element equal to one and zero otherwise.
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5.5.4 Estimates of the Desired Causal Effects

From the invariance property of MLEs, the point estimates of the desired causal effects are γ̂u2 =

α̂u2

α̂s1
and γ̂u2 + γ̂u3 = α̂u2+α̂u3

α̂s1
. According to multivariate Delta method, their estimated variances

are

cov(γ̂u2) = [
1

α̂s1
− α̂u2

α̂2
s1

]

[
cov(α̂u2) cov(α̂u2, α̂s1)

cov(α̂s1, α̂u2) cov(α̂s1)

][
1
α̂s1

− α̂u2

α̂2
s1

]
, (5.16)

cov(γ̂u3) = [
1

α̂s1
− α̂u3

α̂2
s1

]

[
cov(α̂u3) cov(α̂u3, α̂s1)

cov(α̂s1, α̂u3) cov(α̂s1)

][
1
α̂s1

− α̂u3

α̂2
s1

]
, (5.17)

cov(γ̂u2 + γ̂u3) = [
1

α̂s1

1

α̂s1
− α̂u2 + α̂u3

α̂2
s1

]ζ


1
α̂s1

1
α̂s1

− α̂u2+α̂u3

α̂2
s1

 , (5.18)

where ζ =

 cov(α̂u2) cov(α̂u2, α̂u3) cov(α̂u2, α̂s1)

cov(α̂u3, α̂u2) cov(α̂u3) cov(α̂u3, α̂s1)

cov(α̂s1, α̂u2) cov(α̂s1, α̂u3) cov(α̂s1)

 and the variances and covariances of

the estimates can be extracted from Fisher information matrix.
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Figure 5.1: Illustration of the structure of the LVMs with an IV Zik given Bikl
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Table 5.1: Fixed coefficient estimates and their
standard errors for the ITT causal effect

Effect 3L ITT (5.2) 2L ITT (5.8)

αu1 -0.533 (0.085) -0.576 (0.125)

αu2 -0.013 (0.094) 0.066 (0.093)

αu3 0.334 (0.155) 0.294 (0.153)

αu2 + αu3 0.321 (0.126) 0.360 (0.124)

Table 5.2: Fixed coefficient estimates and their standard
errors for the causality of reduced class size

Effect 3L Rand-Int (5.1) 2L LVMs (5.10)

γu1 -0.533 (0.085) -0.576 (0.125)

γu2 0.002 (0.012) -0.008 (0.012)

γu3 -0.041 (0.019) -0.036 (0.019)

γu2 + γu3 -0.040 (0.016) -0.045 (0.015)

Table 5.3: Fixed coefficient estimates and their
standard errors for LVMs (5.3)

Effect 3L LVMs (5.2) 2L LVMs (5.7)

β11 33.05 (0.87) 32.30 (0.84)

β12 24.71 (0.94) 24.36 (0.92)

β13 17.63 (0.63) 17.51 (0.81)

β14 34.07 (1.03) 33.50 (0.99)
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Figure 5.2: Unit-specific achievement score against school

Figure 5.3: QQ Plot for the latent achievement score
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6 Discussion

This dissertation investigated the two-level and three-level LVMs in a longitudinal study and a

cluster-randomized study, respectively. One advantage of the LVMs is that they reduce the di-

mensionality of data. The other one is that the latent variable in the LVMs are included to more

correctly model the data. Therefore, they are more powerful to test and assess the coefficient ef-

fects. These coefficients represent the global effects of the covariates on the overall interest, child

obesity or academic achievement. The LVMs borrow the information of the different observed

surrogate outcomes by modeling their correlations and exploiting the nature of the data-that the

surrogate outcomes measure the same quantity. The LVMs not only provide a straightforward

way to address the most challenging issue of surrogate outcomes measured in different units or

scales, but also produce efficiency by estimating many fewer parameters than a direct modeling of

covariate effects on the various surrogate outcomes.

In Chapter 2, the two-level LVMs were analyzed to identify risk factors and surrogate outcomes

of the child obesity. Given surrogate outcomes subject to missingness, a modified PX-EM algo-

rithm was implemented to NGHS for identifying risk factors. An often mentioned advantage of the

EM algorithm is ease of implementation as compared to another optimization method. Theoretical

advantages include the fact that each iteration increases the likelihood. One disadvantage of the

EM algorithm is that its convergence can be very slow whenever there is a large fraction of miss-

ing information. Therefore, the PX-EM algorithm was implemented to accelerate the convergence,

and it converged 10 time faster than the EM-algorithm. In contrast to the case for gradient methods

such as Newton-Raphson, the EM algorithm does not need to calculate information matrix at each

step. That makes the algorithm easier, in particular, for the multivariate surrogate outcomes in

longitudinal or high-level cluster-randomized studies with general variance-covariance structure.

Given surrogate outcomes and covariates subject to missingness, Chapter 3 proposed an ap-
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proach efficiently to handle missing data in a longitudinal study of the LVMs in Chapter 3. This

approach has four advantages: efficient analysis, unbiased estimation, the identification of covari-

ate and random effects, and mild restrictive assumption. The method was generated by defining

a normality model for the observed data and basing the inferences on the likelihood and posterior

distribution under the model, with parameters estimated by ML. The advantages of model-based

approaches are flexibility, efficiency, and unbiased estimation. With covariates subject to miss-

ingness, however, the joint model over-identifies the LVMs because there is a single fixed effect

of each of level-1 covariates subject to missingness on the latent variable, but there are distinct

covariances between the level-1 covariates subject to missingness and the latent variables. Tech-

nically, the joint model was imposed some constraints so that one-to-one transformation formula

were derived to obtain the unbiased estimation. The simulation study in section 3.5 illustrated that

the unconstrained joint model produced biased inferences for the LVMs and the constrained joint

model just-identifies the LVMs.

In Chapter 4, three-level LVMs were proposed to investigate if small class had a significant

effect on the racial disparities in academic achievement and if the interaction effect between race

and small class was random across school with the assumption of subject scores MCAR or MAR.

The findings showed that the small class caused high academic achievement for African-American

students while for white students reduced class size does not cause higher academic achievement.

In addition, small class did not have a random effect on school. These results imply policy-makers

that assigning more African Americans to the small class may be a factor of decreasing the educa-

tion gap of achievement between African-American and white students.

In Chapter 5, we developed an approach via three-level LVMs with IV to study the causality

of racial differences in achievement. The approach extended the causal modeling framework of

Shin and Raudenbush (2011) and Shin (2012). The expansion enabled the study to find that for

African-American students reduced class size causes higher academic achievement and more ro-

bust to identify if minority differences randomly across schools through fitting random-coefficient
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LVMs. There are some challenges to analyze the models. First, the four observed highly-correlated

outcomes are subject to missingness in the three-level cluster-randomized study where schools nest

classes and classes then nest students. Second, the academic achievement is influenced by race and

class size, and class size is an endogenous variable. Finally, class size is a regressor given class

type. With a less restrictive assumption, MAR, than MCAR, the three-level LVMs with IV were ef-

ficiently evaluated, and random-coefficient school effects were investigated. By overcoming these

challenges, we showed reduced class size has a causal effect on achievement for African-American

students, but the treatment effect did not randomly across school.

The modern approach of estimating LVMs is to calculate parameters without resorting to im-

puting the latent variable. The fact explains a remarkable paucity of research on scoring the latent

variable. Unit-specific obesity score was calculated by the posterior probability in Chapters 2-5.

Though the trend of the obesity score is similar for the two-level LVMs between the assumption

of covariates MCAR and MAR, the scores appear significantly different (Figure 6.1). It seems that

the difference is positively associated with age for both African-American and white students and

the difference for white students is more positively associated with age than for African Amer-

icans.One possible reason is that the case-deletion analysis of missing covariates may result in

biased inference. Figure 6.2 indicates that the trend of unit-specific achievement score generated

by three-level LVMs (Chapter 4) is similar as that estimated by three-level LVMs with IV (Chapter

5).

Some weaknesses and extensions in this dissertation should be noted. First, the continuous

surrogate outcomes were measured to quantify the overall interest. It is very interesting to develop

methodologies efficiently to handle missing covariates and surrogate outcomes which are categor-

ical, ordinal, or mixed-type variables. Two broad approaches are implemented for analysis of the

scenario on the basis of how to factorize the joint model of these surrogate outcomes. The first one

is to postulate a marginal model for binary or ordinal outcomes and then to formulates a condi-

tional model on the categorical or ordinal one(s) for continuous outcomes. For the former, one can
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fit logistic or loglinear regression, whereas for the latter conditional models are a straightforward

choice. The other one starts from the reverse factorization by combining a marginal model for the

continuous outcome and a conditional one for the categorical outcome. However, EM algorithm

works best if the complete-data distribution belongs to an exponential family. Like the steps in the

normal structure, the E-step consists of calculating the complete-data sufficient statistics by their

posterior expectations. Given these estimates, the likelihood equations for the M-step then take the

same form as for complete data.

Secondly, the random error terms in the two-level LVMs were independent no matter they are

within the subject or between subjects assuming random coefficient effects of age or time. This

method is useful for the traditional latent growth curve models in a longitudinal study. A possible

extension is to provide a structural model where random error terms are dependent with AR(1)

variance-covariance structure. The combination of these two models is called the Autoregressive

Latent Trajectory (ALT) model (Bollen and Curran, 2004). However, the extension is challenging

to estimate the parameter of the variance-covariance structure, in particular, for the LVMs. The

traditional approach for estimating the nuisance parameter is Newton-Raphson method, which,

however, is not useful under EM-algorithm with considering the latent variable as MAR.

Thirdly, we assume that the random effects in the structure model are completely observed,

and there are no interaction effects among covariates subject to missingness. Otherwise, for the

first case, the structure model (2.1) includes products between two random normal variables, which

makes the estimation of parameters more difficult due to non-normal framework. One possible way

is a Bayesian approach where the covariates are estimated from their prior distributions and the

missing data are imputed from their posterior distributions. Another possible approach is based on

iteration: imputing the missing covariates with random effects from a marginal model, estimating

the LVMs conditional on the multiple imputations of the covariates, and combining the estimates

(Rubin, 1987). Though the relaxing assumption will make the general approach more applicable,

it is beyond the work in this dissertation. For the second case, the interaction terms should be fitted
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in the left-hand side of the joint model, resulting in challenging estimation.

Finally, high-level longitudinal or cluster-randomized data are ubiquitous and subject to miss-

ingness, which encourages us to develop an approach efficiently to handle missing surrogate out-

comes and covariates in Q -level LVMs (Q > 3). Facing high level data, conventionally we

expect to include all cluster-specific influences as covariates in the analysis. However, it is always

impossible because of limited knowledge regarding relevant covariates and furthermore dataset

lacking information on these covariates. Consequently, it is necessary to fit random-intercept or

random-coefficient models to account for unobserved heterogeneity leading to the correlation be-

tween responses for units in the same cluster after conditioning on covariates. It is of interest to

develop an approach efficiently to handle missing surrogate outcomes and covariates in high level

LVMs. As the analysis of two-level LVMs in Chapter 3, the joint model over-identifies the con-

ditional model with constraints. The challenge is that how to represent the constraints within the

framework of the Q-level model in a standard way regardless of the level Q and how to obtain

unbiased and efficient analysis of the conditional model.
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Figure 6.1: The difference of unit-specific obesity score

Figure 6.2: The difference of unit-specific achievement score
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Appendix

SAS Codes for the Random-coefficient model in Chapter 3

∗ F i n a l d a t a s e t based on NGHS d a t a ;
∗PX−EM a l g o r i t h m f o r t h e l a t e n v a r i a b l e a n a l y s i s based on NGHS d a t a ;
∗Thi s program i s f o r j u s t 4 b i o m a r k e r s and f o r bo th

m i s s i n g b i o m a r k e r s and c o v a r i a t e s age and t h e o t h e r s assuming
t h e r e i s 2 m i s s i n g l e v e l −2 c o v a r i a t e s ;

∗ t h i s program i s f o r random age c e n t e r e d a t sample mean and f o r
j u s t i d e n t i f i e d model ;

o p t i o n s n o f m t e r r ;
l i bname V1 ” ˜ / ” ;
d a t a s t a c k 1 ;

s e t v1 . t h e s i s ;
by i d 0 ;
keep i d 0 BMI SUMSKIN MAXBLOAV PCTFATSF PFBIA UPTHIGAV WAISTMIN

VIDTVWK F 1 2 s c o r e BMI2 r a c e age p a r e n t s CATINC MATSTAGE CATEDUC
income1−income3 educ1−educ2 matur1−matur3 incom1−incom2 CATEDUC1
CATINC1 m a t u r a t i o n ;

i f PFBIA<0 t h e n PFBIA = . ;
i f VIDTVWK<0 t h e n VIDTVWK= . ;
i f nmiss ( o f r a c e age p a r e n t s CATEDUC)>=1 t h e n d e l e t e ;
∗ i f a l l m i s s i n g t h e n i t does n o t c o n t r i b u t e t o e s t i m a t e ;
i f nmiss ( o f BMI SUMSKIN MAXBLOAV PFBIA VIDTVWK F 1 2 s c o r e BMI2 CATINC1

m a t u r a t i o n )=9 t h e n d e l e t e ;
run ;
∗ c e n t e r t h e l e v e l −1 c o v a r i a t e s a t grandmean , l e v e l −2 c o v a r i a t e s a t grandmean

and w e i g h t e d a v e r a g e mean , r e s p e c t i v e l y ;
p roc means d a t a = s t a c k 1 ; ∗ g e t t i n g grand mean ;

v a r age VIDTVWK F 1 2 s c o r e m a t u r a t i o n ;
run ;
∗ t r y t o g e t c o m p l e t e l y o b s e r v e d l e v e l −2 c o v a r i a t e s ’ w e i g h t e d mean ;
ods o u t p u t onewayf r eqs =aa ( keep= i d 0 f r e q u e n c y ) ;
p roc f r e q d a t a = s t a c k 1 ;

t a b l e i d 0 ;
run ;
d a t a s t a c k 0 ;

merge s t a c k 1 aa ;
by i d 0 ;

run ;
p roc means d a t a = s t a c k 0 ;

v a r r a c e p a r e n t s c a t e d u c 1 BMI2 CATINC1 ;
we ig h t f r e q u e n c y ;
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run ;
p roc summary d a t a = s t a c k 0 n o p r i n t ;

c l a s s i d 0 ;
v a r age ;
o u t p u t o u t =age mean=ageM ;

run ;
d a t a age ; s e t age ; i f i d 0 = . t h e n d e l e t e ; run ;
d a t a s t a c k 0 ; merge s t a c k 0 age ( keep=ID0 ageM ) ; by ID0 ; run ;
d a t a s t a c k 1 ;

s e t s t a c k 0 ;
a g e r =age−ageM ;
age=age −14.3633689;
VIDTVWK=VIDTVWK−31.3475711;
F 1 2 s c o r e = F12score −17.3481753;
m a t u r a t i o n = m a t u r a t i o n −2.0972236;
r a c e = race −0.4761598;
p a r e n t s = p a r e n t s −0.3119893;
c a t e d u c 1 = ca t educ1 −0.7562707;
BMI2=BMI2−27.3658793;
CATINC1=CATINC1−1.0672173;

run ;

d a t a s t a c k 1 ;
s e t s t a c k 1 ;
by i d 0 ;
i f f i r s t . i d 0 t h e n t ime =1; e l s e t ime +1;

run ;
p roc s o r t d a t a = s t a c k 1 o u t =p1 ; by t ime ; run ; ∗ g e t t h e max ( t ime ) ;
∗D e l e t i n g t h e m i s s i n g v a l u e : f o r t h e two i n t e r e s t e d v a r i a b l e : BMI , SUMSKIN;
%macro l e v e l 1 ( var1 , var2 , var3 , va r4 ) ;
p roc s o r t d a t a = s t a c k 1 ; by i d 0 age r a c e ;
d a t a &va r1 ( keep=ID0 r a c e &var1 l e v e l c o u n t s t a t u s o1−o10 t ime ) ;

s e t s t a c k 1 ;
by ID0 ;
l e v e l =&var2 ;
c o u n t=&var3 ;
s t a t u s =”& var4 ” ;
a r r a y o{∗} o1−o10 ; ∗ t h e l a r g e s t t ime o c c a t i o n i s 1 0 ;
do i =1 t o 1 0 ;

o [ i ] = ( t ime = i ) ;
end ;

run ;
%mend ;
%l e v e l 1 (BMI , 1 , 1 , b ) ;
%l e v e l 1 (SUMSKIN, 1 , 2 , b ) ;
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%l e v e l 1 (MAXBLOAV, 1 , 3 , b ) ;
%l e v e l 1 ( PFBIA , 1 , 4 , b ) ;
%l e v e l 1 (VIDTVWK, 1 , 1 , c ) ;
%l e v e l 1 ( F12score , 1 , 2 , c ) ;
%l e v e l 1 ( m a t u r a t i o n , 1 , 3 , c ) ;
d a t a l e v e l 1 ;

s e t BMI( rename =(BMI=y ) ) SUMSKIN( rename =(SUMSKIN=y ) )
MAXBLOAV( rename =(MAXBLOAV=y ) ) PFBIA ( rename =( PFBIA=y ) )
VIDTVWK( rename =(VIDTVWK=y ) ) F 1 2 s c o r e ( rename =( F 1 2 s c o r e =y ) )
m a t u r a t i o n ( rename =( m a t u r a t i o n =y ) ) ;

l a b e l y=” Observed r e s p o n s e v a r i a b l e ” ;
i f y = . t h e n do ;

o1 = . ; r a c e = . ;
end ;
i n t =1 ;

run ;
p roc s o r t d a t a = l e v e l 1 o u t = o 1 i ; by ID0 s t a t u s c o u n t t ime ; run ;
%macro l e v e l 2 ( var1 , var2 , va r3 ) ;
p roc s o r t d a t a = s t a c k 1 nodupkey o u t = r r r ; by i d 0 ; run ;
d a t a &va r1 ( keep= i d 0 &var1 r a c e age p a r e n t s CATEDUC1 &var1 l e v e l c o u n t ) ;

s e t r r r ;
l e v e l =&var2 ;
c o u n t=&var3 ;

run ;
%mend ;
%l e v e l 2 ( BMI2 , 2 , 1 ) ;
%l e v e l 2 ( CATINC1 , 2 , 2 ) ;
d a t a l e v e l 2 ( drop = i ) ;

s e t BMI2 ( rename =(BMI2=y ) ) CATINC1 ( rename =(CATINC1=y ) ) ;
a r r a y o{∗} o1−o2 ;
do i =1 t o 2 ;

o [ i ] = ( c o u n t = i ) ;
end ;

l a b e l y=”y ” ;
run ;
p roc s o r t d a t a = l e v e l 2 ; by i d 0 c o u n t ; run ;
p roc s o r t d a t a = l e v e l 2 nodupkey

o u t = i d d ( keep= i d 0 y l e v e l r a c e age p a r e n t s CATEDUC1 ) ;
by i d 0 ;

d a t a l e v e l 2 ;
s e t l e v e l 2 ;
i f y = . t h e n do ;

o1 = . ; ∗ t h i s i s t o s u b t r a c t t h e m i s s i n g v a l u e s i n IML ;
r a c e = . ;

end ;
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run ;
d a t a f i n a l ; s e t l e v e l 1 l e v e l 2 ; run ;
∗ o 1 i o 2 i i s f o r s u b t r a c t i n g o 1 i j , o 2 i j , and o2i , x 1 i j and x 2 j ;
p roc s o r t d a t a = f i n a l o u t = o 1 i o 2 i ;
by i d 0 l e v e l s t a t u s c o u n t t ime ; run ;
d a t a o 1 i o 2 i a ; s e t o 1 i o 2 i ; keep o1−o10 ; run ;

∗ t h i s d a t a s e t i s f o r o b s e r v e d y ;
d a t a f i n a l ( keep= i d 0 y l e v e l s t a t u s c o u n t ) ; s e t o 1 i o 2 i ;
i f y = . t h e n d e l e t e ; run ;
∗ t o g e t t h e f r e q u e n c e f o r each s u b j e c t t o s u b t r a c t o b s e r v e d y ;
p roc summary d a t a = f i n a l ; c l a s s i d 0 ; v a r i d 0 ; o u t p u t o u t = f r e q n=n ; run ;
d a t a f r e q ; s e t f r e q ; i f i d 0 = . t h e n d e l e t e ; run ;

∗To f e t t h e f r e q u e n c y f o r each s u b j e c t a f t e r s t a c k t h e d a t a t o g e t h e r ;
d a t a f r e q 1 ; s e t o 1 i o 2 i ( keep= i d 0 ) ; by i d 0 ;
i f f i r s t . i d 0 t h e n n =1; e l s e n +1; run ;
d a t a f r e q 1 ; s e t f r e q 1 ; by i d 0 ; i f l a s t . i d 0 ; run ;

∗ t o g e t t h e t ime v i s i t s f o r each s u b j e c t ;
p roc s o r t d a t a = o 1 i nodupkey o u t = f r e q 2 ; by i d 0 t ime ; run ;
d a t a f r e q 2 ( keep= i d 0 t ime ) ; s e t f r e q 2 ; by i d 0 ; i f l a s t . i d 0 ; run ;

∗ t o r e a d Wi : on ly keep c o m p l e t e l y o b s e r v e d l e v e l −1 and −2 c o v a r i a t e s ;
d a t a covL1 ;

s e t s t a c k 1 ;
i n t =age ∗ r a c e ;
ages =age ∗ age ;
agec = ages ∗ age ;
keep i d 0 age ages agec CATEDUC1 r a c e p a r e n t s i n t a g e r ;

run ;
∗ t o r e a d W2i : on ly keep c o m p l e t e l y o b s e r v e d l e v e l 2 c o v a r i a t e s ;
p roc s o r t d a t a = s t a c k 1 o u t =covL2 ( keep= i d 0 c a t e d u c 1 r a c e p a r e n t s ) nodupkey ;

by i d 0 CATEDUC1 r a c e p a r e n t s ; run ;

∗========================================================================∗;
∗IML program ;
p roc iml ;

use f i n a l ;
r e a d a l l v a r {y} i n t o YY;
r e a d a l l v a r { ID0} i n t o YYY;

use covL1 ;
r e a d a l l v a r {age , ages , agec , i n t , c a t educ1 , r ace , p a r e n t s } i n t o x1 ;
r e a d a l l v a r { a g e r } i n t o x3 ;
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nrow=nrow ( x1 ) ;
D1= j ( nrow , 1 , 1 ) | | x3 ;

x11=x1 ;
use covL2 ; r e a d a l l v a r { ca t educ1 , r ace , p a r e n t s } i n t o x2 ;
x21=x2 ;

use o 1 i o 2 i ;
r e a d a l l v a r {y} i n t o YM;

use o 1 i o 2 i a ;
r e a d a l l v a r a l l i n t o o 1 i 2 i ;

∗ c o n t r o l t h e m a t r i x f o r each s u b j e c t t o g e t o b s e r v e d y ;
use f r e q ;
r e a d a l l v a r {n} i n t o c o n t ;

∗ c o n t r o l t h e # of o b s e r v a t i o n s f o r each s u b j e c t a f t e r s t a t c k d a t a t o g e t h e r ;
use f r e q 1 ;
r e a d a l l v a r {n} i n t o c o n t 1 ;

∗Thi s i s t o c o n t r o l t ime o b s e r v a t i o n s f o r each s u b j e c t ;
use f r e q 2 ;
r e a d a l l v a r { t ime } i n t o c o n t 2 ;

v e c t o r = u n iq ue ( yyy ) ;
n= n c o l ( v e c t o r ) ; ∗how many s u b j e c t i n t h e d a t a s e t ;
nb =4; ∗# of b i o m a r k e r s ;
no1 =3; ∗# of l e v e l −1 c o v a r i a t e s s u b j e c t t o m i s s i n g v a l u e s ;
no2 =2; ∗# of l e v e l −2 c o v a r i a t e s s u b j e c t t o m i s s i n g v a l u e s ;
nu= n c o l ( x1 ) ;
ns=no1 ∗ ( nu ) ;
n2=no2 ∗ ( n c o l ( x2 ) ) ; ∗ t h e r e a r e two columns i n x 2 i ;
nd1= n c o l ( D1 ) ;
nT=nd1+no1+no2 ;
nv=no1 ;
∗# of p a r a m e t e r s i n t h e c o n s t r a i n t model : t h i s i s f o r i n f o r m a t i o n m a t r i x ;
IFMD=4∗nb+nu+ns+n2+nT ∗ ( nT +1) /2+ nv ∗ ( nv +1)/2− ( nd1−1)∗( no1+no2 ) ;
nv=no1 +1;
∗# of p a r a m e t e r s i n t h e u n c o n s t r a i n t model ;
IFMD1=4∗nb+nu+ns+n2+nT ∗ ( nT +1) /2+ nv ∗ ( nv + 1 ) / 2 ;
p r i n t n nb no1 no2 IFMD1 IFMD ;
m1=no1 ; m2=( n c o l ( x1)− n c o l ( x2 ) ) ∗ no1 ;
m3= n c o l ( x2 )∗ no1 ; m4= n c o l ( x1)− n c o l ( x2 ) ; m5= n c o l ( x2 ) ;

∗ i n i t i a l v a l u e s based on f a c t o r s c o r e s ;
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Tss= I ( no1 ) ;
Sigmass = I ( no1 ) ;
Tau ={0 . 4 4 7 0 , 2 9 . 2 1 8 1 , 7 . 2 9 9 6 , 1 0 9 . 0 1} ;
b e t a 0 ={2 1 . 62 61 ,4 3 . 9 47 1 , 8 9 . 6 7 8 9 , 2 2 . 7 2 3 7} ;
be taR ={4 . 5 3 5 3 , 2 1 . 3 5 3 5 , 1 2 . 7 5 4 4 , 1 0 . 1 7 6 7} ;
p s i ={1 . 1 1 3 3 , 3 0 . 2 8 6 8 , 1 1 . 3 1 1 0 , 2 0 . 3 5 0 0} ;
b e t a u ={ 0.1678 ,−0.02125 ,−0.00129 ,−0.00733 ,−0.09182 ,−0.2534 ,0 .1219} ;
b e t a S ={ −1.8640 ,−0.08688 ,0 .07507 ,−0.7811 ,−5.1856 ,−16.3731 ,2 .8573 ,−3.4951 ,

0 . 1 9 9 0 , 0 . 0 5 4 6 0 , 0 . 9 0 8 1 , 2 . 7 8 8 3 , 4 . 7 3 2 7 , −0 . 7 3 3 8 , 0 . 3 5 0 8 , −0 . 0 3 0 5 0 , −0 . 0 0 3 0 4 ,
0 . 0 3 8 2 7 , −0 . 3 2 7 1 , 0 . 0 3 4 2 0 , 0 . 0 3 0 5 3} ;

b e t a 2 ={−0.7559 ,−3.5316 , −0.2934 , 0 . 4 8 4 5 , 0 . 3 3 9 3 ,−0.7387} ;
s igmauu = 0 . 0 9 6 8 4 ;
s igmas ={2 5 2 . 2 0 , 1 8 1 . 4 6 , 0 . 1 3 6 9} ;
do i =1 t o nrow ( s igmas ) ;

s i g m a s s [ i , i ]= s igmas [ i ] ;
end ;
Tuu ={1.5207 −0.1 ,−0.1 1 . 5 } ;
Ts ={102 .10 , 5 5 . 1 7 7 1 , 1 1 . 3 3 4 2} ;
T22 ={44.5275 0 ,0 0 . 4 2 0 3} ;
do i =1 t o nrow ( Ts ) ;

Tss [ i , i ]= Ts [ i ] ;
end ;
T= b l o c k ( Tuu , Tss , T22 ) ;
s igma= b l o c k ( sigmauu , s i g m a s s ) ;
∗ u s i n g t h e p r e v i o u s r e s u l t s a s i n i t i n a l v a l u e s i n c l e a n 4 . s a s ;
/∗ b e t a 0 ={22.4809 , 4 6 . 4 3 3 9 , 9 2 . 8 1 1 0 , 25 .3868 } ;
be taR ={ 1 .1159 , 4 . 0 8 6 7 , 3 . 1 0 5 2 , 2 . 0 1 2 7} ;
Tau ={0.5108 , 6 4 . 3 0 2 6 , 6 .4426 , 1 5 . 3 0 9 1} ;
p s i ={ 0 . 8 5 3 2 , 6 9 . 9 6 7 1 , 2 3 . 3 7 5 4 , 21 .9124 } ;
b e t a u ={0 .5435 , −0.02112 ,−0.00128 ,−0.0514 , −0.2440 , −1.0114 , 0 . 4 1 5 9 4} ;
b e t a S ={−0.5765 , −0.08141 , 0 .07496 ,−0 .7538 , −5.1660 , −16.6121 , 2 . 7 6 5 1 0 ,
−2 . 4 7 4 1 9 , 0 . 1 9 2 5 , 0 . 0 5 4 6 4 , 0 . 8 3 5 1 1 , 2 . 6 4 0 4 7 , 4 . 8 5 6 2 4 , −0 .75406 ,0 .29237 ,
−0.03078 ,−0.00303 ,0 .045462 , −0.020844 , −0.19659 , − .004158} ;

b e t a 2 ={−0.7057 , −3.4958 , −0.4848 , 0 . 4 8 6 2 , 0 . 3 4 1 9 5 , −0.72900} ;
s igma ={1.117677 1 .1117264 −1.313338 0 .1568072 ,

1 .1117264 256 .68172 5 .6590696 −0.020782 ,
−1.313338 5 .6590696 189 .21725 −0.916512 ,

0 .1568072 −0.020782 −0.916512 0 . 2 2 3 2 5 6 9} ;
T={15.702923 0 .901303 1 .8871239 −0.507164 0 .0620783 5 .6753258 −0.005689 ,

0 .901303 0 .1481001 0 0 0 0 0 ,
1 .8871239 0 99 .287296 −16.81754 0 .1283915 11 .234376 −1.111404 ,
−0.507164 0 −16.81754 56 .973693 −0.121676 −1.549731 0 .6887753 ,

0 .0620783 0 0 .1283915 −0.121676 0 .0527143 0 .1986027 0 . 0 0 4 7 4 6 ,
5 .6753258 0 11 .234376 −1.549731 0 .1986027 44 .764096 −0.290886 ,
−0.005689 0 −1.111404 0 .6887753 0 .004746 −0.290886 0 . 4 2 5 5 9 8 6} ;
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D={15.10496 0 . 9 0 1 3 0 3 , 0 .901303 0 . 1 4 8 1 0 0 1} ;
a l p h a ={0 .0044694 , −0 .003745 ,0 .6874041 ,0 .1230068 ,0 .0807719 , 0 .5305924 ,
−0.130339 , 0 .1164613 ,−0 .902599 , 0 . 5 0 3 3 2 6 9} ;∗ /
e p i = 0 . 5 ;
i t e r =0 ;
r p s i = d i a g ( J ( 1 , nb , 1 ) @psi ) ;
r t a u = d i a g ( J ( 1 , nb , 1 ) @tau ) ;
s igmauu=sigma [ 1 : 1 , 1 : 1 ] ;
s igmaus =sigma [ 1 : 1 , 2 : ( 1 + no1 ) ] ;
row =2;
c o l =1+no1 ;
s i g m a s s =sigma [ row : co l , row : c o l ] ;
Tus=T [ 1 : nd1 , ( nd1 + 1 ) : ( nd1+no1 ) ] ;
Tu2=T [ 1 : nd1 , ( nd1+no1 + 1 ) : ( nd1+no1+no2 ) ] ;
row=nd1 +1;
c o l =nd1+no1 ;
Tss=T [ row : co l , row : c o l ] ;
Ts2=T [ row : co l , ( c o l + 1 ) : ( c o l +no2 ) ] ;
row=nd1+no1 +1;
c o l =nd1+no1+no2 ;
T22=T [ row : co l , row : c o l ] ;
Tuu=T [ 1 : nd1 , 1 : nd1 ] ;
∗ c l c u l a t i n g i n i t i a l v a l u e i n t h e c o n d i t i o n a l model and t h e s e i n i t i a l

v a l u e s a r e from c o m p l e t e l y o b s e r v e d d a t a from above i n i t i a l v a l u e s ;
a l p h a 1 =( s igmaus ∗ i n v ( s i g m a s s ) ) ‘ ;
Tus [ 1 , ] = a lpha1 ‘ ∗ ( Tss−Ts2∗ i n v ( T22 )∗Ts2 ‘ ) + Tu2 [ 1 , ] ∗ i n v ( T22 )∗Ts2 ‘ ;
a l p h a 2 = i n v ( T22 ) ∗ ( Tu2 [1 , ] ‘−Ts2 ‘∗ a l p h a 1 ) ;
m1=no1 ; m2=( n c o l ( x1)− n c o l ( x2 ) ) ∗ no1 ;
m3= n c o l ( x2 )∗ no1 ; m4= n c o l ( x1)− n c o l ( x2 ) ; m5= n c o l ( x2 ) ;
∗ b e t a s 1 = j (m1 , 1 , 0 ) ; ∗ i n t e r c e p t e f f e c t ;
∗ f i x e d e f f e c t on m i s s i n g l eve−1 c o v a r i a t e s from c o m p l e t e l y o b s e r v e d
l e v e l −1 c o v a r i a t e s ;
b e t a s 2 = j (m2 , 1 , 0 ) ;
∗ f i x e d e f f e c t on m i s s i n g l eve−1 c o v a r i a t e s from c o m p l e t e l y o b s e r v e d

l e v e l −2 c o v a r i a t e s ;
b e t a s 3 = j (m3 , 1 , 0 ) ;
∗ f i x e d e f f e c t on l a t e n t v a r i a b l e o f c o m p l e t e l y o b s e r v e d l e v e l −1 c o v a r i a t e s ;

b e t a u 1 = j (m4 , 1 , 0 ) ;
∗ f i x e d e f f e c t on l a t e n t v a r i a b l e o f c o m p l e t e l y o b s e r v e d l e v e l −2 c o v a r i a t e s ;

b e t a u 2 = j (m5 , 1 , 0 ) ;
b e t a s 2 [ 1 : m4]= b e t a s [ 1 : m4 ] ; b e t a s 2 [ ( m4+ 1 ) : ( 2∗m4) ] = b e t a s [ ( 1 +m4+m5 ) : ( 2 ∗m4+m5 ) ] ;
b e t a s 2 [ ( 2∗m4+ 1 ) : ( 3∗m4) ] = b e t a s [ (1+2∗m4+2∗m5 ) : ( 3 ∗m4+2∗m5 ) ] ;
b e t a s 3 [ 1 : m5]= b e t a s [ ( m4 + 1 ) : ( m4+m5 ) ] ;
b e t a s 3 [ ( m5+ 1 ) : ( 2∗m5) ] = b e t a s [ ( 2∗m4+m5+ 1 ) : ( 2∗m4+2∗m5 ) ] ;
b e t a s 3 [ ( 2∗m5+ 1 ) : ( 3∗m5) ] = b e t a s [ ( 3∗m4+2∗m5+ 1 ) : ( 3∗m4+3∗m5 ) ] ;
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b e t a 2 2 = j ( n c o l ( x2 )∗ no2 , 1 , 0 ) ;
b e t a 2 2 = b e t a 2 ;
b e t a u 1 =betaU [ 1 : m4 ] ;
b e t a u 2 =betaU [ ( m4 + 1 ) : ( m4+m5 ) ] ;
a l p h a 3 = be tau1−a lpha1 ‘@I(m4)∗ b e t a s 2 ;
a l p h a 4 = be tau2 −( a lpha1 ‘@I(m5 ) ) ∗ b e t a s 3 −( a lpha2 ‘@I(m5 ) ) ∗ b e t a 2 2 ;
Dhat=Tuu−a lpha2 ‘∗T22∗ a lpha2 −2∗a lpha1 ‘∗ Ts2∗ a lpha2−a lpha1 ‘∗ Tss ∗ a l p h a 1 ;
a l p h a = a l p h a 1 / / a l p h a 2 / / a l p h a 3 / / a l p h a 4 ;
Tus [ 2 , ] = 0 ; ∗ random s l o p e e f f e c t model has t h i s c o n s t r a i n t s ;
Tu2 [ 2 , ] = 0 ;
t a u 1 1 =( be taR ∗betaR ‘ ) @Tuu ;
t a u 1 2 =betaR@Tus ;
t a u 1 3 =betaR@Tu2 ;
t a u 2 1 = tau12 ‘ ;
t a u 2 2 =Tss ;
t a u 2 3 =Ts2 ;
t a u 3 1 = tau13 ‘ ;
t a u 3 2 = tau23 ‘ ;
t a u 3 3 =T22 ;
t a u 7 =( t a u 1 1 | | t a u 1 2 | | t a u 1 3 ) / / ( t a u 2 1 | | t a u 2 2 | | t a u 2 3 ) / / ( t a u 3 1 | | t a u 3 2 | | t a u 3 3 ) ;
a41a2 =( Tuu | | Tus ) / / ( Tus ‘ | | Tss ) ; ∗ r e l a t e d t o b e t a 2 ;
a41a1=Tu2 / / Ts2 ;
a41a=T22−a41a1 ‘∗ i n v ( a41a2 )∗ a41a1 ;

∗a f u n c t i o n t o d e l e t e rows wi th a t l e a s t one m i s s i n g v a l u e ;
s t a r t de l row ( x ) ;
c = cmiss ( x ) ; /∗∗ m a t r i x o f z e r o s and ones ∗∗ /
c o u n t = c [ , + ] ; /∗∗ add a c r o s s columns ∗∗ /
mIdx = l o c ( count >0); /∗∗ f i n d rows wi th one or more m i s s i n g v a l u e s ∗∗ /
t e s t =nrow ( x)− n c o l ( mIdx ) ;
i f t e s t >0 t h e n do ;
NMIdx = s e t d i f ( 1 : nrow ( x ) , mIdx ) ; /∗∗ f i n d n o n m i s s i n g rows ∗∗ /
r e t u r n ( x [ NMIdx , ] ) ;

end ;
e l s e i f t e s t =0 t h e n r e t u r n ( t e s t ) ;

f i n i s h ;

LogLH1=−10∗∗16; ∗ s e t t i n g t h e −2logL a t i n i t i a l v a l u e s ;
B e t a s t = j ( n c o l ( x11 ) , no1 , 0 ) ;
b e t a 2 t = j ( n c o l ( x21 ) , no2 , 0 ) ;

do w h i l e ( ep i > .00001 | i t e r <8); ∗ t h i s i s f o r t h e l o g l i k e l i h o o d f u n c t i o n ;
i t e r = i t e r +1 ;
LogLH=LogLH1 ;
∗These a r e f o r i t e r a t i o n t o g e t t h e summation ;
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a1 =0; a2 =0; a3 =0; a4 =0; a5 =0;
a6= j ( nb , 1 , 0 ) ; ∗ r e l a t e d t o b e t a 0 [ j ] ;
a7= j ( nb , 1 , 0 ) ; ∗ r e l a t e d t o b e t a 1 [ j ] ;
a8 =0;
a9 =0;
a10= j ( nv , nv , 0 ) ;
a11= j ( nt , n t , 0 ) ;
a12= j ( ( nu+ns ) , 1 , 0 ) ;
a13= j ( n2 , 1 , 0 ) ;
Es 1 i ey = j ( no1 , 1 , 0 ) ;
Ey2ey= j ( no2 , 1 , 0 ) ;
e y 2 j i y = j ( no2 , 1 , 0 ) ;
a lphaE =0;
alphaD =0;
covy2 jy = j ( no2 , 1 , 0 ) ;
te rm2 = j ( no1 , no2 , 0 ) ;
ca12 =0;
c b e t a 0 =0;
c b e t a 1 =0;
c b e t a 1 1 =0;
EXXY11a= j ( no1 , no1 , 0 ) ;
c d h a t =0 ;

∗ t h e s e a r e r e l a t e d t o E ( x i ) i n t h e c o n d i t i o n a l model ;
do j =1 t o no1 ;

B e t a s t [ , j ]= b e t a S [ ( ( j −1)∗ n c o l ( x11 ) + 1 ) : ( j ∗ n c o l ( x11 ) ) ] ;
end ;
do j =1 t o no2 ;

B e t a 2 t [ , j ]= b e t a 2 [ ( ( j −1)∗ n c o l ( x21 ) + 1 ) : ( j ∗ n c o l ( x21 ) ) ] ;
end ;
do i =1 t o n ;

nn= i ;
a =0;
do k=1 t o i −1; a= c o n t [ k ]+ a ; end ; a=a +1;
b =0;
do k=1 t o i ; b= c o n t [ k ]+ b ; end ; ∗a and b h e r e a r e t o r e s t r i c t YY[ i ] ;

aa =0;
do k=1 t o i −1; aa= c o n t 2 [ k ]+ aa ; end ; aa=aa +1;
bb =0;
do k=1 t o i ; bb= c o n t 2 [ k ]+ bb ; end ; ∗ aa and bb a r e t o r e s t r i c t XX[ i ] ;

∗ aaa and bbb r e s t r i c t o l i o 2 i f o r each s u b j e c t ;
aaa =0;
do k=1 t o i −1; aaa = c o n t 1 [ k ]+ aaa ; end ; aaa = aaa +1;
bbb =0;
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do k=1 t o i ; bbb= c o n t 1 [ k ]+ bbb ; end ;

∗ r e a d t h e map m a t r i x from c o m p l e t e l y d a t a t o o b s e r v e d d a t a ;
n i = c o n t 1 [ i ] ;
n n i = c o n t 2 [ i ] ; e s 1 j i y = j ( no1 , nni , 0 ) ;
ob1= o 1 i 2 i [ aaa : ( aaa +nni −1) , 1 : n n i ] ;
ob2= o 1 i 2 i [ ( aaa + n n i ) : ( aaa +2∗ nni −1) , 1 : n n i ] ;
ob3= o 1 i 2 i [ ( aaa +2∗ n n i ) : ( aaa +3∗ nni −1) , 1 : n n i ] ;
ob4= o 1 i 2 i [ ( aaa +3∗ n n i ) : ( aaa +4∗ nni −1) , 1 : n n i ] ;
o 1 i j = b l o c k ( ob1 , ob2 , ob3 , ob4 ) ;
o11 i = de l row ( o 1 i j ) ;

os1= o 1 i 2 i [ ( aaa +4∗ n n i ) : ( aaa +5∗ nni −1) , 1 : n n i ] ;
os2= o 1 i 2 i [ ( aaa +5∗ n n i ) : ( aaa +6∗ nni −1) , 1 : n n i ] ;
os3= o 1 i 2 i [ ( aaa +6∗ n n i ) : ( aaa +7∗ nni −1) , 1 : n n i ] ;
o 2 i j = b l o c k ( os1 , os2 , os3 ) ;
o12 i = de l row ( o 2 i j ) ;

o 2 a i = o 1 i 2 i [ ( aaa +7∗ n n i ) : ( aaa +7∗ n n i +no2 −1) ,1 : no2 ] ;
c= cmiss ( o 2 a i ) ;
c o u n t =c [ , + ] ;
mIdx= l o c ( count >0);
aaaa =no2−n c o l ( mIdx ) ;
i f aaaa>0 t h e n do ;
NMIdx = s e t d i f ( 1 : nrow ( o 2 a i ) , mIdx ) ;
o22 i = o 2 a i [ NMIdx , ] ;

end ;
e l s e i f aaaa =0 t h e n o22 i =0 ;
∗ based on t h e t h r e e map i n d i c a t o r m a t r i c e s t o g e t t h e mean and v a r i a n c e
o f t h e o b s e r v e d d a t a f r o each s u b j e c t ;
∗ t o t a l l y , t h e r e a r e 8 c a s e s . B a s i c a l l y , t h e f i r s t c a s e can be i g n o r e d

b e c a u s e we s e l e c t d a t a by e x c l u d i n g i t ;
k i 1 = j ( nni , 1 , 1 ) ;
∗ use o11 i =0 & o12 i =0 &o22 i =0 doesn ’ t work ;
i f o11 i =0 t h e n n11 =1000; e l s e n11= n c o l ( o11 i ) ;
i f o12 i =0 t h e n n12 =1000; e l s e n12= n c o l ( o12 i ) ;
i f o22 i =0 t h e n n22 =1000; e l s e n22= n c o l ( o22 i ) ;

c o v u i =D1 [ aa : bb , ] ∗ Tuu∗D1 [ aa : bb , ] ‘ + sigmauu@I ( n n i ) ; ∗ r e l a t e d t o EUY and EUUY;
CUY1=betaR ‘ @covui ;
CUY2=D1 [ aa : bb , ] ∗ Tus ∗ ( I ( no1 ) @ki1 ‘ ) + sigmaus@I ( n n i ) ;
CUY3=D1 [ aa : bb , ] ∗ Tu2 ;

covey2= j ( nni , no1∗ nni , 0 ) ; ∗ r e l a t e d t o covey ;
covey3= j ( nni , no2 , 0 ) ;
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covby2= j ( 1 , no1∗ nni , 0 ) ; ∗ r e l a t e d t o covby ;
covby3= j ( 1 , no2 , 0 ) ;
∗ r e l a t e d t o covb1 iy and covb2 iy ;
covb1 iy1 =( betaR ‘@( Tuu∗D1 [ aa : bb , ] ‘ ) ) / / ( betaR ‘@( Tus ‘∗D1 [ aa : bb , ] ‘ ) ) ;
covb1 iy2 =( Tus@ki1 ‘ ) / / ( Tss@ki1 ‘ ) ;
covb1 iy3 =Tu2 / / Ts2 ;
covb2 iy1 =betaR ‘@( Tu2 ‘∗D1 [ aa : bb , ] ‘ ) ;
covb2 iy2 =Ts2 ‘ @ki1 ‘ ;
covb2 iy3 =T22 ;

a311a=x1 [ aa : bb , ] ;
a311d= I ( no1 ) @x11 [ aa : bb , ] ;
a311b= j ( nrow ( a311a ) , n c o l ( a311d ) , 0 ) ;
a311c= j ( nrow ( a311d ) , n c o l ( a311a ) , 0 ) ;
a311 = ( ( a311a | | a311b ) / / ( a311c | | a311d ) ) ;
a312= i n v ( s igma )@I( n n i ) ;
a313=a311 ‘ ;
a31=a313∗ a312∗ a311 ;
a3=a3+a31 ; ∗ r e l a t e d t o b e t a 1 ∗ ;

a41b=X21 [ i , ] ‘ ∗X21 [ i , ] ;
a41= i n v ( a41a ) @a41b ;
a4=a4+a41 ; ∗ r e l a t e d t o b e t a 2 ;
∗ r e l a t e d t o a l p h a i n t h e r e d u c e d model ;
ccovye =( betaR@I ( n n i ) ) / / j ( n n i ∗no1+no2 , nni , 0 ) ;

a61= j ( nb , 1 , 0 ) ; a71= j (NB, 1 , 0 ) ; a81= j ( nb , 1 , 0 ) ; a91= j ( nb , 1 , 0 ) ;
Eus t ey1 = j ( nb , 1 , 0 ) ; Eus t ey2 = j ( nb , 1 , 0 ) ;
y i =yy [ a : b , ] ;

i f n11 =1000 & n12 =1000 & n22 =1000 t h e n o i = ” ” ;
e l s e i f n11 ˆ=1000 & n12 =1000 & n22 =1000 t h e n

o i = o11 i | | j ( nrow ( o11 i ) , no1∗ n n i +no2 , 0 ) ;
e l s e i f n11 =1000 & n12 ˆ=1000 & n22 =1000 t h e n

o i = j ( nrow ( o12 i ) , nb∗ nni , 0 ) | | o12 i | | j ( nrow ( o12 i ) , no2 , 0 ) ;
e l s e i f n11 =1000 & n12 =1000 & n22 ˆ=1000 t h e n

o i = j ( nrow ( o22 i ) , nb∗ nni , 0 ) | | j ( nrow ( o22 i ) , no1∗ nni , 0 ) | | o22 i ;
e l s e i f n11 ˆ=1000 & n12 ˆ=1000 & n22 =1000 t h e n

o i =( o11 i | | j ( nrow ( o11 i ) , no1∗ n n i +no2 , 0 ) )
/ / ( j ( nrow ( o12 i ) , nb∗ nni , 0 ) | | o12 i | | j ( nrow ( o12 i ) , no2 , 0 ) ) ;

e l s e i f n11 ˆ=1000 & n12 =1000 & n22 ˆ=1000 t h e n
o i =( o11 i | | j ( nrow ( o11 i ) , no1∗ n n i +no2 , 0 ) )

/ / ( j ( nrow ( o22 i ) , nb∗ n n i +no1∗ nni , 0 ) | | o22 i ) ;
e l s e i f n11 =1000 & n12 ˆ=1000 & n22 ˆ=1000 t h e n
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o i =( j ( nrow ( o12 i ) , nb∗ nni , 0 ) | | o12 i | | j ( nrow ( o12 i ) , no2 , 0 ) )
/ / ( j ( nrow ( o22 i ) , nb∗ n n i +no1∗ nni , 0 ) | | o22 i ) ;

e l s e i f n11 ˆ=1000 & n12 ˆ=1000 & n22 ˆ=1000 t h e n
o i = b l o c k ( o11i , o12i , o22 i ) ;

mui1 =( beta0@ki1+betaR@ ( x1 [ aa : bb , ] ∗ betaU ) ) ;
mui2 =( I ( no1 ) @x11 [ aa : bb , ] ) ∗ b e t a S ;
mui3 =( I ( no2 ) @x21 [ i , ] ) ∗ b e t a 2 ;
mui= o i ∗ ( mui1 / / mui2 / / mui3 ) ;
z i = b l o c k ( I ( nb )@D1[ aa : bb , ] , I ( no1 ) @ki1 , I ( no2 ) ) ;
v1= z i ∗ t a u 7 ∗ z i ‘ ;
v2= b l o c k ( r p s i @ j ( nni , nni , 1 ) , j ( n n i ∗no1 , n n i ∗no1 , 0 ) , j ( no2 , no2 , 0 ) ) ;
v31 = ( ( ( be taR ∗betaR ‘ ) @sigmauu@I ( n n i ) ) | | ( betaR@sigmaus@I ( n n i ) ) )

/ / ( ( betaR@sigmaus@I ( n n i ) ) ‘ | | ( s igmass@I ( n n i ) ) ) ;

v3= b l o c k ( v31 , j ( no2 , no2 , 0 ) ) ;
v4= b l o c k ( r tau@I ( n n i ) , j ( n n i ∗no1 , n n i ∗no1 , 0 ) , j ( no2 , no2 , 0 ) ) ;
v i t =v1+v2+v3+v4 ; v i t = 1 / 2∗ ( v i t + v i t ‘ ) ;
v i = o i ∗ v i t ∗ oi ‘ ; v i = 1 / 2∗ ( v i +vi ‘ ) ;
CUY=(CUY1 | |CUY2 | |CUY3)∗Oi ‘ ;
s v i d f = s o l v e ( vi , y i−mui ) ;
EUY=x1 [ aa : bb , ] ∗ betaU+CUY∗ s v i d f ;
do j =1 t o nb ;

i f j =1 t h e n do ;
covey1 =( t a u [ j ]∗ I ( n n i ) ) | | j ( nni , ( nb−j )∗ nni , 0 ) ;
covby1 =( ki1 ‘ @psi [ j ] ) | | j ( 1 , ( nb−j )∗ nni , 0 ) ;
end ;
e l s e i f j =nb t h e n do ;

covey1= j ( nni , ( j −1)∗ nni , 0 ) | | ( t a u [ j ]∗ I ( n n i ) ) ;
covby1= j ( 1 , ( j −1)∗ nni , 0 ) | | ( ki1 ‘ @psi [ j ] ) ;

end ;
e l s e i f ( j ˆ=1 & j ˆ= nb ) t h e n do ;

covey1= j ( nni , ( j −1)∗ nni , 0 ) | | ( t a u [ j ]∗ I ( n n i ) ) | | j ( nni , ( nb−j )∗ nni , 0 ) ;
covby1= j ( 1 , ( j −1)∗ nni , 0 ) | | ( ki1 ‘ @psi [ j ] ) | | j ( 1 , ( nb−j )∗ nni , 0 ) ;

end ;
covey =( covey1 | | covey2 | | covey3 )∗ oi ‘ ;
EUEY=EUY‘∗ covey ∗ s v i d f− t r a c e (CUY∗ s o l v e ( vi , covey ‘ ) ) ;
EEY=covey ∗ s v i d f ;
cove= t a u [ j ]∗ I ( n n i ) ;
EEEY=EEY‘∗EEY+ t r a c e ( cove−covey ∗ s o l v e ( vi , covey ‘ ) ) ;
a61 [ j ]= ki1 ‘∗EEY;
a71 [ j ]=EUEY;
a81 [ j ]=EEEY ;
covby =( covby1 | | covby2 | | covby3 )∗ oi ‘ ;
EBY=covby∗ s v i d f ;
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EB2Y=EBY∗EBY+ p s i [ j ]−covby∗ s o l v e ( vi , covby ‘ ) ;
a91 [ j ]=EB2Y ;

end ;

do k=1 t o n n i ;
d e l t a k = j ( nni , 1 , 0 ) ;
d e l t a k [ k ] = 1 ;
c o v i y a 1 = ( ( betaR ‘ @deltak ‘ @sigmauu ) / / ( betaR ‘ @deltak ‘ @sigmaus ‘ ) ) ;
c o v i y a 2 = ( ( s igmaus@del tak ‘ ) / / ( s igmass@del tak ‘ ) ) ;
c o v i y a 3 = j ( nrow ( c o v i y a 1 ) , no2 , 0 ) ;
c o v i y a =( c o v i y a 1 | | c o v i y a 2 | | c o v i y a 3 )∗ oi ‘ ;
EiYa= c o v i y a ∗ s v i d f ; ∗ t h e c o n d i t i o n a l e x p e c t a t i o n o f e p s i l o n ∗ ;
c i c = c o v i y a ∗ s o l v e ( vi , cov iya ‘ ) ;
c i c =( c i c + c i c ‘ ) / 2 ;
Ei iYa =EiYa∗EiYa ‘+ sigma−c i c ;
a10=a10+ Ei iYa ;

end ;

co v i y1 = ( ( betaR ‘ @sigmauu@I ( n n i ) ) / / ( betaR ‘ @sigmaus ‘@I( n n i ) ) ) ;
co v i y2 = ( ( sigmaus@I ( n n i ) ) / / ( s igmass@I ( n n i ) ) ) ;
co v i y3 = j ( nrow ( c ov i y1 ) , no2 , 0 ) ;
c o v i y =( co v iy 1 | | co v i y2 | | co v i y3 )∗ oi ‘ ;
covbsy1 =( betaR ‘@( Tuu∗D1 [ aa : bb , ] ‘ ) ) / / ( betaR ‘@( Tus ‘∗D1 [ aa : bb , ] ‘ ) )

/ / ( betaR ‘@( Tu2 ‘∗D1 [ aa : bb , ] ‘ ) ) ;
covbsy2 =( Tus@ki1 ‘ ) / / ( Tss@ki1 ‘ ) / / ( Ts2 ‘ @ki1 ‘ ) ;
covbsy3 =Tu2 / / Ts2 / / T22 ;
covbsy =( covbsy1 | | covbsy2 | | covbsy3 )∗ oi ‘ ;

covb1 iy =( covb1 iy1 | | covb1 iy2 | | covb1 iy3 )∗ oi ‘ ;
covb2 iy =( covb2 iy1 | | covb2 iy2 | | covb2 iy3 )∗ oi ‘ ;
s v i c u y = s o l v e ( vi ,CUY‘ ) ;
EUUY=EUY‘∗EUY+ t r a c e ( covui−CUY∗ s v i c u y ) ;
aa11=ki1 ‘∗ k i 1 ;
aa12=ki1 ‘∗EUY;
aa13=aa12 ‘ ;
aa14=EUUY;
aa1 =( aa11 | | aa12 ) / / ( aa13 | | aa14 ) ;

EiY= c o v i y ∗ s v i d f ; ∗ t h e c o n d i t i o n a l e x p e c t a t i o n o f e p s i l o n i ∗ ;
a121=a313∗ a312∗EiY ;

EBSY= covbsy ∗ s v i d f ;
s v i b s y = s o l v e ( vi , covbsy ‘ ) ;
EBSBSY=EBSY∗EBSY‘+T−covbsy ∗ s v i b s y ;
a111=EBSBSY ;
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EB1iy= covb1 iy ∗ s v i d f ;
EB2iy= covb2 iy ∗ s v i d f ;
a131= i n v ( a41a ) @x21 [ i , ] ‘ ∗ ( EB2iy−a41a1 ‘∗ i n v ( a41a2 )∗ EB1iy ) ;
a1=a1+aa1 ; ∗ r e l a t e d t o b e t a j ;
a2=a2+ n n i ; ∗ r e l a t e d t o t a u j ;

a6=a6+a61 ; ∗ r e l a t e d t o b e t a 0 ;
a7=a7+a71 ; ∗ r e l a t e d t o b e t a 1 ;
a8=a8+a81 ; ∗ r e l a t e d t o t a u ;
a9=a9+a91 ; ∗ r e l a t e d t o x i ;
∗ a10=a10+a101 ; ∗ r e l a t e d t o sigma ;
a11=a11+a111 ; ∗ r e l a t e d t o T ;
a12=a12+a121 ; ∗ r e l a t e d t o b e t a 1 ;
a13=a13+a131 ; ∗ r e l a t e d t o b e t a 2 ;

∗ f o l l o w i n g i s a b o u t t h e e s t i m a t e s o f a l p h a i n t h e c o n d i t i o n a l model ;
CEEY=ccovye ‘∗ oi ‘∗ s v i d f ;
do j =1 t o no1 ;

cou1 =( j −1)∗( n c o l ( x1 ) ) + 1 ;
cou2= j ∗ ( n c o l ( x1 ) ) ;
c o v s 1 j y = v i t [ ( ( nb +( j −1))∗ n n i + 1 ) : ( ( nb+ j )∗ n n i ) , ] ;
e s 1 j i y [ j , ] = ( x11 [ aa : bb , ] ∗ b e t a s [ cou1 : cou2 ]+ c o v s 1 j y ∗ oi ‘∗ s v i d f ) ‘ ;
i t em2 = e s 1 j i y [ j , ] ∗CEEY;
i t em1=− t r a c e ( c o v s 1 j y ∗ oi ‘∗ s o l v e ( vi , o i ∗ ccovye ) ) ;
Es 1 i ey [ j ]= i t em1 + i t em2 ;

end ;

do j =1 t o no2 ;
covy2 jy =( betaR ‘@( Tu2 [ , j ] ‘∗D1 [ aa : bb , ] ‘ ) ) | | ( Ts2 [ , j ] ‘ @ki1 ‘ ) | | T22 [ j , ] ;
e y 2 j i y [ j ]= x21 [ i , ] ∗ b e t a 2 [ ( ( j −1)∗ n c o l ( x21 ) + 1 ) : ( j ∗ n c o l ( x21 ) ) ] + covy2 jy ∗ oi ‘∗ s v i d f ;
i t em3 = e y 2 j i y [ j ]∗ ki1 ‘∗CEEY;
i t em4=− t r a c e ( covy2jy@ki1∗ oi ‘∗ s o l v e ( vi , o i ∗ ccovye ) ) ;
Ey2ey [ j ]= i t em3 + i t em4 ;

end ;
EXEY= Es 1 i e y / / Ey2ey / / ( x1 [ aa : bb , 1 : m4] ‘∗CEEY ) / / ( x2 [ i , ] ‘ @ki1 ‘∗CEEY ) ;
a lphaE = a lphaE +EXEY;
do j =1 t o no1 ;

d e l t a 1 = v i t [ ( ( nb +( j −1))∗ n n i + 1 ) : ( ( nb+ j )∗ n n i ) , ] ;
do k=1 t o no1 ;

d e l t a 2 = v i t [ ( ( nb +( k−1))∗ n n i + 1 ) : ( ( nb+k )∗ n n i ) , ] ;
EXXY11a [ j , k ]= t r a c e ( Tss [ j , k ]∗ j ( nni , nni , 1 ) + s i g m a s s [ j , k ]∗ I ( n n i )

−d e l t a 1 ∗ oi ‘∗ i n v ( v i )∗ o i ∗ d e l t a 2 ‘ ) ;
end ;

end ;
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EXXY11= e s 1 j i y ∗ e s 1 j i y ‘+EXXY11a ; EXXY11= 1 / 2∗ (EXXY11+EXXY11 ‘ ) ;
do k=1 t o no1 ;

c o v s 1 j y = v i t [ ( ( nb +( k−1))∗ n n i + 1 ) : ( ( nb+k )∗ n n i ) , ] ∗ oi ‘ ;
do j =1 t o no2 ;

covy2 jy = ( ( betaR ‘@( Tu2 [ , j ] ‘∗D1 [ aa : bb , ] ‘ ) @ki1 ) | | ( Ts2 [ , j ] ‘ @ki1 ‘ @ki1 )
| | ( T22 [ j , ] @ki1 ) ) ∗ oi ‘ ;

te rm2 [ k , j ]= t r a c e ( Ts2 [ k , j ]∗ j ( nni , nni ,1)− c o v s 1 j y ∗ i n v ( v i )∗ covy2jy ‘ ) ;
end ;

end ;

EXXY12= e s 1 j i y ∗ ( e y 2 j i y ‘ @ki1 )+ term2 ;
EXXY13= e s 1 j i y ∗x1 [ aa : bb , 1 : m4 ] ;
EXXY14= e s 1 j i y ∗ ( x2 [ i , ] @ki1 ) ;
p a s s = ( ( betaR ‘@( Tu2 ‘∗D1 [ aa : bb , ] ‘ ) ) | | ( Ts2 ‘ @ki1 ‘ ) | | T22 )∗ oi ‘ ;
Ey2iTyi =( I ( no2 ) @x21 [ i , ] ) ∗ b e t a 2 + p a s s ∗ s v i d f ;
Covy2iTyi=T22−p a s s ∗ i n v ( v i )∗ pass ‘ ;
EXXY22=( Ey2iTyi ∗Ey2iTyi ‘ )@( ki1 ‘∗ k i 1 )+ Covy2iTyi@ ( ki1 ‘∗ k i 1 ) ;
EXXY22= 1 / 2∗ (EXXY22+EXXY22 ‘ ) ;
EXXY23=Ey2iTyi@ki1 ‘∗ x1 [ aa : bb , 1 : m4 ] ;
EXXY24=Ey2iTyi@ki1 ‘ ∗ ( x2 [ i , ] @ki1 ) ;
EXXY34=x1 [ aa : bb , 1 : m4] ‘ ∗ ( x2 [ i , ] @ki1 ) ;
EXXY33=x1 [ aa : bb , 1 : m4] ‘∗ x1 [ aa : bb , 1 : m4 ] ; EXXY33= 1 / 2∗ (EXXY33+EXXY33 ‘ ) ;
EXXY44=( x2 [ i , ] ‘ ∗ x2 [ i , ] )@( ki1 ‘∗ k i 1 ) ; EXXY44= 1 / 2∗ (EXXY44+EXXY44 ‘ ) ;
EXXY=(EXXY11 | | EXXY12 | | EXXY13 | | EXXY14 ) / / ( EXXY12 ‘ | | EXXY22 | | EXXY23 | | EXXY24)

/ / ( EXXY13 ‘ | | EXXY23 ‘ | | EXXY33 | | EXXY34)
/ / ( EXXY14 ‘ | | EXXY24 ‘ | | EXXY34 ‘ | | EXXY44 ) ;

EXXY= 1 / 2∗ (EXXY+EXXY‘ ) ;
a lphaD=alphaD+EXXY;
∗ e s t i m a t e t h e v a r i a n c e i n t h e c o n d i t i o n a l model ;
c o v a i y 1 =( betaR ‘@( Dhat∗D1 [ aa : bb , ] ‘ ) | | j ( nd1 , n n i ∗no1+no2 , 0 ) ) ∗ oi ‘ ;
c o v a i y =Dhat−c o v a i y 1 ∗ i n v ( v i )∗ cova iy1 ‘ ;
E a i y i = c o v a i y 1 ∗ s v i d f ;
E a i a i y i = E a i y i ∗E a i y i ‘+ c o v a i y ;
c d h a t = c d h a t + E a i a i y i ;

end ;

do j =1 t o nb ;
b e t a 0 1 = b e t a 0 [ j ] / / be taR [ j ] ;
b e t a 0 1 = b e t a 0 1 + i n v ( a1 ) ∗ ( a6 [ j ] / / a7 [ j ] ) ;
b e t a 0 [ j ]= b e t a 0 1 [ 1 ] ;
be taR [ j ]= b e t a 0 1 [ 2 ] ;

end ;
t a u = ( 1 / a2 )∗ a8 ;
p s i =a9 / n ;
s igma=a10 / a2 ;
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T=a11 / n ;
b e t a 1 =betaU / / b e t a S ;
b e t a 1 = b e t a 1 + i n v ( a3 )∗ a12 ;
b e t a 2 = b e t a 2 + i n v ( a4 )∗ a13 ;
betaU= b e t a 1 [ 1 : nu , ] ;
b e t a S = b e t a 1 [ ( nu + 1 ) : ( nu+ns ) , ] ;
a l p h a = a l p h a + i n v ( alphaD )∗ a lphaE ;
Dhat =1/ n∗ c d h a t ;
s i g m a s s =sigma [ 2 : ( 1 + no1 ) , 2 : ( 1 + no1 ) ] ;
Tuu=T [ 1 : nd1 , 1 : nd1 ] ;
Tus=T [ 1 : nd1 , ( nd1 + 1 ) : ( nd1+no1 ) ] ;
Tu2=T [ 1 : nd1 , ( nd1+no1 + 1 ) : ( nd1+no1+no2 ) ] ;
Tss=T [ ( nd1 + 1 ) : ( nd1+no1 ) , ( nd1 + 1 ) : ( nd1+no1 ) ] ;
Ts2=T [ ( nd1 + 1 ) : ( nd1+no1 ) , ( nd1+no1 + 1 ) : ( nd1+no1+no2 ) ] ;
T22=T [ ( nd1+no1 + 1 ) : ( nd1+no1+no2 ) , ( nd1+no1 + 1 ) : ( nd1+no1+no2 ) ] ;

∗ use t h e c o n s t r a i n t t o u p d a t e t h e p a r a m e t e r s i n t h e j o i n t model ;
a l p h a 1 = a l p h a [ 1 : no1 ] ; a l p h a 2 = a l p h a [ ( no1 + 1 ) : ( no1+no2 ) ] ;

a l p h a 3 = a l p h a [ ( no1+no2 + 1 ) : ( no1+no2+ n c o l ( x1)− n c o l ( x2 ) ) ] ;
a l p h a 4 = a l p h a [ ( no1+no2+ n c o l ( x1)− n c o l ( x2 ) + 1 ) : ( no1+no2+ n c o l ( x1 ) ) ] ;
s igmaus = a lpha1 ‘∗ s i g m a s s ;
m1=no1 ; m2=( n c o l ( x1)− n c o l ( x2 ) ) ∗ no1 ;
m3= n c o l ( x2 )∗ no1 ; m4= n c o l ( x1)− n c o l ( x2 ) ; m5= n c o l ( x2 ) ;
b e t a s 2 = j (m2 , 1 , 0 ) ;
b e t a s 3 = j (m3 , 1 , 0 ) ;
b e t a u 1 = j (m4 , 1 , 0 ) ;
b e t a u 2 = j (m5 , 1 , 0 ) ;

∗ remember t o change t h e f o l l o w i n g program i f we have d i f f e r e n t
# o f c o m p l e t e l y o b s e r v e d l e v e l −1 and l e v e l −2 c o v a r i a t e s ;
b e t a s 2 [ 1 : m4]= b e t a s [ 1 : m4 ] ; b e t a s 2 [ ( m4+ 1 ) : ( 2∗m4) ] = b e t a s [ ( 1 +m4+m5 ) : ( 2 ∗m4+m5 ) ] ;
b e t a s 2 [ ( 2∗m4+ 1 ) : ( 3∗m4) ] = b e t a s [ (1+2∗m4+2∗m5 ) : ( 3 ∗m4+2∗m5 ) ] ;
b e t a s 3 [ 1 : m5]= b e t a s [ ( m4 + 1 ) : ( m4+m5 ) ] ;
b e t a s 3 [ ( m5+ 1 ) : ( 2∗m5) ] = b e t a s [ ( 2∗m4+m5+ 1 ) : ( 2∗m4+2∗m5 ) ] ;
b e t a s 3 [ ( 2∗m5+ 1 ) : ( 3∗m5) ] = b e t a s [ ( 3∗m4+2∗m5+ 1 ) : ( 3∗m4+3∗m5 ) ] ;
b e t a 2 2 = b e t a 2 ;
b e t a u 1 = a l p h a 3 + a lpha1 ‘@I(m4)∗ b e t a s 2 ;
b e t a u 2 = a l p h a 4 + a lpha1 ‘@I(m5)∗ b e t a s 3 + a lpha2 ‘@I(m5)∗ b e t a 2 2 ;
Tu2 [ 1 , ] = a lpha2 ‘∗T22+ a lpha1 ‘∗ Ts2 ;
Tus [ 1 , ] = a lpha1 ‘∗ Tss+ a lpha2 ‘∗Ts2 ‘ ;
Tuu=Dhat+ b l o c k ( Tu2 [ 1 , ] ∗ i n v ( T22 )∗Tu2 [ 1 , ] ‘

+ a lpha1 ‘ ∗ ( Tss−Ts2∗ i n v ( T22 )∗Ts2 ‘ ) ∗ a lpha1 , 0 ) ;
s igmauu =1+ a lpha1 ‘∗ s i g m a s s ∗ a l p h a 1 ;
b e t a u = b e t a u 1 / / b e t a u 2 ;
∗ use c o n s t r a i n t f o r d e l t a a t each M s t e p t o make t h e model i d e n t i f a b l e ;
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/∗ temp= s q r t (1+ s igmaus ∗ s o l v e ( s igmass , s igmaus ‘ ) ) ;
s igmaus =( s igmaus ∗ temp ) / s q r t ( s igmauu ) ;
b e t a u =( b e t a u ∗ temp ) / s q r t ( s igmauu ) ;
be taR = betaR ∗ s q r t ( s igmauu ) / temp ;
Tuu=Tuu∗ temp∗ temp / s igmauu ;
Tus=Tus∗ temp / s q r t ( s igmauu ) ;
Tu2=Tu2∗ temp / s q r t ( s igmauu ) ;
s igmauu=temp∗ temp ; ∗ /

∗ u p d a t i n g t h e s e two v a l u e s b e c a u s e when we f i t a random s l o p e e f f e c t model ,
we have t h e s e c o n s t r a i n t s ;

Tu2 [ 2 , ] = 0 ;
Tus [ 2 , ] = 0 ;
s igma =( sigmauu | | s igmaus ) / / ( s igmaus ‘ | | s i g m a s s ) ;
T=( Tuu | | Tus | | Tu2 ) / / ( Tus ‘ | | Tss | | Ts2 ) / / ( Tu2 ‘ | | Ts2 ‘ | | T22 ) ;

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ;
r p s i = d i a g ( J ( 1 , nb , 1 ) @psi ) ;
r t a u = d i a g ( J ( 1 , nb , 1 ) @tau ) ;
t a u 1 1 =( be taR ∗betaR ‘ )@T[ 1 : nd1 , 1 : nd1 ] ;
t a u 1 2 =betaR@T [ 1 : nd1 , ( nd1 + 1 ) : ( nd1+no1 ) ] ;
t a u 1 3 =betaR@T [ 1 : nd1 , ( nd1+no1 + 1 ) : ( nd1+no1+no2 ) ] ;
t a u 2 2 =T [ ( nd1 + 1 ) : ( nd1+no1 ) , ( nd1 + 1 ) : ( nd1+no1 ) ] ;
t a u 2 3 =T [ ( nd1 + 1 ) : ( nd1+no1 ) , ( nd1+no1 + 1 ) : ( nd1+no1+no2 ) ] ;
t a u 3 3 =T [ ( nd1+no1 + 1 ) : ( nd1+no1+no2 ) , ( nd1+no1 + 1 ) : ( nd1+no1+no2 ) ] ;
t a u 7 =( t a u 1 1 | | t a u 1 2 | | t a u 1 3 ) / / ( tau12 ‘ | | t a u 2 2 | | t a u 2 3 ) / / ( tau13 ‘ | | t au23 ‘ | | t a u 3 3 ) ;
s igmauu=sigma [ 1 , 1 ] ;
s igmaus =sigma [ 1 , 2 : ( 1 + no1 ) ] ;
s i g m a s s =sigma [ 2 : ( 1 + no1 ) , 2 : ( 1 + no1 ) ] ;
Tuu=T [ 1 : nd1 , 1 : nd1 ] ;
Tus=T [ 1 : nd1 , ( nd1 + 1 ) : ( nd1+no1 ) ] ;
Tu2=T [ 1 : nd1 , ( nd1+no1 + 1 ) : ( nd1+no1+no2 ) ] ;
Tss=T [ ( nd1 + 1 ) : ( nd1+no1 ) , ( nd1 + 1 ) : ( nd1+no1 ) ] ;
Ts2=T [ ( nd1 + 1 ) : ( nd1+no1 ) , ( nd1+no1 + 1 ) : ( nd1+no1+no2 ) ] ;
T22=T [ ( nd1+no1 + 1 ) : ( nd1+no1+no2 ) , ( nd1+no1 + 1 ) : ( nd1+no1+no2 ) ] ;

∗ c a l c u l a t e t h e o b s e r v e d log− l i k e l i h o o d f u n c t i o n ;
a14 =0;
do i =1 t o n ;

a =0; do k=1 t o i −1; a= c o n t [ k ]+ a ; end ; a=a +1;
b =0; do k=1 t o i ; b= c o n t [ k ]+ b ; end ; ∗a and b h e r e a r e t o r e s t r i c t YY[ i ] ;

aa =0; do k=1 t o i −1; aa= c o n t 2 [ k ]+ aa ; end ; aa=aa +1;
bb =0; do k=1 t o i ; bb= c o n t 2 [ k ]+ bb ; end ; ∗ aa and bb h e r e a r e t o r e s t r i c t XX[ i ] ;
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aaa =0; do k=1 t o i −1; aaa = c o n t 1 [ k ]+ aaa ; end ; aaa = aaa +1;
bbb =0; do k=1 t o i ; bbb= c o n t 1 [ k ]+ bbb ; end ;

∗ r e a d t h e map m a t r i x from c o m p l e t e l y d a t a t o o b s e r v e d d a t a ;
n i = c o n t 1 [ i ] ;
n n i = c o n t 2 [ i ] ;
ob1= o 1 i 2 i [ aaa : ( aaa +nni −1) , 1 : n n i ] ;
ob2= o 1 i 2 i [ ( aaa + n n i ) : ( aaa +2∗ nni −1) , 1 : n n i ] ;
ob3= o 1 i 2 i [ ( aaa +2∗ n n i ) : ( aaa +3∗ nni −1) , 1 : n n i ] ;
ob4= o 1 i 2 i [ ( aaa +3∗ n n i ) : ( aaa +4∗ nni −1) , 1 : n n i ] ;
o 1 i j = b l o c k ( ob1 , ob2 , ob3 , ob4 ) ;
o11 i = de l row ( o 1 i j ) ;

os1= o 1 i 2 i [ ( aaa +4∗ n n i ) : ( aaa +5∗ nni −1) , 1 : n n i ] ;
os2= o 1 i 2 i [ ( aaa +5∗ n n i ) : ( aaa +6∗ nni −1) , 1 : n n i ] ;
os3= o 1 i 2 i [ ( aaa +6∗ n n i ) : ( aaa +7∗ nni −1) , 1 : n n i ] ;
o 2 i j = b l o c k ( os1 , os2 , os3 ) ;
o12 i = de l row ( o 2 i j ) ;

o 2 a i = o 1 i 2 i [ ( aaa +7∗ n n i ) : ( aaa +7∗ n n i +no2 −1) ,1 : no2 ] ;
c= cmiss ( o 2 a i ) ;
c o u n t =c [ , + ] ;
mIdx= l o c ( count >0);
aaaa =no2−n c o l ( mIdx ) ;
i f aaaa>0 t h e n do ;
NMIdx = s e t d i f ( 1 : nrow ( o 2 a i ) , mIdx ) ;
o22 i = o 2 a i [ NMIdx , ] ;

end ;
e l s e i f aaaa =0 t h e n o22 i =0 ;

k i = n n i ;
k i 1 = j ( nni , 1 , 1 ) ;
i f o11 i =0 t h e n n11 =1000; e l s e n11= n c o l ( o11 i ) ;
i f o12 i =0 t h e n n12 =1000; e l s e n12= n c o l ( o12 i ) ;
i f o22 i =0 t h e n n22 =1000; e l s e n22= n c o l ( o22 i ) ;

i f n11 =1000 & n12 =1000 & n22 =1000 t h e n o i = ” ” ;
e l s e i f n11 ˆ=1000 & n12 =1000 & n22 =1000 t h e n

o i = o11 i | | j ( nrow ( o11 i ) , no1∗ n n i +no2 , 0 ) ;
e l s e i f n11 =1000 & n12 ˆ=1000 & n22 =1000 t h e n

o i = j ( nrow ( o12 i ) , nb∗ nni , 0 ) | | o12 i | | j ( nrow ( o12 i ) , no2 , 0 ) ;
e l s e i f n11 =1000 & n12 =1000 & n22 ˆ=1000 t h e n

o i = j ( nrow ( o22 i ) , nb∗ nni , 0 ) | | j ( nrow ( o22 i ) , no1∗ nni , 0 ) | | o22 i ;
e l s e i f n11 ˆ=1000 & n12 ˆ=1000 & n22 =1000 t h e n

o i =( o11 i | | j ( nrow ( o11 i ) , no1∗ n n i +no2 , 0 ) )
/ / ( j ( nrow ( o12 i ) , nb∗ nni , 0 ) | | o12 i | | j ( nrow ( o12 i ) , no2 , 0 ) ) ;

e l s e i f n11 ˆ=1000 & n12 =1000 & n22 ˆ=1000 t h e n
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o i =( o11 i | | j ( nrow ( o11 i ) , no1∗ n n i +no2 , 0 ) )
/ / ( j ( nrow ( o22 i ) , nb∗ n n i +no1∗ nni , 0 ) | | o22 i ) ;

e l s e i f n11 =1000 & n12 ˆ=1000 & n22 ˆ=1000 t h e n
o i =( j ( nrow ( o12 i ) , nb∗ nni , 0 ) | | o12 i | | j ( nrow ( o12 i ) , no2 , 0 ) )

/ / ( j ( nrow ( o22 i ) , nb∗ n n i +no1∗ nni , 0 ) | | o22 i ) ;
e l s e i f n11 ˆ=1000 & n12 ˆ=1000 & n22 ˆ=1000 t h e n

o i = b l o c k ( o11i , o12i , o22 i ) ;

mui1 =( beta0@ki1+betaR@ ( x1 [ aa : bb , ] ∗ betaU ) ) ;
mui2 =( I ( no1 ) @x11 [ aa : bb , ] ) ∗ b e t a S ;
mui3 =( I ( no2 ) @x21 [ i , ] ) ∗ b e t a 2 ;
mui= o i ∗ ( mui1 / / mui2 / / mui3 ) ;
z i = b l o c k ( I ( nb )@D1[ aa : bb , ] , I ( no1 ) @ki1 , I ( no2 ) ) ;
v1= z i ∗ t a u 7 ∗ z i ‘ ; v1 = 1 / 2∗ ( v1+v1 ‘ ) ;
v2= b l o c k ( r p s i @ j ( nni , nni , 1 ) , j ( n n i ∗no1 , n n i ∗no1 , 0 ) , j ( no2 , no2 , 0 ) ) ;
v31 = ( ( ( be taR ∗betaR ‘ ) @sigmauu@I ( n n i ) ) | | ( betaR@sigmaus@I ( n n i ) ) )

/ / ( ( betaR@sigmaus@I ( n n i ) ) ‘ | | ( s igmass@I ( n n i ) ) ) ; v31 = 1 / 2∗ ( v31+v31 ‘ ) ;
v3= b l o c k ( v31 , j ( no2 , no2 , 0 ) ) ;
v4= b l o c k ( r tau@I ( n n i ) , j ( n n i ∗no1 , n n i ∗no1 , 0 ) , j ( no2 , no2 , 0 ) ) ;

v i t =v1+v2+v3+v4 ;
v i = o i ∗ v i t ∗ oi ‘ ;
d f1 =yy [ a : b ,]−mui ;
v i = 1 / 2∗ ( v i +vi ‘ ) ;
l o g v i =2∗sum ( l o g ( v e c d i a g ( r o o t ( v i ) ) ) ) ; ∗ a v o i d t o o v e r f l o w ;
a141= l o g v i +df1 ‘∗ i n v ( v i )∗ df1 ;
a14=a14+a141 ;

end ;
LogLH1=−0.5∗( n∗ l o g (2∗3 .14159265358979)+ a14 ) ;
e p i =LogLH1−LogLH ;
r p s i = d i a g ( J ( 1 , nb , 1 ) @psi ) ;
r t a u = d i a g ( J ( 1 , nb , 1 ) @tau ) ;
t a u 1 1 =( be taR ∗betaR ‘ ) @Tuu ;
t a u 1 2 =betaR@Tus ;
t a u 1 3 =betaR@Tu2 ;
t a u 2 2 =Tss ;
t a u 2 3 =Ts2 ;
t a u 3 3 =T22 ;
t a u 7 =( t a u 1 1 | | t a u 1 2 | | t a u 1 3 ) / / ( tau12 ‘ | | t a u 2 2 | | t a u 2 3 ) / / ( tau13 ‘ | | t au23 ‘ | | t a u 3 3 ) ;
a41a2 =( Tuu | | Tus ) / / ( Tus ‘ | | Tss ) ;
a41a1=Tu2 / / Ts2 ;
a41a=T22−a41a1 ‘∗ i n v ( a41a2 )∗ a41a1 ; ∗ p r i n t LogLH1 LogLH e p i i t e r ;
i f mod ( i t e r , 5 0 0 ) = 0 t h e n p r i n t LogLH1 LogLH e p i i t e r
b e t a 0 be taR t a u p s i betaU b e t a S b e t a 2 sigma T a l p h a Dhat ;
∗ p r i n t LogLH1 LogLH e p i i t e r ;

end ;
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p r i n t i t e r e p i logLH LogLH1 ;
p r i n t b e t a 0 be taR t a u p s i betaU b e t a S b e t a 2 ;
p r i n t s igma ;
p r i n t T ;

Tuu=T [ 1 : nd1 , 1 : nd1 ] ;
Tus=T [ 1 : nd1 , ( nd1 + 1 ) : ( nd1+no1 ) ] ;
Tu2=T [ 1 : nd1 , ( nd1+no1 + 1 ) : ( nd1+no1+no2 ) ] ;
row=nd1 +1;
c o l =nd1+no1 ;
Tss=T [ row : co l , row : c o l ] ;
Ts2=T [ row : co l , ( c o l + 1 ) : ( c o l +no2 ) ] ;
row=nd1+no1 +1;
c o l =nd1+no1+no2 ;
T22=T [ row : co l , row : c o l ] ;
row =2;
c o l =1+no1 ;
s i g m a s s =sigma [ row : co l , row : c o l ] ;
s igmauu=sigma [ 1 , 1 ] ;
s igmaus =sigma [ 1 , 2 : ( 1 + no1 ) ] ;
a l p h a = s igmaus ∗ i n v ( s i g m a s s ) ;
a l p h a 1 = a lpha ‘ ;
a l p h a 2 = i n v ( T22 ) ∗ ( Tu2 [1 , ] ‘−Ts2 ‘∗ a l p h a 1 ) ;

∗ g e t t i n g t h e i n t e r c e p t and save them i n b e t a s 1 , g e t t i n g t h e s l o p e s
o f l e v e l −1 c o v a r i a t e s and save them i n t o b e t a s 2 and g e t t i n g t h e
s l o p e s o f l e v e l −2 c o v a r i a t e s and save them i n t o b e t a s 3 ;
m1=no1 ; m2=( n c o l ( x1)− n c o l ( x2 ) ) ∗ no1 ;
m3= n c o l ( x2 )∗ no1 ; m4= n c o l ( x1)− n c o l ( x2 ) ; m5= n c o l ( x2 ) ;
b e t a s 1 = j (m1 , 1 , 0 ) ; ∗ i n t e r c e p t e f f e c t ;
b e t a s 2 = j (m2 , 1 , 0 ) ;
b e t a s 3 = j (m3 , 1 , 0 ) ;
b e t a u 1 = j (m4 , 1 , 0 ) ;
b e t a u 2 = j (m5 , 1 , 0 ) ;
∗ remember t o change t h e f o l l o w i n g program i f we have d i f f e r e n t #
o f c o m p l e t e l y o b s e r v e d l e v e l −1 and l e v e l −2 c o v a r i a t e s ;
b e t a s 2 [ 1 : m4]= b e t a s [ 1 : m4 ] ; b e t a s 2 [ ( m4+ 1 ) : ( 2∗m4) ] = b e t a s [ ( 1 +m4+m5 ) : ( 2 ∗m4+m5 ) ] ;
b e t a s 2 [ ( 2∗m4+ 1 ) : ( 3∗m4) ] = b e t a s [ (1+2∗m4+2∗m5 ) : ( 3 ∗m4+2∗m5 ) ] ;
b e t a s 3 [ 1 : m5]= b e t a s [ ( m4 + 1 ) : ( m4+m5 ) ] ;
b e t a s 3 [ ( m5+ 1 ) : ( 2∗m5) ] = b e t a s [ ( 2∗m4+m5+ 1 ) : ( 2∗m4+2∗m5 ) ] ;
b e t a s 3 [ ( 2∗m5+ 1 ) : ( 3∗m5) ] = b e t a s [ ( 3∗m4+2∗m5+ 1 ) : ( 3∗m4+3∗m5 ) ] ;
b e t a 2 2 = b e t a 2 ;
b e t a u 1 =betaU [ 1 : m4 ] ;
b e t a u 2 =betaU [ ( m4 + 1 ) : ( m4+m5 ) ] ;
a l p h a 3 = be tau1−a lpha1 ‘@I(m4)∗ b e t a s 2 ;
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a l p h a 4 = be tau2 −( a lpha1 ‘@I(m5 ) ) ∗ b e t a s 3 −( a lpha2 ‘@I(m5 ) ) ∗ b e t a 2 2 ;
D=Tuu−b l o c k ( a lpha2 ‘∗T22∗ a lpha2 −2∗a lpha1 ‘∗ Ts2∗ a lpha2−a lpha1 ‘∗ Tss ∗ a lpha1 , 0 ) ;
a l p h a = a l p h a 1 / / a l p h a 2 / / a l p h a 3 / / a l p h a 4 ;
p r i n t b e t a 0 be taR a l p h a 1 a l p h a 2 a l p h a 3 a l p h a 4 D t a u p s i a l p h a ;

∗ c a l c u l a t i n g t h e i n f o r m a t i o n m a t r i x ;
n= n c o l ( v e c t o r ) ; ∗how many s u b j e c t i n t h e d a t a s e t ;
nb =4; ∗# of b i o m a r k e r s ;
no1 =3; ∗# of l e v e l −1 c o v a r i a t e s s u b j e c t t o m i s s i n g v a l u e s ;
no2 =2; ∗# of l e v e l −2 c o v a r i a t e s s u b j e c t t o m i s s i n g v a l u e s ;
nu= n c o l ( x1 ) ;
ns=no1 ∗ ( nu ) ;
n2=no2 ∗ ( n c o l ( x2 ) ) ; ∗ t h e r e a r e two columns i n x 2 i ;
nd1= n c o l ( D1 ) ;
nT=nd1+no1+no2 ;
nv=no1 ;
∗# of p a r a m e t e r s i n t h e c o n s t r a i n t model : t h i s i s f o r i n f o r m a t i o n m a t r i x ;
IFMD=4∗nb+nu+ns+n2+nT ∗ ( nT +1) /2+ nv ∗ ( nv +1)/2− ( nd1−1)∗( no1+no2 ) ;

∗ t h e f u n c t i o n t o c r e a t e t h e d e r i v a t i v e o f b e t a R j ;
s t a r t DbetaR ( j , Di , Oi , betaR , T , Sigma , nb , nd1 , no1 , no2 , ki , s s 6 ) ;

Tuu=T [ 1 : nd1 , 1 : nd1 ] ;
Tus=T [ 1 : nd1 , ( nd1 + 1 ) : ( nd1+no1 ) ] ;
Tu2=T [ 1 : nd1 , ( nd1+no1 + 1 ) : ( nd1+no1+no2 ) ] ;
row=nd1 +1;
c o l =nd1+no1 ;
Tss=T [ row : co l , row : c o l ] ;
Ts2=T [ row : co l , ( c o l + 1 ) : ( c o l +no2 ) ] ;
row=nd1+no1 +1;
c o l =nd1+no1+no2 ;
T22=T [ row : co l , row : c o l ] ;
row =2;
c o l =1+no1 ;
s i g m a s s =sigma [ row : co l , row : c o l ] ;
s igmauu=sigma [ 1 , 1 ] ;
s igmaus =sigma [ 1 , 2 : ( 1 + no1 ) ] ;
d e l t a j = j ( nb , 1 , 0 ) ;
d e l t a j [ j ] = 1 ;
s s 1 = ( ( d e l t a j ∗betaR ‘+ betaR ∗ d e l t a j ‘ ) @Tuu ) | | ( de l t a j@Tus ) | | ( de l ta j@Tu2 ) ;
s s 2 =( d e l t a j ‘ @Tus ‘ ) | | j ( no1 , no1 , 0 ) | | j ( no1 , no2 , 0 ) ;
s s 3 =( d e l t a j ‘@Tu2 ‘ ) | | j ( no2 , no1 , 0 ) | | j ( no2 , no2 , 0 ) ;
s s 4 = ( ( d e l t a j ∗betaR ‘+ betaR ∗ d e l t a j ‘ )@( I ( k i ) @sigmauu ) )

| | ( de l ta j@sigmaus@I ( k i ) ) | | j ( k i ∗nb , no2 , 0 ) ;
s s 5 =( d e l t a j ‘ @sigmaus ‘@I( k i ) ) | | j ( k i ∗no1 , k i ∗no1 , 0 ) | | j ( k i ∗no1 , no2 , 0 ) ;
DVB=( o i ∗Di ) ∗ ( s s 1 / / s s 2 / / s s 3 ) ∗ ( o i ∗Di ) ‘+ o i ∗ ( s s 4 / / s s 5 / / s s 6 )∗ oi ‘ ;
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f r e e s s 1 s s 2 s s 3 s s 4 s s 5 d e l t a J ;
r e t u r n (DVB) ;

f i n i s h ;

∗ t h e f u n c t i o n t o c r e a t e t h e d e r i v a t i v e o f t a u j ; ;
s t a r t Dtau ( j , o i , k i , nb , no1 , no2 ) ;

d e l t a J = j ( nb , 1 , 0 ) ;
d e l t a J [ j ] = 1 ;
s s 1 = b l o c k ( ( d e l t a j ∗ d e l t a j ‘ ) @I( k i ) , j ( k i ∗no1 , k i ∗no1 , 0 ) , j ( no2 , no2 , 0 ) ) ;
DVT= o i ∗ s s 1 ∗ oi ‘ ;
r e t u r n (DVT ) ; f r e e d e l t a J s s 1 ;

f i n i s h ;

∗ t h e f u n c t i o n t o c r e a t e t h e d e r i v a t i v e o f p s i j ; ;
s t a r t Dpsi ( j , o i , k i , nb , no1 , no2 , k i 1 ) ;

d e l t a j = j ( nb , 1 , 0 ) ;
d e l t a j [ j ] = 1 ;
s s 1 = b l o c k ( ( d e l t a j ∗ d e l t a j ‘ )@( k i 1 ∗ ki1 ‘ ) , j ( k i ∗no1 , k i ∗no1 , 0 ) , j ( no2 , no2 , 0 ) ) ;
DVP= o i ∗ s s 1 ∗ oi ‘ ;
r e t u r n (DVP ) ; f r e e s s 1 d e l t a j ;

f i n i s h ;

∗a s u b r o u t i n e f o r t h e d e r i v a t i v e o f a symmet r i c m a t r i x a b o u t i t s d i s t i n c t
e l e m e n t s and a g g r e g a t e t h e d e r i v a t i v e m a t r i x h o r i z o n t a l l y ;

s t a r t MM( nn ) ; ∗ h e r e t h e nn i s t h e row d imens ion of t h e symmet r i c m a t r i x ;
mat= j ( nn , nn∗nn ∗ ( nn + 1 ) / 2 , 0 ) ; k =0;
do j =1 t o nn ;

d e l t a j = j ( nn , 1 , 0 ) ;
d e l t a j [ j ] = 1 ;
do i = j t o nn ;

d e l t a i = j ( nn , 1 , 0 ) ;
d e l t a i [ i ] = 1 ;
k=k +1;
i f i = j t h e n mat1= d e l t a j ∗ d e l t a j ‘ ;

e l s e mat1= d e l t a i ∗ d e l t a j ‘+ d e l t a j ∗ d e l t a i ‘ ;
c S t a r t = ( k−1)∗nn + 1 ;
cEnd = c S t a r t + nn − 1 ;
mat [ , c S t a r t : cEnd ] = mat1 ;

end ;
end ;
r e t u r n ( mat ) ; f r e e mat1 ;

f i n i s h ;

∗a f u n c t i o n t o c r e a t e t h e d e r i v a t i v e o f t h e d i s t i n c t e l e m e n t s i n s igma k
( co lumnwis ly a r r a n g i n g t h e d i s t i n c t e l e m e n t s ) ;
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s t a r t DSigma ( k , no1 , oi , k i , no2 , DVS1 , a l p h a 1 ) ;
mat2=MM( no1 ) ;
c S t a r t =( k−1)∗no1 + 1 ;
cEnd = c S t a r t +no1 − 1 ;
mat1=mat2 [ , c s t a r t : cend ] ;
mat = ( ( a lpha1 ‘∗mat1∗ a l p h a 1 ) | | ( a lpha1 ‘∗mat1 ) ) / / ( ( mat1 ‘∗ a l p h a 1 ) | | mat1 ) ;
DVS= o i ∗DVS1∗ b l o c k ( mat@I ( k i ) , j ( no2 , no2 , 0 ) ) ∗DVS1‘∗ oi ‘ ;
r e t u r n (DVS ) ;

f i n i s h ;

∗a s u b r o u t i n e f o r t h e d e r i v a t i v e o f a m∗n nonsymmet r ic m a t r i x and a g g r a g a t e
t h e d e r i v a t i v e m a t r i a x column by column ;

s t a r t NNN(m, n ) ;
mat= j (m,m∗n∗n , 0 ) ;
k =0;
do i =1 t o m;

d e l t a 1 = j (m, 1 , 0 ) ;
d e l t a 1 [ i ] = 1 ;
do j =1 t o n ;

k=k +1;
d e l t a 2 = j ( n , 1 , 0 ) ;
d e l t a 2 [ j ] = 1 ;
mat1= d e l t a 1 ∗ d e l t a 2 ‘ ;
c s t a r t =( k−1)∗n +1;
cend= c s t a r t +n−1;
mat [ , c s t a r t : cend ]= mat1 ;

end ;
end ;
r e t u r n ( mat ) ;

f i n i s h ;

∗a s u b r o u t i n e t o g e t t h e d e v e r a t i v e a b o u t T ;
∗nn i s t h e row d imens ion of t h e symmet r i c m a t r i x ;
s t a r t OO( kk , nb , nd1 , no1 , no2 , a lpha1 , pi1 , DVT1 , k i ) ;

nn=nd1+no1+no2 ;
mm=nn ∗ ( nn +1)/2−no1−no2 ;
pp=nb∗ k i +no1∗ k i +no2 ;
mat= j ( pp , pp∗mm, 0 ) ;
j =kk ;
i f j<=nd1 ∗ ( nd1 + 1 ) / 2 t h e n do ;

mat11=MM( nd1 ) ;
c S t a r t =( j −1)∗nd1 + 1 ;
cEnd = c S t a r t +nd1 − 1 ;
mat1 =( mat11 [ , c s t a r t : cend ] | | j ( nd1 , no1+no2 , 0 ) ) / / j ( no1+no2 , nn , 0 ) ;

end ;
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e l s e i f j<=no1 ∗ ( no1 +1) /2+ nd1 ∗ ( nd1 + 1 ) / 2 t h e n do ;
mat12=MM( no1 ) ;
c S t a r t =( j−nd1 ∗ ( nd1 +1)/2−1)∗ no1 + 1 ;
cEnd = c S t a r t +no1 − 1 ;
mat2=mat12 [ , c s t a r t : cend ] ;
d t u s v =( a lpha1 ‘∗mat2 ) / / j ( nd1−1,no1 , 0 ) ;
mat1 =( j ( nd1 , nd1 , 0 ) | | d t u s v | | j ( nd1 , no2 , 0 ) ) / / ( d tusv ‘ | | mat2

| | j ( no1 , no2 , 0 ) ) / / j ( no2 , nn , 0 ) ;
end ;

e l s e i f j<=no1 ∗ ( no1 +1) /2+ nd1 ∗ ( nd1 +1) /2+ no1∗no2 t h e n do ;
mat11=NNN( no1 , no2 ) ;
c S t a r t =( j−no1 ∗ ( no1 +1)/2− nd1 ∗ ( nd1 +1)/2−1)∗ no2 + 1 ;
cEnd = c S t a r t +no2 − 1 ;
mat3=mat11 [ , c s t a r t : cend ] ;
d t u s =( pi1 ‘∗mat3 ‘ ) / / j ( nd1−1,no1 , 0 ) ;
d tu2 =( a lpha1 ‘∗mat3 ) / / j ( nd1−1,no2 , 0 ) ;
mat1 =( j ( nd1 , nd1 , 0 ) | | d t u s | | d tu2 ) / / ( d tu s ‘ | | j ( no1 , no1 , 0 ) | | mat3 )

/ / ( d tu2 ‘ | | mat3 ‘ | | j ( no2 , no2 , 0 ) ) ;
end ;

e l s e i f j<=no1 ∗ ( no1 +1) /2+ nd1 ∗ ( nd1 +1) /2+ no1∗no2+no2 ∗ ( no2 + 1 ) / 2 t h e n do ;
mat41=MM( no2 ) ;
c S t a r t =( j −(no1 ∗ ( no1 +1) /2+ nd1 ∗ ( nd1 +1) /2+ no1∗no2 )−1)∗ no2 + 1 ;
cEnd = c S t a r t +no2 − 1 ;
mat4=mat41 [ , c s t a r t : cend ] ;
d tu22 =( pi1 ‘∗mat4 ) / / j ( nd1−1,no2 , 0 ) ;
mat1 =( j ( nd1 , nd1+no1 , 0 ) | | d tu22 ) / / j ( no1 , nn , 0 )

/ / ( d tu22 ‘ | | j ( no2 , no1 , 0 ) | | mat4 ) ;
end ;

te rm =DVT1∗mat1∗DVT1 ‘ ;
c S t a r t = ( j −1)∗pp + 1 ;
cEnd = c S t a r t + pp − 1 ;
mat [ , c S t a r t : cEnd ]= te rm ;
r e t u r n ( mat ) ;

f i n i s h ;

∗a f u n c t i o n t o c r e a t e t h e d e r i v a t i v e o f t h e d i s t i n c t e l e m e n t s i n T k
( co lumnwis ly a r r a n g i n g t h e d i s t i n c t e l e m e n t s ) ;

s t a r t DT( k , nb , nd1 , no1 , no2 , a lpha1 , pi1 , DVT1 , oi , k i ) ;
kk=k ;
ma t t =OO( kk , nb , nd1 , no1 , no2 , a lpha1 , pi1 , DVT1 , k i ) ;
pp=nb∗ k i +no1∗ k i +no2 ;
c S t a r t =( k−1)∗pp +1;
cEnd = c S t a r t +pp−1;
mat= ma t t [ , c S t a r t : cEnd ] ;
DVT= o i ∗mat∗ oi ‘ ;
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r e t u r n (DVT ) ;
f i n i s h ;

∗a f u n c t i o n t o c r e a t e t h e d e r i v a t i v e o f a l p h a 1 ;
s t a r t Dalpha ( k , Ts2 , Tss , s igmass , a lpha1 , nd1 , no1 , no2 , DVT1 , DVS1 , oi , k i ) ;

d e l t a k = j ( no1 , 1 , 0 ) ;
d e l t a k [ k ] = 1 ;
a1 =( d e l t a k ‘∗ s i g m a s s ∗ a l p h a 1 + a lpha1 ‘∗ s i g m a s s ∗ d e l t a k )@I( k i ) ;
a2 =( d e l t a k ‘∗ s i g m a s s )@I( k i ) ;
a3 =( d e l t a k ‘∗ Tss ) / / j ( nd1−1,no1 , 0 ) ;
a4 =( d e l t a k ‘∗ Ts2 ) / / j ( nd1−1,no2 , 0 ) ;
mat1 =( a1 | | a2 | | j ( k i , no2 , 0 ) ) / / ( a2 ‘ | | j ( no1∗ ki , no1∗ k i +no2 , 0 ) )

/ / j ( no2 , k i +no1∗ k i +no2 , 0 ) ;
mat2 =( j ( nd1 , nd1 , 0 ) | | a3 | | a4 ) / / ( a3 ‘ | | j ( no1 , no1+no2 , 0 ) )

/ / ( a4 ‘ | | j ( no2 , no1+no2 , 0 ) ) ;
mat=DVS1∗mat1∗DVS1‘+DVT1∗mat2∗DVT1 ‘ ;
Dalph= o i ∗mat∗ oi ‘ ;
r e t u r n ( Dalph ) ;

f i n i s h ;

∗a f u n c t i o n t o c r e a t e t h e d e r i v a t i v e o f p i ;
s t a r t Dpi ( k , T22 , Ts2 , nd1 , no1 , no2 , DVT1 , o i ) ;

d e l t a k = j ( no2 , 1 , 0 ) ;
d e l t a k [ k ] = 1 ;
mat1= j ( nd1+no1+no2 , nd1+no1+no2 , 0 ) ;
mat1 [ 1 : nd1 , ( nd1 + 1 ) : ( nd1+no1 ) ] = ( d e l t a k ‘∗Ts2 ‘ ) / / j ( nd1−1,no1 , 0 ) ;
mat1 [ ( nd1 + 1 ) : ( nd1+no1 ) , 1 : nd1 ] = ( Ts2∗ d e l t a k ) | | j ( no1 , nd1 −1 ,0 ) ;
mat1 [ 1 : nd1 , ( nd1+no1 + 1 ) : ( nd1+no1+no2 ) ] = ( d e l t a k ‘∗T22 ) / / j ( nd1−1,no2 , 0 ) ;
mat1 [ ( nd1+no1 + 1 ) : ( nd1+no1+no2 ) , 1 : nd1 ] = ( T22∗ d e l t a k ) | | j ( no2 , nd1 −1 ,0 ) ;
Dp= o i ∗DVT1∗mat1∗DVT1‘∗ oi ‘ ;
r e t u r n ( Dp ) ;

f i n i s h ;

r p s i = d i a g ( J ( 1 , nb , 1 ) @psi ) ;
r t a u = d i a g ( J ( 1 , nb , 1 ) @tau ) ;
Tuu=T [ 1 : nd1 , 1 : nd1 ] ;
Tus=T [ 1 : nd1 , ( nd1 + 1 ) : ( nd1+no1 ) ] ;
Tu2=T [ 1 : nd1 , ( nd1+no1 + 1 ) : ( nd1+no1+no2 ) ] ;
row=nd1 +1;
c o l =nd1+no1 ;
Tss=T [ row : co l , row : c o l ] ;
Ts2=T [ row : co l , ( c o l + 1 ) : ( c o l +no2 ) ] ;
row=nd1+no1 +1;
c o l =nd1+no1+no2 ;
T22=T [ row : co l , row : c o l ] ;
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s igmauu=sigma [ 1 , 1 ] ;
s igmaus =sigma [ 1 , 2 : ( 1 + no1 ) ] ;
row =2;
c o l =1+no1 ;
s i g m a s s =sigma [ row : co l , row : c o l ] ;
a l p h a 1 = a l p h a [ 1 : no1 ] ;
a l p h a 2 = a l p h a [ ( no1 + 1 ) : ( no1+no2 ) ] ;
a l p h a 3 = a l p h a [ ( no1+no2 + 1 ) : ( no1+no2+ n c o l ( x1)− n c o l ( x2 ) ) ] ;
a l p h a 4 = a l p h a [ ( no1+no2+ n c o l ( x1)− n c o l ( x2 ) + 1 ) : nrow ( a l p h a ) ] ;
s igma =( sigmauu | | s igmaus ) / / ( s igmaus ‘ | | s i g m a s s ) ;
T=( Tuu | | Tus | | Tu2 ) / / ( Tus ‘ | | Tss | | Ts2 ) / / ( Tu2 ‘ | | Ts2 ‘ | | T22 ) ;
t a u 1 1 =( be taR ∗betaR ‘ ) @Tuu ;
t a u 1 2 =betaR@Tus ;
t a u 1 3 =betaR@Tu2 ;
t a u 2 1 = tau12 ‘ ;
t a u 2 2 =Tss ;
t a u 2 3 =Ts2 ;
t a u 3 1 = tau13 ‘ ;
t a u 3 2 = tau23 ‘ ;
t a u 3 3 =T22 ;
t a u 7 =( t a u 1 1 | | t a u 1 2 | | t a u 1 3 ) / / ( t a u 2 1 | | t a u 2 2 | | t a u 2 3 ) / / ( t a u 3 1 | | t a u 3 2 | | t a u 3 3 ) ;
IFM=J ( IFMD , IFMD , 0 ) ;
A1= j ( nb , nb , 0 ) ;
IMD=2∗nb+nT ∗ ( nT +1) /2+ nv ∗ ( nv +1)/2− ( nd1−1)∗( no1+no2 ) ;
A12= j ( nb , IMD+nb , 0 ) ;
A22= j (IMD, IMD , 0 ) ; p i 1 = a l p h a 2 ;

do i =1 t o n ;
a =0; do k=1 t o i −1; a= c o n t [ k ]+ a ; end ; a=a +1;
b =0; do k=1 t o i ; b= c o n t [ k ]+ b ; end ; ∗a and b a r e t o r e s t r i c t YY[ i ] ;
aa =0; do k=1 t o i −1; aa= c o n t 2 [ k ]+ aa ; end ; aa=aa +1;
bb =0; do k=1 t o i ; bb= c o n t 2 [ k ]+ bb ; end ; ∗ aa and bb a r e t o r e s t r i c t XX[ i ] ;
aaa =0; do k=1 t o i −1; aaa = c o n t 1 [ k ]+ aaa ; end ; aaa = aaa +1;
bbb =0; do k=1 t o i ; bbb= c o n t 1 [ k ]+ bbb ; end ;
∗ r e a d t h e map m a t r i x from c o m p l e t e l y d a t a t o o b s e r v e d d a t a ;

n i = c o n t 1 [ i ] ;
k i = c o n t 2 [ i ] ;
k i 1 = j ( ki , 1 , 1 ) ;
DVS1= b l o c k ( betaR@I ( k i ) , I ( k i ∗no1 ) , j ( no2 , no2 , 0 ) ) ;
z i = b l o c k ( I ( nb )@D1[ aa : bb , ] , I ( no1 ) @ki1 , I ( no2 ) ) ;
s s 6 = j ( no2 , k i ∗nb+ k i ∗no1+no2 , 0 ) ;
DVT1= b l o c k ( betaR@D1 [ aa : bb , ] , I ( no1 ) @ki1 , I ( no2 ) ) ;
H1a =( I ( no1 )@x1[ aa : bb , ] ) ;
H2a =( I ( no2 )@X2[ i , ] ) ;
H1= b l o c k ( ( I ( nb ) @ki1 ) | | ( I ( nb )@( x1 [ aa : bb , ] ∗ betaU ) ) , H1a , H2a ) ;
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F1= b l o c k ( ( I ( nb ) @ki1 ) | | ( betaR@x1 [ aa : bb , ] ) , H1a , H2a ) ;

v1= z i ∗ t a u 7 ∗ z i ‘ ;
v2= b l o c k ( rpsi@ ( k i 1 ∗ ki1 ‘ ) , j ( k i ∗no1 , k i ∗no1 , 0 ) , j ( no2 , no2 , 0 ) ) ;
v31 = ( ( ( be taR ∗betaR ‘ ) @sigmauu@I ( k i ) ) | | ( betaR@sigmaus@I ( k i ) ) )

/ / ( ( betaR@sigmaus@I ( k i ) ) ‘ | | ( s igmass@I ( k i ) ) ) ;
v3= b l o c k ( v31 , j ( no2 , no2 , 0 ) ) ;
v4= b l o c k ( r tau@I ( k i ) , j ( k i ∗no1 , k i ∗no1 , 0 ) , j ( no2 , no2 , 0 ) ) ;
v i t =v1+v2+v3+v4 ;
f r e e v1 v2 v31 v3 v4 ;

ob1= o 1 i 2 i [ aaa : ( aaa +nni −1) , 1 : n n i ] ;
ob2= o 1 i 2 i [ ( aaa + n n i ) : ( aaa +2∗ nni −1) , 1 : n n i ] ;
ob3= o 1 i 2 i [ ( aaa +2∗ n n i ) : ( aaa +3∗ nni −1) , 1 : n n i ] ;
ob4= o 1 i 2 i [ ( aaa +3∗ n n i ) : ( aaa +4∗ nni −1) , 1 : n n i ] ;
o 1 i j = b l o c k ( ob1 , ob2 , ob3 , ob4 ) ;
o11 i = de l row ( o 1 i j ) ;

os1= o 1 i 2 i [ ( aaa +4∗ n n i ) : ( aaa +5∗ nni −1) , 1 : n n i ] ;
os2= o 1 i 2 i [ ( aaa +5∗ n n i ) : ( aaa +6∗ nni −1) , 1 : n n i ] ;
os3= o 1 i 2 i [ ( aaa +6∗ n n i ) : ( aaa +7∗ nni −1) , 1 : n n i ] ;
o 2 i j = b l o c k ( os1 , os2 , os3 ) ;
o12 i = de l row ( o 2 i j ) ;

o 2 a i = o 1 i 2 i [ ( aaa +7∗ n n i ) : ( aaa +7∗ n n i +no2 −1) ,1 : no2 ] ;
c= cmiss ( o 2 a i ) ;
c o u n t =c [ , + ] ;
mIdx= l o c ( count >0);
aaaa =no2−n c o l ( mIdx ) ;
i f aaaa>0 t h e n do ;
NMIdx = s e t d i f ( 1 : nrow ( o 2 a i ) , mIdx ) ;
o22 i = o 2 a i [ NMIdx , ] ;

end ;
e l s e i f aaaa =0 t h e n o22 i =0 ;

k i = n n i ;
k i 1 = j ( nni , 1 , 1 ) ;
i f o11 i =0 t h e n n11 =1000; e l s e n11= n c o l ( o11 i ) ;
i f o12 i =0 t h e n n12 =1000; e l s e n12= n c o l ( o12 i ) ;
i f o22 i =0 t h e n n22 =1000; e l s e n22= n c o l ( o22 i ) ;

i f n11 =1000 & n12 =1000 & n22 =1000 t h e n o i = ” ” ;
e l s e i f n11 ˆ=1000 & n12 =1000 & n22 =1000 t h e n

o i = o11 i | | j ( nrow ( o11 i ) , no1∗ n n i +no2 , 0 ) ;
e l s e i f n11 =1000 & n12 ˆ=1000 & n22 =1000 t h e n

o i = j ( nrow ( o12 i ) , nb∗ nni , 0 ) | | o12 i | | j ( nrow ( o12 i ) , no2 , 0 ) ;
e l s e i f n11 =1000 & n12 =1000 & n22 ˆ=1000 t h e n
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o i = j ( nrow ( o22 i ) , nb∗ nni , 0 ) | | j ( nrow ( o22 i ) , no1∗ nni , 0 ) | | o22 i ;
e l s e i f n11 ˆ=1000 & n12 ˆ=1000 & n22 =1000 t h e n

o i =( o11 i | | j ( nrow ( o11 i ) , no1∗ n n i +no2 , 0 ) )
/ / ( j ( nrow ( o12 i ) , nb∗ nni , 0 ) | | o12 i | | j ( nrow ( o12 i ) , no2 , 0 ) ) ;

e l s e i f n11 ˆ=1000 & n12 =1000 & n22 ˆ=1000 t h e n
o i =( o11 i | | j ( nrow ( o11 i ) , no1∗ n n i +no2 , 0 ) )

/ / ( j ( nrow ( o22 i ) , nb∗ n n i +no1∗ nni , 0 ) | | o22 i ) ;
e l s e i f n11 =1000 & n12 ˆ=1000 & n22 ˆ=1000 t h e n

o i =( j ( nrow ( o12 i ) , nb∗ nni , 0 ) | | o12 i | | j ( nrow ( o12 i ) , no2 , 0 ) )
/ / ( j ( nrow ( o22 i ) , nb∗ n n i +no1∗ nni , 0 ) | | o22 i ) ;

e l s e i f n11 ˆ=1000 & n12 ˆ=1000 & n22 ˆ=1000 t h e n
o i = b l o c k ( o11i , o12i , o22 i ) ;

v i = o i ∗ v i t ∗ oi ‘ ;
do j =1 t o nb ;

PVJ=DbetaR ( j , z i , o i , betaR , T , Sigma , nb , nd1 , no1 , no2 , ki , s s 6 ) ;
do k=1 t o IMD+nb ;

i f k<=nb t h e n PVK=DbetaR ( k , z i , o i , betaR , T , Sigma , nb , nd1 , no1 , no2 , ki , s s 6 ) ;
e l s e i f k<=2∗nb t h e n PVK=Dtau ( k−nb , oi , k i , nb , no1 , no2 ) ;

e l s e i f k<=2∗nb+ n t ∗ ( n t +1)/2− nd1 ∗ ( no1+no2 ) t h e n
PVK=DT( k−2∗nb , nb , nd1 , no1 , no2 , a lpha1 , pi1 , DVT1 , oi , k i ) ;
e l s e i f k<=3∗nb+ n t ∗ ( n t +1)/2− nd1 ∗ ( no1+no2 ) t h e n
PVK=Dpsi ( k−2∗nb−n t ∗ ( n t +1 ) /2+ nd1 ∗ ( no1+no2 ) , o i , k i , nb , no1 , no2 , k i 1 ) ;

e l s e i f k<=3∗nb+ n t ∗ ( n t +1)/2− nd1 ∗ ( no1+no2 )+ no1 ∗ ( no1 + 1 ) / 2 t h e n
PVK=DSigma ( k−(3∗nb+ n t ∗ ( n t +1)/2− nd1 ∗ ( no1+no2 ) ) , no1 , oi , k i , no2 , DVS1 , a l p h a 1 ) ;

e l s e i f k<=3∗nb+ n t ∗ ( n t +1)/2− nd1 ∗ ( no1+no2 )+ no1 ∗ ( no1 +1) /2+ no1 t h e n
PVK=Dalpha ( k−(3∗nb+ n t ∗ ( n t +1)/2− nd1 ∗ ( no2+no1 )+ no1 ∗ ( no1 + 1 ) / 2 ) , Ts2 , Tss ,

s igmass , a lpha1 , nd1 , no1 , no2 , DVT1 , DVS1 , oi , k i ) ;
e l s e i f k<=3∗nb+ n t ∗ ( n t +1)/2− ( nd1−1)∗( no2+no1 )+ no1 ∗ ( no1 + 1 ) / 2 t h e n
PVK=Dpi ( k−(3∗nb+ n t ∗ ( n t +1)/2− nd1 ∗ ( no2+no1 )+ no1 ∗ ( no1 +1) /2+ no1 ) , T22 ,

Ts2 , nd1 , no1 , no2 , DVT1 , o i ) ;
A12 [ j , k ] = 0 . 5∗ t r a c e ( s o l v e ( vi , PVJ )∗ s o l v e ( vi ,PVK ) ) ;

end ;
end ;

do j =1 t o IMD;
i f j<=nb t h e n PVJ=Dtau ( j , o i , k i , nb , no1 , no2 ) ;

e l s e i f j<=nb+ n t ∗ ( n t +1)/2− nd1 ∗ ( no1+no2 ) t h e n
PVJ=DT( j−nb , nb , nd1 , no1 , no2 , a lpha1 , pi1 , DVT1 , oi , k i ) ;

e l s e i f j <=2∗nb+ n t ∗ ( n t +1)/2− nd1 ∗ ( no1+no2 ) t h e n
PVJ=Dpsi ( j−nb−n t ∗ ( n t +1 ) /2+ nd1 ∗ ( no1+no2 ) , o i , k i , nb , no1 , no2 , k i 1 ) ;
e l s e i f j <=2∗nb+ n t ∗ ( n t +1)/2− nd1 ∗ ( no1+no2 )+ no1 ∗ ( no1 + 1 ) / 2 t h e n
PVJ=DSigma ( j −(2∗nb+ n t ∗ ( n t +1)/2− nd1 ∗ ( no1+no2 ) ) , no1 , oi , k i , no2 , DVS1 , a l p h a 1 ) ;

e l s e i f j <=2∗nb+ n t ∗ ( n t +1)/2− nd1 ∗ ( no1+no2 )+ no1 ∗ ( no1 +1) /2+ no1 t h e n
PVJ=Dalpha ( j −(2∗nb+ n t ∗ ( n t +1)/2− nd1 ∗ ( no1+no2 )+ no1 ∗ ( no1 + 1 ) / 2 ) , Ts2 , Tss ,

s igmass , a lpha1 , nd1 , no1 , no2 , DVT1 , DVS1 , oi , k i ) ;
e l s e i f j <=2∗nb+ n t ∗ ( n t +1)/2− ( nd1−1)∗( no1+no2 )+ no1 ∗ ( no1 + 1 ) / 2 t h e n
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PVJ=Dpi ( j −(2∗nb+ n t ∗ ( n t +1)/2− nd1 ∗ ( no1+no2 )+ no1 ∗ ( no1 +1) /2+ no1 ) , T22 , Ts2 ,
nd1 , no1 , no2 , DVT1 , o i ) ;

do k=1 t o IMD;
i f k<=nb t h e n PVK=Dtau ( k , o i , k i , nb , no1 , no2 ) ;

e l s e i f k<=nb+ n t ∗ ( n t +1)/2− nd1 ∗ ( no1+no2 ) t h e n
PVK=DT( k−nb , nb , nd1 , no1 , no2 , a lpha1 , pi1 , DVT1 , oi , k i ) ;

e l s e i f k<=2∗nb+ n t ∗ ( n t +1)/2− nd1 ∗ ( no1+no2 ) t h e n
PVK=Dpsi ( k−nb−n t ∗ ( n t +1 ) /2+ nd1 ∗ ( no1+no2 ) , o i , k i , nb , no1 , no2 , k i 1 ) ;
e l s e i f k<=2∗nb+ n t ∗ ( n t +1)/2− nd1 ∗ ( no1+no2 )+ no1 ∗ ( no1 + 1 ) / 2 t h e n
PVK=DSigma ( k−(2∗nb+ n t ∗ ( n t +1)/2− nd1 ∗ ( no1+no2 ) ) , no1 , oi , k i , no2 , DVS1 ,

a l p h a 1 ) ;
e l s e i f k<=2∗nb+ n t ∗ ( n t +1)/2− nd1 ∗ ( no1+no2 )+ no1 ∗ ( no1 +1) /2+ no1 t h e n
PVK=Dalpha ( k−(2∗nb+ n t ∗ ( n t +1)/2− nd1 ∗ ( no1+no2 )+ no1 ∗ ( no1 + 1 ) / 2 ) , Ts2 ,
Tss , s igmass , a lpha1 , nd1 , no1 , no2 , DVT1 , DVS1 , oi , k i ) ;
e l s e i f k<=2∗nb+ n t ∗ ( n t +1)/2− ( nd1−1)∗( no1+no2 )+ no1 ∗ ( no1 + 1 ) / 2 t h e n
PVK=Dpi ( k−(2∗nb+ n t ∗ ( n t +1)/2− nd1 ∗ ( no1+no2 )+ no1 ∗ ( no1 +1) /2+ no1 ) , T22 ,
Ts2 , nd1 , no1 , no2 , DVT1 , o i ) ;

A22 [ j , k ] = 0 . 5∗ t r a c e ( s o l v e ( vi , PVJ )∗ s o l v e ( vi ,PVK ) ) ;
end ;

end ;
H= o i ∗H1 ;
F= o i ∗F1 ;
G=H∗ ( I ( nb ) / / j ( nb+ns+n2 , nb , 0 ) ) ;
M=H∗ ( j ( nb , nb , 0 ) / / I ( nb ) / / j ( ns+n2 , nb , 0 ) ) ;
Q=F∗ ( j ( nb , nu+ns+n2 , 0 ) / / I ( nu+ns+n2 ) ) ; f r e e H F ;
IM1=(G‘∗ i n v ( v i )∗G ) | | ( G‘∗ i n v ( v i )∗M) | | ( G‘∗ i n v ( v i )∗Q ) ;
IM2=(M‘∗ i n v ( v i )∗G ) | | ( A12 [ , 1 : nb ]+M‘∗ i n v ( v i )∗M) | | ( M‘∗ i n v ( v i )∗Q ) ;
IM3=(Q‘∗ i n v ( v i )∗G ) | | ( Q‘∗ i n v ( v i )∗M) | | ( Q‘∗ i n v ( v i )∗Q ) ;
IFM11=IM1 / / IM2 / / IM3 ; ∗ F i r s t b l o c k ;
IFM12= j ( nb , 2∗ nb+ n t ∗ ( n t +1 ) /2+ nv ∗ ( nv +1)/2−no1−no2 , 0 ) / / A12 [ , ( nb + 1 ) : ( nb+IMD ) ]

/ / j ( nu+ns+n2 , 2∗ nb+ n t ∗ ( n t +1 ) /2+ nv ∗ ( nv +1)/2− ( no1+no2 ) , 0 ) ;
IFM22=A22 ;
C=( IFM11 | | IFM12 ) / / ( IFM12 ‘ | | IFM22 ) ;

IFM=IFM+C ;
end ;

∗ g e t t i n g t h e v a r i a n c e f o r t h e p a r a m e t e r s ;
p r i n t IFM ;
InIFM= i n v ( IFM ) ; p r i n t InIFM ;
t e s t = d i a g ( InIFM ) ; t e s t 1 = d i a g ( InIFM )∗ j ( nrow ( InIFM ) , 1 , 1 ) ; p r i n t t e s t 1 ;
∗do j =1 t o IFMD ;
∗ i f t e s t [ j , j ]<0 t h e n t e s t [ j , j ] = 0 ;
∗ end ;
∗ t h e s t a n d a r d d e v i a t i o n f o r be ta0 , betaR , b e t a ∗ , t au ,V( T ) , p s i and V( sigma ) ;
S td = s q r t ( t e s t )∗ j ( IFMD , 1 , 1 ) ;
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s t d b e t a 0 = s t d [ 1 : nb ] ; s t d b e t a R = s t d [ ( nb + 1 ) : ( 2∗ nb ) ] ;
s t d b e t a S = s t d [ ( 2∗ nb + 1 ) : ( 2∗ nb+nu+ns+n2 ) ] ;
s t d t a u = s t d [ ( 2∗ nb+nu+ns+n2 + 1 ) : ( 2∗ nb+nu+ns+n2+nb ) ] ;
s t dT = s t d [ ( 3∗ nb+nu+ns+n2 + 1 ) : ( 3∗ nb+nu+ns+n2+ n t ∗ ( n t +1)/2− nd1 ∗ ( no1+no2 ) ) ] ;
s t d p s i = s t d [ ( 3∗ nb+nu+ns+n2+ n t ∗ ( n t +1)/2− nd1 ∗ ( no1+no2 ) + 1 )

: ( 4 ∗ nb+nu+ns+n2+ n t ∗ ( n t +1)/2− nd1 ∗ ( no1+no2 ) ) ] ;
s t d s i g = s t d [ ( 4∗ nb+nu+ns+n2+ n t ∗ ( n t +1)/2− nd1 ∗ ( no1+no2 ) + 1 )

: ( 4 ∗ nb+nu+ns+n2+ n t ∗ ( n t +1)/2− nd1 ∗ ( no1+no2 )+ no1 ∗ ( no1 + 1 ) / 2 ) ] ;
s t d a l p h a 1 = s t d [ ( 4∗ nb+nu+ns+n2+ n t ∗ ( n t +1)/2− nd1 ∗ ( no1+no2 )+ no1 ∗ ( no1 + 1 ) / 2 + 1 )

: ( 4 ∗ nb+nu+ns+n2+ n t ∗ ( n t +1)/2− nd1 ∗ ( no1+no2 )+ no1 ∗ ( no1 +1) /2+ no1 ) ] ;
s t d a l p h a 2 = s t d [ ( 4∗ nb+nu+ns+n2+ n t ∗ ( n t +1)/2− nd1 ∗ ( no1+no2 )+ no1 ∗ ( no1 +1) /2+ no1 +1)

: ( 4 ∗ nb+nu+ns+n2+ n t ∗ ( n t +1)/2− nd1 ∗ ( no1+no2 )+ no1 ∗ ( no1 +1) /2+ no1+no2 ) ] ;
CIL1=betaR −1.96∗ s t d b e t a R ; CIU1= betaR +1.96∗ s t d b e t a R ;
s tdU= s t d b e t a S [ 1 : nu ] ; s t d S = s t d b e t a S [ ( nu + 1 ) : ( nu+ns ) ] ;
s t d 2 = s t d b e t a S [ ( nu+ns + 1 ) : ( nu+ns+n2 ) ] ;
p r i n t b e t a 0 s t d b e t a 0 be taR s t d b e t a R t a u s t d t a u p s i s t d p s i

betaU stdU b e t a S s t d S b e t a 2 s t d 2 sigma s t d s i g T s tdT ;

∗ g e t t i n g t h e v a r i a n c e f o r t h e p a r a m e t e r s i n t h e c o n d i t i o n a l model ;
m1=no1 ; m2=( n c o l ( x1)− n c o l ( x2 ) ) ∗ no1 ;
m3= n c o l ( x2 )∗ no1 ; m4= n c o l ( x1)− n c o l ( x2 ) ; m5= n c o l ( x2 ) ;
b e t a u 1 = b e t a u [ 1 : m4 ] ; b e t a u 2 = b e t a u [ ( m4 + 1 ) : ( m4+m5 ) ] ;
b e t a s 1 = j ( no1 , 1 , 0 ) ;
b e t a s 2 a = j (m2 , 1 , 0 ) ;
b e t a s 3 a = j (m3 , 1 , 0 ) ;
b e t a s 2 = j (m4 , no1 , 0 ) ;
b e t a s 3 = j (m5 , no1 , 0 ) ;
b e t a 2 1 = j ( no2 , 1 , 0 ) ;
b e t a 2 2 a = j (m5∗no2 , 1 , 0 ) ;
b e t a 2 2 = j (m5 , no2 , 0 ) ; p r i n t no1 no2 nu ns n2 b e t a s ;
do i =1 t o no1 ;

b e t a s 2 a [ ( 1 + ( i −1)∗m4 ) : ( i ∗m4) ] = b e t a s [ ( 1 + ( i −1)∗m4+( i −1)∗m5)
: ( ( i −1)∗m4+( i −1)∗m5+m4 ) ] ;

b e t a s 3 a [ ( 1 + ( i −1)∗m5 ) : ( i ∗m5) ] = b e t a s [ ( i ∗m4+( i −1)∗m5 + 1 ) : ( i ∗m4+ i ∗m5 ) ] ;
b e t a s 2 [ , i ]= b e t a s [ ( 1 + ( i −1)∗m4+( i −1)∗m5 ) : ( ( i −1)∗m4+( i −1)∗m5+m4 ) ] ;
b e t a s 3 [ , i ]= b e t a s [ ( ( i −1)∗m4+( i −1)∗m5+m4 + 1 ) : ( i ∗m4+ i ∗m5 ) ] ;

end ;

do i =1 t o no2 ;
b e t a 2 2 [ , i ]= b e t a 2 [ ( ( i −1)∗m5 + 1 ) : ( i ∗m5 ) ] ;

end ;

b e t a 2 2 a = b e t a 2 ;
p r i n t b e t a 0 be taR a l p h a 1 a l p h a 2 a l p h a 3 a l p h a 4 D t a u p s i ;
f t h e t a = I (m4) | | ( − a lpha1 ‘@I(m4 ) ) | | ( − b e t a s 2 ) ;
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cov11=InIFM [ ( 2∗ nb + 1 ) : ( 2∗ nb+m4 ) , ( 2 ∗ nb + 1 ) : ( 2∗ nb+m4 ) ] ;
cov12=InIFM [ ( 2∗ nb + 1 ) : ( 2∗ nb+m4 ) , ( 2 ∗ nb+nu + 1 ) : ( 2∗ nb+nu+no1∗m4 ) ] ;
cov13=InIFM [ ( 2∗ nb + 1 ) : ( 2∗ nb+m4 ) , ( IFMD−no1−no2 + 1 ) : ( IFMD−no2 ) ] ;
cov22=InIFM [ ( 2∗ nb+nu + 1 ) : ( 2∗ nb+nu+no1∗m4 ) , ( 2 ∗ nb+nu + 1 ) : ( 2∗ nb+nu+no1∗m4 ) ] ;
cov23=InIFM [ ( 2∗ nb+nu + 1 ) : ( 2∗ nb+nu+no1∗m4 ) , ( IFMD−no1−no2 + 1 ) : ( IFMD−no2 ) ] ;
cov33=InIFM [ ( IFMD−no1−no2 + 1 ) : ( IFMD−no2 ) , ( IFMD−no1−no2 + 1 ) : ( IFMD−no2 ) ] ;
cov1 =( cov11 | | cov12 | | cov13 ) / / ( cov12 ‘ | | cov22 | | cov23 ) / / ( cov13 ‘ | | cov23 ‘ | | cov33 ) ;
c o v a l p h a 3 = f t h e t a ∗ cov1∗ f t h e t a ‘ ;
s t d a l p h a 3 = s q r t ( d i a g ( c o v a l p h a 3 ) ) ∗ j (m4 , 1 , 1 ) ;

∗ a l p h a 2 = p i 1 ;
f t h e t a 1 = I (m5) | | ( − a lpha1 ‘@I(m5)∗ I (m3 ) ) | | ( − a lpha2 ‘@I(m5)∗ I (m5∗no2 ) )

| | ( − b e t a s 3 ) | | ( − b e t a 2 2 ) ;
covv11=InIFM [ ( 2∗ nb+m4+ 1 ) : ( 2∗ nb+m4+m5 ) , ( 2 ∗ nb+m4+ 1 ) : ( 2∗ nb+m4+m5 ) ] ;
covv12=InIFM [ ( 2∗ nb+m4+ 1 ) : ( 2∗ nb+m4+m5 ) , ( 2 ∗ nb+nu+no1∗m4+1)

: ( 2 ∗ nb+nu+no1∗m4+no1∗m5 ) ] ;
covv13=InIFM [ ( 2∗ nb+m4+ 1 ) : ( 2∗ nb+m4+m5 ) , ( 2 ∗ nb+nu+ns + 1 ) : ( 2∗ nb+nu+ns+no2∗m5 ) ] ;
covv14=InIFM [ ( 2∗ nb+m4+ 1 ) : ( 2∗ nb+m4+m5 ) , ( IFMD−no1−no2 + 1 ) : ( IFMD−no2 ) ] ;
covv15=InIFM [ ( 2∗ nb+m4+ 1 ) : ( 2∗ nb+m4+m5 ) , ( IFMD−no2 + 1 ) : IFMD ] ;

covv22=InIFM [ ( 2∗ nb+nu+no1∗m4+ 1 ) : ( 2∗ nb+nu+no1∗m4+no1∗m5 ) ,
(2∗ nb+nu+no1∗m4+ 1 ) : ( 2∗ nb+nu+no1∗m4+no1∗m5 ) ] ;
covv23=InIFM [ ( 2∗ nb+nu+no1∗m4+ 1 ) : ( 2∗ nb+nu+no1∗m4+no1∗m5 ) ,
(2∗ nb+nu+ns + 1 ) : ( 2∗ nb+nu+ns+no2∗m5 ) ] ;
covv24=InIFM [ ( 2∗ nb+nu+no1∗m4+ 1 ) : ( 2∗ nb+nu+no1∗m4+no1∗m5 ) ,
( IFMD−no1−no2 + 1 ) : ( IFMD−no2 ) ] ;
covv25=InIFM [ ( 2∗ nb+nu+no1∗m4+ 1 ) : ( 2∗ nb+nu+no1∗m4+no1∗m5 ) , ( IFMD−no2 + 1 ) : IFMD ] ;

covv33=InIFM [ ( 2∗ nb+nu+ns + 1 ) : ( 2∗ nb+nu+ns+no2∗m5 ) , ( 2 ∗ nb+nu+ns +1)
: ( 2 ∗ nb+nu+ns+no2∗m5 ) ] ;

covv34=InIFM [ ( 2∗ nb+nu+ns + 1 ) : ( 2∗ nb+nu+ns+no2∗m5 ) , ( IFMD−no1−no2 + 1 ) : ( IFMD−no2 ) ] ;
covv35=InIFM [ ( 2∗ nb+nu+ns + 1 ) : ( 2∗ nb+nu+ns+no2∗m5 ) , ( IFMD−no2 + 1 ) : IFMD ] ;
covv44=InIFM [ ( IFMD−no1−no2 + 1 ) : ( IFMD−no2 ) , ( IFMD−no1−no2 + 1 ) : ( IFMD−no2 ) ] ;
covv45=InIFM [ ( IFMD−no1−no2 + 1 ) : ( IFMD−no2 ) , ( IFMD−no2 + 1 ) : IFMD ] ;
covv55=InIFM [ ( IFMD−no2 + 1 ) : IFMD , ( IFMD−no2 + 1 ) : IFMD ] ;
covv =( covv11 | | covv12 | | covv13 | | covv14 | | covv15 ) / /

( covv12 ‘ | | covv22 | | covv23 | | covv24 | | covv25 ) / /
( covv13 ‘ | | covv23 ‘ | | covv33 | | covv34 | | covv35 ) / /
( covv14 ‘ | | covv24 ‘ | | covv34 ‘ | | covv44 | | covv45 ) / /
( covv15 ‘ | | covv25 ‘ | | covv35 ‘ | | covv45 ‘ | | covv55 ) ;

c o v a l p h a 4 = f t h e t a 1 ∗ covv∗ f t h e t a 1 ‘ ;
s t d a l p h a 4 = s q r t ( d i a g ( c o v a l p h a 4 ) ) ∗ j (m5 , 1 , 1 ) ;

∗ a l p h a 3 = be tau1 −( a lpha1 ‘@I(m4 ) ) ∗ b e t a s 2 a ;
∗ a l p h a 4 = be tau2 −( a lpha1 ‘@I(m5 ) ) ∗ b e t a s 3 a −( p i1 ‘@I(m5 ) ) ∗ b e t a 2 2 a ;
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∗ g e t t i n g t h e v a r i a n c e f o r D;
D1= j ( no1 ∗ ( no1 + 1 ) / 2 , 1 , . ) ;
D2= j ( no1∗no2 , 1 , . ) ;
D3= j ( no2 ∗ ( no2 + 1 ) / 2 , 1 , . ) ;
D4= j ( no1 , 1 , . ) ;
D5= j ( no2 , 1 , . ) ;
mat2=MM( no1 ) ;
do k=1 t o no1 ∗ ( no1 + 1 ) / 2 ;

c S t a r t =( k−1)∗no1 + 1 ;
cEnd = c S t a r t +no1 − 1 ;
mat1=mat2 [ , c s t a r t : cend ] ;
D1 [ k]=− a lpha1 ‘∗mat1∗ a l p h a 1 ;

end ;
mat4=NNN( no1 , no2 ) ;
do k=1 t o no1∗no2 ;

c S t a r t =( k−1)∗no2 + 1 ;
cEnd = c S t a r t +no2 − 1 ;
mat3=mat4 [ , c s t a r t : cend ] ;
D2 [ k]=−2∗ a lpha1 ‘∗mat3∗ a l p h a 2 ;

end ;
mat6=MM( no2 ) ;
do k=1 t o no2 ∗ ( no2 + 1 ) / 2 ;

c S t a r t =( k−1)∗no2 + 1 ;
cEnd = c S t a r t +no2 − 1 ;
mat5=mat6 [ , c s t a r t : cend ] ;
D3 [ k]=− a lpha2 ‘∗mat5∗ a l p h a 2 ;

end ;
D4=−2∗a lpha2 ‘∗Ts2 ‘−2∗ a lpha1 ‘∗ Tss ;
D5=−2∗a lpha2 ‘∗T22−2∗a lpha1 ‘∗ Ts2 ;
dim=no1 ∗ ( no1 +1) /2+ no1∗no2+no2 ∗ ( no2 +1) /2+ no1+no2 ;
f t h e t =(D1 ‘ | | D2 ‘ | | D3 ‘ | | D4 | |D5 ) / / j ( nd1 ∗ ( nd1 +1)/2−1 , dim , 0 ) ;
f t h e t a = I ( nd1 ∗ ( nd1 + 1 ) / 2 ) | | f t h e t ;
a =(3∗ nb+nu+no1∗m4+no1∗m5+no2∗m5+ 1 ) ;
b =(3∗ nb+nu+no1∗m4+no1∗m5+no2∗m5+nd1 ∗ ( nd1 + 1 ) / 2 ) ;
covv11=InIFM [ a : b , a : b ] ; ∗Tuu ;
covv12=InIFM [ a : b , ( b + 1 ) : ( b+no1 ∗ ( no1 + 1 ) / 2 ) ] ;
covv13=InIFM [ a : b , ( b+no1 ∗ ( no1 + 1 ) / 2 + 1 ) : ( b+no1 ∗ ( no1 +1) /2+ no1∗no2 ) ] ;
covv14=InIFM [ a : b , ( ( b+no1 ∗ ( no1 +1) /2+ no1∗no2 ) + 1 ) :

( ( b+no1 ∗ ( no1 +1) /2+ no1∗no2 )+ no2 ∗ ( no2 + 1 ) / 2 ) ] ;
covv15=InIFM [ a : b , ( IFMD−no1−no2 + 1 ) : ( IFMD−no2 ) ] ;
covv16=InIFM [ a : b , ( IFMD−no2 + 1 ) : IFMD ] ;

covv22=InIFM [ ( b + 1 ) : ( b+no1 ∗ ( no1 + 1 ) / 2 ) , ( b + 1 ) : ( b+no1 ∗ ( no1 + 1 ) / 2 ) ] ;
covv23=InIFM [ ( b + 1 ) : ( b+no1 ∗ ( no1 + 1 ) / 2 ) , ( b+no1 ∗ ( no1 + 1 ) / 2 + 1 )
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: ( b+no1 ∗ ( no1 +1) /2+ no1∗no2 ) ] ;
covv24=InIFM [ ( b + 1 ) : ( b+no1 ∗ ( no1 + 1 ) / 2 ) , ( ( b+no1 ∗ ( no1 +1) /2+ no1∗no2 ) + 1 )

: ( ( b+no1 ∗ ( no1 +1) /2+ no1∗no2 )+ no2 ∗ ( no2 + 1 ) / 2 ) ] ;
covv25=InIFM [ ( b + 1 ) : ( b+no1 ∗ ( no1 + 1 ) / 2 ) , ( IFMD−no1−no2 + 1 ) : ( IFMD−no2 ) ] ;
covv26=InIFM [ ( b + 1 ) : ( b+no1 ∗ ( no1 + 1 ) / 2 ) , ( IFMD−no2 + 1 ) : IFMD ] ;

covv33=InIFM [ ( b+no1 ∗ ( no1 + 1 ) / 2 + 1 ) : ( b+no1 ∗ ( no1 +1) /2+ no1∗no2 ) ,
( b+no1 ∗ ( no1 + 1 ) / 2 + 1 ) : ( b+no1 ∗ ( no1 +1) /2+ no1∗no2 ) ] ;

covv34=InIFM [ ( b+no1 ∗ ( no1 + 1 ) / 2 + 1 ) : ( b+no1 ∗ ( no1 +1) /2+ no1∗no2 ) ,
( ( b+no1 ∗ ( no1 +1) /2+ no1∗no2 ) + 1 ) : ( ( b+no1 ∗ ( no1 +1) /2+ no1∗no2 )+ no2 ∗ ( no2 + 1 ) / 2 ) ] ;

covv35=InIFM [ ( b+no1 ∗ ( no1 + 1 ) / 2 + 1 ) : ( b+no1 ∗ ( no1 +1) /2+ no1∗no2 ) ,
( IFMD−no1−no2 + 1 ) : ( IFMD−no2 ) ] ;

covv36=InIFM [ ( b+no1 ∗ ( no1 + 1 ) / 2 + 1 ) : ( b+no1 ∗ ( no1 +1) /2+ no1∗no2 ) , ( IFMD−no2 + 1 ) : IFMD ] ;

covv44=InIFM [ ( ( b+no1 ∗ ( no1 +1) /2+ no1∗no2 ) + 1 ) : ( ( b+no1 ∗ ( no1 +1) /2+ no1∗no2 )
+no2 ∗ ( no2 + 1 ) / 2 ) , ( ( b+no1 ∗ ( no1 +1) /2+ no1∗no2 ) + 1 ) : ( ( b+no1 ∗ ( no1 +1) /2+ no1∗no2 )
+no2 ∗ ( no2 + 1 ) / 2 ) ] ;

covv45=InIFM [ ( ( b+no1 ∗ ( no1 +1) /2+ no1∗no2 ) + 1 ) : ( ( b+no1 ∗ ( no1 +1) /2+ no1∗no2 )
+no2 ∗ ( no2 + 1 ) / 2 ) , ( IFMD−no1−no2 + 1 ) : ( IFMD−no2 ) ] ;

covv46=InIFM [ ( ( b+no1 ∗ ( no1 +1) /2+ no1∗no2 ) + 1 ) : ( ( b+no1 ∗ ( no1 +1) /2+ no1∗no2 )
+no2 ∗ ( no2 + 1 ) / 2 ) , ( IFMD−no2 + 1 ) : IFMD ] ;

covv55=InIFM [ ( IFMD−no1−no2 + 1 ) : ( IFMD−no2 ) , ( IFMD−no1−no2 + 1 ) : ( IFMD−no2 ) ] ;
covv56=InIFM [ ( IFMD−no1−no2 + 1 ) : ( IFMD−no2 ) , ( IFMD−no2 + 1 ) : IFMD ] ;

covv66=InIFM [ ( IFMD−no2 + 1 ) : IFMD , ( IFMD−no2 + 1 ) : IFMD ] ;

covv =( covv11 | | covv12 | | covv13 | | covv14 | | covv15 | | covv16 ) / /
( covv12 ‘ | | covv22 | | covv23 | | covv24 | | covv25 | | covv26 ) / /
( covv13 ‘ | | covv23 ‘ | | covv33 | | covv34 | | covv35 | | covv36 ) / /
( covv14 ‘ | | covv24 ‘ | | covv34 ‘ | | covv44 | | covv45 | | covv46 ) / /
( covv15 ‘ | | covv25 ‘ | | covv35 ‘ | | covv45 ‘ | | covv55 | | covv56 ) / /
( covv16 ‘ | | covv26 ‘ | | covv36 ‘ | | covv46 ‘ | | covv56 ‘ | | covv66 ) ;

covD= f t h e t a ∗ covv∗ f t h e t a ‘ ;
s tdD= s q r t ( d i a g ( covD ) ) ∗ j ( nd1 ∗ ( nd1 + 1 ) / 2 , 1 , 1 ) ;
p r i n t a l p h a 1 s t d a l p h a 1 a l p h a 2 s t d a l p h a 2 a l p h a 3 s t d a l p h a 3 a l p h a 4
s t d a l p h a 4 D stdD ;

143



VITA

Chunfeng Ren was born on September 20, 1972 in Dengzhou, Henan Province, Peoples Republic of China.

She received her Bachelor of Science in Mathematics from Zhengzhou University, Henan, China in 1994, a

Master of Science in Computational Mathematics from Xi’an Jiaotong University, Shaanxi, China in 1997,

and a Master of Public Health in Biostatistics from Georgia Southern University, Statesboro, Georgia in

2009. In August of 2009, she pursued her Ph.D. in Biostatistics at Virginia Commonwealth University in

Richmond, Virginia.

144


	LATENT VARIABLE MODELS GIVEN INCOMPLETELY OBSERVED SURROGATE OUTCOMES AND COVARIATES
	Downloaded from

	 List of Figures
	 List of Tables
	Abstract
	Introduction
	Identifying Covariate Effects on Child Obesity via a Latent Variable Approach Given Incompletely Observed Biomarkers
	Introduction
	Models
	EM and PX-EM Algorithms
	Data Analysis
	Discussion
	Miscellanea
	Conditional Expectations in E-step
	Parameter Estimates in the M-step
	Calculations of the Information Matrix
	Parameter Estimates in the PX-EM Algorithm


	Longitudinal Latent Variable Models Given Incompletely Observed Biomarkers and Covariates
	Introduction
	 Latent Variable Models
	 Efficient Handling of Missing Data
	 Estimation via the EM Algorithm
	Simulation
	 Analysis of NGHS Data
	 Discussion
	Miscellanea
	Derivation of one-to-one transformations between models (3.1) and (3.3)
	Estimation
	Calculation of the Information Matrix
	The Variance Calculation of the Parameters in the LVMs


	 Three-Level Latent Variable Analysis Given Incompletely Observed Multivariate Markers in a Cluster-Randomized Study
	Introduction
	Three-level Latent Variable Models
	EM and PX-EM Algorithms
	Data Analysis
	Discussion
	Miscellanea
	Conditional Expectations
	CD ML Estimates
	Calculations of the Information Matrix
	Parameter Estimates in the PX-EM Algorithm


	 A Latent Variable Approach for Multivariate Instrumental Variable Estimators with Ignorable Missing Data
	Introduction
	PX-EM Algorithm
	Data Analysis
	ITT Causal Effects
	Causal Effects of Reduced Class Size
	Surrogate Outcomes on Child Academic Achievement
	Unit-Specific Child Academic Achievement Score

	Discussion
	Miscellanea
	Conditional Expectations in E-step
	Parameter Estimates in the M-step
	Calculation of the Information Matrix
	 Estimates of the Desired Causal Effects


	 Discussion
	Bibliography
	Appendix
	Vita

