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Benthic macroinvertebrate diversity influences stream food web dynamics, nutrient 

cycling and material exchange between the benthos and the water column. Stream bioassessment 

has moved to the forefront of water quality monitoring in terms of benthic macroinvertebrate 

diversity in the recent past. The objectives of this study were to determine optimum subsample 

size and level of taxonomic resolution necessary to accurately and precisely describe 

macroinvertebrate diversity in streams flowing in the Piedmont province of the James River 

watershed in Virginia. Forty-nine sampling sites were selected from streams within the Piedmont 

Physiographic Province of the James River watershed. Ten sites were randomly selected to have 

all macroinvertebrates in the sample identified to the genus level whenever possible. Optimum 

subsampling intensities and Virginia Stream Condition Index (VSCI) metrics and scores were 

determined. For samples with the total number of individuals at less than 500, the genus level of 



 

 

 

taxonomy provided lower overall optimum subsampling intensities. However, for samples with 

total individuals over 1000, optimum subsampling intensities at the genus level of taxonomy 

were higher than the family level for more than 50% of the metrics. For both family and genus 

levels of taxonomy, the majority of optimum subsampling intensities were well over 50% of the 

total individuals in the sample, with some as high as 100% of the individuals. While optimum 

subsampling intensities were valuable in comparing family and genus level taxonomy, they are 

not reasonable for stream bioassessment protocols; the cost:benefit ratio would be highly 

unbalanced. A minimum subsample size of 200 individuals is optimum for determining VSCI 

scores, while optimum taxonomic resolution is dependent on several factors. Thus, the level of 

taxonomic resolution for a particular study should be determined by the study objectives, level of 

site impairment and sample size. 
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Introduction 

Biodiversity in aquatic ecosystems has been an important focus of ecological studies for 

the past several decades, including efforts to determine the level of impact from anthropogenic 

stressors and how impaired waters can be managed and restored (Gleick 2003; Cook et al. 2005; 

Giller 2005).  Historically, freshwater aquatic ecosystems, and particularly their benthic 

macroinvertebrate communities, have been negatively affected by agricultural practices and 

residential, industrial and municipal development.  Changes in flow regimes due to the control of 

water levels, elimination of riparian buffers and creation of reservoirs has reduced the ability of 

aquatic ecosystems to manage nutrient retention and pollution inputs, creating a need for 

restoration of these systems (Sondergaard 2007).  Aquatic ecosystems include their often 

extensive and interconnected riparian zones within environmental gradients that cross spatio-

temporal scales (Ward 1998).  These systems have become inextricably tied to anthropogenic 

practices and livelihoods, and the resulting decline in biodiversity within them is mainly 

attributed to the increase in regulation and diversion of freshwater resources, as well as the 

increase in anthropogenic pollution and invasive species (Kingsford 2011). 

Benthic macroinvertebrate diversity and the specific taxa present, particularly in streams, 

influence food web dynamics, nutrient cycling and material exchange between the benthos and 

the water column.  While describing biodiversity in terms of ecological patterns and biological 

controls has long been central to the study of ecology, currently freshwater aquatic ecosystems 

have moved to the forefront of these studies mainly due to the magnitude and extensive scope of 

anthropogenic impacts in aquatic systems.  In low-diversity aquatic systems, particularly 

impaired systems, biodiversity is crucial to the ability of the system to function (Dodds 2002).  In 
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the face of increasing anthropogenic pressures, the biological assessment of these systems has 

become necessary to monitor and assess their ecological conditions. 

Aquatic ecosystem bioassessment has moved to the forefront of water quality 

management and preservation in the recent past (Karr and Chu 1999).  Accurate and cost-

effective methods for acquiring high-quality biodiversity data are crucial for bioassessment at the 

federal and state level because that information is used to quantify the condition of aquatic 

ecosystems and to predict changes in their responses to anthropogenic impacts (Pfrender et al. 

2010).  For water quality monitoring, the cost:benefit ratio is defined by the balance between the 

time and resource expenditures associated with sampling, processing and analysis (costs) and the 

accuracy and precision of the assessment (benefits). Simplified field sampling techniques and 

sample processing in the laboratory are necessary tools for applicable bioassessments (Oliviera et 

al. 2011).  Different sampling techniques for the collection, sorting and identification of stream 

macroinvertebrates have been and continue to be tested for their reliability in bioassessment 

programs (Haase et al. 2004).  Well-standardized protocols generate results that reflect the 

reliability of more complex protocols, as long as optimal effort is used without compromising the 

ecological validity of the assessment (Nichols and Norris 2006).  

Since the determination that taxa have different sensitivities to environmental and 

anthropogenic stressors, many methods have been developed to describe and quantify the 

ecological condition of streams, summarizing the composition of organism assemblages based on 

the relative sensitivities of the species present (Chessman 2012).  Resulting multimetric indices 

(MMI’s), created to quantify stream condition based on the relative tolerances to disturbances 

and pollution, are typically unitless values that incorporate abundance, richness and diversity of 

the taxa present, with the magnitude of the index being indicative of the level of environmental 
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or anthropogenic stress (Chessman 2012).  Accurate and precise MMI’s should yield repeatable 

results between samples, while remaining sensitive to changes in anthropogenic stressors (Clarke 

2006).  The Virginia Stream Condition Index (VSCI) is the MMI currently used by the Virginia 

Department of Environmental Quality (VADEQ) to determine the level of impairment in non-

coastal Virginia streams using benthic macroinvertebrates (Burton and Gerristen 2003).  The use 

of MMIs such as the VSCI relies heavily on the accuracy and precision of all aspects of the 

methodology associated with the sampling program, including the thoroughness that a site is 

sampled and the accuracy of macroinvertebrate identifications (Pfrender et al. 2010).   

In the field of stream bioassessment, two subsampling methods have emerged as the 

recognized methods of choice: fixed-count and area-based methods (Vinson and Hawkins 1996).  

Stream geomorphology and study objectives often dictate which method should be used.  For the 

fixed-count method, a predetermined subsample size, typically with a minimum of 100 

specimens, is used to describe the condition of a stream.  With the area-based method, all 

individuals in a sample, collected from a given sampling area, are included in the analysis and 

thus this method typically requires considerably more time for processing of the sample while 

providing more information on the macroinvertebrate assemblage present (Hering et al. 2004).  

The simplicity of the fixed-count method allows for the cost and time of the assessment to be 

much lower than for the area-based method.  Ideally, however, characteristics of the streams and 

the study objectives should determine the method employed (Oliviera et al. 2011). 

Subsamples must represent the physical heterogeneity and macroinvertebrate diversity of 

the stream, and thus of the total sample from which the subsample was drawn.  The biological 

metrics calculated from data derived from the subsample to determine stream condition must 

also adequately reflect that heterogeneity and diversity.  In that these metrics also may be 
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influenced by subsample size, they also are an important factor in determining which 

subsampling method is used.  The U.S. EPA’s Rapid Bioassessment Protocols for Use in 

Streams and Wadeable Rivers (RBP Protocols; Barbour et al. 1999) acknowledges that the 

minimum subsampling effort of macroinvertebrates may differ across geomorphologically 

different stream study sites.  While arguments have been presented for the use of both area-based 

subsampling (Courtemanche 1996) and fixed-count subsampling (Vinson and Hawkins 1996, 

Barbour and Gerritsen 1996), the fixed-count subsampling method tends to be preferred for use 

with the RBP Protocols.   

Besides subsampling methodology, the level of taxonomic resolution used in a study can 

affect the determination of the ecological condition of streams.  The required level of taxonomic 

resolution is dependent upon the objectives and the geographic range of the study (Resh and 

McElravy 1993).  The larger the differences in macroinvertebrate community composition and 

structure between sampling sites, the less taxonomic resolution that is required.  Family level 

assessments were adequate for assessing impairment in a variety of studies along a 

physiographic gradient and environmental gradients (Bowman and Bailey 1998, Bailey et al. 

2001, Lenat and Resh 2001, Pond and McMurray 2002, Chessman et al. 2007).  In other studies, 

however, coarse resolution at the family level was not effective in detecting anthropogenic 

effects on macroinvertebrate diversity (Pfrender et al. 2010).  Genus- or species-level 

identification may be necessary when small differences between sampling sites need to be 

resolved. The RBP Protocols state that genus-level taxonomic resolution provides more accurate 

data for bioassessments, as borne out by a number of studies (Guerold 2000, Hawkins et al. 

2000, Lenat and Resh 2001, Arscott et al. 2006). 
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Environmental regulators and the regulated community often disagree on the severity of 

impairment discerned by different levels of taxonomic resolution and by the metrics used to 

interpret compliance to water quality regulations (Pond et al. 2008).  Virginia currently uses 

family-level taxonomy and a minimum fixed-count subsampling of 100 specimens in its 

programs for the biological assessment of stream impairment.    Streams flowing in the Piedmont 

Province of the James River watershed in central Virginia are characterized by diverse geology, 

variable gradients, and variable substrates.  Gradient in particular has been shown to have an 

overall important effect on the benthic macroinvertebrate assemblages of these Piedmont streams 

(Marques 1998, Gotelli 2001).  Given that changes in the environmental characteristics of 

streams can affect macroinvertebrate community composition and structure, determining the 

appropriate subsampling effort and taxonomic resolution required for a given stream is critical 

for accurate bioassessment of stream condition.  The objectives of this study thus were to 

determine the optimum subsample size and level of taxonomic resolution necessary to accurately 

and precisely describe macroinvertebrate diversity in streams flowing in the Piedmont province 

of the James River watershed in Virginia. 
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Methods 

Macroinvertebrate Field Sampling, Subsampling and Identification 

Forty-nine sampling sites were selected from streams within the Piedmont Physiographic 

Province of the James River watershed (Figure 1).  All sites had been previously sampled as part 

of Virginia Commonwealth University’s INSTAR stream sampling program 

(www.instar.vcu.edu), which provides information on the macroinvertebrate and fish 

assemblages of streams throughout that and other physiographic provinces of Virginia.  

Collection of macroinvertebrates at those 49 sites followed protocols detailed by EPA’s Rapid 

Bioassessment Protocols for Streams and Wadeable Rivers for multiple-habitat sampling (RBP 

Protocols; Barbour et al. 1999).  Macroinvertebrates were collected systematically by kicking the 

substrate and jabbing with a D-frame dip net in all available major habitat types. Twenty jabs or 

kicks were taken in each habitat type over the entire 100-m reach, resulting in approximately 3.1 

m² of habitat being sampled.  The sub-samples from each habitat were placed into one composite 

multi-habitat sample for each of the 49 sampling sites (RBP Protocols; Barbour et al. 1999).  The 

composite samples were preserved in 70 percent alcohol with Rose Bengal stain.   

Approximately 200 individuals were removed in the laboratory from each of the 49 

samples.  These are hereafter referred to as “200-count samples.”  Then, 10 of the samples were 

randomly selected to have all remaining macroinvertebrates in those samples removed.  These 10 

samples are hereafter referred to as “total count samples.”  Macroinvertebrates in each sample 

were then identified to the genus level, or for some taxa to the lowest possible taxonomic level of 

resolution.  Identifications were verified for accuracy by Andrew Garey, VCU Aquatics Lab 

Manager. 
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The focus of the analysis used eight macroinvertebrate bioassessment metrics selected by 

the VADEQ for their VSCI MMI stream bioassessment program (Burton and Gerristen 2003).  

The VSCI uses eight metrics that have been shown to respond predictably to increases in 

impairment or disturbance at the watershed level (Table 1).  The eight VSCI core metrics 

comprise two richness metrics (“Total Taxa” and “EPT Taxa”),  five proportion metrics (“% 

Ephemeroptera”, % Plecoptera+Trichoptera less Hydropsychidae”, “% Scrapers”, “% 

Chironomidae” and “% Top 2 Dominant”), and the Hilsenhoff Biotic Index (“HBI”).  The 

richness metrics in the category “Taxonomic Richness/Diversity” count distinct taxa.  “Total 

taxa” is a count of all distinct taxa in the sample at the specified taxonomic level. “EPT Taxa” is 

a count of all distinct taxa of the orders Ephemeroptera, Plecoptera and Trichoptera.  The 

proportion metrics in the category “Taxonomic Composition” are proportions of the total number 

of individuals in the entire sample that belong to specific taxonomic groups.  “% 

Ephemeroptera” is the proportion of individuals of the order Ephemeroptera in the sample.  “% 

Plecoptera + Trichoptera less Hydropsychidae” is the combined proportion of the number of 

individuals of the orders Plecoptera and Trichoptera, minus the tricopteran family of 

Hydropsychidae.  “% Chironomidae” is the proportion of the individuals in the family 

Chironomidae in the sample.  “% Top 2 Dominant” is the proportion of the number of 

individuals of the two taxa that are most abundant and next most abundant in the sample.  The 

category “Functional Feeding Groups” comprises metrics based on the primary mode of feeding 

for a taxon.  “% Scrapers” is the proportion of the number of individuals in the sample that are 

classified as scrapers.  Finally, the Hilsenhoff Biotic Index, “HBI”, a “Degree of Tolerance” 

metric, is a weighted score for taxa at the family level that measures the tolerance of each taxon 

to exposure to pollution.  
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To calculate the standardized individual VSCI metric scores for a sample, the eight 

metrics are divided into two groups:  those that decrease with stress and those that increase with 

stress.  For the metrics that decrease with stress (“Total taxa”, “EPT taxa”, “% Ephemeroptera”, 

“% Plecoptera+Trichoptera-Hydropsychidae” and “% Scrapers”), the VSCI score is calculated 

using Equation 1, where metric values can range from 0 to 100 and with higher values indicating 

less impaired conditions. 

Equation 1: Score = 100 x (X/S)  

        where X = metric value and S = standard (best value) (Table 1) 

For the metrics that increase with stress (“% Chironomidae” and “% Top 2 Dominant”), 

the VSCI score is calculated using Equation 2, where metric values can range from 0 to 100 and 

with higher values indicating more impaired conditions. 

Equation 2: Score = 100 x [(100 – X)/(100 – S)] 

       where X = metric value and S = standard (best value) (Table 1) 

A variation of Equation 2 is used to calculate the HBI, as values range from 0 to 10. 

Equation 2v: Score = 100 x [(10 – X)/(10 – S)] 

           where X = metric value and S = standard (best value) (Table 1) 

The final VSCI score is calculated by taking an average of the eight standardized metric 

scores, with a maximum score of 100 being used for any standardized metric score over 100. 

VSCI scores are then used to determine the level of impairment at a specific site.  Streams with 

scores over 80 are considered as having “reference” conditions, whereas streams with scores at 

60-79 are considered as being “similar to reference”.  Streams with scores below 60 are 

considered “impaired”.   
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Data Analysis for Subsampling Effort and Taxonomic Resolution Comparisons 

 

The initial focus of the data analysis was to determine if there were significant 

differences in metric values if the sample processing protocol called for removing either 100 or 

200 individuals (i.e. 100-individual or 200-individual subsamples).  Data analysis was conducted 

at the family level of resolution, conforming to VDEQ protocols.  Since most 200-count samples 

did not consist of exactly 200 individuals, subsamples were produced by randomly selecting 

exactly 200 individuals from each of the 49 samples using the Vegan package in R (R Core 

Team, 2012; Oksanen et al. 2012).  Since no samples were processed at a 100-individual level, 

100-individual subsubsamples were also produced.   This process was iteratively repeated to 

produce 100 replicates for each subsample at both the 100- and 200-individual level.      

Each of the eight core VSCI metric values were calculated for both the 100-individual 

and 200-individual subsamples from each study site.   Pairwise T-tests (100-individual and 200-

individual subsamples paired by study site) were conducted to determine if significant 

differences (p=0.05) occurred between the two levels of subsampling intensity for each of the 

eight metrics. 

 Rarefaction curves were generated for each of the eight metrics, whereby random 

10-individual subsamples were drawn from each of the 49 samples, without replacement, along 

an interval from 10 individuals to the highest integer multiple of 10 possible for each sample.  

Each of the eight metric values was then calculated for each of these subsampling intervals and 

plotted on the curve.   Rarefactions and metric calculations were replicated 100 times for each 

sample. 

For the eight metrics, true metric values (TMVs) were calculated at both the family and 

genus levels for the ten total-count samples.  Mean metric values were calculated by determining 
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the mean values of a metric at each 10-individual interval, for the 100 replicates, for the total 

number of individuals in the each sample.  True metric values are considered to be the mean 

metric values at the highest 10-individual interval of each sample.   

The second focus was to determine if significant differences occurred in metric values 

when data at the family versus genus level were used.  Using data from the ten total-count study 

sites, optimum subsampling intensity (OSI) was determined for each metric as the minimum 

number of individuals at which at least 95 of replicate subsamples had metric values that met or 

exceeded the true metric value.  Pairwise t-tests (p≤0.05) were then used to determine if 

significant differences occurred between optimum subsampling intensities calculated from the 

rarefaction curves generated from family-level or genus-level taxonomy.  This analysis was 

conducted on three metrics, “Total taxa”, “% Top 2 Dominant” and “HBI”, that can vary based 

on taxonomic resolution.  The other five metrics were not analyzed in this manner because by 

their nature they are not responsive to differences in taxonomic resolution.  

The eight metrics for the total-count samples were calculated at 100-individual and 200-

individual counts and compared at family-level and genus-level taxonomy to determine the 

departure from the true metric value for the sample.  The 100-individual and 200-individual 

count metric values were compared to the true metric values as a percent of the true metric value 

to determine if the current subsampling protocols accurately represent the true metric values of 

the samples. 
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Results 

Only seven of the 49 sampling sites had VSCI scores that met or exceeded the VDEQ 

threshold score of 60, indicating their level of impairment as being “similar to reference” 

conditions.  Five of those seven sites were included among the 39 200-count sampling sites and 

two were included among the 10 total-count sites (Fig. 2 and 3). 

Statistically significant differences were found in three of the VSCI metrics between the 

100-count and 200-count subsamples. The metrics “% Top 2 Dominant”, ”Total taxa” and “EPT 

taxa” were the metrics most affected by the different subsampling protocols.  All other metrics 

showed no statistically significant difference in their values between the 100- and 200-count 

subsampling protocols (Table 2, Figure 4).  

For the 10 total-count samples, the total number of individuals in each sample ranged 

from a minimum of 210 to a maximum of 1640.  Four samples contained over 1000 individuals, 

while five samples contained less than 500 individuals.  The true metric values, at both the 

family and genus levels of taxonomy, varied based on these differences in numbers of 

individuals in the sample and the variability of the metric values at each interval (Tables 3 and 

4). 

The optimum subsampling intensity (OSI) for each metric was determined for sites with 

less than 500 individuals (Figure 5) and sites with more than 1000 individuals (Figure 6).  The 

OSI, calculated as a percent of the total number of individuals in the sample (Table 5), varied 

widely across each sample.  For the samples where the OSI was 100% of the total individuals, it 

was reached in the final 10-individual interval or it was never reached.   In the sites with over 

1000 total individuals, only three sites had a single metric not reach the OSI and the overall 

patterns of OSIs tended to show the highest OSIs in the richness metrics, with the lowest in each 
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sample being “HBI” (Figure 5). In sites with less than 500 individuals, each site had at least two 

metrics not reach the OSI, with one site not reaching OSI for six of the eight metrics.  The 

overall OSI patterns tended to show highest OSIs in the richness metrics and “% Scrapers”, 

while the “HBI” metric had the lowest OSIs for all samples (Figure 6). .    

Rarefaction curves for each metric were then used to compare the optimum subsampling 

intensity at the family- and genus-levels of taxonomy.  The rarefaction curves for sampling sites 

JM42_02 and JM52_01 were chosen to represent the baseline curves for the comparisons for 

each of the 10 total-count sampling sites.  These two sites were chosen as the baseline because 

they had the highest VSCI scores of the 10 sampling sites, with values at or near 60 and thereby 

identifying these sites as “similar to reference” conditions.  Also, site JM42_02 had a total of 470 

individuals and thus its rarefaction curve was used for comparisons with other sites with fewer 

than 500 individuals in the sample (Figure 7).  Site JM52_01 had a total of 1640 individuals and 

thus its curve was used for comparisons with sites with greater than 1000 individuals (Figure 15).  

This allowed for a demonstration of comparisons at the family and genus levels of taxonomy for 

two different sized samples at the same relative level of impairment (Figures 7-22).   

The rarefaction curves for the proportion metrics showed high variability, with a leveling 

off as the total number of individuals in the samples was approached.   The  OSI at site 42_02 

was higher at the family level than at the genus level for five metrics (“EPT Taxa”, “% 

Ephemeroptera”, “% Plecoptera + Trichoptera less Hydropsychidae”, % Scrapers”,  and “HBI”)  

and was the same as the genus level for the remaining three metrics (“Total taxa”, “% 

Chironomidae”, and “% Top 2 Dominant”) (Figures 7-14). This is representative of the majority 

of sites with less than 500 individuals, as these sites tended to favor genus level taxonomy 

overall for optimum subsampling intensity. 
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The family level OSI at site 52_01 was lower for five metrics (“% Ephemeroptera”, “% 

Plecoptera + Trichoptera less Hydropsychidae”, “% Chironomidae”, “% Top 2 Dominant”, and 

“HBI”) and higher for three metrics (“Total taxa”, “EPT Taxa”, and “% Scrapers”) compared to 

the family level (Figures 15-22).  This is representative of the majority of sites with more than 

1000 individuals, as these sites tended to favor family level taxonomy overall for optimum 

subsampling intensity.   Pairwise T-tests showed no significant differences (p≤0.05) in the 

optimum sampling intensity between the family or genus levels taxonomy for any of the three 

metrics analyzed (“Total Taxa”, “Top 2 Dominant” and “HBI”). 

The accuracy at which the 100-count and 200-count subsamples represented the total 

macroinvertebrate composition in the samples at the family and genus levels varied depending 

on the metric (Figures 23 and 24).   Ideally, metrics would score between 95% and 100% for an 

accurate representation of the true metric value, whereas metrics scoring over 100% would be 

overestimated in the VSCI score. For both the 100-individual and 200-individual counts at the 

family level of taxonomy,  the metric values were at least 95% of the true value for the metrics 

“% Ephemeroptera”, “% Chironomidae”, “% Top 2 Dominant” and “HBI” for all replicates.  

Both the “% Plecoptera plus Trichoptera less Hydropsychidae” and “% Scrapers” metrics 

showed 70% of the samples scoring at or above 95% of the true metric values.   The “% Top 2 

Dominant” was the only metric at the family level that scored at over 100% of the true metric 

value for all ten samples.  Neither the “Total taxa” or “EPT taxa” metrics were scored at over 

100% of the total metric value; both metrics did have one sample at over 95% of the true metric 

value (Figure 23).  At the genus level of taxonomy, four metrics (“% Ephemeroptera”, “% 

Chironomidae”, “% Top 2 Dominant”, “HBI”) were scored at over 95% of the true metric values 

for both 100-individual and 200-individual subsamples,  As with the family level comparison, 
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both “Total taxa” and “EPT taxa” had only one sample each scoring over 95% of the true metric 

value (Figure 24). 
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Discussion 

 

Significant differences in three of the eight metrics occurred when comparing all sites 

subsampled at both 100 and 200 individual counts.   The optimum sub-sample size at either 100 

or 200 individual counts varied depending on the metric being examined.  The differences to 

note were for the “Total taxa”, “EPT taxa”, and “% Top 2 Dominant” metrics, these being two 

richness metrics and a composition metric, respectively.  These differences indicated that the 

values of these metrics are being underestimated when a 100-individual subsample protocol is 

used, compared to using a 200-individual subsample.  In general, richness metrics were more 

sensitive to the effects of counting 100 versus 200 individuals from a sample than were the 

proportion metrics. These results are consistent with other studies that showed that richness 

metrics are the metrics most affected by changes in subsample size (Doberstein et al. 2000, 

Lorenz et al. 2004, Clarke et al. 2006, Oliviera et al. 2011). 

 The eight VSCI metrics, as used in bioassessment programs, are averaged together with 

equal weight to create a VSCI score.  Each metric has some unknown extent of inaccuracy, to 

some degree depending on the subsampling protocol and the level of taxonomy employed.  

Metrics that are overestimated with a given protocol would need to balance underestimated 

metric scores for the VSCI index to provide an accurate representation of the macroinvertebrate 

community and thus condition of the stream.  Since the current Virginia protocols require 100-

individual subsamples, there would be a benefit to increasing the minimum subsample size to 

200 individuals, as this would decrease the overestimation by the proportion metrics and 

decrease the underestimation by the richness metrics, thereby generating a more accurate VSCI 

score. Other studies have also shown that a 200-count provides greater metric stability and 
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functionality and an overall more accurate representation of a stream’s macroinvertebrate 

assemblage than does a 100-count protocol (Lorenz et al. 2004).   

 For the purposes of this analysis, optimum range was determined to be metric values 

greater than 95%, but not exceeding, the true metric value. The majority of the samples had 

proportion metric values that were within the optimum range when taxonomy was at the family 

level.  Richness metrics were particularly sensitive to differences in sample count, rarely 

achieving the optimum range and being consistently underestimated at nearly all sampling sites.  

The metrics “HBI”, “% Chironomidae”, “% Top 2 Dominant” and “% Ephemeroptera”, at both 

levels of taxonomy, had 100% of the samples achieving the optimum range. However, these 

metrics differed between taxonomic levels on the percentage of sites with metric values 

exceeding the optimum range. “HBI” and “% Chironomidae” had less sites exceed the optimum 

range at the family level, while “% Top 2 Dominant” and “% Ephemeroptera” had less sites 

exceed the optimum range at the genus level. For the metrics “% Plecoptera + Trichoptera less 

Hydropsychidae” and “% Scrapers”, less sites exceeded the optimum range at the family level 

and less sites achieved the optimum range at the family level. Thus, it is unclear for these two 

metrics which taxonomic level is optimal.  In general, richness metrics responded equally to both 

levels of taxonomic resolution, neither adequately estimating the sample richness.  The 

proportion metrics varied, but the majority favored family level over genus level taxonomy. 

 The cost:benefit ratio of stream bioassessment requires that the cost of sampling, 

processing and analyzing the samples be considered relative to the need for accuracy and 

precision in the final VSCI score for each sampled site. To provide the highest level of precision 

and accuracy, all individuals in a sample would need to be removed and included in the data set.  

This is generally not possible given agency budgets and time constraints, with the cost per 
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sample exceeding allowable costs within the cost:benefit ratio balance.  Optimum subsampling 

intensities thus were calculated for each metric, at both the family and genus levels of taxonomy, 

under the assumption that a lower optimum subsampling intensity would provide a more 

appropriate cost:benefit ratio.  

Optimum subsampling intensities for samples with fewer than 500 individuals and 

identified at the genus level of taxonomy were lower or the same for all metrics compared to the 

family level of taxonomy.  However, for samples with greater than 1000 individuals, the 

optimum subsampling intensities at the genus level of taxonomy were higher than for the family 

level for the majority of the metrics. Richness metrics and percent scraper metric had lower 

optimum subsampling intensities at the genus level than the family level of taxonomy, most 

likely due to rarer species causing more variability at the family level.  For the majority of the 

proportion metrics, the family level of taxonomy provided the lower optimum subsampling 

intensity for the majority of the proportion metrics when processing the larger samples.   

The majority of the optimum subsampling intensities, at both the family and genus level 

of taxonomy, were well over 50% of the total sample size, with some as high as 100%.  While 

the optimum subsampling intensities were valuable in comparing family and genus level 

taxonomy, they are not reasonable for stream bioassessment protocols, as the cost:benefit ratio 

would be highly unbalanced.  Therefore, it would be difficult to determine the level of taxonomic 

resolution better suited for subsampling without first knowing the total number of individuals in 

the sample.  The required level of taxonomic resolution should be dependent on the study 

objectives, whereas family level resolution was deemed adequate for determining impairment 

levels in a variety of studies along physiographic and environmental gradients (Resh and 

McElravy 1993, Bowman and Bailey 1998, Bailey et al. 2001, Lenat and Rash 2001, Pond and 
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McMurray 2002, Chessman et al. 2007), other studies determined that genus level resolution was 

more effective in determining anthropogenic effects on macroinvertebrate diversity (Pfrender et 

al. 2010).  

In conclusion, a minimum subsample size of 200 individuals is optimum for determining 

VSCI scores, while the optimum taxonomic resolution is dependent on several factors.  Thus, the 

level of taxonomic resolution for a particular study should be determined by the study objectives, 

level of site impairment and sample size. 
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