
Virginia Commonwealth University
VCU Scholars Compass

Theses and Dissertations Graduate School

2014

Spatial Scheduling Algorithms for Production
Planning Problems
Sudharshana Srinivasan
Virginia Commonwealth University

Follow this and additional works at: http://scholarscompass.vcu.edu/etd

Part of the Applied Mathematics Commons

© The Author

This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in
Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.

Downloaded from
http://scholarscompass.vcu.edu/etd/3406

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VCU Scholars Compass

https://core.ac.uk/display/51290287?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fetd%2F3406&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fetd%2F3406&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu?utm_source=scholarscompass.vcu.edu%2Fetd%2F3406&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F3406&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/gradschool?utm_source=scholarscompass.vcu.edu%2Fetd%2F3406&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F3406&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=scholarscompass.vcu.edu%2Fetd%2F3406&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd/3406?utm_source=scholarscompass.vcu.edu%2Fetd%2F3406&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu

c©Sudharshana Srinivasan, May 2014

All Rights Reserved.

SPATIAL SCHEDULING ALGORITHMS FOR PRODUCTION PLANNING

PROBLEMS

A Dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at Virginia Commonwealth University.

by

SUDHARSHANA SRINIVASAN

Master of Science in Applied Mathematics

Virginia Commonwealth University, May 2011

Director: Dr. J. Paul Brooks,

Associate Professor, Department of Statistics and Operations Research

Virginia Commonwewalth University

Richmond, Virginia

May, 2014

In loving memory of Amma. You are, and will always remain,

my hero.

Acknowledgements

I embarked upon an educational journey five years ago, without the faintest idea

on how to arrive at my destination. I was fortunate to meet the right people at the

right time in the right places, who gave me the right direction. This work would not

have been possible without the support and assistance provided by these wonderful

individuals and I would like to take this opportunity to express my sincerest gratitude

to them. Listing every person that showed me the way would fill volumes. Hence I

will mention a chosen few and leave the rest in a special place in my heart.

First and foremost, I want to thank my advisors, who have been instrumental in

the successful completion of my defense and dissertation. Dr. Jill Wilson, has been

a role model for me ever since I started graduate school. She got me interested in

operations research and specifically in the exciting area of scheduling. She has always

been supportive not only academically, but also emotionally through the rough road

to finish this thesis. Dr. Paul Brooks helped me find my dissertation topic and guided

me as I inched toward the finish line. I consider myself extremely lucky to have been

counseled by these two very remarkable professors. Their expert and valuable insights

have made me pursue approaches that I might not have otherwise considered and their

careful reading of this document helped me refine my work and its presentation.

I would like to thank the members of my doctoral committee, Dr. David Edwards, Dr.

Jose Dula, and Dr. Yongjia Song, for taking an interest in evaluating my work and

for their time and contribution in helping me finish this last part of my dissertation.

I also want to extend my gratitude to Dr. Jason Merrick for having faith in my

ability to undertake and complete the doctoral program and for being a constant

source of encouragement throughout these years in graduate school. I wish to express

my appreciation to Dr. D’Arcy Mays for being the most approachable and cheerful

ii

administrator I have known.

The support and advice from peers and friends made taking classes and tests less of

an ordeal. I owe my gratitude to my fellow students, Toni, Ben, Phil, and Derrick,

for making this ride memorable. To my ‘lab mates’, Shaun, Robert, Jacob, Eric,

and Chris, thank you guys, you officially made friday mornings more enjoyable and

productive.

Words are insufficient to convey the emotions I experience when I think of my families.

I am forever obliged to the Sorrels, Toni, Calvin, and little Ben, for adopting me and

for being my home away from home. I cannot imagine having survived thus far

without them. My heartfelt thanks to Aai and Baba, your unconditional love and

support provided much needed motivation. I am truly blessed to have become a part

of such a lovely family. Finally, a great big hug and thank you to the two most

important men in my life - Appa and Advait. Appa you have always believed in me

and have given me the freedom to write my own story. Thank you for tolerating my

teenage years, for teaching me to be independent, and for being the coolest dad on the

planet. Advait, thanks for being amazing, for being there for me when it matters, and

for your infinite patience. Your love and encouragement has helped me sail through

all the good times and the bouts of frustration, for that I will be eternally indebted.

iii

TABLE OF CONTENTS

Chapter Page

Acknowledgements . ii

Table of Contents . iv

List of Tables . v

List of Figures . vii

Abstract . ix

1 Introduction . 1

1.1 Motivation . 1

1.2 Problem Description . 4

1.3 Fundamental Concepts . 5

1.3.1 Integer programming . 5

1.3.2 Computational Complexity 7

1.3.3 Approximation Algorithms 7

2 Spatial Scheduling Problem . 9

2.1 Introduction . 9

2.2 Background . 10

2.3 Formulation . 13

2.3.1 Time-indexed Formulation 14

2.3.2 General Mixed-Integer Programming Formulation 15

2.4 Special Cases . 16

2.5 Methodology . 17

3 Batch-scheduling . 19

3.1 Introduction . 19

3.1.1 Forming the Batches . 23

3.1.1.1 Iterative model . 24

3.1.1.2 Efficient Area model 26

3.1.2 Scheduling the batches . 28

3.1.3 Post processing algorithm . 28

iv

3.2 Performance Analysis . 30

3.3 Computational Analysis . 34

3.3.1 Instance Generation . 34

3.3.2 Valid Values for T . 35

3.3.3 Initial feasible solution heuristic 36

3.3.4 Computational Results . 38

4 List-scheduling approach . 42

4.1 Introduction . 43

4.2 Generating the schedule . 44

4.3 Performance Analysis . 46

4.4 Upper bounds . 49

4.5 Computational Results . 49

5 Conclusions . 53

Appendix A Batch-scheduling heuristic performance 56

Appendix B List-scheduling heuristic performance 60

References . 62

Vita . 69

v

LIST OF TABLES

Table Page

1 Sample instance of the spatial scheduling problem 9

2 Example instance with three jobs such that only jobs 1 and 3 simul-

taneously fit the space . 20

3 SSP instance with N=6 jobs to depict that grouping more jobs in a

batch does not guarantee lower objective value 33

4 Problem size comparisons between M1, M2, and original SSP MIP

models for N job instances . 36

5 Comparison of objectives obtained from M1, M2, and OPT for small

instances of batch-scheduling . 39

6 Comparison of M1, M2, and OPT runtimes for small instances of

batch-scheduling . 39

7 Comparison of objectives obtained from M1, M2, and ZIP for large

instances of batch-scheduling . 40

8 Comparison of M1, M2, and ZIP runtimes for large instances of batch-

scheduling . 40

9 An example to motivate the need for list-scheduling by area and pro-

cessing time . 42

10 Comparing the objective values obtained from greedy heuristic, list-

scheduling product version, and ZIP for instances of SSP 50

11 Comparing runtimes for greedy heuristic, list-scheduling algorithm,

and ZIP while solving instances of SSP 51

12 Comparison of objective values obtained using M1 and M2 with ZIP

for SSP instances with 5 jobs . 56

vi

13 Comparison of objective values obtained using M1 and M2 with ZIP

for SSP instances with 5 jobs . 57

14 Runtimes in seconds for M1, M2, and ZIP when solving SSP instances

with 5 jobs . 58

15 Runtimes in seconds for M1, M2, and ZIP when solving SSP instances

with 10 jobs . 59

16 Comparison of objective values obtained using greedy heuristic and

product version of list-scheduling algorithm with ZIP for SSP instances

with 5 jobs . 60

17 Comparison of objective values obtained using greedy heuristic and

product version of list-scheduling algorithm with ZIP for SSP instances

with 10 jobs . 61

vii

LIST OF FIGURES

Figure Page

1 Depicting the motivation for spatial scheduling with jobs each requir-

ing two time units scheduled over a two-day horizon 11

2 Batching sequence for example with three jobs 20

3 Sequence in which batches are scheduled for Proposition1 21

4 Comparing strategies for sequencing batches 22

5 Example schedule with two and three jobs in a batch 33

6 List-scheduling algorithm attempts to find the same four contiguous

width and three contiguous height units for two consecutive time slots . . 44

viii

Abstract

SPATIAL SCHEDULING ALGORITHMS FOR PRODUCTION PLANNING

PROBLEMS

By Sudharshana Srinivasan

A Dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2014.

Director: Dr. J. Paul Brooks,

Associate Professor, Department of Statistics and Operations Research

Spatial resource allocation is an important consideration in shipbuilding and

large-scale manufacturing industries. Spatial scheduling problems (SSP) involve the

non-overlapping arrangement of jobs within a limited physical workspace such that

some scheduling objective is optimized. Since jobs are heavy and occupy large areas,

they cannot be moved once set up, requiring that the same contiguous units of space

be assigned throughout the duration of their processing time. This adds an addi-

tional level of complexity to the general scheduling problem, due to which solving

large instances of the problem becomes computationally intractable. The aim of this

study is to gain a deeper understanding of the relationship between the spatial and

temporal components of the problem. We exploit these acquired insights on problem

characteristics to aid in devising solution procedures that perform well in practice.

Much of the literature on SSP focuses on the objective of minimizing the makespan

of the schedule. We concentrate our efforts towards the minimum sum of comple-

tion times objective and state several interesting results encountered in the pursuit

ix

of developing fast and reliable solution methods for this problem. Specifically, we de-

velop mixed-integer programming models that identify groups of jobs (batches) that

can be scheduled simultaneously. We identify scenarios where batching is useful and

ones where batching jobs provides a solution with a worse objective function value.

We present computational analysis on large instances and prove an approximation

factor on the performance of this method, under certain conditions. We also provide

greedy and list-scheduling heuristics for the problem and compare their objectives

with the optimal solution. Based on the instances we tested for both batching and

list-scheduling approaches, our assessment is that scheduling jobs similar in processing

times within the same space yields good solutions. If processing times are sufficiently

different, then grouping jobs together, although seemingly makes a more effective use

of the space, does not necessarily result in a lower sum of completion times.

x

CHAPTER 1

INTRODUCTION

1.1 Motivation

Everyday we are confronted by the logistical challenges in planning and alloca-

tion of resources (human, material, or a physical quantity) to tasks; examples include

the scheduling of processors to jobs in a computing environment, effectively allocating

personnel to a project, generating timetables for a school, creating airline schedules,

and reserving operating rooms for surgeries. Traditional scheduling problems create

schedules that efficiently utilize resources to complete tasks while minimizing some

objective criterion. The objective functions encountered in scheduling literature can

be broadly classified into min-sum or min-max objectives. For example, minimizing

the makespan and minimizing maximum lateness are min-max objectives, while mini-

mizing the (weighted) sum of completion or start times of jobs is a min-sum objective.

The problems are classified using the three-field classification scheme introduced by

Graham et al. 1979, which specifies the machine environment, job characteristics, and

optimality criterion for the problem. Further variations to the problems are created

by including or excluding, one or more, of the following characteristics:

1. Online scheduling: Job characteristics are known as and when jobs become

available.

2. Precedence of jobs: A job cannot be processed until certain other jobs have

completed.

3. Pre-emption: Jobs can be interrupted and resumed at any given time.

1

4. Due-dates and release-dates: Jobs can be processed only after they are released

and have to be processed prior to their due dates. Sometimes tardy jobs are

permitted, but penalized.

5. Additional resources: Renewable resources are limited within each time period

and replenished at the end of the time period. Equipment and labor are some of

the classic examples for renewable resources. Nonrenewable resources, such as

capital budget, are limited over the overall planning horizon, but not restricted

within each time period.

There are many results on the complexity of these problems under different conditions

(Garey, Johnson, and Sethi 1976; Lenstra, Rinnooy Kan, and Brucker 1977). The com-

plexity in solving these problems and diversity in their applications have given rise to

varied solution methodologies (Baker 1974; Coffman Jr 1976; Pinedo 2008; Lawler

et al. 1993; Brucker 2001). While some approaches are exact, others are designed

to provide fast, cheap, and reliable solutions. Various general integer programming

formulations have been proposed for discrete scheduling problems (Queyranne and

Schulz 1994; Dyer and Wolsey 1990). One of the notable exact methods used to solve

these mathematical models is the branch and bound method (Land and Doig 1960).

Essentially, branch and bound algorithms use lower and upper bounds on the optimal

objective value to control the enumeration of its solutions. Often such procedures be-

come computationally intractable with an increase in problem size. Hence, there is

a need to develop alternative methods that produce near-optimal solutions in poly-

nomial time. Approximation algorithms (AA) deliver solutions with provable quality

that are bounded in runtime. Heuristics, in contrast, generate quick solutions without

any provable performance guarantees.

2

In the past 50 years, there has been a great deal of work on developing AA for

NP hard optimization problems, specifically scheduling problems (Hochbaum 1997;

Vazirani 2001). Encouraged by this successful application of AA to scheduling prob-

lems (Lee and Chen 2009; Savelsbergh, Uma, and Wein 1998; Hall et al. 1997), this

thesis aims to construct approximation algorithms for the spatial scheduling problem

with the objective to minimize the sum of completion times. Spatial scheduling prob-

lems involve the assignment of a spatial resource along with conventional temporal

attributes. Therefore, the solutions should not only specify starting times for each

job, but also locations for the placement of jobs on a physical workspace. The mo-

tivation for the choice of our objective is two-fold. First, within the realm of spatial

scheduling problems, much energy is devoted to studying methods for minimizing the

‘makespan’ or total project duration (Perng, Lai, and Ho 2009; Zheng et al. 2011;

Koh et al. 2011; Zhang and Chen 2012; Caprace et al. 2013). Results for other ob-

jectives are scarce (Garcia and Rabadi 2011; Kolisch 2000) and to the best of our

knowledge this is the first study to consider the sum of completion times objective.

Second, when jobs are independent and competing for the same resource, the cost

associated with individual completion times becomes more relevant and natural (Le-

ung, Kelly, and Anderson 2004). For example, inventory systems may require that

certain products with higher overheads per time be processed ahead of others.

The process of designing AA is similar to that of exact algorithms. In order

to design reliable algorithms with good performance guarantees, we need to gain an

understanding of the structure of the problem. Therefore we concentrate our efforts in

examining the simplest form of the problem by considering a workspace area of fixed

dimensions. We disallow precedence constraints, due-dates, rotation of jobs, and set-

up times. By doing so, we are able to focus on the relationship between the spatial and

3

temporal components in the problem and gain a better understanding of the problem

characteristics. The insights acquired by studying the simple problem can enable us

to devise algorithms that perform well in practice. The remainder of this section

briefly describes the spatial scheduling problem, provides relevant background, and

reviews the fundamental concepts used in subsequent chapters of this dissertation.

1.2 Problem Description

In large-scale production and manufacturing industries, the assembly line in-

volves scheduling jobs that each require a certain amount of two-dimensional space

within a limited physical workspace. This requires that the schedule not only assign

starting times to each job, but also locations and orientations. It is also important

to ensure that jobs are assigned the same contiguous units of space throughout the

duration of their processing. Thus, any solution to this problem attempts to answers

the following questions:

(a) When to schedule the jobs? (Temporal component)

(b) Where to schedule the jobs? (Spatial component)

Mathematically, the spatial scheduling problem is described as follows: Given a

set J of jobs with fixed processing times pj, height hj, and width wj for each j ∈ J

and a workspace B of height H and width W ; does there exist a schedule of the

jobs that minimizes the given objective criterion such that the spatial and temporal

restrictions in each time period are satisfied? While the spatial restrictions ensure

that jobs collectively fit within the physical workspace, the temporal constraints in-

volve conditions (if present) on the starting times of the jobs. Common objectives

include minimizing total project duration (min-max objective) or minimizing the av-

erage time to complete individual jobs (min-sum objective). The number of tasks,

4

nature of the resources (renewable or non-renewable), and constraints (precedence of

tasks, due-dates, or limitations on availability) add to the complexity of the schedul-

ing problem.

Throughout the remainder of this thesis we study the spatial scheduling problem

for the objective of minimizing the sum of completion times (denoted by Z). We

disallow precedence constraints, due-dates, rotation of jobs, and set-up times. We

will hereafter refer to this variation of the problem as SSP.

1.3 Fundamental Concepts

In this section we present relevant background information on the concepts used

in the subsequent chapters of this dissertation. The information presented here can

be found in Garey and Johnson 1979, Nemhauser and Wolsey 1988, Vazirani 2001,

and Williamson and Shmoys 2010. In what follows, we denote linear programming

or linear program as LP, integer programming or integer program as IP, and mixed-

integer programming or mixed-integer program as MIP.

1.3.1 Integer programming

Mathematical programming is a modeling technique that assists in making deci-

sions to address real-world problems. The decisions are modeled as unknown variables

and the objective, a function of the decision variables, represents the best possible so-

lution for the model. The restrictions on decisions being made express the constraints

or mathematical inequalities of the problem. Given a vector c ∈ Rn and b ∈ Rm, and

a matrix A ∈ Rmxn, we want to find a vector x ∈ Zn that solves the following integer

linear program:

5

min cTx

s.t.Ax ≥ b

x ∈ Zn

Relaxing the integrality constraints produces an LP. MIPs use a combination of

integer and real-valued variables. The integrality constraints help capture the discrete

nature of certain decisions. Both linear and integer programs seek to find an optimal

assignment of values to the variables that satisfy the constraints while minimizing

or maximizing a linear objective function. LPs are solved using the simplex method

(Dantzig 1965) or barrier methods (Karmarkar 1984) and the approach to solving

(mixed) integer programs is with the use of branch and bound algorithms, first intro-

duced by Land and Doig 1960. The algorithm performs controlled enumeration of the

solution space with the use of lower and upper bounds on the optimal solution. The

first step is to remove the integrality constraints in the original problem, resulting in

an LP relaxation of the problem. Upon solving the relaxation, if we obtain integral

solutions, without explicitly imposing them, we have obtained an optimal solution.

If not, as is usually the case, we partition the set of integer solutions into two disjoint

sets. This is referred to as a variable dichotomy branching strategy. For example, if

an integer variable, say x, has a value of 5.6 in the relaxation, we partition the set of

variables into two sets: one with x ≥ 6 and x ≤ 5. The two new problems created

by branching on variable x are solved and the optimal solution for the problem is the

better solution among the two subproblems. We continue the process of enumeration

as we build a search tree by selecting different branching variables. The algorithm

terminates when all the subproblems are solved or fathomed. Although the subprob-

6

lems we are attempting to solve are LPs, using the branch and bound algorithm can

take long due to the sheer number of subproblems being solved. One of the ways

to optimize the procedure and speed up the process is by using upper bounding (for

minimization problems) heuristics or approximation algorithms.

1.3.2 Computational Complexity

Computational complexity theory classifies decision problems based on the in-

herent difficulty in solving them computationally. Class P contains problems with

instances that can be solved and verified in polynomial time. In other words, the

worst-case running-time for these algorithms is polynomial in size of the input. Some-

times we may not have an efficient (polynomial time) algorithm for a problem, however

if given a solution we may be able to verify its accuracy in polynomial time. These

problems are defined as non-deterministic polynomial-time (NP) problems. A prob-

lem p is said to be NP-complete if is it in NP and if every other problem in NP is

reducible to p. Many combinatorial optimization problems have been shown to be

NP-complete by reductions from known NP-complete problems (Garey and Johnson

1979). Approximation and parameterization techniques are commonly used to find

reasonable solutions for such problems.

1.3.3 Approximation Algorithms

Although Johnson 1974 coined the term “approximation algorithm”, earlier

papers had proved the performance guarantees of heuristics (Graham 1966). Ap-

proximation algorithms deliver solutions with provable quality that are bounded in

runtime. Suppose we wish to solve an NP-hard minimization problem consisting of

instances in I. Let z(I)=min{cIx : x ∈ SI} ∀I ∈ I. Let A be an algorithm that

operates on instances in I, and let A(I) be the objective value resulting from the

7

application of A to I. Let ρ ≥ 1.

Definition 1 A is a ρ-approximation algorithm for I if for each I ∈ I, A runs in

time polynomial in the size of I, and A(I) ≤ ρz(I). A is said to have a factor ρ, also

referred to as the performance guarantee of A.

Observe that we compare the objective value obtained by the application of the

algorithm to instance I with the optimal objective value z(I) for that instance. In

practice, however, this is not possible, because if z(I) is known then there would be

no need to approximate it. To overcome this issue and calculate ρ, we compare A(I)

with a lower bound for z(I), say L(I). Lower bounds can be obtained using LP or

combinatorial relaxations. Since L(I) ≤ z(I) we have,

A(I) ≤ ρL(I) =⇒ A(I) ≤ ρz(I).

8

CHAPTER 2

SPATIAL SCHEDULING PROBLEM

In this chapter we describe the spatial scheduling problem and present mathematical

formulations for SSP. We also survey the literature and present our approaches in

developing solution methodologies for the problem.

2.1 Introduction

Spatial scheduling is often an important consideration in large-scale manufactur-

ing and production industries. Assembly units are often heavy, occupy large areas,

and cannot be relocated easily. Therefore they require a fixed quantity of physical

space throughout the duration of processing time. Since workspace area available at

such facilities is limited, assembly lines need to consider efficient utilization of spa-

tial resources along with temporal considerations common to traditional scheduling

problems. For example, if we have a workspace of 25 square units, and three jobs

with characteristics as specified in Table 1, we would like to find starting times and

a layout of the jobs within the given space that minimizes the sum of the completion

times objective.

Table 1. Sample instance of the spatial scheduling problem

Job Width Height ProcessingTime

1 2 1 2
2 2 2 2
3 4 3 2

9

2.2 Background

Spatial scheduling problems have been studied in recent years, mostly in the

context of shipbuilding (Lee et al. 1997; Park et al. 1996; Cho et al. 2001; Raj and

Srivastava 2007). Modern day ship building practices use prefabricated sections or

‘blocks’. These super-structures that occupy large spaces are built elsewhere in the

yard and then transported to the building dock for assembly. This is known as ‘block

construction’. The shipbuilding facilities usually have a limitation of the space they

can provide. Hence they require an optimal method of spacing the assemblies and

the equipment required. There are also temporal restrictions such as deadlines and

due-dates. Thus, this problem is ideal for spatial scheduling. Figure 1 shows the

layout of jobs before and after applying spatial scheduling solution procedures. We

can see that initially the space is not utilized effectively and some jobs are waiting to

be processed. On applying some spatial scheduling method, we get a better utilization

of the space and no delays in processing of jobs.

Pioneering work in this area began between 1991 and 1993, when the Daewoo

Shipbuilding Company and Korea Advanced Institute of Science and Technology

jointly initiated the DAewoo Shipbuilding Scheduling (DAS) project to develop in-

novative scheduling systems that improve productivity and efficiency. Lee et al.

1997 applied the two-dimensional arrangement of convex polygons at the Daewoo

shipyard. Park et al. 1996 extended this work and applied it at the block painting

shop in the Hyundai shipyard. Cho et al. 2001 included failure blocks, the blocks

that are scheduled but are not worked upon and workload balancing constraints that

guaranteed an even distribution of workload on the equipment available. The solu-

tion system for the block painting process includes an operation strategy algorithm, a

block-scheduling algorithm, a block arrangement algorithm, and a block assignment

10

Fig. 1. Depicting the motivation for spatial scheduling with jobs each requiring two

time units scheduled over a two-day horizon

algorithm. Garcia 2010 considers a class of spatial scheduling problems that involve

scheduling each job into one of several possible processing areas in parallel to mini-

mize total tardiness. The authors suggest an integer programming formulation and a

strip-packing based heuristic to solve the problem. Raj and Srivastava 2007 give a

mixed-integer programming model to describe the spatial scheduling problem. They

make assumptions about the orientations of the blocks and use three-dimensional

bin-packing approaches to analyze data collected from an Indian shipyard. They also

discuss applications of stacking goods in shelves in large retail stores.

Mullen and Butler 2000 present the design of a spatially constrained harvest-

scheduling model that uses a genetic algorithm as the optimization technique. A

single unit of a forest area containing relatively uniform species composition is re-

ferred to as a stand. The genetic algorithm specifies the order by which to place

11

stands in the schedule by evaluating the population of permutations of the stand

identification numbers. Spatial goals are becoming more frequent aspects of forest

management plans with changes in regulatory and organizational policies. Enhanc-

ing these operations will benefit a variety of economic and conservation objectives.

Boston and Bettinger 2001 discuss the addition of green-up constraints, that is, har-

vesting restrictions that prevent the cutting of adjacent units for a specified period

of time, suggesting the application of spatial schedules to forest plans. The authors

discuss a two-stage method that in one stage uses linear programming to assign vol-

ume goals, and in a second stage uses a tabu search genetic algorithm technique to

minimize the deviations from the volume goals while maximizing the present net rev-

enue. BoWang and Gadow 2002 present a multi-objective function consisting of a

timber component and a spatial component. The model is solved using the method of

simulated annealing. It is shown that adjusting the adjacency matrix for the stands

generates a variety of spatial harvesting patterns.

Much of the literature focuses on approaches with the objective of minimizing

the makespan or maxj∈J Cj, where Cj denotes the completion time of job j in a given

schedule (Perng, Lai, and Ho 2009; Zheng et al. 2011; Koh et al. 2011; Zhang and

Chen 2012; Caprace et al. 2013). Garcia and Rabadi 2011 provide a meta heuristic

algorithm to minimize the total tardiness for instances with release dates and multiple

processing areas. Kolisch 2000 develops a MIP-formulation and list-scheduling algo-

rithm that minimizes the weighted sum of tardiness for assembly scheduling problems

in the presence of part availability constraints and a spatial resource. While the ap-

plications listed above are by no means comprehensive, they demonstrate the value in

investigating this problem. The remainder of this document discusses the approaches

taken in the pursuit of finding reliable and efficient solution methods for SSP.

12

2.3 Formulation

In this study, we consider SSP which involves scheduling a set J of jobs to mini-

mize the sum of completion times (Z) such that the jobs fit within the limited physical

workspace B of height H and width W . Each job j ∈ J requires a space of height hj

and width wj over its processing time pj. Without loss of generality we assume that

the problem data is integer-valued.

In the presentation that follows, we describe two mathematical formulations of

SSP; a time-indexed formulation and a general MIP formulation. Time-indexed for-

mulations are known to serve as good guides for developing approximation algorithms

as they provide strong lower bounds for LP relaxations of scheduling problems (Akker,

Van Hoesel, and Savelsbergh 1999; Phillips, Stein, and Wein 1998; Savelsbergh, Uma,

and Wein 1998; Goemans 1997; Hall et al. 1997; Sousa and Wolsey 1992). The disad-

vantage of using these formulations are their size; even small instances have a large

number of variables and constraints (Akker, Hurkens, and Savelsbergh 2000). Al-

though decomposition techniques and other cut generation schemes may be used to

alleviate some of the computational difficulties encountered (Akker, Hurkens, and

Savelsbergh 2000; Lee and Sherali 1994) while implementing these formulations, since

our goal is to find solutions quickly we chose the alternate formulation. Note that

both formulations presented here minimize the sum of starting times. The sum of

completion times objective used in our analysis ZOPT is then obtained by adding∑
j∈J pj to the optimal objective obtained from solving these models.

13

2.3.1 Time-indexed Formulation

The following time-indexed formulation is based on the one provided in Hardin,

Nemhauser, and Savelsbergh 2008. Our motivation in creating this formulation is

to analyze the polyhedral structure of the problem and potentially identify valid

inequalities for the problem.

min
∑
j∈J

∑
t∈T

∑
x∈X

∑
y∈Y

rxytj (2.1)

subject to:

∑
j∈J

qxytj ≤ 1 ∀x ∈ X, y ∈ Y, t ∈ T (2.2)

∑
t∈T

∑
x∈X

∑
yinY

rxytj = 1 ∀j ∈ J (2.3)

x+wj−1∑
x′=x

qx′ytj ≥ wjrxytj ∀x ∈ X, y ∈ Y, t ∈ T, j ∈ J (2.4)

y+hj−1∑
y′=y

qxy′tj ≥ hjrxytj ∀x ∈ X, y ∈ Y, t ∈ T, j ∈ J (2.5)

t+pj−1∑
t′=t

qxyt′j ≥ pjrxytj ∀x ∈ X, y ∈ Y, t ∈ T, j ∈ J (2.6)

rxytj , qxytj ∈ {0, 1} ∀x ∈ X, y ∈ Y, t ∈ T, j ∈ J (2.7)

where,

J is the set of all jobs

T is the set of all the discretized units of time when a job can be scheduled

X is the set of all possible x-coordinate points that discretize the width of the

workspace

Y is the set of all possible y-coordinate points that discretize the height of the

workspace

14

rxytj =

 1 if job j starts at time t at location (x,y)

0 otherwise

qxytj=

 1 if job j is processing at time t at location (x,y)

0 otherwise

For x ∈ X, y ∈ Y , t ∈ T , and j ∈ J

ZOPT is obtained by adding
∑

j∈J pj to the objective in (2.1). Constraint (2.2) en-

sures that there is only be one job that is processing at any given time and location

and constraint (2.3) guarantees that each job starts exactly once. The constraints

(2.4-2.6) relate the starting time of the jobs with the time periods that the job is

processing. If a job j starts at time t at location (x, y), then it must be processing

until time period t+ pj − 1 at locations x to x+ wj − 1 and y to y + hj − 1.

2.3.2 General Mixed-Integer Programming Formulation

The following mixed-integer programming formulation based on two dimensional

bin packing problem has been adapted from Garcia 2010.

min
∑
j∈J

zj (2.8)

subject to:

−xi + xj −Wαij ≥ −W + wi ∀i, j ∈ J, i 6= j (2.9)

−yi + yj −Hβij ≥ −H + hi ∀i, j ∈ J, i 6= j (2.10)

−zi + zj − Tγij ≥ −T + pi ∀i, j ∈ J, i 6= j (2.11)

αij + αji + βij + βji + γij + γji ≥ 1 ∀i, j ∈ J, i 6= j (2.12)

−xi − wi ≥ −W ∀i ∈ J (2.13)

−yi − hi ≥ −H ∀i ∈ J (2.14)

xi, yi, zi ≥ 0 ∀i ∈ J (2.15)

αij , βij , γij ∈ {0, 1} ∀i, j ∈ J (2.16)

where,

15

J is the set of all jobs

xj is the x-coordinate of job j ∈ J

yj is the y-coordinate of job j ∈ J

zj is the z-coordinate (start time) for job j ∈ J

αij =

 1 if no overlap occurs between jobs i and j in the x direction

0 otherwise

βij =

 1 if no overlap occurs between jobs i and j in y direction

0 otherwise

γij =

 1 if no overlap occurs between jobs i and j in z direction

0 otherwise

For i, j ∈ J

Here, T is an upper bound on the makespan of the schedule. ZOPT is obtained by

adding
∑

j∈J pj to the objective in (2.8). Constraints (2.9)-(2.12) prevent overlap from

occurring in the x (width), y (height), and z (time) dimensions. We use constraints

(2.13) and (2.14) to ensure that the jobs are confined to the physical dimensions of

the workspace.

2.4 Special Cases

The original motivation for studying SSP was to better understand the relation-

ships between the spatial and temporal components of the problem. The following

special cases of SSP have interesting applications and we anticipate that some of our

results can aid in developing solution methods for these problems or vice-versa.

1. Bin Packing

Given a set J of items, the bin packing problem attempts to find the minimum

number of bins of capacity H required to hold the items so that each item is

16

contained in exactly one bin. In an instance of SSP if we normalize processing

times and widths of jobs such that pj = 1 and wj = 1, ∀j ∈ J and W = 1, then

solutions to SSP can be viewed as solutions to the bin packing problem, where

bins of size H correspond to the the time periods in the schedule and items of

size hj,∀j ∈ J correspond to the jobs.

2. Single Machine Scheduling

Instances of SSP with wj = W and hj = H, ∀ jobs j ∈ J reduce to instances

of single machine scheduling problems, where jobs consume all of the available

spatial resource during each time period that its processing.

3. Uniform Resource-Constrained Scheduling

Let us consider the set of instances of SSP with hj = H, ∀ jobs j ∈ J .This

is the sequential processor task-scheduling problem or the uniform resource-

constrained scheduling problem (URCSP). Each job j ∈ J requires a set of

sequential processors wj over their processing time pj. There is a constant

amount W of the resource (processors) available at every time period. We

are interested in finding a schedule of the jobs that adheres to the resource

constraints for the minimum sum of completion times objective.

2.5 Methodology

Allocating adjacent resources (spatial or otherwise) is a difficult problem. Such

problems arise in resource allocation applications such as berth allocation for ships

(Lee and Chen 2009). Duin and Sluis 2006 study the adjacency requirement for

check-in counters at airports. For each flight in a given planning horizon, a feasible

assignment of adjacent desks to flights is required where the objective is to mini-

mize the total number of desks involved. They show that minimizing the number of

17

counters, given the number of counters needed at each time slot for each flight, is

NP-hard. Further in SSP, the two-dimensional resource is actually a single spatial re-

source, i.e. the length and width of jobs are not independent of each other and have to

be assigned simultaneously in contiguous units. Unlike some other resources, physical

space is neither divisible nor distributable making the design of solution procedures

for the spatial scheduling problem harder. Therefore, solving large instances of the

problem using exact methods becomes computationally intractable. This presents a

need for developing methods that yield quick and provably good solutions. Heuristic

procedures and approximation algorithms have long been used to provide reasonable

solutions for real-world problems, which is the direction we pursue in finding solution

methods for SSP.

SSP can be imagined as a combination of a scheduling and a packing prob-

lem. We require that jobs be packed within a two-dimensional space such that some

scheduling objective is minimized. Although packing and scheduling problems have

diverse applications, the similarities in their mathematical structures and integrating

classifications have been studied in the past (Monaci 2003; Hartmann 2000; Coffman,

Garey, and Johnson 1978). As discussed earlier, approaches for the minimum sum of

completion times (Z) objective are scarce. To this end, we consider approaches based

on packing (iterative and efficient area models) and list-scheduling (product and ratio

methods) to construct approximation algorithms for SSP that minimize Z. Detailed

descriptions of these methods and analysis of their results are found in Chapters 3

and 4.

18

CHAPTER 3

BATCH-SCHEDULING

3.1 Introduction

The spatial component of SSP makes understanding solution methods for multi-

dimensional packing problems, particularly bin packing and strip-packing problems,

both relevant and crucial. Lodi, Martello, and Monaci 2002 provide a survey of the

the models and algorithms used to solve the two-dimensional bin packing (2DBP)

problem. Batch-scheduling originated from the problem of scheduling ‘burn-in’ oper-

ations at large-scale integrated circuit manufacturing (Lee, Uzsoy, and Martin-Vega

1992; Brucker et al. 1998). Mathirajan and Sivakumar 2006 survey the literature for

scheduling of batching processors in the semi-conductor industry. The central idea

in batch-scheduling is grouping similar jobs together to form a ‘batch’. All jobs in a

batch start at the same time and the next batch starts upon completion of the longest

job in the previous batch. The processing time of a batch is equal to the largest pro-

cessing time of any job in the batch. Our goal is to utilize ideas from 2DBP to design

batch-scheduling strategies that solve large instances of SSP. This approach let us

reduce the complexity of the problem by relaxing the temporal constraints in the

original problem.

Assume we have a set J of N jobs such that p1 ≤ p2 ≤ · · · ≤ pN . When all the

jobs fit in the space simultaneously, irrespective of the difference in their processing

times pj they are placed in the same batch. So Z =
∑

j∈J pj. If none of the jobs

simultaneously fit the space, SSP reduces to single machine scheduling (SMS). Then

19

each job is its own batch and Z =
∑N

j=1

∑j
i=1 pi. Smith 1956 proved that ordering

jobs in the nondecreasing sequence of their processing times is optimal for SMS. In

general, while minimizing the sum of completion times, the more jobs we can fit earlier

in our schedule the lower the objective. Therefore, it seems intuitive to always group

jobs together rather than assign them to individual batches. Consider an instance of

SSP with W=H=3 and job data as given in Table 2. We see that jobs 1 and 3 are

the only jobs that fit the space simultaneously.

Table 2. Example instance with three jobs such that only jobs 1 and 3 simultaneously

fit the space

Job Width Height

1 3 2
2 2 3
3 3 1

Let the processing times [p1, p2, p3] = [2, 3, 7] and let us assume we schedule

the batch with the lowest processing time first. We define batch processing time as

the maximum processing time of jobs in a batch. Therefore, the batch sequence is

{2} and {1, 3} as seen in Figure 2(a). Then the objective value for batched jobs is

calculated as Z = p1 + 3p2 + p3 =2 + 9 + 7 = 18. Alternately, if we schedule the

batches in their own batch, the sequence is {1}, {2}, {3} as seen in Figure 2(b) and

Z = 3p1 + 2p2 + p3 = 6 + 6 + 7 = 19. This shows that grouping jobs can result in a

lower sum of completion times objective.

(a) Batching (b) No Batching

Fig. 2. Batching sequence for example with three jobs

20

Now suppose, [p1, p2, p3] = [2, 5, 20]. When jobs 1 and 3 are batched, Z =

p1 + 3p2 + p3 = 2 + 15 + 20 = 37. Without batching, Z = 3p1 + 2p2 + p3 = 6 + 10 +

20 = 36. Thus in scenarios where jobs with large differences in processing times are

grouped together, the batching approach does not necessarily lead to improvement in

the objective.

Proposition 1 For N jobs, assume that p1 < p2 < · · · < pN−1 < pN . When jobs with

both the largest and smallest processing times are assigned to the same batch, that is

{1, N} form a batch, and (N−1)p1−p2−· · ·−pN−1 < 0, the sum of completion times

obtained by batching is greater than the objective value obtained without batching.

Fig. 3. Sequence in which batches are scheduled for Proposition1

Proof: Let
∑
j∈J

Cb
j be the sum of completion times obtained when batching and∑

j∈J
Cn

j be the sum of completion times obtained without batching. Jobs {1, N} form

a batch, while the other jobs are each assigned individual batches. Since p1 < p2 <

· · · < pN−1 < pN , batch {1, N} is processed at the end of the schedule (see Figure 3).

So
∑
j∈J

Cb
j = p1 +Np2 + · · ·+ 3pN−1 + pN . If each job is assigned its own batch, then∑

j∈J
Cn

j = Np1 + (N − 1)p2 + · · ·+ 2pN−1 + pN . Therefore,∑
j∈J

Cb
j -
∑
j∈J

Cn
j

=[p1 +Np2 + · · ·+ 3pN−1 + pN]− [Np1 + (N − 1)p2 + · · ·+ 2pN−1 + pN]

=(N − 1)p1 − p2 − · · · − pN−1

Hence, when (N − 1)p1 − p2 − · · · − pN−1 < 0, the result follows. 2

21

(a) Batch Sequence (b) Alt. Sequence

Fig. 4. Comparing strategies for sequencing batches

This contradicts the notion of scheduling as many jobs earlier in the schedule

to minimize our objective. So, our intuitions about general scheduling problems do

not always apply directly to problems with spatial resources. Batching seems to be

beneficial only when processing times are similar.

Let us now look at the example with [p1, p2, p3] = [2, 3, 5]. If we schedule batches

in the sequence is {2} and {1, 3} as seen in Figure 4(a), the objective Z= p1+3p2+p3

= 2 + 9 + 5 = 16. Instead, if we were to schedule the batches in the sequence {1, 3}

then {2} as seen in Figure 4(b), Z= p1 + p2 + 2p3 = 2 + 3 + 10 = 15. This suggests

that scheduling the jobs in the increasing order of batch processing times is not always

effective.

Proposition 2 Consider a set J of N jobs such that p1 < p2 < · · · < pN−1 < pN . If

m of those jobs are in a batch B, including Job 1 and Job N , and pn > mpi, ∀i ∈ J\B,

then placing batch B at the end of a schedule provides a better objective than placing

it at the beginning of the schedule.

Proof: Let
∑
j∈J

Cb
j be the sum of completion times obtained when processing batch B

at the end of the schedule and
∑
j∈J

Ca
j be the sum of completion times obtained using

an alternate sequencing of batches (batch B is the first batch to be scheduled). Let

{1, u1, u2, · · · , um−2, N} be the m jobs in batch B such that p1 < p2 < · · · < pu1−1 <

pu1 < pu2 < · · · < pum−2 < pum−1 < · · · < pN .

The sequence of batches scheduled in increasing order of batch processing times is

22

{2}, {3}, · · · , {u1 − 1}, · · · , {um−1}, · · · , {N − 1}, {B}.

So
∑
j∈J

Cb
j = (p1 +pu1 +pu2 + · · ·+pum−2 +pN)+(Np2 +(N−1)p3 + · · ·+(m+1)pN−1).

Alternately, if we place batch B at the beginning of the schedule,
∑
j∈J

Ca
j is given by

(p1+pu1 +pu2 +· · ·+pum−2 + (N−m+1)pN + (N−m)p2+(N−m−1)p3+· · ·+pN−1).

Therefore,
∑
j∈J

Ca
j −

∑
j∈J

Cb
j

=
[(p1 + pu1 + pu2 + · · ·+ pum−2 + (N −m+ 1)pN + (N −m)p2 + (N −m− 1)p3 + · · ·+ pN−1)]−

[(p1 + pu1 + pu2 + · · ·+ pum−2 + pN) + (Np2 + (N − 1)p3 + · · ·+ (m+ 1)pN−1)]

=−mp2 −mp3 − · · · −mpN−1 + (N −m)pN

Hence, when pN > mp2, pN > mp3, · · · , pN > mpN−1, the result follows. 2

These results are useful in gaining an insight into the characteristics of spatial

scheduling problems, thereby resulting in the development of more efficient algorithms

and strategies to approximate its solutions.

3.1.1 Forming the Batches

When forming the batches, based on our previous analysis, we observe that plac-

ing jobs with the smallest and largest processing times in the same batch does not

necessarily result in a good batching scheme. So, we group jobs similar in processing

time that also efficiently utilize the space to form a batch. We present two MIP mod-

els, iterative and efficient area, that identify the assignment of jobs to batches. The

objective for the iterative model is to minimize the maximum difference in processing

times among jobs for each batch. The efficient area model extends this idea by also

minimizing the total unused area in each batch. Both MlP formulations have been

adapted from the 2DBP model found in Pisinger and Sigurd 2005. Let J denote the

set of jobs and B the set of batches. Since at most each job can be its own batch,

23

the number of batches equals the number of jobs (N).

3.1.1.1 Iterative model

In the iterative model (M1), we add a constraint to limit the number of batches

(S) being used by the model. The strategy is to iterate through possible values for

S, starting at S = N − 1 and decreasing by 1 in each iteration. From the set of all

solutions, we can then chose the batching that results in the lowest sum of completion

times objective value. The formulation for the iterative model is given by,

min
∑
b∈B

(Zmaxb − Zminb) (3.1)∑
b∈B

rjb = 1 ∀j ∈ J (3.2)

xj + wj ≤W ∀j ∈ J (3.3)

yj + hj ≤ H ∀j ∈ J (3.4)

xi + wi − xj ≤W (1− lij) ∀i, j ∈ J, i < j, b ∈ B (3.5)

yi + hi − yj ≤ H(1− bij) ∀i, j ∈ J, i < j, b ∈ B (3.6)

lij + lji + bij + bji + (1− rib) + (1− rjb) ≥ 1 ∀i, j ∈ J, b ∈ B (3.7)

Zminb ≤ (pj −M)rjb +Mqb ∀j ∈ J, b ∈ B (3.8)

Zmaxb ≥ pjrjb ∀j ∈ J, b ∈ B (3.9)

rjb ≤ qb ∀j ∈ J, b ∈ B (3.10)∑
j∈J

rjb − εqb ≥ 0 ∀b ∈ B (3.11)

∑
b∈B

qb = S (3.12)

xj , yj ≥ 0 ∀j ∈ J (3.13)

Zminb, Zmaxb ≥ 0 ∀b ∈ B (3.14)

lij , bij ∈ {0, 1} ∀i, j ∈ J (3.15)

rjb ∈ {0, 1} ∀j ∈ J, b ∈ B (3.16)

qb ∈ {0, 1} ∀b ∈ B (3.17)

where,

J is the set of all jobs

24

B is the set of all batches

xj is the x-coordinate of job j ∈ J

yj is the y-coordinate of job j ∈ J

Zmaxb is the maximum processing time of jobs in batch b ∈ B

Zminb is the minimum processing time of jobs in batch b ∈ B

rjb =

 1 if job j is in batch b

0 otherwise

lij =

 1 if job i is to the left of job j

0 otherwise

bij =

 1 if job i is below job j

0 otherwise

qb =

 1 if batch b is nonempty

0 otherwise

For i, j ∈ J and b ∈ B.

Here, constraint (3.2) ensures that each job is assigned to only one batch. Constraints

(3.3) and (3.4) ensure that jobs do not exceed the width and height of the space. We

use constraints (3.5), (3.6), and (3.7) to prevent overlap of jobs within the space.

Constraint (3.8) determines the minimum processing time within a batch, while (3.9)

identifies the maximum processing time for each batch. If job j is in batch b (rjb = 1)

then constraint (3.10) makes sure batch b is non-empty (qb = 1). When no jobs

are present in a batch, constraint (3.11) ensures that the batch is empty or qb = 0.

Constraint (3.12) sets the number of batches to be used by the model to some value

S. We set ε = 0.5 and define M = 1 + maxj∈J pj.

25

3.1.1.2 Efficient Area model

While solving N − 1 instances of M1 for different values of S finds the best

possible batch assignment, the second approach or efficient area model (M2) proposes

to solve just one MIP to decide when and where to place jobs. The efficient area

model includes an area utilization component to the existing objective. So, model 2

minimizes the maximum difference in processing times and the amount of workspace

area that remains unused for each batch. The formulation for the efficient area model

is given by,

min
∑
b∈B

(Zmaxb − Zminb + UAb) (3.18)∑
b∈B

rjb = 1 ∀j ∈ J (3.19)

xj + wj ≤W ∀j ∈ J (3.20)

yj + hj ≤ H ∀j ∈ J (3.21)

xi + wi − xj ≤W (1− lij) ∀i, j ∈ J, i < j, b ∈ B (3.22)

yi + hi − yj ≤ H(1− bij) ∀i, j ∈ J, i < j, b ∈ B (3.23)

lij + lji + bij + bji + (1− rib) + (1− rjb) ≥ 1 ∀i, j ∈ J, b ∈ B (3.24)

Zminb ≤ (pj −M)rjb +Mqb ∀j ∈ J, b ∈ B (3.25)

Zmaxb ≥ pjrjb ∀j ∈ J, b ∈ B (3.26)

rjb ≤ qb ∀j ∈ J, b ∈ B (3.27)∑
j∈J

rjb − εqb ≥ 0 ∀b ∈ B (3.28)

WHqb −
∑
j∈J

wjhjrjb = UAb ∀b ∈ B (3.29)

xj , yj ≥ 0 ∀j ∈ J (3.30)

Zminb, Zmaxb, UAb ≥ 0 ∀b ∈ B (3.31)

lij , bij ∈ {0, 1} ∀i, j ∈ J (3.32)

rjb ∈ {0, 1} ∀j ∈ J, b ∈ B (3.33)

qb ∈ {0, 1} ∀b ∈ B (3.34)

where,

J is the set of all jobs

26

B is the set of all batches

xj is the x-coordinate of job j ∈ J

yj is the y-coordinate of job j ∈ J

Zmaxb is the maximum processing time of jobs in batch b ∈ B

Zminb is the minimum processing time of jobs in batch b ∈ B

UAb is the unused area in batch b ∈ B

rjb =

 1 if job j is in batch b

0 otherwise

lij =

 1 if job i is to the left of job j

0 otherwise

bij =

 1 if job i is below job j

0 otherwise

qb =

 1 if batch b is nonempty

0 otherwise

For i, j ∈ J and b ∈ B.

Here, constraint (3.19) ensures that each job is assigned to only one batch. Constraints

(3.20) and (3.21) ensure that jobs do not exceed the width and height of the space.

We use constraints (3.22), (3.23), and (3.24) to prevent overlap of jobs within the

space. Constraint (3.25) determines the minimum processing time within a batch,

while (3.26) identifies the maximum processing time for each batch. If job j is in batch

b (rjb = 1) then constraint (3.27) makes sure batch b is non-empty (qb = 1). When

no jobs are present in a batch, constraint (3.28) ensures that the batch is empty or

qb = 0. Constraint (3.29) calculates the unused area for each batch b. We set ε = 0.5

and define M = 1 + maxj∈J pj.

27

3.1.2 Scheduling the batches

Once the batches are identified using either M1 or M2, it is also important to

decide the sequence in which to schedule the batches. Smith 1956 proved that the

shortest processing time (SPT) rule, ordering jobs in the nondecreasing sequence of

their job processing times, is optimal for the single machine scheduling problem. The

idea is that by scheduling shorter jobs earlier in the schedule, more jobs can finish

early resulting in a smaller sum. For SSP, the rule translates to scheduling the batches

in the nondecreasing sequence of their batch processing times. For example, if P1 is

the maximum processing time of all jobs in batch 1 and P2 is the maximum processing

time of all jobs in batch 2; then batch 1 is scheduled before batch 2 if and only if

P1 ≤ P2. However, as noted before, there are instances for which this rule does not

necessarily provide a better objective value. Therefore, we also consider scheduling

jobs in the non-decreasing order of the average batch processing times, or the average

processing time of all the jobs in a batch. We indicate the two scheduling rules as

MAX and AVG respectively.

3.1.3 Post processing algorithm

By solving each instance of SSP using the iterative and efficient area models, we

determine the assignments of jobs to batches that minimizes the maximum difference

in processing times while efficiently utilizing the workspace. With this information, we

then schedule the batches by applying either the MAX or AVG rules. Once a schedule

is created, we calculate the sum of completion times for the jobs as ZH =
∑

j∈J C
H
j ,

where CH
j is the completion time for job j. With this batching algorithm, each job

must wait until the previous batch has completed before it can start processing. In

reality there may be jobs in the current batch that finish processing before the final

28

job in the batch. This means that jobs in later batches may be able to start earlier in

the schedule. Since neither MIP model takes into account the temporal dimension,

we use the algorithm schedule update to incorporate this observation and improve

ZH . For each batch the algorithm determines if jobs can start processing earlier in

the schedule. If job j can be moved ahead in time by say tj units, then the completion

time is updated as, Ĉj = CH
j − tj and Ẑ =

∑
j∈J Ĉj is the new objective value.

Algorithm 1 schedule update
1: Batch Sequence, b← 1, 2, · · · ,m
2: Jb ← Set of jobs in batch b
3: Cj ← Completion time of job j
4: aheadj ← 0,∀j ∈ J
5: for b = 2 to m do
6: for j ∈ Jb do
7: for t = Cj − pj − 1 to 1 do
8: if Space exists then
9: aheadj ← aheadj + 1
10: flag = 1
11: else
12: aheadj = 0
13: continue
14: end if
15: if aheadj > 0 then
16: if flag = 1 then
17: continue
18: else
19: break
20: end if
21: end if
22: end for
23: if flag = 1 then
24: Cj ← Cj − aheadj
25: Update schedule
26: end if
27: end for
28: end for

29

3.2 Performance Analysis

In this section, we present solution guarantees on the objective values ZH gener-

ated by the batch-scheduling algorithms. We refer to ZOPT as the optimal objective

for the SSP formulation. We begin by analyzing instances with a set J of N jobs

such that at any given time k jobs can simultaneously fit the space (W × H) and

p1 ≤ p2 ≤ · · · ≤ pN that define a special case of URCSP.

Theorem 1 When N=nk for any n, k ∈ Z∗+, wj ≤ W and hj = H ∀j ∈ J , and p1 ≤

p2 ≤ · · · ≤ pN , if each batch has k jobs, then batch-scheduling is a k-approximation

algorithm.

Proof: Let J denote the set of nk jobs and B the set of batches. Since p1 ≤ p2 ≤

· · · ≤ pN and we are minimizing the sum of completion times objective, we would

want to schedule jobs in the sequence 1, 2, · · · , N . By design only k jobs can simul-

taneously fit the space. If the first k jobs are scheduled in a batch at the beginning

of the schedule, job k + 1 does not start until any of the jobs finish processing. The

first job to finish processing would be job 1. So completion time, Ck+1 = pk+1 + p1.

Applying this reasoning we note that a lower bound on the optimal objective for these

instances is given by, ZOPT ≥
∑n

j=1(n− j + 1)(pjk + pjk−1 + · · ·+ pjk−k+1).

Since only k jobs can occupy the space at any given time, the number of batches

is nk
k

= n. If we use the MAX rule, Zb = maxj∈bpj ≥ pbk for each batch b ∈ B and

Z1 ≤ Z2 ≤ · · · ≤ Zn. Let us order the jobs in the sequence of the batches they are

assigned and in the increasing order of their processing times within each batch, so

that pbi now refers to the processing time of the ith job in batch b. It is important to

note here that pbi could be greater than the bi term in the sequence p1, p2, pbi, · · · , pN .

The completion time of job j based on this new ordering is then calculated as the

30

sum of its processing time and the completion times of the batches scheduled ahead

of j as:

CH
j = pj , if job j ≤ k and

CH
j =

{
pj + Zb−1 + · · ·+ Z1 if job j is in batch b and j > k

0 otherwise

ZH =
∑
j∈J

CH
j (3.35)

=
∑
j∈J

pj + kZ1 + k(Z1 + Z2) + k(Z1 + Z2 + Z3) + · · ·+

+k(Z1 + Z2 + ...+ Zn−1) (3.36)

=
∑
j∈J

pj + k[(n− 1)Z1 + (n− 2)Z2 + · · ·+ 2Zn−2 + Zn−1] (3.37)

=
∑
j∈J

pj + k[(n− 1)pk + (n− 2)p2k + · · ·+

+2p(n−2)k + p(n−1)k] (3.38)

=
n∑

j=1

(pjk−1 + · · ·+ pjk−k+1) +
n∑

j=1

((nk − jk + 1)pjk) (3.39)

=
n∑

j=1

(pjk−1 + · · ·+ pjk−k+1) + k
n∑

j=1

((n− j + 1

k
)pjk) (3.40)

=

n∑
j=1

(pjk−1 + · · ·+ pjk−k+1) +

n∑
j=1

((n− j + 1

k
)pjk)

+(k − 1)

n∑
j=1

((n− j + 1

k
)pjk) (3.41)

≤
n∑

j=1

(pjk−1 + · · ·+ pjk−k+1) +
n∑

j=1

((n− j + 1

k
)pjk)

+(k − 1)

n∑
j=1

((n− j + 1)pjk) (3.42)

≤
n∑

j=1

(pjk−1 + · · ·+ pjk−k+1) +
n∑

j=1

((n− j + 1

k
)pjk)

+(k − 1)ZOPT (3.43)

≤ ZOPT + (k − 1)ZOPT (3.44)

= kZOPT (3.45)

31

Equation (3.36) is obtained from the definition of completion times, CH
j and we

get equation (3.38) per the definition of Zb. In each batch of k jobs, since the batch

processing time is pk, this is the only processing time included in the calculation

of completion times for the batches scheduled later. The processing times of the

remaining (k-1) jobs are not repeated in this objective as seen in equation (3.39).

The bounds seen in (3.43) and (3.44) follow from the definition of ZOPT . 2

The bound shown helps us understand what makes instances of SSP hard. The

real difficulty in solving instances of SSP lies in the spatial constraints as reflected

by the bound, which is dependent on k, the number of jobs you can simultaneously

fit within the given workspace. Notice that the bound is independent of the number

of jobs. Also, recall that when minimizing the sum of completion times, we want to

schedule more jobs earlier in the schedule. This is because the completion times of

a job includes the completion times of the jobs earlier in the schedule. When k = 1,

SSP reduces to SMS and our batching heuristic becomes SPT, which we know is

optimal (Smith 1956). Our bound depicts that as k increases, the solutions given by

the batch-scheduling algorithm may get larger than the optimal objective.

Consider the instance data with 6 jobs shown in Table 3 and a 10×10 workspace.

We can fit three jobs within the space, so the batches formed are {1, 2, 3} and

{4, 5, 6} as shown in Figure 5(a). The sum of completion times before post-processing,

ZH=p1+p2+4p3+p4+p5+p6 = 92. If we were to instead schedule the batches as seen

in Figure 5(b) in the sequence {1, 2}, {3, 4}, and {5, 6}, ZH=p1+5p2+p3+3p4+p5+p6

= 91. Therefore, packing more jobs that are largely different in processing times be-

cause they efficiently utilize the space does not result in a lower sum of completion

times objective.

32

Table 3. SSP instance with N=6 jobs to depict that grouping more jobs in a batch

does not guarantee lower objective value

Job ProcessingTime Width Height

1 1 2 H

2 2 4 H

3 11 2 H

4 12 4 H

5 16 2 H

6 17 4 H

(a) 3 job batch

(b) 2 job batch

Fig. 5. Example schedule with two and three jobs in a batch

Proposition 3 For the instances defined by N=nk for any n, k ∈ Z∗+, wj = W
k

and

hj = H ∀j ∈ J , and p1 ≤ p2 ≤ · · · ≤ pN , after using the post-processing routine

(schedule update), the sum of completion times objective Ẑ = ZOPT .

Proof: Considering the instances with N = nk jobs, let CH
j , Ĉj, and COPT

j denote

the completion time for job j and ZH , Ẑ, and ZOPT denote the objective value for

the batch-scheduling algorithm, the post-processing routine, and the optimal solution

respectively. First, we observe that at any given time, k jobs can simultaneously fit

within the workspace, so there are n batches. So for all jobs j ≤ k, Ĉj = COPT
j .

Let U = {u1, u2, · · · , uk} denote the k jobs in the next batch waiting to be scheduled,

such that pu1 ≤ pu2 ≤ · · · ≤ puk
. Then by definition, if job j can be moved ahead in

33

time by say tj units, the new completion time is given by, Ĉj = CH
j − tj. Since job ui

can be processed as soon as ui−k completes and space becomes available, we get the

following recursive improvement on job completion times:

Ĉui
= CH

ui
− [(pui−1 − pui−k) + · · ·+ (pk − p1)] ∀i ∈ {1, · · · , k − 1} and

Ĉuk
= CH

uk

So, Ẑ = ZH −
∑n

j=1

∑j
i=1(pik − p(ik−k+1) = ZOPT

2

3.3 Computational Analysis

In this section we provide the computational results obtained by evaluating the

two proposed procedures for solving the SSP and comparing it to the optimal solution.

3.3.1 Instance Generation

We tested both the iterative model (M1) and the efficient area model (M2) on

generated instances of SSP. The instance class denoted as NnPpRr < ABCD > i

has n= 5 or 10 jobs, processing times generated in the uniform interval of (1, p) with

workspace area dimension W = H = r. The value for r is 10 or 20 units and i is

an instance indicator. A, B, C classifiers are used to indicate the distributions from

which the width and height of jobs are sampled.

Class A wj ∈ Uniform Discrete [1,W
2

] and hj ∈ Uniform Discrete [1, H
2

]

Class B wj ∈ Uniform Discrete [1,W
2

] and hj ∈ Uniform Discrete [H
2

,H]

Class C wj ∈ Uniform Discrete [W
2

,W] and hj ∈ Uniform Discrete [H
2

,H]

Five instances of each class-type were generated, resulting in a total of 60 in-

stances. All of the instances had jobs sorted in the increasing order of processing

34

times. Instances in Class C have jobs that occupy more than half the area. This

results in each job getting its individual batch and SSP reduces to SMS which can be

solved to optimality. So for the computational analysis we only consider instances in

classes A and B. By design, instances in Class B should be relatively harder to solve

than instances in class A. This is because all of the jobs in class A are small com-

pared to the dimensions of the workspace, so we can fit more jobs together. Difficult

instances of the problem occur, when some jobs are small and some are large (Class B).

Larger instances were obtained from Garcia 2010. The instances have 100, 500,

and 1000 jobs with a 10× 7 workspace. For each job:

wj ∈ UniformDiscrete[1, 10]

hj ∈ UniformDiscrete[1, 7]

pj ∈ UniformDiscrete[5, 25]

Since we did not permit rotation of jobs, we had to interchange the widths and

heights in certain cases to ensure that the jobs would fit within the space.

3.3.2 Valid Values for T

Recall that T represents the maximum completion time of a schedule, which is

also seen in equation (4) of the SSP IP formulation found in Chapter 2. In order to

guarantee that the model solves efficiently, it is important to make an appropriate

choice for the value of T, especially for large instances.

For the instance classes A and B, the values for T were determined based on

bin packing. In Class A, the values for wj and hj in the worst-case are W
2

and H
2

respectively. So we would be require at most N WH
4WH

or
⌈
N
4

⌉
bins to pack N jobs.

35

Since jobs also have processing times, we need to stretch the bins to accommodate

the duration. Again, worst case the jobs in the bins are the last
⌈
N
4

⌉
jobs. Since

p1 < p2 < · · · < pN , class A instances have T ≤ pd 3N4 e+ · · ·+pN . A similar reasoning

is used for instance class B where T ≤ pdN2 e + · · ·+ pN .

For larger instances, we make use of the previously discussed bound for bin pack-

ing to determine K, the maximum number of bins required to continuously pack the

jobs. Assuming, without loss of generality, that p1 < p2 < · · · < pN , we then have

T ≤ pn+1−2K + · · ·+ pN , where

K = min{
⌈∑N

j=1 hj

H

⌉
,

⌈∑N
j=1 wj

W

⌉
}. A valid value of T was determined as the mini-

mum of this bin packing based upper bound and sum of processing times.

3.3.3 Initial feasible solution heuristic

Table 4. Problem size comparisons between M1, M2, and original SSP MIP models

for N job instances

Model Number of Variables Number of Constraints

M1 5N + 2N2 N3 + 3N2 + 4N + 1

M2 6N + 3N2 N3 + 3N2 + 5N

OPT 3N + 3N2 4N2 − 2N

The motivation behind creating the batching models (M1 and M2) was to re-

duce the size of the original SSP by looking only at the packing component of the

problem. Nevertheless, we need to understand that M1 and M2 are still MIPs and

as the instances grow larger, these models could take longer to solve to optimality.

Table 4 shows a comparison of the number of variables and constraints between the

SSP MIP formulation and the two batching models M1 and M2 for instances with

N jobs. Further, an optimal solution to the batching model, does not necessarily

36

Algorithm 2 simple pack
1: Batch← 1
2: Job← 1
3: while Job ≤ N do
4: Begin:
5: x,y← 0
6: if SpaceReqd[Job] ≤ SpaceAvail[Batch] then
7: Loop X :
8: for i = x to x+ wj do
9: Loop Y :
10: for j = y to y + hj do
11: if Height units are available then
12: x← x + 1
13: goto Loop X
14: else
15: if Height units are unavailable then
16: y← y + 1
17: goto Loop Y
18: end if
19: end if
20: end for
21: if Width units are also available then
22: Assign space to job
23: Assign job to batch
24: else
25: if Width units are unavailable then
26: x← x + 1
27: goto Loop X
28: end if
29: end if
30: end for
31: if Area is available but job cannot be fit in the given space then
32: Batch = Batch+ 1
33: goto Begin
34: end if
35: else
36: Batch = Batch+ 1
37: goto Begin
38: end if
39: Job← Job + 1
40: end while

37

guarantee an optimal solution to SSP. In order to improve the solution time for these

MIP formulations, we provide the solver with an initial feasible solution obtained

from a packing heuristic (simple pack). The pseudocode for simple pack is presented

below. Basically, we start with an instance of SSP sorted in the increasing order of

job processing times, i.e. p1 ≤ p2 ≤ · · · ≤ pN . We sequentially begin grouping jobs

into a batch until they fit the space. Once the job can no longer fit the space, we

create a new batch. This process is repeated until all jobs are assigned a batch.

3.3.4 Computational Results

In this section, we compare the solutions generated by the batch-scheduling ap-

proaches (iterative and efficient area models) to the optimal solution (OPT) obtained

by solving the mixed-integer program for SSP. The batching MIPs, M1 and M2, and

the SSP MIP formulation were all implemented using the C programming language

and solved using Gurobi 5.0 with a thread count of 1 and cuts parameter set to de-

fault on a RedHat Enterprise 6.5 x86 64 server. The following tables compare the

objective values and runtimes for the forty small instances with 5 jobs and 10 jobs

and the large instances with 25 and 100 jobs (defined at the beginning of 3.3).

Table 5 lists the objective values obtained from solving instances with 5 and 10

jobs for M1 and M2 using the MAX rule and the optimal solution (OPT) for the

original MIP formulation of SSP. Note that the objective reported for M1 is the best

possible value among the N − 1 potential solutions it obtains and the run time is the

total time taken to iteratively solve all of the models. We observe that M2 seems to

perform at least as well as M1, and both models return values close to the optimal

solution. For these set of instances, the objective values returned by both models for

38

Table 5. Comparison of objectives obtained from M1, M2, and OPT for small instances

of batch-scheduling

Instance M1 (Best) M2 OPT
Factors

M1/OPT M2/OPT

N5P10R10A 27 27 27 1.00 1.00
N5P19R10B 33 33 29 1.14 1.14
N5P10R20A 26 26 26 1.00 1.00
N5P10R20B 26 25 23 1.13 1.12

N10P10R10A 49 49 49 1.00 1.00
N10P10R10B 80 72 66 1.22 1.10
N10P10R20A 54 54 51 1.05 1.05
N10P10R20B 101 88 77 1.31 1.14

the MAX and AVG rules were identical for instances with five jobs and ten jobs.

Table 6. Comparison of M1, M2, and OPT runtimes for small instances of

batch-scheduling

Instance

Runtime (seconds)

M1 (Total) M2 OPT

N5P10R10A 0.19 0.01 0.01
N5P19R10B 0.14 0.04 0.02
N5P10R20A 0.17 0.01 0.01
N5P10R20B 0.13 0.07 0.01

N10P10R10A 43.98 0.11 0.03
N10P10R10B 110.21 82.79 287.69
N10P10R20A 300.81 0.23 0.30
N10P10R20B 223.26 114.17 244.33

Table 6 presents the runtimes for solving the instances with 5 and 10 jobs using

M1, M2, and the original MIP formulation. We observe that with smaller number

of jobs, all three methods produce results quickly. The runtimes for M1 are larger

because it iteratively solves N−1 models for each instance with N jobs. The solution

times that are in bold face for M2 indicate that certain instances of that class took

over an hour to solve. In the few cases where that occurred, the incumbent solution

at the end of twenty minutes was reported.

39

Table 7. Comparison of objectives obtained from M1, M2, and ZIP for large instances

of batch-scheduling

Instance

Objective Factor

M1 (Best) M2 (Updated) ZIP M1/ZIP M2/ZIP

N25P25E11 1697 1421 1215 1.40 1.17
N25P25E12 1518 1409 1022 1.49 1.38
N25P25E13 2204 2046 1540 1.43 1.33
N25P25E14 1555 1292 995 1.56 1.30

N25P25H11 1819 1762 1353 1.34 1.30
N25P25H12 1587 1332 965 1.64 1.38
N25P25H13 1929 1712 1169 1.65 1.46
N25P25H14 1625 1525 1066 1.52 1.43

N100P25E1 34372 24495 28205 1.22 0.87
N100P25H1 45571 24919 27672 1.65 0.90

Table 8. Comparison of M1, M2, and ZIP runtimes for large instances of batch-schedul-

ing

Instance

Runtime (seconds)

M1 (Total) M2 (Updated) ZIP

N25P25E11 1920.00 1200.00 1200.00
N25P25E12 2280.00 1200.00 1200.00
N25P25E13 1920.00 1200.00 1200.00
N25P25E14 2040.00 1200.00 1200.00

N25P25H11 1800.00 1200.00 1200.00
N25P25H12 2160.00 1200.00 1200.00
N25P25H13 2040.00 1200.00 1200.00
N25P25H14 1800.00 1200.00 1200.00

N100P25E1 >3000.00 1200.00 1200.00
N100P25H1 >3000.00 1200.00 1200.00

Tables 7 and 8 list the objective values and runtimes obtained from solving larger

instances (25 and 100 jobs) for M1 and M2 using the MAX rule and the objective

ZIP for the original MIP formulation of SSP. Note that the objective reported for

M1 is the best possible value among the N − 1 potential solutions it obtains, with

each iteration of M1 allowed two minutes of execution time. M2 and ZIP report

40

the best objective obtained after twenty minutes of execution. To improve upon the

solution, M2 is given an initial feasible solution obtained using the greedy heuris-

tic, simple pack. The resulting solution is then updated using the post-processing

algorithm. Although both models produce objectives closeito the the optimal, it is

observed that with a larger number of jobs, M2 outperforms M1, and on some occa-

sions, after twenty minutes, M2 is able to produce better solutions than the original

SSP formulation.

In conclusion, the efficient area model seems to be more effective for larger in-

stances both in terms of runtime and solution quality. Further investigations on the

weights in the multi-objective function in the efficient area model (M2) could result in

potential improvements in objective value. Implementing a binary search procedure

for the iterative model (M1) may result in faster solution times.

41

CHAPTER 4

LIST-SCHEDULING APPROACH

The batch-scheduling approach gave us methods to identify batches of jobs and then

schedule them using some heuristic. Since we are still solving MIPs to determine

the assignment of jobs to batches, solution times can be large for larger instances.

The greedy heuristic (simple pack) that we developed aims to provide quicker results.

This heuristic only looks at processing times and does not take into consideration the

area of the jobs. The list-scheduling ideas presented in this chapter seek to address

this observation by creating a sequence of the jobs based on both processing times

and area. To gain insight into the merit of this reasoning, consider the following

example instance of SSP and a 3× 3 workspace.

Table 9. An example to motivate the need for list-scheduling by area and processing

time
Job Width Height ProcessingTime

1 3 3 3
2 2 2 4
3 1 2 4

If the shortest job is scheduled first, then the resulting sequence of jobs is given by

{1, 2, 3}. The sum of completion times objective, Z = 3 + 7 + 7 = 17. If however, the

smallest job is scheduled first, the sequence of the jobs is {3, 2, 1} and the objective

is Z = 7 + 4 + 4 = 15.

42

4.1 Introduction

In the past, list-scheduling algorithms have been successful in obtaining near-

optimal solutions for many variants of scheduling problems (Schutten 1996; Lawler

et al. 1993). These algorithms create an ordering of the jobs (list) given in each

instance based on some criterion and then schedule the jobs in that sequence. The

construction of the list determines the quality of solutions obtained. Smith’s rule on

a single machine states that if we schedule the jobs in the non-decreasing order of
pj
ωj

,

where for each job j, ωj is the weight of the completion time, and pj is the processing

time, then, the sum of the weighted completion times is minimized (Smith 1956). If

we extend this rule for multiple machines, we can use it to determine the ordering of

the jobs for each individual machine. The idea is that, by scheduling the shortest jobs

first, more jobs can finish early and result in a smaller sum. However, with spatial

resources, a direct implementation of this rule is not possible. Nevertheless, we can

use the same rationale and try to complete more jobs earlier in the schedule. With

this in mind, we consider the following two variations to create an ordering of the

jobs:

Recall that hj and wj are the height and width of each job j ∈ J with processing

time pj. Then,

(a) Product-based approach

The jobs are arranged in a non-decreasing sequence of the product pjwjhj. This

corresponds to scheduling smaller areas and processing times first.

(b) Ratio-based approach

The jobs are arranged in a non-decreasing sequence of the ratio
pj

wjhj
. This

corresponds to scheduling larger areas and smaller processing times first.

43

The product rule schedules the short (processing time) and small (area) jobs early.

By scheduling smaller jobs ahead of larger jobs we can fit more jobs in the workspace.

On the other hand, the ratio rule gives preference to jobs that are both short and

large over jobs that do not possess these attributes. The rationale for considering the

ratio approach is to extend the Smith’s rule idea by treating the area of the job as a

weight on the completion time of the job. In the subsequent sections we show that

under certain assumptions the product rule outperforms the ratio rule.

Fig. 6. List-scheduling algorithm attempts to find the same four contiguous width and

three contiguous height units for two consecutive time slots

4.2 Generating the schedule

The pseudocode for the list-scheduling algorithm is presented below. Basically,

we start with an instance of SSP and create a list of jobs by sorting them in the

increasing order of their products (or ratios) of processing times and area. The jobs

are then scheduled in the determined sequence using a First Fit packing strategy.

For each job, we determine if there exists contiguous units of width and height for

consecutive time slots in the scheduling horizon (see Figure 6). If such a space exists,

we schedule the job in that time and space. This process is repeated until all jobs are

44

scheduled. Finally, the sum of completion times objective is calculated.

Algorithm 3 list schedule
1: TimeSlot← 1
2: index← 1
3: while index ≤ N do
4: Job← SchedulingOrder[index]
5: Begin:
6: x,y← 0
7: if SpaceReqd[Job] ≤ SpaceAvail[TimeSlot] then
8: Loop X :
9: for i = x to x+ wj do
10: Loop Y :
11: for j = y to y + hj do
12: if Height units are available then
13: x← x + 1
14: goto Loop X
15: else
16: y← y + 1
17: goto Loop Y
18: end if
19: end for
20: if Width units are also available then
21: TimeSlot← TimeSlot + 1
22: goto Loop X
23: else
24: TimeSlot← TimeSlot + 1
25: goto Begin
26: end if
27: end for
28: if Same contiguous space is available for all processing time units then
29: Assign space to job
30: else
31: TimeSlot = TimeSlot+ 1
32: goto Begin
33: end if
34: end if
35: index← index + 1
36: end while

45

4.3 Performance Analysis

In this section, we want to analyze special cases and characterize instances where

one version of the list-scheduling algorithm outperforms the other. In order to do that

let us first define aj=wjhj as the area occupied by job j ∈ J . In all of the cases we

consider, we assume that the processing time (pj) is a function of the area (aj) for

each job j ∈ J . In the context of large-scale assembling and manufacturing, since

larger jobs typically take longer time to process, our assumption is reasonable.

Case 1 : When pj= βaj and β > 1, ∀ j ∈ J

For any job j ∈ J the ratio ,
pj
aj

= β, is constant and the ordering of the jobs in

the list is arbitrary.

On the other hand, the product, pjaj = β a2j , provides more useful information

that will help schedule the jobs.

Case 2 : When pj=βaj + x, ∀ j ∈ J

Proposition 4 When pj=βaj + x, ∀ j ∈ J , x > 0, and β > 1, both versions

of the algorithm produce different ordering of jobs. Specifically, each algorithm

produces the exact reverse ordering of the other version.

Proof: Let job i be scheduled before job j using the ratio version of the

algorithm.

46

⇐⇒pi
ai

≤pj
aj

⇐⇒βai + x

ai
≤βaj + x

aj

⇐⇒ x

ai
≤ x

aj

⇐⇒ 1

ai
≤ 1

aj

⇐⇒aj ≤ai
⇐⇒βaj + x ≤βai + x

⇐⇒(βaj + x)aj≤(βai + x)ai

⇐⇒pjaj ≤piai

This implies that job j is scheduled before job i in the product version of the

algorithm. 2

While looking at proposition 4 we observe that the following statements are

true:

(i) When a1 < a2 < ... < an then p1 < p2 < ... < pn

(ii) The sum of completion times objective using the product version of the list-

scheduling algorithm is the same as that obtained using the ratio version

when all the jobs can simultaneously fit in the space. The objective value

can be obtained using:
∑

j∈J Cj =
∑

j∈J pj

(iii) The sum of completion times objective using the product version of the

list-scheduling algorithm is better (smaller) than that obtained using the

ratio version of the algorithm when only one job can fit the space at any

given time. The problem reduces to single machine scheduling and the

objective value can be obtained using:
∑

j∈J Cj =
∑n

j=1

∑j
i=1 pj

47

(iv) The ordering of the jobs produced using the ratio version of the list-

scheduling algorithm is the exact reverse of the ordering produced by the

product version when only one job can fit the space at any given time. So,

if the ordering produced by the product version is job 1, job 2, job 3, ...,

job n; then the ordering obtained from the ratio version is job n, ..., job 1.

The difference in the objective values is given by:

Objective value of Ratio version - Objective value of Product version, or

(npn + (n− 1)pn−1 + ...+ 2p2 + p1)− (np1 + (n− 1)p2 + ...+ 2pn−1 + pn)

Proposition 5 When pj=βaj +x, ∀ j ∈ J , x < 0, and β > 1, both versions of

the algorithm produce the same ordering of jobs.

Proof: Let job i be scheduled before job j using the ratio version of the

algorithm.

⇐⇒pi
ai

≤pj
aj

⇐⇒βai − x
ai

≤βaj − x
aj

⇐⇒−x
ai

≤−x
aj

⇐⇒−1
ai

≤−1
aj

⇐⇒ai ≤aj
⇐⇒βai − x ≤βaj − x
⇐⇒(βai − x)ai≤(βaj − x)aj
⇐⇒piai ≤pjaj

This implies that job i is scheduled before job j using the product version of

the algorithm too. 2

48

From these analyses, we conclude that the product-based list-scheduling is more

reliable than the ratio-based algorithm. In the subsequent section, we provide upper

bounds for special cases of the problem using the product-based list-scheduling.

4.4 Upper bounds

In this section we attempt to prove approximation factors for special cases of

SSP where for each job j, the processing time (pj) is a function t of the area (aj) for

the product-based list-scheduling algorithm.

Theorem 2 When wj ≥ dW2 e, hj ≥ d
H
2
e, and pj is a function of the area (wjhj) ∀

jobs j ∈ J , the optimal solution for the sum of completion times objective is obtained

using the product-based list-scheduling algorithm.

Proof: Since, the width and height of the space for each job is at least half the

width and height of the workspace, only one job can occupy the space at any given

time. When we order the jobs based on the increasing order of pjwjhj, the ordering

depends only on pj. The LS algorithm reduces to Shortest Processing Time (SPT)

algorithm and SSP reduces to Single Machine Scheduling (SMS). We know that SPT

finds the optimal solution for SMS (Smith 1956). Thus, the optimal solution can be

found using the list-scheduling algorithm. 2

4.5 Computational Results

In this section, we compare the objective values generated by the product-based

list-scheduling (LS) algorithm to the solution ZIP , obtained by solving the original

MIP for SSP, and the greedy heuristic (simple pack). The greedy heuristic and list-

scheduling algorithm were implemented using the C programming language. The SSP

MIP formulation was implemented in C and solved using Gurobi 5.0 with a thread

49

count of 1 and cuts parameter set to default setting on a RedHat Enterprise 6.5 x86 64

server.

Table 10. Comparing the objective values obtained from greedy heuristic, list-schedul-

ing product version, and ZIP for instances of SSP

Instance

Objective Factor

Greedy Heuristic LS (Product) ZIP Greedy/ZIP LS/ZIP

N5P10R10A 27 27 27 1.00 1.00
N5P10R10B 33 30 29 1.07 1.06
N5P10R20A 26 26 26 1.00 1.00
N5P10R20B 26 24 23 1.05 1.08

N10P10R10A 49 49 49 1.00 1.00
N10P10R10B 82 78 66 1.25 1.20
N10P10R20A 58 53 51 1.14 1.04
N10P10R20B 96 91 77 1.24 1.18

N25P25E11 2103 1828 1215 1.73 1.50
N25P25E12 1498 1465 1022 1.47 1.43
N25P25E13 3345 2142 1540 2.17 1.39
N25P25E14 1716 1410 995 1.72 1.42

N25P25H11 2112 1785 1353 1.56 1.32
N25P25H12 1572 1727 965 1.63 1.79
N25P25H13 1741 1939 1169 1.49 1.66
N25P25H14 1629 1557 1066 1.53 1.46

N100P25E1 26877 23528 28205 0.95 0.83
N100P25H1 28914 22920 27672 1.04 0.83

N500P25E1 715783 542514 - - -
N500P25H1 699072 577640 - - -

N1000P25E1 2925853 2201137 - - -
N1000P25H1 2819374 2116875 - - -

Tables 10 and 11 list the objective values and runtimes obtained from solving in-

stances with 5, 10, 25, 100, 500, and 1000 jobs using the product based list-scheduling

problem, the greedy algorithm and the original MIP formulation of SSP. Values for

ZIP denote an optimal objective (5 job instances) or an incumbent solution at the

end of twenty minutes (10 and 25 job instances) of execution. Missing values for ZIP

indicates that no solution was found until the time limit of thirty minutes.

50

Table 11. Comparing runtimes for greedy heuristic, list-scheduling algorithm, and ZIP

while solving instances of SSP

Instance

Runtime (seconds)

Greedy Heuristic LS (Product) ZIP

N5P10R10A < 0.01 < 0.01 0.009
N5P10R10B < 0.01 < 0.01 0.018
N5P10R20A < 0.01 < 0.01 0.005
N5P10R20B < 0.01 < 0.01 0.008

N10P10R10A < 0.01 < 0.01 0.03
N10P10R10B < 0.01 < 0.01 287.69
N10P10R20A < 0.01 < 0.01 0.30
N10P10R20B < 0.01 < 0.01 244.33

N25P25E11 < 0.01 0.01 1200.00
N25P25E12 < 0.01 0.01 1200.00
N25P25E13 < 0.01 0.01 1200.00
N25P25E14 < 0.01 < 0.01 1200.00

N25P25H11 < 0.01 0.01 1200.00
N25P25H12 < 0.01 0.01 1200.00
N25P25H13 < 0.01 0.01 1200.00
N25P25H14 < 0.01 < 0.01 1200.00

N100P25E1 < 0.01 0.10 1200.00
N100P25H1 < 0.01 0.08 1200.00

N500P25E1 < 0.01 1.50 1800.00
N500P25H1 < 0.01 1.52 1800.00

N1000P25E1 < 0.01 5.28 1800.00
N1000P25H1 < 0.01 5.08 1800.00

The results indicate that the product version of the list-scheduling algorithm

outperforms the greedy heuristic in most cases. However, the few instances where the

greedy algorithm results in a better objective can be attributed to scenarios when jobs

have large areas (almost equal to the workspace area). In such cases, the processing

times become more dominant and scheduling using the greedy algorithm can result

in a better objective value.

It is clear that as the number of jobs increases, the MIP formulations become

51

harder to solve but both heuristics produce quick results within a reasonable guar-

antee. The factors with values less that one indicate that the heuristics result in

a solution that is better than the one reported by the MIP in twenty minutes. In

conclusion, the product version of list-scheduling seems to be the solution method to

use when the number of jobs is large and a quick result is required.

52

CHAPTER 5

CONCLUSIONS

The focus of this thesis has been to study the spatial scheduling problem and attempt

to develop solution methods with good approximations for the minimum sum of com-

pletion times objective. We conclude by summarizing the main contributions and key

results presented and by suggesting possible directions for future research. We pared

the problem into its simplest form to gain a better understanding of the relationship

between the spatial and temporal components of the problem. We exploited these

components individually in the design of our algorithms. First, we consider just the

spatial restrictions and utilize bin-packing strategies to identify batches of jobs that

will efficiently utilize the space. We then schedule the jobs using rules to minimize

the sum of completion times objective. We prove an approximation factor under cer-

tain conditions and also identify scenarios when grouping jobs does not necessarily

result in a better objective. We also give a post-processing algorithm to improve the

objective value of the batching models, which results in optimal solutions for certain

instances. Second, we adopt a popular scheduling idea based on Smiths rule (Smith

1956) and create a list-scheduling algorithm. We prove an approximation factor under

certain assumptions and provide computational results that demonstrate the perfor-

mance of our algorithm in practice on large instances of the problem. Based on the

instances we tested for both approaches, our assessment is that scheduling jobs similar

in processing times within the same space yields good solutions. If processing times

are sufficiently different, then grouping jobs together because they effectively utilize

the space does not necessarily result in a lower sum of completion times. Among

53

the batching models, the efficient area model outperforms the iterative model both

in terms of solution quality and run time. For larger instances, we show that the

list-scheduling algorithm provides quick and reasonable approximations.

Directions for future research are plentiful. We provide two MIP formulations

to decide the assignment of jobs to batches, the iterative and efficient area model.

Currently, we solve at most N − 1 instances for the iterative procedure and weigh

the two objectives in the efficient area model equally. Possible enhancements to these

models could be to implement a binary search procedure for the iterative model and

tweak the weights in the multi-objective efficient area model. This study assumes

that a single spatial resource of fixed dimension is available. An interesting extension

would be to look at multiple workspace problems with varying area. We may be able

to use ideas from variable size bin packing to design algorithms for this problem.

Another area that merits investigation is to consider weights on the completion times

of the jobs. If lj is the weight on completion time for job j ∈ J , and we assign the

number of jobs in the batch containing job j as a weight on its completion time, can

we get similar results for our procedures? The research opportunities mentioned here

focus on the general MIP formulation for SSP. Can the performance of the solution

methods described be replicated when compared to the time-indexed formulation

provided in Chapter 2? Additionally, polyhedral studies of scheduling problems have

provided useful insights into the mathematical structure of the problem (Queyranne

and Schulz 1994). Performing such a study of SSP, possibly using the time-indexed

formulation, may reveal ideas that help us design stronger formulations and efficient

solution strategies. Lastly, although the results and analyses presented in this study

pertain to the sum of completion times objective, the solution methods developed

here can easily be applied to other objective functions of the problem. If we can show

54

that these approaches are effective in solving a broader array of objectives, then we

increase the value of our work.

55

Appendix A

BATCH-SCHEDULING HEURISTIC PERFORMANCE

Table 12. Comparison of objective values obtained using M1 and M2 with ZIP for SSP

instances with 5 jobs

Class Instance

Objective Factor

M1 M2 ZIP M1/ZIP M2/ZIP

A

N5P10R10A0 31 31 31 1.00 1.00
N5P10R10A1 34 34 34 1.00 1.00
N5P10R10A2 16 16 16 1.00 1.00
N5P10R10A3 21 21 21 1.00 1.00
N5P10R10A4 31 31 31 1.00 1.00
N5P10R10A 26.6 26.6 26.6 1.00 1.00

B

N5P10R10B0 36 36 29 1.24 1.24
N5P10R10B1 44 44 36 1.22 1.22
N5P10R10B2 36 36 32 1.13 1.13
N5P10R10B3 24 24 24 1.00 1.00
N5P10R10B4 24 24 23 1.04 1.04
N5P10R10B 32.8 32.8 28.8 1.14 1.14

A

N5P10R20A0 21 21 21 1.00 1.00
N5P10R20A1 27 27 27 1.00 1.00
N5P10R20A2 31 31 31 1.00 1.00
N5P10R20A3 21 21 21 1.00 1.00
N5P10R20A4 30 30 30 1.00 1.00
N5P10R20A 26 26 26 1.00 1.00

B

N5P10R20B0 28 28 26 1.08 1.08
N5P10R20B1 25 25 25 1.00 1.00
N5P10R20B2 21 19 16 1.31 1.19
N5P10R20B3 33 33 28 1.18 1.18
N5P10R20B4 21 21 18 1.17 1.17
N5P10R20B 25.6 25.2 22.6 1.13 1.12

56

Table 13. Comparison of objective values obtained using M1 and M2 with ZIP for SSP

instances with 5 jobs

Class Instance

Objective Factor

M1 (Best) M2 (Updated) ZIP M1/ZIP M2/ZIP

A

N10P10R10A0 49 49 49 1.00 1.00
N10P10R10A1 48 48 48 1.00 1.00
N10P10R10A2 56 56 56 1.00 1.00
N10P10R10A3 50 50 50 1.00 1.00
N10P10R10A4 42 42 42 1.00 1.00
N10P10R10A 49 49 49 1.00 1.00

B

N10P10R10B0 83 79 72 1.15 1.10
N10P10R10B1 111 101 92 1.21 1.10
N10P10R10B2 89 79 67 1.33 1.18
N10P10R10B3 78 67 62 1.26 1.08
N10P10R10B4 39 35 35 1.11 1.00
N10P10R10B 80 72 66 1.21 1.09

A

N10P10R20A0 58 58 58 1.00 1.00
N10P10R20A1 54 54 54 1.00 1.00
N10P10R20A2 51 51 51 1.00 1.00
N10P10R20A3 33 33 33 1.00 1.00
N10P10R20A4 73 73 60 1.22 1.22
N10P10R20A 54 54 51 1.04 1.04

B

N10P10R20B0 127 111 94 1.35 1.18
N10P10R20B1 75 69 63 1.19 1.10
N10P10R20B2 110 107 88 1.25 1.22
N10P10R20B3 108 83 78 1.38 1.06
N10P10R20B4 84 69 63 1.33 1.10
N10P10R20B 101 88 77 1.30 1.13

57

Table 14. Runtimes in seconds for M1, M2, and ZIP when solving SSP instances with

5 jobs

Class Instance

Runtime (seconds)

M1 M2 ZIP

A

N5P10R10A0 0.15 0.01 0.01
N5P10R10A1 0.13 0.01 0.01
N5P10R10A2 0.17 0.01 0.00
N5P10R10A3 0.28 0.01 0.01
N5P10R10A4 0.23 0.01 0.01
N5P10R10A 0.19 0.01 0.01

B

N5P10R10B0 0.11 0.04 0.03
N5P10R10B1 0.15 0.09 0.02
N5P10R10B2 0.11 0.03 0.02
N5P10R10B3 0.15 0.01 0.01
N5P10R10B4 0.17 0.04 0.01
N5P19R10B 0.14 0.04 0.02

A

N5P10R20A0 0.14 0.01 0.00
N5P10R20A1 0.15 0.01 0.00
N5P10R20A2 0.23 0.01 0.00
N5P10R20A3 0.16 0.01 0.00
N5P10R20A4 0.18 0.01 0.01
N5P10R20A 0.17 0.01 0.01

B

N5P10R20B0 0.16 0.03 0.01
N5P10R20B1 0.13 0.01 0.00
N5P10R20B2 0.09 0.24 0.01
N5P10R20B3 0.16 0.06 0.01
N5P10R20B4 0.12 0.04 0.01
N5P10R20B 0.13 0.07 0.01

58

Table 15. Runtimes in seconds for M1, M2, and ZIP when solving SSP instances with

10 jobs

Class Instance
Runtime (seconds)
M1 M2 ZIP

A

N10P10R10A0 28.59 0.10 0.03
N10P10R10A1 21.14 0.11 0.04
N10P10R10A2 85.68 0.10 0.02
N10P10R10A3 28.85 0.12 0.04
N10P10R10A4 55.62 0.10 0.02
N10P10R10A 43.98 0.11 0.03

B

N10P10R10B0 91.40 0.66 22.86
N10P10R10B1 49.66 200.95 216.91
N10P10R10B2 230.57 128.48 5.43
N10P10R10B3 19.97 >3600 1107.26
N10P10R10B4 159.47 1.06 86.01
N10P10R10B 110.21 82.79 287.69

A

N10P10R20A0 27.67 0.11 0.03
N10P10R20A1 143.91 0.12 0.04
N10P10R20A2 54.85 0.10 0.02
N10P10R20A3 1219.04 0.10 0.03
N10P10R20A4 58.57 0.69 1.38
N10P10R20A 300.81 0.23 0.30

B

N10P10R20B0 150.99 >3600 1093.63
N10P10R20B1 729.56 205.71 12.70
N10P10R20B2 74.82 26.89 30.77
N10P10R20B3 62.31 >3600 52.98
N10P10R20B4 98.62 109.92 31.59
N10P10R20B 223.26 114.17 244.33

59

Appendix B

LIST-SCHEDULING HEURISTIC PERFORMANCE

Table 16. Comparison of objective values obtained using greedy heuristic and product

version of list-scheduling algorithm with ZIP for SSP instances with 5 jobs

Instance Greedy Heuristic LS (Product) ZIP

N5P10R10A0 31 31 31
N5P10R10A1 34 34 34
N5P10R10A2 16 16 16
N5P10R10A3 21 21 21
N5P10R10A4 31 31 31

N5P10R10A 27 27 27

N5P10R10B0 34 32 29
N5P10R10B1 40 36 36
N5P10R10B2 34 33 32
N5P10R10B3 24 24 24
N5P10R10B4 31 27 23

N5P10R10B 33 30 29

N5P10R20A0 21 21 21
N5P10R20A1 27 27 27
N5P10R20A2 31 31 31
N5P10R20A3 21 21 21
N5P10R20A4 30 30 30

N5P10R20A 26 26 26

N5P10R20B0 28 31 26
N5P10R20B1 25 25 25
N5P10R20B2 19 16 16
N5P10R20B3 33 31 28
N5P10R20B4 23 19 18

N5P10R20B 26 24 23

60

Table 17. Comparison of objective values obtained using greedy heuristic and product

version of list-scheduling algorithm with ZIP for SSP instances with 10 jobs

Instance Greedy Heuristic LS (Product) ZIP

N10P10R10A0 49 49 49
N10P10R10A1 48 48 48
N10P10R10A2 56 56 56
N10P10R10A3 50 50 50
N10P10R10A4 42 42 42

N10P10R10A 49 49 49

N10P10R10B0 83 93 72
N10P10R10B1 122 116 92
N10P10R10B2 90 76 67
N10P10R10B3 73 70 62
N10P10R10B4 41 37 35

N10P10R10B 82 78 66

N10P10R20A0 58 58 58
N10P10R20A1 63 56 54
N10P10R20A2 51 51 51
N10P10R20A3 33 33 33
N10P10R20A4 87 68 60

N10P10R20A 58 53 51

N10P10R20B0 125 107 94
N10P10R20B1 70 68 63
N10P10R20B2 110 100 88
N10P10R20B3 95 108 78
N10P10R20B4 80 72 63

N10P10R20B 96 91 77

61

REFERENCES

Akker, JM Van den, Cor AJ Hurkens, and Martin WP Savelsbergh (2000). “Time-

indexed formulations for machine scheduling problems: Column generation”. In:

INFORMS Journal on Computing 12.2, pp. 111–124.

Akker, JM Van den, CPM Van Hoesel, and Mathieu Willem Paul Savelsbergh (1999).

“A polyhedral approach to single-machine scheduling problems”. In: Mathemat-

ical Programming 85.3, pp. 541–572.

Baker, Kenneth R. (1974). Introduction to sequencing and scheduling. Vol. 15. Wiley

New York.

Boston, Kevin and Pete Bettinger (2001). “The economic impact of green-up con-

straints in the southeastern United States”. In: Forest Ecology and Management

145.3, pp. 191–202.

BoWang, Chen and Klaus v Gadow (2002). “Timber harvest planning with spatial

objectives, using the method of simulated annealing”. In: Forstwissenschaftliches

Centralblatt vereinigt mit Tharandter forstliches Jahrbuch 121.1, pp. 25–34.

Brucker, Peter (2001). Scheduling Algorithms. 3rd. Secaucus, NJ, USA: Springer-

Verlag New York, Inc. isbn: 3540415106.

Brucker, Peter et al. (1998). “Batch scheduling with deadlines on parallel machines”.

In: Annals of Operations Research 83, pp. 23–40.

Caprace, J.-D. et al. (2013). “Optimization of shipyard space allocation and schedul-

ing using a heuristic algorithm”. In: Journal of Marine Science and Technology

18.3, pp. 404–417.

Cho, K.K. et al. (2001). “A Spatial Scheduling System for Block Painting Process in

Shipbuilding”. In: CIRP Annals - Manufacturing Technology 50.1, pp. 339 –342.

62

Coffman Jr., E., M. Garey, and D. Johnson (1978). “An Application of Bin-Packing

to Multiprocessor Scheduling”. In: SIAM Journal on Computing 7.1, pp. 1–17.

Coffman Jr, EG (1976). “Computer and Job-Scheduling Theory”. In: New York: Wiley

31, pp. 55–66.

Dantzig, George Bernard (1965). Linear programming and extensions. Princeton uni-

versity press.

Duin, C.W. and E.Van Sluis (2006). “On the Complexity of Adjacent Resource

Scheduling”. In: Journal of Scheduling 9.1, pp. 49–62.

Dyer, Martin E and Laurence A Wolsey (1990). “Formulating the single machine

sequencing problem with release dates as a mixed integer program”. In: Discrete

Applied Mathematics 26.2, pp. 255–270.

Garcia, Christopher and Ghaith Rabadi (2011). “A Meta-RaPS algorithm for spa-

tial scheduling with release times”. In: International Journal of Planning and

Scheduling 1 (1), pp. 19–31.

Garcia, Christopher J. (2010). “Optimization Models and Algorithms for Spatial

Scheduling”. PhD thesis. Norfolk, VA, USA: Old Dominion University.

Garey, Michael R. and David S. Johnson (1979). Computers and Intractability: A

Guide to the Theory of NP-Completeness. New York, NY, USA: W. H. Freeman

& Co. isbn: 0716710447.

Garey, Michael R, David S Johnson, and Ravi Sethi (1976). “The complexity of

flowshop and jobshop scheduling”. In: Mathematics of operations research 1.2,

pp. 117–129.

Goemans, Michel X (1997). “Improved approximation algorthims for scheduling with

release dates”. In: Proceedings of the eighth annual ACM-SIAM symposium on

Discrete algorithms. Society for Industrial and Applied Mathematics, pp. 591–

598.

63

Graham, Ronald L (1966). “Bounds for certain multiprocessing anomalies”. In: Bell

System Technical Journal 45.9, pp. 1563–1581.

Graham, Ronald L et al. (1979). “Optimization and approximation in deterministic

sequencing and scheduling: a survey”. In: Annals of discrete mathematics 5,

pp. 287–326.

Hall, Leslie A et al. (1997). “Scheduling to minimize average completion time: Off-line

and on-line approximation algorithms”. In: Mathematics of Operations Research

22.3, pp. 513–544.

Hardin, Jill R, George L Nemhauser, and Martin W P Savelsbergh (2008). “Strong

valid inequalities for the resource-constrained scheduling problem with uniform

resource requirements”. In: Discrete Optimization 5.1, pp. 19–35.

Hartmann, S. (2000). “Packing problems and project scheduling models: an integrat-

ing perspective”. In: Journal of the Operational Research Society 51.9, pp. 1083–

1092.

Hochbaum, Dorit S., ed. (1997). Approximation Algorithms for NP-hard Problems.

Boston, MA, USA: PWS Publishing Co. isbn: 0-534-94968-1.

Johnson, David S (1974). “Approximation algorithms for combinatorial problems”.

In: Journal of Computer and System Sciences 9.3, pp. 256–278.

Karmarkar, Narendra (1984). “A new polynomial-time algorithm for linear program-

ming”. In: Proceedings of the sixteenth annual ACM symposium on Theory of

computing. ACM, pp. 302–311.

Koh, Shiegheun et al. (2011). “Spatial scheduling for shape-changing mega-blocks in a

shipbuilding company”. In: International Journal of Production Research 49.23,

pp. 7135–7149.

64

Kolisch, R. (2000). “Integrated scheduling, assembly area and part-assignment for

large-scale, make-to-order assemblies”. In: International Journal of Production

Economics 64.13, pp. 127 –141.

Land, Ailsa H and Alison G Doig (1960). “An automatic method of solving discrete

programming problems”. In: Econometrica 28.3, pp. 497–520.

Lawler, Eugene L et al. (1993). “Sequencing and scheduling: Algorithms and complex-

ity”. In: Handbooks in operations research and management science 4, pp. 445–

522.

Lee, Chung-Yee, Reha Uzsoy, and Louis A Martin-Vega (1992). “Efficient algorithms

for scheduling semiconductor burn-in operations”. In: Operations Research 40.4,

pp. 764–775.

Lee, Kyu et al. (1997). “Developing scheduling systems for Daewoo Shipbuilding:

{DAS} project”. In: European Journal of Operational Research 97.2, pp. 380 –

395.

Lee, Youngho and Hanif D Sherali (1994). “Unrelated machine scheduling with time-

window and machine downtime constraints: An application to a naval battle-

group problem”. In: Annals of Operations Research 50.1, pp. 339–365.

Lee, Yusin and Chuen-Yih Chen (2009). “An optimization heuristic for the berth

scheduling problem”. In: European Journal of Operational Research 196.2, pp. 500–

508.

Lenstra, Jan Karel, AHG Rinnooy Kan, and Peter Brucker (1977). “Complexity of

machine scheduling problems”. In: Annals of discrete mathematics 1, pp. 343–

362.

Leung, Joseph, Laurie Kelly, and James H. Anderson (2004). Handbook of Scheduling:

Algorithms, Models, and Performance Analysis. Boca Raton, FL, USA: CRC

Press, Inc.

65

Lodi, Andrea, Silvano Martello, and Michele Monaci (2002). “Two-dimensional pack-

ing problems: A survey”. In: European Journal of Operational Research 141.2,

pp. 241 –252.

Mathirajan, M and AI Sivakumar (2006). “A literature review, classification and sim-

ple meta-analysis on scheduling of batch processors in semiconductor”. In: The

International Journal of Advanced Manufacturing Technology 29.9-10, pp. 990–

1001.

Monaci, Michele (2003). “Algorithms for packing and scheduling problems”. In: Quar-

terly Journal of the Belgian, French and Italian Operations Research Societies

1.1, pp. 85–87.

Mullen, David S and Ralph M Butler (2000). “The design of a genetic algorithm based

spatially constrained timber harvest scheduling model”. In: UNITED STATES

DEPARTMENT OF AGRICULTURE FOREST SERVICE GENERAL TECH-

NICAL REPORT NC, pp. 57–65.

Nemhauser, George L and Laurence A Wolsey (1988). Integer and combinatorial op-

timization. Vol. 18. Wiley New York.

Park, Kyungchul et al. (1996). “Modeling and solving the spatial block scheduling

problem in a shipbuilding company”. In: Computers & Industrial Engineering

30.3, pp. 357–364.

Perng, Chyuan, Yi-Chiuan Lai, and Zih-Ping Ho (2009). “A Space Allocation Algo-

rithm for Minimal Early and Tardy Costs in Space Scheduling”. In: New Trends

in Information and Service Science, 2009. NISS ’09. International Conference

on, pp. 33–36.

Phillips, Cynthia, Clifford Stein, and Joel Wein (1998). “Minimizing average com-

pletion time in the presence of release dates”. In: Mathematical Programming

82.1-2, pp. 199–223.

66

Pinedo, Michael L. (2008). Scheduling: Theory, Algorithms, and Systems. 3rd. Springer

Publishing Company, Incorporated. isbn: 0387789340, 9780387789347.

Pisinger, David and Mikkel Sigurd (2005). “The two-dimensional bin packing problem

with variable bin sizes and costs”. In: Discrete Optimization 2.2, pp. 154 –167.

Queyranne, Maurice and Andreas S Schulz (1994). Polyhedral approaches to machine

scheduling. Citeseer.

Raj, Piyush and Rajiv K. Srivastava (2007). “Analytical and heuristic approaches

for solving the spatial scheduling problem”. In: Industrial Engineering and En-

gineering Management, 2007 IEEE International Conference on, pp. 1093–1097.

Savelsbergh, Martin WP, RN Uma, and Joel Wein (1998). “An experimental study

of LP-based approximation algorithms for scheduling problems”. In: Proceedings

of the ninth annual ACM-SIAM symposium on Discrete algorithms. Society for

Industrial and Applied Mathematics, pp. 453–462.

Schutten, JMJ (1996). “List scheduling revisited”. In: Operations Research Letters

18.4, pp. 167–170.

Smith, Wayne E (1956). “Various optimizers for single-stage production”. In: Naval

Research Logistics Quarterly 3.1-2, pp. 59–66.

Sousa, Jorge P and Laurence A Wolsey (1992). “A time indexed formulation of non-

preemptive single machine scheduling problems”. In: Mathematical programming

54.1-3, pp. 353–367.

Vazirani, Vijay V (2001). Approximation algorithms. springer.

Williamson, David P and David B Shmoys (2010). “The Design of Approximation

Algorithms. 2010”. In: preprint http://www. designofapproxalgs. com.

Zhang, Zhiying and Jie Chen (2012). “Solving the spatial scheduling problem: a

two-stage approach”. In: International Journal of Production Research 50.10,

pp. 2732–2743.

67

Zheng, Junli et al. (2011). “Spatial scheduling algorithm minimising makespan at

block assembly shop in shipbuilding”. In: International Journal of Production

Research 49.8, pp. 2351–2371.

68

VITA

Sudharshana Srinivasan was born in Chennai, Tamil Nadu on December 9, 1985 to

R. Srinivasan and Saradha Mai. After graduating from Chettinad Vidyashram in

2003, she attended Valliammai Engineering College (an affiliate of Anna University)

to earn a bachelors in Computer Science and Engineering. In 2007, she moved to

Richmond, Virginia to pursue a masters degree in Applied Mathematics from Virginia

Commonwealth University (VCU). Upon graduation, she was offered an opportunity

to continue her education in the Department of Statistics and Operations Research

at VCU. In May of 2014, Sudharshana was awarded the Doctor of Philosophy in

Systems Modeling and Analysis.

69

	Virginia Commonwealth University
	VCU Scholars Compass
	2014

	Spatial Scheduling Algorithms for Production Planning Problems
	Sudharshana Srinivasan
	Downloaded from

	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	 Introduction
	Motivation
	Problem Description
	Fundamental Concepts
	Integer programming
	Computational Complexity
	Approximation Algorithms

	 Spatial Scheduling Problem
	Introduction
	Background
	Formulation
	Time-indexed Formulation
	General Mixed-Integer Programming Formulation

	Special Cases
	Methodology

	 Batch-scheduling
	Introduction
	Forming the Batches
	Iterative model
	Efficient Area model

	Scheduling the batches
	Post processing algorithm

	Performance Analysis
	Computational Analysis
	Instance Generation
	Valid Values for T
	Initial feasible solution heuristic
	Computational Results

	 List-scheduling approach
	Introduction
	Generating the schedule
	Performance Analysis
	Upper bounds
	Computational Results

	 Conclusions
	Appendix Batch-scheduling heuristic performance
	Appendix List-scheduling heuristic performance
	References
	Vita

