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Mechanical ventilation has been a major therapy used by physicians in support of 

surgery as well as for treating patients with reduced lung function. Despite its many positive 

outcomes and ability to maintain life, in many cases, it has also led to increased injury of the 

lungs, further exacerbating the diseased state. Numerous studies have investigated the effects 

of long term ventilation with respect to lungs, however, the connection between the global 

deformation of the whole organ and the strains reaching the alveolar walls remains unclear. 

The walls of lung alveoli also called the alveolar septum are characterized as a multilayer 
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heterogeneous biological tissue. In cases where damage to this parenchymal structure insist, 

alveolar overdistension occurs. Therefore, damage is most profound at the alveolar level and 

the deformation as a result of such mechanical forces must be investigated thoroughly. This 

study investigates a three-dimensional lung alveolar model from generations 22 (alveolar 

ducts) through 24 (alveoli sacs) in order to estimate the strain/stress levels under mechanical 

ventilation conditions. Additionally, a multilayer alveolar tissue model was generated to 

investigate localized damage at the alveolar wall.  Using ANSYS, a commercial finite 

element software package, a fluid-structure interaction analysis (FSI) was performed on both 

models. Various cases were simulated that included a normal healthy lung, normal lung with 

structural changes to model disease and normal lung with mechanical property changes to 

model aging. In the alveolar tissue analysis, strains obtained from the aged lung alveolar 

analysis were applied as a boundary condition and used to obtain the mechanical forces 

exerted as a result.  

This work seeks to give both a qualitative and quantitative description of the 

stress/strain fields exerted at the alveolar region of the lungs. Regions of stress/strain 

concentration will be identified in order to gain perspective on where excess damage may 

occur. Such damage can lead to overdistension and possible collapse of a single alveolus. 

Furthermore, such regions of intensified stress/strain are translated to the cellular level and 

offset a signaling cascade. Hence, this work will provide distributions of mechanical forces 

across alveolar and tissue models as well as significant quantifications of damaging stresses 

and strains.  
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CHAPTER 1 

 Introduction 
 

1.1 Background  

The human respiratory system is one of the most unique and intricate systems in the 

human body. Its sophisticated framework houses one of the most complex and vital organs 

to the function of the entire body, i.e. the lungs. Being suited with the task of gas exchange 

across the respiratory surface, each aspect of the lungs plays an integral role in ensuring that 

this process is carried out effectively and efficiently. The primary function of the respiratory 

system entails the intake of oxygen into the body and the expulsion of carbon dioxide from 

the body. The lungs, on a smaller scale, possess a tree-like structure and have been classified 

as a network of branched airways that help to facilitate gas exchange. This network consists 

of the trachea, bronchi, terminal and respiratory bronchioles, alveolar ducts, and ending with 

alveoli. This system of branching has been categorized in terms of generations beginning 

with the trachea at generation 0 (G0) ending at generation 23 (G23) representing the entrance 

to the alveolar sacs [1]. The alveoli themselves are termed as generation 24 (G24). This 

model of numbered airways was developed by Weibel who gave an approximation for 

branching airways under the assumption that there exists a dichotomy in each generation as 

2N [1]. Figure 1.1 depicts the Weibel model for lung classification. 
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Figure 1.1 Weibel Model of branching for the respiratory airways [66]. 

 

Functions of the lung are divided into two main processes, inhalation and exhalation. 

The combination of these two processes is known as a breath cycle. The total capacity of the 

lungs is 5.8 liters with a functional reserve capacity of 2.4 liters [2]. The lungs process an air 

volume of about 0.5 liters per breathing cycle that lasts for 5s under sedentary conditions 

[3]. Gas exchange across the respiratory surface is made effortlessly as a result of the large 

surface area of the lungs. Surface area of the lungs extends from less than 10 cm2 in G0 – 

G5 to approximately 140 m2 for alveoli, G24 [3].  
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Within the respiratory system there exists several essential units that without these 

the lung would be incapable of performing its function. These functional units are described 

as lung parenchyma compromising of the respiratory bronchioles, alveolar ducts and alveoli. 

More specifically, the alveolus is the key unit whose structure is both suited and responsible 

for gas exchange. Alveolar walls are comprised of a thin permeable wall lined with a thin 

film of liquid. This thin liquid film along with surfactant, a substance secreted by alveolar 

type II cells, helps to stabilize the lungs at large volumes keeping alveoli from collapsing. 

This is also known as parenchymal tethering.  Alveoli are grouped together in clusters that 

form an alveolar sac, which allows for the sharing of structural walls, called the alveolar 

septum, between adjacent alveolus. As a result, uniform expansion of alveoli during 

inhalation ensues whilst collapse of individual alveoli are resisted. There are approximately 

300 million alveoli comprising the lungs [4]. Specifically dimensions include an average 

diameter ranging from 100 – 200 μm with most studies utilizing an average spherical 

diameter of 150 μm [4,5,6,7] and an entrance length of 100 μm [7] which are all consistent 

with previous lung alveolar studies.  

 

1.2 Mechanical Ventilation Overview 

The exchange of carbon dioxide and oxygen via the respiratory system is extremely 

vital to the maintenance and function of every part of the body. Therefore, without sufficient 

or limited respiration an individual’s life would be at serious risk. For decades on end there 

have been myriad of diseases and disorders that have threatened lung health. Even more so, 

the repercussions of such diseases have grave impacts on lung function, particularly in cases 
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where lung parenchyma become damaged. Damage of any kind to lung parenchyma, sites 

of gas exchange, drastically reduce lung function. Diseases such as Chronic Obstructive 

Pulmonary Disease (COPD), pulmonary fibrosis and cystic fibrosis have been the leading 

cause of deaths among patients with lung disease. Disorders such as Asthma and adult 

respiratory distress syndrome (ARDS) have also lead to many deaths in patients across the 

United States. According to a study done by Vital Statistics of the United States, National 

Center for Health Statistics (NCHS) in 2010 lung disease accounted for 21.6% of the deaths 

from cardiovascular, lung, and blood disease [8].  

Moreover, COPD accounted for 135,000 of lung deaths in 2010 and diseases of the 

airways accounted for 58.9% of deaths from lung disease [8]. COPD is a disease of the 

airway and consists of chronic bronchitis and emphysema. Chronic bronchitis involves a 

long term cough with mucus and emphysema involves the destruction of the lungs over time. 

There are currently no known cures for such diseases mainly because once the damage has 

occurred there is no way to reverse it and restore the lungs back to its once healthy state. 

Nevertheless, treatments are available in order to help patients manage their disease 

symptoms such as bronchodilators, cardiopulmonary rehabilitation, inhaled steroids, oxygen 

therapy, and surgery.  

  In circumstances where the disease process is extremely heightened, a patient may 

be at risk of respiratory failure. Under these circumstances, mechanical or artificial 

ventilation has been used as a major life-saving therapeutic instrument in modern intensive 

care medicine. Figure 1.2 shows the setup for patients on ventilators. In cases where other 

serious injuries have occurred, while treatment is being administered that may disrupt the 
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patient’s normal breathing, physicians will utilize mechanical ventilation as a tool to 

maintain patient breathing. The rate of mechanical ventilation is 2.8 per 1000, accounting 

for approximately 700,000 episodes annually [9].  

 

 

Figure 1.2 Standard setup of a patient on a ventilator [68] 

 

Mechanical ventilation’s objectives are to deliver oxygen to the body while removing 

carbon dioxide from the bloodstream and therefore reducing the work of breathing on the 

lungs, allowing lung tissue and airways to heal. However, it has also been proven to initiate 

and even exacerbate significant lung injury and inflammation, particularly in patients with 

acute respiratory distress syndrome (ARDS) and acute lung injury (ALI) [10]. Mechanisms 
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of such injury include lung overdistension and repetitive opening and closing of collapsed 

lung parenchyma, increasing stiffness of lung and therefore making the lung inelastic, a need 

for higher pressures to reopen the lungs and increased surface tension at the gas-liquid 

interface [10]. 

Of equal importance are those conditions associated with mechanical ventilation 

termed ventilator induced lung injury (VILI) and ventilator associated lung injury (VALI). 

VILI is a direct effect of mechanical ventilation causing acute lung injury. VALI resembles 

ARDS and occurs in patients receiving mechanical ventilation. Nevertheless, major 

differences between VALI and VILI include the fact that VALI may be associated with 

preexisting lung disease such as ARDS and unlike VILI, cannot be proven that it is caused 

by mechanical ventilation but is only associated with it [11].  

Several methods of MV exist which include synchronized intermittent mandatory 

ventilation (SIMV) airway pressure release ventilation, volume or pressure controlled 

inverse ratio ventilation, proportional assisted ventilation, and high frequency ventilation. 

More of a focus has been placed on pressure controlled ventilation methods such as 

continuous positive airway pressure (CPAP) and positive end expiration pressure (PEEP), 

allowing these methods to be the mainstays of ventilation. High frequency ventilation (HFV) 

was brought about as an alternative solution during the 1970’s and 1980’s as a means to 

complications and failures in conventional ventilation. It was proven to cause less circulatory 

interference, reduce airleaks in bronchopleural fistulae, and create similar or improved gas 

exchange at lower airway pressures [12]. As promising as HFV was considered to be it still 
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offered no clear advantages with respect to morbidity and mortality rates of patients [11, 12, 

13].   

Ventilators transfer a high level of mechanical energy to the airways in order to 

overcome impedance by the lung. This has been the resulting cause of VILI which has been 

attributed to barotrauma, volutrauma, atelectrauma and lastly biotrauma [14,15]. The 

aforementioned conditions create serious implications on lung health and can lead to what 

is known as multi-system organ failure (MSOF). As a result, a means of improved lung 

protective therapies is essential. Figure 1.3 illustrates the cascade effect of lung injury due 

to mechanical ventilation. 
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Figure 1.3. Forms of ventilator induced lung injury as a result of moderate and high levels 

of stress/strain. Where volutrauma and barotrauma result in high airway pressures and 

volumes. Atelectrauma results in the opening and closing of collapsed airways. Finally, all 

of the aforementioned can then lead to biotrauma. [67] 
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1.3 Review of Literature 

Understanding the role that mechanical ventilation plays in exacerbating lung injury 

is vital to the development of future protocols and tools to aid in patient breathing.  Very 

few studies have incorporated mechanical ventilation conditions to their studies, but there 

remains fundamental studies that have given insight into the dynamic behavior of lung 

alveoli significant to this study.  The following provides a review on experimental as well 

as numerical studies that have resulted in an in depth knowledge on the subject of lung 

alveoli and their behavior under varying conditions. 

Studies investigating the lungs as a whole began with a myriad of work done by 

Weibel [1] who developed a mathematical model that would classify the geometry of 

branching airways in a sequence that began with the trachea and terminated at the alveolar 

sac. Weibel’s work gave significant understanding to the morphometry of the lungs and more 

specifically, lung alveoli, alveolar-capillary frameworks, lung parenchyma and other 

respiratory models that have become standard for any current and future studies involving 

the lung [16,17,18,19]. Thereafter, Horsfield et al. performed extensive studies using human 

lung casts that lead to mathematical models defining branching angles and diameters as well 

as further details on the morphology of the human lung [20,21,22,23]. 

Ventilation is defined as the flow of air into and out of the lungs. Studies on 

ventilation of the lungs dates back to the 1960’s beginning with extensive work done by Dr. 

Robert E. Hyatt. Hyatt and Fry [24] who studied pulmonary ventilation in order to ascertain 

information about the pressure, volume, and gas flow relationships in the lung using 

experimental data obtained from a human being. Hyatt and Wilcox [25] studied the pressure-
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flow relationship in the respiratory tree and more specifically how pressure drops throughout 

intrathoracic and extrathoracic airways. Using various test subjects Hyatt and Wilcox 

measured the velocity in the trachea at the centerline and a point approximately 1 mm from 

the tracheal wall. Isovolume PV curves of the lower airways as well as flow resistance were 

also obtained and reported. The pressure drops were measured by estimating the convective 

and frictional contributions seeing that each has an independent significance, where the 

convective portion is due to convective acceleration. Formulas that measured the 

instantaneous pressure drop from the trachea to the alveolus were developed and (Equations 

1.1a, 1.1b). 

∆𝑃𝐶.𝐴. =  
𝐾𝜌�̅�2

2𝑔
      (1.1a) 

∆𝑃𝐴−𝑇 =  ∆𝑃(𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛) +  ∆𝑃𝐶.𝐴.   (1.1b) 

Where, ρ is the gas density, v is the average gas velocity across the trachea, K is a constant 

relative to the spatial integration of the gas velocity over the cross sectional area of the 

trachea and finally g represents gravitational acceleration. Flow resistance was evaluated by 

comparing subjects who are normal with those who have emphysema. Schroter and Sudlow 

[26] studied flow profiles in the human bronchial tree utilizing 2 generations of bifurcated 

symmetrical models. These models were rigid and had smooth dry uncorrugated walls. 

Results yielded flow visualization at a single junction for which the Reynolds number did 

not exceed 4500. Velocity profile measurements were also obtained using point velocity 

measurements with a hot wire probe. This was placed downstream in the flow and 

measurements were taken parallel and normal to the plane of the junction. Their work 
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deduced that the further away from the trachea both the bronchial diameter and velocity fall. 

Furthermore, that the bulk flow in the airways is of Stokes type and gaseous diffusion 

velocities are comparable to those with bulk velocity. Lastly, there exist complex flow 

patterns during inspiration and expiration with the mechanical mixing of air being present 

in the system.  

Jaeger and Matthys [27] also studied flow patterns within the airways while focusing 

towards the upper airways. Measurements of intratracheal pressure and flow were performed 

on six male subjects. Results were plotted diagrams of pressure vs. flow, resistance vs. flow, 

and pressure vs flow with a logarithmic scale. Stemming from the study were conclusions 

that flow in the upper airways can be assimilated to that which exists in a Venturi-meter and 

that the Reynolds’ number within the larynx ranges from 10 – 10000. Pedley et al [28,29,30] 

performed extensive work on predictions of pressure drop and resistance as well as energy 

losses within the airway by developing a mathematical model that would determine the 

overall pressure drop in a branched system. Additionally, Pedley et al [31] developed a non-

linear theory for the distribution of ventilation in a compartmentalized model of the lung. By 

injecting a bolus of 133Xe gas into the model at inspirate for a given lung volume.  As 

inspiration continues to total lung capacity (TLC) the regional concentration of 133XE were 

measured. Results from the non-linear model show that the distribution of the said gas to the 

lower lobes is favored provided that inspiration is slow. However, as inspiratory flow rate 

increases more of the bolus is distributed to the upper lobes which is indicative of flow 

reversal. The reversal is directly related to the volume dependence of resistance with the 

upper airways having a lower resistance resulting from greater expansion.  
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Olson et al. [32] developed a theoretical analysis in order to predict the fluid flow 

regime and pressure drop of air inspired into the lung using a model of the average airway 

in the human lung. Olson et al. theorized that the pressure drop and velocity profile were 

attributed to anatomical features that included length of bronchus and bronchiole, angle of 

branching, cross sectional area, upper airways, and elasticity of the tube walls. The lengths 

of the bronchus and bronchiole account for at least 75% of the total pressure drop and 

elasticity to have an unknown small effect on pressure drop. The total cross sectional area 

for flow and resultant average fluid velocity is higher at generation n compared to that at 

generation n+1.  Inefficiencies in this study stem from the inaccuracy of the geometry and 

assumptions that the geometry remains constant throughout inspiration. Olson et al. [33] 

performed additional studies on elastic cast replicas of the human airway system. The goal 

was to investigate the fluid dynamic parameters pertinent to aerosol transport and deposition. 

Five ranges of flow rates were used 0-200 ml/sec, 200-400 ml/sec, 400-600 ml/sec, 600-

1000 ml/sec and 1000-2000 ml/sec. Using hot wire anemometers air velocities were 

measured in the central airways. Profiles of the velocity were then taken at frequent intervals. 

The static pressure was measured at frequent intervals using wall pressure taps positioned 

flush with the tube wall. Measurements of velocity indicated that a superimposed fluctuating 

velocity component was present in the central airways at all flow rates above 200 ml/sec, 

which indicated turbulence existed in these airways where unstable flows were present at 

the larynx for a Reynolds numbers below 2000. Surprisingly, such random fluctuations or 

turbulence still exist in sublobar bronchi that may exhibit a Reynolds number below 100. 
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More recently, outside the realm of experimental work that has been performed to 

gain understanding on ventilation inside of the lungs, computational fluid dynamics (CFD) 

has been a useful tool in the investigation of flow through the respiratory system.  Based on 

computational fluid dynamics, a fluid is defined as a substance that with no fixed shape and 

has the ability to continuously deform under an applied load. Both liquids and gases are 

considered to be fluids.  Pedley et al. [34] compiled a survey of the gas flow and mixing in 

pulmonary airways particularly at high frequencies. Results yielded experimental, 

computational and mathematical studies on the topic. Of interest are the computational 

studies comprised within this survey which include three-dimensional numerical simulation 

of inspiratory and expiratory flows in small airways and computational, and experimental 

models of high frequency oscillations. Results demonstrated that the advancement of gas 

transport through the airways at high frequency is likely due to coupling of secondary 

motions caused by airway curvature with the oscillatory longitudinal flow. Limitations to 

this study lie within the accurate simulation of the phenomena only in idealized geometries 

as opposed to real lung geometries. Balashazy et al. [35] studied the effects of different CFD 

models as well as airway bifurcation geometries on resulting air flow fields and particle 

deposition patterns. The first model was computed by solving the Navier-Stokes and 

continuity equation in a three-dimensional computational mesh via a finite difference 

method. The second model is performed by using the FIRE® commercial fluid dynamics 

program package. Additionally, two bifurcation models were used, which included a narrow 

bifurcation model and a physiologically realistic bifurcation (PRB) model. The flow results 

yielded from the models showed that flow in each case were generally similar with flows in 
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the daughter branches being more symmetric in the second model. In terms of geometry 

differences, the PRB geometry reduced the magnitude secondary motions in the daughter 

airways.  Wilquem and Degrez [36] investigated a two-dimensional steady inspiratory flow 

through a three-generation model of the central airways. Simulations for Reynolds number 

ranging from 200-1200 were performed. Their work demonstrated an existence of separation 

regions where the number and location of these separation regions were strongly dependent 

on Reynolds number. Additionally results showed skewed velocity profiles and unbalanced 

flow distributions between the medial and lateral branches. Other studies utilizing 

computational fluid dynamics to simulate flow in three-dimensional airway models include 

those done by Liu et al. [37, 38], Ertbruggen et al. [39] and Harrington et al. [40]. 

The field of computational fluid dynamics has been extensive in the investigation of 

airflow throughout the pulmonary system. Nevertheless, these studies do not take into 

consideration the solid mechanics of a dynamic dilating lung. There remains a plethora of 

research that sheds light on the mechanical behavior of the lung from a solid mechanics 

aspect. Such research has incorporated structural models of the lung with defined elastic 

properties and in many cases hyperelastic properties coupled with finite element analysis. 

Notwithstanding that a great deal of development took place in order to determine the 

mechanical properties of the lung early studies by Y.C. Fung gave an in depth mathematical 

analysis of stress and strain in the lungs [41]. Mentions of previous works and first 

investigations into this topic of interest are outlined in this study Fung et al. investigated the 

macroscopic stress distribution in the lungs, with an emphasis on stresses and strains in areas 

of the lung greater than individual alveoli. He further developed the stress-strain relationship, 
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a strain-energy function for tissue elasticity as well as a pseudostrain function that 

incorporated the effects of surface tension stress. The understanding of the mechanical 

behavior of the lung is greatly attributed to works that involve finite element analysis (FEA) 

of the lung. The first FEA study performed by Matthews and West [42] gave insight into the 

mechanical behavior of the lung due to its own weight. In the model they assume an 

incrementally isotropic lung material with a constant Poisson’s ratio of 0.3 if ε > 0 or 0.48 if 

ε < 0 and an elastic modulus equal to 0.8 E0 / (0.8 – ε) where, E0 is a constant and ε is the 

mean strain in the element. Dale, Matthews and Schroter [43] developed a mathematical 

model for the pressure-volume curve of a microscopic element of the lung. Elastic material 

properties were defined using those of the constituent materials. The analysis focused mainly 

on a single alveolus and neglects the effects of surface tension. Results demonstrated the 

pressure-volume characteristics of an alveolar model in the absence of closure. Kowe et al. 

[44] extended the work of Dale et al. in their study of the elastic and surface tension effects 

in lung alveolus using FE methods. In this analysis the FINEL finite element package is used 

and deformations were used to determine the stresses and strains. Plots of the pressure 

volume curves were presented based on the stress-strain relationship used in the model. 

Karakaplan et al. [45] presented a mathematical model of lung parenchyma in the form of a 

strain energy function and includes the effect of surfactant. Using a geometric model that 

represents the actual morphology, nonlinear elastic properties, inclusion of surface tension 

and the finite element analysis technique their model is able to analyze and simulate the 

behavior of lung parenchyma to a greater extent. The predictions of the model were then 

compared with experimental data and proved to show good agreement. Harding and 



16 

Robinson [46] constructed an alveolar sac geometry representing the terminal air unit from 

generations 19 and below. Using GAMBIT 2.3.16 (a software package of ANSYS) the 

model was meshed in order to form a finite element model. The model employed the use of 

moving walls via a user defined function and simulation was set up and executed using 

FLUENT.  Results yielded no recirculation and flow rate ratios (0.18 – 0.36) were within a 

reasonable range of what had been reported in previous studies (0.057 – 1). Li and 

Kleinstreuer [47] investigated the air flow pattern in lung alveoli by applying the lattice-

Boltzman method to three different shaped alveoli. A moving wall boundary condition was 

applied to the alveoli as well as a pressure inlet condition. The results of the analysis depicts 

that the airflow velocity and vertical flows are dependent on geometric structure. On the 

other hand, the pressure distributions obtained are not as dependent on geometry and so are 

less influenced. Specifically, they found that flow patterns in the main conducting duct for 

each model were similar in each case, however the alveolus shape did determine the airflow 

patterns in terms of vortex characteristics in alveolar cavities. Pressure drop for the three 

cases of varying geometry were virtually the same and flow within the alveolus is much 

weaker than in the main duct. By applying a moving wall it was discovered that with wall 

expansion, airflow moves towards the walls. This results in the streamlines being shifted 

toward the wall where they terminate as opposed to appearing along the wall surface. 

Schroter et al. [48] modeled the mechanical behavior in mammalian lung alveolar 

ducts utilizing the finite element method. The geometry of the model entailed an assembly 

of truncated octahedral alveoli that surround an air duct. Effects of surface tension were 

included within this model, particularly at the gas-liquid interface. Results from the study 
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included pressure-volume curves that were compared with previous work and experimental 

data that illustrated plausible comparisons. Gefen and Elad et al. [49] developed a 2-D model 

of an alveolar sac structure in normal and simulated emphysematic lungs. Using a 

commercial finite-element software package it was determined that the quasi-steady stress 

distributions and displacements for the alveolar sac at various lung volumes. Results of this 

study showed that the deformation at the alveolar wall is not uniform. Moreover, significant 

stress concentrations are developed near curved regions in normal lungs. Such regions of 

high stress concentration become most vulnerable in cases of emphysema. Dailey and 

Ghadiali [7] performed a fluid structure analysis on 2-D hexagonal honeycomb alveolar sac 

models. They investigated the behavior of a dilute suspension of micron-sized particles with 

no interactions between particles being accounted for within the study. A simulation was 

performed to incorporate negative pressure breathing conditions. The applied tissue forces 

would then deform lung parenchyma creating flow within alveoli. This alveolar flow was 

then used to calculate the trajectories of particles.  Results showed that slightly higher flow 

rates were found within the central sac except for particles injected within 1 μm of the 

moving walls where particles would remain entrained in the fluid and not impact walls. 

Brownian diffusion dominates the transport of smaller particles dp < 0.5 μm. On the other 

hand, gravitational sedimentation dominates the transport of large particles, dp > 1μm. For 

particles between the sizes of 0.5 μm < dp < 1μm, results yielded slower diffusion and 

sedimentation which maximizes the impact rate. Chaudhry et al. [50] analyzed the 

relationship between pressure, stress, and stretch ratio in the alveoli near the points where it 

could potentially burst. Using the length tension properties of the human alveolar wall, they 
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developed a strain energy function that was used to determine the relationship of the defined 

parameters. Results include graphs of transmural pressure versus stretch ratio and 

circumferential stress versus stretch ratio. Jessica de Ryk et al. [51] developed a model to 

study the stress distribution in normal and emphysematous lungs. Using finite-element 

analysis they evaluated the model at varying lung inflation levels by applying quasi-static 

loading of alveolar pressure. Results of this study showed that stress distributions in normal 

lungs appear to remain unchanged between 40% - 100% total lung capacity (TLC), even 

though the values of stress increased. In the case of the emphysematous alveolar model, 

pronounced differences in stress distribution are incurred as a result of elevated internal 

alveolar pressure. At 40% TLC the stress pattern is more evident as compared to 100% TLC. 

Using a strain energy function model and uni-axial tension tests on living precision-

cut rat lung slices, Rausch et al. [52] determined an essential elastic material law by 

discovering the material parameters describing lung parenchyma. By performing 

experiments on lung strips the elastic material law was deduced due to the application of 

preconditioning. This allowed for the development of a computational model for the lung 

slices using an in house multiscale and multiphysics research software platform.  

Development of this model allowed for an inverse analysis using different strain energy 

function models and coupling and decoupling those models resulting in an optimal fit to 

produce a nonlinear material description. This study focused to ascertain those material 

parameters for the elastic model which would be used for further continuum mechanics 

based predictive simulations. 
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Roan and Waters [53] performed an in depth review on the mechanical strain in lung 

alveoli by compiling data from various clinical and animal studies. The mechanics of the 

alveolus in terms of its basic structure, biology, and chemistry are discussed as well as 

comparisons of alveolar deformation from previous studies. To determine the mechanical 

determinant of the alveolus, Roan and Waters discussed that two length scales must be 

considered. These scales include the organ and alveolus level where loads at these length 

scales are considered important factors. An in depth discussion on the biology of the alveolus 

outlined information regarding the size and structural makeup of the walls including 

endothelial cells, epithelial cells, the basement membrane and interstitial space. The 

mechanical determinants of the strain field in particular comprise the composition of the 

alveolar basement membrane and the interfacial forces at the air-liquid interface. Details 

regarding the expansion of the alveolus with regard to the strain field and a review of several 

studies that focus on magnitude and distribution of strain within the alveolus are 

summarized. Finally, a finite element model of a spherical structure with an encapsulation 

was analyzed using the finite element software ABAQUS. The internal sphere represents the 

lung and the outer structures represents the collective response of the rib cage and tissue 

level boundary conditions. Contour plots of the strains in the y-direction were given with a 

maximum strain of 0.06. Furthermore, although the majority of the strain levels are positive 

indicating tension, the strain levels near the coverslip of the model were negative, which 

indicated compressive strains in the alveoli beneath the coverslip. 

Another study by Rausch et al. [54] analyzed the local strain in real three dimensional 

alveolar geometries extracted from Synchrotron-based X-ray tomographic microscopy. 
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They ran a FE analysis on these the alveolar geometries by preparing isolated rat lungs. Each 

lung specimen was scanned and simultaneously modeled into a three-dimensional volume 

representation and discretizing the three-dimensional volume with a volume mesh with 

appropriate boundary conditions. The model was finally solved using an in-house research 

software platform BACI. Findings from the study showed that local strains are much higher 

than the global extension of the tissue cubes, where local strains were up to four times as 

high as global strains. Furthermore, strain hotspots were found near areas where thin 

structures existed. These thin regions became overstretched increasing the likelihood of 

excess damage. 

Finally, to fully comprehend the dynamic behavior of the lung, one would need to 

incorporate the transient behavior in solid mechanics as well as fluid dynamics. As a result, 

fluid-structure interaction (FSI) capabilities provided an element that allows for coupling 

between the fluid and solid behavior models utilized in lung modeling. FSI simulations 

incorporate load transfer between the fluid and solid applications being utilized. Key 

components to these type of analyses are proper contact between the solid and fluid surface 

(i.e. fluid-solid interface on each model), remeshing frequency, strength of coupling between 

the solid and fluid solvers, and the possibility of artificial stiffening due to remeshing near 

boundaries [55,56]. At each time step, there is a coupling step between the fluid and solid 

solver. For example, the solid analysis would transfer the displacement while the fluid 

analysis would transfer the force at each time step. Details on this technique as it relates to 

this research work is found in the following chapter. Nevertheless, with applications focused 

on the lung, W.Wall et al. has done a wide array of research in this area utilizing FSI 
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techniques. Their efforts are focused on investigating the complex local stress and strain at 

the alveolar level and improving the material modeling in the tracheobronchial region that 

would allow for inclusion of fibrous cartilage [57,58,59,60]. 

 

1.4 Thesis Objective 

 The objectives of this thesis include: 

i. Investigate the damaging effects of forced air flow on a 3-D idealized lung 

alveolar model. 

ii. Incorporate aged and diseased modeling into the analysis in order to investigate 

these effects on the stress/strain environment. 

iii. Create a multi-scale modeling connection between the alveolar organ level models 

to the alveolar septal tissue model. 

iv. Perform a comprehensive study that includes the effects of aging and disease. 

Although the model used throughout this study may be one of simplicity it does give an 

initial approximation of the distribution of stress/strain environment resulting from 

mechanical ventilation. Chapter 2 of this thesis analyzes three cases, particularly a normal 

healthy lung, normal lung with structural changes to mimic disease, and lastly a normal lung 

with mechanical property changes that resemble aging. As previously stated not only does 

injurious ventilation exacerbate previous lung injury it also introduces damage to healthy 

portions of the lung. This is where the importance of studying the mechanical forces induced 

by mechanical ventilation on healthy lungs come into play.  Diseases such as emphysema 

which is known to destroy the lungs overtime are key causes as to why ventilators are 
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necessary. Nevertheless, there exists a need to understand how the disease state responds to 

injurious ventilation. The last case which is one that involves an analysis on aged lungs is 

extremely vital as a vast majority of critically ill patients up to 81% [61] in an intensive care 

unit (ICU) are above 65 years. Moreover, ICUs are the mainstays within hospitals for which 

treatments of mechanical ventilation are heavily administered to patients. According to 

previous research by Cullen et al., Leaf et al., McClean et al., and Tran et al. [61 – 64] the 

aged and chronically ill patients have become the primary consumer of intensive care. 

Therefore, a more detailed computational study would give insight into how the majority of 

mechanical ventilation utilizers respond to this type of treatment. A specific study [65] 

assessed the influence of age on the outcome of patients receiving prolonged mechanical 

ventilation in tandem with other factors such as severity of illness, reason for mechanical 

ventilation, duration of mechanical ventilation, and the length of ICU stay were taken into 

consideration. The findings yielded an outcome in which the influence of age in 

mechanically ventilated patients in ICU could not be ascertained. Notwithstanding, this 

thesis delves into this area for a computational approach. 

Chapter 3 encompasses an analysis of an alveolar tissue model, a step towards a more 

microscopic approach. Specifically, this analysis investigates how the deformations at the 

organ level model translate directly to the tissue. Hence, observing damage on a more micro-

scale. The tissue is analyzed by taking into consideration the solid structural aspects of the 

tissue (i.e. endothelial cell layer, basement membrane, and epithelial cell layer).  

 Chapter 4 specifically investigates a specialized case that integrates the developed 

model to mimic a real life scenario for which an aged patient undergoes mechanical 
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ventilation as treatment. This case will give the best assumptions and explanations as to the 

distribution and magnitude of mechanical forces induced on the alveolar region of the lungs. 

These results can be of great assistance to physicians in terms of sustaining the lives of 

patients and avoiding multiple organ system failure (MOSF).  

Lastly, chapter 5 concludes the thesis by giving a synopsis of the various cases 

throughout the study and ties it all together in order to address the overall objectives. 
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CHAPTER 2 

Lung Alveolar Analysis 

 

2.1 Methods 

A three-dimensional alveolar model representative of generations 22-24, with typical 

alveolar ducts and sacs in human lungs measured by Weibel [1], defined by supportive 

dimensions was created using the SolidWorks commercial CAD software. The geometry 

was modeled after that used by Dailey et al [7]. Table 2.1 gives the associated dimensions 

for the model. Specifically, the three dimensional model included the alveolar duct in the 

analysis of the lung parenchyma to accurately describe the overall mechanical behavior of 

the lung as recommended by Denny and Schroter [48]. Hence, for this particular analysis 

generations 22 up to 24 were used in order to include the alveolar ducts, particularly a main 

branch at 22 with 2 daughter branches at 23. Spherical geometry was used to define an 

alveoli sac.  Figure 2.1 illustrates the idealized geometry as well as its comparison to the 

physiological model of the lung. Although previous research [70] describes the alveolar 

region of the lungs as being a tightly packed sleeve of cup like chambers that open to one 

duct in which adjacent walls are shared, this model is much more idealized. There still 

remains very few studies on FSI techniques associated with lung modeling, hence, the goal 
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is to gain an understanding of the interaction between fluid (air) and solid (alveolar septa) 

domains in order to qualitatively and quantitatively analyze the degree of mechanical forces 

imposed as a result. Moreover, for simplification purposes, in this particular model the 

effects of surface tension are ignored and hence the tethering forces that result are negligible.   

 

 

 

 

 

 

 

 

Figure 2.1. Geometric representations of the airway generations based on ICRP [69] 

tracheobronchial geometry and the idealized three-dimensional model of the alveolar 

geometry used for fluid-solid interaction analysis with each alveolar sac labeled. 

Fluid (Mechanically 
Ventilated Air) Solid (Alveolar Wall Tissue) 

a 

c 

b 
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The computational model involves both fluid and solid domains of the alveolar 

geometry. Table 2.1 shows the geometric parameters used to model the lung alveolar 

geometry. The alveolar geometry was considered as rigid (no deformation) in fluid analysis 

through computational fluid dynamics (CFD) from which the airway pressures and velocities 

were obtained. However, from coupled fluid-solid analysis through fluid-structure 

interaction, the strains on the alveolar geometry were obtained by considering the alveolar 

tissue as physiologically compliant (able to deform).  The transient interactions between 

airflow and sac tissue during mechanical ventilation were investigated by solving two 

coupled sets of governing equations with specific boundary conditions. The governing 

equations for airflow and airways are described below. 

 

Table 2.1 Description of geometric parameters for the idealized alveolar model. 

 

 

 

 

 

 

 

2.1.1 Airflow Equations 

The governing equations for transient airflow are the Navier-Stokes equations on a 

moving mesh with the assumption of incompressible flow. Additionally, flow was assumed 

to be unsteady and laminar. These equations govern the principles of mass and momentum 

Dimensional Parameters for Alveolar Model 

Inlet Duct Diameter  200 µm [7] 

Entrance Length 100 µm [7] 

Lobule Diameter 470 µm [94] 

Thickness 5 µm [41,50] 
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conservation using Einstein’s repeated index convention are illustrated below (Equations 2.1 

and 2.2).  

Conservation of mass: 

 

𝜌𝑔

√𝑔

𝜕

𝜕𝑡
(√𝑔) + 𝜌𝑔

𝜕

𝜕𝑥𝑗
(𝑢𝑗 −
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𝜕𝑡
) = 0      (2.1) 

 

Conservation of momentum: 
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𝜕𝑝

𝜕𝑥𝑗
+ 𝜇

𝜕2𝑢𝑖

𝜕𝑥𝑗
2   (2.2) 

 

In these equations x͂j represents the moving mesh location, √𝑔 is the metric tensor 

determinate of the transformation, i.e. the local computational control-volume size, ρg is the 

fluid density, p is the fluid pressure, μ is the fluid viscosity, and u is the fluid velocity. 

 

2.1.2 Alveolar Wall Equations 

The governing equations for the movement of the alveolar sac walls during inhalation 

and exhalation are the time-dependent structural equations shown below (Equations 2.3 and 

2.4).  

 

Equation of Motion: 

𝜕𝜎𝑖𝑗

𝜕𝑥𝑗
+ 𝐹𝑖 = 𝜌

𝜕2𝑢𝑖

𝜕𝑡2
    (2.3) 
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Constitutive Relations: 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙                                                 (2.4) 

In the equations above σ is the stress in each direction, F is the body force, ρ is the 

density, u is the displacement, C is the elasticity tensor, and ε is the strain in each direction. 

 

2.1.3 Computational Simulations 

The alveolar geometry was generated using SolidWorks® software and then 

imported into ANSYS Workbench, where FSI was conducted using ANSYS Mechanical 

(Version 14.5.7) and ANSYS CFX (Version 14.5.7). ANSYS Mechanical is a general finite 

element (FE) software program for structural modeling, and ANSYS CFX is a general 

purpose computational fluid dynamics (CFD) software program for modeling fluid flows. 

The individual models were coupled using a fluid-structure interaction (FSI) algorithm [57, 

58,59]. Figure 2.2 depicts the FSI algorithm used in order to capture the physics of the model. 

The analysis assumed the solid portion was compliant, i.e. able to move. The fluid model 

equations were solved first to obtain fluid pressures, which were applied to the solid model. 

Displacements were solved for in the solid model equations, which were applied to the fluid 

model. The fluid model equations are resolved using the structural displacements at the 

boundaries. The process iterates until a converged solution is found for each time step.  
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Figure 2.2. Fluid-structure interaction algorithm used to solve the model. 

 

2.1.4 Finite Element Meshes and Boundary Conditions 

The fluid domain of the alveolar model comprised of 120,883 tetrahedral elements 

while the solid domain comprised of 120776 tetrahedral elements. These models were 

obtained after performing a mesh independence study. A graph demonstrating mesh 

independence can be seen in figure 2.3. Table 2.2 shows the details on number of elements 

for the three various analysis. Additional testing of mesh quality was done to ensure accuracy 

of results in terms of aspect ratios and skewness for the meshed models. Particularly, the 

skewness of a mesh represents the difference in between the shape of the cell and the shape 

of an equilateral cell. All elements of the solid model were below the value of 1 with more 
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than 99% of elements below 0.75 meaning they ranged from fair to excellent. Next, the 

aspect ratio of the elements is considered, which represents a measure of the stretch of a 

particular cell. In terms of the fluid model, mesh quality is measured in terms of 

orthogonality, expansion, and aspect ratio. Focus will be placed mainly on mesh aspect 

ratios. Such ratios for the fluid model revealed values of 5 which were all within good 

standing. Additionally, more than 99% of elements in the solid model has aspect ratios less 

than 4 with the maximum being 6.7. The mesh size should be chosen such that the results 

are independent of mesh size. Hence, after conducting a mesh study, mesh size was chosen 

to be 120,000 elements for both solid and fluid geometries. Figure 2.3 shows the mesh 

convergence plot and figure 2.4 illustrates meshing for the normal health lung model. 

 

Table 2.2. Mesh sizes for the normal, diseased and aged lung alveolar models. 

Model Number of Solid Elements Number of Fluid Elements 

Normal 120776 120883 

Diseased 120572 120780 

Aged 120776 120883 
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Figure 2.3 Chart of mesh independence study for FSI analysis      
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Figure 2.4. 3-D mesh for the normal lung solid (top) and fluid (bottom) model. 

 

A no slip boundary condition was applied at the fluid-solid interface. At the inlet of 

both the fluid and solid model a zero displacement was applied. Additionally, a fluid solid 

interface was applied to both the solid and fluid models for load transfer to occur. The 

analysis ran as transient with a defined time step of 0.025 s which provided the best and 
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quickest convergence for results. Two separate input waveforms were used that included a 

normal breathing waveform and a ventilator waveform shown in figure 2.5. For the normal 

breathing waveform each breathing cycle was 4 seconds with 1.3s as inhalation and 2.7s as 

exhalation (1:2 ratio). For the ventilator waveform each breath cycle was 2 seconds with 

0.4s as inhalation and 1.6s as exhalation (1:3 ratio). The formulas used to calculate the 

normal breathing and ventilator waveforms are found in Equation 2.5 and 2.6, respectively. 

The residuals were set to a value of 1E-4 as this was sufficient to give the most accurate 

results possible. 

826.73 sin(2.3621𝑥)  𝑓𝑜𝑟 0 ≤ 𝑡 ≤ 1.33  (2.5a) 

411.82 sin(1.1766(𝑥 + 1.34)) 𝑓𝑜𝑟 1.33 ≤ 𝑡 ≤ 4  (2.5b) 

𝑄0 = 0.001
𝐿

𝑠
  𝑓𝑜𝑟 0 ≤ 𝑡 ≤ 0.4   (2.6a) 

𝑄0 =  0.001(−𝐸𝑥𝑝 (−
(𝑡−0.4)

0.7
))   (2.6b) 

𝑄𝑛 =
𝑄0

2𝑛    (2.6c) 

𝑉𝑛 =
𝑄𝑛

𝐴𝑟𝑒𝑎
    (2.6d) 
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Figure 2.5 a. Normal breathing input waveform. b. Ventilator input waveform 
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2.1.5 Material Parameters 

For the alveolar geometry model, the wall was assumed to be homogeneous, 

incompressible and behaved as a non-linear hyperelastic material assuming a Neo-Hookean 

model [49, 50, 52, 57, 60]. From this model the following parameter was applies (Equation 

2.7): 

𝑊 =  
𝜇1

2
(𝐼1̅ − 3) +  

𝐾1

2
(𝐽 − 1)2                            (2.7) 

where C1 = µ1/2 = 1kPa and K1 = 13.5kPa [57]. Alveolar walls had a density of 196 kg/m3 

[49]. The air was assumed to be an incompressible fluid at 37˚C.  

 

2.1.6 Mechanical Ventilation Parameters 

An inlet velocity profile (either normal breathing or ventilation waveform) was 

applied to the opening of the alveolar duct at generation 22 as shown in figure 2.5. Various 

studies have compared the effects of inspiratory waveform during ventilation such as 

comparing a sine wave versus a square wave [38, 39]. In this particular model, the sine wave 

represented the normal breathing waveform which was utilized for comparison. The velocity 

at the alveolar region is not specifically known and many studies have used various inlet 

waveforms, pressure inlet conditions, and other user defined functions to determine flow 

within the alveolar geometry. Assuming an idealized dichotomous lung the flow at the 

alveolar ducts would be based on the tracheal flow rate where the flow varies with each 

generation number, which can be derived from Q(n) = Qtra/2
n [40,47]. Thus allowing the 

velocity over a breathing cycle to be determined for the alveolar duct at generation 22 using 
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a 60 L/min tracheal flow rate and converting that flow rate to a velocity. This was repeated 

for studies involving continuous breathing cycles.  

 

2.1.7 Normal Lung with Structural Changes 

 Particular importance to understand how ventilation affects the lungs with structural 

changes that obstruct airflow needs to be investigated. As previously stated, ventilation 

exacerbates preexisting lung disease and damages healthy parts of the lung. However, the 

specifics in terms of mechanical behavior is sought after. This analysis mimics those changes 

associated with disease. In the diseased state there are two distinct cases which include 

buildup of mucus and other particles that obstruct the airway hence decreasing the inner 

radius and structural changes which occur in a more advanced level of the disease and 

include change in elastic modulus of lung tissue [71,72]. Wall thickness was increased by 

50% coupled with a 50% decrease in the radius in order to account for disease in the model. 

Figure 2.6 illustrates the lung alveolar model with structural changes due to disease as well 

as the accompanying meshed fluid and solid model. 
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Figure 2.6 a) NLSC with both fluid (left) and solid (right) shown. b) 3-Dimensional 

meshed fluid (top) and solid (bottom) models. 

a. 

b. 
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2.1.8 Normal Lung with Mechanical Property Changes 

It is important to consider and include aging when investigating mechanical ventilation due 

to the fact that more than 50% of patients on mechanical ventilation are over the age of 65 

[73].  Parameters to model aging include changes in the material properties of the lung tissue. 

Referencing the study done in by Lai-Fook et al [74] parameters in terms of bulk modulus, 

shear modulus, Poisson ratio, and elastic modulus were all computed for a person of age 70 

(Equations 2.8-2.11).  

   𝐾 = 8.9 + 0.25𝐴𝑔𝑒    (2.8) 

   𝜇 = 2.6 + 0.011𝐴𝑔𝑒    (2.9) 

   𝜎 = 0.40 + 5.2𝑥10−4𝐴𝑔𝑒   (2.10) 

   𝐸 = 3𝐾(1 − 2𝜈)    (2.11) 

where K is the bulk modulus, μ is the shear modulus, σ is Poisson ratio and E is the elastic 

modulus or Young’s modulus. Additionally the above equations all correspond to a 

transpulmonary pressure of 4 cmH2O which is at functional residual capacity. Table 2.3 

gives the values for the various material properties at age 70. 

 

Table 2.3 Material properties for the NLMPC model at age 70. 

Material parameter Value 

K (Pa) 2588.96 

μ (Pa) 330.48 

σ 0.44 

E (Pa) 987.95 
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2.2 Results 

Three sets of results were obtained pertaining to (i) normal lung alveolar analysis 

with the ventilator and normal breathing input waveforms (ii) normal lung alveolar analysis 

with structural changes modeling disease (TLC) and (iii) normal lung alveolar analysis with 

mechanical properties modeling an aspect of aging. The results of airway mechanics 

parameters, specifically the wall shear stresses as well as stresses/strains were analyzed to 

show the effects of mechanical ventilation on various lung conditions. Moreover, for each 

analysis results are analyzed after 2 breathing cycles at 2.2s (midway through inspiration) 

and 2.825 (40% into the breathing cycle). The same was done for the normal breathing 

waveform, however, results were analyzed at 4.725s and 5.625. These values were chosen 

due to i) it was important to see how fluid as well as solid behavior were changing between 

inspiration and expiration and ii) midway through inspiration would represent a lung at 45% 

total lung capacity (TLC) and at 40% into the breathing cycle accounts for 70% TLC. 

 

2.2.1 Fluid Pressures and Velocities 

Results for the analysis are given in terms of fluid pressures and velocities for which 

the contours of these can be found in figures 2.7 and 2.8 for the normal healthy lung case 

with ventilator and normal breathing input boundary conditions. Fluid velocities were 17.8% 

higher in the ventilator waveform as compared to the normal breathing waveform. Flow 

during expiration is less in each case as is expected seeing that flow is exiting and working 

against gravity. Fluid pressures were 26.6% higher in the ventilator waveform as compared 
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to the normal breathing waveform. Additionally, in the ventilator waveform case there 

remained a larger distribution of higher pressures across the model. Even in the case of 

expiration a larger distribution and magnitude of higher pressures were found in the 

ventilator waveform case. Figure 2.9 and 2.10 display plots of pressure vs time throughout 

the analysis. In figure 2.9 the pressure transient can be compared to the theoretical outputs 

of pressure from the ventilator that's shown in the smaller image. Both pressure outputs are 

similar in shape but vary due to the slight differences between the flow waveform used in 

this analysis and that used in the figure. 
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a)       b) 

 

c)      d) 

 

Figure 2.7 Contours of velocity magnitudes for the a) ventilator waveform at 2.2s, b) 

normal breathing waveform at 4.725s, c) ventilator waveform at 2.285s, and d) normal 

breathing waveform at 5.725s. 
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a)      b) 

 

c)      d) 

 

Figure 2.8 Contours of pressure magnitude for the a) ventilator waveform at 2.2s, b) 

normal breathing waveform at 4.725s, c) ventilator waveform at 2.285s, and d) normal 

breathing waveform at 5.625s. 
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Figure 2.9 Pressure vs. Time transient for the ventilator waveform. Figure on right 

source [88]. 
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Figure 2.10 Pressure vs. Time transient for the normal breathing waveform. Source for 

figure [89] 

 

Figure 2.11 and 2.12 respectively, display the fluid velocities and pressures for the 

normal lung with structural change (NLSC) and normal lung with mechanical property 
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changes (NLMPC). In this case fluid velocities in the NLSC were not significantly higher, 

0.2%, than in the NLMPC. However, fluid pressure in the NLSC was 67% higher than in the 

NLMPC. For the NLSC there are structural changes with no change in mechanical 

properties. The radius of the alveolar ducts are decreased. Therefore as flow enters, seeing 

that there are no major increases in flow, it is expected with a decrease in radius that an 

increase in pressure ensues. 

a)      b) 

  

c)      d) 

 

Figure 2.11 Contours of velocity magnitude for the a) diseased lung model at 2.2s, b) aged 

lung model at 2.2s, c) diseased lung model at 2.285s and d) aged lung at 2.285s with 

ventilator waveform. 
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a)      b) 

 

c)      d) 

 

Figure 2.12 Contours of pressure magnitude for the a) diseased lung model at 2.2s, b) aged 

lung model at 2.2s, c) diseased lung model at 2.285s and d) aged lung at 2.285s with 

ventilator waveform. 

 

2.2.2 Structural Displacements and Stresses 

The solid analysis results were given in terms of total displacement, the von Mises 

stress and principal stresses. Figure 2.13 through figure 2.17 depict the total displacement, 

von Mises stress and principal stresses (first, second, and third), for the normal breathing 

and ventilator waveform. Particularly for the ventilator waveform it shows that the lung 
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alveolar model is being displaced 25.2% more than in the case of the normal breathing 

waveform. As a result, the stresses seen in figures 2.14-2.17are higher by approximately 

25% in the ventilator case than in the normal breathing case. Distributions of stresses are 

more predominantly seen in the alveoli sacs that contain greater distributions of 

displacement. This also can be verified mathematically with the fact that where Eq 2.3 is 

dependent on the displacement xj and as a result the stresses obtained are therefore dependent 

on the displacements. Figure 2.18 displays bar charts comparing the ventilator versus normal 

breathing waveform in terms of inspiration and expiration. Parameters compared are the total 

displacement, von Mises stress and first principal stress. It then shows that during inspiration 

for the ventilator waveform case displacements and therefore stresses are larger in 

magnitude. 
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a)      b) 

 

 

c)      d) 

 

Figure 2.13 Contours of total mesh displacement for the a) ventilator waveform at 2.2s, b) 

normal breathing waveform at 4.725s, c) ventilator waveform at 2.285s, and d) normal 

breathing waveform at 5.625s. 
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a)      b) 

 

c)      d) 

 

 

Figure 2.14 Contours of von Mises stress for the a) ventilator waveform at 2.2s, b) normal 

breathing waveform at 4.725s, c) ventilator waveform at 2.285s, and d) normal breathing 

waveform at 5.625s. 
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a)       b) 

 

c)      d) 

 

Figure 2.15 Contours of first principal stress for the a) ventilator waveform at 2.2s, b) 

normal breathing waveform at 4.725s, c) ventilator waveform at 2.285s, and d) normal 

breathing waveform at 5.625s. 
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a)       b) 

 

c)      d) 

 

Figure 2.16 Contours of second principal stress magnitude for the a) ventilator waveform 

at 2.2s, b) normal breathing waveform at 4.725s, c) ventilator waveform at 2.285s, and d) 

normal breathing waveform at 5.625s. 
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a)       b) 

 

c)      d) 

 

Figure 2.17 Contours of third principal stress magnitude for the a) ventilator waveform at 

2.2s, b) normal breathing waveform at 4.725s, c) ventilator waveform at 2.285s and d) 

normal breathing waveform at 5.625s. 
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Figure 2.18 Comparison plots of normal versus ventilator breath for total mesh 

displacement (top) and significant stresses (bottom) 

 

The total displacement for the NLSC and NLMPC are found in figure 2.19. 

Displacements are shown to be 98% higher in the case of the NLMPC compared to the 
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NLSC. This is found to be plausible due to that fact that within the NLMPC, elasticity 

decreases thus making it less rigid and more flexible. As a result with increased flexibility 

the lungs are therefore more compliant and able to expand more as the lungs fill with air. 

Equation 2.3 is dependent on displacements in order to calculate stress. Figures 2.20 - 2.23 

depict the various stresses for the NLSC and NLMPC cases. For example, the von Mises 

stresses are 80.2% higher and the first principal stress is 81.6% higher in the NLMPC than 

in the NLSC. Figure 2.24 displays a bar chart of comparisons between displacements and 

von Mises stress for the diseased and aged lung models. 
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a)      b) 

 

c)      d) 

 

Figure 2.19. Contours of total mesh displacement magnitude for the a) NLSC model at 

2.2s, b) NLMPC model at 2.2s, c) NLSC model at 2.285s and d) NLMPC model at 2.285s 

with ventilator waveform. 

 

 

 

 

 

 



56 

 

a)      b) 

 

c)      d) 

 

Figure 2.20 Contours of von Mises stress magnitude for the a) NLSC model at 2.2s, b) 

NLMPC model at 2.2s, c) NLSC model at 2.285s and d) NLMPC model at 2.285s with 

ventilator waveform. 
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a)       b) 

 

c)      d)

 

Figure 2.21 Contours of first principal stress for the a) NLSC model at 2.2s, b) NLMPC 

model at 2.2s, c) NLSC model at 2.285s and d) NLMPC model at 2.285s with ventilator 

waveform. 
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a)      b) 

 

c)      d) 

 

Figure 2.22 Contours of second principal stress for the a) NLSC model at 2.2s, b) NLMPC 

model at 2.2s, c) NLSC model at 2.285s and d) NLMPC model at 2.285s with ventilator 

waveform. 
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a)      b) 

 

c)      d) 

 

Figure 2.23 Contours of third principal stress for the a) NLSC model at 2.2s, b) NLMPC 

model at 2.2s, c) NLSC model at 2.285s and d) NLMPC model at 2.285s with ventilator 

waveform. 
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Figure 2.24 Comparison plots of total displacement (top) and von Mises stress (bottom) 

between NLSC and NLMPC models. 
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2.3 Discussion 

 The ventilator waveform was applied as an inlet boundary condition to a normal 

healthy lung model and compared to a normal breathing waveform that was applied as an 

inlet boundary condition to the normal healthy lung. Results showed that for these cases the 

ventilator waveform exhibit higher fluid velocities and pressures. Pressures were 26.6% 

higher in the ventilator case compared to the normal breathing case. Obtained stresses were 

25% higher in the ventilator case. Overall, positive peak pressures and stresses show that the 

alveolar model in undergoing tension throughout the breath cycle both in inspiration and 

expiration. Malvé et al. [90] performed a study on the human trachea for which a fluid 

structure interaction was done. They compared the cases of normal breathing to ventilation 

and showed that the fluid pressures in the trachea were much higher in the ventilator 

waveform than compared to the normal breathing waveform. Additionally, the 

displacements during inspiration for ventilation were approximately 71% higher than in 

normal breathing during inspiration. Furthermore, stresses in their model showed that in the 

ventilator case stresses were more than 50% higher. Hence, the trends shown in this study 

are in agreement that ventilation would cause higher displacements and stresses in the lung 

model, as well as higher fluid pressures. 

 In the NLSC and NLMPC models results showed that flow intensities for both 

models were similar while pressures experienced in the NLSC model during inspiration were 

significantly higher by 67% compared to the NLMPC. At present in the literature no studies 

have shown incorporation of aging factors into a finite element analysis of a lung alveolar 

model. As a result lungs become more compliant with decreased elasticity. In the case of the 
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elderly more complaint lungs allows for an increase of the airspace. In a study by Frank et 

al [91] on mechanical behavior of the lungs in the elderly, 28 subjects were tested of age 50 

years and older. It was noted that the magnitude of changes with ages are generally small, 

nonetheless those changes were present for which lung compliance was relatively higher in 

older subjects. In another study by Ionescu et al. [80] the mechanical properties of the 

respiratory system were studied, particularly in reference to a pathologic case for which there 

are changes in the physical structure and mechanical properties. Results showed that in the 

case of disease higher pressures must be applied to obtain the same air flow.  This study 

showed that when modeling disease, if velocity remains is the same pressure must increase 

to compensate for change in area.  As a result this study exhibits the same trend compared 

to the previously stated study and is therefore in good agreement. 

 Mechanical stresses and displacements were found to be higher in the NLMPC model 

than in the NLSC model. Changing the mechanical properties drastically changes the 

mechanical behavior (i.e. stress/strain). Results showed that stresses were 80% higher in the 

aged lung when compared to the diseased lung. There are currently no other studies that take 

into account components of disease and age within one lung alveolar model. 

 In conclusion, fluid velocities and pressures as well as displacement and stresses 

were presented for the case of normal healthy lungs, normal lungs with structural changes 

similar to a diseased lung and normal lungs with mechanical property changes a component 

of aging. Results determined that in normal healthy lungs under normal breathing and 

ventilator breathing, fluid forces (i.e. pressures) and mechanical stresses are higher in 

mechanical ventilation. The NLSC model exhibited higher pressures due to changes in inner 
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radius. On the other hand, a more compliant lung (NLMPC) exhibited higher displacements 

and mechanical stresses. Therefore, this study gives a better understanding on how 

ventilation impacts functional lung units as well as how components of age and disease are 

incorporated into ventilation impact. Future work can be done by extending the analysis time 

to account for longer breath cycles for which higher flows can matriculate to the individual 

alveoli sacs. This will aid in the understanding of the long term impact of mechanical 

ventilation. 
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CHAPTER 3  

Alveolar Tissue Analysis 

 

 

3.1 Introduction 

The lungs are natural comprised of walls that are structurally suited to carry out the 

everyday function of gas exchange as one inhales and exhales. This study focuses on the 

walls of individual alveoli that are commonly referred to as alveolar septa which are 

comprised of thin permeable membranes, on the order of 1 – 5 μm [41].  The structure of the 

alveolar septa has been of significant importance to researchers in understanding the 

mechanics of gas exchange. Further investigation within the structure of the alveolar septa 

has been researched for many decades with studies in the late 1950’s by Kareer [6] who 

determined the wall is comprised of a continuous endothelial cell layer, basement membrane, 

and epithelial cell layer. Several studies emerged later, particularly by Weibel [16, 17, 18, 

19] that focused on the morphology of lung parenchyma which included alveoli and the 

walls that separate them. Other studies focused on the interalveolar septum specifically the 

basement membrane [75]. Aside from the above-mentioned layers, an additional layer was 

defined as the alveolar liquid lining layer. This layer is responsible for stabilizing alveoli 
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from collapse during inflation in conjunction with the surfactant produced and secreted by 

alveolar epithelial II cells. Therefore, the four layers comprising the alveolar wall consist of 

the endothelial cell layer, basement membrane, epithelial cell layer, and the alveolar lining 

liquid layer that forms the air liquid interface. From these studies it is pertinent that there 

lacks a theoretical, investigative model that would allow one to understand how local 

deformation in the walls is translated from the organ to the tissue level contained within the 

lung. Additionally, knowledge that pertains to such deformations at the alveolar region as a 

result of introducing mechanical ventilation has currently been highly demanded. Therefore, 

this study will focus on the modeling, observation and analysis of mechanically induced 

stresses and strains prompted by mechanical ventilation on the alveolar septal tissue.  

 

3.2 Methods 

The geometric model used for this study is illustrated in figure 3.1 and was created 

via the SolidWORKS® 2013 commercial software. The alveolar septa was modeled as a 

heterogeneous tissue denoting each layer as previously defined. Each layer has varied 

thickness which is shown in table 3.1. The material properties for each layer are distinct and 

can be found in table 3.2. Every individual layer is modeled with hyperelastic behavior that 

exhibits a nonlinear material behavior. The Neo Hookean model was additionally utilized to 

describe the material charateristics of the septal tissue. Furthermore, to be consistent the 

mechanical properties utilized in the normal lung model with mechanical property change 

as a component of aging was also used in this study. Table 3.3 shows the material parameters 

utilized for defining the Neo Hookean model for this analysis. The tissue was meshed with 
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a hexahedral mesh containing 209600 elements and 159378 nodes. Figure 3.2 displays the 

meshed model with applied boundary conditions.  

 

 

 

Figure 3.1 3-Dimensional model of the alveolar tissue geometry in various views. 

 

 

 

1 

1 
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Table 3.1 Dimensions for thickness of alveolar septal layers 

 

 

 

 

 

Table 3.2 Material property characteristics for each layer of the tissue model. 

Layer Elastic Modulus (Pa) Poisson Ratio 

Endothelial Cell Layer 3.5 E6 [80] 0.40 [81] 

Basement Membrane 3.0 E6 [82] 0.47 [83] 

Epithelial Cell Layer 0.45 E3 [84] 0.30 [85] 

 

Table 3.3 Material property characteristics utilized for the tissue analysis. 

Layer  Shear Modulus (Pa) Bulk Modulus (Pa) 

All 330.5  2588.96 

 

Layer Dimensions (μm) 

Endothelial Cell Layer 0.2   [76] 

Basement Membrane 0.1   [77] 

Epithelial Cell Layer 0.15 [78] 

Alveolar Lining Liquid Layer 0.2   [79] 

Other Tissue Dimensions  

Total length (m) 0.0025 [87] 

Total width (m) 0.001 [87] 
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Figure 3.2. 3-Dimensional tissue model with hexahedral mesh and applied boundary 

conditions displayed. 

 

 1 

1 
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In terms of boundary conditions, displacements were applied radially to the tissue 

model. Specifically, the displacements studies that were obtained from the normal lung 

model with mechanical property changes during inspiratory flow were utilized. These 

boundary conditions were then applied to observe how the tissue would deform over time. 

A transient analysis was specified for the model with a time step of 0.025s to be consistent 

with parameters utilized in previous model studies.  

 

3.3 Results 

3.3.1 Total Displacements 

Figure 3.2 (a) and (b) illustrates the total mesh displacement with contours of 

deformation that exists for each tissue layer at peak inhalation and exhalation. Both figures 

show that the entire tissue is being displaced while exhibiting a higher range of displacement 

magnitudes and distribution during expiration in each layer. These results further proves that 

during exhalation the tissue is being displaced more over a breathing cycle. 

 

3.3.2 Mechanical Stresses 

The mechanical stresses that were analyzed included the von Mises stress and the 

first, second, and third principal stresses. Figures 3.3-3.7 display the contours for each of 

these stresses during inhalation and exhalation corresponding to each tissue layer. These 

figures illustrate that in each case higher stress distributions exist during expiration. Results 

from this study determined that the tissues exhibited locations where high concentrations of 
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stress points occurred. These points along the tissue are where the majority of the 

displacement stresses are concentrated.  
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Figure 3.3 Contours of total displacement in each tissue layer endothelial cell layer (top), 

basement membrane (middle) and epithelial cell layer (bottom) at 0.4s (left) and 2s (right).  
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Figure 3.4 Contours of von Mises stress in each tissue layer endothelial cell layer (top), 

basement membrane (middle) and epithelial cell layer (bottom) at 0.4s (left) and 2s (right). 
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Figure 3.5 Contours of first principal stress in each tissue layer endothelial cell layer (top), 

basement membrane (middle) and epithelial cell layer (bottom) at 0.4s (top) and 2s 

(bottom). 
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Figure 3.6 Contours of second principal stress in each tissue layer endothelial cell layer 

(top), basement membrane (middle) and epithelial cell layer (bottom) at 0.4s (top) and 2s 

(bottom). 
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Figure 3.7. Contours of third principal stress in each tissue layer endothelial cell layer 

(top), basement membrane (middle) and epithelial cell layer (bottom) at 0.4s (top) and 2s 

(bottom). 
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Comparing the various layers of the tissue model it was determined that epithelial 

cell layer contains the highest amount of stress distribution. This indicates that this tissue 

layer experiences higher mechanical forces and undergoes deformation more rapidly as 

compared to the other tissue layers. Figure 3.8 depicts a comparison plot of the various 

stresses during inspiration and expiration. These plot results further prove that the stress 

magnitudes during exhalation are greater. 

 

 
 

Figure 3.8 Comparison plot of various stresses during inspiration and expiration. 

 

3.4 Discussion 

This research focused on the development and analysis of an alveolar tissue to perform a 

structural analysis study that investigated deformations within a series of tissue layers. 

Introducing mechanical displacements created a multi-scale connection between the organ 

level models that allowed results to be obtained for the displacements and stresses. Results 
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showed that during expiration the tissue was displaced over a greater magnitude during the 

breath cycle. It must be noted that expiration accounted for the majority of higher stresses. 

A study by Gefen et al. [79] analyzed the stress distribution in a two-dimensional alveolar 

geometry comparing a normal case versus emphysema. This study is not suitable for 

comparison as the model is two-dimensional. Future work will need to be investigated to 

validate the theoretical results obtained through experimentation. Additionally, it may be 

beneficial to focus on the characterization of specific non-linear elastic properties for each 

layer to assess the nonlinear deformation behavior of the tissue. These research areas would 

expand this research study to align the model in terms of the physiological behavior.  
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CHAPTER 4  

Comprehensive Modeling 

 

 

 

4.1 Introduction  

Earlier chapters discussed several analyses that were performed to observe the 

variations in mechanical forces as a result of each condition. In many circumstances these 

conditions are not mutually exclusive and in fact are concurrent. Of particular importance 

are the cases involving structural changes and mechanical property change which are the 

most severe and life threatening incidents regarding the utilization of mechanical ventilation. 

Approximately 52.2% of patients in critical care on ventilators are over the age of 65 and 

pulmonary disease is the second highest among patients with comorbidities [86]. Diseases 

such as asthma and COPD cause structural changes in the airways that are very pronounced. 

Specifically, asthma significantly reduces the radius of airways due to mucus and 

inflammation obstructing the airway. On the other hand, tissue destruction and increased 

resistance are found in the case of COPD where advanced stages of COPD, cause changes 

in the mechanical properties of lung tissue such as an increase in elastic modulus (i.e. 

increased stiffness) [80]. Therefore with instances of mechanical ventilation being more 
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tailored to older patients suffering from diseases such as COPD and asthma, this study 

provided a more in depth understanding on how these combined effects influence the 

mechanical behavior of the lung. 

 

4.2 Methods 

 Utilizing the normal lung with a structural change, that is a 50% increase in wall 

thickness and 50% decrease in radius and applying the aged material properties for a 70 year 

old patient, both adapted from chapter 2, a comprehensive model was created. This analysis 

incorporated the same conditions as those done in previous chapters which included a 

transient analysis with a time step of 0.025s and a ventilator waveform applied at the inlet 

of the fluid model. No slip boundary conditions were applied to the wall of the fluid and a 

zero displacement boundary condition was applied at the ducts of solid model. 

 

4.3 Results 

As in previous chapters the results for this analysis will be analyzed at times 2.2s and 2.285s 

for the same reasons mentioned in earlier chapters. Results are shown in the form of fluid 

velocities and pressures as well as total displacements and stresses. Additionally, results 

from this comprehensive lung model are then compared with the normal lung model utilizing 

the ventilator waveform. 
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4.3.1 Pressures and Velocities 

The fluid velocities and pressures can be found in figure 4.1 and 4.2. A maximum 

velocity of 1.496 cm/s was obtained with a maximum pressure of 0.33 Pa. In both cases 

maximum values are found near the inlet of the model. The velocity magnitudes also show 

that the velocity distribution is relatively higher (0.4% difference) within the comprehensive 

model than the normal lung model. On the other hand, the pressure in the comprehensive 

model is 66.2% higher than the normal lung model. 
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a)       b) 

 
 

c)      d) 

 
 

Figure 4.1 Contours of velocity magnitude for the a) comprehensive lung model at 2.2s, b) 

normal lung model at 2.2s, c) comprehensive lung model at 2.285s, and d) normal lung 

model at 2.285s with ventilator waveform. 
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a)      b) 

 

c)      d) 

 

 

Figure 4.2 Contours of pressure magnitude for the a) comprehensive lung model at 2.2s, b) 

normal lung model at 2.2s, c) comprehensive lung model at 2.285s, and d) normal lung 

model at 2.285s with ventilator waveform. 
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4.3.2 Structural Displacements and Stresses 

Results from the solid analysis model were analyzed in terms of total displacements, 

von Mises stress, and the first, second and third principal stresses. Figure 4.3 displays the 

contour plots of displacement during inhalation and exhalation for both the comprehensive 

and normal lung models. Displacement in this analysis were very minor on the order of 10-

16 for the comprehensive lung model. On the other hand, in the normal lung model case the 

displacements are on the order of 10-8. Thus, the normal lung model is displaced more readily 

during mechanical ventilation than the diseased model. A maximum von Mises stress of 

0.483 Pa was obtained in the comprehensive model and is shown in figure 4.4. When 

comparing the von Mises stress in the comprehensive model to the normal lung model it 

shows that the normal lung model experienced 71.9% higher stress. Figure 4.5, 4.6 and 4.7 

shows the first, second and third principal stressed obtained in the model during inhalation 

and exhalation. Contour plots show larger distributions of those stresses occurring during 

exhalation in the comprehensive model but during inhalation for the normal lung model. 

Furthermore, the normal lung model shows stresses that are 76.7%, 93.4% and 89.7% higher 

for the first, second and third principal stresses, respectively, compared to the comprehensive 

model.  

Finally, figure 4.8 illustrates the comparisons between the normal lung with 

structural changes (NLSC), normal lung with mechanical property changes (NLMPC), 

comprehensive and normal lung models. The plots show that the higher stresses are obtained 

in the NLMPC model. Specifically, taking into consideration the von Mises stress, the 

NLMPC model has an 80.2% higher magnitude compared to the NLSC lung and a 73.2% 
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higher magnitude than the comprehensive model. However, when the normal lung model is 

compared to the other models, there is only a 5% difference in von Mises stresses in the 

NLMPC model for both inhalation and exhalation. On the other hand, the von Mises stress 

during inhalation for the normal lung model is 79.2% higher and 71.9% higher than the 

NLSC and comprehensive models, respectively. The first principal stress magnitude during 

inhalation in the NLMPC is also higher than those obtained in the NLSC, comprehensive 

and normal lung models. Specifically, the first principal stress in the NLMPC is 81.7%, 

77.8% and 4.89% higher than the NLSC, comprehensive and normal lung models, 

respectively. 
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a)       b) 

 

 

c)      d) 

 

Figure 4.3 Contours of total mesh displacement magnitude for the a) comprehensive lung 

model at 2.2s, b) normal lung model at 2.2s, c) comprehensive lung model at 2.285s, and 

d) normal lung model at 2.285s with ventilator waveform. 
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a)       b) 

 

c)      d) 

 

Figure 4.4 Contours of von Mises stress magnitude for the a) comprehensive lung model at 

2.2s, b) normal lung model at 2.2s, c) comprehensive lung model at 2.285s, and d) normal 

lung model at 2.285s with ventilator waveform. 
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a)      b) 

 

c)      d) 

 

 

Figure 4.5 Contours of first principal stress magnitude for the a) comprehensive lung 

model at 2.2s, b) normal lung model at 2.2s, c) comprehensive lung model at 2.285s, and 

d) normal lung model at 2.285s with ventilator waveform. 
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a)      b) 

 

c)      d) 

 

 

Figure 4.6 Contours of second principal stress magnitude for the a) comprehensive lung 

model at 2.2s, b) normal lung model at 2.2s, c) comprehensive lung model at 2.285s, and 

d) normal lung model at 2.285s with ventilator waveform. 
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a)      b) 

 

c)      d) 

 

Figure 4.7 Contours of third principal stress magnitude for the a) comprehensive lung 

model at 2.2s, b) normal lung model at 2.2s, c) comprehensive lung model at 2.285s, and 

d) normal lung model at 2.285s with ventilator waveform. 
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Figure 4.8 Comparison plots of the von Mises stress (top) and first principal stress 

(bottom) for the NLSC, NLMPC, comprehensive, and normal lung models with ventilator 

waveform.  
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4.4 Discussion 

In this analysis changes to the inner radius as well as elastic modulus were performed 

in order to account for disease and age respectively. The inner radius was decreased by 50% 

while the elastic modulus was varied based on equations relative to age, see Equations. 2.6 

– 2.9. Many of the patients undergoing ventilation are over the age of 65 and suffer more 

commonly from some type of lung disease. Due to this observation a model was created that 

takes into account both aspects of age and disease yielding reasonable approximations of the 

mechanical behavior as a result of mechanical ventilation. Results showed that a maximum 

flow of 1.65 cm/sec was found near the inlet. Moreover, the velocity magnitude in the 

comprehensive model compared to the normal lung model was quite small, 0.4%, hence the 

flow magnitude was relatively constant between both models. The total pressure maximum 

was found to be 0.33Pa, nevertheless when compared to the normal lung this pressure was 

66.2% higher. A maximum von Mises stress of 0.829 Pa was shown to occur during 

inspiration. When comparing this model to the individual NLMPC, NLSC and normal lung 

cases, figure 4.4-4.7 illustrates that the stresses in the normal lung model greatly exceed 

those in the comprehensive model in terms of magnitude and distribution. Figure 4.8 shows 

that the von Mises stress and first principal stress in the NLMPC and normal lung models 

are more than 70% higher than those obtained in the comprehensive model. Specifically, 

stresses in the NLMPC model are 73.4% higher than in the comprehensive model and 

stresses in the normal lung model are 71.9% higher than the comprehensive model. 

Alternatively, the stresses in the comprehensive model are greater than those in the NLSC 

model by 25.7%. Furthermore, figure 4.9 shows that the alveolar pressures in the NLSC and 
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the comprehensive model show little to no variation. Therefore, it can be deduced that in a 

lung model with components of aging included along with the structural changes fluid 

pressures and velocities are greatly impacted by the physical changes to the lung as opposed 

to changes in mechanical properties. Conversely, mechanical strain/stresses are impacted 

more by mechanical property changes than physical changes to the structure. However, the 

thickening of the walls which makes lung tissue stiffer and at the same time a decrease in 

elastic modulus making the walls more compliant are both working against each other.  

 

 

Figure 4.9 Comparison plot of intraalveolar pressure during inspiration for the normal, 

comprehensive, NLMPC and NLSC models. 

 

In conclusion, a comprehensive analysis was performed to include components of 

age and disease. Results yielded fluid pressures that were just as high as in the NLSC model. 

Furthermore, stresses were higher in the comprehensive model than in the NLSC model. 
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Notwithstanding, the NLMPC model stresses still exceeded the comprehensive and NLSC 

model.  Future work should include comparisons of various ages as well as decreases in 

inner radius to provide a better understanding of diverse levels of age and disease. 
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CHAPTER 5  

Conclusions and Future Work 

 

 

 

The objectives outlines within the thesis were investigated, studied, and concluded. 

In summary the (i) investigation of the damaging effects of forced air flow on a 3 

dimensional idealized lung alveolar model, (ii) incorporation of structural and mechanical 

property changes to model disease and aging into the analysis to investigate these effects on 

the stress/strain environment, (iii) generation of a multi-scale modeling connection between 

the alveolar organ level models to the alveolar septal tissue model, and (iv) the performance 

of a comprehensive study that includes the effects of aging and disease were all 

accomplished in the preceding chapters. 

 

5.1. Lung Alveolar Analysis 

 In the lung alveolar analysis several studies were carried out. These included an 

analysis of a normal healthy lung for which different ventilation conditions were implied 

(normal breathing and mechanical ventilation), normal lung with structural changes (NLSC) 

and normal lung with mechanical property changes (NLMPC). Results showed that the 
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ventilator waveform produces higher pressures of more than 26% and stresses that were 25% 

higher than in the normal breathing waveform. These results were in good agreement with 

the trends found in other similar studies. Analysis of the NLSC and NLMPC models revealed 

that the pressures in the NLSC model were 67% higher than in the NLMPC model. On the 

other hand, displacements as well as stresses in the NLMPC model were 98% and 80% 

higher, respectively. The NLSC model due to increase of wall thickness and reduction in 

radius induced stiffening of the tissue thus making the lungs less compliant. Conversely, in 

the NLMPC where elasticity decreases, lungs become more compliant while simultaneously 

increasing the expansion rate during inspiration. As a result, larger displacements and 

stresses are found within the NLMPC model. These findings emphasize the variation in fluid 

dynamics as well as solid mechanics when analyzing ventilation in disease and aging 

conditions. Furthermore, results show how mechanical ventilation may induce injurious 

stresses to healthy lungs as well as overinflate diseased lungs and create large deformations 

and stresses in aged lungs. Future work is needed to include extended run times for the 

simulations as well as the use of various ages and various decreases in inner radius.  

 

5.2. Alveolar Tissue Analysis 

 A structural analysis was performed on a heterogeneous model of alveolar tissue. 

Displacements from the NLMPC model during inspiration were applied as boundary 

conditions to the tissue model. Results showed that tissue displacements were higher 

during expiration as well as stresses. However, results did show that for various stresses 

the epithelial cell layer showed a larger distribution of higher stresses. It is concluded from 
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this study that the epithelial cell layer is the part of the tissue that bears the most stress and 

strain due to mechanical forces. Therefore, as the alveolar wall is loaded the epithelial cell 

layer exhibits the most damage and any cell signaling inflammation may be directed from 

this area of the tissue. Further experimental work needs to be done to validate the results 

discussed in this study. Experimental work will give indication as to whether or not cells 

within the epithelial cell layer experience greater stretch leading to greater mechanical 

forces.  

 

5.3 Comprehensive Model Analysis 

 It was important to understand how both conditions of disease and age impact the 

lungs simultaneously or collectively. As the first chapter gave insight into how each 

individual aspect impacted the lungs in tandem with mechanical ventilation, analyzing how 

both phenomena operate within the lung is equally or even more pertinent. The models for 

NLSC and NLMPC were simply combined into one model and an analysis was carried out 

under two breathing cycles using the ventilator waveform. Results yielded fluid velocities 

that were maximum near the inlet with a magnitude of 1.496 cm/sec. Pressures were found 

to be a maximum near the inlet with a maximum velocity of 0.33 Pa. During inspiratory 

flow, stresses are seen to be highest during this phase while expiratory flow encounters 40% 

less stress. 

 Furthermore, with comparisons between NLSC, NLMPC, normal, and 

comprehensive models findings show that the NLMPC stresses exceeded NLSC, normal and 

comprehensive studies by 80.25%, 5.0% and 73.4%, respectively. On the other hand, 
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alveolar pressures in the NLSC and comprehensive model vary only by 0.001%, hence, there 

is no significant difference.  This leads to the conclusion that the inclusion of disease has a 

greater impact on the fluid dynamics whereas the inclusion of age has a greater impact on 

the tissue mechanics. Future work needs to be done to find comparable sources for the results 

yielded form this analysis coupled with multiple combinations of aging and disease 

parameters in the analysis model. 

 

5.4 Final Remarks 

Mechanical ventilation has been a staple for over a century with first use dating back 

to 1929 [92] with negative pressure ventilators that are no longer used in modern medicine. 

Today’s ventilation standard includes positive pressure ventilation with modes such as PEEP 

being the most commonly used. There are several forms of positive pressure ventilation 

where volume cycled ventilation is the most common and investigated within this study. 

Much research was studied to grasp a better understanding of mechanical ventilation and its 

impacts on lung mechanical behavior. As a result of such high mortality rates in patients 

with ARDS and in elderly patients the need for reassessment will continue to be vital for its 

continued use. Mechanical ventilation accounts for a 34.5% in hospital mortality rate which 

equates to more deaths annually than breast and prostate cancer combined [86]. Furthermore, 

ventilation costs approximately $27 billion dollars per year accounting for 12% of hospital 

costs [86]. Although ventilation particularly with PEEP has been an effective modality, the 

true costs of ventilation is found within the physiological derangements it causes [93].  

Ventilator induced lung injury and its subcomponents (volutrauma, barotrauma, atlectrauma 
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and biotrauma) have all induced far more damage than originally presented. Mechanisms 

such as redistribution of alveolar ventilation, altered capillary perfusion, functional changes 

in surfactant etc. result in increased difficulty to ventilate lungs. Complications recently 

recognized in ventilation have been attributed to barotrauma and inflammation, moreover, 

prolonged ventilation is associated with lung injury, infection, and even MOSF [93].  

Therefore the real costs of ventilation has always been higher than originally realized.  

With ventilation having such high costs, all the more germane is research that seeks 

to shed light on the evaluation of physiological complications associated with mechanical 

ventilation. In chapter 1 the literature review covered a wide array of studies on the lungs in 

terms of computational fluid dynamics and solid mechanics. Of more importance are the 

studies that incorporate both of the aforementioned phenomena. The literature presents only 

very few studies that combine fluid dynamics and solid mechanics, particularly in FEA with 

fluid-structure interaction. Not to mention even less studies at the alveolar region with 

mechanical ventilation as an input to the model. This study comprises of under-explored 

areas of lung research including FSI analysis. However, future applications of this research 

may include a more physiologically correct model instead of an idealized model, 

applications of normal breathing waveforms to each analysis for comparison purposes and 

finally a whole lung model to incorporate mechanical forces from the organ level to the 

cellular level. Considering the grave impact that ventilation has on the lungs continued 

research must be done to further assess mechanical forces imposed on the lungs in order to 

quantitatively and qualitatively reveal lung injury induced via ventilation. 
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