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High-throughput technologies for measuring gene expression made inferring of

the genome-wide Gene Regulatory Networks an active field of research. Reverse-

engineering of systems of transcriptional regulations became an important challenge

in molecular and computational biology. Because such systems model dependencies

between genes, they are important in understanding of cell behavior, and can poten-

tially turn observed expression data into the new biological knowledge and practical

applications. In this dissertation we introduce a set of algorithms, which infer net-

works of transcriptional regulations from variety of expression profiles with superior

accuracy compared to the state-of-the-art techniques. The proposed methods make

use of ensembles of trees, which became popular in many scientific fields, including

genetics and bioinformatics. However, originally they were motivated from the per-

spective of classification, regression, and feature selection theory. In this study we

exploit their relative variable importance measure as an indication of the presence

or absence of a regulatory interaction between genes. We further analyze their pre-

dictions on a set of the universally recognized benchmark expression data sets, and

achieve favorable results in compare with the state-of-the-art algorithms.



Chapter 1

Introduction

Cellular phenotypes are determined by large networks of regulated genes, which are also

called Gene Regulatory Networks (GRNs) or Transcriptional Regulatory Networks (TRNs)

[87]. A problem of reverse-engineering GRNs from expression data is a long-standing chal-

lenge in molecular and computational biology. High-throughput technologies for measuring

gene expression, such as microarrays and RNA-Seq, made it possible to collect genome-

scale snapshots of gene expression across different experiments, such as diverse treatments

to cells, which in result made inferring large networks of transcriptional interactions an

active field of research [27]. Challenges principally arise from the nature of the data: they

are typically noisy, high dimensional, and sparse [41]. Therefore, some of the regulatory

interactions might be missed by the inference methods, causing false negative predictions.

Moreover, discovering causal relationships between products of genes is not a trivial task

without dedicated experiments. Especially, frequent recurrent patterns observed in tran-

scriptional networks, also called network motifs, often confuse the inference algorithms [74].

An example of such a misclassification is predicting the presence of a regulatory interaction

between two co-regulated genes, i.e. genes controlled by the same regulator. Even though

their expression might be relatively strongly correlated, they are not in a regulatory relation

with each other, and cause false positive predictions. Therefore by far the biggest challenge
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Figure 1.1: Gene expression in essence is a three-step process. In a process of transcription
(2) a region of DNA (1) is transcribed into RNA (3). In a process of translation (4) a
RNA transcript is translated into a chain of amino acids (5). A ribosome (4) serves as
a "workbench", and a RNA transcript serves as a "recipe" for creating such amino acid
chains. In a process of folding an amino acid chain is folded into an active protein (6).
Transcriptional regulation occurs only in a process of transcription (2). Protein structures
taken from PDB [8] .

in reverse-engineering GRNs is to design an universal off-the-shelf algorithm which would

process non-specific expression data and calculate highly accurate predictions for a wide

range of organisms.

The scientific community demands turning genome-scale data, such as genome-wide ex-

pression profiles, into fundamentally new biological knowledge and practical applications.

However, raw expression data is of limited use for furthering biological understanding. In-

ference of transcriptional regulatory networks is an example of a computational analysis
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of expression data, which can possibly support new biological discoveries, help cure dis-

eases, or engage cells in biomaterial production [94]. For example, for a newly sequenced

organism, interactions inferred from gene expression data can serve as the first draft of

a genome-wide transcriptional regulatory network. Based on that raw approximation,

network regions utilized in a condition-specific manner might identify the list of active

subnetworks. Those identified as responsive to drug treatment can be studied in detail to

combat drug resistance. Apart from identifying functional modules of a regulatory net-

work, inference algorithms might be helpful in predicting behavior of a system following

perturbations, a situation often encountered in the drug discovery process [56]. However,

to identify real physical interactions between gene products, expression profiles must be

reinforced with additional sequence data. In other words, expression data alone can only

indicate if a particular regulatory interaction occurs, but do not explain how it happens.

Gene expression is a process in which proteins are synthesized based on instructions en-

coded into DNA [60], as shown in Figure 1.1. RNA molecules play an important role in this

process. Francis Crick, a Nobel Prize laureate, who co-discovered the structure of the DNA

molecule in 1953 together with James Watson, summarized the relationships among DNA,

RNA, and protein by what he called the central dogma of molecular biology: "DNA directs

its own replication and its transcription to RNA which, in turn, directs its translation to

proteins" [22]. In essence, gene expression is considered a three-step process:

1. RNA polymerase transcribe a region of DNA, i.e. a gene, into a messenger RNA

(mRNA) molecule, also called a transcript. Many eukaryotic genes contain introns

and exons fragments. Introns do not correspond to amino acid sequences in the

expressed protein. The splicing mechanism at the mRNA level permits alternative

combinations of exons, which are merged into one piece of message and ultimately

translated into a protein. This process greatly increases variability of synthesized

proteins.
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2. Ribosome process the mRNA transcript and translate it into a polypeptide chain.

3. The polypeptide chain undergoes many post-translational modifications and folds

into a biochemically active protein.

The above process allows for a variety of different forms of expressed proteins, e.g., al-

ternatively spliced forms. However, in the process of reverse-engineering transcriptional

regulatory networks we only consider those that are measured in expression profiles. If

different isoforms of genes are available in expression data we process them as if they were

different genes.

Regulatory molecules, also called transcription factors (TF), control the formation of tran-

scripts in the transcription phase. These regulators are usually fully-formed proteins: re-

pressors or inducers. Even though in eukaryotes smaller molecules other than proteins,

such as siRNA and miRNA, also play an important role in that process, we only consider

regulations between transcription factors and regulated genes. A major turning point in

our understanding of the regulation mechanisms of gene expression was the discovery of

operons. In essence an operon is a functioning unit of DNA containing a cluster of genes

under the control of a single regulatory signal or a promoter, i.e. a region of DNA that

initiates transcription of a particular gene. Moreover, a transcription factor can only bind

to DNA at a specific position. Such a position, or a binding site, is determined by the

sequence of nucleotides in DNA. As a consequence, an operon constitutes a well-defined

system of genes and regulatory interactions. In fact, for the discovery of the lac operon

in E. coli, which is responsible for lactose uptake and utilization, François Jacob, André

Michel Lwoff, and Jacques Monod were awarded a Nobel Prize, since it was indeed a true

breakthrough in genetics and molecular biology.

Regulation of an operon occurs through repressors or inducers. They are DNA-binding

proteins that prevent or initiate the transcription of genes, respectively. Because both
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types of transcriptional regulations might be positive or negative, there are four possible

operons:

1. Positively inducible operons are controlled by activator proteins, which under

normal circumstances do not bind to the regulatory DNA region. Transcription is

switched on only if a specific inducer binds to the activator.

2. Positively repressible operons are also controlled by activator proteins, but these

are normally bound to the regulatory DNA region. When a repressor protein binds

to the activator, it dissociates from the DNA and transcription is switched off.

3. Negatively inducible operons are controlled by repressor proteins, which are nor-

mally bound to the operator of the operon and in consequence prevent transcription.

Specific inducers can bind to repressors, so that binding to DNA is no longer effective,

and thus initiate transcription.

4. Negatively repressible operons are normally transcribed. However, they have

binding sites for repressor proteins, which prevent transcription only if a specific

co-repressors are present. Binding of the repressor and co-repressor prevents tran-

scription.

A repressor mode is advantageous if a regulated gene determines a function that is in low

demand within the organism’s natural environment. By contrast, if the function is in high

demand, it is the activator that controls the corresponding gene. Operons occur primarily

in prokaryotes but also in some eukaryotes, including nematodes such as C. elegans and

the fly, Drosophila melanogaster. The control of gene expression is far more complex in

eukaryotes than in bacteria, however the same basic principles apply. As in prokaryotes,

transcription is controlled by proteins that bind to specific motifs and modulate the activity

of RNA polymerase.
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Figure 1.2: The general strategy for reverse-engineering transcription control systems.
(1) Cells are initially perturbed with various treatments to elicit distinct responses. (2)
After each perturbation, the expression (concentration) of RNA transcripts in the cells is
measured. (3) A learning algorithm calculates the parameters of a model that describes the
transcription control system underlying the observed responses. (4) The resulting model
may then be used in the analysis and prediction of the control system function.

Some transcription factors might be responsible for several operons, and a single operon may

be regulated by several transcription factors as well. A convenient representation of such a

many-to-many relationship between transcription factors and regulated genes is a network

of regulatory interactions: a gene regulatory network. It hides biological complexity of a

transcriptional regulation of mRNA expression, and model complex molecular interactions

as a single edge in a graph [42, 41, 44]. In other words, physical relationships between

regulators and transcripts are reduced to a simple concept: is a particular transcription

factor involved in regulatory interaction with a particular transcript or not. In this way,

gene regulatory networks emphasize functional dependencies between genes, and therefore

are important in understanding of cell behavior. As shown in Figure 1.2, using expression

data as input, an inference method predicts GRN defined as a set of nodes representing

genes, and directed edges representing regulatory interactions between them. GRNs are

usually conveniently represented as directed graphs, as shown in Figure 2.1. In such a graph

nodes correspond to genes, and edges correspond to the regulatory interactions between

transcription factors and genes. Transcription is often hierarchically controlled, which
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means that transcription factors not only regulate expression of the end product proteins,

but also formation of the other transcription factors. Therefore, exploring a complex system

of regulatory interactions is a challenge. Rigorous computational methods, including the

ones described later in this study, are of great importance for biological discovery.

1.1 Contributions of the Thesis

In this study we predict gene regulatory networks from variety of expression data types

of diverse origins. Even though it is a long-standing challenge in molecular and compu-

tational biology, the individual state-of-the-art methodologies do not show robust perfor-

mance across different networks. We integrate variety of expression profile types and design

two algorithms ADANET and ENNET, which perform robustly across diverse data sets.

Moreover, the algorithms do not assume a specific mathematical model of a transcriptional

regulation, e.g., a linear model, and do not require fine-tuning of their parameters, which

promises accurate predictions for the future networks. We construct genome-wide net-

works of regulatory interactions, which include up to few hundreds transcription factors,

and up to few thousands regulated genes. The proposed algorithms compare favorably to

the state-of-the-art methods on the universally recognized benchmark networks. The major

contributions of this dissertation are:

1. Integrating different kinds of expression data under the single algorithm of inferring

gene regulatory networks.

2. Introduction of gene regulatory algorithms:

(a) ADANET, which uses boosted ensemble of decision stumps.

(b) ENNET, which uses boosted ensemble of regression stumps and perform robustly

across diverse data sets.

3. Introduction of two algorithms of refining the prediction:
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(a) Analyzing variance of the edge predictions.

(b) Analyzing the effects of a possible regulation.

4. Constructing regulatory networks on a genome scale, which consist of up to few

hundreds transcription factors, and up to few thousands regulated genes.

5. Quantitative analysis of the results achieved by the proposed methods and the com-

parison with the state-of-the-art algorithms.

The rest of this dissertation is organized as follows:

In Chapter 2 we describe the background of our research. In Section 2.1 we characterize

the existing inference methods, their working principles, advantages, and disadvantages.

Later, in Section 2.2, we introduce benchmark regulatory networks, which we use as a gold

standard to evaluate our proposed algorithms, together with the state-of-the-art methods.

In addition to this, in Section 2.3, we present methods of evaluating the inference algo-

rithms, including the analysis of Precision-Recall and ROC curves. Also, in Section 2.4,

we discuss different types of expression profiles, which we use as an input for our predictors.

In Chapter 3 we give theoretical foundations of building an ensemble of weak predictors,

and using their weighted outcomes as a final prediction. We distinguish between parallel

ensembles, which we describe in Section 3.1, and serial ensembles, which are characterized

in Section 3.2. On top of that, we describe how their relative importance measure of vari-

ables can indicate the presence or absence of a regulatory interaction between genes.

In Chapter 4 we describe our proposed approaches to the problem of Gene Regulatory

Network inference. In Section 4.1 we give an overview of the main steps of our proposed

procedure, leading to the calculation of a network of regulatory interactions. In Section 4.2



26 Introduction

we explain in details the process of creating independent gene selection problems, whereas

in Section 4.3 we describe how we solve them using two new algorithms, ADANET and

ENNET. Moreover, in Section 4.4 we introduce two methods of re-ranking our predictions

to further improve the final results.

In Chapter 5 we present the quantitative analysis of our proposed algorithms, and compare

them with the state-of-the-art methods. We report our predictions in several sections, each

of them corresponding to one popular benchmark regulatory network. For large networks

of regulatory interactions we also present Precision-Recall dependency of the predictions

in more details.

In Chapter 6 we discuss the results we achieved on benchmark data sets, as well as the

general properties of our proposed methods. In Section 6.1 we present the default set of

parameters of ADANET, one of the proposed algorithms. In Section 6.2 we calculate its

computational complexity. In Section 6.3 we discuss in details the choice of parameters of

ENNET algorithm. In Section 6.4 we show computational complexity of ENNET. Finally,

in Section 6.5 we show that our proposed method calculates stable predictions.

Finally, in Chapter 7, we conclude this dissertation and present future directions of our

research.
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Background

High throughput techniques allow for collecting genome-wide snapshots of gene expres-

sion across different experiments, such as diverse treatments and other perturbations to

cells [27]. Analyzing these data to infer the regulatory network is one of the key challenges

in the computational systems biology. The difficulty of this task arises from the nature of

the data: they are typically noisy, high dimensional, and sparse [41]. Moreover, discovering

direct causal relationships between genes in the presence of multiple indirect ones is not a

trivial task given the limited number of knockouts and other controlled experiments. At-

tempts to solve this problem are motivated from a variety of different perspectives. Most

existing computational methods are examples of the influence modeling, where expression

of a target transcript is modeled as a function of expression levels of transcription fac-

tors. Such a model does not aim to describe physical interactions between molecules, but

instead uses an inductive reasoning to find a network of dependencies that could explain

the regularities observed among the expression data. In other words, it does not explain

mechanistically how transcription factors interact with regulated genes, but indicate can-

didate interactions with strong a evidence in expression data. This knowledge is crucial to

prioritize a detailed study of the mechanics of the transcriptional regulation.
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2.1 Existing inference methods

Researchers devoted considerable attention to the problem of reverse-engineering gene regu-

latory networks from expression data. Solutions to this problem are motivated from variety

of different perspectives, which are grouped into the following categories in this study:

1. Boolean network models.

2. Probabilistic graphical models: Bayesian Networks (BN) and Markov Networks (MN).

3. Ordinary differential equations (ODE) models.

4. Correlation and information theoretic models.

5. Machine learning models.

6. Meta-predictors.

All of the above methods, except from meta-predictors, might be considered as different

examples of the influence models. In such an approach, an expression of a target transcript

is a response determined by the expression of its transcription factors. Such a model

does not describe physical interactions between molecules, but rather finds a network of

regulatory interactions, which could explain the regularities observed among the expression

data. In that sense, the above methods are inductive learning techniques for inferring new

information from data. The two major limitations of inductive techniques with respect to

gene regulatory networks are the following:

1. The first limitation is that the model can be difficult to interpret in terms of the

physical structure, and therefore difficult to integrate or extend with further research.

In other words, a model inducted from expression data does not explain how a certain

transcription factor regulates a certain target gene.
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Figure 2.1: An example transcript control network with five transcripts and five connec-
tions (1). Different models may be used to represent the relationships between products
of genes, but all of them are designed to derive an adjacency matrix V (2). Rows of V
correspond to outgoing edges from a single node, columns correspond to incoming edges to
a single node. For example, an edge from node 3 to node 5 is depicted in V as binary "1"
in in 3-rd row and 5-th column.

2. The second limitation is that inductive models are correct for the input data but

only plausible outside of them [21]. In other words, a network inferred from one set

of expression data can not be assumed correct for the other one.

In spite of these evident limitations, a vast of gene regulatory network inference algorithms

use inductive reasoning, as shall be described below at this section.

2.1.1 Boolean network models

The first group of methods describe GRN as a system of binary variables, as shown in

Formula 2.1, where a gene takes one of the two states: expressed, or not-expressed:

ψt+1(Xi) = f bi (ψt(X1), ..., ψt(Xn)), (2.1)



30 Background

where ψ is an expression pattern representing the states of genes, Xi is expression of the

target transcript across different experiments, and {X1, ..., Xn} is a set of expressions of its

potential transcription factors across different experiments. A binary state of a transcript

is determined by a Boolean function f bi of the binary states of the input transcripts. Here

the output expression pattern ψt+1 at time t+1 is determined by input expression pattern

ψt at time t. A discretization scheme ψ must be first introduced to convert concentration

levels of transcripts X into binary values ψ(X). This task might be a challenge because

measurement error on expression data is often large [1]. After discretization phase, there

are two main strategies to learn the topology of regulatory interactions:

1. The first one finds the minimal set of input TFs whose expression provides com-

plete information on the output transcript, with the use of Mutual Information (MI)

between them [58].

2. The second approach uses Occam’s Razor paradigm of finding the most parsimo-

nious set of input TFs whose expression is coordinated or consistent with the output

transcript [2, 50, 55].

Both approaches may apply some additional post-processing to improve the resulting in-

ferred network by removing redundant connections. Nevertheless, Boolean logic requires

considerably more data samples than the other approaches [25]. Among other issues, this

limitation impedes their practical use in a process of reverse-engineering GRNs [97].

2.1.2 Probabilistic graphical models

Probabilistic graphical models exploit causal relationships between RNA transcripts [41].

They analyze multivariate joint probability distributions over the observations, usually with

the use of Bayesian Networks (BN) [39,72,96] and Markov Networks (MN) [83]. A Bayesian

Network represents the state of a transcript as a random variable, which is specified by the
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joint probability distribution function, as shown in Formula 2.2:

P (X1, ..., Xn) =
∏
i

P (Xi, Ui), (2.2)

where Ui ⊆ X is a set of variables that directly influence value of Xi, also called parents of

Xi. The graphical representation is given by a directed graph, see Figure 2.1, where directed

edges are originated from parents Ui to Xi. The product decomposition in Equation 2.2 is

guaranteed to be a coherent probability distribution if a directed graph is acyclic. In Markov

Networks the multivariate joint probability P is represented as a product of potentials, each

of which captures the interaction among a set of variables and specifies the "desirability"

of joint value assignments to these variables [38], as shown in Formula 2.3:

P (X1, ..., Xn) = 1
Z

∏
j

πj[Cj]. (2.3)

Here πj[Cj] is the j-th potential over the variables Cj ⊆ X, and Z is a normalizing constant

which ensures that the total probability mass is 1.

An objective of graphical modeling is to learn a network of regulatory interactions which

fits to the underlying distribution from which the observations were made. It is done in

two steps:

1. Model selection. In this step a general structure of a model is selected, which best

reflects the dependencies between gene products. For example, one can choose if the

multivariate joint probability P should be represented as in Equation 2.2 or as in

Equation 2.3. Usually, there is a trade-off between the complexity of a model and

the number of parameters to learn, and consequently the amount of the expression

data required for a statistically significant estimate. Computational overhead is also

a limiting factor.
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2. Parameter estimation. Once the general structure of a graphical model is selected,

the parameters of the conditional probabilities are estimated. This task is often ad-

dressed as an optimization problem, of which the exact form depends on the selection

made in the first step. The final adjacency matrix V , see Figure 2.1, is predicted

from the parameters learned in this step.

The form of the conditional probability function is usually implied a priori, including

Boolean and linear functions, which helps to minimize the number of parameters of the

model to learn. An advantage of Bayesian Network models over Boolean models is the fact

that a set of partially complete distribution functions are sufficient to determine the topol-

ogy of a network, which helps overcoming a problem of the training data being incomplete.

However, since learning optimal Bayesian networks from expression data is NP-hard, i.e.

too computationally intensive for any existing computer, most networks of a practical in-

terest are far too large for the exact methods to be feasible. Even finding approximations to

the optimal network is computationally infeasible for problems involving several thousands

of genes. Various heuristic search schemes must be applied in order to find parameters of

a model, such as greedy-hill climbing or Markov Chain Monte Carlo approach [71], and

consequently infer the network. Nevertheless, ease of incorporating of prior knowledge to

the structure of a regulatory network and the ability to deal with undersampled data made

Bayesian networks popular in reverse-engineering of small GRNs [39,70,81,82].

2.1.3 Ordinary differential equations models

Another group of methods describe GRN as a system of differential equations, as shown in

Formula 2.4:
dXi

dt
= fi(X1, ..., Xn). (2.4)

The rate of change in expression of transcript Xi is given by a function fi of the concen-

tration levels of its transcription factors {X1, ..., Xn}. Similar to probabilistic graphical
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models, network inference is obtained in two steps: model selection and parameter estima-

tion. Popular models imply linear functions fi a priori [20, 26, 42, 95] because they reduce

the number of parameters to learn, which is especially important when predicting a network

from sparse data sets. Bayesian Best Subset Regression (BBSR) [43] has been proposed

as a novel model selection approach, which uses Bayesian Information Criterion (BIC) to

select an optimal model for each target gene. The amount of data required to solve a linear

model is much less than what more complex nonlinear models require. However, choosing

such a simple relation comes at the cost of placing strong constraints on the mathematical

model of a regulatory interaction.

Both time series expression profiles, and steady state data, as described later in Section

2.4, might be used as an input for ODE models. If an algorithm uses time series data, it

estimates the rates of change of the target transcript, as given in Formula 2.4, from the

series of experiments. Alternatively, if the algorithm uses steady-state data, than it does

not need to calculate derivatives: dXi
dt

= 0. However, a measure of the external perturbation

to the level of a target transcript is needed to keep it in balance with the steady-state rate

of its synthesis. In either way, the number of experimental data points is typically less

than the number of parameters to learn. Multiple solutions have been proposed to over-

come that problem, usually implying additional constraints on the model and employing

various search schemes [7, 93]. An example of such a constraint is a limiting threshold on

the number of transcription factors that each transcript can have. Usually that number is

much lower than the total number of possible transcription factors in a network. It does

not seem to restrict the nature of a regulatory interaction, since only a small subset of TFs

is observed to regulate a particular transcript.
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2.1.4 Correlation and information theoretic models

The following approach is motivated from statistics and information theory. TwixTwir [75]

uses double two-way t-test to score transcriptional regulations. A null-mutant z-score algo-

rithm [74] scores interactions based on a z-score transformed knockout expression matrix.

Various information theoretic algorithms are estimating and analyzing cross-correlation

and mutual information matrix MI of gene expression [6, 17, 57, 66], including ANOVA η2

method [54]. Of these two measures, mutual information estimates are by far more popular,

as they capture non-linear relations in expression data. Formally, mutual information of

the expression of a target transcript Xi and its transcription factor Xj, perceived as two

discrete random variables, is defined in Formula 2.5:

MIij =
∑
xj∈Xj

∑
xi∈Xi

p(xi, xj) log( p(xi, xj)
p(xi) · p(xj)

), (2.5)

where p(xi, xj) is the joint probability distribution function of Xi and Xj, and p(xi) and

p(xj) are the marginal probability distribution function of Xi and Xj respectively. The

simplest information theoretic model, known as a relevance network [17], ranks all the pos-

sible edges between Xi and Xj based on their score MIij, and predicts the presence of a

regulatory interaction if the MIij coefficient is higher than a given threshold. Note that

such a prediction is undirected, since MIij = MIji for any given i and j. Mutual informa-

tion coefficient does not determine the causal relationship between products of genes. In

other words, even if a pair (Xi, Xj) is found to have a relatively high MIij coefficient, it

is not clear which element of this pair is a transcription factor, and which is a regulated gene.

ARACNE [64, 65] method was proposed as an improvement to relevance network. It re-

moves possibly indirect edges from triples of genes with the use of Data Processing Inequal-

ity (DPI). The DPI states that if the two genes Xa and Xc interact through a third one
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Xb, i.e. in Figure 2.1 gene 1 interacts with gene 4 only through gene 3, then:

MIac ≤ min (MIab;MIbc). (2.6)

Therefore the least of the three: MIac, MIab, MIbc may indicate an indirect edge in the

network. Another improvement to the relevance network was introduced in CLR [29] algo-

rithm, which applies an adaptive background correction step to eliminate false correlations

and indirect influences from MI matrix. Here, the final confidence measure for an edge

between genes Xi, and Xj is given in Formula 2.7:

f(Zi, Zj) =
√
Z2
i + Z2

j , (2.7)

where Zi and Zj are the z-scores of MIij from the marginal distributions: Zi = |MIij−µi
σi
|,

where µi and σi are the mean and the standard deviation of the empirical distribution of

MI values, respectively. Finally, C3NET [3, 4] method further filters out irrelevant edges.

It only keeps an edge between the a transcription factor and a transcript if their shared

MI value is at least for one of them maximal with respect to all the other transcripts.

Another method, NARROMI [98], eliminates redundant interactions from MI matrix by

applying the ODE-based recursive optimization, which involves solving a standard linear

programming model.

2.1.5 Machine learning models

Recently, machine learning theory, especially classification, regression, and feature selection

theory, successfully applied in various other domains, brought promising new possibilities to

the field of inferring biological networks. One example of such an algorithm is MRNET [68],

which applies maximum relevance/minimum redundancy (MRMR) [24] feature selection

method. It formulates the network inference problem as a series of supervised gene selection

procedures, where each gene in turn is designated as the target output. The method ranks
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the set of transcription factors according to the difference between the mutual information

with the target transcript (maximum relevance) and the average mutual information with

the previously ranked transcription factors (minimum redundancy). In other words, it is

a greedy search approach, which starts by selecting the transcription factor X1 having the

highest coefficient MIk1 to the target transcript Xk. The second selected transcription

factor X2 is the one with a high MIk2 coefficient to the target transcript and at the same

time a low MI12 coefficient to the previously selected transcription factor. In the following

steps, given a set S of already selected transcription factors, the algorithm updates S by

choosing the transcription factor Xj as shown in Formula 2.8:

S = S ∪ {arg max
Xj∈S′

(uj − rj)}, (2.8)

where S ′ is a complement of S with respect to the set of all the transcription factors, uj is

a relevance term: uj = MIkj, and rj is a redundancy term: rj = 1
|S|
∑
Xi∈S MIki. At each

step of the algorithm the selected transcription factor is expected to balance a trade-off

between relevance and redundancy.

Another example of a machine learning inference procedure is recently published GE-

NIE3 [51] algorithm, which makes use of Random Forest algorithm to score important

transcription factors. Random Forest algorithm is described in details in Chapter 3. In

essence, it exploits the embedded relative importance measure of input variables as a fea-

ture ranking criterion in a series of gene selection procedures, similar to MRNET algorithm.

However, unlike MRNET algorithm, it combines a set of regression trees, and use their av-

eraged outcome as a final prediction of a network of regulatory interactions. TIGRESS [46]

follows a similar approach but is based on the least angle regression (LARS).

A possible improvement to the accuracy of any learning algorithm might be done with
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the use of boosting [30, 79]. It is a technique for empirical risk minimization of exponen-

tial loss function [13, 35, 80], first applied in AdaBoost [32, 33] algorithm. This approach

has been used in OKVAR-Boost [59] method. Our ADANET and ENNET algorithms for

reverse-engineering transcriptional networks use respectively boosted ensemble of decision

stumps and boosted ensemble of regression stumps to score important transcription fac-

tors. Serial ensembles, like Random Forest algorithm, and parallel ensembles, like Adaboost

algorithm, will be later described in details in Chapter 3.

2.1.6 Meta-predictors

It is known, and will be shown empirically later in Chapter 5, that not a single inference

method performs optimally across all the popular expression data sets. Therefore, the

last group of inference methods, also called meta-predictors, use not only one approach

to reverse-engineer a GRN, but rather combine multiple different strategies. For example

a meta-predictor could combine predictions made by all the inference methods described

above in this chapter. In this way a consensus network of regulatory interactions is cre-

ated by re-ranking interactions according to their average score across all the participating

methods. It has been empirically shown [61] that the community networks are consistently

as good or better than the top individual methods. It is especially important that such

a meta-predictor performs robustly across diverse data sets, since this is by far the most

important quality of an inference method. Only then such an algorithm promises accurate

predictions for unknown regulatory networks, given the biological variation among organ-

isms and the experimental variation among gene-expression data sets.

A possible explanation of the superior performance of the community method is the fact

that they exploit the diversity of the participating inference methods. In other words, in-

dividual inference methods might be biased towards discovering certain types of regulatory

interactions. Due to the stabilizing effect of averaging, a community score turns out to be
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more reliable. Moreover, it has also been empirically shown [61] that consensus predictions

of methods which use similar methodologies, for example methods which belong to the same

category of models, were outperformed by consensus predictions from diverse methodolo-

gies of the same size. Another interesting fact found in this study was that combining

accurate individual inference models results in high-quality consensus prediction, whereas

poor predictors essentially contribute noise. This highlights an importance of developing

high-quality individual predictors.

Another explanation of the superior performance of the community method is the fact

that they combine methods, which operate on diverse data. This second point is especially

important in this study, because it gave foundations for an algorithm, introduced later in

Chapter 4, which integrates different types of expression profiles. In other words, this study

shows if processing diverse types of expression data by a single inference algorithm could

be an alternative to integrating diverse types of individual predictors, which is done by a

meta-predictor.

2.2 Benchmark gene regulatory networks

Researchers devoted considerable attention in recent years to the problem of evaluating per-

formance of the inference methods on adequate benchmarks [61,78]. Three main strategies

have been proposed to generate benchmark GRNs:

1. Well studied in vivo networks from model organisms, such as those of E. coli [40],

and S. cerevisiae [52].

2. Genetically engineered synthetic in vivo networks [18,19].

3. Artificially simulated in silico networks [23,53,67,78,92].
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Table 2.1: Summary of the data sets from the popular benchmarks for evaluating inference
algorithms of gene regulatory networks.
#TFs denotes the number of known transcription factors, #RGs- the number of regulated
transcripts, #TPs- the number of true regulatory interactions, #S- number of training
samples including wildtype, knockout, knockdown, multifactorial, and time series expres-
sion data, as described in Section 2.4, D3- DREAM3, D4- DREAM4, D5- DREAM5, MF-
multifactorial.

Network model organism expression data #TFs #RGs #TPs #S
D3 size 10 net. 1 E. coli In silico 10 10 11 106
D3 size 10 net. 2 E. coli In silico 10 10 15 106
D3 size 10 net. 3 S. cerevisiae In silico 10 10 10 106
D3 size 10 net. 4 S. cerevisiae In silico 10 10 25 106
D3 size 10 net. 5 S. cerevisiae In silico 10 10 22 106
D3 size 50 net. 1 E. coli In silico 50 50 62 585
D3 size 50 net. 2 E. coli In silico 50 50 82 585
D3 size 50 net. 3 S. cerevisiae In silico 50 50 77 585
D3 size 50 net. 4 S. cerevisiae In silico 50 50 160 585
D3 size 50 net. 5 S. cerevisiae In silico 50 50 173 585
D3 size 100 net. 1 E. coli In silico 100 100 125 1168
D3 size 100 net. 2 E. coli In silico 100 100 119 1168
D3 size 100 net. 3 S. cerevisiae In silico 100 100 166 1168
D3 size 100 net. 4 S. cerevisiae In silico 100 100 389 1168
D3 size 100 net. 5 S. cerevisiae In silico 100 100 551 1168
D4 size 10 net. 1 N/A In silico 10 10 15 136
D4 size 10 net. 2 N/A In silico 10 10 16 136
D4 size 10 net. 3 N/A In silico 10 10 15 136
D4 size 10 net. 4 N/A In silico 10 10 13 136
D4 size 10 net. 5 N/A In silico 10 10 12 136
D4 size 100 net. 1 N/A In silico 100 100 176 411
D4 size 100 net. 2 N/A In silico 100 100 249 411
D4 size 100 net. 3 N/A In silico 100 100 195 411
D4 size 100 net. 4 N/A In silico 100 100 211 411
D4 size 100 net. 5 N/A In silico 100 100 193 411

D4 size 100 net. 1 MF N/A In silico 100 100 176 100
D4 size 100 net. 2 MF N/A In silico 100 100 249 100
D4 size 100 net. 3 MF N/A In silico 100 100 195 100
D4 size 100 net. 4 MF N/A In silico 100 100 211 100
D4 size 100 net. 5 MF N/A In silico 100 100 193 100

D5 net. 1 N/A In silico 195 1643 4012 805
D5 net. 3 E. coli In vivo 334 4511 2066 805
D5 net. 4 S. cerevisiae In vivo 333 5950 3940 536
M3D E. coli In vivo 160 1443 2873 466
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The main disadvantage of the first group of well studied in vivo benchmark networks is the

fact that experimentally confirmed pathways can not be assumed complete, regardless of

how well is a model organism known. Such networks are assembled from known transcrip-

tional interactions with a strong experimental support. The gold standard networks based

on them are expected to have few false positives (FP). However, they contain only a subset

of the true interactions, i.e. they are likely to contain many false negatives (FN). This im-

plies additional error when evaluating network predictions because the false positive edges

found by predictor can either by truly not regulatory interactions or novel interactions.

Because the second group of genetically engineered synthetic in vivo networks is only

very small, it does not provide enough data to sufficiently evaluate inference methods

on a genome scale. An example of such a network is a synthetic gene network of S. cere-

visiae [18]. However, it consists of only five genes, which is not enough for a comprehensive

assessment of the inference algorithms. Ideally, a library of diverse synthetic in vivo gold

standards should be composed of variety of networks of different sizes and topologies. Un-

fortunately, such a library does not exist.

Therefore the last group of artificially simulated in silico networks is commonly used to

produce artificial gene expression data. In silico benchmark data sets are easier, faster, and

cheaper to reproduce than the real biological experiments. Also the amount of expression

data is only limited by the user. The latest simulators [78] mimic real biological systems

in terms of topological properties observed in biological in vivo networks, such as modu-

larity [76] and occurrences of network motifs [84]. They are also endowed with dynamical

models of transcriptional regulation, thanks to the use of non-linear differential equations

and the other approaches [23, 45,77], and consider both transcription and translation pro-

cesses in their dynamical models [45, 47, 77] using a thermodynamic approach. Expression

data can be generated deterministically or stochastically and experimental noise, such as
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the one observed in microarrays, can be added [89]. Credibility of simulated expression

data strongly depends on the quality of the simulator. Therefore accurate inference meth-

ods should perform well on both in vivo and in silico benchmarks.

Several popular benchmark GRNs are used to evaluate the accuracy of the inference meth-

ods in this proposal. They are summarized in Table 2.1 and Table 2.2. The vast majority

of them come from Dialogue for Reverse Engineering Assessments and Methods (DREAM)

challenges. These challenges address not only the inference of transcriptional regulatory

networks, but also other problems of systems biology, especially in the area of cellular

network inference and quantitative model building. Their main objective is a rigorous

performance assessment of the strengths and weaknesses of the inference methods, which

are presented with the same input data and validated against the same gold standards.

Performance profiling reveals different types of systematic prediction errors and indicate

potential directions of improvement.

2.3 Techniques for evaluation of inference methods

An inferred GRN is commonly represented as a directed graph in form of an adjacency

matrix. Values in that matrix are interpreted as probabilities of directed edges being true

transcriptional regulations, according to a particular inference method. Such a representa-

tion has an advantage of being convenient to evaluate given that the gold standard network

is known, because inferred edges can be classified into two categories: an edge is a regu-

latory interaction (positive result), or an edge is not a regulatory interaction (negative

result). As a consequence, common metrics of evaluating inference methods are derived

from classification theory: a confusion matrix is created for a given acceptance threshold

t. All the edges in adjacency matrix with the confidence higher or equal than t are con-

sidered regulatory interactions (positive results). All the other edges are considered not
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being regulatory interactions (negative results). A confusion matrix for a given threshold

t contains four values: a number of true positives (TP), a number of false positives (FP),

a number true negatives (TN), and a number of false negatives (FN). Many methods of

evaluating GRN inference methods have been proposed based on the above numbers, yet

the most popular ones are the following:

1. Precision for the top ranked edges.

2. Analysis of Precision-Recall (PR) curve.

3. Analysis of Receiver Operating Characteristics (ROC) curve.

Above methods compare inferred adjacency matrix with the gold standard one. The first

method gives a single number, which is a ratio of how many TP edges were found among

top ranked N edges, as shown in Formula 2.9:

precision(t) = PPV(t) = TP(t)
TP(t) + FP(t) . (2.9)

Precision is also known as Positive Predictive Value (PPV). In general N = TP + FP can

be any number, but commonly it is a number of all regulatory interactions known for a

particular network. In other words a confusion matrix is calculated once for an acceptance

threshold t, such that exactly N edges are predicted as regulatory interactions. Note that

usually number N is much lower than the number of all the edges in a network.

On the other hand, methods based on a precision-recall or ROC curves calculate not only

one but many confusion matrices for different acceptance thresholds t. A method based on

precision-recall curve concentrates on the precision of an inference method with increasing

range of accepted edges. A precision-recall curve is a plot of precision, see Formula 2.9, in

function of recall. Recall, also known as True Positive Rate (TPR), or sensitivity, is defined
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in Formula 2.10:

recall(t) = TPR(t) = TP(t)
TP(t) + FN(t) . (2.10)

The area under precision-recall (AUPR) curve is bounded by 0 and 1, AUPR ∈ (0, 1).

AUPR close to 0 indicates that the prediction is poor for any given range of accepted

edges. AUPR close to 1 indicates that the prediction is accurate even for a wide range of

accepted edges.

A method based on ROC curve accents how much an inference method is sensitive to

changes of t in terms of a True Positive Rate (TPR) and a False Positive Rate (FPR).

True Positive Rate (TPR), or sensitivity, is measured in the same way as recall, as given

in Formula 2.10, whereas False Positive Rate (FPR) is defined as shown in Formula 2.11:

FPR(t) = FP(t)
FP(t) + TN(t) . (2.11)

False Positive Rate is related to specificity: FPR = 1 − specificity. ROC curve is a plot

of the TPR, in function of FPR. The area under ROC curve is bounded by 0.5 and 1,

AUROC ∈ (0.5, 1). AUROC close to 0.5 indicates that the prediction is not better than

the random guess. AUROC close to 1 indicates a highly accurate prediction.

In addition to the above metrics, a statistical evaluation of a prediction can be calculated

by computing corresponding p-values: paupr and pauroc. These are the probabilities that a

random list of edge predictions would obtain the same or better area under precision-recall

curve, and area under ROC curve, respectively. In order to obtain proper distributions

for AUPR and AUROC an estimation is made from many instances of random lists of

edge predictions. For example in DREAM challenges, described later in details in Sections

5.1, 5.2, and 5.3, distributions for AUPR and AUROC were estimated from 100 000 in-

stances of random lists of edge predictions. The overall p-values: paupr and pauroc of the
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five networks constituting each DREAM3 and DREAM4 subchallenge were defined as the

geometric mean of the individual p-values, as shown in Equation 2.12:

p = 5
√
p1 · p2 · p3 · p4 · p5. (2.12)

The Overall score for each method was the log-transformed geometric mean of the overall

AUROC p-value and the overall AUPR p-value, as shown in Equation 2.13:

Overall = −1
2 · log10(paupr · pauroc). (2.13)

A definition of the overall score for DREAM5 network, described later in details in Section

5.3, was identical to the one for DREAM3 and DREAM4, but the overall p-values were

averaged over only 3 individual p-values.

A drawback of the metric used to calculate the overall score in DREAM challenges is

that if for at least one network the individual p-value is lower than the smallest positive

real number available for a given machine precision, and therefore rounded to zero, then

the overall score for the whole subchallenge is equal to infinity regardless of how well the

other networks were predicted. This is because the overall p-value is equal to zero if at

least one of the individual p-value is equal to zero, see Formula 2.12. As a result Overall

score in Equation 2.13 is equal to infinity.

2.4 Variety of mRNA expression data

Network inference process highly relies on a type of expression data provided as input. Two

main groups of expression profiles are: the one with known, and the one with unknown

initial perturbation state of the expression of genes in the underlying network of regulatory

interactions. Knockout, and knockdown data are provided with the additional meta-data,
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Table 2.2: Different types of expression data provided in popular data sets: WT- Wildtype,
KO- Knockouts, KD- Knockdowns, MF- Multifactorial, TS- Time series, • Available, ◦
Unavailable.
?) Even though all the data types are available, they are all considered MF in this study.

Data set WT KO KD MF TS
DREAM3 size 10 • • • ◦ •
DREAM3 size 50 • • • ◦ •
DREAM3 size 100 • • • ◦ •
DREAM4 size 10 • • • • •
DREAM4 size 100 • • • ◦ •
DREAM4 size 100 MF ◦ ◦ ◦ • ◦
DREAM5? • • • • •
Expression profiles of E. coli? • • • • •

which describe which genes were initially perturbed. On the other hand, multifactorial and

time series data are expression profiles of unknown initial state of genes.

Moreover, there are steady or unsteady state expression profiles, i.e. gene expression lev-

els in homeostasis or changing dynamically with time respectively. Wildtype, knockout,

knockdown, and multifactorial data describe the expression of initially perturbed genes,

which are however in a steady state at the time of a measurement, where time series data

describe the dynamics of the expression levels of initially perturbed genes. The types of

data available in popular data sets are summarized in Table 2.2.

Some data sets might be more suitable for the GRN inference problem because they provide

additional knowledge about initial perturbations of genes. However, discovering regulatory

interactions in such data sets requires integrating different types of expression profiles and

meta-data provided with them. We distinguish several possible scenarios:

1. We are given a wildtype expression profile in form of a single vector, one expression

value for each gene. This vector might be useful to determine an expression level of

unperturbed genes in a network of regulatory interactions, and thus could serve as a

reference vector for expression profiles of other types. By itself however, it does not
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give too much information about the underlying network of regulatory interactions.

We operate on a wildtype expression vector WT :

WT = {e1, e2, ..., ei, ..., eP},

where ei is expression value of i-th gene in the unperturbed network.

2. We are given expression profiles from null-mutant knockout or heterozygous knock-

down experiments, one known gene initially perturbed in each experiment. As an

input, we are given P expression profiles, each of them measuring mRNA expression

levels of P transcripts. One known gene is knocked out at a time. We operate on

P × P knockout expression matrix KO:

KO =



e1,1 e1,2 . . e1,P

e2,1 .

. ei,j

. .

eP,1 eP,P


,

where ei,j is expression value of j-th gene in i-th sample. Columns of matrix KO

correspond to genes, rows correspond to experiments. For our convenience we order

KO matrix in a way that expression values on the diagonal correspond to initially

perturbed genes. In other words, the first gene is knocked out in the first experiment

(first row), the second gene in the second experiment (second row), and so on, up

until the last gene is knocked out in the last experiment (last row). In a similar way

we build P × P knockdown expression matrix KD:
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KD =



e1,1 e1,2 . . e1,P

e2,1 .

. ei,j

. .

eP,1 eP,P


.

This time, however, ei,j is expression value of j-th gene in i-th sample of knockdown

experiment.

3. We are given expression profiles from diversely conditioned experiments of unknown

initial perturbation state of genes. These could come from different drug treatments,

stress, overexpression, RNA interference, etc. As an input, we are given NMF ex-

pression profiles, each of them measuring mRNA expression levels of P transcripts.

However, we relate to the columns ofMF matrix as to genes, not transcripts, to keep

the set of columns of all the data tables consistent.

We operate on NMF × P expression matrix MF :

MF =



e1,1 e1,2 . . e1,P

e2,1 .

. ei,j

. .

eNMF ,1 eNMF ,P


,

where ei,j is expression value of j-th gene in i-th sample. Columns of matrix MF

correspond to transcripts (genes), rows correspond to samples. Because of the known

initial perturbation state- one known gene perturbed in each experiment, previous

scenario seems to be much more suitable for the network inference problem. How-

ever, it requires knocking out each transcription factor, and therefore is much more

expensive, and consequently less feasible in practice.
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4. We are given timestamped expression profiles from diversely conditioned experiments

of unknown initial perturbation of genes. As an input, we are given NTS sets of

expression profiles, each of them measuring mRNA expression levels of P transcripts

at different times t, for m-th set t ∈ {t1, t2, ..., tNm}.

In m-th set we operate on Nm × P timestamped expression matrix TSm:

TSm =



e1,t1 e2,t1 . . eP,t1

e1,t2 .

. ei,tk

. .

e1,tNm eP,tNm


,

where ei,tk is expression value of i-th transcript (gene) at the time tk. Columns of

matrix TSm correspond to genes, rows correspond to different snapshots in m-th

set. Samples timestamped with low values of tk correspond to the early stages of

the experiments, whereas these timestamped with high values of tk describe mRNA

expression of experiments in their late stages, where genes reach homeostasis.

Despite the variety of the data types, the inference method is based on the same principle

regardless of the given input. We score transcription factors in a gene selection problem,

once per each possible target transcript. At the end of this procedure we calculate the final

network of regulatory interactions in a form of the adjacency matrix V :

V =



v1,1 v1,2 . . v1,P

v2,1 .

. vi,j

. .

vP,1 vP,P


,
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where vi,j is the confidence that i-th transcription factor regulates j-th transcript. More

details on that process is given later in Chapter 4.



Chapter 3

Tree ensembles

In this chapter we describe working principles of a popular machine learning technique, an

ensemble of trees. It is a powerful modeling tool originally motivated from the perspective

of classification, regression, and feature selection theory. Ensembles became popular in

many scientific fields, including genetics and bioinformatics, for assessing the importance

of predictor variables and predicting the response variable in high-dimensional problems.

This brought promising new possibilities to the field of inferring biological networks. In-

deed, in this study we exploit the relative variable importance measure of the ensemble

of trees as the indication of the presence or absence of a regulatory interaction between

products of genes.

Presenting high-dimensional data to the learning algorithm is always a challenge, because

the resulting model must be fairly accurate, i.e. give low prediction error, and reasonably

simple at the same time. The second demand does not only come from the practical per-

spective, i.e. to lower the computational overhead, but also from what is known in machine

learning as a bias-variance dilemma. Because expression data are undersampled, a training

data set, which we present to the learning algorithm, can only be assumed a fraction of

an abstract complete set of expression profiles. Theoretical studies [9,36] have shown that
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there are two competing forces, which govern the predictive ability of any learning model:

bias and variance. The expected prediction error is always composed of the irreducible

error, a bias, and a variance components. The first component comes from the variance

of unseen data and therefore is beyond our control. Bias represents the extent to which

the average prediction over all training sets differs from the desired optimal model. It is

an estimation of how much our prediction differs from the optimal solution given a single

training set which we present to the algorithm. Variance represents the extent to which

the solutions for different training sets vary around their average, and therefore how much

is the learning procedure sensitive to the particular choice of the training set. Generally,

as the model complexity increases, the variance tends to increase and bias tends to de-

crease. The opposite happens as the model complexity is decreased. Typically we would

like to choose our model complexity to trade bias off with variance in such a way that our

fine-tuned learning procedure minimizes the prediction error. An ensemble of trees is an

example of bias and variance reducing procedure.

Below we describe how ensembles of trees are built. Essentially, they are predictors, which

combine a set of simple models, also called base learners, and use their weighted outcome as

a final prediction of a target variable. In other words ensemble methods combine outputs

from multiple base learners to form a compound with improved performance. There are

two major approaches to construct such an ensemble:

1. A parallel ensemble, which combines independently constructed base learners. It

is a variance-reduction technique commonly applied to unstable, high-variance algo-

rithms, such as Classification and regression trees (CART) [16,88]. An example of a

parallel ensemble is Random Forest algorithm introduced by Breiman [15].

2. A serial ensemble, which combines base learners dependent on each others to reduce

both variance and bias. An algorithm of combining base learners is more sophisticated

than the one in parallel ensembles, like in Adaboost algorithm, introduced by Freund
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Figure 3.1: Partitions of a single regression tree. Right panel shows the partitioning of a
two-dimensional feature space by recursive binary splitting applied to arbitrary data. Left
panel shows the tree corresponding to the partitioning in the right panel.

and Schapire [31, 32], or in Gradient Boosting Machine algorithm, introduced by

Breiman and Friedman [12,34,37].

Both approaches, and their working principles, will be described later in this chapter.

3.1 Parallel ensembles

Random Forest (RF) is the most commonly used example of a parallel ensemble. It is an

improvement over Bagging method [11] and an extension of Random Subspace method [48].

In essence, the main loop of Random Forest algorithm repeats the following steps:

1. Select with replacement a sample from the training set. A number of samples to select

is given as a parameter. Data selected in that process are called training samples.

The rest of data are called out-of-bag (OOB) samples. Note that for each resampling,

OOB sample size is around one-third of the number of all samples.
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2. Select at random a small subset of predictors for each sample. The size of this subset

is given as a parameter.

3. Grow each base learner, in this case a classification or regression tree (CART) [16], to

a maximum depth on a sample using the best splits only from a subset of predictors.

After all the trees are grown, a community prediction is made based on individual predic-

tions of base learners. The out-of-bag samples can serve as a test set for the tree grown

on the training data. Moreover, it is empirically proved [14] that the OOB error estimates

are as accurate as if using a test set of the same size as the training set. There is another

use for OOB samples, especially important in this proposal. Namely, they rank predictors

according to their relative importance in predicting the target variable, which helps solving

a feature selection problem, as described in Section 4.3.

To fully comprehend parallel tree-based ensembles, particularly Random Forest algorithm,

it is important to first focus on their building blocks: regression and classification trees

(CART). They partition the space of all joint predictor variable values into disjoint regions

Rj, j = {1, ..., J}, represented by the terminal nodes, as shown in Figure 3.1. Trees can be

formally expressed as shown in Equation 3.1:

T (x; Θ) =
J∑
j=1

γjI(x ∈ Rj), (3.1)

with parameters Θ = {Rj, γj}J1 . I is the identity function, which returns numerical 1 for

logical true, and numerical 0 for logical false. A constant γj is assigned to each region Rj

to form a predictor:

x ∈ Rj ⇒ f̂(x) = γj.

In this proposal we focus on regression trees because expression data is numerical, not

categorical. However, in practical applications, classification trees are at least as common
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as regression trees.

A single regression tree uses a greedy, top-down recursive partitioning strategy to split

the feature space into a set of regions Rj, and then fit a simple model in each of them, as

shown in Figure 3.1. Formally, parameters Θ̂ are found by minimizing the empirical risk:

Θ̂ = arg min
Θ

J∑
j=1

∑
xi∈Rj

L(yi, γj), (3.2)

where L(yi, γj) is a loss function, usually squared error. In practice, we can only find

approximate suboptimal solutions to the optimization problem given in Equation 3.2. There

are two levels of optimization:

1. Finding γj given Rj: Estimating γj given regions Rj is typically done as follows:

γ̂j = yj. In other words, the mean of the yi falling in region Rj predicts output

variable in that region.

2. Finding Rj: The exact solution is difficult to find, therefore typically a greedy,

top-down recursive partitioning algorithm is used, as shown in Figure 3.1.

Let us now focus on the partitioning strategy used by CART, and analyze Figure 3.1. Note

that all splits are parallel to the coordinate axes. In each region the output variable y is

modeled with different constants γj. The first split partitions the whole x1-x2 domain into

two regions. After the first partitioning is done, the process is recursively continued in both

regions. The first region is represented by its average of output y variable, the second region

undergoes further recursive binary splitting procedure. The process is continued until some

stopping rule is applied. Eventually the corresponding regression model predicts y with a

constant γj in region Rj, as follows:

f̂(x) =
J∑
j=1

γjI{x ∈ Rj}, (3.3)
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where J is the number of regions, and I is the identity function, which returns numerical

1 for logical true, and numerical 0 for logical false. At every step of the partitioning

procedure an exhaustive search is used to test all available variables and split points to

achieve the maximum reduction in a node impurity. A split point is simply a threshold

used to split a variable (feature) into two parts: pL and pR. All the samples with yi lower

than the threshold are assigned to pL part, all the samples with yi higher or equal than the

threshold are assigned to pR part. Note that sometimes, like in Random Forest algorithm,

a subset of available variables to split is smaller or equal than a set of all variables. For

regression problem, variance is used as a measure of a node impurity, as given in Formula

3.4:

I(t) = 1
N(t)

∑
i∈t

(yi − y)2, (3.4)

where the sum and mean are taken over all observations i in node t, and N(t) is the num-

ber of observations in node t. Note that split points are found among available predictor

variables, but node impurity is calculated with respect to the target variable.

The other metric is commonly used for classification trees, namely Gini index. It is equal

to zero when all observations at node t belong to the same class, and it is maximal when

classes are perfectly mixed. However, there is a reason of using variance as a node impurity

measure for regression trees. It is the mean square error of the best constant predictor of

a target variable in a node, which is the average of values of the predicted variable. In

other words, if variance of a target variable y in node t was zero, no more splits would be

necessary to perfectly model y.

The decrease in impurity ∆I(xi, t) is calculated as deviation of the impurity at the node t

and weighted average of impurities at each child node of t, as given in Formula 3.5:

∆I(xi, t) = I(t)− pLI(tL)− pRI(tR), (3.5)
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where the weights pL and pR are proportional to the number of observations that are

assigned to each child from the split at node t. In other words, a split which maximizes the

decrease in node impurity, as given by Formula 3.5, is found by exhaustively examining all

the possible split points. Impurity reduction due to a split on a specific variable indicates

the relative importance of that variable to the tree model [16]. Moreover, the measure

of a variable importance can be improved if out-of-bag samples were used. The split is

calculated on the training data, but the variable importance measure is calculated from

only the OOB samples. This provides more accurate and unbiased estimate of variable

importance in each tree. Therefore, for a single regression tree Ti the measure of variable

importance is given in Formula 3.6:

V I(xi, T ) =
∑
t∈T

∆I(xi, t), (3.6)

where ∆I(xi, t) is the decrease in impurity due to a split on variable xi at a node t of

the optimally pruned tree T , calculated on OOB samples. For ensembles, the metric is

averaged over the collection of all the base learners, therefore the final relative importance

measure of variable xi in ensemble of M trees is given by Formula 3.7:

V I(xi) = 1
M

M∑
m=1

V I(xi, Tm). (3.7)

Due to the stabilizing effect of averaging, this measure turns out to be more reliable than

the importance of a single regression tree, as given by Formula 3.6.

3.2 Serial ensembles

As opposed to parallel ensembles, serial ensembles combine base learners sequentially. Ev-

ery following base model relies on previously built preceding models. This approach is

also known as a boosting technique or additive modeling. It is one of the most powerful
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learning methods, originally designed for classification problems but it can be extended to

regression as well. In fact, Leo Breiman referred to the algorithm built on the ground of

this methodology as the "best off-the-shelf classifier in the world" (NIPS Workshop, 1996).

Both Adaboost algorithm, and Gradient Boosting Machine algorithms are forms of a gra-

dient optimization algorithm in functional space [36]. Similar to parallel ensembles, serial

ensembles combine the outputs of many weak learners to produce a powerful committee.

However, they are fundamentally different, which shall be explained below in this section.

Algorithm 1 Adaboost
Require:

training set {(xi, yi)}Ni=1,
base learner h(x),
number of iterations M .

Ensure: classification model f̂(x)
1: Initialize the observation weights:
d0 = N−1, i ∈ (1, ..., N).

2: for m← {1, ...,M} do
3: Fit a weak classifier hm(x) to the training data using weights dm−1.
4: Calculate classification error with respect to dm−1:

εm ←
∑N

i=1 dm−1I(yi 6=hm(xi))∑N

i=1 dm−1
.

5: Calculate scaling coefficient:
αm ← log (1−εm

εm
).

6: Update the observation weights:
dm ← dm−1 · eαm·I(yi 6=hm(xi)), i ∈ (1, ..., N).

7: end for
8: Output f̂(x) = sign(∑M

m=1 αmhm(x)).

The most well-known boosting procedure is Adaboost algorithm, introduced by Freund and

Schapire [33]. The key point of the algorithm is to sequentially apply the base classification

model, also called a weak learner, to repeatedly modified versions of the data, and this way

producing a sequence of weak classifiers. The predictions from all the weak classifiers are

then combined through a weighted majority vote to produce the final prediction, as shown

in Equation 3.8:

H(x) = sign(
M∑
m=1

αmhm(x)), (3.8)
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where {α1, ..., αM} are computed by the boosting algorithm, as shown in Algorithm 1,

and scale the contribution of each weak learner hm(x). They are designed to give higher

influence to the more accurate weak classifiers in the sequence. A similar reasoning gave

foundations for the ADANET algorithm [85], described in details in Chapter 4, which ex-

ploits αm coefficients as a relative importance measure of variables in the training set. The

data modifications at each step of Algorithm 1 consist of applying weights wi, i ∈ (1, ..., N)

to each of the training observations {(xi, yi)}Ni=1. In the first line all the weights are set to

di = 1
N
, so that initially all the samples are equally important. For each successive iteration

the observation weights are individually modified, see line 6 of Algorithm 1, and the weak

learner is invoked with respect to the updated weights. The key idea behind Adaboost

algorithm is that at step m, those observations that were misclassified by the classifier

hm−1(x), invoked at the previous step, have their weights increased, whereas the weights

are decreased for those which were previously classified correctly. Therefore, observations

that are difficult to correctly classify are becoming more important, and each successive

classifier is forced to concentrate on them to minimize prediction error εm, calculated as

shown in line 4 of Algorithm 1.

One-level classification trees [49], also known as decision stumps, are commonly used as

weak classifiers hm(x) for Adaboost algorithm. Unlike fully grown decision trees, decision

stumps do not calculate relative importance measure of variables in the training set. In-

stead, they exhaustively search for the optimal threshold χϕ on the variable xϕ, which gives

the lowest error εm predicting the class labels y, with regard to the observation weights

d, as shown in Figure 3.2. As previously stated, in Adaboost algorithm αm coefficients

are designed to give higher influence to the more accurate weak classifiers in each step of

boosting procedure. This way αm coefficient can serve as a relative importance of a feature

xϕ selected by decision stump to split. This reasoning gave foundations for the ADANET

algorithm [85], described in details in Chapter 4, which exploits αm coefficients as a relative
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Figure 3.2: Solving classification problem by decision stumps. An arbitrary training set
consists of 13 samples: {(xi, yi)}13i=1. Predictor variable x is 3-dimensional. Optimal thresh-
olds: χ1, χ2, and χ3 are found with respect to each variable. An optimal pair (ϕ, χϕ) is
the one, which gives the minimal prediction error. If the weights of every 13 observations
are equal, then the misclassification error for the first pair (1, χ1) is 0.23, for the second
pair (2, χ2) it is 0.38, and for the third pair (3, χ3) it is 0.46. Therefore the first pair is se-
lected as the optimal discriminating feature of the output residual y, and the corresponding
threshold (split point).

importance measure of variables selected as the best discriminating variables for a target

residuals.

It has been shown [36] that Adaboost algorithm is equivalent to a forward stage-wise

additive modeling with the exponential loss function, as given by Formula 3.9:

L(y, f(x)) = exp (−yf(x)). (3.9)

It was indeed a remarkable discovery, since originally Adaboost algorithm was motivated

from a very different perspective. Moreover, it places Adaboost algorithm in a broader

group of optimization methods called boosting models. A generic algorithm for Gradient

Boosting Machine is shown in Algorithm 2. A specific algorithm is obtained by inserting

loss function L(y, f(x)) and base learner h(x). Popular loss functions for regression, and

their gradients, are summarized in Table 3.1. Gradient boosting is typically done with

CART trees of a fixed size as base learners h(x).
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Algorithm 2 Generic Gradient Boosting Machine
Require:

training set {(xi, yi)}Ni=1,
base learner h(x),
a differentiable loss function L(y, F (x)),
number of iterations M , shrinkage factor ν.

Ensure: regression model f̂(x)
1: Initialize model with a constant value:
f0(x)← arg minγ

∑N
i=1 L(yi, γ).

2: for m← {1, ...,M} do
3: Calculate so-called pseudo-residuals:

∀i ∈ {1, ..., N} rim ← −[∂L(yi,f(xi))
∂f(xi) ]f=fm−1 .

4: Fit a base learner hm(x) to pseudo-residuals, i.e. train it using the training set
{(xi, rim)}Ni=1.

5: Calculate multiplier γm by solving the following one-dimensional optimization prob-
lem:
γm ← arg minγ

∑N
i=1 L(yi, fm−1(xi) + γhm(xi)).

6: Update the model:
fm(x)← fm−1(x) + ν · γmhm(xi).

7: end for
8: Output f̂(x)← fM(x).

The first line of Algorithm 2 initializes f0 to be an optimal constant model, which is a

single node terminal tree. In other words, f0 is initialized to an average of y. Components

rim, which are calculated in line 3, are called pseudo-residuals. As opposed to Random

Forest algorithm, gradient boosting procedure fits base learners not to yi residuals, but to

pseudo-residuals successively updated in each iteration of the algorithm. The exact defini-

tion of the negative gradient of loss function, which is used to calculate rim, depends on the

definition of the selected loss function. For squared error, pseudo-residuals are calculated

simply as rim = yi − fm−1(xi), see Table 3.1. If CART regression trees are used as base

learners in generic Gradient Boosting Machine, then the algorithm is better known as Mul-

tiple Additive Regression Trees (MART). At m-th step MART algorithm fits a regression
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tree as a base learner to pseudo residuals:

hm(x) =
J∑
j=1

γjmI(x ∈ Rjm). (3.10)

MART algorithm applies a slight modification to line 5 of Algorithm 2. Instead of calcu-

lating a single multiplier γm for the whole tree, separate γjm are found for each region Rjm.

Therefore line 5 becomes the following:

γjm = arg min
γ

N∑
i=1

L(yi, fm−1(xi) + γhm(xi)), (3.11)

and the final updating rule from line 6 becomes the following:

fm(x) = fm−1(x) + ν ·
J∑
j=1

γjmI(x ∈ Rjm) (3.12)

The parameter ν, also known as a shrinkage factor, is used to scale the contribution of

each tree by a factor ν ∈ (0, 1) when it is added to the current approximation. In other

words, ν controls the learning rate of the boosting procedure. Shrinkage techniques are

also commonly used in neural networks. Smaller values of ν result in larger training risk for

the same number of iterations M . However, it has been found [37] that smaller values of ν

reduce test error, and require correspondingly larger values of M , which results in higher

computational overhead. There is a trade-off between these two parameters.

Similar to parallel ensembles, serial ensembles are also linear combinations of base learners,

see Equations 3.8 and 3.12, therefore for tree-based weak learners the relative importance

V I(xi) is calculated in the same way in both approaches, as defined in Equation 3.7. More-

over, if only a fraction of the training observations is randomly selected in MART algorithm

to propose the next tree in the expansion, then the relative importance of predictor vari-

ables could be improved in the same way as in Random Forest algorithm: trees are grown
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Table 3.1: Commonly used loss functions for regression, and their gradients.
Loss function L(yi, f(xi))

squared error 1
2(yi − f(xi))2

absolute error |yi − f(xi)|

Huber
{

(y − f(x))2 if |y − f(x)| ≤ δ
δ(|y − f(x)| − δ

2) otherwise
gradient −∂L(yi,f(xi))

∂f(xi)

squared error yi − f(xi)
absolute error sign(yi − f(xi))

Huber
{
yi − f(xi) if |yi − f(xi)| ≤ δm
δmsign(yi − f(xi)) otherwise ,

where γm = αth-quantile(|yi − f(xi)|)

on training samples, but the variable importance measure is calculated from only the OOB

samples. This provides more accurate and unbiased estimates, just like in Random Forest

algorithm. However, because the process of growing trees in the two algorithms is not

identical, relative importance estimates are quantitatively different.



Chapter 4

Proposed Methods

4.1 Overview of the proposed methods

We have proposed two methods for reverse-engineering gene regulatory networks from ex-

pression data, ADANET and ENNET, described in details in Sections 4.3.1 and 4.3.2,

respectively. We have also proposed two methods for refining predictions of the above

algorithms, described in Section 4.4. In this section we outline the basic steps of the pro-

posed algorithms leading to the calculation of a directed graph of regulatory interactions

between genes, in form of adjacency matrix V. As an input we are given different types

of expression data, namely: wildtype, knockouts, knockdown, multifactorial, or/and time

series expression data, as described in Section 2.4. The methods we propose execute the

following steps:

1. Collecting and pre-processing all the data tables. Usually, raw expression data

need to be pre-processed before any inference method could be applied to reverse-

engineer a GRN. Pre-processing has a range of meanings, here it is regarded as a

process of reducing variations or artifacts, which are not of biological origin, espe-

cially when expression is measured with multiple high-density microarrays [10]. From

a practical point of view, it means that concentration levels of transcripts must be
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adjusted and the entire distribution of adjusted values aligned with a normal distri-

bution. Normalization of expression data is outside of the scope of our work and the

data we obtain from databases are already normalized using state-of-the-art methods,

such as RMA [10, 61]. We scale normalized expression data to zero mean and unit

standard deviation.

2. Decomposing the problem. We decompose the problem of inferring incoming

edges to all P genes to P independent subproblems. In each subproblem incoming

edges from transcription factors to a single transcript are discovered. The process of

decomposition is shown in Figure 4.1. We build a data matrix from a subset of genes,

i.e. selected transcription factors, and score them independently for each target gene

in the following steps of the method.

3. Creating gene selection problem. For k-th decomposed subproblem we create a

target expression vector Yk and a feature expression matrix X−k. Columns of X−k

matrix constitute a set of possible transcription factors. Vector Yk corresponds to a

transcript, which is possibly regulated by transcription factors from X−k. Creating

gene selection problem is described in details in Section 4.2.

4. Solving gene selection problem. Once the target expression vector Yk, and the

feature expression matrix X−k are created, we solve k-th gene selection problem as

a feature selection problem. We use two different feature selectors as defined in

ADANET and ENNET algorithms. The theoretical foundations for the above mea-

sures are described in Chapter 3. Practical considerations of solving a gene selection

problem are described in details in Section 4.3.

5. Merging solutions of gene selection problems. Once the solutions of inde-

pendent gene selection problems are calculated, we compose an adjacency matrix V

representing a graph of inferred regulatory interactions. Each of the solutions consti-

tutes a single column-vector, therefore we obtain V matrix by binding all the partial
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solutions column-wise.

6. Refining the network using the variance in rows of V . Once the network of

regulatory interactions is inferred, we apply a re-evaluation algorithm to achieve an

improved final result. This step does not require any additional data to operate other

than adjacency matrix V , which is obtained in the previous step. It exploits variance

of edge probabilities in rows, i.e. edges outgoing from a single transcription factor,

as a measure of the effect of a transcriptional regulation. It is further described in

Section 4.4.1.

7. Refining the network from the knockout experiments. This step is only

applied if knockout expression data is available. It analyzes z-score transformed

KO matrix, as defined in Section 2.4, as a more accurate measure of the effect of a

transcriptional regulation originated from a single transcription factor. This step is

further described in Section 4.4.2.

4.2 Creating a gene selection problem

In a gene selection problem we decide which TFs contribute to the target gene expression

across all the valid experiments. In order to justify all the possible interactions we need to

solve a gene selection problem for each target gene. For example, if a regulatory network

consists of four genes (P = 4), we need to solve four gene selection problems, as shown in

Figure 4.1. In k-th problem, k ∈ {1, 2, 3, 4}, we find which TFs regulate k-th target gene.

In other words, we calculate k-th column of V matrix.

At the beginning of the process of creating a gene selection problem we scale input data,

regardless of its type, so that each column of expression matrix is zero mean and unit stan-

dard deviation. In principle we build a target expression vector Yk, and the corresponding
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Figure 4.1: Decomposition of the network inference problem. An arbitrary problem of
inferring a regulatory network of four genes is decomposed to four independent subprob-
lems. In each subproblem incoming edges from transcription factors to a single gene are
discovered. In the first problem the first gene is a target gene, the rest of genes are potential
transcription factors. A solution of this subproblem contributes to the final solution as the
first column of adjacency matrix V . All the other columns of V are calculated in a similar
way.

feature expression matrix X−k. Yk is a column vector describing expression of the k-th

target gene across all the valid experiments. X−k is a matrix describing expression of all

the possible TFs of k-th gene in the corresponding set of experiments. Columns of matrix

X−k correspond to TFs, rows of Xk and Y−k are aligned with each other, and correspond to

the valid samples. Columns of X−k correspond to all the possible TFs, but if a target gene

k is also a transcription factor, it is excluded from X−k. We do not consider a situation in

which a transcription factor would have a regulatory interaction with itself. The way we

create Xk and Y−k, and which experiments we consider valid in particular, depends on the

input data we are given. We distinguish several possible scenarios:

1. We are given wildtype expression data: WT vector. When building target vector Yk

corresponding to k-th target gene, k ∈ {1, ..., P}, we consider WT vector as one valid
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experiment. We reason that expression values in WT vector are determined by the

underlying network of regulatory interactions just like in the other experiments in

which genes are initially perturbed. However, WT vector by itself gives us only one

sample, i.e. one row in a feature expression matrix, therefore it only makes sense to

add it to the other experiments described below.

2. We are given known initial state expression profiles: KO or KD matrix. When

building target vector Yk corresponding to k-th target gene, k ∈ {1, ..., P}, we consider

all the experiments valid except the one in which k-th gene was initially perturbed. We

reason that the expression value of k-th gene in that experiment is not determined

by its TFs, but by the external factor. Therefore we exclude k-th experiment (k-

th row) from both Yk and X−k. The rest of experiments are aligned so that each

row in Yk vector is aligned with a corresponding row in X−k matrix. Note that

the other popular inference methods [73, 95], which are using knockout expression

profiles, estimate edges outgoing from k-th transcription factor by looking at k-th

row of KO matrix. This approach is however limited to the networks, for which

a knowledge of the initial perturbation of a single transcription factor is provided,

therefore unsuitable for the other data sets.

3. We are given unknown initial state expression profiles: MF matrix. When building

a target vector Yk and a feature matrix X−k we consider all the NMF experiments

valid. We do not know how much the expression of a target gene depends on the

regulatory interactions of its TFs, and how much on the external factor. This is a

possible source of error in prediction. All the experiments are organized in a way that

each row in Yk vector is aligned with a corresponding row in X−k matrix.

4. We are given timestamped unknown initial state expression profiles: a set of TSm

matrices, m ∈ {1, 2, ..., NTS}. Like previously, we consider all the experiments valid

because we can not confidently remove invalid experiments based on the knowledge
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of the initial perturbations. However, unlike in previous cases, we do not align rows

of Yk vector and X−k matrix to always reflect the same measurements. Rows in

X−k matrix are shifted backwards by ∆t, like shown in Figure 4.2. We reason that

expression values of TFs in X−k matrix regulate their targets only after ∆t. In this

proposal we use ∆t of the finest resolution of time series data. In other words, if

expression is measured every 10 minutes, then ∆t = 10min.

Once we collected all the expression data, scaled it, and excluded invalid experiments, we

build Yk and X−k by aligning experiments as described above, and excluding the k-th gene

from X−k columns if it was a transcription factor. If we are given more than one type of

data we reason that although different data come from different type of experiments, they

all reflect the same underlying network of regulatory interactions, and thus we bind them

all together row-wise as different samples in Yk and X−k, as shown in Figure 4.2.

Usually, different approaches are used to infer GRNs from different data, as described

in Section 2.1. For example ordinary differential equations are commonly used to calcu-

late the network from time series data, whereas information theoretic methods work best

for multifactorial expression data. However, a method described in this work applies the

same approach of finding true transcription factors on the integrated community of data

of different types. Traditional methods operate on a pre-defined type of expression data,

therefore are biased towards predicting edges that are exposed more clearly by a specific

type of experiments. Our proposed approach reduces that bias, because all the samples are

processed identically, regardless of their type.

Moreover, gene selection problems that we solve are high-dimensional, i.e. the number

of known transcription factors is in range of hundreds. When the dimensionality of a

problem increases, the volume of the space in feature domain increases so much that the

available data become sparse. It is a problem for methods that require statistical signif-
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Figure 4.2: Solving GRN inference problem in three steps. A) Collecting input expression
data of different types and removing invalid experiments with regard to k-th target gene,
as described in Section 4.2. Briefly, rows correspond to experiments, and columns to
genes/TFs. B) Yk vector and X−k matrix after aligning corresponding experiments. C) A
result of predicting transcription factors of k-th gene is k-th column of V matrix.
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icance. Therefore, predictions supported by a large set of samples are statistically well

founded. Building algorithms that integrate all available expression data, i.e. increase the

size of data but keeps the dimensionality of the problem, is the simplest way of reducing

possible effects of that phenomenon, also known as the curse of dimensionality.

4.3 Solving a gene selection problem

We want to find which TFs from X−k regulate a target gene from Yk, as described above

in Section 4.2. We search for the subset of columns in matrix X−k, which are related to

the target vector Yk by a function fk, as shown in Equation 4.1.

∀k ∈ {1, ..., P}, ∃fk : Yk = fk(X−k) + εk, (4.1)

where εk is a random noise with zero mean. In this problem both function fk and εk are

unknown. Function fk represents a pattern of regulatory interactions, which drive the

expression of k-th gene. We want the function fk to rely only on a small number of genes,

those which are the true regulators of gene k. In machine learning this problem is known

as a feature selection problem [90, 91]. However, in literature related to GRN inference

problem, it is also called a gene selection problem [51, 85]. Fundamentally, the goal of

gene selection is to model target response Yk, with an optimal subset of the important

predictor variables, i.e. a subset of columns of X−k matrix. A more relaxed objective of

gene selection is a variable ranking, where relative relevance for all input columns of X−k

matrix is obtained with respect to the target vector Yk. The higher a specific column is

in that ranking, the higher is the confidence that a corresponding gene is in regulatory

interaction with a gene corresponding to a target variable. We use the following gene

selection methods:

1. Variable importance based on boosted ensemble of decision stumps, ADANET [85].

As input we use Yk vector and X−k matrix as described in Section 4.2. Below are the
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default parameters of ADANET:

• Number of classification problems to create: 30.

• Number of stumps in the expansion: b
√
P − 1c.

• Lower bound for classification ψ: 0.25.

• Upper bound for classification ξ: 0.75.

• Margin width: 0.05.

• Sampling rate: 0.67.

2. Variable importance based on boosted ensemble of regression stumps, ENNET [86].

As input we use the same data as for ADANET. Below are the default parameters of

ENNET:

• Sampling rate of samples ss: 1.

• Sampling rate of features sf : 0.3.

• Number of stumps in the expansion T : 5000.

• Learning rate ν: 0.001.

As a comparison to the gene selection methods listed above we use popular inference meth-

ods to reverse-engineer GRN from expression data:

1. GENIE3 algorithm [51]. We use a Matlab implementation provided by the authors

of that method. We use the default protocol with default parameters.

2. Information theoretic methods: C3NET [3, 4], MRNET [68], ARACNE [64]. We use

minet: a popular R implementation of the methods. We use default parameters for

all the three methods.

3. CLR method [29]. Implementation was downloaded from [68] and used with the

default parameters.
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We acknowledge that the above methods were initially designed to infer networks using

MF matrix as the only input and not for the other types of data, specifically not for TS

or KO/KD data. However, we reason that the expression matrix created as described

in Section 4.2 might be considered as a special case of MF matrix. Moreover, for the

benchmark GRN, where only MF data is available, the above methods work as designed

by their creators.

4.3.1 ADANET Algorithm

Below we introduce ADANET algorithm that we proposed for reverse-engineering gene

regulatory networks [85], and describe its working principles in two parts. In each of them

we describe one functionally distinct module of our proposed algorithm.

4.3.1.1 Solving a gene selection problem by ADANET

In this section we describe the working principle of the method PredictRegulators(), as

shown in Algorithm 3, which we invoke to decide which genes are related to the target gene

k. Note that Yk and X−k provided to the method at k−th iteration as inputs are called

Y and X respectively. Algorithm 3 returns feature importance vector V that constitutes

k−th column of adjacency matrix V .

In the first phase we initialize feature importance vector V, V ∈ [0, 1]P−1 with zeros.

In the second phase we create C classification problems. We illustrate how we create a

single classification problem in Figure 4.3. Each time we select a threshold point m on the

target variable Yk from a range bounded by ψ and ξ, m ∈ [ψ, ξ]. A threshold point m helps

to define the percentage of samples which will be considered as "low expression of gene k"

class, and "high expression of gene k" class. In the first classification problem m is equal

to ψ, in the following problems it increases by a certain amount, until in the last one m is
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Algorithm 3 PredictRegulators
Require:

Y ∈ RN , X ∈ RN×P , I ∈ NN×P

C ∈ N, s ∈ [0, 1], δ ∈ [0, 1],
ψ ∈ [0, 1], ξ ∈ [0, 1], ψ ≤ ξ

Ensure: V ∈ [0, 1]P
1: V ← 0
2: for c← {1, ..., C} do
3: m← ψ + (ξ−ψ)c

C

4: Y{0,1} ← Build(Y, I,m, δ, s)
5: Vc ← AdaScoreRegulators(Y{0,1}, X, I)
6: V ← V + Vc
7: end for
8: ∀k ∈ {1, ..., P − 1}V (k)← V (k)

C

equal to ξ, i.e. the value of m is progressively increasing across the problems, but always

limited by ψ and ξ. In this way, some classification problems are focused on separating very

low expression of gene k from medium and high expression, others ask for separation of low

from high expression, and others still prescribe discrimination of very high from medium

and low expression of gene k.

For each classification problem we build a binary vector Y{0,1}, Y{0,1} ∈ {−1, 1}Ns , Ns ≤ N ,

which defines class labels. Samples, which belong to class Ω0 and Ω1 are labeled −1 and 1

respectively. We create class Ω0 by randomly sub-sampling (by selecting without replace-

ment with sampling rate s) all the samples that have expression value of gene k not higher

than Percentilem−δ(Y ). Accordingly, we create class Ω1 by sub-sampling all the samples

that have expression value of gene k not lower than Percentilem+δ(Y ). From the training set

we exclude all the samples, which have expression value of gene k between Percentilem−δ(Y )

and Percentilem+δ(Y ). For example, for m = 0.6, and δ = 0.1, class Ω0 contains part of

the samples with expression value below the median of Y , and class Ω1 contains part of

the samples with expression value above 70% percentile of Yk.

In the third phase we invoke method AdaScoreRegulators() to test which genes are identi-
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Figure 4.3: Creating a classification problem for Yk. Samples with low (–) and high (+)
expression of gene k are placed in class Ω0 and Ω1, respectively. Part of the samples
is selected for the training set, according to the sampling rate s. Circles are representing
samples within the margin, which are excluded from the training set. A gene corresponding
to X1

−k is a perfect discriminator for Yk, because a threshold χ is found, such that all the
training samples having X1

−k < χ are classified as Ω0, whereas all the training samples
having X1

−k > χ are classified as Ω1. The training classification error is thus ε = 0.
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Algorithm 4 AdaScoreRegulators
Require:

Y ∈ {−1, 1}Ns ,
X ∈ RNs×P−1,
T ∈ N, I ∈ NN×P

Ensure: W ∈ [0, 1]Ns
1: W ← 0
2: ∀i ∈ {1, ..., Ns} : D1(i)← Initialize(Y )
3: for t← {1, ..., T} do
4: ht ← DecisionStump(X, Y, I,Dt)
5: εt ← GetError(ht, X, Y,Dt)
6: ϕt ← GetFeature(ht)
7: if εt > 0 then
8: αt ← 1

2 ln
1−εt
εt

9: ∀i ∈ {1, ..., Ns} :
Dt+1(i)← Dt(i) exp(−αtY (i)ht(i))

10: ∀i ∈ {1, ..., Ns} : Dt+1(i)← Dt+1(i)∑Ns
j=1 Dt+1(j)

11: W (ϕt)← W (ϕt) + αt
12: else
13: W (ϕt)← W (ϕt) + 1
14: break
15: end if
16: end for
17: ∀k ∈ {1, ..., P − 1}W (k)← W (k)∑P−1

l=1 W (l)

fied as important discriminators for each of the classification problems described above. In

other words we search for genes, which could discriminate samples belonging to class Ω0,

from those belonging to class Ω1. In Figure 4.3 a gene corresponding to the single column

X1
−k would be given high importance score as a perfect discriminator for Yk, because a

threshold χ can be found, such that all the training samples having X1
−k < χ are assigned

to class Ω0, and all the training samples having X1
−k > χ are assigned to class Ω1. We

describe the mechanism of scoring the discriminative genes in details later in Section 4.3.1.2.

Finally we average the importance score over all classification problems.
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4.3.1.2 AdaScoreRegulators Method

As described in Section 4.3.1.1 we invoke AdaScoreRegulators() method to decide which

genes are related to the target gene k in each of the classification problems. In this section

we describe the working principle of the method AdaScoreRegulators(), as shown in Al-

gorithm 4.

We use a general scheme of AdaBoost meta-classifier, introduced by Freund and Schapire

[31]. In the original definition it was used to solve classification problems. However, with

slight modifications, we adopted the algorithm to solve gene selection problems. We use

a basic concept, that genes which solve a classification problem, as described in Section

4.3.1.1, are more important than the others. In other words, all the genes that are selected

as discriminators for the classification problem are given positive importance score. All the

other genes are given zero importance score.

In the first phase of Algorithm 4 we initialize sample weight vector Dt, t = 1. A sample

weight vector Dt, Dt ∈ RNs is interpreted as an importance measure of samples. Samples

having higher weights are more important than those having lower weights, i.e. an error of

prediction of a class label of a sample with a high weight is penalized more than the one

of a sample with a low weight. At each step of the algorithm, Dt is normalized as shown

in Equation 4.2.

∀t ∈ {1, ..., T} :
Ns∑
j=1

Dt(j) = 1 (4.2)

We initialize Dt, t = 1 to be normalized according to the Equation 4.2 and to correct

the possible imbalances in the sizes of the Ω0 and Ω1 classes. Samples in each class are

weighted uniformly, and the value of the weight is chosen to make the total sum of weights

for points in the class equal to 0.5. In this way, the total importance of each class is the

same. Specifically, an initial importance of samples belonging to class Ω0 is given as follows:
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DΩ0
1 = 1

2 · |Ω0|

An initial importance of samples belonging to class Ω1 is given in a similar way as follows:

DΩ1
1 = 1

2 · |Ω1|

In the second phase we run T iterations of the main loop of Algorithm 4. In each loop

we first create a weak hypothesis using Decision Stumps, described in [49]. Referring to

Figure 4.3, a weak hypothesis is a threshold χt on the expression values of gene ϕt. A pair

(ϕt, χt)optimal, which gives the lowest error εt on predicting the class labels, is found with

regard to the sample importance Dt.

In the third phase of Algorithm 4, after the weak hypothesis (ϕt, χt)optimal is found, if

the error εt is greater than 0, we derive importance weights Dt+1 with respect to the error

εt, and update gene ϕt importance score W (ϕt). On the other hand, if the error εt is equal

to 0, i.e. a perfect weak hypothesis is found and no more iterations are needed, we update

the only one gene ϕt importance score W (ϕt) and break from the main loop. In order to

derive the importance weights Dt+1, an updating coefficient αt is calculated, as shown in

Algorithm 4. In the original formulation of AdaBoost, αt coefficient not only was used to

update the importance weights Dt+1, but also to construct the final classifier, also called a

strong hypothesis. However, to solve a gene selection problem, an explicit definition of the

classification model is unnecessary, i.e. we do not need to know the explicit definition of

fk function, as described in Section 4.3.1. Despite, we use αt coefficient to update gene ϕt

importance score W (ϕt).

In the last phase of Algorithm 4 we normalize gene importance score W .



78 Proposed Methods

4.3.2 ENNET algorithm

Below we introduce ENNET algorithm that we proposed for reverse-engineering gene reg-

ulatory networks [86], and describe its working principles. In essence, it uses boosted

ensemble of regression stumps to score important transcription factors for each target gene

independently. Like ADANET algorithm, for k−th target gene it returns a vector of feature

importance constituting k−th column of the final adjacency matrix V .

4.3.2.1 Solving a gene selection problem by ENNET

As in ADANET, our solution to the variable ranking involves ensemble learning. However,

instead of using boosted ensemble of decision stumps, we use an iterative regression method,

which in each iteration chooses one transcription factor based on an optimality criterion,

and adds it to the non-linear regression ensemble. The main body of our method, presented

in Figure 4.4, is based on Gradient Boosting Machine [37] with a squared error loss function.

The first line of ENNET initializes f0 to be an optimal constant model, without selecting

any transcription factor. In other words, f0 is initialized to an average of Yk. At each next

t-th step the algorithm creates an updated model ft, by fitting a base learner ht and adding

it to the previous model ft−1. The base learner is fitted to a sample of pseudo residuals, with

respect to a sample of transcription factors, and thus is expected to reduce the error of the

model. Pseudo-residuals are re-calculated at the beginning of each iteration with respect to

the current approximation ft. As a base learner, we use regression stumps, which select a

single TF that best fits pseudo residuals. A regression stump ht(x) partitions the expression

values x of a candidate TF into two disjoint regions Rl and Rr, where Rr = R − Rl, and

returns values γl and γr, respectively, for those regions, as shown in Equation 4.3,

ht(x) = γlI(x ∈ Rl) + γrI(x ∈ Rr), (4.3)
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Require:
expression of TFs: x ∈ RN×P , expression of target gene: y ∈ RN ,
number of iterations: T ∈ N, shrinkage factor: ν ∈ [0, 1],
sampling rate for observations: ss ∈ [0, 1],
sampling rate for TFs: sf ∈ [0, 1].

Ensure: importance of TFs: I2 ∈ RP

1. Initialize model with arithmetic mean of y, set impor-
tance I2 to 0, and set step number to 1:
f0(x)← y,
t← 1, I2 ← 0.

2. t ≤ T?

3. Calculate pseudo-residuals:
rit ← yi − ft−1(xi), i ∈ {1, ..., N}.

4. Randomly select ss · N observations with replacement,
and sf · P TFs without replacement.

5. Find regions R1t, R2t, and relative importance i2t of
ϕ-th TF by training one-level regression tree on pseudo-
residuals using only randomly selected observations and
TFs:
{i2t , ϕt, R1t, R2t} ← train tree(xi, rit).

6. Calculate γ1t, γ2t using only randomly selected observa-
tions and define the regresion stump ht:
γ1t ←

P
i yi−ft−1(xi)

card{xi∈R1t} , xi ∈ R1t,

γ2t ←
P

i yi−ft−1(xi)

card{xi∈R1t} , xi ∈ R2t.
ht(x) = γ1tI(x ∈ R1t) + γ2tI(x ∈ R2t)

7. Update model using all observations:
ft(x)← ft−1(x) + νht(x).

8. Update importance of ϕ-th TF:
I2
ϕt
← I2

ϕt
+ i2t .

9. t← t+ 1.
10. Output scaled I2

over all trees:
I2 = 1PP

i=1 Ii
I2.

yes

no

Figure 4.4: ENNET algorithm is a modification of a Gradient Boosting Machine algorithm,
with a squared error loss function and a regression stump base learner. The algorithm
calculates a vector of importance scores of transcription factors, which can possibly regulate
a target gene. It is invoked P times in a problem of inferring a P -gene network, i.e. a P -
column adjacency matrix V .
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where I is the identity function returning the numerical 1 for the logical true, and the

numerical 0 for the logical false. Regions Rl, Rr are induced such that the least-squares

improvement criterion is maximized:

i2(Rl, Rr) = wlwr
wl + wr

(yl − yr)2, (4.4)

where wl, wr are proportional to the number of observations in regions Rl, Rr respectively,

and yl, yr are corresponding response means. That is, yl is the average of the values from

the vector Yk for those samples where an expression of the chosen TF falls into the region

Rl. The value of yr is defined in an analogous way. The averages yl and yr are used as

the regression output values γl and γr for regions Rl and Rr, respectively. The criterion in

Equation 4.4 is evaluated for each TF, and the transcription factor with the highest im-

provement is selected. In each t-th step, we only use a random portion of rows and columns

ofX−k, sampled according to the observation sampling rate ss, and the TF sampling rate sf .

The procedure outlined above creates a non-linear regression model of the target gene

expression based on the expression of transcription factors. However, in the network in-

ference, we are interested not in the regression model as a whole, but only in the selected

transcription factors. At each t-th step of the ENNET algorithm, only one TF is selected as

the optimal predictor. The details of the regression model can be used to rank the selected

TFs by their importance. Specifically, if a transcription factor ϕt is selected in an iteration

t, an improvement i2t serves as an importance score I2
ϕt for that ϕt-th TF. If the same TF

is selected multiple times at different iterations, its final importance score is a sum of the

individual scores.

In the training of the regression model, the parameter ν, known as a shrinkage factor,

is used to scale a contribution of each tree by a factor ν ∈ (0, 1) when it is added to the
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current approximation. In other words, ν controls the learning rate of the boosting pro-

cedure. Shrinkage techniques are also commonly used in neural networks. Smaller values

of ν result in a larger training risk for the same number of iterations T . However, it has

been found [37] that smaller values of ν reduce the test error, and require correspondingly

larger values of T , which results in a higher computational overhead. There is a trade-off

between these two parameters.

4.4 Refining the prediction

Once the network of regulatory interactions is inferred, using either ADANET or ENNET,

we apply a post-processing step to achieve an improved final result. We propose two steps:

the first step does not require any additional data to operate other than adjacency matrix

V , which is obtained in the previous step. It exploits variance of edge probabilities in

rows, i.e. edges outgoing from a single transcription factor, as a measure of the effect of

a transcriptional regulation. The second step is only possible if knockout expression data

are available. It analyzes z-score transformed KO matrix, as defined in Section 2.4, as a

more accurate measure of the effect of a transcriptional regulation originated from a single

transcription factor.

4.4.1 Exploiting variance of the edge predictions

In this phase we score transcription factors based on the effect of a possible regulation of the

target transcripts. We assume that the effect of the transcriptional regulation on a directly

regulated transcript is stronger than the one of the regulation on indirectly regulated tran-

scripts, i.e. transcripts regulated through another transcription factor. Otherwise, knocking

out a single gene in a strongly connected component in a network of regulatory interactions

would cause the same rate of perturbation of the expression level of all the transcripts in

that component. As a measure of that effect we use previously calculated adjacency matrix
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Figure 4.5: The effect of refining the edges calculated by ENNET algorithm. Plot compares
ranked positions of edges in the old adjacency matrix V and in the new refined adjacency
matrix V 1 for an exemplary prediction of DREAM4 challenge 100, network #2, see Table
2.1. Lighter points are the negative edges, red points are the positive edges (true regulators).
Center of gravity of all the positive edges is a highlighted black point C. Ideally, we want
all red points to have positive change in position.

V and multiply each row of V matrix by its variance σ2
i . An updated adjacency matrix V 1

is given by Formula 4.5:

∀(i, j) : v1
i,j = σ2

i · vi,j, (4.5)

where σ2
i is a variance in i-th row of V . Note that V matrix is built column-wise, i.e.

a single column of V contains relative importance scores of all the transcription factors

averaged over all the base learners with respect to a single target transcript. On the other

hand, rows of V matrix are calculated independently in different subproblems of the pro-

posed inference method. Each row of V contains relative importance scores with respect

to a different target transcript. We reason that if a transcription factor regulates many
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target transcripts, i.e. a transcription factor is a hub node, the variance in a row of V cor-

responding to that transcription factor is inclined. In that sense it is a way of estimating

the number of target transcripts regulated by a transcription factor.

All the edges outgoing from a transcription factor, which was found to be a hub node,

are promoted, as shown in Figure 4.5. An exemplary plot was calculated for Network #2

from DREAM4 size 100 (see Table 2.1). All the edges in an adjacency matrix can be

ranked by their confidences. In such a ranking, the first edge is the one with the highest

confidence, the last edge is the one with the lowest confidence. Figure 4.5 compares the two

rankings: the one derived from V (the old ranking resulting from ENNET), and the one

derived from V 1 (the new ranking). More precisely, it shows how a change in position in a

ranking (promotion or degradation) depends on the position in the new ranking. Each edge

is represented as a point. All the edges with positive second coordinate are promoted, i.e.

their position in the new ranking is higher than in the old one. Visible "stripes" correspond

to the transcription factors (rows of V and V 1). Additionally, center of gravity of all the

true edges is depicted as point C. The first coordinate of C is an average position of a true

edge in the new ranking. The second coordinate of C is an average number of positions that

a true edge was promoted (or degraded if negative). Note that V 1 is an improvement over

V if the second coordinate of C is positive. Analyzing Figure 4.5, we observe that the most

of the true regulators have high positions in the new ranking, see the first coordinate of

the Center of Gravity point C, and that the most of the beneficial promotions, i.e. positive

changes in a position of a true positive edge, are visible a the beginning of the new ranking.

It is especially important in practical applications of the inference algorithm, because we

want to make sure that it is accurate for the top-ranked edges.
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Figure 4.6: The effect of refining the edges calculated by ENNET algorithm. Plot compares
ranked positions of edges in the old adjacency matrix V 1 and in the new adjacency matrix
V 2 for an exemplary prediction of DREAM4 challenge 100, network #2, see Table 2.1.
Lighter points are the negative edges, red points are the positive edges (true regulators).
Center of gravity of all the positive edges is a highlighted black point C.

4.4.2 Exploiting the effects of a possible regulation

In this phase we score transcription factors based on the effect of a possible regulation of

the target transcripts. Unlike in the second phase, the third phase requires additional data,

namely knockout expression data. We reason that the effect of a transcriptional regulation

on a directly regulated transcript is the easiest to capture from knockout expression data.

A similar reasoning gave foundations for the null-mutant z-score method [74] of reverse-

engineering GRN. However, in the proposed method this step is only applied if knockout

expression profiles are available. In this step we calculate an adjacency matrix V 2, which

is an update to already derived adjacency matrix V 1, as shown in Formula 4.6:

∀(i, j) : v2
i,j = |eα,j − eβ,j

σj
| · v1

i,j,

α ∈ {α : kα,j 6= 0}, β ∈ {β : kβ,j = 0},
(4.6)
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where eα,j is an average expression value of the j-th transcript in all the experiments in

which the i-th gene was knocked-out, as defined by K matrix, eβ,j is the mean expression

value for that transcript across all the other knockout experiments, and σj is the standard

deviation of the expression value of that transcript in all the knockout experiments. We

reason that | eα,j−eβ,j
σj
| coefficient shows how many standard deviations was that typical

expression of the j-th transcript different from the average expression in the experiment in

which its potential i-th transcription factor was knocked-out. Such a measure of deviation

of an observation from sample mean is called z-score in statistics. Here it serves as an

update to already calculated V 1 matrix, as shown in Figure 4.6. It is the same kind of plot

as in Figure 4.5. However this time it captures an improvement of V 2 over V 1. Both plots

were derived from results of ENNET on network #2 of DREAM4 challenge 100 benchmark.

Note that in Section 4.4.1 we calculate a single updating coefficient for the whole row of V ,

whereas here we compute a single updating coefficient for every element in V 1. That is why

the "stripes" from Figure 4.5 are no longer visible in Figure 4.6. Center of gravity point C

is above y = 0 line in both plots, which means that V 2 is an improvement over V 1, and

V 1 is an improvement over V . This phenomenon is also observed in the other benchmark

networks, which will be later discussed in Chapter 5 and 6.



Chapter 5

Results

In this chapter we quantitatively assess the performance of the proposed inference al-

gorithms, and compare them to the state-of-the-art methods on universally recognized

benchmark networks. All of the networks come from DREAM initiative, introduced in

Section 2.2. For large networks of size 100 genes and more, as examples of genome-wide

transcriptional regulation systems, we also provide Precision-Recall analysis.

5.1 DREAM3

DREAM3 (Dialogue for Reverse Engineering Assessments and Methods) GRN inference

challenge [62,63,74] consisted of 3 subchallenges: DREAM3 size 10, DREAM3 size 50, and

DREAM3 size 100. For each subchallenge, the topology of two benchmark networks were

derived from E. coli transcriptional regulatory system, whereas S. cerevisiae genetic inter-

action network gave foundations for the remaining three networks. In silico networks and

expression data were simulated using an open-source software: GeneNetWeaver (GNW).

Benchmark networks were derived as subnetworks of regulatory interactions from known

model organisms, however genes in expression data were labeled with concealed names:

G1, G2, G3, etc. In other words, the identity of genes was hidden from participants of

the challenge. This way no other sources than the knowledge learned from experimental
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Table 5.1: Results of different inference methods on DREAM3 networks, challenge size
10. Area under ROC curve (AUROC) and area under precision-recall curve (AUPR) are
given for each network respectively. Overall score for all the networks is given in the last
column, as described in Chapter 5.1. The best result for each column is in bold.
Numbers in Experimental results part of the table were collected after running the algo-
rithms with default sets of parameters on pre-processed data, as described in Section 4.2.
However, GENIE3, C3NET, CLR, MRNET, and ARACNE methods, as they are originally
defined, take MF matrix as input, which is unavailable in this challenge. Therefore they
are marked N/A.
Numbers in Winner of the challenge part of the table correspond to the best methods
participating in the challenge.

Method Network (AUPR/AUROC respectively) Overall1 2 3 4 5
Experimental results

ENNET 0.470 0.804 0.768 0.919 0.983 0.998 0.447 0.636 0.537 0.637 4.478
ADANET 0.635 0.808 0.399 0.745 0.432 0.901 0.303 0.549 0.349 0.591 2.464
GENIE3 N/A
C3NET N/A
CLR N/A

MRNET N/A
ARACNE N/A

Winner of the challenge
Yip et al. 0.710 0.928 0.713 0.912 0.897 0.949 0.541 0.747 0.627 0.714 5.124

2nd 0.544 0.794 0.748 0.856 0.771 0.944 0.352 0.590 0.493 0.715 3.821
3nd 0.193 0.697 0.377 0.791 0.468 0.909 0.332 0.554 0.388 0.658 2.188

expression data could have been used to reverse-engineer regulatory interactions. The size

of each network in DREAM3 challenge is reported in Table 2.1. The type of expression

data available in each of DREAM3 subchallenges is reported in Table 2.2.

Multifactorial data in DREAM3 size 10 subchallenge were not available, therefore GENIE3,

C3NET, CLR, MRNET, and ARACNE methods were excluded from the comparison. The

results of the other methods are summarized in Table 5.1. The best performer in this

subchallenge was Yip et al. [95] method. However, it is believed from the analysis of the

later challenges [78] that the method made a strong assumption on the Gaussian type of

measurement noise, which was used in DREAM3, but was no longer used in later DREAM

challenges. For example, in DREAM4 challenge Yip et al. method was ranked 7th. Our
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Table 5.2: Results of different inference methods on DREAM3 networks, challenge size
50. Area under ROC curve (AUROC) and area under precision-recall curve (AUPR) are
given for each network respectively. Overall score for all the networks is given in the last
column, as described in Chapter 5. The best results for each column are in bold.
Numbers in Experimental results part of the table were collected after running the algo-
rithms with default sets of parameters on pre-processed data, as described in Section 4.2.
However, GENIE3, C3NET, CLR, MRNET, and ARACNE methods, as they are originally
defined, take MF matrix as input, which is unavailable in this challenge. Therefore they
are marked N/A.
Numbers in Winner of the challenge part of the table correspond to the best method
participating in the challenge.

Method Network (AUPR/AUROC respectively) Overall1 2 3 4 5
Experimental results

ENNET 0.703 0.917 0.723 0.899 0.727 0.939 0.492 0.806 0.481 0.790 41.930
ADANET 0.024 0.599 0.020 0.627 0.032 0.558 0.052 0.566 0.050 0.472 3.241
GENIE3 N/A
C3NET N/A
CLR N/A

MRNET N/A
ARACNE N/A

Winner of the challenge
Yip et al. 0.734 0.930 0.778 0.924 0.579 0.917 0.429 0.792 0.424 0.805 39.828

2nd 0.671 0.862 0.672 0.842 0.486 0.836 0.367 0.688 0.381 0.728 31.341
3nd 0.245 0.694 0.296 0.778 0.384 0.823 0.263 0.672 0.284 0.676 17.927

proposed method ENNET achieved a competitive Overall Score and the best prediction

accuracy for two out of five networks constituting this challenge. Yip et al. method out-

performed ENNET in the remaining three networks and achieved the best Overall Score.

In DREAM3 size 50 subchallenge multifactorial data were also not available, therefore

GENIE3, C3NET, CLR, MRNET, and ARACNE methods were excluded from the com-

parison. The results of the other methods are summarized in Table 5.2. Again Yip et al.

and ENNET methods achieved the best prediction accuracy in this subchallenge. ENNET

achieved the best Overall Score and outperformed Yip et al. method for two out of five

networks constituting this challenge. Yip et al. method achieved the best prediction accu-

racy for two other networks and achieved a very competitive Overall Score, compared with
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Table 5.3: Results of different inference methods on DREAM3 networks, challenge size
100. Area under ROC curve (AUROC) and area under precision-recall curve (AUPR) are
given for each network respectively. Overall score for all the networks is given in the last
column, as described in Chapter 5. The best results for each column are in bold.
Numbers in Experimental results part of the table were collected after running the algo-
rithms with default sets of parameters on pre-processed data, as described in Section 4.2.
However, GENIE3, C3NET, CLR, MRNET, and ARACNE methods, as they are originally
defined, take MF matrix as input, which is unavailable in this challenge. Therefore they
are marked N/A.
Numbers in Winner of the challenge part of the table correspond to the best method par-
ticipating in the challenge. Yip et al. method achieved overall score of infinity, details are
given in Section 2.3.

Method Network (AUPR/AUROC respectively) Overall1 2 3 4 5
Experimental results

ENNET 0.627 0.901 0.865 0.963 0.568 0.892 0.522 0.842 0.384 0.765 >300
ADANET 0.288 0.753 0.415 0.829 0.223 0.733 0.257 0.709 0.214 0.677 57.059
GENIE3 N/A
C3NET N/A
CLR N/A

MRNET N/A
ARACNE N/A

Winner of the challenge
Yip et al. 0.694 0.948 0.806 0.960 0.493 0.915 0.469 0.856 0.433 0.783 >300

2nd 0.209 0.854 0.249 0.845 0.184 0.783 0.192 0.750 0.161 0.667 45.443
3nd 0.132 0.835 0.154 0.879 0.189 0.839 0.179 0.738 0.164 0.667 42.240

ENNET algorithm. On the other hand, ADANET algorithm did not calculate accurate

predictions in this subchallenge.

Similar outcomes could be observed with respect to the biggest DREAM3 subchallenge:

DREAM3 size 100. Again, multifactorial data were not available, therefore GENIE3,

C3NET, CLR, MRNET, and ARACNE methods were excluded from the comparison. The

results of the other methods are summarized in Table 5.3. Yip et al. and ENNET methods

achieved the best Overall Scores for that subchallenge. The two methods achieved the best

scores for all the individual networks in that subchallenge: Yip et al. method achieved 6

of them, ENNET achieved the remaining 4 scores. Moreover, both methods were evalu-
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ated with the Overall Score of infinity, which indicates that they achieved the individual

p-value lower than the smallest positive real number available for the authors of DREAM3

challenge (see Section 2.3 for details), for at least one network in that subchallenge, which

is a remarkable result, especially for a moderately large network of 100 genes like the ones

in DREAM3 size 100 subchallenge.

5.2 DREAM4

DREAM4 challenge [62,63,74] was posted one year after DREAM3 challenge. It consisted

of 3 subchallenges: DREAM4 size 10, DREAM4 size 100, and DREAM4 size 100 multifac-

torial. For each subchallenge, the topology of the benchmark networks were derived from

E. coli and S. cerevisiae transcriptional regulatory system. The size of each network in

DREAM3 challenge is reported in Table 2.1. The type of expression data available in each

of DREAM3 subchallenges is reported in Table 2.2.

In DREAM4 size 10 subchallenge all the data types listed in Table 2.2 were available,

therefore GENIE3, C3NET, CLR, MRNET, and ARACNE methods were included in the

comparison, and run as originally designed on multifactorial data. The results of all the

methods are summarized in Table 5.4. Both ADANET and ENNET algorithms outper-

formed GENIE3 algorithm and MI algorithms: C3NET, CLR, MRNET, and ARACNE.

It is especially interesting to compare GENIE3 with ENNET, which both work based on

a similar principle of solving gene selection problem using ensemble of regression trees.

However, by design ENNET uses all available expression data, whereas GENIE3 only takes

multifactorial data as input. Therefore ENNET method is able to build regression models

supported by a greater amount of available data.
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Table 5.4: Results of different inference methods on DREAM4 networks, challenge size
10. Area under ROC curve (AUROC) and area under precision-recall curve (AUPR) are
given for each network respectively. Overall score for all the networks is given in the last
column, as described in Chapter 5. The best results for each column are in bold.
Numbers in Experimental results part of the table were collected after running the algo-
rithms with default sets of parameters on pre-processed data, as described in Section 4.2.
Numbers in Winner of the challenge part of the table correspond to the best method
participating in the challenge.

Method Network (AUPR/AUROC respectively) Overall1 2 3 4 5
Experimental results

ENNET 0.669 0.832 0.220 0.593 0.703 0.843 0.744 0.904 0.554 0.786 4.145
ADANET 0.509 0.823 0.534 0.728 0.641 0.771 0.617 0.826 0.545 0.769 3.894
GENIE3 0.304 0.676 0.492 0.697 0.312 0.626 0.187 0.363 0.269 0.718 1.593
C3NET 0.458 0.644 0.304 0.637 0.202 0.551 0.186 0.584 0.171 0.519 1.075
CLR 0.276 0.613 0.413 0.712 0.257 0.650 0.221 0.501 0.343 0.662 1.462

MRNET 0.379 0.577 0.404 0.747 0.290 0.691 0.226 0.549 0.293 0.693 1.690
ARACNE 0.434 0.651 0.399 0.733 0.255 0.611 0.231 0.553 0.291 0.635 1.602

Winner of the challenge
1st 0.916 0.972 0.547 0.841 0.968 0.990 0.852 0.954 0.761 0.928 7.127
2nd 0.881 0.967 0.382 0.796 0.682 0.916 0.698 0.902 0.424 0.822 5.290
3rd 0.623 0.864 0.301 0.567 0.646 0.824 0.693 0.820 0.673 0.776 3.968

In DREAM4 size 100 subchallenge all the data types listed in Table 2.2 were available

except from multifactorial, therefore GENIE3, C3NET, CLR, MRNET, and ARACNE

methods were excluded from the comparison. The results of all the methods are summa-

rized in Table 5.5. ENNET clearly outperformed all the others and achieved consistently

high scores across all the benchmark networks.

In DREAM4 size 100 multifactorial challenge only multifactorial data were available, there-

fore GENIE3, C3NET, CLR, MRNET, and ARACNE methods were included in the com-

parison, and run as originally designed. However, without knockout expression data refining

the edges as described in Section 4.4.2 could not be applied. The results of all the methods

are summarized in Table 5.6. ADANET and GENIE3 methods performed similarly but

ENNET ennet algorithm significantly outperformed them in this comparison. Note that
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Table 5.5: Results of different inference methods on DREAM4 networks, challenge size
100. Area under ROC curve (AUROC) and area under precision-recall curve (AUPR) are
given for each network respectively. Overall score for all the networks is given in the last
column, as described in Chapter 5. The best results for each column are in bold.
Numbers in Experimental results part of the table were collected after running the algo-
rithms with default sets of parameters on pre-processed data, as described in Section 4.2.
However, GENIE3, C3NET, CLR, MRNET, and ARACNE methods, as they are originally
defined, take MF matrix as input, which is unavailable in this challenge. Therefore they
are marked N/A.
Numbers in Winner of the challenge part of the table correspond to the best method
participating in the challenge.

Method Network (AUPR/AUROC respectively) Overall1 2 3 4 5
Experimental results

ENNET 0.604 0.893 0.456 0.856 0.421 0.865 0.506 0.878 0.264 0.828 87.738
ADANET 0.441 0.811 0.146 0.648 0.086 0.643 0.065 0.633 0.064 0.645 25.913
GENIE3 N/A
C3NET N/A
CLR N/A

MRNET N/A
ARACNE N/A

Winner of the challenge
Pinna et al. 0.536 0.914 0.377 0.801 0.390 0.833 0.349 0.842 0.213 0.759 71.589

2nd 0.512 0.908 0.396 0.797 0.380 0.829 0.372 0.844 0.178 0.763 71.297
3rd 0.490 0.870 0.327 0.773 0.326 0.844 0.400 0.827 0.159 0.758 64.715

GENIE3 is listed in Table 5.6 twice: once in Experimental results part, and once in Winner

of the challenge part. This is because the evaluation of the results achieved by the creators

of GENIE3 algorithm were published as well as the source code of the method. Results

from the first part of the table come from an experimental run of GENIE3 method and

match with results achieved in the actual challenge by the authors. ENNET achieved the

best scores for almost all the individual networks.

5.3 DREAM5

Unlike the other DREAM challenges described in this chapter, DREAM5 [61] was not di-

vided into subchallenges. The 3 benchmark networks in DREAM5 were each of a different
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Table 5.6: Results of different inference methods on DREAM4 networks, challenge size
100 multifactorial. Area under ROC curve (AUROC) and area under precision-recall curve
(AUPR) are given for each network respectively. Overall score for all the networks is given
in the last column, as described in Chapter 5. The best results for each column are in bold.
Numbers in Experimental results part of the table were collected after running the algo-
rithms with default sets of parameters on pre-processed data, as described in Section 4.2.
Numbers in Winner of competition part of the table correspond to the best method par-
ticipating in the challenge.

Method Network (AUPR/AUROC respectively) Overall1 2 3 4 5
Experimental results

ENNET 0.184 0.731 0.261 0.807 0.289 0.813 0.291 0.822 0.286 0.829 52.839
ADANET 0.125 0.659 0.205 0.709 0.207 0.739 0.225 0.750 0.255 0.740 36.464
GENIE3 0.158 0.747 0.154 0.726 0.232 0.777 0.210 0.795 0.204 0.792 37.669
C3NET 0.077 0.562 0.095 0.588 0.126 0.621 0.113 0.687 0.110 0.607 15.015
CLR 0.142 0.695 0.118 0.700 0.178 0.746 0.174 0.748 0.174 0.722 28.806

MRNET 0.138 0.679 0.128 0.698 0.204 0.755 0.178 0.748 0.187 0.725 30.259
ARACNE 0.123 0.606 0.102 0.603 0.192 0.686 0.159 0.713 0.166 0.659 22.744

Winner of the challenge
GENIE3 0.154 0.745 0.155 0.733 0.231 0.775 0.208 0.791 0.197 0.798 37.428

2nd 0.108 0.739 0.147 0.694 0.185 0.748 0.161 0.736 0.111 0.745 28.165
3rd 0.140 0.658 0.098 0.626 0.215 0.717 0.201 0.693 0.194 0.719 27.053

size, and structured with respect to the other model organism. However, this time expres-

sion data of only one network was simulated in silico, the two other sets of expression data

were measured in real experiments in vivo. Like in all DREAM challenges, in silico expres-

sion data were simulated using open-source GeneNetWeaver simulator [63]. Additionally,

a set of decoy genes (around 5% of the compendium) were introduced to a list of genes by

randomly selecting gene expression values from the compendium. Moreover, this was the

first DREAM challenge where participants were asked to infer GRNs on a genomic scale,

i.e. the size of networks reflected a real-life size of biological networks: thousands of target

genes, and hundreds of known transcription factors, see Table 2.1. In addition to the gene

expression data, descriptive features were supplied for each microarray experiment. Based

on that additional information participants could determine if a specific sample was part

of a gene deletion experiment, or time series experiment. In other words, with the use of

an additional meta-data, participants could build WT , KO, KD, MF , and TS matrices.
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Table 5.7: Results of different inference methods on DREAM5 networks. Area under ROC
curve (AUROC) and area under precision-recall curve (AUPR) are given for each network
respectively. Overall score for all the networks is given in the last column, as described in
Chapter 5.3. The best results for each column are in bold.
Numbers in Experimental results part of the table were collected after running the algo-
rithms with default sets of parameters on pre-processed data, as described in Section 4.2.
Numbers in Winner of the challenge part of the table correspond to the best method
participating in the challenge.

Method Network (AUPR/AUROC respectively) Overall1 3 4
Experimental results

ENNET 0.423 0.867 0.069 0.642 0.021 0.532 >300
ADANET 0.263 0.760 0.064 0.596 0.019 0.512 18.716
GENIE3 0.291 0.814 0.094 0.619 0.021 0.517 40.335
C3NET 0.080 0.529 0.026 0.506 0.018 0.501 0.000
CLR 0.217 0.666 0.050 0.538 0.019 0.505 4.928

MRNET 0.194 0.668 0.041 0.525 0.018 0.501 2.534
ARACNE 0.099 0.545 0.029 0.512 0.017 0.500 0.000

Winner of the challenge
GENIE3 0.291 0.815 0.093 0.617 0.021 0.518 40.279

2nd 0.245 0.780 0.119 0.671 0.022 0.519 34.023
3rd 0.301 0.782 0.069 0.595 0.020 0.517 31.099

Additionally, a list of known transcription factors were provided together with expression

data. This could help participants to narrow the range of possible regulatory interactions.

A similar form of anonymization like in the other DREAM challenges was used: all genes

were assigned arbitrary identifiers.

Only expression data for the first network in DREAM5 challenge were generated in silico.

The second network was originally designed to represent a compendium of microarray data

from S. aureus. However, eventually it was not used for evaluation and no gold standard

was constructed. The third network represented a compendium of microarray data from

E. coli. A list of known transcription factors was obtained from two sources: RegulonDB

database [40], and Gene Ontology (GO) annotations [5]. The last network represented a

compendium of microarray data from S. cerevisiae. A list of known transcription factors

was obtained from [99] and Gene Ontology annotations. Despite all the effort in construct-
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Table 5.8: Precision of ADANET and the other GRN inference methods. The methods
were run on a data set described in Section 5.4. Parameters of the methods were set as
reported in Section 5.4. Precision for the best n edges is a fraction of the number of the
true edges (TP) to the number of all the best ranked n edges. Area under precision-recall
curve is denoted as AUPR. The best results for each of the columns are in bold.

Method Precision for the best n edges AUPR50 100 200 500 1000
ADANET 0.90 0.79 0.55 0.33 0.22 0.0729
GENIE3 0.80 0.68 0.56 0.33 0.22 0.0732
C3NET 0.58 0.40 0.29 0.12 0.06 0.0254
CLR 0.44 0.32 0.24 0.14 0.09 0.0275

MRNET 0.24 0.18 0.17 0.11 0.08 0.0232
ARACNE 0.26 0.17 0.13 0.09 0.05 0.0173
ADANET-L 0.88 0.75 0.56 0.33 0.22 0.0741
ADANET-XL 0.88 0.80 0.60 0.33 0.24 0.0785

ing gold standards for in vivo networks, they contain only a subset of the true interactions,

e.g. they may contain many false negatives (FN). Therefore, predicted interactions that are

not part of the gold standard can be either truly incorrect or newly discovered interactions,

as described in Section 2.2.

The results of all the inference methods for DREAM5 expression data are summarized

in Table 5.7. Clearly all the participating methods achieved better scores for an in silico

network than for either one of in vivo networks. ENNET achieved overall score of infinity

for this challenge, which is a good result with respect to the in silico network, which was

modeled in a genome-wide scale. It means that for that network the proposed methods

achieved p-value lower than the smallest positive real number available for our computer

architecture, which is 2.2251e-308. However, none of the proposed inference algorithms nor

the other reviewed methods did give accurate predictions for in vivo networks. The results

were especially disappointing with respect to S. cerevisiae.
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5.4 Expression profiles of E. coli

We applied ADANET to expression data from E. coli. From Many Microbe Microarrays

(M3D) database [28] (version 4 build 6) we downloaded a dataset containing 466 microar-

rays of 4297 genes. From [40] we downloaded manually assembled RegulonDB Release 7.4

reference network as a gold standard.

From the gold standard network we excluded all the cases, in which a gene was regu-

lating itself. Following standard practice [4, 29, 51], we identified 1443 genes with known

regulatory interactions, i.e. genes having at least one incoming or outgoing edge, and 160

transcription factors, i.e. genes having at least one outgoing edge. Considering the gold

standard, there were 2873 true edges. We bounded the domain of all possibly adjacent

genes to 160 transcription factors and 1443 regulated genes.

We limited ADANET in the problem decomposition phase, as described in Section 4.3.1,

i.e. we decomposed the GRN inference problem to 1443 feature selection problems, each of

them of size 160. We used the following parameters for ADANET: C = 30, T = d
√
P e = 13,

ψ = 0.25, ξ = 0.75, δ = 0.05, and s = 0.67, as discussed later in Section 6.1.

We compared the results of ADANET with the other GRN inference algorithms:

1. Popular Mutual Information-based (MI) network inference methods: C3NET, ARACNE,

CLR, and MRNET. We downloaded an implementation of: ARACNE, CLR, and MR-

NET from [69], and C3NET from [4]. For C3NET we created MI matrix as proposed

in [4], and set the statistical significance threshold to the default 0.01. For ARACNE,

CLR, and MRNET we created MI matrix as proposed in [69]. For ARACNE we set

the threshold used when removing an edge to the default 0.

2. GENIE3 algorithm, which was proved to work well on a synthetic dataset DREAM4
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Figure 5.1: Precision-recall dependency of ADANET and the other GRN inference algo-
rithms on E. coli expression profiles. The parameters of the methods were set as reported
in Section 5.4, that is, for ADANET, we used: C = 30, T = d

√
P e = 13, ψ = 0.25,

ξ = 0.75, δ = 0.05, and s = 0.67. The settings of the parameters are discussed in Section
6.1. Our method has precision higher by around 10% than the second best performer in the
most crucial part of the plot, where the high precision of the methods promises an accurate
inferred network.

in [51]. For E. coli dataset, as a parameter of GENIE3, we used the default Random

Forest of 1000 trees. Because ADANET and GENIE3 share the same problem de-

composition principle, we decided to limit the feature selection space for GENIE3 in

the same way as for ADANET, as described above in this section.

In Table 5.8 we show precision of ADANET, and compare it to the precision of the other

GRN inference algorithms. Because all the methods rank predicted edges, we measure

precision as a ratio of the true edges (TP) predicted by the method to the number of all

the predicted edges (TP+FP) for a given number of the best ranked edges TP+FP. Addi-

tionally, we report the area under precision-recall curve for all the methods.

We compare comprehensively the GRN inference algorithms in Figure 5.1. For each of

the method we present precision-recall curve for the most interesting part of the plot,

where recall is lower or equal than 0.1, and the high precision of the methods promises
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Overall Score of GRN inference methods by data set
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Figure 5.2: Results of the different inference methods on DREAM challenges. Results of
the state-of-the-art methods were collected after running the algorithms with the default
sets of parameters on pre-processed data. Results in the "Winner of the challenge" part of
the figure correspond to the best methods participating in the challenge.

an accurate inferred network. In the most crucial part of the plot, from a practical point

of view, our method has precision higher by around 10% than the second best performer.

From Table 5.8, and Figure 5.1, we observe a high precision of ADANET, relatively to the

other methods.

5.5 Analysis of Results for Large Regulatory Networks

We assessed the performance of the proposed inference algorithms: ENNET and ADANET

on large Gene Regulatory Networks of 100 and more genes, and compared them to the state-

of-the-art methods in Figure 5.2. We summarize the results of running different inference
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Figure 5.3: Precision-Recall dependency of different inference methods on DREAM3 net-
works, challenge size 100. Each of the benchmark networks consists of 100 genes, as shown
in Table 2.1. Participating methods are described in details in Section 4.3. Methods, which
do not accept input expression profiles other than MF table, as described in Section 2.4,
are excluded from the comparison. Validation based on Precision-Recall curve is described
in Section 2.3. Methods from the "Winner of the challenge" part of Figure 5.2 are excluded
from this comparison due to the fact that Precision-Recall dependency of these method
was not published.

methods presented above in Tables 5.3, 5.5, 5.6, 5.7. For a comparison we selected a range

of established methods from the literature: ARACNE, CLR, and MRNET as implemented

in the minet R package [69], GENIE3 and C3NET as implemented by their respective

authors, and the top three performers in each of the three DREAM challenges as listed on

the DREAM web site. Some of the methods were designed for use with knockout data,

while others were developed with multifactorial data in mind, where no information was

given about the nature of the perturbations. Therefore, depending on the type of the data

available in the particular DREAM data set, only the suitable group of methods was used

for the comparison. Note that methods in the "Winner of the challenge" part of Figure 5.2

correspond to different inference methods, e.g., the "1ST PLACE" method in DREAM 3
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Figure 5.4: Precision-recall dependency of different inference methods on DREAM4 net-
works, challenge size 100. Each of the benchmark networks consists of 100 genes, as shown
in Table 2.1. Participating methods are described in details in Section 4.3. Methods, which
do not accept input expression profiles other than MF table, as described in Section 2.4,
are excluded from the comparison. Validation based on Precision-Recall curve is described
in Section 2.3. Methods from the "Winner of the challenge" part of Figure 5.2 are excluded
from this comparison due to the fact that Precision-Recall dependency of these method
was not published.

size 100 challenge was different than the "1ST PLACE" method in DREAM 5 challenge.

Our proposed algorithm ENNET was the only one that performed robustly across all the

large networks.

Precision-Recall dependencies of the inference methods ENNET and ADANET for DREAM

3 size 100 and DREAM 4 size 100 are presented in Figures 5.3 and 5.4, respectively. EN-

NET algorithm calculated consistently better predictions than ADANET both for DREAM

3 size 100 and for DREAM 4 size 100 challenges. ENNET achieved both higher area under

the curve, see Table 5.3 and 5.5, and a favorable shape of the plot, i.e. from the practical

point of view a rapid drop in Precision for a higher values of Recall is proffered over a

steady drop of Precision in the full range of Recall. Note that only methods that accept
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Figure 5.5: Precision-recall dependency of different inference methods on DREAM4 net-
works, challenge size 100 multifactorial. Each of the benchmark networks consists of 100
genes, as shown in Table 2.1. Participating methods are described in details in Sections
2.1 and 4.3. Validation based on Precision-Recall curve is described in Section 2.3.

expression profiles different than MF table, as described in Section 2.4, were included in

this comparison.

Precision-Recall dependency of the inference methods, with respect to DREAM4 size 100

multifactorial challenge, is presented in Figure 5.5. Because MF table was available for

this challenge, see Section 2.4, all the methods discussed previously were included in the

comparison. However, refining the edges in ENNET and ADANET, as described in Section

4.4.2 could not be applied, since knockout data were not available. Methods which exploit
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Figure 5.6: Precision-recall dependency of different inference methods on DREAM5 net-
works. Each of the benchmark networks consists of different number of known transcription
factors and regulated genes, as shown in Table 2.1. Participating methods are described in
details in Sections 2.1 and 4.3. Validation based on Precision-Recall curve is described in
Section 2.3. Note that for Network 3 only Recall ∈ (0, 0.1) part of the plot is shown, and
for Network 4 only Recall ∈ (0, 0.01). Prediction accuracy for these two in vivo networks
is poor.

variance of the edge predictions achieved favorable trajectory of Precision-Recall curve over

the competitors. However, due to the lack expression profiles of known initial perturbation

state, i.e. knockout or knockdown data, neither of the methods achieved accuracy as high

as in the DREAM4 size 100 challenge.

Precision-recall dependency of the inference methods, with respect to DREAM5 challenge,

is presented in Figure 5.6. None of the methods calculated an accurate prediction of Net-

works 3 and 4, i.e. networks from expression profiles collected in vivo from E. coli and S.

cerevisiae organisms. Clearly, GENIE3 method calculated the best prediction for E. coli

organism. However, reverse-engineering gene networks for eukaryotes, such as S. cerevisiae,

becomes a challenge for all the methods described in this study.



Chapter 6

Discussion

In this chapter we discuss the results that we achieved on benchmark data sets, as well

as the general properties of our proposed methods. First, we present the default set of

parameters of ADANET algorithm, and show its computational complexity. Later, we

discuss the same aspects of ENNET. Moreover, we discuss important aspects of the analysis

of a Precision-Recall dependency of our inference models.

6.1 Setting parameters of ADANET

The accuracy of ADANET algorithm might depend on a set of parameters for a given data

set. In this section we discuss the importance of the parameters controlling ADANET,

running the algorithm on a data set described in Section 5.4. There are the following pa-

rameters to set: C ∈ N, T ∈ N, ψ ∈ [0, 1], ξ ∈ [0, 1], δ ∈ [0, 1], and s ∈ [0, 1].

In Figure 6.1 we show how the accuracy of ADANET depends on a choice of the num-

ber of classification problems C, and the number of importance scores T , which together

control the number of iterations of the main loop of ADANET. The accuracy is signifi-

cantly decreased for low ranges of iterations: (C, T ) ∈ [1, 10]× [1, 10], and reaches maximal

values, and flats out in a range of (C, T ) ∈ [30, 100]× [15, 30]. However, an interesting fact
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Figure 6.1: Precision of ADANET with respect to parameters C, and T . Precision was
measured for the top ranked 100 edges, as described in Section 5.4. Other parameters set
to: ψ = 0.25, ξ = 0.75, δ = 0.05, s = 0.67.

is worth noticing, that for any number of classification problems C, the accuracy does not

seem to decrease in function of T , i.e. the algorithm does not overtrain, which is a common

observation when applying AdaBoost meta-classifier to classification problems.

For further analysis, we selected three sets of parameters with increasing C, and T : the

default number of iterations, denoted simply as ADANET: C = 30, T = 13, elevated

number of iterations, denoted as ADANET-L: C = 60, T = 16, and high number of iter-

ations, denoted as ADANET-XL: C = 100, T = 30. The rest of the parameters were set

to: ψ = 0.25, ξ = 0.75, δ = 0.05, and s = 0.67. In Table 5.8 we report the precision of

ADANET for all the three sets of parameters, as well as the area under precision-recall

curve. Moreover, in Figure 6.2 we show precision-recall curves, which we obtained running

ADANET for all the three sets of parameters, for recall lower or equal than 0.1. We do

not observe a substantial improvement in accuracy for increasing number of iterations of

the main loop of ADANET. However, especially for higher values of recall, for the elevated
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Figure 6.2: Precision-recall dependency of ADANET with respect to different parameters
C, and T . ADANET: C = 30, T = 13, ADANET-L: C = 60, T = 16, ADANET-XL:
C = 100, T = 30. Other parameters set to: ψ = 0.25, ξ = 0.75, δ = 0.05, s = 0.67.

and high values of parameters C, and T , we observe a slight improvement in the precision

of ADANET, which also reflects in a higher area under precision-recall curve.

In Figure 6.3 we show how the accuracy of ADANET depends on parameters ψ, and ξ.

Maximal accuracy is reached for parameters ψ and ξ skewed towards medium and high

ranges of expression values, i.e. (ψ, ξ) ∈ [0.3, 0.5] × [0.7, 0.8]. The diagonal of the map

again indicates that, for our method, the variability in medium and high ranges of expres-

sion values is the most informative.

In Figure 6.4 we show how the accuracy of ADANET depends on a margin width δ, and
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Figure 6.3: Precision of ADANET with respect to parameters ψ, and ξ. Precision was
measured for the top ranked 100 edges, as described in Section 5.4. Other parameters set
to: C = 30, T = 13, δ = 0.05, s = 0.67.

sampling rate s. The best accuracy is achieved for low δ, and high s. This allows the

algorithm to operate on higher number of training samples in each iteration.

With regard to the above results, we recommend using the following default set of param-

eters for ADANET: C ≥ 30, T ≥ d
√
P e, ψ = 0.25, ξ = 0.75, s = 0.67, and δ = 0.05.

6.2 Computational Complexity of ADANET

In this section we present computational complexity of ADANET and compare it to the

other GRN inference methods in Table 6.1.
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Figure 6.4: Precision of ADANET with respect to parameters δ, and s. Precision was
measured for the top ranked 100 edges, as described in Section 5.4. Other parameters set
to: C = 30, T = 13, ψ = 0.25, ξ = 0.75.

We sort E with complexity O(PN logN), and call P times Algorithm 3. In Algorithm 3 we

call C times Algorithm 4. Therefore, the computational complexity of ADANET depends

mainly on the computational complexity of Algorithm 4. In Algorithm 4 we call T times

Decision Stump algorithm. Given sorted input, Decision Stump algorithm is O(PN) com-

plex. The computational complexity of the whole method is thus O(PN logN +CTP 2N).

Because, in practice, the dominating part of the sum is CTP 2N , we finally report compu-

tational complexity of ADANET as O(CTP 2N).

With our MATLAB implementation of ADANET, it took 56 minutes to infer the net-

work using the default parameters described in Section 5.4. It is around 5 times faster than
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Table 6.1: Computational complexity of ADANET and the other GRN inference methods.
Running times were measured for the network described in Section 5.4, on a 16GB RAM,
Intel R©CoreTMi7-870 Processor (8M Cache, 2.93GHz) computer.

Method Complexity Running time

ENNET O(TP 2N) 113 min
T = 5000

ADANET O(CTP 2N) 56 min
C = 30, T = d

√
P e

GENIE3 O(TKPN logN) 4h 55min
T = 1000, K = d

√
P e

C3NET O(P 2) 7 sec
CLR O(P 2) 7 sec

MRNET O(fP 2), f ∈ [1, P ] 25 sec
ARACNE O(P 3) 13 sec

the other machine learning-based method we tested, GENIE3, with default parameters.

Execution time was measured on a computer described in Table 6.1. Our implementation

of ADANET was serial, i.e. we used only a single processor in runtime. However, be-

cause the gene selection problems are independent of each other, it is feasible to implement

efficient parallel code of ADANET.

6.3 Setting parameters of ENNET

ENNET algorithm is controlled by four parameters: the two sampling rates ss and sf , the

number of iterations T and the learning rate ν. The sampling rate of samples ss and the

sampling rate of transcription factors sf govern the level of randomness when selecting

rows and columns of the expression matrix to fit a regression model, respectively. The

default choice of the value of ss is 1, e.g. we select with replacement a bootstrap sample

of observations of the same size as an original training set at each iteration. Because some

observations are selected more than once, around 0.37 of random training samples are out of

bag in each iteration. It is more difficult to choose an optimal value of sf , which governs how

many transcription factors are used to fit each base learner. Setting this parameter to a low
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Figure 6.5: The analysis of the sampling rates ss and sf for the DREAM 4 size
100 challenge. A: For each set of parameters (ss, sf ,M, ν) ∈ {0.1, 0.3, 0.5, 0.7, 1} ×
{0.1, 0.3, 0.5, 0.7, 1} × {5000} × {0.001} we analyzed an average 5-fold cross-validated loss
over all the observations (across all gene selection problems) from all 5 networks. The
minimal average loss was achieved for high values of ss = 1 and low values of sf = 0.3. B:
We also compared the measure based on an average loss with the original Overall Score, as
proposed by the authors of the DREAM challenge. The results were consistent across the
two measures, e.g. a selection of parameters, which gave a low average loss, led to accurate
network predictions (a high Overall Score).

value forces ENNET to score transcription factors, even if their improvement criterion, as

shown in Formula 4.4, would not have promoted them in a pure greedy search, e.g. sf = 1.

However, if a chance of selecting a true transcription factor as a feature is too low, ENNET

will suffer from selecting random genes as true regulators. Even though reverse-engineering

of GRNs does not explicitly target a problem of predicting gene expression, we choose the

values of sampling rates such that the squared-error loss of a prediction of the target gene

expression as given by fT (see Figure 4.4) is minimal. This is done without looking at

the ground truth of regulatory connections. For each benchmark challenge we performed a

grid search over (ss, sf ) ∈ {0.1, 0.3, 0.5, 0.7, 1} × {0.1, 0.3, 0.5, 0.7, 1} with fixed ν = 0.001,

T = 5000. For each specific set of parameters we analyzed an average 5-fold cross-validated

loss over all the observations (across all gene selection problems). We further analyze our
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Figure 6.6: The analysis of the sampling rates ss and sf for DREAM 4 size 100 challenge.
A: For each set of parameters (ss, sf ,M, ν) ∈ {0.1, 0.3, 0.5, 0.7, 1} × {0.1, 0.3, 0.5, 0.7, 1} ×
{5000}×{0.001} we analyzed an area under the Precision-Recall curve (AUPR) in function
of an average 5-fold cross-validated loss over all the observations (across all gene selection
problems) from all 5 networks. For each network AUPR is decreasing in a function of a
loss. For each network a point corresponding to the default set of parameters is highlighted,
e.g. (ss, sf ,M, ν) = (1, 0.3, 5000, 0.001) . Usually, the default set of parameters gives the
minimal loss (maximal AUPR). B: By analogy, different choices of parameters lead to a
different area under the ROC curve (AUROC). The two measures are consistent with each
other.

approach with respect to one of the challenges: DREAM4 size 100, as shown in Figure 6.5.

The minimal average loss was achieved for ss = 1 and sf = 0.3, which is consistent with the

default parameters proposed for Random Forest algorithm [51], see Figure 6.5 A. We also

compared the measure based on an average loss with the original Overall Score, as proposed

by the authors of DREAM challenge. The results were consistent across the two measures,

e.g. a selection of parameters that gave a low average loss led to the accurate network

predictions, see Figure 6.5 B. An advantage of the average loss measure is a fact that the

gold standard network is not used to tune parameters. In Figure 6.6 we present a detailed

analysis of the accuracy of the GRN inference across different networks of a DREAM4 size

100 challenge. Each point on both Figure 6.6 A and Figure 6.6 B is a result of running

ENNET with different parameters: (ss, sf ) ∈ {0.1, 0.3, 0.5, 0.7, 1} × {0.1, 0.3, 0.5, 0.7, 1}

with fixed ν = 0.001, T = 5000. The highlighted points are corresponding to ss = 1,

sf = 0.3, ν = 0.001, T = 5000. An area under the Precision-Recall curve and an area

under the ROC curve are two different measures of the accuracy of an inferred network,
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Figure 6.7: The analysis of the number of iterations T and the shrinkage factor ν for
DREAM 4 size 100 challenge. These two parameters are closely coupled: the lower is the
shrinkage parameter ν, the more iterations T are needed to train the model such that it
achieves the minimal loss.

which are well preserved across the five networks: for each separate network we observe

that AUPR and AUROC decreases in a function of an average loss. As the Overall Score

is closely related to AUPR and AUROC, the results shown in Figure 6.6 explain the shape

of a surface shown in Figure 6.5. As ENNET uses boosting, it needs a careful tuning of the

number of iterations T and the learning rate ν. It has been shown [37] that parameters T

and ν are closely coupled. Usually the best prediction results are achieved when ν is fixed to

a small positive number, e.g. ν ≤ 0.001, and the optimal value of T is found in a process of

cross-validation. As described above, we reason that the choice of parameters, which gives

a low average loss on a cross-validated test set, leads to an accurate network prediction.

Therefore in Figure 6.7 we present how an average loss depends on T ∈ {1, ..., 5000} for

different values of ν ∈ {0.001, 0.005, 0.01, 0.05, 0.1}, with fixed ss = 1, sf = 0.3. Each

of the line shows how much ENNET overtrains the data for a given T and ν. Finally,
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the optimal choice of parameters for DREAM4 size 100 challenge is ss = 1, sf = 0.3,

T = 5000, ν = 0.001. Following the same practice, we used this default set of parameters:

ss = 1, sf = 0.3, T = 5000, ν = 0.001 to evaluate ENNET algorithm on all the benchmark

networks using ground truth, e.g. for calculating the Overall Score and comparing it to the

other algorithms.

6.4 Computational complexity of ENNET

Computational complexity of ENNET depends mainly on the computational complexity

of the regression stump base learner, which is used in the main loop of the algorithm. As

shown in Figure 4.4, we call the regression stump algorithm T times for each k-th target

gene, k ∈ {1, ..., P}. Given a sorted input, a regression stump is O(PN) complex. We sort

the expression matrix in an O(PN logN) time. All the other instructions in the main loop

of ENNET are at most O(N). The computational complexity of the whole method is thus

O(PN logN + TP 2N + TPN). Because, in practice, the dominating part of the sum is

TP 2N , we report a final computational complexity of ENNET as O(TP 2N), and compare

it to the other inference methods in Table 6.1. Note that the measure for the information-

theoretic methods: CLR, MRNET, and ARACNE does not include a calculation of the

mutual information matrix.

When implementing ENNET algorithm we took advantage of the fact that gene selec-

tion problems are independent of each other. Our implementation of the algorithm is able

to calculate them in parallel, given that multiple processors are available. User can choose

from variety of parallel backends including multicore package for a single computer and

parallelization based on Message Passing Interface for a cluster of computers. The biggest

data we provided as input were in vivo expression profiles of S. cerevisiae from DREAM 5

challenge. These are genome-wide expression profiles of size 5950 genes (333 of them are
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known transcription factors) and 536 experiments. It took 113 minutes and 30 seconds

to calculate the network on a standard desktop workstation with one Intel R©CoreTMi7-870

processor with 4 cores and two threads per core (in total 8 logical processors), and 16 GB

RAM. However, it took only 16 minutes and 40 seconds to calculate the same network on a

machine with four AMD OpteronTM6282 SE processors, each with 8 cores and two threads

per core (in total 64 logical processors), and 256 GB RAM. All the data sets from DREAM

3 and DREAM 4 challenges were considerably smaller, up to 100 genes. It took less than

one minute to calculate each of these networks on a desktop machine.

6.5 Stability of ENNET

Because ENNET uses random sampling of samples and features at each iteration of the

main loop, as shown in Figure 4.4, it may calculate two different networks for two differ-

ent executions. With the default choice of parameters, e.g. ss = 1, sf = 0.3, T = 5000,

ν = 0.001, we expect numerous random resamplings, and therefore we need to know if a

GRN calculated by ENNET is stable between different experiments. We applied ENNET

to the 5 networks that form DREAM 4 size 100 benchmark, repeating the inference calcu-

lations independently ten times for each network. Then, for each network, we calculated a

Spearman’s rank correlation between all pairs among the ten independent runs. The lowest

correlation coefficient we obtained was ρ > 0.975, with p-value < 2.2e− 16, indicating that

the networks that result from independent runs are very similar. This proves that ENNET,

despite being a randomized algorithm, finds a stable solution to the inference problem.
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Conclusions

We have proposed a set of methods for reverse-engineering of Gene Regulatory Networks.

They use variety of types of expression data as input, and show robust performance across

different benchmark networks. Moreover, the algorithms do not assume a specific mathe-

matical model of a regulatory interaction, e.g., a linear model, and do not require fine-tuning

of their parameters, which promises accurate predictions for the unknown networks. Also,

processing large, genome-scale expression profiles is feasible: including up to few hundreds

transcription factors, and up to few thousands regulated genes. As shown in this study, the

proposed methods compare favorably to the state-of-the-art algorithms on the universally

recognized expression data sets. However, predictions for in vivo expression profiles are

inaccurate. One of the reasons for a poor performance of the inference methods for such

expression profiles is the fact that experimentally confirmed pathways, and consequently

gold standards derived from them, can not be assumed complete, regardless of how well is

a model organism known. In other words, only a subset of the existing regulatory interac-

tions is known. On top of that, predictors struggle to process undersampled and noisy data

sets. Additionally, there are regulators of gene expression other than transcription factors,

such as miRNA, and siRNA. In other words, systems of transcriptional regulations in living

organisms could be far more sophisticated than what synthetic benchmarks assume. As
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shown in this study, in silico expression profiles provide enough information to confidently

reverse-engineer their underlying structure, whereas in vivo data hide much more complex

system of regulatory interactions.



List of Terms

ADANET ADAptive boosting of decision stump-based
gene regulatory NETwork inference algorithm

ARACNE Algorithm for the Reconstruction of Accurate
Cellular Networks

AUPR Area under Precision-Recall curve
AUROC Area under ROC curve

BN Bayesian Network

C3NET Conservative Causal Core Network
CART Classification and Regression Trees
CLR Context Likelihood of Relatedness

DNA Deoxyribonucleic Acid
DPI Data Processing Inequality
DREAM Dialogue for Reverse Engineering Assessments

and Methods

FN False Negatives
FP False Positives

GBM Gradient Boosting Machine
GENIE3 GEne Network Inference with Ensemble of

trees
GO Gene Ontology
GRN Gene Regulatory Network

KD Knockdown expression data
KO Knockout expression data

M3D Many Microbe Microarrays
MART Multiple Additive Regression Trees
MF Multifactorial expression data
MI Mutual Information
miRNA Micro RNA
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MN Markov Network
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ODE Ordinary Differential Equation
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PR Precision-Recall

RF Random Forest
RNA Ribonucleic Acid
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siRNA Small Interfering RNA

TF Transcription Factor
TN True Negatives
TP True Positives
TPR True Positive Rate
TRN Transcriptional Regulatory Network
TS Time Series expression data

WT Wildtype expression data
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