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DYNAMIC TASK-ALLOCATION FOR UNMANNED AIRCRAFT SYSTEMS
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Director: Dr. Robert H. Klenke,

Associate Professor, Department of Electrical & Computer Engineering

This dissertation addresses improvements to a consensus based task allocation

algorithms for improving the Quality of Service in multi-task and multi- agent envi-

ronments. Research in the past has led to many centralized task allocation algorithms

where a central computation unit is calculating the global optimum task allocation

solution. The centralized algorithms are plagued by creating a single point of failure

and the bandwidth needed for creating consistent and accurate situational awareness

off all agents.

This work will extend upon a widely researched decentralized task assignment

algorithm based on the consensus principle. Although many extensions have led to im-

provements of the original algorithm, there is still much opportunity for improvement

in providing sufficient and reliable task assignments in real-world dynamic conditions

and changing environments. This research addresses practical changes made to the

consensus based task allocation algorithms for improving the Quality of Service in

multi-task and multi- agent environments.
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CHAPTER 1

INTRODUCTION

This dissertation presents the research work done in the field of autonomous Un-

manned Aircraft Systems (UAS) and, in particular, collaboration amongst a set of

UAS. With the recent publishing of the first annual UAS road map for integrating

unmanned systems into the United States national airspace, it has become more-

clear how future utilization and exploitation of Unmanned Aircraft Systems can be

exercised for civil applications. A heterogeneous collaborative set of UAS, in this dis-

sertation also referred to as agents, could potentially perform an endless set of civil

duties, from search, rescue, and surveillance to law enforcement.

The UAS currently flown by the military, such as the Predator, need two oper-

ators at all times [1]. For future deployment in urban environments, the dependency

on adequate pilots for flying each UAS is not viable. Human interaction will shift

from flying the UAS to monitoring and releasing tasks to the UAS population. An-

other significant challenge is the highly dynamic environment when UAS are applied

in the national airspace and the pilots’ ability to respond and act on these changing

conditions.

The aforementioned challenges call for an increasing level of decision making

ability and autonomy for each individual UAS, and a certain synchronism amongst

the fleet. This autonomy must be executed at real-time, adapting to changes in Situ-

ational Awareness (SA). As the number of UAS grows, most task allocation and path

planning algorithms are considered to be in the category of NP-hard or NP-complete

and this presents a challenge. Collaborative research within the UAS environment
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already poses many obstacles, from the limitations of the wireless link, to the size and

weight constraints of the hardware and the implications of this on processing power

and power consumption.

Task allocation algorithms can be divided into centralized, decentralized, and

auction algorithms. Centralized algorithms have been extensively researched in the

field of controls and transpiration over the last century and include algorithms for

solving problems like the Traveling Salesman Problem or the Knapsack problem [1,

2, 3, 4]. Some of these algorithms are very powerful and can find a near optimum

solution in reasonable time.

These centralized planners are either implemented at a local server, calculating

the solution for the entire fleet, or deployed decentrally, where each agent is calcu-

lating the same solution. Some drawbacks of the central planning algorithms are the

limited mission-range and the solution being dependent on the integrity of Situational

Awareness. The centralized planner can heavily congest the communication network

by relaying huge amounts of SA data to a central processing unit (or units) to prevent

allocation conflicts and increase the performance of the solution.

Wireless network technology has made substantial progress in the last decade

with the emergence of the Wireless Local Area Network standards 802.11 g/n. Where

bandwidth of WLANs has been ever increasing, the usage of these links should be

somewhat conservative, through optimizing algorithms and limiting data communi-

cation amongst nodes in the network. This restriction is even more important when

the numbers of agents is increasing and packet collision becomes a prominent factor

in wireless transport.

The chance for packet collisions could increase even more when the system is

implemented to handle incorrect or corrupted data by performing retries. Further-

more when the complexity of the mission increases the processing power needs to

2



adequately scale in order to produce an adequate solution or to find a solution in

real-time. Lastly, the central planning algorithm deployed centrally introduces a Sin-

gle Point Of Failure (SPOF) when the either the processing unit fails or the network

link gets interrupted.
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CHAPTER 2

PROBLEM DEFINITION

The general problem of task allocation for a cooperating set of UAS can be stated as

follows: given a set of heterogeneous tasks K = {1, ..., N t}, and a set of heterogeneous

agents J = {1, ..., Nk} find a solution to the tasks and allocate the tasks amongst

the agents in the fleet while optimizing the Quality of Service (QoS) described below.

The problem researched herein can be best described as a heterogeneous multiple

depot traveling salesman problem, without the requirement to return to depot.

Tasks can be as simple as traversing a set of given waypoints to search or survey

a given area. For each task, a solution must be calculated based on the SA and the

description of the task. The task could also involve multiple steps, requiring multiple

agents with different capabilities. The solution to these tasks requires the agents to

form teams intelligently in order to provide a solution to the task.

A simple example is a search task where the objective is to find a target in a

search area and, once this target is found by an infra-red camera, a high resolution

image must be taken of the surrounding area. This task would require an agent

with an on-board infra-red camera to find the target and another agent to take a

high resolution image of its surrounding. Although many mission scenarios can be

envisioned, this research will focus on surveillance and search missions.

To optimize the task allocation problem based on QoS, it is of utmost importance

to fully describe what QoS entails in the context of this research. QoS is defined by

latency, the time between releasing a task to the set of agents and completion of the

given task. Finishing tasks early will increase the performance and efficiency of the

4



fleet of agents.

Furthermore, all tasks need to be assigned whenever possible to at least one

agent. Tasks that are able to be executed within reasonable constraints should be

allocated to an agent and be executed. Finally, the task allocation process must

reliable and stable. This can be heavily influenced by changing environments, SA,

number of agents in the fleet, and connectivity of the communications network.

In a heavily changing environment, and thus changing SA, the outcome of a task

allocation can alter significantly over time. A scenario where task allocation outcome

could change is when new agents are added to the fleet or old agents are removed

from the fleet due to health factors. The task allocation process should be stable and

continuously result in optimum solutions in this type of changing environment.

The reliability of the wireless network is a major influence on the task allocation

algorithm and thus has direct influence on the Quality of Service (QoS) provided

by the agents in the fleet. In a dynamic wireless network with multiple agents,

connectivity between agents is changing continuously and the tasks allocation process

should provide a reliable and optimized allocation of tasks in spite of the changing

communications network.

As mentioned before, environment and the health of the vehicle can greatly

influence the outcome of a mission, and should therefore be key factors in generating

solutions and allocating tasks among the fleet [5]. An agent running low on fuel should

only be allocated tasks that it can entirely execute before landing safely.

The fleet needs to be fully autonomous and should require minimal human in-

teraction for solving mission scenarios. The sole purpose of the human operator is to

dispatch tasks and monitor the health of each UAS, intervening when a potentially

dangerous situation arises. This requires the agent to be equipped with Artificial

Intelligence (AI) and algorithms to provide the robustness and QoS outlined above.
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This dissertation introduces the Asynchronous Polling Consensus-Based Bundle

Algorithm (APCBBA) for addressing the aforementioned features and provide the

outlined metrics for QoS. The algorithm is an extension of the Consensus-Based Bun-

dle Algorithm [6], but provides a more robust task allocation solution while increasing

the quality of the task allocation solution. The remainder of this dissertation includes

an extended review of related research into task allocation algorithms in Chapter 3.

Chapter 4 provides an in depth description of the APCBBA algorithm and how the

changes impact the QoS metrics. The Mission Control System is the software on-

board of the UAS enabling collobarative operation; an overview of the architecture

of the software and implementation is given in Chaper 5. A brief explanation of the

RAMS simulator can be found in Chapter 6 followed by a description of the hardware

platform in Chapter 7. A Mixed-Integer Linear Programming (MILP) reference solu-

tion is defined in Chapter 8 with validation results comparing it to solutions given by

an exhaustive search algorithm. Chapter 9 provides simulation and real-world results

of APCBBA for several QoS metrics, including results for optimality of the solution,

response time, and team formation.

6



CHAPTER 3

RELATED WORK

Central planning algorithms, as mentioned in the introduction, have been widely ap-

plied to this problem and can be executed either centrally at a single location, or

decentrally at each agent [7, 8], where each agent is calculating a total solution for

the entire fleet. This decentralized solution is heavily dependent on the consistency

of the SA across the fleet. Small differences in the SA between agents could yield

entirely different solutions to the task allocation problem and, therefore, result in

task allocation conflicts. On-going research has realized consensus strategies to re-

solve inconsistencies in the SA [9, 10, 11]. Although these methods have shown to

be effective for finding a near-optimum solution, they require a significant amount of

bandwidth to communicate and converge on a globally consistent SA. Although the

consensus ensures that the SA is consistent, it does not have to represent the true

SA. The discrepancy between the true SA and the converged SA is directly related

to the ability to find an optimum solution. In [10], consensus is not only applied to

the SA, but also to the task assignment. This introduces robustness by resolving task

conflicts and does not require a perfect convergence of the SA.

The Hungarian method for task allocation was initially described in 1955 [12]. There-

after, this method has been widely used in finding the global optimal solution in task

allocation problems. Although originally the Hungarian method was a centralized

algorithm for solving a task allocation problem, in [13] the authors have extended the

algorithm to be used in a decentralized allocation environment.

An interesting “swap-stick” algorithm is applied in [14] where agents can swap tasks

7



with neighboring agents or stick with their current allocated tasks. The algorithms

does require an initial allocation of all the tasks among all agents, which then will

apply the “swap-stick” methodology to come to a feasible and better solution. The

proposed algorithm is fully decentralized and guarantees to converge within finite-

time.

The third method for allocating tasks utilizes auction algorithms [15, 16, 17, 18]. These

algorithms can provide conflict free task assignments with near-optimum solutions.

Each agent will bid for tasks it can accomplish and the agent with the winning bid

will receive the assignment. Since the auction algorithm will ensure no conflicts exist,

convergence on the SA is unnecessary. Each agent can prepare bids for assignments

based solely on its own interpretation of the environment. Most auction algorithms

employ an auctioneer, which could be an agent or a centralized server that receives

all the bids and determines the winner of the assignment. This applies restrictions to

the network topology, as agents need to be connected to the auctioneer in order to

be part of the task allocation process.

The Consensus-Based Auction Algorithm (CBAA) and the Consensus-Based Bundle

Logarithm (CBBA) [6, 19], are auction algorithms where consensus is applied to the

winning bid list. This takes away the requisite for a specific appointed auctioneer and

provides robustness in different network topologies. CBAA is an algorithm designed

to handle one task at a time; if multiple tasks are needing to be allocated, multi-

ple iterations of the CBAA are required. CBBA, in contrast, can handle multiple

task assignments by bundling tasks together and placing bids on a bundle of tasks.

For multiple tasks, the bundling of tasks [6, 20] has shown to converge faster than

sequential auction algorithms [6, 21].

8



3.1 Auction and market-based task allocation algorithms

In auction algorithms, artificial market-based principles are used to solve the

problem of allocating tasks among a fleet of agents. In the simplest approach, there

is one auctioneer, as in [22], that introduces new tasks and oversees the bidding

process. Newly created tasks are assigned a price or granted a reward when the task

has been successfully executed. This reward, together with the task description, is

broadcast to the agents, where each agent has to determine a cost for the task. This

cost can be based on the time it takes for agent k, where k ∈ K = {1, ..., Nk} , to

execute task j ∈ T = {1, ..., N t} or it could be based on the distance the agent must

travel to execute the task. Each agent that is able to produce a cost for task j will

communicate this to the auctioneer, which in turn will assign the task to the agent

with the most profit (reward cost). Since the task gets assigned to the agent with the

largest profit at that time, the algorithm can be seen as a greedy algorithm. Greedy

algorithms are not always able to find the global optimum solution.

In the previous example it would only take one iteration through the auction algorithm

to assign a given task j. In contrast, in the method presented in [15], each agent wants

to maximize its profits, so it begins by communicating its highest price and throughout

iterations of the auction algorithm the price will be lowered until only one winner is

left with the lowest price bid for task j. This is also known as an English auction;

the same paper also researches the Dutch auction for task allocation. In this auction

algorithm, the auctioneer initially sets a price for a block of tasks and the auctioneer

will sell when agents are willing to buy. Eventually the price will be lowered on the

tasks that were not sold, and other agents will start to purchase the discounted tasks.

In [15] Hart and Craig-Hart conclude that the Dutch auction algorithm will mostly

thrive in environments with a strong heterogeneity amongst tasks and agents. In

9



Fig. 1. The marginal return for adding task C to the already existing tasks A and B

is higher than adding task D.

contrast, the English auction would be more efficient when few types of agent and or

tasks exist. As previously mentioned, the determination of a cost for task j, can be

based on distance and/or time required for agent k to complete task j. The cost can

also be calculated based on the marginal return, when task j is added to the already

existing task list for agent k.

Although the prize for task C in Fig. 1 might be lower, the marginal return is

higher for adding task C, instead of task D, to the already existing tasks A and B

for agent i. The cost of flying to task D is higher than flying to task C. This method

is known as the cheapest insertion heuristic [23] and the incremental cost will be the

cost that the auctioneer receives from agent i for task C. The auctioneer will reward

task C to the agent with the lowest incremental cost.

For simplicity, a single auctioneer was implied in the above reasoning. In [21], this

limitation is taken away so that every agent can also act as an auctioneer. Conflicts

can occur when multiple agents decide to auction the same task; consequently, this

paper implements a validation step that resolves the problem when two auctioneers

are auctioning the same task. The benefit of a decentralized auctioneer is that it will

not introduce a Single Point of Failure, but limited research exists on this topic.

A comparative study was done in [24], where a centralized, market-based, and behav-
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ioral method was used for task allocation in a multi-robot environment. In this paper,

it is again shown that centralized planners can yield an optimal solution in almost all

situations, but computation time significantly increases when adding active agents.

The behavioral method described is more of a dispatch approach, where each agent

is calculating a solution based solely on its own SA. The global cost for executing the

tasks increases with the addition of agents in the fleet. No communication is present

between the agents regarding task allocation, resulting in more allocation conflicts

with more agents driving up the global cost. The market based approach utilized in

this paper is said to outperform the central method for computation time for a fleet

of more than five agents. Furthermore, the market-based approach has near optimal

results when compared to the centralized planner.

An interesting question is analyzed in [17]- why use a competitive behavior, like an

auction algorithm, to implement a cooperative mechanism? A simple answer is that

agents are not programmed to be selfish, although this cannot be said of all the im-

plementations of the auction algorithm. As explained in the English auction [15], the

prices are incremented until each agent reaches the threshold where it either cannot

make any revenue or has won the task. This is clearly a selfish approach, but still

yields a solution to the task allocation algorithm. Another factor concerning auction

algorithms is starvation of tasks or agents. These are situations where not all tasks

get allocated to agents, or where not all agents get allocated tasks. In the under-

standing that the solution found is near optimum, the latter situation is of not much

interest, but the first must be prevented. This could be done by increasing the price

over time so older, unassigned tasks become more attractive [22].

Use of auctioneers alongside the application of the Partially Observable Markov De-

cision Process to all available tasks in an decentralized framework is shown to be

an interesting approach [25]. The task solving process is fully solved based on lo-
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cal SA using the Markov properties, although a global optimized solution cannot be

guaranteed. A similar approach is taken in [26], where the authors use a Markov

chain search process along with simulated annealing to produce a neari optimized

task allocation solution. A repeated greedy on-line auction task allocation algorithm

is analyzed in [27] and compared to the optimal off-line solution (competitive ratio).

The authors conclude that a competitive ratio of 1 can be found when the payoff for

assigning new tasks is close to uniform. Under the above stated conditions, the on-

line repeated greedy algorithm can find a close-to optimum solution. Furthermore, in

[27] the authors prove the existence of a generally accepted lower-bound competitive

ratio of 1/3 for greedy auction algorithms under certain conditions [28]. The authors

in [29] use sequential and parallel single-item auctioning and repeat the auctioning

process for the tasks (items) until completion of the task. This introduces the ability

of re-auctioning tasks that due to circumstances cannot be completed or allocating

tasks to better suited agents and thus increasing the overall task allocation solution.

In [30] the authors develop a probability model to determine the preference for a task

and an auctioning algorithm is to assign task and resolve task conflicts.

The general auction algorithm is used in [31, 32] for allocating tasks with precedence

constraints and deadlines. The use precedence- and deadline-constraints to split the

set of tasks in disjoint groups where the agents are only allowed to bid for one task

out of one particular group. The authors show through simulation that this method

gives almost optimal solutions for varying values of the minimum price increase.

3.2 Consensus algorithm for Situational Awareness

Centralized planners are very sensitive to the consistency of the SA across the

fleet. When the SA is not uniform, each agent will create different solutions to the

set of tasks, T . This can cause allocation conflicts, where several agents will target
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the same task. To converge to a consistent and true SA among a fleet of multiple

agents, K, in a real-world scenario with limited communication is not feasible. The

SA awareness of each agent is updated too frequently to enable relaying to each

agent in the fleet each time the environment changes. Consensus algorithms are used

to get a level of consistency in the state information, , of each agent in the fleet,

although this consensus state might still be inconsistent with the true SA of each

individual agent. The consensus algorithm only requires network communication

between local neighbors to reach consistent state information across the fleet of agents.

The state information for vehicle k, θk, consists of data that is relevant for the task

and allocation and execution process. For instance, the state information will hold

data regarding GPS position, velocity, and health (including fuel state) for vehicle k

[11]. The general consensus equation is formulated as

θ̇k =
Nk∑
l=1

σklGkl(θ
l − θk) (3.1)

where G is a matrix representing the communication network, having a value of

one if there is direct communication possible from agents k ∈ K to l ∈ K. σ is a

weighing matrix, determining the confidence agent k has in the state information of

agent l. A discrete version of the consensus algorithm can be implemented as

θk(t+ 1) = θ(t) +
Nk∑
l=1

σklGkl(θ
l(t)− θk(t)) (3.2)

Each time an agent receives state information from a neighboring agent, it will

execute the consensus algorithm and update its local state information. The final

consensus value is a weighted average of the initial state information of all the agents

[11]. In [9] and [33], researchers demonstrate that a global consensus can be achieved

asymptotically without communication noise and when a spanning tree can be found
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in directed graph G. Even with existing noise in the communication of the state

information, the consensus algorithm can achieve a certain level of consistency, ε.

The level of consistency is important within the cooperative control algorithms for

determining the quality of the solution and avoiding task allocation conflicts.

3.3 Consensus algorithm for task allocation

Consensus-Based Auction Algorithm (CBAA) and

Consensus-Based Bundle Algorithm (CBBA) [6] are two methods proposed by a re-

search team from Massachusetts Institute of Technology (MIT). Where consensus

before was built on the SA, these methods build consensus on a winning bid list

created by an auction algorithm. Creating consensus on the winning bid list takes

away the necessity of having any auctioneers managing the auction process. The

task-allocation problem is described in [6] as the following equation,

max
Nk∑
k=1

(
Nt∑
j=1

Ckj(X
k, pk)xkj) (3.3)

with constraints making sure that all tasks are being assigned and no task-conflict

exists. The variable Xk represents the task list for agent k, and the vector p repre-

sents an ordered sequence of the assigned tasks, creating the flight path. The decision

variable xkj is 1 when agent k has been assigned task j, otherwise, xkj is equal 0.

The summation between the parentheses is the local reward for agent k, depending

on the scoring function ckj, which in turn depends on the tasks assigned xk and the

flight path p. CBAA is a single-task assignment algorithm, which can only assign

one task at a time. When multiple tasks need to be allocated, this must be done in

sequential fashion. CBBA, on the other hand, can handle multiple tasks at a time

and will bundle tasks that together create a bigger reward. The CBAA and CBBA
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algorithms are comprised of two phases, which will be further described.

Phase 1 is the auction process, where agents bid on tasks. First, a valid task list hij is

created by comparing the highest bid value ykj for each task j with the cost/reward

function ckj, where hkj ∈ {0, 1}, and hkj will be 1 if task j for agent k has a bigger

reward ckj than the winning bid list ykj. Once the valid tasks have been determined,

the algorithm will choose the task with the maximum reward and update the winning

bid list ykj and the local task list xk. An iteration of the CBAA follows with phase 2

of the algorithm; CBBA on the other hand keeps bundling tasks.

Phase 2 is the consensus part of the algorithm, where agents try to converge to a

global consistent winning bid list yk. At each iteration of phase 2, agent k receives

the winning bid list yk from its neighbors. Agent k will scan this received list and

update its local yk with the highest bid value ykj found in the received list. If it finds

itself being outbid by another agent, it will remove the task from its local task list

xk. An adjacency matrix glk again represents a direct network connection between

agents k and l in the fleet. Consensus will only be applied for the agents where gkl

is equal to 1. Determining the point of consensus is based upon the bandwidth used

for communicating the winning bid list among agents, when communication comes to

a stop convergence has been reached, so assumed. But in a wireless imperfect com-

munication network this might not at all time be sufficient and reliable. Futhermore

significant network traffic is created to resolve all inconsistencies in the winning bid

list for a short period of time increasing with number of agents and tasks. This spike

in network traffic can further degrade task allocation reliability.

The score for a task is determined by a time-discounted reward S
Pj

j given by Eq. 3.4

and a cost based on the distance to travel for task j.

SPk
j =

∑
λ
τ jk(Pk)

j cj (3.4)
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Where λj < 1 is the discounting factor, τk is the estimated time agent k will

arrive at task j, and cj is the static reward for task j. The time-discounted reward is

penalizing tasks for being executed later where the reward diminishes with time. But

depending on λ the cost for task j could quickly outweigh the reward Sj far before

the deadline of task j and allocation of task j becomes economically not feasible.

The CBBA algorithm incorporates some major changes in the auction process. Where

CBAA could only handle a single task at a time, CBBA can construct a bundle con-

sisting of multiple tasks and send this over to the consensus-phase. Although the

CBBA results in conflict-free task allocation, it does not account for obstacles within

the path pk, possible influencing the marginal and total score for agent k. In [19],

the obstacle avoidance algorithm is implemented locally at each agent. When the

final assignments for each agent is known, the paper proposes to check for collisions

and, using Dijkstras shortest-path algorithm, add waypoints/tasks to the path list

pk, staying clear of any obstacles and no-fly zones.

Churning is described as when agent k is not able to decide which task of a set of

tasks should be added to the bundle due to sensor noise. The agent will jump between

adding task A to the bundle and, in the next iteration, task A will be abandoned and

task B will be added to the bundle. This can cause degradation of the algorithm,

and in [19] is mitigated by adding a bonus if the same task is assigned to the same

agent, resulting in a higher marginal reward than adding another task and having to

remove the already existing tasks in the list.

In [34], the above explained CBBA algorithm is extended to incorporate the ability

of handling pop-up targets and limited network communication. An extra phase is

added to the original CBBA algorithm for dealing with new tasks, which invalidates

all the values occurring after the insertion of the new task in the bundle. Further-

more, where CBBA applies consensus on all tasks in the bundle, ECBBA limits this
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to achieving consensus per task in the bundle. Although consensus is now achieved

per task, just as in the CBAA algorithm, the bundling of tasks still achieves better

overall optimization. The network communication range for applying the ECBBA

algorithm is limited to only the agents near the tasks. The authors in [34] have

observed that only agents near the task engage in the bidding process and thus the

network for applying the ECBBA algorithm can be limited in range. From simulation

they obtain a loss of 2% in optimality with limited communication compared to a full

communication network.

The functionality of the CBBA algorithm is extended in [35] by adding a reward for

executing tasks within a time window, fuel cost, and agent capability. The scoring

function for each task is also updated updated with additional factors for fuel con-

sumption, and adding penalties for executing tasks beyond their valid time window.

These factors must comply with the Diminishing Marginal Gain (DMG) property in

order to ensure convergence. Additionally, constraints are added to Eq. 3.3 to pre-

vent tasks from being executed by incapable agents. Furthermore, the paper discusses

several real-time re-planning scenarios under varying network connectivity and their

effects on the optimality of the solution.

Whereas the bundle phase of the CBBA algorithm can be fully executed asyn-

chronously on each agents with respect to the other agents in the fleet, the consensus

phase cannot. The consensus phase, due to the limitations of the de-confliction rules

in table 1 of [6], must be synchronous amongst the agents because of the necessity

of applying consensus on the latest and most up-to-date information. In [36, 37] a

fully asynchronous CBBA algorithm (ACBBA) is described, where the de-confliction

table is updated and extended to provide asynchronous consensus on the winning bid

list. Whereas the original table only described how to update the winning bid list

y and time stamp vector s, the newly proposed table also specifies which messages
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to re-broadcast and when. The ACBBA algorithm achieves similar optimality com-

pared to the original CBBA algorithm, with faster convergence and fewer messages

passed between agents. Since the ACBBA de-confliction table determines when and

how messages are being communicated among agents in the fleet, the authors in [37]

propose to determine convergence of the consensus phase based on network traffic.

The Team Consensus-Based Bundle Algorithm (TCBBA) is introduced in [38]. This

algorithm is designed to be used among static teams of agents, reducing the num-

ber of human operators to one per team. TCBBA initially allocates tasks within a

team using CBBA but then applies task sharing between teams. Two versions of the

TCBBA algorithm are discussed. In the first version, all of the teams share the tasks

that are unassigned after consensus has been reached within the team of assigned

tasks. What follows is another round of the CBBA algorithm on the complete list

of unassigned tasks. Tasks being allocated in the outer-loop of the CBBA algorithm

are inserted in the original solution. The second version of the TCBBA algorithm

performs the outer-loop CBBA algorithm on unassigned tasks as in the first version,

but instead of using the original solution it will create a completely new solution.

The original CBAA algorithm proposes allocating all tasks before executing the as-

signed tasks. Das et al. [39] describe executing the assigned tasks in parallel with run-

ning their version of the CBAA algorithm. This effectively handles dynamic changes

in the environment, causing differing optimal assignments of the tasks among the fleet

of agents.

In [40] the authors focus on extending the CBBA algorithm to incorporate priority

tasks. A third phase is added to the original two phases of the CBBA algorithm

to resize the initial overloaded bundle of tasks to the capacity of the agent, while

maintaining the allocation of priority tasks. Furthermore, the authors increase the

score of priority tasks by weights and biases so they outbid non-priority tasks.
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CHAPTER 4

ASYNCHRONOUS POLLING

CONSENSUS-BASED BUNDLE

ALGORITHM

In order to address the issues regarding determining the point of consensus, the cost

outweighing the reward, the network bandwidth spikes, and statically forming teams

as discusssed above, the Asynchronous Polling Consensus Based Bundle Algorithm

(APCBBA) has been developed. Furthermore the APCBBA algorithm has several

updates regarding the problem definition outlined in Chapter 2. These improvements

include an updated score function, a polling strategy to request the winning bid list

from neighboring agents and dynamic team forming. The changes to the scoring

function are designed to increase the percentage of allocated tasks among the agents,

prevent starvation of tasks, and increase the quality of the solution. Requesting

the winning bid list from neighboring agents provides a means to easily determine

consensus among the set of agents K = {1, ...Nk} and introduces new features for

determining consensus. Team forming of agents creates independently working units

able to accomplish otherwise not possible tasks or to more efficiently execute tasks.

Imperative to the task allocation problem is the centralized objective function in Eq.

4.1, which strives to maximize the score Skj (P k) over all the agents K and for all the

tasks T = {1, ...N t}.
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max
∑
k

∑
j

Skj (P k) j ∈ T, k ∈ K (4.1)

(4.2)

Where P k is an ordered set of tasks starting based on the scheduled starting time

tkj (P
k).

4.1 Scoring function

One important measure of QoS is the response time from the time the task is

released to the agents to the time when the task is scheduled, in order to reduce

this response time, a time-discounted reward is applied to each task. This means

the reward for a given task will be reduced when a task is scheduled later in time.

A potential problem with the time-discounted reward function is starvation of tasks

caused by the reward being reduced to a value below the task’s cost far before the

deadline of the task. As in [6], the time-discounted reward is solely dependent on

the release time of the task and applies an exponential decline of the task reward.

A more subtle approach to applying time-discounted reward is penalizing the reward

more heavily when it is getting closer to the deadline of the task. In this case, tasks

are still penalized for being executed later but the task will retain the bulk of it’s

initial reward for longer, outweighing the cost. This effectively increases the number

of tasks being allocated. The proposed reward function used in APCBBA is:

Rk
j (P

k) = rj(1− eλj(t
k
j (P

k)−ρj)) (4.3)

Where Rk
j (P

k) is the dynamic reward and rj is the static reward for task j,
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and tkj (P
k) and ρj are the scheduled start time of task j and the deadline of task

j, respectively. This reward function will shift the emphasis, in comparison to the

reward function used in [6], from the release time of the task to the deadline of the

task.

Monte-Carlo simulation results in Fig. 2 outline the aforementioned feature of

the proposed reward function. The agents and tasks are randomly placed on a 4 Km2

2-D space; λj is a gaussian distribution in the range of 0.1 to 1 s-1, release times

and durations are randomly chosen in a set interval. Fig. 2 shows that the proposed

reward function has a higher percentage of allocated tasks than the original reward

function from [6], increasing the number of tasks being allocated.
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Fig. 2. Average percentage of allocated tasks vs. number of tasks for differing numbers

of agents, using the reward function from Eq. 4.3 and the original time-dis-

counted reward function applied in [6]

.

The cost function Ck
j (P k) is based on the total distance dkj (P

k) traversed for
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all the previous tasks in the ordered set of tasks P k, up to and including the newly

inserted task j.

dkj (P
k) = dkstart(P

k) +
∑
i

dki→i+1(P
k))

i∀P k, i ∈ T
(4.4)

Where fk is a fuel penalty per distance unit, dkstart(P
k) is the distance from the

depot (i.e., the starting point) to the first task in P k, dkend(P k) is the distance from

the last task in P k to the depot or starting location of agent k, and dki→i+1(P
k) is the

distance from task i in the path P k to the next task in P k. The above equation holds

true to the Diminishing Marginal Gain property [6], since the score for task j cannot

increase as other tasks are added before task j in P k. The Diminishing Marginal

Gain property is required to guarantee the overall task allocation solution converges

to a better solution with every iteration through the algorithm. The cost function

Ck
j (P k) is based on the total distance dkj (P

k)k traveled for task j multiplied by a fuel

penalty fk.

Ck
j (P k) = fk · dkj (P k) (4.5)

The final score Skj (P k) for task j at agent k is given by Eq. 4.6 and has several

additional parameters to it to produce feasible solutions and influence the solution

based on health, and suitability of agent k to task j. Uk
j (P k) prevents the assignment

of tasks j before the release time ϕj and V k
j makes sure that task j is given ample

time for execution before the deadline of task ρj. Z
k
j is the suitability of agent k for

performing task j and is implemented as a capability matrix.
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Skj (P k) =
(
Rk
j (P

k)− Ck
j (P k)

)
· Uk

j (P k) · V k
j (P k)·

Hk
j (P k) · Zk

j

(4.6)

Where,

Uk
j (P k) =


1 ϕj ≤ tkj (P

k) j ∈ T

0 otherwise

V k
j (P k) =


1 tkj (P

k) + τj ≤ ρj j ∈ T

0 otherwise

Hk
j (P k) =


1 dkrem ≥ dkj (P

k) j ∈ T

0 otherwise

Zk
j (P k) =


1 task j is suitable for agent k j ∈ T

0 otherwise

One important property the scoring function needs to adhere to, as Eq. 4.6 does,

is the Diminishing Marginal Gain (DMG). This property requires the score of task

j not to increase when other tasks are added before it. The property merely ensure

that during the decentralized task allocation process, when task j is assigned to a

different agent then agent k, the score for agent k does not decrease more than the

marginal score of task j and thus the total score for all agents in K always increases.

4.2 Bundling algorithm

The optimality of the decentralized task allocation solution is also dependent on

the outcome of the bundling algorithm running locally on each agent. The bundle
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algorithm is by no means an exhaustive search of the total solution space, and thus,

will not find the optimal path for the given task set T in all circumstances. The

following algorithm gives an overview of how tasks are bundled to give a local path.

For every task in T loop through the unassigned tasks in T and add a task j to

path P k, at all the possbile positions, and determine the position and task which is

yielding the hightest total score for path P k.

The bundling algorithm takes more computation than the algorithm explained

in [6] because the score of task j is dependent on the distance traveled to all the

previous tasks in P k. This makes the APCBBA bundling algorithm of complexity

O
(
(N t)

4)
, whereas the original algorithm is of complexity O

(
(N t)

3)
.

4.3 Asynchronous Polling

The original strategy for converging on a consistent task assignment proposed in

[6] exchanges a set of vectors amongst neighboring agents by actively sending these

vectors to other agents when a significant update in the local list has occurred. Since

these algorithms are expected to run synchronously over all agents, this could cause a

significant increase in message passing and bandwidth usage for a short period when a

new task is being released. The bandwidth used will be an exponential function of the

number of agents and number of tasks released. Fig. 3 gives an excerpt of the network

bandwidth used during a mission where five sets of ten tasks are released to four

agents. The communication between agents is simulated using a mesh-type network

in the aforementioned ns-3 simulator. An asynchronous non-polling implementation

of the CBBA task allocation algorithm best described in [37] is used to create the

traffic seen in Fig. 3. At every peak a set of ten tasks is released and agents actively

send their winning bid lists to neighboring nodes. These communication peaks can

cause for an increase in the Packet Loss Ratio (PLR) in the network which can, in
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turn, degrade the task allocation solution and increase the convergence times. The

baseline bandwidth usage in Fig. 3 represents the normal sending of status packets

from the Flight Control System in each vehicle to the Ground Control System.

To increase stability of the task allocation process, reduce convergence times, and

easily handles changes in the SA, APCBBA uses a polling strategy to request and

receive the winning bid list from direct neighboring agents. This strategy introduces

several new concepts and features to reduce convergence times, reduce the network

communication spikes as seen in Fig. 3, and increase task allocation stability. Figure

4 shows the network bandwidth usage in a similar mission scenario as Fig. 3, only

the network communication spikes are reduced due to the polling strategy of the

APCBBA algorithm. The spikes have been significantly reduced with a slight increase

of the baseline bandwidth usage due to continuous communication of the winning bid

list.

Each agent will communicate several vectors which include two vectors for identifying

the task within the lists, nk ∈ RNt
which is a unique identifier for a single or group

of tasks and mk ∈ RNu
j which identifies sub-tasks within a group of task. The other

vectors are the winning bid list yk ∈ RNt
, the winning agent list xk ∈ RNt

, a vector

sk ∈ RNt
for the state of task j and a time stamp vector φk ∈ RNt

indicating the last

update to a task j in sk.

Task j will exist in these lists up to to the point that the winning agent has completed

task j or when task j has been aborted or deleted, which will be communicated

through vector sk. The general reduction of the bandwidth used throughout the

overall mission shown in Fig. 4 when a new set of tasks is released is due to the fact

that the vectors to be communicated shrink in size when tasks are being executed

and completed. Keeping the tasks unexecuted in the list provides the ability for any

agent to keep bidding for tasks that previously might not have been of interest but
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through changes in the task allocation, SA, or environment, at a later stage become

more interesting to it.

Table 1 provides the decision rules for updating agents local set of vectors yk,

xk, and sk when the vectors from a neighboring agent l have been received.

Each task in an agent’s list can be in one of the following states: idle/reset,

auction, assigned to agent, executing, completed, or deleted. Only when neighboring

agents indicate the state of task j is executing, completed, or deleted will the local

agent, upon receiving this information, update it’s own state for task j. Only when

the state of task j for both the receiving and local agent is in auction, or assigned

status can the bidding and consensus steps be applied. A conflict free assignment is

assumed for a task during the transition from assigned to agent, to executing, meaning

only one agent will have been assigned to the task and will be able to set the state

to executing. When conflicting task assignments are encountered, for example when

agent k thinks task j is assigned to agent l and agent l thinks task j is assigned to

agent k, task j will be reset for both agents and the bidding process starts again for

task j.

Consensus is determined for each task in the path P k, only when all neighboring

agents with direct communication agree on the assignment of task j to agent k and

all agents before task j in path P k has been assigned to agent k, will the status of

task j at agent k transition from auction to assigned. Consensus on the assignment

of task j to agent k is achieved when every agent with a direct connection to agent

k at that time, agrees that task j should be assigned to agent k. This consensus is

given by equation Eq. 4.7.

γkj = Aklj ∧Gk
l (t) ∀k, j (4.7)
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Table 1. Decision rules for agent k (receiver) upon receiving vectors yl and xl from

agent l (sender)

xlj is xkj is Receiver’s action

l

k

If ylj > ykj → update ykj & Aklj = 0 for task j

If ylj = ykj and hl > hk → update ykj and Aklj = 0 for task j

If ylj < ykj → Aklj = 0 for j

l
If ykj > ylj → update ykj and Aklj = 0 for task j

If ylj < ykj → skj = reset and Aklj = 0 for task j

m 6∈ k, l
If ylj > ykj → update ykj and Aklj = 0 for task j

If ylj = ykj and hl > hk → update ykj and Aklj = 0 for task j

none update ykj and Aklj = 0 for task j

k

k Aklj = 1 for task j

l s=j reset and Aklj = 0 task j

m 6∈ k, l Aklj = 0 for task j

none Aklj = 0 for task j

m 6∈ k, l

k
If ylj > ykj → update ykj and Aklj = 0 for task j

If ylj = ykj & hl > hk → update ykj and Aklj = 0 for j

l update ykj & Aklj = 0 for task j

m Aklj = 0 for task j

n 6∈ k, l,m
If ylj > ykj → update ykj and Aklj = 0 for task j

If ylj = ykj and hl > hk → update ykj and Aklj = 0 for task j

none update ykj and Aklj = 0 for task j

none

k Aklj = 0 for task j

l Reset task and Aklj = 0 for task j

m 6∈ k, l Aklj = 0 for task j

none Aklj = 0 for task j
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Where Aklj ∈ RNk
is a boolean variable where the value is determined by table

1 and the lth element is equal to “1” when both agent k and agent l agree on task

j to be assigned to agent k. Gk
l (t) is a directed graph for agent k indicating direct

communication between neighboring nodes in the communication network at time

t. The logical conjunction ∧ operator applies a logical ’and’ operation to both the

directed graph Gk
l (t) and Aklj . During the period when tasks are in the assigned

status, the bidding and consensus steps are still applied giving the opportunity to

other agents to still put in a higher bid for task j due to changes in SA. Only when

the status of the task j, by agent k, is updated to executing will this prevent any

other agents from bidding on task j. Once the executing agent has completed it’s

assigned task j the status will be changed to completed. In order to delete task j

out of the communication vectors ykj , xkj , and skj , the task has to acquire the state

completed or deleted and all neighboring agents will have to transition to the same

state through communication, before the task can be deleted from the local vectors.

4.4 Team formation

Team forming can be instantiated in situations where an individual agent could

not perform the available tasks due to time, resource, or capability constraints. In

these mission scenarios, additional agents can be added to the task in order to mitigate

the constraints holding back execution of task j. The process of forming teams for

execution of task j is a multi-step process which can be applied to any task in need

of assistance from other agents. Whenever a task j ∈ T can not be solely executed

by agent k, the task can be split in a set of sub-tasks Nu
j . The agent is free to

determine the cardinality of Nu
j in order to maximize the score of j. A preliminary

score for the base-task j will be calculated based on the current SA of agent l ∈ K

and its knowledge of neighboring agents. Each agent will still compete for base-task
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j and through the market-based and consensus principles of APCBBA the winning

agent will be assigned the base-task. At this moment the winning agent will release

all sub-tasks Nu
j to neighboring agents and where each sub-task n ∈ Nu

j is given an

appropriate static reward ru, release time ςu, duration τu, and deadline ρu. In order

to prevent fragmentation of the base-tasks, only agent k holding the base-task j is

allowed to divide task j; i.e. any agents winning any of the sub-tasks Nu
j are not

allowed to subsequently divide sub-task u ∈ Nu
j .

Algorithm 1 Multi-agent team forming for agent k

1: Agent k → solve task j and create sub-tasks Nu
j

2: Agent k bids for task j

3: if γkj = 1 then

4: if
∣∣Nu

j

∣∣ ≥ 1 then

5: Release tasks Nu
j to all agents l ∈ K

6: if γlu ∀u ∈ Nu
j , k 6= 1 within timeout period then

7: Release and reset base-task j to all agents l ∈ K

8: else

9: if γku ∀u ≥ 1 then

10: Execute all tasks u ∈ Nu
j assigned to agent k

11: end if

12: end if

13: else

14: Execute task j assigned to agent k

15: end if

16: end if

Once the sub-tasks Nu
j are released any agent can start bidding for these sub-
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tasks, and agent k who has won base-task j will wait for all sub-tasks to be assigned;

i.e. γlu∀u, j should be equal to one. Once all tasks are assigned, agent k can claim the

reward for base-task j minus the cost, which will be the static rewards ru assigned

to the sub-tasks u ∈ Nu
j . At this point agent k will assume all sub-tasks Nu

j will

be executed and completed in the near future by their assigned agents, and thus can

proceed with with normal operation including executing any task u ∈ Nu
j assigned to

agent k.

Although the above algorithm was chosen for supporting team formation with the

group of agents, a different strategy would be to have each agent release its sub-tasks

even before it acquired the base-tasks. Each agent would release all the sub-tasks it

calculated as the solution and wait for these sub-tasks to be assigned before applying

a bid to the base-task. This would take away the concern of when agent j is winning

the base-tasks but all of its released sub-tasks are never assigned, as could be the

case in the first algorithm. Some concerns with the latter algorithm is the support

of another level of sub-tasks or sub-tasks needing to have unique IDs so they can

be distinguished per agent. Furthermore each agent will not only be calculating and

releasing the sub-tasks for its solution of the base-task, it would also have to apply bids

for sub-tasks of the same base-task but released by other agents creating conflicts of

interest. This would take a considerable amount of extra computation per agent and

would make the team formation procedure more complicated, and the task alloction

algorithm would be flooded with sets of sub-tasks for each agent per base-task.
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1: procedure FindMax(T , P k)

2: MaxScore← 0

3: for all tasks in T do

4: for all task j in T not assigned do

5: for all Indexes m in P k do

6: Insert task j in P k at index m

7: for all tasks i in P k do

8: Calculate score Ski for task i

9: TotalScore← TotalScore+ Skj

10: end for

11: if TotalScore > MaxScore then

12: Store task j and index m

13: MaxScore← TotalScore

14: end if

15: end for

16: end for

17: Add task j with highest score to bundle Bk

18: Insert task j into path P k at position m

19: end for

20: end procedure
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Fig. 3. Typical network bandwidth usage during a mission with four agents and ten

tasks using an asynchronous task allocation algorithm.

Fig. 4. Typical network bandwidth usage during a mission with four agents and ten

tasks using a polling asynchronous task allocation strategy.
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CHAPTER 5

MISSION CONTROL SYSTEM

The execution of the task allocation algorithms is performed by the Mission Control

System (MCS). This integrated piece of software is responsible for handling tasks,

calculating the score of tasks, creating bundles of tasks, executing tasks, running

the APCBBA algorithm and acting as a pass-through communication hub for com-

munications between the Flight Control System (FCS) and Ground Control System

(GCS). This FCS to GCS communication data could represent waypoint command

changes or commands for changing altitude, but also includes reporting information

like current position, altitude, or orientation. All this communication data is been

captured by the MCS to produce an updated Situational Awareness (SA), which is

periodically broadcast to neighboring agents. Agents receiving SA data from other

agents can use this information to detect possible mid-air collisions or utilize this in-

formation to solve a task where team formation is required, as is described in section

4.4.

Figure 5 illustrates the different on-board and ground-based components and

their communication architecture which together form the intelligent UAS for exe-

cuting collaborative task assignments. The on-board communication between modem

and MCS is established through a 10 Mbit Ethernet connection and a serial connec-

tion is used as communication between MCS and FCS. The MCS is able to fully

control the FCS through this serial connection, just as a human operator could utiliz-

ing the GCS. The wireless mesh-communication between the UAS and, in particular,

the modems are described in section 7.2.
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Fig. 5. Communication architecture between two UAVs and the GCS.

The MCS software is executed on a Gumstix Verdex Pro XL6P Small Board

Computer (SBC) containing a processor running at 600 MHz, 128 MB of RAM, 32

MB of flash storage, and a Micro-SD slot [41]. Additional modules add capabilities for

serial communication and Ethernet. An embedded version of Linux is running on the

Gumstix as the Operating System (OS), providing the MCS software with a Portable

Operating System Interface. This interface provides functionalities for interfacing to

the file system, serial ports, and Ethernet stack, and the capability to execute threads.

The Gumstix SBC can provide the necessary raw processor power for calculating and

solving centralized and local task allocation problems in real-time, for sets where N t

is smaller than 12, limited by the frequency loop of the main thread.

The MCS software is fully written in C++ and uses, wherever possible, Object

Oriented Programming (OOP) to utilize its power of abstraction, polymorphism, and

inheritance. An architectural overview of the MCS software is given in Fig. 6. After
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an initialization routine, three threads are spawned, the main thread and two listener

threads for the Ethernet and serial sockets. The main thread, which runs at 10 Hz,

takes care of processing any VACS packets received, including processing any newly

received tasks. The other responsibilities of the main thread are applying the collision

detection algorithm, updating and broadcasting any SA information, and applying

the task allocation algorithm. Tasks assigned to the local agent will be executed in

the main thread and throughout each iteration of the loop; statistical data can be

collected which at the end of the loop will be written to a file.
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Fig. 6. MCS software architecture.

The following sections describe in more detail some responsibilities and aspects

of the MCS software.

5.1 Task processing

The MCS software handles all collaborative responsibilities which include receiv-

ing and processing any tasks released by the GCS. For every received task from the

GCS, a derived task-object is created depending on the type of task. The parent

36



class is common for all derived classes and implements a set of interfaces and func-

tionalities common to all tasks. This includes holding intrinsic parameters to the

task, like the unique identification numbers, the static reward, and the release and

deadline time of the task. A comprehensive set of functions provide safe and easy

access to the stored parameters and functionality for solving the task allocation prob-

lem. Each class derived from the parent class implements a type of task and provides

functionalities for calculating the score given the current path P k and executing the

task within its computed solution. Figure 7 shows the relationship between the base-

and derived-class for different types of tasks.

taskSpace::task

# state
# timeStamp
# timeReceived
# id
# subId
# reward
# startTime
# releaseTime
# deadline
# altitude

and 10 more...

+ task()
+ task()
+ ~task()
+ SetState()
+ SetTail()
+ SetScore()
+ GetId()
+ GetReward()
+ GetScore()
+ GetTimeReceived()
and 17 more...# CalcMinStart()
# CalcMaxStart()

taskSpace::searchTask

- execState
- target
- arrivalTime
- arrivalTimeOut
- length
- height
- sweepWidth
- sweeps
- sweepLength
- subTasks

+ searchTask()
+ searchTask()
+ ~searchTask()
+ CalcScore()
+ CalcScore()
+ Execute()
- SendTask()

taskSpace::surveilanceTask

- target
- loiterTime
- execState
- arrivalTime
- arrivalTimeOut
- finishLoiterTime

+ surveilanceTask()
+ surveilanceTask()
+ ~surveilanceTask()
+ CalcScore()
+ CalcScore()
+ Execute()
+ SendTask()
- SolveNearestNeighbour()

Fig. 7. Inheritance diagram for tasks.

As of now, the only supported types of tasks are search and surveillance; a new

type of task would only require the derived-class to be implemented, providing func-
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tionality for calculating the score and logic for executing the task. Each time a new

task object is instantiated, a partial solution for the task is computed using param-

eters that are not affected by changing SA or environment dynamics. Only when a

score is requested by the task allocation algorithm, i.e. by calling the CalcScore())

function, is the complete solution for the given task calculated, producing the lat-

est and most up-to-date score. In case of a search task, at the moment of calling

CalcScore() the search area will be divided in regions based on the agent’s current

knowledge of the neighboring agents, creating a solution optimized for score. Once a

solution is created for the base search-task, the status of the task will transition from

idle to auction and the search-task will be entered into the APCBBA task allocation

algorithm. Only when the agent wins the search task and the status of the task

turns into assigned will the agent release the sub-tasks to neighboring agents, and

the APCBBA will subsequently take care of allocating these sub-tasks. After releas-

ing the sub-tasks, all sub-tasks uj should be assigned to neighboring agents within a

timeout window. If for some reason not all sub-tasks are assigned the base-task will

be set to reset, thus re-introducing the base-task to the task allocation algorithm for

all agents, and all the released sub-tasks will be deleted. The different stages of a

surveillance- and search-task are outlined in Fig. 8.
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Fig. 8. Different stages of the surveillance- and search- task.

A surveillance task is introduced by the GCS as a base-task with single or multiple

waypoints, where each waypoint is considered to be a point of interest and thus for

each waypoint a sub-task is created. Every agent receiving this base surveillance

task will split up the task in the same manner, therefore making all the sub-tasks

for the given base-task identical across all agents. Once all sub-tasks are created,

the agents will start to bundle their tasks, finding an optimum route/path for the

given sub-tasks, where each sub-task also receives a score based on the positioning

within the path. When the bundle is created, and a score has been calculated for

each sub-task, the agents will enter the sub-tasks into the auction stage where the

APCBBA algorithm will try to achieve an optimum allocation of the (sub-)tasks.

5.2 Task allocation algorithms

The implementation for the task allocation algorithms is heavily dependent on

the parent class named ’algorithm’, as shown in Fig. 10. This parent class provides

several supporting functions for its derived classes, which consist of different types

of task allocation algorithms. Some of these generic functions include; creating and

storing a bundle Bk, and path P k, and handling communications regarding the task
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allocation algorithm with other agents.

The algorithm for creating an optimized bundle and local path is based on iter-

ating over the set of remaining tasks, where with each iteration, a feasible task j with

the highest score is added to Bk and inserted in P k. The aforementioned bundle al-

gorithm in Section 4.2 is of O
(
N t4
)

complexity. Figure 9 shows the average run-times

for solving, a single agent, centralized task allocation problem with varying number

of tasks N t, while being executed on the Gumstix SBC mentioned above.
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Fig. 9. Average run-time in seconds for varying number of tasks N t.
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mcs::algorithm

# y
# p
# b
# lastCommunication
# sendY
# yReceived

+ algorithm()
+ ~algorithm()
+ Main()
# Bundle()
# ProcessVacs()
# UpdateTask()
# UpdateBandP()
# DeleteBandP()
# Consistency()
- Run()
- Update()
- Consensus()

mcs::acbba

+ acbba()
+ ~acbba()
- Run()
- Update()
- Consensus()
- SendY()

mcs::apcbba

- state
- yRequested
- yRequestTime

+ apcbba()
+ ~apcbba()
- Run()
- Update()
- Consensus()

Fig. 10. Inheritance diagram for task allocation algorithms.

The derived instances of the parent class ’algorithm’ implement different types

of task allocation algorithms and currently implement a version of ACBBA described

in [37] as well as APCBBA as described herein. The derived class implements the

logic for updating the different communication vectors according to the decision table,

which for APCBBA are given by Table 1, but also determines when consensus has

been achieved.

The polling strategy explained in Chapter 4 is implemented in the derived class

as a state machine running through states for requesting the communication vectors

from neighboring agents, updating the local communication vectors and determining

consensus. If consensus has been reached on an individual or a set of tasks, the

determination is handled in the derived class because this differs for APCBBA vs.

ACBBA and other algorithms. APCBBA will determine consensus on individual
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tasks thus speeding up the convergence time and executing tasks that are possible,

whereas ACBBA will determine the point of consensus on the whole bundle of tasks.

5.3 Communication

Communication between agents and the GCS follows the internal VCU Aerial

Communications Standard (VACS). The generic VACS packet format is shown in

Table 2.

Table 2. VACS packet format

Byte Name Purpose

1 Sync 1 First synchronization byte

2 Sync 2 Second synchronization byte

3 Destination Destination address of packet (tail number)

4 Source Source address of packet (tail number)

5 Msg. ID H Unique message ID (high byte)

6 Msg. ID L Unique message ID (low byte)

7 Data length H Length (N) of data field (high byte)

8 Data length L Length (N) of data field (low byte)

9 ... 9 + (N-1) Data field Payload of message

9 + N Checksum 1 First checksum (Fletcher’s)

10 + N Checksum 2 Second checksum (Fletcher’s)

The source and destination addresses are determined by the tail number of the

UAS where the GCS is dictated to be address ’0’. Broadcasting of packets to all UAS

and GCS will require the destination address of the VACS packet to hold a value of

’255’.

A specific range of unique message IDs from 300 to 399 are reserved to support the
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collaborative framework, a subset of this range from 300 to 349 is used for general task

handling, and anything above 349 and up to 399 can be used by the task allocation

algorithms. The following messages are currently implemented int the Mission Control

System:

Table 3. Collaborative messages

Section ID Purpose

Task general

300 SA reporting

308 Task status reporting

310 Surveillance task

311 Search task

Algorithm 350 Communication vectors

Basic communication functions for sending and receiving VACS packets are im-

plemented in the ’commIo’ parent class. Derived instances can support serial or

Ethernet communication using UDP packets. The MCS utilizes two communication

sockets, one for connecting to the wireless modem using Ethernet, and the other for

a serial connection to the FCS. Both sockets run asynchronously and separately from

the main MCS thread, to ensure a fast and responsive link at all times between GCS

and FCS, independent on the running time of the main thread of the MCS. Any in-

coming VACS packets of interest to the MCS on either socket are parsed, decoupled,

and queued for processing within the MCS main thread.

5.4 Ground Control Station

The Ground Control Station developed over the last ten years within the Virginia

Commonwealth University UAV lab has proven to be of tremendous quality and has

been extended to support this collaborative research. Such an extension encompasses
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mcs::commIo

# run
# socket
# pipe
# threadHandler
# parser
# vacsQueue
# lock

+ commIo()
+ ~commIo()
+ Stop()
+ Process()
+ Send()
+ ProcessVacsQueue()
# Listener()

mcs::modemIo

- server

+ modemIo()
+ modemIo()
+ modemIo()
+ ~modemIo()
+ Stop()
+ Process()
- SetupSocket()

mcs::serialIo

+ serialIo()
+ serialIo()
+ serialIo()
+ ~serialIo()
+ Stop()
+ Process()
- SetupUart()

Fig. 11. Inheritance diagram for communication.

making the visual map not only display the current position of the UAV’s and their

waypoints but also highlighting the collaborative tasks released by the operator and

the current task being executed by each UAS, as can be seen in Fig. 12.
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Fig. 12. Five collaborative tasks are being executed by four agents.

Furthermore, the GCS embeds a pop-up screen named the ’Mission Control

Screen’, shown in Fig. 13. This screen contains all the relevant information about

the collaborative tasks including assignment of task to agent (tail number), starting

time of task, final score achieved, and status of the task. The screen also provides

the operator the functionality to abort or delete a task before it has been completed.
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Fig. 13. Mission Control screen giving an overview of all the tasks completed, deleted

or presently being executed.

Additional changes to the GCS include separate logging files for collaborative

events, to minimize the data that is required to be parsed when comparing and

analyzing the outcome of the task allocation process. Standard logging files for a

typical mission scenario can easily grow to a size well over 10 MB, including all the

data that is received from the UAV’s stored in XML format. Parsing these huge files

takes a tremendous amount of time, and thus separate logging files have been created

for capturing only collaborative related events, cutting parsing time for post-mission

analysis down tenfold.

5.5 Collision detection

In a crowded airspace with multiple autonomous flying UAS, a robust collision

detection system is of high importance to protect the public and the aircrafts. A

simple but highly effective collision detection system has been designed based on the

positional knowledge the agent acquires of the other UAS through communicating and
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broadcasting their SA. The collision detection system should warn of any imminent

mid-air collisions and take appropriate evasive maneuvers to prevent a collision.

A three tier system has been designed to indicate different levels of collision

detection. The first stage is the basic no collision stage, which indicates that no

collisions are foreseen within the near future based on the k current heading, altitude

and airspeed of agent k and it’s knowledge of the positions of any local UAS. Whenever

two agents are within a certain distance. the warning range, and hold a similar

altitude, the collision detection stage will be collision warning, Fig. 14.B. The last

stage is collision alarm, the stage where an evading maneuver will be engaged. Two

conditions can initiate a transition from the collision warning to collision alarm stage,

either when the heading of agent k intersects with the position of agent l given a

margin the heading sweep, as in Fig. 14.C, or when the two agents are within the

alarm range of each other irrespective of the heading of the agents as in Fig. 10.D.

The warning range (outer circle in Fig. 14) and alarm range ( inner circle in Fig.

14) are dependent on the airspeed of agent k, where the radius of the warning range

is greater than or equal to the alarm range and both increase with airspeed. The

algorithm for collision detection is outlined in Alg. 2.
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`̀

D. Collision alarm

Fig. 14. Collision detections stages.

Algorithm 2 Collision detection algorithm for agent k detecting a possible collision

with agent l ∀Nk

1: if distance from k to l < COLLISION WARNING RANGE then

2: if |heading of k - bearing to l| < HEADING SWEEP then

3: collision← TRUE

4: else if distance from k to l < COLLISION ALARM RANGE then

5: collision← TRUE

6: else

7: collision← FALSE

8: end if

9: else

10: collision← FALSE

11: end if
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The basic evasive maneuver for mid-air collisions is to command a change in

altitude. Whenever an agent detects an impending collision, depending on it’s current

altitude relative to the other agent, it will either increase or decrease it’s altitude and

airspeed. This maneuver is depicted in Fig. 15, where ’UAV1’ detects a potential

collision and flies at a lower altitude, thus decreasing airspeed and altitude, and where

’UAV2’ will do the opposite. The SA communication mentioned before keeps every

agent up-to-date on positional information of neighboring agents including altitude,

and through this information relative altitude between UAS can be established.

Vx

Vx

dAlt

UAV2

UAV1

Fig. 15. Collision evading maneuver, UAV1 decreases airspeed and altitude and UAV2

increases airspeed and altitude.
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CHAPTER 6

RAMS SIMULATOR

The RAMS simulator is a multiple agent, low-fidelity discrete-event simulator, de-

signed and implemented by the VCU UAV research lab to perform simulations in the

field of collaborating agents [42]. The simulator implements the modular architecture

as is shown in Fig. 16.

Network
(wireless-model)

MCS
(Mission-

algorithms)

Agent
(Mobility-model)

Ground Control Station

Ethernet

Agent
(Mobility- model)

Agent
(Mobility- model)

MCS
(Mission-

algorithms)

RAMS simulator

Fig. 16. Modular architecture of RAMS simulator.

The different modules in the RAMS simulator are the network, the MCS, and

the agent module. The network module is a wireless network model able to run a low-

fidelity mesh network, or, when connected to ns-3, capable of providing a high-fidelity

wifi or mesh network [43]. Ns-3 is a widely used academic discrete-network simulator

and is seamlessly integrated with the RAMS simulator. However, when running

the RAMS simulator with ns-3 the overall simulation speed is limited to real-time,

whereas in low-fidelity network simulation the simulation speed can be significantly
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increased. The mobility of the UAS is modeled by the agent module, which can

utilize a low-fidelity aerodynamics model of an aircraft or a high-fidelity model when

connected to the open-source simulator called FlightGear. The low-fidelity model

enables significant speed-up in the simulation speed, which is very useful for test and

evaluation of collaborative algorithms and their implementations.

The MCS module depicted in Fig. 16 is a module specifically dedicated to

running the MCS software described in Chapter 5. This module functions like a

wrapper around the MCS software, which is loaded as a dynamic library, mimicking

every external interface (e.g., serial and Ethernet communication) that is also used

on the hardware platform. The wrapper provides the ability to test and debug the

MCS software using the RAMS simulator and then transfer the tested software to

the actual hardware platform with no modifications done to the base code. With

the ability to also run a high-fidelity network and aircraft simulation, the RAMS

simulator is very well suited for testing the researched algorithms in a more realistic

environment, with changing communication dynamics and aircraft behavior.

Every module is self-contained and thus works independently of one another,

eliminating the need of an event scheduler. Each module requests from the RAMS

controller a period to sleep before waking itself up and running through another it-

eration of the module. This sleep- and run- time of the module together creates the

frequency that the module is expected to run. To eliminate some of this determin-

istic behavior of every module running at the exact specified frequency, a Gaussian

distributed sleep offset is induced into the sleep-time of each module. This drift in

module frequency can create anomalies and change the behavior of the entire system,

including the task allocation algorithms which is useful for testing.
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Fig. 17. Example of a timing diagram for different agent modules and the Gaussian

distributed offset.

As mentioned above, without the high-fidelity simulation enabled for the network

and agent module, the RAMS simulator is able to speed up simulation significantly.

The following table shows the maximum speed-up possible with varying numbers of

agents, where a speed-up of 1 is real-time. These results were obtained on a dedicated

regular workstation with an Intel Core Duo clocked at 2.4 GHz, 4 MB of cache and 4

GB of RAM memory, with a Linux Ubuntu distribution with kernel version 3.2.0-25.

Table 4. Maximum speed-up possible of the RAMS simulator with varying numbers

of agents.

#agents speed-up

1 190

2 170

3 110

4 90

8 50

16 30
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The RAMS simulator can be used as a framework in a wide array of research

fields for examining strategic decision algorithms, robot teaming, and robot learning.

The simulator can effectively simulate the effects that a real-world wireless network

can have on the performance of decision algorithms and is the main simulator used

to support this research.
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CHAPTER 7

HARDWARE PLATFORM

The hardware platform for field testing the algorithms developed in this research, is

done on a set of three Multiplex Easy Gliders Pro, with an approximate flight time of

20 minutes depending on wind and weather. The gliders were initially developed and

built as part of a VCU master’s thesis targeted towards collaborative UAS operations

[44], but since have undergone further development, including the installation of a

wireless modem supporting mesh-technology [45] and the MCS software, including

APCBBA.

Fig. 18. One of the three gliders used during this research.

.

Each glider is able to be controlled autonomously through waypoints given by
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the GCS or MCS, or manually where a safety-pilot is in Radio Control of the glider.

Having the ability to switch to manual control at any moment is vital to the safe

utilization of any autonomous UAS used for research purposes.

The three main components carried on-board the gliders that enable collaborative

operation include, a Flight Control System, a Mission Control System, and a wireless

modem. An architectural overview of the major and minor components and their

interconnections is given by Fig. 19.
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(power)

LiPo 
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Fig. 19. System architectural overview of a UAS used in this research.

.

It is important to note that in this implementation, all of the computation neces-

sary to implement APCBBA is executed in the MCS carried on-board each aircraft.

The Mission Control System software and hardware were described in Chapter 5; the

following sections give a brief overview of the other main components.
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7.1 Flight Control System

The Flight Control System used in the hardware platform is designed and built

by a graduate student in the Virginia Commonwealth University UAV lab as part

of a master’s thesis [46]. The FCS is designed around an Atmel AVR 32-bit micro-

controller that runs the flight control and navigational algorithms. The design purpose

of the FCS was to be low cost and small enough to fit in the glider. It uses an array

of sensors to determine altitude, airspeed, and attitude of the UAS. Furthermore, an

NMEA-enabled GPS can be connected to provide the navigational algorithms with

up-to-date positional information. The FCS board also houses the safety-switch cir-

cuit, which guarantees that the control of the airplane can be switched from manual

(safety-pilot) to autonomous and back, independent of the main processor.

Several different navigation and flight modes can be chosen to control the UAS,

including a standard waypoint mode that will fly the UAS directly from waypoint to

waypoint, loiter mode that will place the UAS in a stable orbit around a waypoint, and

cross-track mode that will also have the UAS try to fly from waypoint to waypoint,

but will have the UAS track the rhumb line between the two waypoints. The loiter

mode is used during collaborative operation when the UAS is idle and no tasks are

currently allocated or when the surveillance task needs surveillance for a certain

amount of time. Normal waypoint mode is applied between tasks to travel from task

to task. Lastly, during the search task, cross-track mode is enabled to follow the

lawn-mower waypoint pattern created to cover the full search area.

Additionally, the FCS Printed Circuit Board (PCB) can also house a Digi Xbee

wireless modem for cheap and easy communication to the GCS, but this is not used

for collaborative operation. Instead an 5.2 GHz enabled wireless modem is used
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to provide communication between UAS and GCS, which is explained in the next

section.

7.2 Wireless communication

Essential to the quality of the full collaborative system including the task allo-

cation algorithms, is the importance of having a reliable and robust wireless com-

munication link. A wireless communication system was developed by a graduate

student at the Virginia Commonwealth University UAV lab to provide the reliable

link with plenty of bandwidth and the ability to use an ad-hoc mesh-topology [45].

This mesh-topology provides several advantages over the more classic infrastructure-

type network where a central access point routes all the traffic, as is standard in

a WIFI network. In a mesh network every modem in the network can relay data,

meaning that each UAS can talk directly to one another without having the data

relayed through an access-point. Furthermore, a transmission path can be created

between UAS that could include another UAS when a direct transmission link is not

available. Using a mesh-topology not only creates efficient data communication but

also increases the operational communication range of the UAS fleet.

The developed communication system described above is based on the Bullet 5 mo-

dem, developed and sold by Ubiquiti Networks, Incorporated. The Bullet is sold off-

the-shelf with firmware incapable of supporting mesh network technology and thus the

original firmware was replaced with an embedded Linux distribution called OpenWrt.

This distribution provides several extra functionalities not included in the standard

firmware, including support for the 802.11s standard that describes mesh network

technology. In addition to running a different firmware on the Bullet modems, a

user-space application provides automatic detection and identification of the different

agents/UAS in the network based on tail numbers. This application broadcasts a
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discovery packet twice a second to all UAS, signifying the presence of the UAS within

the network. This discovery packet includes a tail number, a MAC address, and

a time-stamp to synchronize the modems across the network. The modified Bullet

software architecture is shown in Fig. 20.

Fig. 20. Wireless modem software architecture.

.
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CHAPTER 8

MIXED-INTEGER LINEAR PROGRAMMING

To provide a reference solution to the task allocation problem, a Mixed-Integer Linear

Programming model was developed. This solution produces an optimum allocation of

the tasks that subsequently can be compared to the solutions generated by APCBBA.

The following section presents the Mixed-Integer Linear Programming model to the

task allocation problem described in 2.

8.1 Model

The MILP model is formulated to schedule a task j after task i and determine

the start time tkj for each task j and agent k so that the global score Eq. 8.1 for all

tasks and agents is maximized. The following notation is used for the model:
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Sets:

T → Set of all tasks {1, ...N t}

K → Set of all agents {1, ...Nk}

Indices:

i→ task i ∈ T

j → task j ∈ T

k → agent k ∈ K

Parameters:

rj → Is the static reward for task j

ϕj → Is the release time for task j

ρj → Is the deadline for task j

τi → Is the time it takes to execute task i

ψkij → Is the traveling time from task i to task j

cij → Is the cost of scheduling task j after task i

M → Big M (> than max. scheduling time)

Variables:

xkij = {1, if task j is scheduled after task i.
0, otherwise

tkj → Is the scheduled time of task j for agent k

tki → Is the scheduled time of task i for agent k

αj → linear time-discount factor

The objective function, Eq. 8.1, maximizes the global score for all agents k ∈ K
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and tasks j ∈ T by minimizing the time-discounted reward αkj (t
k
j − ϕj) and the cost

for ckij. The static reward rj is determined by the user when the task is created.

max
∑
i

∑
j

∑
k

(rjx
k
ij − αj(tkj − ϕj)− ckijxkij) (8.1)

Subject to:

∑
k

∑
i

xkij ≤ 1 ∀j (8.2)

∑
k

∑
j=Nk

xkij ≤ 1 ∀i (8.3)

xkij ≤
∑
h∈T

xkhi
∀k, j, i

h ∈ T
(8.4)

tkj ≥ ϕjx
k
ij ∀k, j, i (8.5)

tkj + τjx
k
ij ≤ ρjx

k
ij ∀k, j, i (8.6)

tkj ≥ tki + τix
k
ij + ψkijx

k
ij −M(1− xkij) ∀k, j, i (8.7)

The following section briefly explains the purpose of each constraint. The con-

straint given by Eq. 8.2 limits task j to be only assigned once for all tasks in T .

Constraint 8.3, is similar but has an exception; hence the summation does not start

at j = 0. This exception is caused because dummy tasks are added to very beginning

of the set of tasks T for every agent. These tasks have a release and deadline time of

0 and are scheduled as the very first task for each agent by the solver. The dummy

tasks are scheduled after themselves, implying that task i equals task j, and hence if

the dummy task needs to be scheduled in front of a regular task, this dummy task

must be scheduled twice as task i. Constraint 8.3 limits the regular tasks, non dummy

tasks to be scheduled only once as task i before task j. Constraint 8.4 guarantees
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that task i must be scheduled before task j can be scheduled for agent k; i.e. task

j for agent k should only be scheduled after task i, if and only if task i has already

been scheduled for agent k. Tasks can only be scheduled after their respective release

time ϕj, ensured by constraint 8.5, and before their deadline ρj minus the duration

τj of task j, constraint 8.6. The final inequality constraint in Eq. 8.7 limits the

solution space of task j to only being scheduled after the completion of task i plus

the traveling time ψkij from task i to j.

8.2 Gurobi solver

The aforementioned model was implemented for use in Gurobi [47]. Gurobi is an

optimization solver for mathematical programming and is able to solve a various set

of problems, including Linear Programming, Quadratic Programming, and Mixed-

Integer Linear Programming problems. It provides several Application Programming

Interfaces (API) for different programming languages, including Matlab, C, C++,

Java, Python, and more. The implementation of the model above was done in C++,

in line with the programming language used for the MCS software.

The variables xkij and tkj in the described model are considered to be decision variables

and are of the binary and double type. Gurobi uses a strict matrix definition for its

dimensions, where xkij is a 3D matrix with rows being agent k, columns being task

j, and depth being task i. Similarly, a 2D decision variable matrix was created for

tkj , where rows are agent k and columns are task j. The parameter variables used in

the model are normal matrices (arrays), with multiple dimensions when required, but

still adhere to the strict dimensioning definition.

Gurobi, through its various techniques and solvers, will find values for the decision

variables to maximize the objective function in Eq. 8.1, while producing a feasible

solution adhering to the constraints of the model. The stopping conditions for the
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Gurobi solver are; when the optimal solution has been found through observing the

optimality gap and when a hard-coded running time limit of 10 minutes is reached.

8.3 Validation

The following results show how the MILP solution compares to an exhaustive

search algorithm for up to four agents and up to eight tasks. This maximum number

of tasks and agents is imposed by the exhaustive search algorithm, which can only

reasonably compute the solution of a task allocation problem where the complexity

is limited to four agents and eight tasks. The results were produced by running

Monte-Carlo simulations with random placement of a set of tasks within 4 Km2 and

a random start, duration and deadline for the set.

Table 5. Average score difference in percentage between MILP and the exhaustive

search solutions.

tasks 1 agent 2 agents 3 agents 4 agents

1 0.00 0.00 0.00 0.00

2 0.00 0.03 0.00 0.00

3 0.01 0.06 0.09 0.05

4 0.04 0.38 0.03 0.23

5 0.01 0.01 0.09 0.33

6 0.09 0.01 0.17 0.19

7 0.05 0.09 0.34 0.31

8 0.09 0.28 0.18 0.65

Table 5 gives the average score differences in percentages over a total of more

than 900 tasks. In total 91.1% of MILP solutions are identical to solutions generated
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by the exhaustive search algorithm.

Differences between the solutions can be explained by the difference in determining

the score. The cost for the MILP solution is calculated by the distance between tasks

i and j, whereas in APCBBA the cost for task j is the total distance to travel to

task j. The score function for the decentralized algorithm needs to adhere to the

DMG property and thus cannot be based on the distance between task i and j. The

other way around would be changing the MILP model where the cost would be based

on the total distance to task j but this would render the model to be non-linear

and more difficult to solve. Furthermore, where the discounted-reward for APCBBA

is exponential towards the deadline of task j, the MILP model uses a linear time-

discounted reward again.
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Fig. 21. Optimality gap between returned solution and the solution generated when

root relaxation is applied.

The above figure shows the optimality gap between the calculated optimal solu-

tion and the best known bound. For the higher number of tasks the optimality gaps

increases indicating that Gurobi might be producing sub-par solutions to the prob-
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lem. This gap is partly due to the time-limit applied to finding the optimal solution,

and it has been observed that when running the MILP solution algorithm on task

sets with more than 12 tasks the solver might take hours to find the optimal solution.

Furthermore, from Fig. 21 it can be observed that with the a higher number of agents

the optimality gap reduces. A reasonable explanation would be that with a higher

number of agents the quest for finding feasible solutions, where all tasks are allocated,

increases, and thus better solutions are found quicker.

Appendix B lists the source code of the Gurobi MILP implementation, in which

a small problem is solved with two agents and four tasks.
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CHAPTER 9

RESULTS

The following results compromise data generated from simulation and real-world flight

testing.

9.1 Simulation results

The following results are created with different simulators and implementations

of the task allocation algorithms and are provided to the reader in steps to verify and

validate each intermediate solution. The RAMS simulator, described in Chapter 6, is

the main simulator providing the most realistic simulation of several UAS, with each

running a decentralized task allocation algorithm. In addition, an implementation

of CBBA is provided by the Aerospace Controls Lab of MIT [48] in Matlab, which

does not simulate any form of communication, but has the full CBBA algorithm

implemented. The aforementioned CBBA Matlab implementation was modified to

implement the proposed APCBBA scoring function and allow direct comparison with

the original discounted scoring function described in [6]. As previously described, an

exhaustive search algorithm was implemented to provide a guaranteed optimal solu-

tion by ’brute force’, iterating over all the possible solutions and determining their

score. This algorithm is heavily limited by the number of tasks and agents before

the computation of the solution becomes intractable; for reasonable run-times, the

limit is set to 4 agents and 8 tasks. The total number of unconstrained solutions for

the multi-agent and multi-task allocation problem can be computed by applying Eq.

9.1, where Fig. 22 is showing the total number of solutions for different numbers of
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Fig. 22. Number of solutions per agent with differing number of tasks.

tasks and agents. The MILP solution previously described must be used to provide

optimal, or near optimal, solutions for problems with a higher number of tasks and/or

agents because of the limitations of the exhaustive search algorithm.

Nt∑
j=1

(
N t!

(N t − j)!
·
(
j +Nk − 1

j

))
(9.1)

All task allocation solution parameters, including the order of the tasks, the

start time of each tasks, and to whom the tasks are assigned, are evaluated by the

same standards, creating an equal scoring metric for all the different algorithms and

simulations. The overall scoring metric for a set of tasks J is calculated using Eq.

4.1.

The simulation results are obtained by randomly placing the agents and tasks in
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a 4 Km2 square 3-D area with a minimum altitude of 30 meters and a maximum of

300 meters. The target airspeed of the agents for every task is set to be at 15 m/s

and λ = 0.1s−1. The static reward rj, release time ςj, duration τj, and deadline ρj

for task j are all given random values in an appropriate range.

The optimality of the solutions produced by APCBBA are compared with solutions

from running the same task allocation problem through the aforementioned CBBA

and APCBBA Matlab implementations, the exhaustive search algorithm, and the

Mixed-Integer Linear Programming (MILP) algorithm in the remainder of this chap-

ter.

In the remainder of this chapter, the following naming convention will be used: an

(M) placed behind the algorithm’s name signifies the algorithm being run in Matlab,

and an (R) placed behind the algorithm’s name signifies that the algorithm is being

run in the RAMS simulator.

In summary, the results show that the APCBBA algorithm produces better op-

timum results when compared to CBBA, allocating more tasks with a better overall

score and efficiency. Furthermore, some high-fidelity simulations with the RAMS sim-

ulator show better, more robust, and conflict free allocations of tasks with APCBBA

over CBBA.

9.1.1 Optimality

The total score traveled by the agents is compared for the Matlab implementa-

tions of APCBBA, CBBA, and the exhaustive algorithm, and the MILP algorithm

in Gurobi. Figure 23 compares the performance of the 4 solutions where the number

of agents Nk is 4 and with different values for the number of tasks N t. Through its

updated scoring function, APCBBA scores better than CBBA over the whole range of

N t, but does not outperform the MILP or the exhaustive search algorithm solutions
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for the same problem, as would be expected. Ordering and optimizing the local path

based on the full distance for the agent to travel to each task in APCBBA reduces

some of the greedy effects the CBAA scoring function applies to creating its local

path.
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Fig. 23. Average total score per task set for 4 agents and 30 task sets for each N t.

The average difference between the total score of APCBBA and MILP, and

CBBA and MILP for the same set of tasks and agents as in Fig. 23 is given in

Fig. 24.
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Fig. 24. Average percentage difference in score per task set when compared with the

MILP solution.

The average percentage increase of APCBBA compared to CBBA over the full

set of tasks for 4 agents is 5.4%. When comparing the full 1800 task sets and their

solutions, with agents ranging from 1 to 4 and sets of tasks ranging from 1 to 16, the

APCBBA algorithm produces solutions that are equal to the exhaustive and MILP

solution 49.8% of the time and CBBA generates equal solutions 38.4% of the time.

It seems that for higher number of tasks the optimality of the APCBBA and CBBA

solutions diverge from the MILP solution, but APCBBA continues to generate better

solutions than CBBA. The above results show how the APCBBA and CBBA Matlab

implementations fare against the MILP and exhaustive search algorithms. The fol-

lowing results present the comparison of APCBBA, running on the RAMS simulator,

and the solutions produced by the exhaustive search and MILP algorithm.
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The optimality of the decentralized task allocation solution is also dependent on

the outcome of the bundling algorithm running locally on each agent and explained

in Appendix A. The bundle algorithm is by no means an exhaustive search of the

total solution space, and thus, will not find the optimal path for the given task set T

in all circumstances. The following data compares the APCBBA algorithm running

on the RAMS simulator with the MILP and exhaustive search solution for a single

agent. Since a single agent does not engage in the auction process, it will give a good

estimate of the optimality of the solution produced by the local bundling algorithm.

Figure 25 shows the total score for a single agent and over 400 task sets, ranging from

1 to 16 tasks. The APCBBA algorithm run on the RAMS simulator produces better

results than the CBBA implementation in Matlab over the full range by an average

of 6.4%.
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Fig. 25. Average score per task set for a single agent and 30 task sets for each N t.

Just as in Fig. 24 the optimality of the solution for higher number of tasks seems

to diverge from the MILP solution, indicating a reduced optimal solution for higher

number of tasks. However, as in the results presented in 24, APCBBA continues to

outperform CBBA. Furthermore, from Fig. 25 it can be concluded that the bundling

algorithm used in CBBA has shortcomings for generating optimal path solutions.

This is in part caused by the ’Greedy’ nature of bundling algorithm used in CBBA.

Comparing the cost between the APCBBA and MILP solutions, gives insight

into the order of the tasks and which tasks are being allocated. Over the full set of

solutions with a single agent and a task set ranging from having 1 to 16 tasks, 44%

of the solutions were identical between MILP and APCBBA running on the RAMS

simulator, compared to 26% for CBBA.

The following data shows the results from the RAMS simulator when 4 agents
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are applied to the task allocation problem for up to 16 tasks.
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Fig. 26. Average score per task set for 4 agents and 30 task sets for each N t.
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Fig. 27. Average score score difference per task set for 4 agents and 30 tasks set for

each N t.

Compared to Fig. 25, CBBA does produce better solutions for 4 agents compared

to the CBBA results for a single agent assignment. When applying a decentralized

auction algorithm the overall performance of the solution increases, while the gap

between APCBBA and CBBA becomes smaller. Still APCBBA outperforms CBBA

by an average of 2.8% over the full range of tasks set with 4 agents.

9.1.2 Response time

The time it takes to reach convergence on the set of tasks is of importance for

reducing the response time to the tasks and is a Quality of Service metric defined

in Chapter 2. APCBBA can determine consensus per task, reducing the time from

the release of the task set T to execution of the first task j of the path P k, and

possibly all subsequent tasks. The consensus time per task is the time measured
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from having task j enter the task allocation algorithm to the assignment of task j

to an agent. Figure 28 gives an average of the consensus time for APCBBA and

CBBA for different task set sizes. The data presented in Fig 28 was produced using

the RAMS simulator in combination with ns-3, creating more realistic network re-

sponses to the communication produced by the two algorithms APCBBA and CBBA.
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Fig. 28. Time to reach consensus among a set of N t tasks and 4 agents.

CBBA determines consensus on a bundle of tasks and thus all the tasks in the

bundle need conflict-free allocation before consensus is reached. The metric for de-

termining consensus with CBBA is based on agents not actively sending out any

updated winning bid lists to neighboring agents for a certain period of time. For the

results in Fig. 28 this grace period was set to be 2 seconds, which is conservative

according to the authors in [37]. The actual CBBA data presented in Fig. 28 does

not include this 2 second grace period and gives the time between tasks entering the

auction algorithm and the time radio silence is obtained and packets are no longer
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sent.

The results in Fig. 28 show that although CBBA is very quick for a small set of tasks,

the consensus time increases rapidly with increasing size of the task set. The average

consensus time per task for APCBBA does not increase as much as with CBBA. Thus

APCBBA achieves much better response times over CBBA for task sets with a higher

number of tasks N t.

9.1.3 Team formation

Forming teams within APCBBA is a two-step process. This process will be

illustrated using an example of performing area search as a base-task. The base-task,

including the complete search area, is solved by each agent and a score is determined.

The agent with the highest score for the base-task will be able to release the sub-tasks

it has created within its solution. At this moment, the full auction process starts again

on the sub-tasks, where all agents can bid for one or more sub-tasks. The solution

from the base-task is based on the agent’s knowledge of neighboring agents, including

the neighboring agent’s position, altitude, and capabilities.
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Fig. 29. Team formation of 2 agents given a tasks to search an area.

Figure 29 gives a snapshot of 2 agents searching an area. The whole search area

was split into two sections, by the winning agent of the base task, where each agent

was deemed the winner of one of the two sections (sub-tasks). Each agent, depend-

ing on its height, will determine the internal waypoints for effectively searching the

dedicated area using a lawn-mower pattern. The waypoints extend the search area

in order to give the agents sufficient space and area to turn around and get back

onto the rhumb line. To reduce the number of sweeps of the lawn-mower pattern and

increase efficiency, the agent will orient the pattern parallel to the longest boundary

of the area, as can be seen in Fig. 29 where the height (vertical) of the individual

search area is clearly greater than the width (horizontal).

Notice the head-on collision with the red and blue agents, and the ’COLLISION’

message displayed to the right on the screen, detecting the imminent danger. The
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original search height was 300 feet,but due to the collision detection the red agent

has descended to an altitude of 244 feet while decreasing its airspeed to 20 knots, and

the blue has done the opposite, increasing its altitude and airspeed.

Fig. 30. Two out of 4 agents forming a team to complete a search mission.

In Fig. 30, 4 agents were active and a search task was issued to take low-

resolution pictures. The winning agent of the base-task has divided the search area

into 3 smaller regions. Agents red, blue, and pink are able to perform the released

search task, but yellow has capability constraints and is equipped with only an IR

sensor. Through the task allocation algorithm, 2 of the 3 search areas were assigned

to the red agent and the last area was assigned to blue. The pink agent, although

able to perform the search mission, was not able to obtain a sub-task by outbidding

red or blue for one of its assigned areas. The following figure shows all 3 capable

agents being engaged in the search mission while the yellow agent is still incapable of
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executing the required task.

Fig. 31. Three out of 4 agents forming a team to complete a search mission.

The team formation algorithm demonstrates stable allocation of sub-tasks, form-

ing teams on the fly to complete missions in need of agent cooperation. Although the

implementation and capabilities of the algorithm and underlying support framework

is still limited, the base algorithm for forming teams is promising and is suitable for

supporting more advanced mission scenarios.

9.2 Real-world results

In the previous chapter, APCBBA was extensively simulated and the results were

compared to other algorithms producing optimal solutions. This chapter shows some

real-world results, flying the gliders discussed in Chapter 7. Having only 2 safety-

pilots limits the number of gliders in the air simultaneously to two. None the less,
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the results show that APCBBA fares well in a real-world environment and creates

conflict free assignments.

9.2.1 Task allocation

In total, four sets of surveillance tasks were issued and each set had a different

number of tasks. Table 6 gives an overview of the assignment of the tasks per UAS

in order of execution and the average time it took to reach consensus for that task

set.

Table 6. Assignment of tasks to UAS (in order of execution) and the average consensus

time

ID # tasks Algorithm UAS 1 UAS2 Avg. consensus [sec.]

5637 9

APCBBA 1, 2, 3, 4 5, 6, 7, 8, 9

0.28APCBBA(M) 1, 2, 3, 4 5, 6, 7, 8, 9

MILP(M) 1, 2, 3, 4, 9 5, 6, 7, 8

4780 10

APCBBA 1, 10, 7, 6, 9, 8 5, 2, 3, 4

0.52APCBBA(M) 1, 10, 7, 6, 9, 8 5, 2, 3, 4

MILP(M) 1, 2, 3, 4, 6 5, 7, 10, 8, 9

7349 7

APCBBA 1, 2, 5 6, 7, 3, 4

1.7APCBBA(M) 1, 2, 4 5, 6, 7, 3, 5

MILP(M) 2, 3, 7, 4 5, 6, 1

968 8

APCBBA 7, 1, 2 8, 6, 5, 3, 4

0.58APCBBA(M) 7, 1, 2, 4 8, 6, 5, 3

MILP(M) 7, 1, 2 8, 6, 5, 3, 4

The consensus time for task set 7349 is extended because of a communication

timeout occurring where both UAS could not communicate for a short period. At
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the time of the timeout the UAS had not allocated all tasks without conflict. In the

case of running CBBA, this would have been detected as reaching consensus and the

UAS would start executing the task, but with existence of conflicts in the allocation.

APCBBA, handles the communication error by waiting for communication to be re-

established and resolving the conflicts. The mere ability of detecting communication

problems makes the APCBBA algorithm more robust in real-world environments

where communication errors are likely. Figure 32 shows task set 968 being executed

by UAS 1 (plane 1) and UAS 2 (plane 2) after allocation of the task set has been

completed. The same set of tasks is also run through the APCBBA and MILP

implementation in Matlab. Three out of 4 tasks sets are identical for the 2 APCBBA

algorithms and 2 out of 4 tasks sets yield similar results as the MILP solution.

Testing of the APCBBA algorithm in real world conditions is far from complete

and needs many more scenarios to generate data to analyze the algorithm’s response

in all conditions and circumstances. Further test flying is needed to analyze and

determine the optimality and robustness of APCBBA in real-world conditions.

Fig. 32. Two UAVS on a collaborative surveilance mission
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9.2.2 Collision detection

During test flying of the gliders, it is the safety pilot’s responsibility to track

the UAS and prevent any damage to aircraft, personnel and equipment, whenever

possible. None the less, the gliders are equipped with a collision detection system

described in 5.5. During test flying, several evasive maneuvers were engaged by the

UAS to eliminate the possibility of a collision. One of these near collisions is shown

in Fig. 33 where two UAS are on a collision course. Each data point in the figure is a

GPS coordinate and the order of GPS coordinates is shown by the blue and red arrows.
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Fig. 33. GPS position coordinates for two UAS on collision course

The accompanying evasive maneuver for the near collision is shown in 34, where

the altitude change is indicated by the solid red and blue lines. The moment of

detecting a possible collision is shown in the same figure by the red and blue dashed

lines. Once the UAS have separated enough in distance, the collision warning is

turned off and the UAS will return to its normal altitude.
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83



CHAPTER 10

CONCLUSION

In this dissertation, the APCBBA algorithm has been introduced as an extension

to the CBBA [6] and ACBBA [37] algorithms. The APCBBA algorithm has shown

to improve the original algorithm by improving the task allocation solution by an

average of at least 3.1% over CBBA, improving the robustness of the algorithm in

dynamic real-world environments with communication failures or limited communi-

cation capabilities, and introducing dynamic team forming. The APCBBA algorithm

can furthermore deterministically detect consensus within the fleet of agents by re-

questing the winning bid list from neighboring agents and determine consensus per

task. The latter reduces the response time for the first and possible subsequent tasks

from the time that the task was released. Although limited data is available, the

real-world flight testing has shown the APCBBA algorithm to be robust and produce

conflict free task allocation solutions.

An MILP model to the task allocation problem was developed and implemented

to provide a basis of comparison for the results achieved by the APCBBA and CBBA

algorithms. The MILP model gives an identical solution to an exhaustive search

algorithm 91% of the time. For the other 9% the solution was within 0.8% of the

exhaustive search algorithm. A major advantage of the MILP solution is the ability to

handle bigger task sets much better than the exhaustive search algorithm developed

for this research, but even the MILP solver will take several hours, if not preempted,

for tasks sets containing 14 or more tasks.

84



10.1 Future work

Although the APCBBA has shown real promise for future use in collaborative

UAS applications, more and extensive testing is necessary with dynamic conditions

and environments. Although the APCBBA algorithm has been stress tested through

real-world flight testing, it has not been tested in enough situations where conditions,

and in particular the wireless network, have been put to the test. The RAMS sim-

ulator, although capable of simulating a high-fidelity network in combination with

ns-3, does not have the ability to run scenarios where a certain percentage of the

wireless transmissions will fail. This will be necessary for further testing and better

determination of the robustness and optimality of APCBBA.

Currently, the GCS is an integral part of the system to release collaborative tasks

in simulation and during real-world flight testing. The storage of the released tasks

and the received solutions to the task allocation problem on the GCS is done using

an xml format and that is highly inefficient. In the futurei, task allocation algorithm

simulations, should not be dependent on the GCS to release the tasks. An additional

collaborative controller within the MCS module of the RAMS simulator should take

over the responsibilities of releasing tasks, collecting allocation information, and stor-

ing this for further processing and analysis in Matlab. The whole collaborative simu-

lation framework should be independent of the GCS and should be fully automated.

Additional statistics can be tracked within this collaborative controller to determine

the time between release of a task set and the assignment or execution of the set.

Although the MILP model was created for solving a multi-task multi-agent task al-

location problem, it supports single-agent problems as well. The MILP model would

make a great candidate for replacing the bundle algorithm explained in A but does

need to adhere to the DMG property. Making the MILP model compatible would
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require the cost function to be dependent on the previous task in the path, and would

result in the model becoming non-linear. Further research will involve how to handle

this non-linearity and make the MILP model suitable for execution within the existing

MCS framework.
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Appendix A

MCS BUNDLE ALGORITHM

A.1 Algorithm

The following algorithm creates an optimized local path (it does not in all in-

stances create the best path) for agent k given a set of tasks T .
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Algorithm 3 Bundle algorithm for N t tasks
1: MaxScore← 0

2: for all tasks in T do

3: for all task j in T not assigned do

4: for all Indexes m in P k do

5: Insert task j in P k at index m

6: for all tasks i in P k do

7: Calculate score Ski for task i

8: TotalScore← TotalScore+ Skj

9: end for

10: if TotalScore > MaxScore then

11: Store task j and index m

12: MaxScore← TotalScore

13: end if

14: end for

15: end for

16: Add task j with highest score to bundle Bk and insert into path P k at position

m

17: end for

A.2 Complexity

The bundle algorithm has a complexity of O
(
(N t)

4)
, which theoretical proof is

given below:

The algorithm starts with 4 for loops, the first loop runs for exactly N t times and

with every iteration a task is added to the bundle and path. The second loop runs for
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the number of tasks not assigned yet in N t which is getting smaller every run through

the outer loop. The third loops run for for every task in path P k after inserting the

new task, and includes the last loop recalculating for every task in P k the new score

after task j has been inserted. The final loop has a complexity of BigO1. The total

number of iterations depending on N t is then:

=
Nt∑
n=1

(N t − (n− 1)) ∗ n2

=
−∑
n=1

n3 + n2(N t + 1)

=
−∑
n=1

n3 +N tn2 + n2

Using summation identities:

=
N t2(N t + 1)2

4
+
N t2(N t + 1)(2N t + 1)

6
+
N t(N t + 1)(2N t + 1)

6

Some simplication:

=
N t4 + 4N t3 + 5N t2 + 2N t

12

Only considering the higher order polynomial gives us O
(
N t4
)
.
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Appendix B

MILP SOURCE CODE

Below is source code for a simple example of two agents and four tasks. The first

thirty lines of code are part of setting up the task problem in matrix form, from then

on the code is generating the MILP model using the Gurobi C++ API.

#inc lude <s t d l i b . h>

#inc lude <s t d i o . h>

#inc lude <sstream>

#inc lude ” gurob i c++.h”

#d e f i n e K 2 //!< Number o f agents

#d e f i n e T 4

#d e f i n e I T + K //!< Number o f ta sk s

#d e f i n e J I

#d e f i n e SIM TIME 1000 //!< Maximum s imu la t i on time [ s ]

#d e f i n e M SIM TIME

#d e f i n e ALPHA 0.9 //!< Time d i scount

/∗∗

General note : x−a x i s are agents , y−a x i s are ta sk s j , z−a x i s are i

∗/
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i n t main ( i n t argc , char ∗argv [ ] ) {

GRBVar ∗∗∗dvX ; // Task ass ignment d e c i s i o n v a r i a b l e

GRBVar ∗∗dvT ; // Task schedu l ing time

// ! \var Reward parameter f o r doing task j ( s i n c e s t a r t o f s imu la t i on )

double cR [ J ] = { 0 , 0 , 5000 , 6000 , 7000 , 2000} ;

// ! \var Release time o f task j [ s e c . ] ( abso lu t e time from beginning o f s imu la t i on )

double cS [ J ] = { 0 , 0 , 4 , 22 , 5 , 10} ;

// ! \var Deadl ine time o f task j [ s e c . ] ( abso lu t e time from beginning o f s imu la t i on )

double cD [ J ] = { 0 , 0 , 10 , 28 , 12 , 19} ;

// ! \var Duration parameter f o r doing task j

double cTau [ J ] = { 0 , 0 , 2 , 3 , 2 , 5} ;

// ! \var Cost parameter f o r doing task j a f t e r task i

double cC [ J ] [ I ] = { {0 , 0 , 0 , 0 , 0 , 0} ,

{0 , 0 , 0 , 0 , 0 , 0} ,

{0 , 0 , 0 , 2400 , 1200 , 1400} ,

{0 , 0 , 1000 , 0 , 2300 , 1500} ,

{0 , 0 , 1200 , 2500 , 0 , 3000} ,

{0 , 0 , 1400 , 2600 , 1000 , 0} } ;
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// ! \var Trave l ing time from task i to task j [ s e c ]

double cPs i [ J ] [ I ] = { {0 , 0 , 0 , 0 , 0 , 0} ,

{0 , 0 , 0 , 0 , 0 , 0} ,

{0 , 0 , 0 , 4 , 2 , 2} ,

{0 , 0 , 2 , 0 , 4 , 3} ,

{0 , 0 , 2 , 5 , 0 , 6} ,

{0 , 0 , 2 , 4 , 2 , 0} } ;

// ! \var Var iab l e s k = agents , j = ta sk s a f t e r i , i = ta sk s be f o r e j

i n t k , j , i ;

t ry {

GRBEnv env = GRBEnv(” gurobiLog . txt ” ) ;

GRBModel model = GRBModel( env ) ;

model . s e t ( GRB StringAttr ModelName , ”Task ass ignment ” ) ;

/∗∗∗ Creat ing 2D array f o r s chedu l ing t imes o f ta sk s ( rows are agents columns are ta sk s ) ∗∗∗/

dvT = new GRBVar∗ [K ] ;

f o r ( k = 0 ; k < K; k++){

dvT [ k ] = model . addVars ( J ) ;

model . update ( ) ;
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f o r ( i n t j = 0 ; j < J ; j++){

// Set v a r i a b l e to be semi−cont inuous

dvT [ k ] [ j ] . s e t ( GRB CharAttr VType , ’S ’ ) ;

// UB i s the deadl ine , s i n c e task cannot be scheduled passed dead l ine . Constra int 7

dvT [ k ] [ j ] . s e t ( GRB DoubleAttr UB , cD [ j ] − cTau [ j ] ) ;

// LB i s the r e l e a s e time , s i n c e task cannot be scheduled be f o r e r e l e a s e . Constra int 6

dvT [ k ] [ j ] . s e t ( GRB DoubleAttr LB , cS [ j ] ) ;

// Set v a r i a b l e name

std : : o s t r ing s t r eam vname ;

vname << ” t [ ” << k << ” ] [ ” << j << ” ] ” ;

dvT [ k ] [ j ] . s e t ( GRB StringAttr VarName , vname . s t r ( ) ) ;

}

}

model . update ( ) ;

/∗∗∗ Creat ing 3D array f o r binary d e c i s i o n v a r i a b l e X ( rows are agents , columns are ta sk s j , depth are ta sk s i ) ∗∗∗/

dvX = (GRBVar ∗∗∗)new GRBVar∗ [K∗J ] ;

f o r ( k = 0 ; k < K; k++){

GRBVar ∗∗temp = new GRBVar∗ [ J ] ;

f o r ( j = 0 ; j < J ; j++){
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temp [ j ] = model . addVars ( I ) ;

model . update ( ) ;

}

dvX [ k ] = temp ;

}

model . update ( ) ;

// Set s p e c i f i c a t i o n f o r dvX

f o r ( k = 0 ; k < K; k++){

f o r ( j = 0 ; j < J ; j++){

f o r ( i = 0 ; i < I ; i ++){

// Set v a r i a b l e to be binary

dvX [ k ] [ j ] [ i ] . s e t ( GRB CharAttr VType , ’B ’ ) ;

// Set upper boud to be 1 ( not sure i f nece s sa ry )

dvX [ k ] [ j ] [ i ] . s e t ( GRB DoubleAttr UB , 1 ) ;

// Set v a r i a b l e name

std : : o s t r ing s t r eam vname ;

vname << ”x [ ” << k << ” ] [ ” << j << ” ] [ ” << i << ” ] ” ;

dvX [ k ] [ j ] [ i ] . s e t ( GRB StringAttr VarName , vname . s t r ( ) ) ;

}

}

}
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// Create l i n e a r o b j e c t i v e exp r e s s i on

GRBLinExpr expr = 0 ;

f o r ( k = 0 ; k < K; k++){

f o r ( j = 0 ; j < J ; j++){

f o r ( i = 0 ; i < I ; i ++){

expr += cR [ j ] ∗ dvX [ k ] [ j ] [ i ] − (ALPHA ∗ (dvT [ k ] [ j ]−cS [ j ] ) ) − (cC [ j ] [ i ] ∗ dvX [ k ] [ j ] [ i ] ) ;

}

}

}

// Set Object ive func t i on f o r model

model . s e tOb j e c t i v e ( expr , GRB MAXIMIZE) ;

model . update ( ) ;

// Add bound c o n s t r a i n t s to X, c o n s t r a i n t 1

f o r ( i = 0 ; i < I ; i ++){

GRBLinExpr expr = 0 ;

f o r ( k = 0 ; k < K; k++){

f o r ( j = K; j < J ; j++){

expr += dvX [ k ] [ j ] [ i ] ;

}

}

// Set c o n s t r a i n t name

std : : o s t r ing s t r eam vname ;

vname << ”c2 [ ” << k << ” ] [ ” << i << ” ] ” ;
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model . addConstr ( expr <= 1 . 0 , vname . s t r ( ) ) ;

}

// Add bound c o n s t r a i n t s to X, c o n t r a i n t 2

f o r ( j = 0 ; j < J ; j++){

GRBLinExpr expr = 0 ;

f o r ( k = 0 ; k < K; k++){

f o r ( i = 0 ; i < I ; i ++){

expr += dvX [ k ] [ j ] [ i ] ;

}

}

// Set c o n s t r a i n t name

std : : o s t r ing s t r eam vname ;

vname << ”c3 [ ” << j << ” ] ” ;

model . addConstr ( expr <= 1 . 0 , vname . s t r ( ) ) ;

}

// Add c o n s t r a i n t 3

f o r ( k = 0 ; k < K; k++){

f o r ( j = 0 ; j < J ; j++){

f o r ( i = 0 ; i < I ; i ++){

GRBLinExpr expr = dvX [ k ] [ j ] [ i ] ;

f o r ( i n t h = 0 ; h < I ; h++)

expr += −dvX [ k ] [ i ] [ h ] ;
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// Set c o n s t r a i n t name

std : : o s t r ing s t r eam vname ;

vname << ”c4 [ ” << k << ” ] [ ” << j << ” ] [ ” << i << ” ] ” ;

model . addConstr ( expr <= 0 , vname . s t r ( ) ) ;

}

}

}

// Add bound c o n s t r a i n t s to T, c o n t r a i n t 4

f o r ( k = 0 ; k < K; k++){

f o r ( j = 0 ; j < J ; j++){

f o r ( i = 0 ; i < I ; i ++){

GRBLinExpr expr = dvT [ k ] [ j ] − dvT [ k ] [ i ] − dvX [ k ] [ j ] [ i ] ∗ ( cTau [ i ] + cPs i [ j ] [ i ] + M) ;

std : : o s t r ing s t r eam vname ;

vname << ”c5 [ ” << k << ” ]” << ” [” << j << ” ]” << ” [” << i << ” ] ” ;

model . addConstr ( expr >= −M, vname . s t r ( ) ) ;

}

}

}

// Add c o n s t r a i n t 5 , scheduled time should be past the r e l e a s e time

f o r ( k = 0 ; k < K; k++){

f o r ( j = 0 ; j < J ; j++){

f o r ( i = 0 ; i < I ; i ++){

GRBLinExpr expr = dvT [ k ] [ j ] − cS [ j ] ∗ dvX [ k ] [ j ] [ i ] ;
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std : : o s t r ing s t r eam vname ;

vname << ”c6 [ ” << k << ” ]” << ” [” << j << ” ]” << ” [” << i << ” ] ” ;

model . addConstr ( expr >= 0 , vname . s t r ( ) ) ;

}

}

}

// Add c o n s t r a i n t 6 , time scheduled should be be f o r e the dead l ine − durat ion o f task

f o r ( k = 0 ; k < K; k++){

f o r ( j = 0 ; j < J ; j++){

f o r ( i = 0 ; i < I ; i ++){

GRBLinExpr expr = dvT [ k ] [ j ] − M + (dvX [ k ] [ j ] [ i ] ∗ ( cTau [ j ] + M − cD [ j ] ) ) ;

s td : : o s t r ing s t r eam vname ;

vname << ”c7 [ ” << k << ” ]” << ” [” << j << ” ]” << ” [” << i << ” ] ” ;

model . addConstr ( expr <= 0 , vname . s t r ( ) ) ;

}

}

}

// Make sure dummy tasks are scheduled

f o r ( k = 0 ; k < K; k++){

GRBLinExpr expr = dvX [ k ] [ k ] [ k ] ;

s td : : o s t r ing s t r eam vname ;

vname << ”c8 [ ” << k << ” ]” << ” [” << j << ” ]” << ” [” << i << ” ] ” ;
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model . addConstr ( expr == 1 , vname . s t r ( ) ) ;

}

// Find s o l u t i o n

model . opt imize ( ) ;

// Write problem model

model . wr i t e (” main . lp ” ) ;

// Write s o l u t i o n

model . wr i t e (” main . s o l ” ) ;

// Clean up

f o r ( k = 0 ; k < K; k++){

d e l e t e [ ] dvT [ k ] ;

f o r ( j = 0 ; j < J ; j++)

d e l e t e [ ] dvX [ k ] [ j ] ;

d e l e t e [ ] dvX [ k ] ;

}

d e l e t e [ ] dvX ;

d e l e t e [ ] dvT ;

} catch ( GRBException e ){

std : : cout << ” Exception during opt imiza t i on ! ! ” << std : : endl ;

}

}
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