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Abstract

Cancer treatment by adoptive immune cell therapy (AIT) is a form of immunotherapy that
relies on the in vitro activation and/or expansion of immune cells. In this approach, immune cells,
particularly CD8+ T lymphocytes, can potentially be harvested from a tumor-bearing patient, then
activated and/or expanded in vitro in the presence of cytokines and other growth factors, and then
transferred back into the same patient to induce tumor regression. AIT allows the in vitro
generation and activation of T-lymphocytes away from the immunosuppressive tumor
microenvironment, thereby providing optimum conditions for potent anti-tumor activity.

The overall objective of this study is to: a) develop multi-modality (optical- and
radionuclide-based) molecular imaging approaches to study the overall kinetics of labeled
adoptively transferred T- lymphocytes in vivo, b) to non-invasively image and assess in-vivo,
targeting and retention of adoptively transferred labeled T-lymphocytes at the tumor site.

T-lymphocytes obtained from draining lymph nodes of 4T1 (murine breast cancer cell)
sensitized BALB/C mice were activated in vitro with Bryostatin/ lonomycin for 18 hours, and
were grown in either Interleukin-2 (IL-2) or combination of Interleukin-7 and Interleukin-15 (IL-
7/1L-15) for 13 days, (cells grown in IL-2 called IL2 cells, and cells grown in IL7/15 called
IL7/15 cells). In order to validate the methodology and to offer future clinical translation, both
direct and indirect cell labeling methods were expanded and employed. The first method was
based on direct in vitro cell labeling by lipophilic near-infrared (NIR) fluorescent probe, 1,1-
dioctadecyltetramethyl indotricarbocyanine iodide, (DiR), followed by intravenous (i.v.) injection
into BALB/C mice for multi-spectral fluorescence imaging (MSFI). The second method was
based on indirect labeling of T- lymphocytes through transduction of a reporter gene (cell

cytoplasm labeling Herpes Simplex Virus type 1- thymidine kinase (HSV-1 tk). The product of
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this reporter gene is an enzyme (HSV-1TK) which phosphorylates a radio labeled substrate 2-
fluoro-2-deoxy-1 - D- arabinofuranosyl-5-iodouracil ([*?*I]-FIAU) for Positron Emission
tomography (PET) imaging.

ATP based cell viability assay, flow cytometry and interferon-y (IFN-y) ELISA were used
to investigate if there are any changes in cell viability, proliferation and function respectively,
before and after direct and indirect labeling. The results showed that cell viability, proliferation,
and function of labeled 4T1 specific T-lymphocytes were not affected by labeling for direct
labeling methods at DiR concentration of 320pug/ml. For the indirect labeling method, the viability
and proliferation results showed that cell viability decreases as multiplicity of infectious (MOI)
increases. In particular, at MOI of 10 almost all cells die 3 days post transduction. At MOI of 5,
cells viability was < 30% and at MOI of 2 was < 60%. Cell viability was 80% at MOI of 1.

The results of optical imaging were as follows: when the recipient mice with established
4T1 tumors were injected with DiR labeled 4T1 specific T-lymphocytes, the 4T1 specific T-
lymphocytes (IL2 cells) infused into tumor-bearing mice showed high tumor retention, which
peaked 3 or 6 days post infusion depending on the tumor size and persisted at the tumor site for 3
weeks. In contrast, IL7/15 cells showed lower signal at the tumor site and this peaked on day 8.
On the other case when 4T1 tumor cells were implanted 1-week post-infusion of labeled T-
lymphocytes. IL2 T-lymphocytes moved out of lymphoid compartments to the site of subsequent
4T1 inoculation within two hours and peaked on day 3 and the signal persisted for 2 more weeks.
In contrast with infusion of IL7/15 cells, the signal was barely detected and did not show a similar
trafficking pattern as with I1L2 cells.

The results of the indirect labeling method, PET reporter gene (PRG) system (HSV-1tk /

[**1] FIAU ) showed that both IL2 and 1L7/15 cells were successfully transduced as verified ex
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vivo by real time PCR and western blot. T Cells transduction efficiency was assessed from cell
uptake study in comparison to stable transduced Jurkat cells which have transduction efficiency of
100 %. Both IL2 and IL7/15 cells showed lower transduction efficiency (< 30%) compared to
Jurkat cells. Consequently, PET imaging did not show a detectable signal of transduced T cells in
vivo. Biodistribution study was carried out on day 3 post [***I]-FIAU injections. Results were
consistent with the optical imaging results, except for IL7/15 cells. Transduced and untransduced
IL2 and IL7/15 cells were labeled with DiR and injected ( i.v.) into Balb / C mice and then
imaged by both imaging modalities (MSFI and PET) at the same time. MSFI images of
transduced I1L2 cell showed detectable signal starting from 2 hours, peaked at 72 hours and
persisted up to 2 weeks, while 1L7/15 cells were detectable at the tumor site starting at 24 hours,
peaked at 72 hours and persisted up to 2 weeks. By the end of this study animals were dissected
and tissue activities were counted using gamma counting and expressed as % Injected dose/gram
of tissue (%ID/gm). Transduced IL2 and IL7/15 cells showed higher %ID/gm than other organs at
lungs, liver, spleen, tumor, lymph nodes and bone/bone marrow. IL7/15 cells compared to 1L2
cells showed higher %ID/gm at same organs. Neither IL2 nor IL7/15 untransduced DiR labeled
cells showed any activity at tumor site, and their activities at other organs was very low compared
to transduced cells.

To investigate whether labeled T-lymphocytes will localize at tumor metastases or not,
and to study the difference in their migration patterns to the tumor site versus tumor metastases,
4T1 tumor cells were successfully transduced with HSV-1tk as confirmed by RT-PCR , western
blot and cell uptake study. Transduced 4T1 cells were implanted in the right flank or in the

mammary fat pad of the mouse. Serial PET imaging was carried out in the third and fourth week
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post tumor implantation to know when the tumor will metastasizes. PET imaging showed only

signal at the tumor site and no metastasis were detected.
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Chapter One: Statement of Aims

1.10bjectives

The overall objective of this project is to develop multi-modality in vivo imaging to study
the kinetics of labeled immune cells particularly T-lymphocytes sensitized specifically to inhibit
4T1 breast carcinoma tumor growth using Optical and PET imaging. This project intends to

address the following questions:

. What are the differences between T-lymphocytes grown in IL-2 versus IL7/15 in their
migration patterns? (Where do they localize, when do they localize at tumor site, how long they

persist, and do they retain their proliferation and functional abilities?)

. What are the differences between direct and indirect labeling methods in terms of their
specificity and sensitivity?

. Do T-lymphocytes localize at the tumor metastases? What are the differences in T-cell
homing between primary tumor and metastases?

1.2. Specific aims

1) To compare direct and indirect T-cell labeling methods, in terms of their specificity

and sensitivity.
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2)

3)

4)

Using quantitative multi-modality (optical and PET) imaging the proliferation,
trafficking and persistence of immune cells at various time points in vivo will be
studied.

To compare the trafficking and homing of T-cells grown in IL-2 versus cells grown in
the combination of IL-7 and 1L-15.

To investigate the differences in trafficking and homing capabilities of labeled T-

lymphocytes at primary tumor versus tumor metastases.

1.3. Significant and impact

Information from this project could provide direct in vivo data on delivery, localization,

retention, and function of labeled immune cells within the context of adoptive immune cell

therapy. This information is vital to understand the in vivo trafficking behavior to guide

translation of immune cell therapy in the clinical setting.

1.4. Innovation

This work is novel in two important aspects:

1)

2)

Employing two different imaging modalities to study the trafficking and homing of T-
lymphocytes grown in different cytokines (IL-2 versus the combination of IL7and IL-
15).

Applying two different imaging modalities to image labeled T-lymphocytes and
labeled 4T1 tumor in the same animal at the same time to know the difference in their

migration pattern between primary tumor and metastases.
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Chapter Two: Breast Cancer

2.1 Biology of Breast Cancer

Breast cancer is the most common form of cancer in women, affecting one in every eight
women in the United States [1]. Normal breast has six to nine overlapping sections, called lobes.
Within each lobe there are many smaller lobules, which end in dozens of tiny bulbs that can
produce milk. The lobes, lobules and bulbs are all linked by thin tubes called ducts. These ducts
lead to the nipple in the center of a dark area of skin called the areola (figure 1). Fat fills the
spaces around the lobules and ducts. There are no muscles in the breast, but muscles lie under
each breast and cover the ribs. Each breast also contains blood and lymph vessels. The lymph
vessels lead to small bean-shaped structures called lymph nodes. Clusters of lymph nodes are

found in the axilla (under the arm), above the collarbone and in the chest [2].
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Figure 1 normal anatomy of the breast. Shows the normal structure of lobes, lobules and ducts.
Lymph nodes are shown in the axilla region. Adopted from [2]

Normal breast growth and development are regulated by the complex interaction of many
hormones and growth factors include estrogens, progesterone, androgens, glucocorticoids,
prolactin, thyroid hormone, insulin and insulin-like growth factors (IGF-1 and IGF-2), fibroblast
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growth factors (FGF), and epidermal growth factor (EGF)/transforming growth factor alpha
(TGF-a) [3]. The interaction of growth factors, cytokines, and hormones with specific membrane
receptors triggers a cascade of intracellular biochemical signals, resulting in the activation and
repression of various subsets of genes. Several of these hormones have been shown to play an
active role in the development of breast cancer. For example, estrogen stimulates breast cell
division, which can increase the risk of breast cancer. Furthermore, breast cells are not fully
mature in girls and young women who have not had their first full-term pregnancy [2]. Breast
cells which are not fully mature bind carcinogens more strongly and they are not as efficient at
repair DNA damage as mature breast cells. Breast cancer, like any other cancer, takes years to
develop, and it can take place at any part of the breast anatomy. In terms of histology, breast
cancers are heterogeneous, they are mainly ductal, but also lobular, mixed ductal and lobular,
cribriform, mucinous and tubular carcinomas [4]. Figure 2 illustrates the stages of breast cancer
development at the ductal part. For some reason mostly DNA mutations in any of breast genes,
normal cells divide rapidly and causes ductal hyperplasia, which with time develop to atypical
ductal hyperplasia then ductal carcinoma in situ (DCIS) and in then becomes DCIS with
microinvasion (DCIS-MI).

2.2. Subtypes of breast cancer

Based on the hormones and growth factor regulations, breast cancer has several subtypes, the

most commons are:

Basal (Triple Negative) Breast Cancer
The basal subtype is also called “triple negative” cancer, because the cells are negative for three

common markers: estrogen receptors (ER), progestin receptors (PR), and human epidermal
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growth factor receptor-2 (HER-2). Although the basal subtype is only found in about 15% of
breast cancers, it has been shown to be aggressive, unresponsive to treatment and, ultimately,
indicative of a poor prognosis [5]. Basal-type breast cancer is diagnosed more often in African
American women than in Caucasian women in the United States [6]. Compared to other subtypes,
it is poorly defined by mammography and best detected by MRI. It is also often detected as grade
I11, tumors, resulting in more aggressive and poor overall prognosis [7].

HER-2 Over-expression Breast Cancer

As the name suggests, HER-2 over-expressing tumors have extra copies of the HER-2 gene and
over-produce the resulting growth-enhancing protein. This protein is overexpressed in about 20%
of breast cancers [8]. Biologically, the up-regulation of HER2 gene is associated with increased
proliferation, angiogenesis, and invasiveness [9].

These tumors tend to grow quickly but are responsive to targeted drug treatment with compounds
like, Trastuzumab and more recently other drugs such Lapatinib and Pertuzumab which have
shown specific activity against HER2 positive breast cancer and an increase in the median
survival up to 2 years [10].

Luminal A and B Breast Cancers

Luminal A and B subtypes are both estrogen-receptor-positive (ER+) and low-grade, with luminal
A tumors growing very slowly and luminal B tumors growing more quickly. Luminal A tumors
have the best prognosis. Several studies have been conducted using microarray technology, to
study breast cancer subtypes showed that, for different gene expression profiles, prognosis and
treatment response vary for different subtypes [11]. Luminal B compared to luminal A shows
lower expression levels of ER or estrogen-regulated genes, lower or no progesterone receptor

(PR) expression, higher tumor grade, higher expression of proliferation-related genes and
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activation of growth factor receptor signaling pathways. Also luminal B tumors have lower
sensitivity to endocrine treatment and higher sensitivity to chemotherapy than luminal A tumors

[12].
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Figure 2 breast cancer (DCIS-MI) developments. Ductal hyperplasia develops to Atypical ductal
hyperplasia then ductal carcinoma in situ. With microinnovation at late stages become ductal
carcinoma in situ with microinvasion (DCIS-Ml).adopted from [2]
2.3. Treatment of breast cancer

Treatment options of breast cancer include; surgery, chemotherapy, radiotherapy, hormone
therapy and immunotherapy. The choice of treatment is based on the tumor subtype and stage of
the disease. Several studies showed that, combination of treatment options (adjuvant therapy) is
more effective than single agent therapy. Radical mastectomy (local surgery) followed by
radiotherapy produce local control. Chemotherapy is preferred in cases of receptor-negative
tumors, acquired resistance to hormonal therapy and aggressive visceral metastatic diseases.
Primary chemotherapy is increasingly used in the treatment of locally advanced tumors with
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increased rates of breast-conservative surgery. In case of hormone receptor positively and absent
of visceral, life-threading disease, endocrine manipulation is the treatment of choice [13].
Endocrine manipulation usually done, using Tamoxifen or ovarian ablation or both (both are more
effective), for postmenopausal patients [13]. Immunotherapy of breast cancer as an adjuvant
therapy, based on active immunizations or passive therapy has in some instances been shown to
prevent tumor recurrence and improve patient survival [14]. The rationale behind immunotherapy
for breast cancer can be highlighted in two points: i) Breast screening provides an opportunity to
employ immunotherapy in early stage of tumor development, when the immunosuppressive
effects of the tumor are relatively low, ii) Breast cancer expresses specific tumor antigens which

can be utilized to ex vivo engineer T-lymphocytes to yield tumor specificity [15].

2.4. Adoptive Immune cell Therapy (AIT)

The first observations that the immune system has antitumor effects against sarcoma tumors
were noticed in 1890s by William Coley [16]. After years later, researchers noticed that, the major
mediators inducing this effect are T cells [17] and based on this rationale the concept of Adoptive
cellular immunotherapy (ACI) or Adoptive cell transfer (ACT) or Adoptive immune cell therapy
(AIT) was introduced [18]. The immune response to genetic changes in transformed tumor cells
appears from the accumulation of antigen-specific T cells within the tumor and draining lymph
nodes [19]. T-cells function as part of the adaptive immune system, to attack and kill tumor cells;
unfortunately tumors keep growing because the anti-tumor immune response is either not
sufficiently strong to eliminate tumor cells or the anti-tumor immunity is suppressed by regulatory
cells or other factors secreted by the tumor. In the past, the immune system has been thought to

play a role in the recognition and elimination of nascent malignancies through so called
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immunosurveillance [20]. However, because of a lack of concrete evidence, the hypothesis of
immunosurveillance had been abandoned and recently a new concept called immunoediting
which is comprised of three phases; elimination, equilibrium and escape phase, has been
demonstrated:

1. Elimination phase: during the elimination phase, T cells (CD4, CD8, NK and y0 cells)
appear to recognize transformed cells early in the development of tumors; the mechanism
of this recognition is not fully understood but sufficient to kill some tumors.

2. Equilibrium phase: in the equilibrium phase, tumors that are not completely eliminated
undergo a selection process termed immunoediting whereby tumor cells “ hide” their
antigens by weak expression or endocytosis, thereby allowing tumor cells to escape
immune response, survive and accumulate mutations.

3. Escape phase: in the escape phase, when tumors are fully developed and can be detected,
they can promote immune suppression through recruitment of suppressive cells such as
regulatoray T cells (T-reg) and production of suppressive cytokines as IL-10 and TGFR}
[21- 23].

AIT could overcome the limitations described above, because it relies on enhancing the
patient’s immune system eX Vivo isolated from the suppressive environment of tumor cells. It is
based on isolation, expansion, and re-infusion of large numbers of tumor specific patient’s own
immune cells, particularly cytotoxic T lymphocytes, to induce tumor regression. Potentially, AIT
could be an effective treatment strategy, because it facilitates direct interaction between immune

cells and tumor cells without adverse effects on normal cells.
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In order to understand the dynamics and the process of AIT and to monitor the migration,
localization and retention of labeled immune cells, in vivo studies, in live subjects and within

the intact physiological environment, are needed.

2.5. Adoptive Immune Cell Therapy (AIT) of breast cancer

Breast cancer is a systemic disease with primary local tumor and disseminated metastatic
disease. The aim of Surgery, chemotherapy and radiotherapy is to induce primary tumor
regression over the specific treatment regimen. Clinically in breast cancer, micrometastatic tumor
can be eliminated using hormone therapy, chemotherapy and AIT [24]. In wide variety of breast
cancer, the tumor-infiltrating T lymphocytes, particularly type-1 helper T cells (Thl) and
cytotoxic T lymphocytes cells (CTL) are correlated with the absence of metastatic invasion and
increased overall survival rates [25]

Several studies in AIT of breast cancer highlighted that, the success of AIT is based on the
ex vivo activation of T cells. It occurs through two stages: an ex vivo stage involves incubating T-
lymphocytes with appropriate antigens or non-specific activators (either antibodies or chemicals)
and growth factors that mimic the in vivo activation environment. One such environment has been
achieved by pulsing T-lymphocytes in Bryostatin 1 and lonomycin, which mimic TCR signaling
to trigger the T-cell activation pathway. Bryostatin 1 activates Protein kinase C (PKC) and
lonomycin increases intracellular calcium, and together they lead to activation of transcription
factors: nuclear factor Kp (NF Kf) and nuclear factor of activated T cells (NFAT) respectively.
These transcription factors move to the nucleus and initiate the transcription of IL-2 and other

genes which are essential for T-cell proliferation [26-28]. The in vivo stage through the interaction
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between MHC—peptide (Major Histocompatibility Complex) expressed on antigen- presenting
cells e.g. dendritic cells (DCs) to initiate T-cell activation [28].

The success of AIT relies on manipulation of tumor specific T-lymphocytes to produce
large numbers of these cells as well as optimization of effector functions. AIT allows the
generation and activation of T-lymphocytes away from the suppressive tumor environment
providing the optimal environment for anti-tumor responses [29]. One example of AIT success in
the treatment of advanced metastasized breast cancer patients was shown by Christoph Domschke
and his colleagues [30]. They demonstrated that, adoptively transferred T-cell clones (tumor
antigen-reactive type-1 T cells) persist in vivo and preferentially localize to tumor sites and
mediate an antigen-specific immune response characterized by metastases regression and
significantly longer overall survival in 7 of 16 patients. Another study showed that the re-infusion
of T lymphocytes, engineered to express Tumor- specific TCR, induce regression in 13% of
patients [31]. The question is; why some patients respond to the therapy and some do not?
Tracking the movement, proliferation and viability of re-infused tumor specific T-lymphocytes by
multi-modality imaging in serial images at different time points during the treatment could define
the parameters that lead to successful AIT. Therefore, In order to understand the dynamics and the
process of AIT, noninvasive and repetitive multimodality imaging of labeled immune cells
provides the opportunity to study in vivo trafficking, homing, tumor targeting, activation,
proliferation and persistence of transferred labeled cells [32].

This thesis aims to contribute new knowledge in this context, by direct in vivo imaging

of pathways associated with the process of AIT.
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Chapter Three: Molecular Imaging of AIT

3.1. Introduction

Molecular imaging is the visualization, characterization, and measurement of biological
processes at the molecular and cellular levels in humans and other living systems [33]. The main
advantage of in vivo molecular imaging is its ability to characterize diseased tissues without
invasive biopsies or surgical procedures and with this information in hand; more personalized
treatment planning can be applied [34]. Different imaging modalities are used for molecular
imaging, including optical (fluorescence and bioluminescence), positron emission tomography
(PET), single photon emission computed tomography (SPECT), magnetic resonance imaging
(MRI) [35] and more recently the development of Multi Spectral Optoacoustic Tomography
(MSOT) imaging [36]. Optical imaging utilizes light photons at different wavelengths at visible
and infrared ranges resulting from fluorescent and biolumencent events. The application of optical
imaging is limited in humans because the wavelength of the probes emitted in the biolumencent
or fluorescent processes are too weak to penetrate deep and thick layers of tissues that are blood-
rich tissues. In optical imaging, low noise images require acquisition times of about 5-10 minutes,
which may increase the thermal noise, but this can be reduced with thermo-electric cooler.
However, this technique is widely used in molecular imaging due to its simplicity and cost
effectiveness [37]. Radionuclide-based imaging methods (PET and SPECT) are based on gamma
(y)-positron and single photon emitting radionuclides used to radiolabel probes specific for the
process under study. Clinical PET has spatial resolution of about 5mm, while animal micro-PET
resolution is about 1.5 mm [38]. PET compared to SPECT has higher sensitivity and both are
independent of tissue depth.

MRI is widely used for soft tissue imaging. The physics of MRI is based on the alignment

of the protons to magnetic field (MF) when they are placed in strong MF and form longitudinal
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magnetization. Radio frequency (RF) pulses are used to alter the protons alignment and tilts the
longitudinal magnetization to be transversal magnetization , when the RF is turned off, the
protons realign with magnetic field again and generate an electromagnetic flux that provide
information about tissues under study. Due to this, the image acquisition time is long but high
spatial resolution and good image contrast is achievable [39].

Table-1 summarizes the advantages and limitations for each imaging modality and their
application in cell-based imaging and trafficking. The role of molecular imaging in AIT is to
optimize and maximize the chance of AIT success for each individual patient as the cells are the
patient’s own cells [40]. A number of variables need to be optimized for each individual patient to
obtain the desired outcome of AIT. As an example of these variables, is the number of cells to
effectively treat a certain tumor. Measuring tumor size and injecting different numbers of cells
will provide information about the effective number that has to be injected for each individual

patient.
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Table: 1 demonstrated some characteristics of each modality regarding to their use in cell therapy
monitoring and imaging.

Modality | Imaging probe Advantages Limitations Application in
Used to track AIT
cells
PET F-FDG, Unlimited depth Radiation exposure
¥ FHBG penetration, Expensive, long Has been used
BE_FEAU, | Whole-body imaging, | acquisition time (minutes
2-FIAU quantitative data, to hours), low spatial to label
®Cu-PTSM | anatomical and resolution when used
897r- Oxine | physiological alone directly or
information when
combined with CT indirectly
SPECT "In-Oxine, | Unlimited depth Quantitative, unlimited | T cells, DC
¥™Tc.HMPAO, | penetration, depth penetration, Low
1231257131 F|AU | Whole-body imaging, | spatial resolution and and other
quantitative data, ionizing radiation.
anatomical and immune cells

physiological
information when
combined with CT

MRI Iron oxide High spatial resolution, | Expensive,
nanoparticles | Unlimited depth Limited sensitivity
(SPIO), penetration, no ionizing | (require large amount of
Gadolinium- radiation, the probe which might be
chelates Whole-body imaging, toxic to the subject under
Excellent soft-tissue study) and long
contrast acquisition time
Optical Organic dyes, | Fast, Limited depth penetration
Imaging fluorescent simple ,inexpensive, (< 1cm)

proteins,
quantum dots
and luciferase in
bioluminescence
imaging

quantitative, high
sensitivity, and no
ionizing radiation

for monitoring
cell
localization
trafficking
And
persistence
invivo in
animals and

human.

[*°F]-FDG [ 18Ilig'l fIuoro-2-deo>1<g/-d-glucose, [ *°F]-FHBG= [ 4-°F- fluoro-3- (hydroxymethyl)
F

butyl] guanine,

F-FEAU=2-

- fluoro-2 -deoxy-1-beta-d-arabinofuranosyl-5-ethyluraci

174
[, =1

FIAU = 2'-fluoro-2 - deoxy- 1-beta-D-arabinofuranosyl-5- ***I- iodouracil, **Cu-PTSM= ®Cu-

pyruvaldehyde-bis

(N*

methylthiosemicarbazone),

hexamethylpropyleneamine oxin

#¥MTc-HMPAO=

99m-|-C_
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3.2. Labeling approaches

Molecular imaging of immune cells requires labeling of these cells directly or indirectly.
Direct labeling is based on the incubation of activated and in vitro expanded immune cells in the
labeling probe for a few minutes (10-30 minutes) followed by washing then reinfusion into a
subject under examination, followed by serial images at different time points. This method
depends on the ability of a cell to retain the label. The advantages of direct labeling approach are
relatively easy, low expenses, and well established methods. However, this method does not allow
Long term monitoring of labeled cells because the label is lost or diluted as a result of apoptosis
or mitosis respectively [41,42].

Indirect labeling is achieved through transduction of immune cells with a reporter gene,
for example; Herpes Simplex Virus type 1-thymidine kinase (HSV-1 tk, cell cytoplasm labeling).
The product of this reporter gene is an enzyme that phosphorylates a radio-labeled substrate 2-
fluoro-2-deoxy-1 B- D- arabinofuranosyl-5- ***I iodouracil [ **I ]-FIAU for PET imaging.
Figure 3 demonstrates the strategies of direct and indirect labeling approaches. Figure 4 showed
schematic representation of the indirect labeling mechanism and trapping of the labeled probe by

the cell.
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Figure 3 direct and indirect labeling strategies. Direct labeling (1- immune cells harvested from
donor animal and ex vivo activated and expanded, 2- cells labeled with radio or optical probe, 3-
cell reinfused to same strain host animal bearing same tumor, 4- serial imaging over specific
period of time preformed). Indirect labeling (1- immune cells harvested from donor animal and ex
vivo activated and expanded, 2- cells transduced with reporter gene (RG) using viral vector
carrying RG, waiting few days for gene expression and RG enzyme production, 3- transduced
cells reinfused to same strain host animal bearing same tumor, 4- a substrate of the RG enzyme
injected and serial imaging over specific period of time preformed) [43].
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Figure 4 the indirect labeling method from cell transduction to imaging. Viral vectors are used to
transduce cells with specific reporter gene (RG), once the transduction is established and the RG
is integrated into cell genome, transcription and translation controlled by specific promoter occur.
The product of RG translation is an enzyme which will phosphorylate specific probe to be trapped
in the transduced cells [44].

Indirect labeling method allows for reliable, stable and harmless visualization of cellular
trafficking, persistence, proliferation and function at target site. Furthermore, it permits long-term
cell monitoring (months) if the RG is integrated into target cell genome [45]. However, this
approach is limited by targeting or delivery of the RG to cell under transduction, integration,
activation, amount or level of RG (transduction efficiency), RG expression and persistence over
time and immune response problems.

A number of RGs have been developed for radio and non radiotracer (Bioluminescence) imaging,
(listed in table 2). Three categories are identified based on the RG product: transporter, enzyme
and receptor. The transporter group includes the sodium iodide symporter (NIS) and the

norepinephrine transporter (NET). The enzyme classification includes herpes simplex virus 1

thymidine kinase (HSV1-tk) gene and the HSV1-tk mutant (HSV1-sr39tk). The receptor group
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includes Specific membrane receptors (SSTrs), which mediate the various actions of somatostatin,

which is a peptide that inhibits the release of growth hormone. RG applications initially were in

gene therapy and adoptive cell-based therapies. Recently, noninvasive in vivo reporter gene

imaging is likely to include: (a) quantitative monitoring of gene therapy vectors for targeting and

transduction efficacy in clinical protocols by imaging the location, extent and duration of

transgene expression; (b) monitoring of cell trafficking, targeting, replication and activation in

adoptive T-cell and stem/progenitor cell therapies; and (c) assessments of endogenous molecular

events using different inducible reporter gene imaging systems [46].

Table 2 RGs classifications based on their products and their corresponding probes [46].

Class RG RG probe (RGP) Imaging modality
Receptor [ **In] DTPA-Octerotide
SSTr2 [ *™Tc]P829 SPECT
[ %™Tc]P2045
Transporter NIS [i;mTc] Demotatel SPECT
[ **1] lodine PET
SPECT
NET [ %¥™Tc ] Pertechnetate
[ 1] 1odine
[ %] MIBG
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123,124,125,131
[ | ]-FIAU PET and SPECT
HSV1-sr39tk [23124425131] 1.1/ DU PET
[123,124,125,131| ]-VFAU pET and SPECT
Enzyme [123,124,125,131| ]_IVFRU PET and SPECT
[*°F ]-FEAU PET
[*°F ]-FHBG
[*°F ]-FHPG PET
[°F ]-FIRU PET
18 1.
[**F ]-FUdR PET
Egﬁﬂélﬁﬁgﬁfea;e luciferin Bioluminescence
coelenterazine Bioluminescence

3.3. PET imaging
3.3.1. Decay and annihilation

PET imaging was developed several decades ago. Currently, it is playing an important role in
the diagnosis, staging and therapy monitoring of different types of cancer [47]. PET probes or
tracers are radiopharmaceutical compounds labeled with a positron-emitting radionuclide. The
most widely used PET tracer is the fluorinated analogue of glucose fluorodeoxyglucose (FDG)
labeled with *®F due to the increased utilization of glucose by brain and heart normal cells and
also malignant cells. Positron emitting radionuclides are neutron- deficient isotopes which reach
stability through nuclear transformation of proton to neutron (figure 5a) with emission of positron
(positive electron e* ) and neutrino. The maximum energy of emitted positron depends on the
isotope, it ranges from 0.6 MeV of ‘®F to 3.4 MeV of %Rb [51]. The emitted positron travels a
certain range depending on its energy, which will be lost through interactions with surrounding
tissues until it annihilates with an electron (figure 5b). The result is 2 annihilation gamma rays,

0.511 MeV energy each emitted in opposite directions (about 180° from each other) and detected
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in coincidence within time window of 2t ns. The distance traveled by the positron from the decay
event to the annihilation event (positron range) and the non-linearity of the annihilation gamma
rays cause loss of spatial resolution that cannot be recovered during image reconstruction.
3.3.2. Coincidence events

Three coincidence events in PET are identified as: true, scattered, and random (figure 6). True
coincidence occurs when both photons from an annihilation event are detected by detectors in
coincidences and no other event is detected within the time window. A scattered coincidence
occurs when at least one of the detected photons undergoes Compton scattering prior to detection.
Scattered coincidences add background to the true coincidence, decreases image contrast and
cause overestimating of the isotope concentration. Random coincidences occur when two photons
are not arising from the same annihilation event and detected within the convenience time

window [48].
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Figure 5 demonstrations of the positron emission and annihilation. 5a An unstable nuclide
with an extra proton which decays into neutron, positron and neutrino. 5b positron travels
a certain distance depends on its energy then annihilates with an electron and the result 2
gamma rays (511Kev each) emitted in opposite direction about 180° away from each
other.

A

True Coincidence Scattered coincidence Random coincidence

Figure 6 A true coincidence detection occurs when the two gamma rays are detected from one
annihilation event in the time window. B if at least one of the gamma photons under goes
Compton scattering, and both photons still detected in the time window, scattered coincidence has
occurred. C random coincidence occurs when both photons detect in the time window and are
from deferent annihilation events.
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3.3.3 PET Radionuclides used for imaging in AIT

Avariety of radionuclides has been used to track and monitor labeled cells in vivo. The common

radionuclides are listed in table 3. ®F is widely used as PET radionuclide in many applications

due to its short half-life and fast clearance from subject under study. However, it requires rapid

radiochemistry and immediate delivery. **Cu and '*I have relatively longer half-lives making

them more acceptable for long term tracking and monitoring of labeled cells.

Table 3 Isotopes and examples of their radiotracers used to track immune cells for PET imaging.

Nuclide & | Mechanism of cell labeling | Half-life | Decay modes | Maximum production
Radiotracer positron
energy (MeV)
and yield (%)
F.EDG | Cross cell membrane by 109.8 EC,R* 0.634 %0 (p ,n) °F
transporters minutes (96.7 %) Ne (d, o) °F
**Cu-PTSM | Lipophilic cross cell 12.7 EC,R",R |0.653 (17.4%) | ®*Ni (p, n)**Cu
membrane through passive
diffusion hours
|- FIAU | Trapped by cell through 4.18 days EC,R* 2.138 (23.0%) | *°Te (p,3n) ***I
phosphorylation by viral
thymidine kinase produced
by transduced cells
%9Zr-Oxine | Lipophilic cross cell 3.26 days R* 1.74 (12%) Y (p, n) ¥zr

membrane through passive
diffusion

3.4. Optical Imaging

3.4.1. Introduction

Optical imaging is noninvasive in vivo imaging with light photons detected by charged

coupled device (CCD) detectors made from silicon crystals which have high sensitivity to light.

Two common types of optical imaging are well-known in the realm of molecular imaging;

fluorescence and bioluminescence imaging. In the Fluorescence imaging an excitation light of one
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wavelength in the range between 395-600 nm illuminates the subject under study and an emission
light with wavelength higher than the excitation wavelength detected by CCD detector [49]. The
use of near-infrared probes (spectrum range 700-1000nm) for optical imaging maximizes tissue
penetration because hemoglobin and water which are the major absorbers of light have lowest
absorption coefficients in the infrared range. In bioluminescence imaging only the emission light
is detected by CCD detectors and no excitation light is used in this technique. The most
commonly used bioluminescence probes are reporter genes, Firefly or Renilla Luciferase ( FLuc
or RLuc respectively). Their substrates are Luciferin for FLuc and Coelenterazin for RLuc. In
case of using FLuc, cells transfected by FLuc gene and express the Luciferase enzyme that will
oxidize the Luciferin ( given as i.v. injection at different time points) in the presence of oxygen,
ATP and magnesium (Mg?") to produce Oxyluciferin and light which will be detected by CCD
camera to be quantified and process image reconstruction. The main advantage of
bioluminescence imaging is that it can detect very low signal and the background signal is very
low. But the efficiency of the transmission light is limited and depends on the tissue type. Skin
and muscle have highest transmission, whereas highly vascular organs such as liver and spleen
have lowest transmission because of the absorption of the light by oxyhemoglobin and
deoxyhemoglobin [50 ].
3.4.2 Multi-spectral fluorescence imaging (theory and concepts)
3.4.2.1. Florescence (definition, emission and excitation spectrum)

Fluorescence is the emission of light that occurs rapidly (around one million of a second)
after illumination. When the light emission takes longer time is called phosphorescence. Two
major problems are encountered with fluorescence measurement: first, fluorescence is emitted by

the fluorescent molecule such as dyes in all directions and most imaging systems are designed to
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capture light coming from particular direction. Second, it is difficult to obtain identical excitation
of the total fluorescent molecules in the subject under study [51]. Fluorescent materials always
emitted light with longer wavelength than the exciting light. The differences between wavelengths
of emission and excitation lights is called Stoke’s shift. The range of the excitation wavelengths
known as absorption spectrum, while the emitted light covers range of wavelengths known as
emission spectrum. In most cases there is overlap between the excitation and the emission
spectrum.

3.4.2.2. Autofluorescence (definition and multispectral analysis solution)

Some biological materials such as vitamins, hormones, and enzymes are naturally
fluorescent. Resulting strong fluorescent signals interfere with the signal of specific labeling
probe and cause unwanted background which known as autofluorescence. Animal skin, fur and
food, particularly if the food contained Chlorophyll, are strong sources of the autofluorescence
signals [52]. Excitation and emission filters are used to reduce this problem. Both filters should be
chosen to match the maximum excitation and emission wavelengths of a specific probe.
Multispectral imaging systems provide a unique solution to the autofluorescence problem using
multispectral analysis. It is based on the fact that all fluorescent materials produce specific
emission spectra. Multispectral analysis generates spectral curves for the various fluorescent
materials and autofluorscence curves in the subject under study. Based on this technique a series
of images are captured called image cube taken at specific wavelength. Using sophisticated
algorithms, the contribution of autoflourscence to the image can be removed, and specific

fluorescence spectra for specific probe are separated.
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3.4.2.3. Multi-spectral imaging system (Maestro2)

The multi-spectral imaging system used in

Inside Maestro 2 . . o .
this project is shown in figure 7. The various

Emission Filter
Wheel
Custom . "
components of the system include, high-
Zoom Lens
Liquid Crystal resolution, scientific- grade CCD imaging
Light-tight Tunable Filter
Imaging Ll sensor, solid-state liquid crystal (LC)
Enclosure
Scientific-Grade wavelength  tuning element, spectrally
Cooled CCD
Heated Camera . . )
g optimized lens and internal optics, an
Platform and ] . . o ]
Chamber excitation light source and emission filter
Integrated
Anesthesia
ilizriration i assembly. The system has a control panel
Source and

with switches for the excitation lamp, shutter,

Excitation
Filter Wheel

and white interior lights. It also displays the
system statues such as the interior temperature

and current filter wavelength.

A
- = -

Figure 7 Multispectral fluorescence imaging system (Maestro2 at CMI/VCU). Wavelength range =
500-950 nm; FOV = Max 3 mice; Spectral Unmixing and Dynamic Contrast Enhancement (DyCE™)
allows quantitation of temporal biodistribution of fluorescent markers at much earlier time points (first
few seconds following injection).
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3.5. Labeling and imaging of T lymphocytes (literature review)

Noninvasive in vivo imaging of adoptively transferred T-lymphocytes requires an
effective and mild labeling methodology and the right imaging technology direct labeling enables
the imaging of cells labeled ex vivo and reinfused into the patient or subject who is being
examined. Radionuclide based direct labeling probes for SPECT/PET imaging includes include,
[*"1n]-Oxine, [**F-]FDG,[*™Tc]-HMPAO, and[**Cu]-PTSM. These have been used to monitor
the migration of T-lymphocytes in vivo [53, 54]. However, these techniques do not permit long
term monitoring due to the short physical half-life of the radionuclides, relatively low level of
radioactivity per cell, and in certain instances, are limited by significant cell toxicity [55]. On the
other hand, indirect labeling utilizes imageable reporter protein/probe combinations and rely on
the ex vivo transduction of a relevant reporter gene into the immune-competent cells. Following
reinfusion of the transduced cells into the subject, the product of the reporter gene can be imaged
by injecting a suitable radiolabeled substrate. Herpes Simplex Virus Type-1 Thymidine Kinase
(HSV1-tk) is such a PET reporter gene (PRG) and is one of the most commonly used indirect
methods to image adoptively transferred T-lymphocytes in animals and patients, and it can be
imaged with various substrates such as[***1]-FIAU, [**!I]-FIAU, [*®F]-FEAU and [‘*F]-FHBG
[58,59]. The sodium iodide symporter (NIS) is another reporter gene that has also been evaluated
for imaging cells of the immune system in immortalized macrophage cell lines genetically
engineered to express NIS and GFP (RAW264.7/hNIS-GFP) [56]. Using [***I-Nal PET imaging,
these investigators monitored macrophage migration towards inflamed tissue. In addition to **I,

9mTe0,, 1231, 12, [*®F]-tetrafluoroborate can also be used as substrates for NIS [57].
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Radionuclide based methods are useful in the clinic due to the ability to image signals
from deep tissues. However, the logistics of radionuclide techniques are more demanding, which
makes them less cost effective for preclinical investigations. Non-radioactive agents, such as
fluorocarbon-based probes, have also been used for efficient direct ex vivo labeling of cells, and
used in conjunction with *F MRI for in vivo detection and imaging [58]. This method, which
involves the use of an autologous dendritic cell vaccine to treat colorectal cancer, is currently
being evaluated in humans (personal communication). This represents the first clinical trafficking

study of a live cell cancer vaccine which has been visualized by MRI in the United States.

On the other hand, optical methods are relatively easy, require simpler imaging equipment
and are cost effective, but are not very useful in the clinic due to the lack of effective technology
that can detect optical signals from deep tissues. However, optical labels, both direct and indirect,
could be very useful for research and development of various strategies aimed at improving
immune cell therapy. One cost effective approach is to use optical reporter proteins such as firefly
or renilla luciferase to label the cells and monitor them by optical imaging [59, 60]. However,
these are currently limited to animal models and their success relies on the successful stable
transduction of the reporter gene and the persistence of the reporter gene expression over time. A
combination of direct labeling strategy and optical imaging methodology would be ideal, in terms
of simplicity and cost effectiveness, for monitoring cell trafficking in preclinical studies. This
could be extended to clinical investigations if a suitable imaging component such as *?*I or *°F is
included in the direct cell labeling strategy.

Studies describing optical imaging of directly labeled immune cells is quite limited.

However, using ex vivo imaging and other in vitro protocols, several DNA-binding, cytoplasmic,
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covalent coupling or membrane inserting fluorescent dyes have been investigated for direct
labeling of T lymphocytes to track lymphocyte migration and proliferation [61]. Due to
interference from autofluorescence and tissue absorbance, most of these dyes are not ideal for in
vivo optical imaging and their use is limited to ex vivo detection. The optical imaging window is
primarily limited by absorption, due to either blood at short wavelengths or water at long
wavelengths. This could be overcome with the use of near-infrared dyes (NIR) that will allow
deep tissue signal localization [62]. The red/NIR tissue optical window between 600 and 1300 nm
is the spectral region where light has its maximum depth of penetration in tissues due to minimal
absorption and scattering. Among the various options available for direct labeling, the cell
membrane dyes retain the signal for relatively longer periods than DNA-binding, cytoplasmic or
covalent coupling dyes [63]. Therefore, a combination of NIR based fluorescent cell membrane
dyes would offer a direct labeling method for monitoring cell trafficking while exploiting high
sensitivity, simple labeling technique, decreased autofluorescence and relatively low costs.

In this project multi-spectral fluorescent imaging was extensively used to investigate the
in vivo kinetics of labeled T-lymphocytes. In addition, the feasibility of indirect reporter gene
imaging, using the (HSV1tk / [ **1 ] FIAU system) was also examined for PET imaging

approach.
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Chapter Four: Materials and Methods

The following diagram is a summary of the project strategy, details are provided on the following

pages.
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4.1. Animals

Female BALB/c mice, aged between 8-12 weeks, obtained from National Cancer Institute,
Bethesda, MD, were caged in groups of five or fewer, and provided with food and water ad
libitum. All animal experiments were performed according to the policies and guidelines of the
Institutional Animal Care and Use Committee (IACUC) at Virginia Commonwealth University,

USA.

4.2. Cell lines

Murine mammary breast carcinoma (4T1) cell line was kindly provided by Dr. Jane Tsai,
Michigan Cancer Foundation, Detroit, Michigan. 4T1 cells were maintained in Dulbecco’s
Modified Eagle Medium (DMEM) with 10% heat-inactivated fetal calf serum (Hyclone, Logan,
UT) 1 mM sodium pyruvate, 100 U/ml penicillin, 100 pg/ml streptomycin (Sigma, St. Louis MO)
and 10 mM HEPES (Thermo Scientific). Tumor cells were trypsinized with 0.05% trypsin-EDTA
(Fisher, Pittsburgh), washed with PBS and used for experiments.

Meth-A sarcoma cells were obtained from American Type Culture Collection (Rockville, MD)
and grown in DMEM media, containing 10% heat inactivated fetal bovine serum, 1 mM sodium
pyruvate, 100 u/ml pen/strep, 10 mM HEPES, and 2 mM L-glutamine in incubator with 5% CO,,
at 37° C. Cells > 90% confluence were trypsinized and used for experiments.

Jurkat cell line was obtained from ATCC and grown in RPMI media, containg 10% heat
inactivated fetal bovine serum, 100 u/ml pen/strep and were grown in the incubator with 5%
CO,, at 37° C. cells were counted every other day and kept at a concentration of one million per

ml.
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HEK 293 cell line was obtained from ATCC and grown in EMEM media containg 10% heat
inactivated fetal bovine serum, 100 u/ml pen/strep and in the incubator with 5% CO,, at 37° C.

Cells > 90% confluence were trypsinized and split to be used for experiments.

4.3. Isolation, activation and in vitro expansion of 4T1 tumor specific T lymphocytes

Donor mice were vaccinated in the left hind footpad with viable 1/2 x10° 4T1 cells. Ten days
later, when these mice had a growing tumor in the foot, popliteal draining lymph nodes (DLN)
were harvested under sterile conditions and disrupted through mesh screens to yield single cell
suspensions. The cells from DLN were filtered and resuspended i