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Abstract

MULTI-COLUMN MULTI-LAYER COMPUTATIONAL MODEL OF

NEOCORTEX

By Beata Strack

A Dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2013.

Director: Krzysztof J. Cios

Professor and Chair, Department of Computer Science

We present a multi-layer multi-column computational model of neocortex that

is built based on the activity and connections of known neuronal cell types and in-

cludes activity-dependent short term plasticity. This model, a network of spiking

neurons, is validated by showing that it exhibits activity close to biology in terms of

several characteristics: (1) proper laminar flow of activity; (2) columnar organization

with focality of inputs; (3) low-threshold-spiking (LTS) and fast-spiking (FS) neurons

function as observed in normal cortical circuits; and (4) different stages of epilepti-

form activity can be obtained with either increasing the level of inhibitory blockade,

or simulation of NMDA receptor enhancement.

The aim of this research is to provide insight into the fundamental properties

of vertical and horizontal inhibition in neocortex and their influence on epileptiform

activity. The developed model was used to test novel ideas about modulation of in-

hibitory neuronal types in a developmentally malformed cortex. The novelty of the

proposed research includes: (1) design and implementation of a multi-layer multi-

xiii



column model of the cortex with multiple neuronal types and short-time plasticity,

(2) modification of the Izhikevich neuron model in order to model biological maxi-

mum firing rate property, (3) generating local field potential (LFP) and EEG signals

without modeling multiple neuronal compartments, (4) modeling several known con-

ditions to validate that the cortex model matches the biology in several aspects,(5)

modeling different abnormalities in malformed cortex to test existing and to generate

novel hypotheses.
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CHAPTER 1

INTRODUCTION

One of the great challenges of science is to understand the human brain and make

practical use of this knowledge. Although remarkable progress has been made in

the field of neuroscience in the last 20 years, producing progressively more informa-

tion about its function, neural circuits, and underlying biochemical processes, the

complexity of neuronal systems still impedes full understanding of the brain. For this

reason, computational models are very useful in obtaining additional insights that can

be employed either to interpret experimental findings or suggest alternative biological

experiments, especially in studying various neurological disorders.

Epilepsy is a neurological disorder that affects millions of patients world-wide,

with 30% suffering from chronic, pharmacoresistant seizures. Intractable seizures are

particularly common in patients with developmentally malformed cortex. In case of

one of the most common malformations, microgyria, a number of neuronal abnormal-

ities have been identified both prior to and after onset of epileptiform activity. The

motivation for our research came from recent findings in the rodent model of micro-

gyria (Zsombok and Jacobs,2007), suggesting that the regions surrounding the mal-

formation have a decrease in the number of inhibitory fast-spiking (FS) interneurons

(Rosen et al.,1998) but an increase in the number or effectiveness of inhibitory low-

threshold spiking (LTS) interneurons (George and Jacobs,2011; Schwarz et al.,2000).

The aim of this research is to develop a multi-layer multi-column computational

model of neocortex, based on the activity of known neuronal cell types and connec-

tions, including activity-dependent short term plasticity, that provides insight into
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the fundamental properties of the balance between vertical and horizontal inhibition

in neocortex and its influence on epileptiform activity.

The model, a network of spiking neurons, is validated by demonstrating that it

matches the biology in several aspects: (1) laminar flow of activity, (2) columnar flow

of activity, (3) LTS neurons function, (4) FS neurons function, (5) different stages of

epileptiform activity can be observed.

The model is used to simulate not only conditions that are already investigated

in biological experiments, e.g., focal and global lesions of the cortex, but also modi-

fications of the cortex that cannot easily be performed experimentally, e.g., selective

changes to functions of inhibitory subtypes. Specifically, the strength of the computa-

tional model is to separately evaluate the epileptogenic potential of known abnormal-

ities in malformed cortex, including (1) the focal loss of deep layers, (2) the increase

in excitatory afferents to neurons surrounding the malformation, (3) decrease in num-

bers of interneurons providing intercolumnar inhibition, and (4) increase in excitatory

inputs to interneurons providing intracolumnar inhibition.

1.1 Contributions

The major contributions of this research are:

• introduction of a multi-layer multi-column model of the cortex with several

neuronal types and short-time plasticity,

• modification of the Izhikevich neuron model in order to obtain biologically valid

maximal firing rate property,

• generating local field potential (LFP) and EEG signals with detailed description

of neuronal connectivity, not by modeling multiple compartments of a neuron,

• modeling several known conditions to proof that the cortex model matches the
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biology in selected aspects,

• modeling different abnormalities in malformed cortex and generating novel hy-

potheses.

This dissertation is organized as follows. Chapter 2 provides biological and com-

putational background of the proposed research and review of the state of the art

methods. Chapter 3 contains a description of the components and topology of the

network. Chapter 4 presents the results that validate our model as biologically ac-

curate. Chapter 5 contains results of modeling simple lesions of the cortex with our

model. Chapter 6 presents results of modeling malformed cortex and imbalanced

inhibition. In Chapter 7 we briefly discuss our approach to parallelization of the

calculations. The research is summarized in Chapter 8.
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CHAPTER 2

LITERATURE REVIEW

This chapter contains discussion of the state of the art in computational neuroscience

with emphasis on computational models applied to epilepsy. First, in Section 2.2,the

elementary biological notions that are necessary to understand the presented research

are introduced: elementary properties of the cortex, basic information about epilepsy,

and biological findings that motivated our research. Next, we discuss computational

approaches used in computational neuroscience (Section 2.2).

2.1 Biological Background

2.1.1 Basic properties of the cortex

All behavior, whether it is a simple reflex response or a complex mental act,

is mediated by the central nervous system which consists of the spinal cord and the

brain. The brain is composed of six regions: the medulla, pons, cerebellum, midbrain,

diencephalon, and cerebral hemispheres or telencephalon (Amaral,2000).

The cerebral hemispheres, which form the largest region of the human brain,

consist of the cerebral cortex, the underlying white matter, and the three deep-lying

structures: the basal ganglia, the amygdale, and the hippocampal formation.

Although many life-sustaining functions are mediated by other regions of the

brain, the cerebral cortex, which is the thin outer layer of the cerebral hemispheres,

is responsible for much of the planning and execution of actions in everyday life and

plays a key role in memory, attention, perceptual awareness, thought, language, and

consciousness. It is organized in functional layers and the information flows across
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the layers in interconnected sets of neurons called columns, or modules. The number

of layers and details of their functional organization vary throughout the cortex, but

the most typical form of neocortex contains six layers (Figure 1), numbered from the

outer surface (pia mater) of the cortex to the white mater (Amaral,2000).

• Layer I is an acellular layer called the molecular layer. It contains dendrites

of the cells located deeper in the cortex and axons that travel through or form

connections in this layer.

• Layer II is comprised mainly of small spherical cells called granule cells and

therefore is called the external granule cell layer.

• Layer III contains a variety of cell types, many of which are pyramidally shaped.

This layer is called the external pyramidal cell layer.

• Layer IV, like layer II, is made up primarily of granule cells and is called the

internal granule cell layer.

• Layer V, the internal pyramidal cell layer, contains mainly pyramidally shaped

cells that are typically larger than those in layer III.

• Layer VI is quite heterogeneous layer of neurons and is thus called the polymor-

phic or multiform layer. It blends into the white matter that forms the deep

limit of the cortex and carries neurons to and from the cortex.

Both horizontal and columnar organizations of the neocortex are vital to its nor-

mal operations. Thalamic input to the cortex propagates in a specific laminar fashion

(Figure 2), from layer IV to II/III, to V and VI (Douglas and Martin,2004). The fo-

cality of this input is maintained by surrounding inhibition provided by basket cells

that control horizontal spread of excitation (Trevelyan et al.,2006; Thomson,2003;
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Fig. 1. The laminar organization of the cerebral cortex. Different methods of staining

reveal different aspect of the cortex structure: Golgi stain shows cell bodies

and dendric trees, the Nissl stain shows cell bodies and proximal dendrites, a

Weighert stain for myelinated fibers shows axons. From (Kandel et al.,2000)
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Fig. 2. Schematic representation of the flow of the thalamic input through the cortical

layers.

Douglas and Martin,2004). This function of fast-spiking (FS) parvalbumin-containing

inhibitory interneurons is in contrast to that of interneurons with a bipolar morphol-

ogy (Kubota and Kawaguchi,1994; Kawaguchi and Kubota,1996; Wang et al.,2004)

that allows for simultaneous inhibition in different layers but within a cortical col-

umn. Some bipolar interneurons contain somatostatin and have low threshold spik-

ing (LTS) characteristics (Kawaguchi and Kondo,2002; Monyer and Markram,2004).

These two inhibitory cell types vary not only in their morphology, but also in their

membrane properties, synaptic inputs, as well as their postsynaptic targets (Monyer

and Markram,2004; Bacci et al.,2003; Bacci et al.,2005; Kawaguchi,1993; Thomson

et al.,1996). FS cells have horizontally projecting axons, mostly synapse on pyrami-

dal somata, receive strong thalamocortical input, and are responsible for controlling
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horizontal spread of excitation, while LTS cells do not receive thalamocortical input,

have vertically projecting axons, and synapse mostly on dendrites of pyramidal cells.

Because of this variation, significant changes in the effectiveness of LTS interneurons

are expected to produce substantially different network effects than altering FS in-

terneuron characteristics. Under certain disease conditions, these two interneuron

subtypes are in fact differentially affected (Binaschi et al.,2003; Robbins et al.,1991;

Kuruba et al.,2011; Hof et al.,2002; Miettinen et al.,1993; Trotter et al.,2006).

2.1.2 Epilepsy

Epilepsy is a neurological disease that is characterized by the recurrence of

seizures. It is the third most common neurological disorder in the world (Hauser

and Hesdorffer,1991) with about 2.5 million people diagnosed with epilepsy in the

U.S and 50 million world-wide. Any disturbance of the normal neuronal activity due

to illness, brain damage, or abnormal brain development can provoke seizures and

subsequently lead to chronic epilepsy. Although a number of new antiepileptic drugs

have been introduced, about 30% of patients are still pharmacoresistant (Kwan and

Brodie,2006).

The term ’epilepsy’ refers to a variety of neurological syndromes and disorders. It

involves mechanisms, most often nonlinear, taking place at subcellular (i.e., membrane

ion channels and neurotransmitter receptors), cellular (neurons), tissular (networks

of neurons) and regional (networks of networks) scales within systems where short-

or long-term plasticity also plays a crucial role (Wendling,2008). Epileptic phenom-

ena emerge at different temporal scales: the duration of epileptic spikes is typically

approximately a few hundred milliseconds, seizures can last from a few seconds up to

several minutes, whereas the frequency of seizures can vary from a few per day up to

a few per month in uncontrolled epilepsies (in pharmaco-controlled cases, there may

8



be years between seizures).

A seizure is a ”transient occurrence of signs and/or symptoms due to abnormal

excessive or synchronous neuronal activity in the brain” (Fisher et al.,2005). An

additional aspect of the clinical definition of a seizure is the involvement of the cerebral

cortex to distinguish seizures from excessive or synchronous activity elsewhere in the

brain.

Intractable seizures are particularly common in patients with developmentally

malformed cortex. For one of the most common malformations, the microgyria

(Barkovich,2010; Blumcke et al.,2009; Golden and Harding,2010), a number of neu-

ronal abnormalities have been identified both prior to and after the onset of epilep-

tiform activity (Jacobs et al.,1999c; Jacobs et al.,1999b; Jacobs et al.,1999a; Jacobs

and Prince,2005; Zsombok and Jacobs,2007). Our research is motivated by findings

in the rodent model of microgyria (George and Jacobs,2011), suggesting that the re-

gions surrounding the malformation have a decrease in the number of fast-spiking

(FS) interneurons (Rosen et al.,1998) but an increase in the number or effectiveness

of low-threshold spiking (LTS) interneurons (George and Jacobs,2011; Schwarz et

al.,2000).

Interneuron subtypes have been shown to be selectively affected in other animal

models of epilepsy as well as in human tissue (Buckmaster and Dudek,1997; Trotter

et al.,2006). For this reason, it is necessary to evaluate FS and LTS interneurons

individually. Patients with malformation-associated epilepsy often also have other

neurological and cognitive dysfunctions, including mental retardation and dyslexia.

Thus an understanding of the interaction between these inhibitory subtypes will be

useful not only for microgyria-associated epilepsy, but for cortical dysfunction in

general.
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2.2 Computational modeling in epilepsy

2.2.1 Survey of approaches and results

Computational neuroscience, which can be considered a branch of system biology

(Gilbert et al.,2006), combines mathematical modeling, knowledge discovery, data

mining, and simulation. Although there have been some attempts to model the

whole brain (Markram,2006), most models are designed for a specific applications,

for instance, analysis of a particular process or a disease.

One part of computational neuroscience is modeling in epilepsy (Soltesz and

Staley,2008). Diverse approaches to this field can be divided into two main groups

(Wendling,2008): stochastic and deterministic. The most common stochastic ap-

proaches are Poisson (Milton et al.,1987) and Markov models (Albert,1991; Haut

et al.,2005; Sunderam et al.,2001), both used for modeling seizure occurrence times,

and Monte Carlo models used mainly to model the flow of molecules and ions in the

synapses (Ullah and Wolkenhauer,2007).

Deterministic models, although may use some probabilities, are determined by a

set of equations, parameters, and initial conditions. These approaches can be divided

into two main groups (Wendling,2008): microscopic and lumped.

The ’microscopic’ approach relies on detailed modeling of the structure and func-

tions of neuron cells. The theoretical basis for development of this approach was the

adaptation of the equations proposed by Hodgkin and Huxley, which was the first

mathematical model to explain the voltage-dependence of ion channels (Hodgkin and

Huxley,1952). Many models of neurons has been developed since then: from very sim-

ple single compartment units (Lovelace and Cios,2008; Franaszczuk et al.,2003; Izhike-

vich,2004; Swiercz et al.,2007), to complex, multi-compartmental models (Traub et

al.,2005b; Traub et al.,2005a). Detailed modeling can be performed at different scales
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starting at the cellular level (Lytton and Sejnowski,1992; Spampanato et al.,2004) and

ending at the brain level (Izhikevich and Edelman,2008). Although the ’microscopic’

apprach is very successful (Lytton,2008), it has a few limitations. In spite of the fact

that the ever increasing computational power allows for simulating networks consist-

ing of a large number of cells (Hereld et al.,2005; Hereld et al.,2007; Markram,2006;

Migliore et al.,2006; Drongelen et al.,2005; Drongelen et al.,2007), one limitation of

this approach is high computational complexity. Another limitation is the require-

ment of detailed knowledge on the brain’s neural circuits, which makes it difficult to

determine the parameters of the model. Thus, such models are often simplified in

order to be useful. Additional tools that can be used with this approach are graph

theory methods which have been used in the analysis of network structures (Lim et

al.,2011b; Strogatz,2001; Watts and Strogatz,1998), e.g., for detecting the presence

of hubs and their role in distributing seizure activity (Morgan and Soltesz,2008).

The ’lumped’ approach was developed to simulate the dynamics of large ensem-

bles of neurons and typically used a single-state variable to approximate their activity,

e.g., to generate EEG signals (Silva et al.,1974). Depending on the model, a large en-

semble can be interpreted to be a minicolumn, column, a Brodmann area, a thalamic

nucleus, etc. (Freeman,1978; Silva et al.,1974; Silva et al.,1976). Since epilepsy often

involves relatively large areas of the brain, researchers often use the second approach

(Chakravarthy et al.,2007; Deco et al.,2008; Ermentrout and Saunders,2006; Silva et

al.,1976; Suffczynski et al.,2004; Wendling,2008).

Computational models have been successfully used to understand different as-

pects of epileptiform activity, for example, the transition from interictal to ictal ac-

tivity in EEG (Suffczynski et al.,2005).
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2.2.2 Assessment of existing methods

The aim of our research is to study how a malformation of the cortex affects the

initiation of epileptiform activity. In other words, to model changes to vertical and

horizontal inhibition, which are mostly provided by LTS and FS neurons, respectively,

and then test how this imbalance influences epileptiform activity. This problem has

not been studied computationally before, and no currently existing model can be

used for this purpose. Specifically, we are not aware of another cortical model with

the two interneuron subtypes (LTS and FS neurons) that preserves the multi-layer,

multi-columnar structure which is crucial for analysis of a flow of activity in normal

or malformed cortex.

Inhibitory neurons have been modeled, for example in simulations of thalamo-

cortical oscillations (Borgers et al.,2005; Bush and Sejnowski,1996; Traub et al.,1989;

Traub et al.,1999, Traub et al.,2003; Traub et al.,1997; Whittington et al.,2000), but

these models focus on inhibitory neurons in general, without distinguishing their sub-

types. Specific inhibitory subtypes are used in models of one or several layers within

one column (Cunningham et al.,2004; Traub et al.,2005b) or in large scale simulations

(Izhikevich and Edelman,2008; Markram,2006; Suffczynski et al.,2001), but in these

models either only global activity is the subject of analysis or they do not preserve

the structure important for modeling vertical and horizontal inhibition surrounding

a cortical malformation. The model described here was designed to simulate this

scenario. We have already shown (Strack et al.,2013b) that our computational model

generates results consistent with biological findings in conditions of either global or

focal loss of layers.

The computational multilayer model presented here is a network of spiking neu-

rons that consists of multiple cortical columns and employs the two inhibitory sub-
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types, along with a detailed description of neural connections within and between

layers and columns. In addition, the network includes a synapse model that allows

for modeling short-time plasticity. Parameters of connections, namely, the probabil-

ity of a connection, maximal amplitude, half-width of postsynaptic potential (PSP),

and latency to peak of PSP, differ according to the types and location of the in-

terconnected neurons. This allows the model to mimic several details of neuronal

connections with the use of a simple neuron model.

Although there exist popular software packages, such as Neuron, Genesis, or Neu-

roConstruct, that allow for network modeling (Brette et al.,2007; Barela et al.,2006;

Lytton et al.,1998; Lytton and Sejnowski,1992; Drongelen et al.,2005; Yang et al.,2002),

we developed a new software that allows us to control the network complexity, the

level of details, and the structure of the network. Our model uses descriptions of the

neuronal connectivity in terms of probabilities of connections from dual cell patch

clamp experiments. Importantly, the model also allows for changing structure of the

selected columns. Changing the connectivity patterns and structure is crucial to our

simulations but is either not possible or very difficult to achieve using the existing

software packages.
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CHAPTER 3

COMPUTATIONAL MODEL

We introduce here a computational multilayer model of multiple cortical columns that

employs

• two inhibitory and two excitatory neuron subtypes,

• a detailed description of neural connections both within and between layers and

columns,

• a synapse model that allows for modeling short-time plasticity.

Parameters of connections, such as their probability, maximal amplitude, half-width

of Post Synaptic Potential (PSP), and latency to peak of PSP, differ according to

types and location of interconnected neurons. This allows the model to mimic de-

tails of neuronal connections with use of a simple neuron model without multiple

compartments.

The model was designed with emphasis on the following aspects:

• biologically accurate laminar and columnar flows of activity,

• normal function of LTS and FS,

• ability to generate different stages of epileptiform activity with increasing levels

of inhibitory blockade.

Having all the above characteristics, this computational model can be further em-

ployed to examine properties of developmentally malformed cortex in which the in-

hibitory subtypes may be differently affected.
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The model has been designed to be consistent with biological data regarding

probabilities of connections, synapse strengths, PSP characteristics, and the number

of neurons taken from published reports (Thomson and Lamy,2007). In particular,

the network is built mostly from studies of paired intracellular recordings between

neuronal types (Beierlein and Connors,2002; Beierlein et al.,2003), and data from Ja-

cobs lab at VCU. The parameters of connections are gathered in Table 4 in Appendix

B. As one can see, not every connection is described in the literature.

In this chapter we describe in detail the most important components of the

model, starting with its structure and connectivity in Section 3.1, and ending with

description of the synapse and neuron models in Sections 3.2 and 3.3, respectively.

In Subsection 3.3.1 we describe how we modified the neuron model to prevent firing

with larger frequencies than biologically feasible.

3.1 Spatial structure of the network

The network’s topology accounts for spatial structure with five columns and four

layers, however, the number of columns and layers can be easily modified. The model

is consistent with the rat somatosensory cortex as follows (compare with Section 2.1):

• layer II/III - an association layer, consists of regular spiking (RS), low-threshold

spiking ( LTS), and fast spiking (FS) neurons.

• layer IV - the input layer (thalamus projects into this layer), contains FS and

LTS neurons, as well as spiny stellate (SS) neurons, modeled as RS neurons.

• layer V - an output layer, consists not only of RS, LTS, and FS neurons but

also of intrinsically-bursting (IB) neurons.

• layer VI - also generates cortical outputs and consists of RS, FS and LTS neu-

rons.
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Numbers of every neural type in each layer are shown in Table 1. Although not

every aspect of cellular intrinsic properties and connectivity have been biologically

examined for the mammalian neocortex, hundreds of studies have provided many

required details (Connors and Telfeian,2000; Lubke and Feldmeyer,2007; Markram

et al.,2004; Thomson,2003; Thomson and Deuchars,1997; Thomson et al.,2002; Voges

et al.,2010; Watts and Thomson,2005). Biologically verified information was used for:

• the relative numbers of neurons within different layers (DeFelipe et al.,2002),

• the total number of GABAergic neurons in specific layers (Ren et al.,1992),

• the percentage of parvalbumin (PV)-stained neurons (FS) (Ren et al.,1992),

• the percentage of SS-immunostained neurons (LTS) (Miettinen et al.,1993; Mizukawa

et al.,1987),

• the percentage of intrinsically-bursting (Connors and Gutnick,1990; Connors

et al.,1982).

While there are other types of GABAergic neurons (Kawaguchi and Kondo,2002; Kub-

ota and Kawaguchi,1994; Kubota and Kawaguchi,1997; Monyer and Markram,2004),

they are in much smaller numbers, with far less known about their connectivity. Be-

cause PV- and SS-immunostained neurons make up the majority of GABAergic neu-

rons in neocortex (Kubota and Kawaguchi,1994), we restricted our model to these

two inhibitory types. The model is scaled to 5% of neurons in one column of the cor-

tex but it preserves the ratio of each type of neurons. The total number of neurons

in one column is thus 788, which gives the total of 3, 940 neurons and over 400, 000

synapses in five columns.

The spatial size of the network is also consistent with the rat somatosensory

cortex, namely, the distance between the centers of columns is 400µm and the heights
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Table 1. Parameters used to generate neurons of different types and the distribution

of neural types across layers.

Parameters of the neuron model Average Number/Percentage per layer

a b c d Max. firing rate Layer II/III Layer IV Layer V Layer IV

RS 0.02 0.2 −5 5− 8 160Hz 169/79% 83/73% 84/52% 230/84%

IB 0.02 0.2 −5 2− 4 300Hz - - 28/17% -

FS 0.08− 0.1 0.175− 0.20 −65 2 350Hz 30/14% 20/18% 33/21% 27/21%

LTS 0− 0.02 0.225− 0.25 −65 2 212Hz 16/7% 11/9% 15/10% 15/5%

of the layers are: 400µm, 200µm, 600µm, and 600µm, for layers II/III, IV, V and VI,

respectively. When a neuron is placed in a particular layer, its spatial coordinates

are chosen randomly with a uniform distribution within this layer.

The crucial aspect of designing any network is to properly design its topology.

Connection between the neurons depends on the probability of connection, amplitude,

short-term plasticity parameters, and the shape of the PSP. In this work, they are

based on data published in the literature (Table 4 in the Appendix B). Probabilities

of connections vary not only with the types of neurons but also with the columns and

layers where the neurons are located. In this way, each cell type is connected in a

unique way to the other cell types (Figure 3).

The probabilities define the spatial structure of the network, e.g., the degree

distribution (the number of connections) or shapes of dendric trees of neurons (Figure

4). Synapses between the neurons are characterized by their strengths, which are set

using the data shown in Table 4 in Appendix B. The strength of a connection was

calculated as a weighted average of published results (PSP amplitudes), with weights

being inverses of the reported variances. This was done to take into account the

fact that values reported in different reports had different standard deviations due to

different sample sizes and methods used.

17



Fig. 3. Example of connectivity. (a) RS neurons (light green triangles) in layer six

connect with different probabilities to LTS neurons (red ellipses) in layer VI,

IB neurons (dark green triangles) in layer V, other RS neurons in layers V and

VI, and FS neurons (blue circles) in layer VI within the same and adjacent

columns; (b) Thalamic cell is connected to RS and FS cells in layer IV and to

RS and IB cells in layer V.
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Fig. 4. Connections from an LTS neuron in layer V (red) and FS neuron in layer VI

(blue). Both neurons were chosen randomly. It is evident that the structure of

connections is vertical in case of the LTS neuron and horizontal in case of the

FS neuron
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Fig. 5. Example of output generated from our simulator. Top: Spike pattern of neu-

rons in one column: red dots represent LTS neurons, blue - FS neurons, green

- RS neurons and light green IB neurons. Each dot represents a spike of a

given neuron (y-axis) at a particular time (x-axis). Cells are arranged by lay-

ers within the column and by type within a layer; Middle: Local field potential

calculated for this column; Bottom: EEG calculated for the entire network.

The thalamic input is modeled as a single cell connected to the selected cells

within a single column and is provided to RS and FS neurons in layer IV, and to

RS neurons in layer V. This is consistent with the processes that take place in rat

somatosensory cortex.

The activity of the network is visualized as (a) a pattern of spikes, (b) an ar-

tificially generated local field potential (LFP), and (c) EEG (Figure 5). The spike

pattern provides insight into how each neuron behaves and how single neuron re-

sponses contribute to the overall network activity. The computational EEG is gener-

ated by summation of the excitatory (EPSP) and the inhibitory (IPSP) postsynaptic

potentials of all excitatory pyramidal cells in layers III and V, across all columns

(Cosandier-Rimele et al.,2010). Local field potentials are calculated by adding the

voltage of excitatory pyramidal cells in layers III and V in a single column. This
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enables examination of the overall collective activity of the network.

3.2 Short-term plasticity and synapses

Short-time plasticity is an inherent dynamic of synapses resulting in different re-

sponses of postsynaptic neurons for different temporal patterns of pre-synaptic spikes.

Specifically, the postsynaptic response can be smaller (depression) or larger (facilita-

tion) than the previous one (Figure 6).

Research reported in (Abbott and Nelson,2000; Gilson et al.,2009; Legenstein

et al.,2005; Richardson et al.,2005; Sussillo et al.,2007; Tsodyks et al.,2000) indicates

that nonlinear synapses are necessary for the synchronous behavior of the network

and various learning mechanisms. Therefore, including short-term plasticity is crucial

for accurate modeling of network activity under a variety of conditions.

There exist well-accepted models (Morrison et al.,2008) of fast synaptic dynamics

(short-term plasticity), in particular, the phenomenological model of Tsodyks and

Markram (Tsodyks et al.,1998) and the model of Abbot et al. (Abbott et al.,1997). We

have used the first of these models because it accounts for different synapse behaviors

reported in the literature, e.g., short term dynamics of neocortical synapses in layer

VI (Beierlein and Connors,2002), the depressing connection between layer II/III RS

neurons (Feldmeyer et al.,2006), and facilitating connection from RS to LTS neurons

in layer IV (Beierlein et al.,2003).

The model consists of four differential equations:

x′ = z
τrec
− uxδ (t− tpres)

y′ = − y
τI

+ uxδ (t− tpres)

z′ = y
τI
− z

τrec

u′ = − u
τfac

+ U(1− u)δ (t− tpres)

(3.1)
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Fig. 6. Post-synaptic potentials generated with presence of short-term plasticity. (a)

Example of a facilitating synapse. PSP generated as a response to a trial of

nine pre-synaptic spikes with 40 Hz frequency. STP parameters: τI = 3.0,

τrec = 150, τfac = 200, U = 0.02 (b) Example of a depressing synapse. PSP

generated as a response to a trial of six pre-synaptic spikes with 20 Hz fre-

quency. STP parameters: τI = 3.0, τrec = 350, τfac = 0.0000001, U = 0.5.

Here x, y, and z are the fractions of the synaptic resources in the recovered,

active, and inactive states, respectively, tpres is the time of the pre-synaptic spike,

τI is the decay constant of the postsynaptic current, and τrec represents the recovery

from the synaptic depression. The variable u is the fraction of the available resources

used by the pre-synaptic spike. It increases with each pre-synaptic spike (this change

is described by constant U) and decays accordingly to τfac.

These equations can be solved using exact integration technique, since between

consecutive pre-synaptic spikes the system can be integrated linearly (Morrison et

al.,2008).

The synapse behavior, e.g., the rate of facilitation or depression, varies not only

with types of pre- and post-synaptic neurons but also with the layers where neurons

are located. We gathered data from many published reports and chose the parameters

in the model to reflect the reported behavior (Table 4, Appendix B).
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When the pre-synaptic neuron fires the input to the post-synaptic neuron, the

Post Synaptic Potential (PSP) is calculated as

PSP (t) = wy(t)Cnorm
(
e−t/τ1 − e−t/τ2

)
(3.2)

where w is the weight of the connection, y is the fraction of active resources in the

synapses calculated according to (3.2), τ1 and τ2 are decay constants, and Cnorm is a

normalizing constant. The values of τ1, τ2, and Cnorm are chosen to match the shape

of PSP reported in the literature for a particular connection (Table 4, Appendix B).

3.3 Neuron model

A simple neuron model introduced by Izhikevich (Izhikevich,2003) is used since it

realistically mimics spike patterns of different neuron types while being computation-

ally simple (Izhikevich,2004).It has been already used in a wide range of applications,

e.g. modeling of multisensory processing (Lim et al.,2011b; Lim et al.,2011a), racing

car controllers (Yee and Teo,2011), character recognition (Bhuiyan et al.,2009), and in

large scale simulations of the thalamocortical circuits (Izhikevich and Edelman,2008).

There are also multiple hardware circuit implementations of this model (Van Schaik

et al.,2010; Demirkol and Ozoguz,2011).

The Izhikevich neuron model is a two dimensional system of nonlinear ordinary

differential equations of the form v′ = 0.004v2 + 5v + 140− u+ I

u′ = a(bv − u)
(3.3)

with the condition

if v > 30, then v = c, u = u+ d, (3.4)
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Fig. 7. Known types of neurons correspond to different values of the parameters a, b,

c, d in the model described by equations (3.3), (3.4). RS and IB are cortical

excitatory neurons. FS and LTS are cortical inhibitory interneurons. Each inset

shows a voltage response of the model neuron to a step of dc-current I = 10

(bottom). This figure is reproduced with permission from www.izhikevich.com.

Electronic versions of the figure and reproduction permissions are available at

www.izhikevich.com

where v represents the membrane potential of the neuron and u is a membrane recov-

ery variable (both are functions of time), a, b, c, and d are dimensionless parameters

(Figure 7), and I is the value of the input to the neuron. The membrane potential v

has an mV scale and the time has an ms scale in this model.

Depending on the values of parameters in equations (3.3) and (3.4) this model can

mimic the spike pattern of different types of neurons (Figure 7). Similar quadratic

models have been introduced (Latham et al.,2000; Hansel and Mato,2001) but the

Izhikevich model seems to be the most frequently used. One of the reasons is that it

has been clearly demonstrated (Izhikevich,2004) that various spiking patterns can be
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easily obtained by different settings of the parameters a, b, c, and d.

Parameters used for generating types of neurons used in our network are shown

in Table 1 and are consistent with the values previously published (Izhikevich,2003).

To achieve heterogeneity in the neurons’ dynamics, some parameters have been fixed

and some generated from a uniform distribution on a given interval.

The value of input (I in equation (1)) represents all summed inputs provided to

the neuron at a given time (I = I(t)), including post-synaptic potentials or direct stim-

ulation. In addition, white Gaussian noise is provided to all neurons (independently)

for two main reasons. First, to take into account that each neuron receives more

connections than modeled. Large sum of independent inputs can be approximated

by the Gaussian distribution (by the central limit theorem ), so adding this kind of

noise is a way to simulate additional distant connections. Second, with absence of

any stimulus, biological networks exhibit spontaneous activity. This kind of activity

does not occur in artificial networks without presence of noise.

The fact that various compartments of a neuron are not modeled is compensated

by the use of realistic PSP shapes, timings, STP, and biologically measured strengths

of connections, as described in the previous sections. For example, the fact that LTS

and FS neurons likely terminate along different parts of the somato-dendritic axis

of pyramidal neurons is reflected in the network by different average amplitudes and

half-widths of the generated IPSPs. In this way, without a separate compartment,

we are still able to model the difference in synaptic connectivity to dendrites versus

somata.

3.3.1 Modification of the Izhikevich neuron model

Although it is a very popular neuron model, it obviously is only a simplification

of real neural cell dynamics and therefore it is necessary to understand its limitations
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before it can be used. One of its limitations, is the fact that the model can produce

spikes with arbitrarily high frequency, which is not a biologically feasible behavior.

Note that this issue is not unique to this neuron model, e.g., the firing rate of the

leaky integrate-and-fire neuron model is proportional to the value of input (Dayan

and Abbott,2001).

Since in the Izhikevich model the change in the voltage v depends linearly on

input, the frequency of generated spikes is not bounded. A spike is always gener-

ated when condition in equation (3.4) is satisfied. In cases of a powerful input (I

in equation (3.3)), the neuron can spike arbitrarily fast. Such pre-synaptic neuron

spiking with high frequency causes large changes in the amplitude of PSP in the post-

synaptic neuron (Figure 8), which can result in a cascade of biologically unfeasible

and numerically unstable activity. This can be even further amplified if the network

includes a model of frequency-dependent plasticity (short term dynamics).

The relationship between the simulated firing rate and the input amplitude is

shown in Figure 9. We consider four different neuron subtypes: regular spiking

(RS), intrinsically bursting (IB), fast-spiking (FS), and low-threshold spiking (LTS)

neurons.

It is well known that FS neurons fire at frequencies much higher than RS or LTS

neurons. Observed maximum rates of FS neurons range from 300-500 Hz (McCormick

et al.,1985; Agmon and Connors,1992; Connors and Gutnick,1990; Kawaguchi and

Kondo,2002). It is also well known that due to their ability to burst, IB cells fire

at much higher frequencies than RS cells. Observed maximum rates of intraburst

frequencies range from 300-500 Hz (Connors and Gutnick,1990; Chagnac-Amitai and

Connors,1989b; Schwindt and O’Brien,1997). Maximum rates for RS and LTS cells

have been reported in the ranges of 150-200 and 200-250 Hz, respectively (McCormick

et al.,1985; Agmon and Connors,1992; Connors and Gutnick,1990; Kawaguchi and
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Fig. 8. Comparison of membrane voltage of a pre-synaptic neuron (left column) and

PSP in the post-synaptic neuron (right column) generated with use of the

original Izhikevich neuron model (panels a, c, and e) and with our modification

(b, d, and f). The pre-synaptic neuron is an RS cell depolarized with currents of

different amplitude: 10 (black), 50 (blue), and 100 (red). In the last two cases,

the maximal firing frequency of RS neurons (160 Hz) is exceeded resulting in

large increase in PSP amplitude. This issue is fixed with our modification

(compare c and e with d and f, respectively). STP parameters: τI = 3.0,

τrec = 10, τfac = 10, U = 0.1. Parameters of the RS neuron: a = 0.02, b = 0.2,

c = −65, d = 8.
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Fig. 9. Frequency of spikes versus intensity (amplitude) of the input of the original

(A) and modified (B) Izhikevich neuron model. Maximal firing frequencies were

assumed to be 160 Hz, 300 Hz, 350 Hz, and 212 Hz for RS, IB, FS, and LTS

neurons respectively. The following parameters were used to generate different

neuron types: RS: a = 0.02, b = 0.2, c = −65 , d = 8, IB: a = 0.02, b = 0.2,

c = −55 , d = 4, FS: a = 0.1, b = 0.2, c = −65 , d = 2, LTS: a = 0.02,

b = 0.25, c = −65, d = 2. Frequency was averaged over 100 ms of stimulation.
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Kondo,2002; George and Jacobs,2011). We set the maximum rates of IB, RS, FS, and

LTS to 300, 160, 350, and 212 Hz, respectively.

Network approach to computational brain modeling requires a careful choice of all

components of the network to make sure that they are not only biologically correct

and computationally stable by themselves, but also in a network. Moreover, it is

crucial to realize what range of activity is going to be modeled and foresee possible

issues for computational stability of the network. This is especially critical when

modeling epileptiform or synchronous activity that can result in excitation greater

than under normal conditions.

Figure 9A shows that using the standard Izhikevich model, the maximal firing

frequency is exceeded for all considered neuron types with an input in the range of

I = 10-16. Such input level is not unusual under normal conditions and is surely ex-

ceeded in scenarios with extremely powerful excitation, e.g., simulations of inhibitory

blockade (biologically achieved for example by application of bicuculline (Chagnac-

Amitai and Connors,1989a; Hwa and Awoli,1989)) where the strength of inhibitory

neurons is decreased, or situations of synchronous activity of excitatory neurons which

generate synchronized input to post-synaptic neurons.

To address this problem, we prevent the generation of an action potential if the

time from the previous spike (inter-spike interval, ISI) is shorter than given by the

maximum firing frequency for that neuronal subtype. In this case, the membrane

voltage is reset to 30 mV for computational stability. In other words, equation (3.4)

is replaced by

if v ≥ 30 and t− tprev ≥ τmin, then (spike generated) v ← c

u ← u+ d,
(3.5)
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else if v ≥ 30, then (no spike)

v ← 30,

where tprev is time of the previous spike and τmin is inter-spike interval in milliseconds

given by the maximum firing frequency.

Since the modification imposes an absolute refractory period, it enforces an upper

bound on the maximum firing frequency of a neuron. The impact of this modification

on the firing rates of different neuron models is shown on Figure 9B. The frequency

increases with increasing amplitude of input until it reaches the predefined firing

frequency, which is more biologically feasible behavior than in the original neuron

model (Figure 9B).

3.3.1.1 Network dynamics

To illustrate the importance of the maximum firing rate in a network dynamics,

we use an artificial network introduced in Izhikevich,2003. It consists of 800 regular

spiking (RS) neurons and 200 fast-spiking (FS) neurons, thus keeping the ratio of

excitatory to inhibitory neurons of 4 : 1. All neurons are interconnected with the

strengths of synaptic connections chosen randomly from the interval (−1, 0) in case

of inhibitory connections, and from the interval (0, 0.5) for excitatory connections.

In addition to the synaptic input, each neuron receives a noisy input with Gaussian

distribution (mean value of zero, variance of five and two for excitatory and inhibitory

neurons respectively). We will refer to this network as the original network.

We compare this network with one with the modified neuron model (see Figure

10). The maximum firing frequency is 160 Hz and 350 Hz for RS and FS neurons

respectively, as described above. To achieve heterogeneity, we vary these frequencies

±10%. Two different scenarios were tested: increasing the input to neurons and
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Fig. 10. Comparison of spike activity of two networks across different scenarios. The

horizontal axis is time and the vertical axis is the neuron number, with each

dot representing a single action potential and each row the activity from

one neuron. The network is taken from (Izhikevich,2003) and consists of

regular-spiking (neuron numbers 1-800) and fast-spiking (neuron numbers

801-1000) neurons. (A-B) The original (left) and modified (right) networks

with a normal level of activity. (C-D) The variance of the noisy input in-

creased to the value of two for all neurons. (E-F) 20% inhibitory blockade.

(G-H) 50% inhibitory blockade.
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blocking the inhibitory synapses. Results of these simulations are shown in Figure

10. All simulations were calculated with a time step of 1 ms.

First, the input to the neurons was artificially increased by changing the mean

value of the noise to two for all neurons. Note that this change was quantitatively

bigger for FS than for RS neurons (change to 40% and 67% of the initial variance for

these types, respectively). Interestingly, although the network with modified neuron

model (Figure 10D) is less synchronized than the original network (Figure 10C),

there is still some synchrony. Indeed, analysis of artificially generated EEG (see

Figure 11), which was computed as a sum of all inputs to the excitatory neurons

(Cosandier-Rimele et al.,2010), shows that the modified network exhibits oscillations

with frequency of 43 Hz that corresponds to the gamma band, contrary to the original

network that oscillates with 10 Hz frequency. This result is consistent with findings

that increased input to FS neurons results in generating gamma oscillations (Traub

et al.,2005b).

Secondly, we kept the level of input as in the original network but we blocked

inhibitory neurons, that is reduced their strengths by 20% and 50%. We see that

in the case of 20% inhibitory blockade the network with the modified neuron model

(Figure 10F) is less synchronized than the original network (Figure 10F). With higher

inhibitory blockade the network is synchronized (Figure 10H) but with slightly differ-

ent frequency compared to that in the original network (Figure 10G). This described

that this modification strongly impacts network behavior. In (Strack et al.,2011) and

(Strack et al.,2013b) we presented a multi-column, multi-layer cortex model that uses

the modified neuron model. We demonstrated that under inhibitory blockade con-

ditions the network generates local field potentials (LFP) that are comparable with

those experimentally measured.
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Fig. 11. Comparison of frequencies generated with use of the original (red) and modi-

fied (blue) neuron models in case of increased input to the network (compare

Figure 2C-D). (A-B) artificial EEG generated for both networks. (C-D) Am-

plitude of Fourier transform of both signals.
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CHAPTER 4

VALIDATION OF THE MODEL

Validating computational models, especially the ones of epilepsy, is not a straightfor-

ward task (Soltesz and Staley,2008) mostly because the same kind of activity, e.g.,

a seizure, can be caused by different underlying processes. With the current state

of knowledge, it is not possible to build a comprehensive model of the cortex that

matches biology in each and every detail.

Thus, it is important to validate a model by assuring that it replicates known

biological behaviors that are crucial for particular applications of the model. We

validate our model on the following aspects that are critical for the functioning of a

normal multi-layer multi-columnar cortex:

1. proper laminar flow of activity,

2. columnar organization with focality of inputs,

3. LTS neurons function properly, that is

(a) enhancement of their input produces local 1 Hz oscillations,

(b) reduction of their activity does not induce epileptiform activity, since they

perform a primarily modulatory function,

(c) blockade of their function does not cause spread of activity to adjacent

columns, since their output is intracolumnar,

4. FS neurons function properly, that is
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(a) when they are blocked within one layer, activity in that layer spreads to

adjacent columns

(b) when activity in these neurons is increased, a gamma rhythm is induced

in the network

5. different stages of epileptiform activity (interictal-like and ictal-like) can be

observed with either increasing levels of inhibitory blockade, or enhancement of

NMDA receptors.

In this chapter we present results of our simulation experiments. In Section 4.1

we present results of validation of the proposed model and discuss them in Section

4.2. All simulations were performed on a network consisting of five columns with a

time step of 0.1 ms, second column is stimulated, and Gaussian noise with zero mean

and standard deviation of eight is added to the network (unless indicated otherwise).

All results were evaluated by a neuroscience expert.

4.1 Results

We sought to validate that the designed model emulates the biology in terms of

the following characteristics:

4.1.1 Laminar- and Columnar- selective flow of activity

In order to determine whether the proper laminar flow of activity occurs, we ex-

amined the timing of activity in different layers after thalamic input (activation of the

selective thalamic cell, see Fig 3). Thalamic input to one column resulted in activity

occurring first within layer IV, followed by activity in layer II/III, and then in lay-

ers V and VI, similar to what was shown biologically (Douglas and Martin,2004). In

addition, the excitation occurs most prominently within the stimulated column. Al-
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Fig. 12. Laminar and columnar flow of activity. (a-b) Spike pattern of activity in

an adjacent (a) and the stimulated (b) columns as a response to stimulus

with amplitude 3. (c-d) Computational Local Field Potentials (LFP) in the

stimulated (c) and an adjacent (d) column as a response to two different

levels of input. (f-g) Biological LFP in the stimulated column (f) and 0.5 mm

away (g) as a response to two stimulus levels. (e-h) Peak negativity of LFP

vs. intensity of the stimulus. Computational results (e) were obtained by

averaging 10 simulations.
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though a weak excitation passes intracortically to the adjacent columns, it is damped

by surrounding inhibition. The LFPs also demonstrate and confirm this focal nature

of the input. The computational LFP matches the typical biological LFP in terms

of shape, and in the increasing peak negativity with the increasing stimulus intensity

(Fig. 12c-e,h). This is true for both the stimulated and the adjacent column. The

simulations demonstrate that inhibition and excitation are properly balanced within

and between columns.

4.1.2 LTS neuronal function

Depolarization of LTS neurons with a 1 Hz oscillatory input within one column

results in synchronization of adjacent FS and pyramidal cells (Fig. 13a-b) that does

not spread laterally into the adjacent columns. This is typical of what is observed bi-

ologically after application of metabotropic glutamate agonists (Beierlein et al.,2000;

Long et al.,2005).

Since LTS neurons provide only modulatory inhibition, selective blockade of these

cells would not be expected to result in a spread of activity within or between columns.

Blockade of a neural cell was modeled by decreasing strengths (amplitudes) of all out-

going connections. When all LTS cells within two columns were blocked by 50%, there

was little change in the computational LFP, as expected (Fig. 13c-d). Blockade by

80% slightly decreased the latency of the evoked LFP in the blocked column, and

increased the amplitude of a late component of the computational LFP (Fig. 13c-d).

Little change was observed in the column adjacent to that stimulated even with 80%

blockade of the LTS cells in both columns.
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Fig. 13. LTS neuronal function (a-b) LTS cells (red) were depolarized with input of

1Hz frequency causing synchronization of RS (green) and FS (blue) neurons.

The depolarizing current of value 5 was given to column 2 only (b) and does

not cause oscillations in adjacent columns (a). (c-d) Local Field Potentials

(LFP) in the stimulated (c) and an adjacent column (d) with different levels

of LTS neuron blockade.

38



Fig. 14. FS neuronal function. (a-b) Result of blockade of FS cells in layer III by 50%:

activity in the stimulated (a) and an adjacent column (b). The amplitude of

stimulus is 8. (e-f) LFP in the case of blockade (purple) is compared to the

control case (black) both in stimulated (e) and an adjacent (f) column; (c-d)

Gamma oscillations resulting from applying constant depolarizing currents (

2 mV to RS neurons in layer III and IV, 3 mV to all LTS and IB neurons and

RS neurons in layer V, 6 mV to RS neurons in layer VI, and 4 mV to all FS

neurons): EEG (c) and its Fourier transform (d) with a peak at 33 Hz. The

depolarizing inputs were: 2-6 for RS cells, 3 for LTS and IB cells, and 4 for

FS cells (g-h) Results of strengthening FS cells to 200% their amplitude. LFP

in the stimulated (g) and adjacent (h) column. The amplitude of stimulus is

25.
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4.1.3 FS neuronal function

FS neurons provide inhibition that controls horizontal spread of excitation within

the cortex (Thomson,2003; Douglas and Martin,2004). Simulation of increased strength

of FS neurons within layer III showed that the computational LFP decreased in du-

ration and amplitude (Fig. 14g). In addition, the response in the column adjacent

to that stimulated was reduced, demonstrating an increased focality (Fig. 14g-h). In

contrast, when the strength of the FS neurons was selectively reduced, activity spread

laterally within the cortex (Fig 14a-b). Reduction or increase of the effectiveness of

inhibitory synapses was achieved by decreasing or increasing weights of the synapses

connecting inhibitory neurons to other cells.

The cortical and thalamocortical oscillations in the gamma frequency (30 − 80

Hz) are well studied. They occur, for instance, in pharmacologically isolated networks

of inhibitory interneurons and it has been shown that the interneurons that drive the

gamma oscillations are the FS cells (Traub et al.,1997; Whittington et al.,1995).

Applying constant depolarizing currents that effectively increase the function of FS

cells results in persistent gamma oscillations in the computational EEG as shown in

Fig 14c-d. The values of the current where: 2 mV to RS neurons in layer III and IV,

3 mV to all LTS and IB neurons and RS neurons in layer V, 6 mV to RS neurons in

layer VI, and 4 mV to all FS neurons.

4.1.4 Generation of interictal-like and ictal-like epileptiform activity

Three sequential effects of decreasing levels of GABAA receptor blockade can be

observed by looking at the evoked field potentials. First, the short latency evoked

field increases in duration, reflecting a greater excitatory postsynaptic response. Sec-

ond, longer but variable latency, polyphasic, all-or-none fields are evoked that are
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Fig. 15. Different stages of inhibitory blockade (a-e) Computational local field poten-

tials (LFP) for the stimulated columns in different conditions: control (a),

increasing levels of inhibitory blockade (b-d): 20, 30, and 90% respectively,

and simulation of enhancement of NMDA receptors (e). Amplitude of input

was 8 mV; (f-i) Computational local field potentials (LFP) for the stimulated

columns in the network without modification of the neuron model with in-

creasing levels of inhibitory blockade 0 (control), 20, 30, and 90% respectively.

Amplitude of input was 3 mV; (j-n) Biologically measured LFP: control (j),

increasing levels if bicuculline (k-m), and enhancement of NMDA receptors

(n).
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similar to interictal-like epileptiform activity. Third, repetitive sharp ictal-like waves

are produced both spontaneously and in response to stimulation. All three levels

could be simulated with increasing reductions in all inhibitory synapses within the

computational network (Fig. 15a-d). Examples of network activity visualized as spike

plots are shown in Fig. 32-34 in Appendix C.

The computational LFP generated under these conditions is similar to that pro-

duced biologically with application of the GABAA antagonist, bicuculline (Fig. 15j-

m). Under these conditions, a single stimulation pulse resulted in long trains of

excitation and propagation across columns.

However, result obtained in the network with original Izhikevich neuron model

(without our modification, see Section 3.3) do not match biology (Fig. 15f-i). Block-

ade if inhibitory neurons results only in increase of the amplitude and duration of

the LFP. ALthough there is spread of activity to the adjacent columns (not shown),

there is no repetitive activity.

Epileptiform activity can also be induced in cortical slices acutely by activation

of NMDA receptors with application of a bathing medium without the addition of

MgCl2 (Robinson and Kawai,1993; Zhang et al.,1995). Computationally, enhancing

NMDA receptors was modeled by increasing the late component of the EPSC (Fig.

15e and n), since NMDA receptors account for the late part of the EPSP. Specifically,

the value of τ2 in equation (3.2) was increased by a factor of two (Figure 16).

4.2 Discussion

In this chapter we presented a model of neocortex that allows for selective mod-

ulation of the powerful inhibition that maintains the boundaries on focal excitation,

separately from the form that provides simultaneous modulatory inhibition to sev-

eral layers within a column. A unique characteristic of this model is the multi-

42



Fig. 16. Simulation of NMDA receptor increase. (a-b) Post Synaptic Potential (PSP)

before (black) and after (blue) increasing its half-width. (a) PSP for connec-

tion between RS and FS neurons in layer III. (b) PSP for connection between

RS neurons in layer IV.

column multi-layer construct. This allows for a better understanding of the processes

that propagate across columns, as well as those that create inter-laminar synchrony.

This model can specifically be used to probe questions about mechanisms underlying

epileptiform activity induced in a malformed cortex.

When creating a computational model of neocortex, there are a number of ques-

tions that should be asked. First, how much detail is necessary in order to answer the

specific questions proposed. High level models do not account for shapes of synaptic

input, while more complex models use multiple compartments for individual neurons

but limit the size of the network that can be modeled within a reasonable computation

time. In this work we used the best aspects of each model, allowing for simulation of

different EPSC shapes (necessary for instance to model NMDA inputs) but still hav-

ing fast computing since. Since the main goal here is to understand how alteration

of specific interneuron subtypes affects the development of propagating excitatory

activity, multiple compartments are not necessary.

Another critical question is: which aspects of function are necessary to test to

demonstrate that the computational model performs close to the biological network.
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Clearly the individual units from which the network is composed must be tested. We

adopted the Izhikevich neuron model that has been used and tested in many studies

to create neuronal subtypes with specific firing patterns. We have confirmed this

unique firing pattern in response to depolarization and added a crucial modification

that prevents ’runaway’ firing (Strack et al.,2013a). Without this modification, the

neurons would fire at much higher frequencies than those occurring biologically. In

addition, we have confirmed two other critical aspects of connectivity: (1) the correct

form of short-term plasticity on the synaptic inputs that the cell receives; and (2) the

correct amplitude and probability of outputs to specific cell types, as shown by paired

intracellular recordings. We have also demonstrated that their synaptic inputs and

outputs produce the biologically demonstrated result. For LTS neurons, this includes

a modulatory inhibitory output that spans the layers but remains confined within a

column. For FS interneurons, this includes a powerful inhibition that is primarily

within a single layer.

One goal of this work was to determine connectivity patterns that generate net-

work epileptiform activity. The other aspects of function necessary to test are those

that contribute to patterns of activity under both conditions of normal network func-

tion and hyperexcitability, or seizure-like, function. We demonstrated that thalamic

input produced the expected laminar and columnar pattern, namely, layer IV to II/III

to V and VI, within a single column, without spread to other columns or activation

of epileptiform activity. Yet, when conditions that produce epileptiform activity were

simulated (blockade of inhibitory receptors, or increased function of NMDA receptors)

the network undergoes the same pattern of changes that are observed biologically. For

instance, application of low levels of bicuculline to the bathing medium of a cortical

slice block GABAA receptors and produce enhancement of the short latency evoked

field potential (Chagnac-Amitai and Connors,1989a; Connors,1984). This is also ob-
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served in our model with 20% inhibitory blockade. With increasing levels of bicu-

culline in the biological slice, interictal epileptiform activity occurs, the characteristics

of which are a varied but typically long latency after the stimulus, variable form, and

all-or-none event (Chagnac-Amitai and Connors,1989a; Connors,1984). This means

that the amplitude of the interictal event does not vary with stimulus intensity. In our

model, we observe the same characteristics at 30% inhibitory blockade. Ultimately,

with either strong GABAA blockade or removal of magnesium from the bathing solu-

tion, ictal-like events can be generated in cortical slices. These events typically have

a sharp onset and are repetitive (Robinson and Kawai,1993; Zhang et al.,1995). In

our model we observe these same characteristics at 90% level of inhibitory blockade

or enhancement of NMDA receptors equivalent to the removal of magnesium from

the slice bath solution.

Computational models have commonly been used to understand different aspects

of epileptiform activity. For instance, the macroscopic approach, which involves mod-

eling larger population of neurons instead of separate cells, provided many valuable

insights, including modeling of EEG and the transition from interictal to ictal ac-

tivity (Suffczynski et al.,2005). However, when the goal is to model the influence of

connectivity, specific neural subtypes, or synaptic properties on epileptiform activ-

ity, network models are more appropriate. Although the network approach has been

successfully combined with experimental studies (Cunningham et al.,2004; Traub et

al.,2005b), there are several areas that have not been studied computationally, such

as how malformation of the cortex affects the propagation of epileptiform activity.

The model described here was designed to simulate this scenario.
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CHAPTER 5

MODELING LESIONS IN THE CORTEX

The laminar organization of the neocortex is vital to its normal operation. The

neocortex consists of several layers that differ in thickness, number of neurons and

their types, the types of input they receive, and the ways that input is processed.

Analyzing flows of activity in vertical and horizontal brain tissue slices have been a

significant source of knowledge about neuronal connections in the brain. In particular,

there is a wide range of studies that compare different aspects of connectivity between

superficial and deep layers (Telfeian and Connors,1998; Telfeian and Connors,2003;

Ichinose and Murakoshi,1996). However, focal or global loss of layers has not been

modeled using computational models, even in those that preserve laminar structure

of cortex (Traub et al.,2005b).

In this chapter we focus on analyzing the spread of activity with different levels of

inhibitory blockade in superficial and deep layers using our multi-layer multi-columnar

model of neocortex.

The simulations were performed using time step of 0.1 ms on a network consisting

of five columns with added white noise with variance of eight. Inhibitory blockade

was modeled by decreasing the weights of all inhibitory connections. The amplitude

of the stimulus was 8 mV, however, simulations with stimulus amplitude in the range

7−19 mV were also performed and the results were consistent through all amplitudes.
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Fig. 17. Spread of activity in the intact network. (a) Peak negativity vs. level of

inhibitory blockade in different columns. Results averaged from two simula-

tions. (b) Local field potentials in stimulated column (column 2), one column

away (column 3), and two columns away (column 4) in conditions of 70%

inhibitory blockade.

5.1 Results

5.1.1 Spread of activity in the intact network

First, different levels of inhibitory blockade within the whole network where

simulated. As expected, without inhibitory blockade, or with low levels of blockade,

there is little spread to adjacent columns in response to stimulation within a single

column. This can be seen from the peak negativity (excitation) of the LFP plotted

as a function of the level of inhibitory blockade (Figure 17). However, with 40%

blockade, activity in the adjacent column is near that within the stimulated column

and continues to propagate horizontally across the columns. These results confirm

the well known function of inhibition in limiting horizontal spread within neocortex

(Chagnac-Amitai and Connors,1989a).
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Fig. 18. Horizontal spread of activity through individual layers after removal of other

layers in all columns (global lesion). (a-b) Peak evoked negativity from com-

puted LFP after stimulation of column 2 under various levels of inhibitory

blockade. Cortical strips of only layer III (a) or layer V (b) were modeled

as created experimentally from biological tissue after cut of coronal slices

(Telfeian). Average of 2 simulations shown. (c-d) Local field potentials pro-

duced after stimulation of column 2 under condition of 70% inhibitory block-

ade for layer III (c, black) and layer V (d, blue). Activity in columns 3 and 4

is a result of propagation across the laminar strip. Propagation to columns 3

and 4 occurs for both layer III and layer V strips.
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5.1.2 Global horizontal cuts

Second, all layers but one were removed across all columns and the remaining

layer (forming a strip) was stimulated focally in the second column. Different levels

of inhibitory blockade were applied.Propagation in a strip of layer III (Fig. 18a,c)

and a strip of layer V (Fig. 18b,d) was investigated.

Comparing Figures 18a and b with Figure 17a we notice that the activity spreads

faster with the increase of the inhibitory blockade level in the intact network (with all

layers) than in a single layer. In the whole network with 40% blockade, the activity

in adjacent columns is comparable to the stimulated column, whereas in network

consisting of only one layer these levels of activity do not become similar until the

blockade reaches 80-90%. In addition, LFPs in the lesioned network are shorter and

of lower amplitude when compared with the intact network.

At high levels of inhibitory blockade (80-90%), activity propagates across columns

for both the layer III and layer V strip. Importantly, in the case of 70% blockade some

spreading is noticeable within layer V, but not within layer III. This result is consistent

with what was reported for the biological network in (Telfeian and Connors,1998).

5.1.3 Focal loss of layers

Next, either superficial (III and IV) or deep (V and VI) layers were removed

within column 3 only, leaving remaining layers to bridge columns 2 and 4. To deter-

mine if activity could spread across the bridge, stimulation was applied focally within

column 2.

Little propagation is observed with 20-40% blockade, but with 60% blockade,

the spread is strong for the deep but not the superficial layer bridge (Figure 19a,b).

Moreover, LFPs show that for the deep layer bridge, the activity in column number
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Fig. 19. Propagation through superficial versus deep cortex measured by creating

bridges of tissue within column 3 (focal lesions). (a-b) Peak evoked negativ-

ity from computed LFP after stimulation of column 2 under various levels of

inhibitory blockade when only superficial (a) or deep (b) layers remain within

column 3. Average of 2 simulations shown. Larger LFPs are produced from

propagation across the deep layer bridge. (c-d) Local field potentials produced

after stimulation of column 2 under condition of 60% inhibitory blockade for

the superficial (c, black) and deep(d, blue) layer bridge. A greater amount of

propagation occurs with the deep layer bridge.
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four (two columns away from the stimulation) is comparable to that in the intact

network (see Figure 19b). This supports the idea that layer V may be more susceptible

to activity propagation when all columns are intact. It has been suggested that this

is true biologically due to IB cells that have horizontal projections (Chagnac-Amitai

et al.,1990) and are more active during epileptiform activity relative to the RS cells

(Chagnac-Amitai and Connors,1989a). Within our model, we also find that with 40%

inhibitory blockade and all layers intact, the average RS firing rate is 12 spikes/sec,

while that of IB cells is 26.

Finally, as was true for the global lesion, with high levels of inhibitory block-

ade, both superficial and deep layer bridges can support spread and propagation of

excitatory activity across columns (Figure 19a,b).

5.2 Conclusions

We have examined the propagation of activity across the computational multi-

layer, multi-columnar cortex. As expected and previously shown biologically, with

all layers and inhibition intact, stimulation within one column remains focal. As

shown biologically, and within our computational model, even low level blockade of

inhibition allows the horizontal propagation of activity across columns (Chagnac-

Amitai and Connors,1989a; Chagnac-Amitai et al.,1990). We also showed here that

deep layers are distinct from superficial layers in this ability. While both superficial

and deep layers can support the propagation of activity at high levels of inhibitory

blockade, the threshold at which the propagation succeeds is lower for deep layers. In

addition, the deep layer response looks most similar to that produced when all layers

are intact, further suggesting that the deep layers are normally a significant pathway

for propagation under conditions of reduced inhibition.

All of these results are consistent with biological findings from cortical slices
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under similar conditions of creating strips and laminar bridges (Telfeian and Con-

nors,1998; Telfeian and Connors,2003). Importantly, this model is the first, to the

best of our knowledge, to use multiple layers, multiple columns, and short term plas-

ticity for the computational study of activity propagation.
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CHAPTER 6

STUDY OF INHIBITION INFLUENCE ON EPILEPTIC SEIZURES

When the vertical or horizontal organization of the cortex is altered during develop-

ment, several neurological and cognitive abnormalities occur. Study of a biological

model of a 4-layered microgyria associated with epileptiform activity has demon-

strated a number of cellular and synaptic anomalies. It is currently not known what

influence each of these changes has on overall network function.

Importantly, our computational model allows to study these potentially epilep-

togenic mechanisms in isolation. In this chapter the role of FS and LTS neurons

in modulating network activity is examined, and we show effects of a malformed

structure with some of the known alterations in cellular function and connectivity.

Section 6.1 describes how the modifications to the network are performed. Re-

sults and their discussion are presented in section 6.2.

6.1 Methods

6.1.1 Simulated conditions

Several different modifications are performed on the network structure and prop-

erties of neurons.

Malformation: Deep layers (IV,V, and VI) are removed within one column.

All connections that have their pre- or post-synaptic neurons in the removed area are

lost.

Rewiring of connections: Connections that have lost their post-synaptic tar-

get in the malformed column are rewired to the same cell type in one of the adjacent
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columns (chosen randomly). Cells that have lost a pre-synaptic connection from

the malformed column receive a connection from the same type of cell in one of

the columns adjacent to malformation (randomly). The synaptic amplitude of these

rewired connections can be selectively modified. The length of the connection is ad-

justed to the distance between the new interconnected neurons. Figure 20 illustrates

the process of rewiring connections.

Reduction of FS neurons: Number of FS neurons can be selectively reduced

in any column. It does not affect the probabilities of connections since only the

number of neurons changes.

Replacement of FS neurons with LTS neurons: Number of FS neurons is

reduced but they are replaced with LTS cells. This change affects only the number

of neurons, the probabilities of connections remain exactly the same as in the intact

network.

Enhanced excitation to LTS neurons: Increased excitation to LTS neurons

in a particular column is done by duplicating excitatory connections to LTS neurons

in layers IV, V, and VI. The duplicated connections have the same pre- and post-

synaptic neurons and the same synaptic weight as the original connection. The length

of the new connection is randomly chosen in the range of 100 − 150% of the length

of the original connection. If the excitation to LTS neurons is to be increased N

times, each connection is duplicated N−1 times. If the column has already increased

excitation to all neurons (rewiring), it is taken into account (on average, rewiring

results in 1.5 increase of excitatory connections to LTS neurons) so that the final

number of excitatory connections is increased N times.

54



Fig. 20. Example of rewiring of connections. Shaded area represents the malformation

(removed layers). Green triangle represents a regular-spiking (RS) neuron,

blue circle represents fast-spiking (FS) neuron. (A) Lost connection (dashed

gray line) from an RS neuron in layer III to an RS neuron in layer V within col

3 is rewired to RS neuron in layer V in either column 2 or column 4. (B) Lost

connection from the malformed area (gray dashed line) is rewired to originate

either in column 2 or column 4.
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Fig. 21. Example of event detection in three local field potentials (LFP). The red line

indicates the duration of event.

6.1.2 Event detection

To asses the amount of epileptic activity, event detection in local field potential

(LFP) needs to be implemented. It is done using a simple threshold method. The

parameters of detection (threshold, minimum time) were adjusted based on a sample

of 10 LFP (2000 ms each) and expert labeling of events.

First, the average µ10 and standard deviation σ10 are calculated from the first

10 ms of the signal. The potential event is detected if the value of normalized signal

(subtracted µ10) is greater than 8σ10 and it is considered to last till the value drops

to 0.4σ10. Only events lasting longer than 10 ms are considered. An example of event

detection is presented in Figure 21.
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6.1.3 Simulations

Each condition was simulated 30 times and the results were averaged. In each

simulation, column 2 was stimulated at 100 ms with thalamic input of amplitude 8.

We defined a short latency spread as activity spreading to either column 1 or 4

within first 250 ms of simulation (column 3 was the malformed column). Late activity

epileptiform is defined as any event occurring later than 250 ms, and repetitive spiking

is a series of at least two late events.

6.2 Results and discussion

When 50% of connections are rewired, there is not much increase of activity even

with increase of the amplitude of rewired connections (Figure 22). Figure 23 shows

number of seeds (experiments) that exhibit different types of epileptiform activity

with 50% and 100% of connections rewired. When 100% of connections are rewired,

there is more activity in the network than with 50% rewiring (p value < 0.001 in

z-test for each pair-wise comparison).

We also explored the effect of decreasing number of FS neurons in columns 2-4

combined with these conditions: (1) malformation only, (2) malformed cortex and

replacement of the missing FS neurons with LTS neurons, (3) malformed cortex with

rewired connections, and (4) malformed cortex with rewired connections and missing

FS neurons replaced with LTS neurons. Figure 24 shows results of these simulations.
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Fig. 22. Spatio-temporal patterns of activity after rewiring (Left) Connections are

rewired with 0.5 probability (50% rewired). (Right) Connections are rewired

with 1.0 probability. Color coding shows area of computed LFP for time pe-

riod ending in number indicated on x-axis (250 = 0−250 ms, 500= 250.1−500,

etc) and averaged across 30 seeds (experiments). Area was calculated only for

the detected events.
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Fig. 23. Number of experiments with different amplitudes of rewired connections (50%

rewired connections in purple, and 100% in blue) that exhibit different types

of epileptiform activity: short latency (in first 250 ms) spread to adjacent

columns, late activity in column 5, repetitive spiking, any kind of late (later

than 250 ms) activity.

59



F
ig

.
24

.
S
p
at

io
-t

em
p

or
al

p
at

te
rn

s
of

ac
ti

v
it

y
in

n
et

w
or

k
w

it
h

re
d
u
ce

d
n
u
m

b
er

of
F

S
n
eu

ro
n
s

to
d
iff

er
en

t
le

ve
ls

:
90

%
,

70
%

,
50

%
,

30
%

,
an

d
10

%
,

an
d

u
n
d
er

d
iff

er
en

t
co

n
d
it

io
n
s

(i
n

ro
w

s)
.

C
ol

or
co

d
in

g
sh

ow
s

ar
ea

of
co

m
p
u
te

d
L

F
P

fo
r

ti
m

e
p

er
io

d
en

d
in

g
in

n
u
m

b
er

in
d
ic

at
ed

on
x
-a

x
is

(2
50

=
0
−

25
0

m
s,

50
0=

25
0.

1
−

50
0,

et
c)

an
d

av
er

ag
ed

ac
ro

ss
30

se
ed

s
(e

x
p

er
im

en
ts

).

60



Figure 25 shows the results of increasing number of excitatory connections to

LTS neurons surrounding the malformation. Increasing excitatory input to LTS cells

alone does not induce epileptiform activity, however, when performed in a network

with increased excitation (rewired connections) it results in enhanced activity for 3X

and 5X increase. This suggests that increasing excitatory input to inhibitory LTS

cells can induce epileptiform activity.

Figure 26 shows activity of the network for combinations of conditions that were

simulated (Table 2). Number of simulations of each condition (different seeds) that

produce different type of epileptiform activity are shown in Figure 27. Representative

examples of network activity for each condition are presented in Appendix C.

We observe that focal removal of deep layers alone does not change the network

excitability. Rewiring connections results mostly in short-latency spread of activity to

the adjacent columns. However, increasing the amplitude of the rewired connections

(Figure 22) results in late epileptiform activity.

Comparing conditions F (reducing the number of inhibitory FS cells to 70% in

cols 2-4) and H (increasing excitatory input to LTS cells by 3X) leads to interesting

results. In condition F, there is more short latency spread (p value = 0.001 for z-test

for equality of proportions), while condition H results in more late epileptiform and

repetitive activity (p value < 0.001 for z-test for equality of proportions). There is

no significant difference in the number of simulations that resulted in late spread

activity to column 5 (p value = 0.13 for z-test for equality of proportions). These

results suggest that the biologically demonstrated increase in excitatory input to LTS

cells likely contributes to generation of epileptiform activity in malformed cortex.
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Fig. 25. Spatio-temporal patterns of activity in network with rewired connections and

increased levels of excitation to LTS neurons. Color coding shows area of

computed LFP for time period ending in number indicated on x-axis (250 =

0−250 ms, 500= 250.1−500, etc) and averaged across 10 seeds (experiments).

Area was calculated only for the detected events.
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Table 2. List of simulated conditions.

Condition Description

A Normal (intact) cortex with all columns and layers

B Malformed cortex - removed layers IV-VI in column 3

C Malformed cortex with reduction of the number of FS neurons to

70% in columns 2-4

D Malformed cortex with rewired connections

E Malformed cortex with 3x increased excitation to LTS neurons in

columns 2-4

F Malformed cortex with rewiring and reduction of the number of FS

neurons to 70% in columns 2-4

G Malformed cortex with rewiring and 30% of FS neurons replaced

with LTS neurons in columns 2-4

H Malformed cortex with rewiring and 3x increased excitation to LTS

neurons in columns 2-4

I Malformed cortex with rewiring, 3x increased excitation to LTS

neurons and 30% of FS neurons replaced with LTS neurons in

columns 2-4
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Fig. 26. Spatio-temporal patterns of activity under various conditions (see Table 2).

Color coding shows area of computed LFP for time period ending in number

indicated on x-axis (250 = 0-250 ms, 500= 250.1-500, etc) and averaged across

10 seeds (experiments). The area was calculated only for the detected events.
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Fig. 27. Number of experiments with given condition (x-axis) that exhibit different

types of epileptiform activity: short latency (in first 250 ms) spread to adja-

cent columns, late activity in column 5, repetitive spiking, any kind of late

(later than 250 ms) activity. See Table 2 for the list of conditions.
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CHAPTER 7

RUNNING TIME OF SIMULATIONS

In this chapter we present running time analysis of the implemented model. In Section

7.1 we discuss how the running time depends on the size of the network, the amount

of activity, and the total time of simulation. In Section 7.2 we discuss how the

simulations are parallelized.

7.1 Running time analysis

With fixed network size and the total time to be simulated, the running time

depends on amount of activity in the network, since the number of calculations per-

formed on synapses depends on the number of spikes in the network. The amount of

activity in the network depends on several factors: amount of noise, stimulus provided

to the network, and settings of the neural connections, that is strength and number

of excitatory and inhibitory connections.

Since each column of neurons is connected with at most two adjacent columns,

the number of connections increases linearly with the number of neurons. Thus, the

simulation time depends linearly on the number of neurons (if all other parameters

are kept fixed).

To illustrate these dependencies, several experiments were performed to assess

how the running time of a simulation depends on different factors (Figure 28): size of

the network measured by the number of columns, amount of activity in the network

measured by the level of noise, and total time of simulated activity. We analyze

both time of building the network, which include placing the neurons, initializing
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Fig. 28. (a) Time of simulation as a function of the number of columns. One column

consists of 788 neurons, the network was provided with a white noise with

variance equal to 10; (b) Time of simulation as a function of level of noise,

that is the variance of the white noise provided to the network; (c) Time of

simulation as a total time of simulated activity. The network was provided

with a white noise with variance equal to 10; (d) Time of initialization as a

function of the number of columns; (e) Time of simulation as a function of

level of noise; (f) Time of simulation as a total time of simulated activity; (g)

The level of noise can be understood as a measure of the amount of activity

in the network. All times were obtained as an average of three simulations.
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Fig. 29. Diagram of the task flow in sequential and parallel implementations of our

network.
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connections, and performing network modifications as e.g. removal of some layers,

and the actual time of simulation.

All experiments were performed on a PC equipped with IntelTM CoreTM i7 CPU

1.80 GHz and 12 GB RAM.

As expected, the time of building the network depends only on the size of the

network, while the time of simulation depends on all the analyzed factors. Since

the goal is to simulate epileptic seizures, which are cascades of increased activity,

the relationship between the simulation time and the amount of activity is the most

crucial one. The simulation time varies from minutes in case if single focal input in a

normal network to hours in case of inhibitory blockade simulation.

7.2 Parallelization

Parallelization of such a network is not straightforward since the neurons are

highly interconnected and it is challenging to isolate independent tasks. Each synapse,

on the other hand, is independent on other synapses. In addition, there is 100 times

more synapses than neurons in the network and the computations performed on

neurons and synapses are comparably expensive. This motivated us to parallelize the

calculations of synapses (Figure 29). Each thread updates state of a set of synapses

and then, after all synapses are synchronized, neurons are updated in a separate

thread. This minimizes the amount of synchronization needed.

Dependency of the running time and the speedup versus the number of threads

are presented on Figure 30. The speedup was calculated as

Sn =
T1
Tn
, (7.1)

where Tn is the execution time using n threads (T1 is the time of the sequential

algorithm).
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As expected, the time decreases with the number of threads but, since there is

significant amount of synchronization performed, the speedup is worse than linear

(which is the case of Sn = n). Notice that the more activity in the network the more

thw speedup.
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Fig. 30. Comparison of the time of simulation and speedup for two different stimulus

configuration. ’Larger noise’ refers to simulation with noise of standard devi-

ation of 10, ’small noise + stimulus’ refers to simulation with noise of 7 and

with stimulated one column with amplitude of 10 for 1 ms (focal input). (Top)

Time of simulation versus the number of threads. Each point is an average

of 10 simulation (standard error shown as error bars). (bottom) Speedup for

both settings.
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CHAPTER 8

CONCLUSIONS

A computational model of neocortex that preserves its multi-layer and multi-column

structure was developed. It employed four different neuronal types, short-term plas-

ticity, and detailed network connectivity, based on current state of knowledge. The

used Izhikevich neuron model was modified to account for the refractory period and

thus restricting its maximal firing rate.

The network model was validated by showing that it behaves close to biology in

several aspects: focality of the input, ability to generate different stages of epileptiform

activity with increased blockade of inhibitory cells, and functions of inhibitory fast-

spiking (FS) and low-threshold spiking (LTS) neurons, including generation of gamma

oscillations. The model was used for modeling global and focal lesions in the cortex

and generated results consistent with biological findings.

Furthermore, the malformed cortex and several neuronal and connectional ab-

normalities in the area surrounding the malformation were also modeled.

Both horizontal (laminar) and vertical (columnar) organization of the neocortex

are vital to its normal operations. When this organization is altered during devel-

opment, neurological and cognitive abnormalities occur. Study of a biological model

of the 4-layered microgyria associated with epileptiform activity revealed a number

of cellular and synaptic anomalies. It is currently not known what influence each of

these changes has on the overall network function.

Our model allowed investigation of the above mentioned potentially epileptogenic

mechanisms in isolation. The results suggested that (1) after rewiring, increasing
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excitatory input to LTS neurons was more effective in inducing epileptiform activity

than was reducing the number of inhibitory FS cells to 70% within and around the

malformation, (2) an increase in the excitatory input to LTS cells contributed to

generation of epileptiform activity in the malformed cortex.
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Appendix A

ABBREVIATIONS

EEG Electroencephalography - recording of brain electrical activity (volt-

age fluctuations) along the scalp

FS Fast-spiking neurons - inhibitory neurons that can fire periodic

trains of action potentials with extremely high frequency practi-

cally without any adaptation

GABA Gamma-aminobutyric acid - an inhibitory neurotransmitter

IB Intrinsically bursting neurons - excitatory neurons that fire a stereo-

typical burst of spikes followed by repetitive single spikes

LFP Local field potential - electrical potential recorded in neural tissue

with an electrode

LTS Low-threshold spiking neurons - inhibitory neurons that can fire

high-frequency trains of action potentials, but with a noticeable

spike frequency adaptation, and have low firing thresholds

NMDA receptor Voltage-dependend glutamate receptor - NMDA (N-methyl-D-

aspartate) is a selective agonist that binds to NMDA receptors but

not to other ’glutamate’ receptors

PSP Post-synaptic potential - a change in the membrane potential of the

postsynaptic terminal of a synapse

PV Parvalbumin - calcium-binding protein

RS Regular-spiking excitatory neurons - the most typical neurons in

the cortex
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RVA Richmond, Virginia

SS Somatostatin, hormone that regulates the endocrine system and

affects neurotransmission

STP Short-term plasticity - ability of a synapse between two neurons

to change in strength depending on the frequency of pre-synaptic

spikes; acts in tens of milliseconds to a few minutes

VCU Virginia Commonwealth University
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Appendix B

PARAMETERS OF NEURAL CONNECTIONS

All the parameters of our network are collected in in Table 4.

’D’ stands for depressing, and ’F’ stands for a facilitating synapse. τ1, τrec, and

τfac are the parameter of the short-term plasticity model (equation (3.2) in Section

3.2), U , C1, C2 are the parameters of Post-synaptic Potential (equation (3.2) in

Section 3.2). The neuron type and location are coded as Ax, where A is the first

letter of the neuron type, and x is the number representing layer, e.g., R6 means RS

neuron in layer VI.

Some information is available to verify which cell types project horizontally across

columns (Chervin et al.,1988; Telfeian and Connors,1998; Telfeian and Connors,2003).

In terms of the actual values for probability and strength across columns, they were

based on a percentage of the values obtained for the same connection within a column.

The percentage was cell-type specific and based on the references cited above.
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Appendix C

EXAMPLES OF NETWORK ACTIVITY

In this appendix, we show examples of the network activity in different conditions

discussed in previous chapters. Each figure shows the spike pattern of neurons and

the generated LFP by column. Column 2 was stimulated at 100 ms with thalamic

input of amplitude 8 (focal input) and the network was provided with the noise of

amplitude 8.
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Fig. 31. Modeled condition: focal input to intact network
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Fig. 32. Modeled condition: 10% of the inhibitory neurons, focal input to intact

network.
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Fig. 33. Modeled condition: 50% of the inhibitory neurons, focal input to intact net-

work.

86



Fig. 34. Modeled condition: 80% of the inhibitory neurons, focal input to intact net-

work.
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Fig. 35. Modeled condition: focal input to malformed network (removed layers IV, V,

and VI from column 3).
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Fig. 36. Modeled condition: focal input to malformed network (removed layers IV, V,

and VI from column 3) with 3X increased excitatory input to LTS neurons in

columns 2-4 (see Section 6.1 for description of this condition).
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Fig. 37. Modeled condition: focal input to malformed network (removed layers IV, V,

and VI from column 3) with rewired connections (see Section 6.1 for descrip-

tion of this condition).
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Fig. 38. Modeled condition: focal input to malformed network (removed layers IV, V,

and VI from column 3) with rewired connections and 3X increased excitatory

input to LTS neurons in columns 2-4 (see Section 6.1 for description of this

condition).
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Fig. 39. Modeled condition: decrease of the number of FS neurons to 70% in columns

2-4 (see Section 6.1 for description of this condition).
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Fig. 40. Modeled condition: decrease of the number of FS neurons to 70% in columns

2-4 and rewired connections (see Section 6.1 for description of this condition).
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Fig. 41. Modeled condition: 30% of FS neurons in columns 2-4 replaced with LTS

neurons and rewired connections (see Section 6.1 for description of this con-

dition).
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Fig. 42. Modeled condition: 30% of FS neurons in columns 2-4 replaced with LTS

neurons, rewired connections and 3X increased excitation to LTS neurons (see

Section 6.1 for description of this condition).
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