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Rigid body modeling has historically been used to study various features of the elbow joint 

including both physical and computational models.  Computational modeling provides an inexpensive, 

easily customizable, and effective method by which to predict and investigate the response of a 

physiological system to in vivo stresses and applied perturbations.  Utilizing computer topography scans 

of a cadaveric elbow, a virtual representation of the joint was created using the commercially available 

MIMICSTM and SolidWorksTM software packages.  Accurate 3D articular surfaces, ligamentous 

constraints, and joint contact parameters dictated motion.  The model was validated against two 

cadaveric studies performed by Chanlalit et al. (2011, 2012) considering monopolar and bipolar circular 

radial head replacements in their effects on radiocapitellar stability and respective reliance upon lateral 

soft tissues, as well as a comparison of these with a novel anatomic radial head replacement system in 

an elbow afflicted with the “terrible triad” injury.  Rigid body simulations indicated that the 
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computational model was able to accurately recreate the translation of forces in the joint and 

demonstrate results similar to those presented in the cadaveric data in both the intact elbow and in 

unstable injury states.  Trends in the resulting data were reflective of the average behavior of the 

cadaveric specimens while percent changes between states correlated closely with the experimental 

data.  Information on the transposition of forces within the joint and ligament tensions gleaned from the 

computational model provided further insight into the stability of the elbow with a compromised radial 

head. 
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1. INTRODUCTION 

 

1.1. Overview of Computational Modeling 

Biomechanical function of the musculoskeletal system relies upon multiple physiological 

components, including articular anatomy, ligamentous constraints, and muscle activation.  Classically, 

biomechanical research has focused on the utilization of cadaver tissues to study these components as 

well as the effects of joint repair procedures.  Through hardware advances and the development of 

sophisticated software, computational modeling has become increasingly popular for the study of these 

features to further understand and characterize joint function.  Computational techniques provide 

repeatability, preservation of resources, and a method to quantify parameters difficult or impossible to 

measure experimentally.  They also allow for simultaneous measurement of myriad physiological 

entities.  Once these models are validated against experimental results, they may be utilized to not only 

further understand joint mechanics, but also to study surgical techniques, develop individualized 

rehabilitation strategies and implantable devices, and study functional changes resulting from traumas, 

pathologies, or implantable devices.   

Currently, two primary methods of computational modeling have been accepted as comparable 

to experimental data: continuum finite element analysis (FEA) and rigid body modeling (RBM).  Though 
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both are robust tools for modeling with various strengths, traditionally one option is chosen over the 

other depending on the desired quantifiable elements. 

Continuum finite element analysis has a long history of solving problems in various engineering 

fields including biomedical engineering and musculoskeletal biomechanics.  FEA involves defining a 

region of interest or geometry whose mechanical behavior is governed by explicit conservation 

statements (i.e. conservation of mass, conservation of linear momentum, etc).  This region of interest is 

subdivided into individual tetrahedral bodies, or elements, which are connected to one another through 

nodal points. Element properties and boundary parameters, including experimentally-derived material 

properties such as stiffness, are assigned to each element [1].  The unknown parameters, or field 

variables, of the problem (i.e. displacement or pressure) are assigned to each nodal point and assembled 

into an array of field variables that must be solved.  FEA has been used recently to observe the force 

distribution and contact stresses of loaded joints, as well as implantable devices [2–6].  However, due to 

the lengthy processing time required to compute unknowns, these models have been described as 

sometimes too complex [7] when observing a large number of variables in a study.  This can at times 

become prohibitive in biomechanical computational modeling. 

Rigid body modeling is a versatile method of simulating joint kinematics that presents main 

bodies of the model as both inelastic and incompressible, thus prohibiting deformations.  This is an 

approximate methodology for kinematics research because of the tissue’s inherent high stiffness, and is 

ideal in situations when bone stress computations are not the desired outcome.  Recently in the 

literature, rigid body modeling and FEA have been combined for a more thorough description of joint 

function [5].  However, difficulties remain in integrating both techniques, including the collection of all 

physiologic and morphometric data such as segment lengths and muscle moment arms about joints 

[8,9].   
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RBM is seen frequently in literature to both measure ligament and surface forces as well as to 

predict motion [3,6,10–13].  These studies utilize computed topography (CT), magnetic resonance 

imaging (MRI), or laser scans to derive their simulations, and sometimes employ a user interface that 

allows easy manipulation of a model to simulate geometries and model parameters to recreate a variety 

of procedures.  Though containing highly advanced features, many disregard the effects of ligaments 

and their respective in situ strains.  Even those that account for viscoelastic ligament properties often 

rely upon simplified joint approximations, such as simple hinges to simulate the elbow, thereby 

constraining the possible degrees of freedom to idealized situations [13].  Others only employ inverse 

dynamics, a methodology in which a particular kinematic parameter (e.g. angle of flexion/extension or 

pronation/supination) is applied and the resultant stabilizing forces are measured accordingly [14].  

These modifications affect the complexity and accuracy of the model, while undermining the results as 

they would be applied in a clinical setting.   

In comparison, some of the most recent RBM examples are implementing models which do not 

idealize joint motion, but allow 3D articular anatomy, ligamentous constraints, muscle forces, and 

external perturbations to dictate overall biomechanical function [12,15–20].  These models utilize a 

modeling approach that can simulate almost any joint condition, including osteotomies, fixation devices, 

prostheses, and ligament or bone injury.  Liacouras’ early research using rigid body modeling in this 

manner considered the lower extremity.  Despite software limitations, this lower leg computational 

model accurately reflected the results of two distinct cadaveric studies, including syndesmotic injury and 

repair and a post-ligament transection ankle inversion.  Data also reflected in vivo force re-distributions 

following injury and showed the predictive nature of RBM [18].  This methodology has been since 

updated and modified for further research on the elbow, shoulder, wrist, and ankle [15,16,19–21].  
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1.2. Rigid Body Modeling of the Elbow 

Rigid body modeling has been used to study various features of the elbow joint including both 

physical and computational models.  Lemay et al. designed a physical construct to simulate elbow 

motion which used a fixed flexion axis and assumed that the ulna was fixed throughout forearm 

rotation.  Neither bony articulation nor elbow capsuloligamentous constraints were considered, though 

muscles were simulated as springs [10].  Early computational models did not include 3D model creation, 

but instead focused on mathematical techniques to create a rigid body simulation for joint motion.  

Reich et al. considered the motion of individual voxels, based on MRI scans, to predict the motion of the 

radius as it rotated about the ulna in forearm rotation.  A number of errors were cited to cause the 

inconsistencies in the results of the study, including deformation of the arm in MRI scans, 

inhomogeneities in the magnetic field during scanning, and the assumption of a fixed axis of rotation 

about the ulna [11].   Fisk and Wayne created a unique rigid body model that incorporated the effects of 

3D bony anatomy, muscle forces, and ligamentous constraints to dictate motion of the elbow [15], 

moving past previous models with idealized joint motions, and studied the osteoarticular contributions 

to varus joint stability.  Expanding upon this, Spratley and Wayne utilized more sophisticated modeling 

techniques to create a model with improved bony anatomy to study the effects of bony and soft tissue 

trauma on varus elbow stability [17].  

 

1.3. Radial Head Injuries and Treatments 

A brief review of elbow anatomy and motion is now provided for understanding of radial head 

injuries and subsequent treatments, as well as elbow joint modeling and the purpose of this work 

(Figure 1.3-1).  Expanded upon in Chapter 2, the humerus articulates with the bones of the forearm, the 

ulna and radius, to cause elbow flexion, while the radius and ulna interact in forearm rotation [22].  The 
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distal humerus contains two primary articulating bony features.  The pulley-shaped trochlea, located on 

the medial portion, articulates with the proximal ulna.  The proximal ulna includes the anterior coronoid 

process and the posterior olecranon process, bony prominences which rotate about the trochlea.  

Lateral to the trochlea on the humerus is the capitellum, a round feature that articulates with the 

slightly concave proximal radius, called the radial head [9,23,24].  The elbow flexes about the 

humeroulnar articulation, causing the forearm to arc in the sagittal plane approximately 140° around 

this axis from full extension to full flexion [25].  The second major motion of the elbow is forearm 

rotation, which involves the distal radius rotating around the ulna about a pivot point in the proximal 

radioulnar articulation [22].  This results in the palm facing downward (pronation) or upward 

(supination) and a total range of motion of approximately 180° [25]. 

 
Figure 1.3-1: Anterior (A) and posterior (B) views of elbow bony articulation [22] 

 

Research on the quantitative effects of radial head excision and/or replacement has generally 

been overlooked in experimental studies in favor of emphasizing the medial collateral ligament (MCL) 

and ulna, as the MCL is the primary stabilizer against valgus stresses while the ulna articulates with the 

humerus to provide bony stabilization of the joint.  Contributions of the radial head (RH) to elbow 
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stability are well documented, however research regarding treatment of radial fractures is still 

rudimentary with widely differing opinions [9,26–29].  The radial head is considered the secondary 

resistance to valgus stresses in the elbow, providing up to 30% of valgus stabilization even in the 

presence of the MCL [9,25].  With a transected radial head and intact MCL, there is an average decrease 

in valgus stability of 25%.  However, when the MCL is released, the elbow becomes 100% unstable 

without the radial head in valgus motion, indicating that injuries to the MCL leave the radial head as the 

primary stabilizer against valgus displacement.  Regarding force distributions in the elbow, studies 

indicate that up to 90% of body weight can be transmitted across the radial head.  This effect is 

exaggerated under forearm pronation because the axis of this rotation pivots about the ulna, causing 

proximal radial head migration and possible abutment against the capitellum of the humerus [9]. 

The prevalence of radial head fractures lends import to the research around radial head excision 

and prosthetic replacement.  Breakages of this structure occur in almost 20% of all elbow trauma cases 

and in 33% of elbow fractures [9,30], making it one of the most common injuries to the elbow [31].  

Between 1.7-5.4% of all fractures in the body are attributed to injuries of the radial head.  These 

fractures are particularly seen in axial loading of the pronated forearm [9] and in the extended elbow 

[26], as the posterolateral margin of the RH abuts the capitellum and results in anterolateral fractures.  

Despite acknowledgement that an injury to the coronoid process of the ulna may lead to a gross lack of 

elbow stability, the arc of possible injury to this feature only includes the first 35° of flexion.  In contrast, 

the radial head and neck have an arc of injury spanning from full extension to 80° of flexion, with the 

latter 45° of flexion selectively damaging the radial head.  Thus, the opportunities for proximal radial 

fracture are vastly greater than those for the proximal ulna [9].   

The Mason classification of RH fractures, considered the standard for labeling injuries to this 

structure, distinguishes four main types of breakage [9,32,33] (Figure 1.3-2).  Type I injuries consist of 
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non-displaced fractures while Type II features a displaced fracture, often a single fragment less than 30% 

of the head.  A non-complex, comminuted fracture constitutes Type III.  Type IV injuries involve complex 

comminuted fractures, indicating damage to other associated structures in the elbow and/or 

displacement.  One in three RH fractures is associated with other injuries, including fractures of nearby 

bony features, soft tissue damage, or both.  Ligament attenuation or rupture has been noted to occur in 

all levels of radial head injury, but in up to 85% of Type III fractures and almost always in Type IV [9,33].  

One such Type IV injury is the terrible triad, a debilitating injury with a high rate of complications which 

encompasses damage to the lateral ulnar collateral ligament, radial head, and coronoid process 

alongside elbow dislocation [9].  

 
Figure 1.3-2: Mason classification of radial head fractures [33] 

 
 

Type I radial head fractures are considered the most easily treatable as they rarely constitute 

invasive operative methods [9].  Conservative methods of brief immobilization followed by early motion 

are considered to produce excellent results, though in a small percentage this technique can result in 
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displacement or nonunion [26].  This is of particular note for injuries that include damage to the radial 

neck, as blood supply to the radial head runs within the intramedullary canal of the neck.  Disruption of 

this supply can lead to tenuous results regarding bone union [33].  Depending on the presence of 

ligamentous injury, these complications may require subsequent radial head excision [9].   

Type II fractures are considered the most controversial with regards to treatment, with both 

nonoperative and operative methods.  Sometimes, nonoperative treatment similar to that in Type I 

fracture is recommended for Type II injuries, though if further displacement is imminent then several 

weeks of immobilization may be necessary.  However, this particular method of treatment is performed 

under the assumption that delayed radial head excision is an option upon such complications as motion 

loss, significant pain, and RH deformation [9].  Three types of operative treatment are also suggested for 

those with Type II fractures: open reduction with internal or external fixation, radial head excision, and 

prosthetic radial head replacement.  Open reduction and fixation is best utilized in cases of a large single 

fragment of the anterolateral margin, consisting of at least 30% of the radial head [9,34].  This lends 

ease to fixation techniques as well as prevention of impingement between implanted hardware and the 

ulna [9,33].  For radial head excision, early action within the first 24 hours is preferable, but remains a 

possibility for up to ten days [9].  Radial head replacement is rare for Type II injuries [34].   

Determining the correct form of treatment is critical for Type III and IV fractures because of the 

loss of stability inherent in these injuries.  Though radial head excision has been shown clinically to have 

satisfactory results [9], recent research has emphasized preservation of the innate kinematics of the 

joint and has thus suggested open reduction with internal fixation or arthroplasty [27,31,34].  Because 

of the breadth of injuries and potential comminution of the radial head in Mason III and IV fractures, 

reduction and fixation is not always possible [34].  Resection is suggested in cases of multiple radial head 

fragments, in gross, multi-millimeter displacements, or in examples of a large decrease in the arc of 
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flexion or rotation.  Preferred protocol for excision of the radial head involves cutting at the level of the 

annular ligament, and within 24 hours of the initial injury for optimal healing [9].   

Though a dichotomy of opinions exists in the literature regarding efficacy of removing the RH 

[35], several complications occur with treatment by radial head excision.  Valgus forearm angulation can 

expand between 5 to 20 degrees post-surgery [9,27].  Some individuals experience a loss of strength in 

pronation or supination, and/or loss of motion [27].  Other complications include early degenerative 

arthritis of the ulnohumeral joint, calcification around the osteotomy site, and myositis ossificans.  

Carpal tunnel syndrome is sometimes reported [9].  In cases where the ligaments of the wrist are 

compromised, the radial stump can migrate toward the capitellum and destabilize the elbow [9,31].  A 

review of patients after RH excision also indicated that the radial stump tends to misalign medial and 

posterior, possibly leading toward radioulnar impingement and complications for future reconstructive 

treatments [31] as well as distal radioulnar joint subluxation [27].  In one clinical study, radiographic 

evidence of arthrosis was discovered in 14 out of 16 patients within twenty years after an excised radial 

head [27].  It is noted that less satisfactory results are seen in Type III fractures by this treatment than in 

Type II, because of the greater amount of comminution [9]. 

When a fracture of the radial head results in elbow dislocation, this is considered a complicated 

fracture, leading to complex instabilities.  The radial head component of these complicated fractures is 

often treated with radial head excision or arthroplasty.  Immediate excision of the radial head is 

standard, and implantation of a prosthetic is normally predicated on the condition that along with the 

radial head fracture, one of the following conditions is present: elbow joint dislocation, medial collateral 

ligament or lateral ulnar collateral ligament injury, olecranon or coronoid fracture, or distal radioulnar 

joint disruption.  Radial head arthroplasty prevents gross valgus tilt, stabilizes the radius from proximal 

migration, and provides stability to the elbow in cases of collateral ligament rupture or ulnar fracture.  
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Composed of titanium, silicone, vitallium, or cobalt-chromium [32], these prosthetics provide resistance 

to axial loading and help to transfer loads to the ulna.  More satisfactory results are seen in cases after 

implantation of current prosthetic hardware compared to leaving the radial head excised [9].   

Literature also notes the necessity of removing the radial head prosthetic in the years following 

implantation due to a resulting significant loss of motion.  In one study, destruction of capitellar 

cartilage, which covers the articulation between the humeral capitellum and the radial head, was noted 

in 2 of 5 individuals who required prosthesis removal [35].   This indicates issues regarding the 

methodology of radial head prosthetic implantation, including possible misalignment of the radial head 

or lengthening of the radial neck.  Studies also comment on the mismatch of radial head and neck 

dimensions with those of prosthetics, and raise concerns about potential adverse results after 

implantation [30,36].  It is noted that prosthetic radial head designs should ideally have several size 

options, flexibility at the radiocapitellar articulation, and instrumentation to allow accurate and 

reproducible implantation of the device [9].  This brings attention to the fact that radial head 

replacement and the development of standardized protocols for implantation is under-researched.   

Recent cadaveric research has begun to observe the effects of common treatments to the radial 

head after elbow injury on the overall kinematics of the elbow, though it is still a minor field in elbow 

orthopaedics.  Two such papers observed the effects of the non-physiologic radial head prosthetic on 

the motion of the ulna as it moved in active flexion.  Van Glabbeek et al. recognized the lack of a reliable 

method to replicate the length of the native radial neck during prosthetic replacement, and observed 

the effects of over- or under-stuffing the radiocapitellar joint [28].  By the creation of a telescoping 

radial head replacement, they lengthened and shortened the radial neck by 2.5mm and 5mm, and found 

that changing the length as little as 2.5mm affected ulnohumeral kinematics as well as radiocapitellar 
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joint forces.  They postulated that the long term effects of such changes could lead to degenerative 

arthritis as well as other complications.   

Another study performed by Van Riet et al. addressed the concern that the native radial head is 

ellipsoidal while radial head prosthetics are perfectly circular [29].  The effects of a change in the shape 

of the radial head were considered by the rotation of the native radial head 90° from its natural 

position, and the ulna was tracked in active flexion.  Ulnar axial rotation was observed to be significantly 

affected by the change in shape, which could be detrimental to the long-term kinematics of the elbow.  

These studies provide insight into concerns that the oft overlooked radial head plays a significant role in 

elbow kinematics.  Therefore, accuracy and reproducibility should be given equal consideration in 

prosthetic design and implantation protocol for the RH as given to other bony structures. 

Two other cadaveric studies, the emphasis of this thesis, recently considered the effects of 

differing radial head prosthetic designs on elbow stability through the consideration of force 

redistribution in posterior subluxation of the forearm [37,38].  One such study considered the effects of 

mono- and bipolar radial head prosthetics, both accepted implantable designs, in stability of the elbow 

with a pronated forearm.  Also examined in this study was the dependency of these two differing 

designs on lateral soft tissues [37].  The focus of the second study considered the biomechanical effects 

of various radial head prosthetic designs in an elbow afflicted with a terrible triad injury, including a 

monopolar, bipolar, and “anatomic” monopolar radial head system [38].  It was discovered through both 

studies that the most kinematically stable prosthetic was that designed to be more anatomically similar 

to the native radial head.  The standard monopolar design decreased stability from the intact state, 

though the bipolar standard design significantly varied from intact and relied heavily on soft tissue 

constraints.  These studies indicated that radial head replacement design is critical to the stability of the 



 

12 
 

elbow post-injury, and demonstrated that an emphasis on radial head research in compromised elbows 

could be a key factor in improving the functionality of the arm in a recovering patient. 

 

1.4. Objectives 

It is the objective of this thesis to expand upon previous rigid body models of the elbow [15,17] 

to explore the effects of different radial head prosthetic designs on elbow stability using cadaver 

research replication, as well as their dependence on soft tissue integrity, in the intact elbow and under 

the effects of the terrible triad injury [37,38].  J.P. Fisk and E.M. Spratley both utilized cadaveric 

computed topography scans to develop accurate three-dimensional surface representations of the 

elbow, and explored the accuracy of the model via emphasis on the coronoid process and elbow trauma 

[15,17].  The rigid bodies of this model will be created using the commercially available CAD program 

SolidWorks while motion will be simulated and analyzed through the COSMOSMotion add-in, equipped 

with an MSC ADAMS solver.  Biomechanical function in the model will be dictated by physiologically 

represented structures employing accurate 3D articular anatomy, ligamentous constraints, muscle 

forces, and external perturbation. 
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2. ELBOW ANATOMY AND PHYSIOLOGY 

 

2.1. Bony Anatomy 

The elbow is a joint located approximately at the midpoint of the arm, and consists of three long 

bones: the humerus, ulna, and radius.  The bones of the joint are oriented such that the humerus is 

located proximally to the ulna and radius, which are aligned nearly parallel to one another with the ulna 

positioned medially to the radius.  Due to a tight fit between the protuberances and concavities of bony 

features, the elbow has a level of inherent stability, and thus it is commonly described as one of the 

most congruous joints in the body [9].  For this reason, complete understanding of the osteology of the 

elbow is critical for a thorough description of the elbow joint complex (EJC). 

The humerus comprises the proximal half of the length of the arm, and the humeral head 

articulates with the thorax through the glenohumeral joint in the elbow.  The surgical neck is positioned 

caudal and slightly lateral to the hemispherical humeral head, which transitions the bony geometry of 

the humerus into the cylindrical diaphysis of the long bone.  Most of the musculature of the arm 

attaches to this feature, which is characterized by a thick ring of cortical bone surrounding a central 

shaft called the intramedullary canal.  Along the lateral border of the humerus runs a shallow depression 

that runs obliquely across the surface of the diaphysis, called the spiral groove [24].  Observing a cross-
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sectional view of the humeral diaphysis, tracking toward the distal regions of the bone on a computed 

topography (CT) scan, the intramedullary canal fills with trabecular bone and the cortical bone thins as 

the overall mass of the bone widens and shifts toward a triangular silhouette in the elbow.  The 

posterior edge of the humerus flattens while the medial and lateral edges shift apart, creating the 

supracondylar ridges and terminating in the medial (EM) and lateral (EL) epicondyles.  The space created 

in the posterior region of the humerus forms a hollow area referred to as the olecranon fossa.  The 

lateral epicondyle is a small body feature which curves slightly anterior, while the medial epicondyle is a 

larger, more defined protuberance which is angled dorsal [23]. 

 
Figure 2.1-1: Anatomy of the distal humerus, anterior view [39] 

 
 

The distal portion of the humerus is tilted anterior approximately 30° from the axis of the 

diaphysis and terminates in anatomy critical to the bony congruency of the elbow joint [9].  Slightly 

distal of the medial and lateral epicondyles are the primary articular surfaces of the humerus visualized 

in Figure 2.1-1, the trochlea and capitellum.   Medial-most is the trochlea, a cylindrical eminence 

featuring a sulcus along its middle region, aligned such that the long axis of the trochlea is approximately 

in line with the mediolateral plane.  It extends from the anterior to the posterior sides of the distal 

humerus, starting in the anterior coronoid fossa and terminating in the olecranon fossa posterior.  The 

medial edge of the trochlea is larger and more pronounced than its lateral border, and the posterior 
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portion of the trochlea has a deeper concavity and wider edges that that at the front of the extremity.  

Covering an arc of 300°, the trochlea is coated with a layer of hyaline cartilage [40].  Along the central 

groove of the trochlea, the semilunar notch of the ulna articulates to permit flexion and extension.     

Positioned lateral to the trochlea is a spherical feature called the capitellum.  Its rounded 

surface, covered with hyaline cartilage, articulates with the slightly concave proximal surface of the 

radius during elbow flexion and forearm rotation.  The capitellum is positioned on the inferior, lateral 

region of the end of the humerus, but unlike the trochlea does not extend to the posterior side.  Above 

the capitellum is a small depression called the radial fossa, designed to accommodate the radial head in 

high degrees of elbow flexion [23].  The trochlear-capitellar articular axis is rotated internally 

approximately 5°-7° with respect to the humeral epicondyles and tilted valgus approximately 6°-8° from 

the humeral long axis [40].    

 
Figure 2.1-2: Anatomy of the proximal ulna, lateral view [24] 
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Located distal to the humerus and medial in the forearm is the ulna.  It is a long bone that is the 

primary osseous contributor to elbow flexion; accordingly, most of its mass is located in the proximal 

end of the bone.  Its upper extremity is wide and large compared to the rest of the ulna, and contains 

features that articulate with the humerus closely while also containing most of its muscle attachments.  

There are two large bony features in this region of the ulna, the olecranon and the coronoid process, 

demonstrated in Figure 2.1-2.  Extending from the posterior half of the proximal portion of the ulna is 

the olecranon, a large hook-like structure which articulates with the olecranon fossa of the humerus.  It 

has a prominent pointed tip which inserts into the triangular concavity of the olecranon fossa when the 

elbow is in extension [23].  Designed to withstand high physical forces, this thick bony structure 

protrudes from the back of the elbow and can be palpated easily.  Lying along the most posterior 

surface of the olecranon where the triceps attach to the ulna, is a bursa which allows the bone to glide 

and flex smoothly under the skin [9].  The proximal-most surface of the olecranon is triangular in shape 

when observing from the transverse plane and the dorsal ridge of this triangle is where the triceps 

connect to the forearm.  At the anterior side of the ulna is a triangular feature, the coronoid process, 

which articulates with the coronoid fossa of the humerus in flexion [23].   

Between these two prominences lies a concavity with 190° of articular surface called the 

semilunar or greater sigmoid notch [40], defined by two deep concave grooves which run medial and 

lateral from the olecranon to the tip of the coronoid process.  At the center of this structure, between 

these grooves is a thin border referred to as the semilunar ridge.  This construct articulates closely with 

the sulcus of the trochlea in the humerus to stabilize flexion [9].  It opens 30° posterior from the long 

axis of the ulna, which corresponds to the 30° anterior angulation of the distal humerus to allow 

improved elbow extension [40].  A small deposit of fatty tissue lies transverse to the grooves of the 

greater sigmoid notch and divides the structure’s olecranon and coronoid process [9].  These features 



 

17 
 

interplay with the humerus to cause the close bony articulation that identifies the elbow as highly 

congruous.   

 
Figure 2.1-3: Proximal radioulnar joint and anatomy [40] 

 

The medial groove is deeper than its lateral counterpart, and the lateral groove blends with a 

depression along the lateral-most border of the proximal ulna with highly defined anteroposterior ridges 

called the radial or lesser sigmoid notch (Figure 2.1-3).  This feature is the location where the radial head 

and annular ligament interact with the ulna proximally and laterally.  From the coronoid process, just 

beneath its slightly convex shape lays the ulnar tuberosity, which serves as a connection for the 

brachialis muscle.   The diaphysis extends distal from the tuberosity, and has a triangular cross section, 

of which the lateral border is referred to as the interosseous crest.  This surface provides attachment 

sites for the interosseous membrane.  The shaft of the ulna tapers off toward the distal end [23]. 

In contrast to the upper portion of the bone, the lower extremity of the ulna is small and 

minimally involved in motion.  On the lateral edge of the ulna is a rounded eminence, the head, which 
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articulates with the radius at the distal radioulnar joint.  A narrow, pointed bony prominence referred to 

as the styloid process lies medial and slightly posterior on the bone.  This feature extends further than 

the head of the ulna and is non-articular.  Physical articulation with the wrist is prohibited by the 

presence of a triangular articular disk that extends from the distal border of the radius and connects to 

the ulnar styloid, but there is some soft tissue constraint between the two entities [23]. 

The third bone involved in the elbow joint is the radius (Figure 2.1-3).  Located lateral and 

somewhat parallel to the ulna, the radius has several key features.  The most proximal end, called the 

radial head (RH) is an ellipsoidal cylinder with a slight concavity of the uppermost face which articulates 

with the smooth, rounded capitellum of the humerus.  This cavity is referred to as the fovea, which 

averages a depth of 2.4mm [41].  Thick hyaline cartilage covers the surface of the radial head to assist in 

articulation with the humeral capitellum, as well as 240° of the posteromedial surface for radioulnar 

articulation [9].  In contrast, the non-articulating anterolateral surface of the head is covered with a thin, 

yellowish cartilage [42].  The medial border of the head, which is somewhat thicker than the lateral 

edge, interacts with the radial notch of the ulna (Figure 2.1-3), while the lateral side is encapsulated by 

the annular ligaments [23].  Supporting the head and attaching it to the diaphysis of the bone is the 

neck, a slender region with an average offset of 4.2mm from the articular surface of the radial head [41].  

The radial head is positioned eccentric to the neck [9].  The central axis of the radial head and neck 

forms an angle between 12°-17° from that of the diaphysis.  Additionally, in neutral forearm rotation the 

major axis of the RH is oriented posteromedially to anterodistally, resulting in the radial head being 

torqued around the radial neck approximately 55° with respect to the distal radius [43]. 

Distal to the radial neck is a bony prominence on the medial side of the radial shaft called the 

radial tuberosity.  This construct provides an insertion for the biceps brachii muscle.  Starting posterior 

to the tuberosity, the interosseous crest of the radius descends prominently along the medial edge of 
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the diaphysis and provides attachment for the interosseous membrane.  The diaphysis of the radius, 

almost triangular in nature, widens distally and displays a small degree of lateral curvature [23].   

 
Figure 2.1-4: Distal radioulnar joint, dorsal view  

(R- radius, U- ulna, S- scaphoid, L- lunate, T- triquetrum) [44] 
 

The distal radius terminates in the widest surface of the bone with two main articular surfaces 

(Figure 2.1-4).  On the medial edge is the ulnar notch, also referred to as the sigmoid cavity, a narrow 

area that accommodates the head of the ulna in the distal radioulnar joint (DRUJ).  The bottommost 

surface of the radius interacts directly with the scaphoid and lunate bones of the wrist.  Attached to a 

ridge along this bottom surface is the base of the triangular articular disk (TFCC), protecting the DRUJ 

from articulations of the wrist (Figure 2.1-4).  Along the lateral edge of this region an eminence 

protrudes obliquely downward, creating the radial styloid [23].   

 

2.2. Soft Tissue Anatomy 

Despite the bony structures of the EJC being highly congruous, soft tissues greatly contribute to 

stability during the regular motions of the elbow.  Three characterizations of soft tissues cooperate in 
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the elbow to support motion of the arm: active muscles, passive collateral ligaments of the EJC, and 

passive distal joint ligaments.  Each plays a vital role in elbow joint stabilization. 

 

2.2.1. Muscle Constraints 

Four primary groups of muscles function to create elbow motion: the anterior bicep group, the 

posterior triceps group, the lateral extensor-supinator group of the anconeus and supinator, and the 

flexor-pronator group of the pronator teres and an assortment of smaller muscles [39].   Of these, 

cadaveric data by Morrey and associates indicate that the primary musculature contributing to elbow 

motion are the biceps, brachialis, and triceps [45].  These muscles can be characterized by two primary 

functions, elbow flexion and extension.  These structures work antagonistically to control elbow motion 

and to maintain forearm location in space.   

The flexors work in concert to cause flexion and to stabilize the elbow in extension (Figure 2.2-

1).  The brachialis is the primary flexor, which spans along the entire anterodistal surface of the humerus 

to insert through an aponeurosis onto the ulnar tuberosity and coronoid process.  This insertion acts to 

restrain the elbow from posterior subluxation [39].  It has a larger cross-sectional area than the biceps 

brachii [23], but is disadvantaged mechanically because of its proximity to the axis of rotation for flexion 

[9,39].  The biceps brachii has two heads which both originate in the shoulder; the short head attaches 

to the coracoid process of the scapula, while the long head connects to the supraglenoid tubercle and 

follows the intertubercular groove of the humerus.  These two distinct heads converge into a single 

muscle, and this biceps tendon inserts in the posterior margin of the radial tuberosity.  The lateral edge 

of the tendon sweeps out into a thin sheet of fascia called the bicipital aponeurosis, and thus becomes a 

part of the deep fascia of the forearm.  Via the aponeurosis, the biceps is provided an indirect 

connection to the ulna despite its discrete attachment to the radial tuberosity [39].  The biceps brachii is 
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a major flexor of the elbow despite its smaller cross-sectional area than the brachialis because of its 

insertion further from the joint center, giving it a greater moment arm.  Its attachment to the radius also 

makes the biceps a strong supinator [9,39].  Because of this, when the forearm is in pronation, elbow 

flexion is achieved by action of the brachialis [39]. 

 
Figure 2.2-1: Highlighted biceps (left) and brachialis (right), anterior view [24] 

 

The triceps is considered the major extensor in elbow motion, and comprises the entire 

posterior musculature of the arm (Figure 2.2-2).  The term “triceps” refers to the muscle’s three heads, 

two of which originate from the posterior surface of the humerus.  The long head has a small, discrete 

connection to the infraglenoid tubercle of the scapula, while the lateral head arises from the proximal 

lateral border of the spiral groove.  This origin spans a distance comprising of approximately one third of 

the length of humerus in a linear fashion.  The medial head extends the entire posteromedial distal 

surface of the humerus from the medial margin of the spiral groove.  It is the deepest of the three 

components, lying subordinate and distal to the long and lateral heads.  These distinct portions blend 

together into a single triceps tendon, which inserts onto the entire proximal and posterior margin of the 

olecranon.  A layer of fascia blends with the distal 40% of the triceps [9]. 
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Figure 2.2-2: Highlighted triceps, posterior view [24] 

 

2.2.2. Collateral Ligamentous Constraints 

The collateral ligaments are specialized thickenings of the elbow joint capsule.  This joint 

capsule, the primary contributor to soft tissue stabilization of the elbow, spans proximally from the 

coronoid and radial fossae of the humerus to attach to the distal coronoid process medially and lateral 

annular ligament.  It wraps about the olecranon fossa on the posterior humerus and around the 

supracondylar ridges and connects anteriorly on the trochlea [23].  The posterior and transverse 

portions of the capsule are thick and involve a collection of ligaments critical to elbow motion.  The 

anterior portion of the capsule is thin and mechanically weak, and contributes little to the stability of the 

elbow despite its tautness in extension [9]. 
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Figure 2.2-3: The medial collateral ligament complex, medial view [40] 

 

The medial collateral ligament (MCL) consists of three separate bands: the anterior, posterior, 

and transverse.  Located on the medial side of the elbow and extending from both the anterior and 

posterior sides of the medial epicondyle to diverse insertions on the ulna, it is the primary stabilizer 

against valgus motion (Figure 2.2-3).  The transverse bundle, or ligament of Cooper, is poorly 

distinguishable [24] and has been shown by experimental evidence to contribute negligible support to 

elbow stability [45].  In contrast to the transverse band, the anterior bundle is the most physically 

discrete band of the MCL.  Its origin spreads along the anteroinferior surface of the epicondyle, while it 

inserts on the ulna in a broad band on the medial margin of the coronoid process, creating two subsets 

to the anterior band: the anterior-most anterior band and a more posterior portion.  Because of its size 

and position across the ulnohumeral joint, the anterior portion of the MCL has experimentally shown 

that it is the main valgus stabilizing factor out of the bands of the ligament [22,39].  There is indication 

that the MCL provides elbow stability in extension, supported by the observation that the MCL is taut 

when the elbow is in extension but becomes lax with increased flexion angle [39].  The collagen fibers of 

the anterior MCL have an additional layer which is confluent with the muscle fibers of the flexors [40]. 
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The posterior component of the MCL is a wide series of fibers that are but a thickening of the 

posterior portion of the capsule surrounding the elbow joint, and is only distinguishable at 90° of flexion.  

It crosses from the posterior surface of the medial epicondyle and fans out across the medial margin of 

the semilunar notch.  At its widest, the posterior bundle has a width of 8mm, and is active in higher 

flexion angles [40], acting as an antagonist to the anterior band regarding elbow flexion.  However, 

these two bundles of fibers act in concert for valgus stability.   

The lateral side of the elbow contains the lateral collateral ligament complex, comprised of 

several ligaments that contribute to stability though are less discrete than the medial collateral 

ligament.  It contains three separate bundles: the radial collateral ligament, lateral ulnar collateral 

ligament, and annular ligament.  The radial collateral ligament (RCL) originates from the lateral 

epicondyle and becomes indistinguishable from the annular ligament around the radial head at its 

insertion [23] (Figure 2.2-4).  The structure fans out anterior, medial, and posterior across the radial 

head and generally remains taut throughout the flexion arc.  Thus, it can be extrapolated that the origin 

of the RCL is located near the axis of flexion.  The lateral ulnar collateral ligament (LUCL) originates 

blended with the radial collateral ligament on the lateral epicondyle and inserts discretely on the 

supinator tubercle of the ulna.  Because of its contralateral placement to the medial collateral ligament, 

the LUCL is the primary lateral stabilizer of the ulnohumeral joint [9].   
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The annular ligament, also part of the lateral ligament complex, is a thick circular band of tissue 

made of circumferential fibers, which wraps around the head of the radius and attaches to the anterior 

and posterior margins of the ulnar lesser sigmoid notch (Figure 2.2-5).  Its function is to maintain the 

proximal radioulnar articulation, particularly in supination [22,40].  Because of its insertions on the ulna, 

it is responsible for approximately four-fifths of the fibro-osseous ring, while the lesser sigmoid notch 

contributing the remaining one-fifth of the structure.  Because the radial head is not perfectly circular, 

the anterior aspect of the annular ligament becomes taut in supination, while the opposite holds true of 

the posterior portion.  A small band of fibers which extends from the annular ligament to the ulnar 

tubercle is sometimes distinguished as the accessory lateral collateral ligament, but is often considered 

a portion of the annular ligament [9].    

Figure 2.2-4: Radial collateral and annular ligament, lateral view [40]  
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2.2.3. Articular Joint Capsule 

Surrounding the elbow joint and containing lubricating synovial fluid is the articular joint 

capsule.  It is a thin fibrous sheet of tissue which attaches to the proximal and distal ends of the elbow, 

protecting and encapsulating the joint.   

Anteriorly the capsule attaches on the humerus proximal to the ulnar and radial fossae, while its 

distal insertions expand the breadth of the joint, laterally blending with the annular ligament and 

medially inserting on the anterior margin of the coronoid.  The posterior capsule expands distally from 

the mediolateral margin of the sigmoid notch of the ulna and again combining with the annular 

ligament.  It originates on the humerus proximal from the olecranon fossa and extends along the 

supracondylar ridges both medially and laterally.  Distal from the annular ligament, the capsule attaches 

to the radial neck to contain synovial pockets that lubricate the fibrous ring (Figure 2.2-6) [9,46].   

 

 

Figure 2.2-5: Transverse, superior view of the annular ligament [24] 
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Due to its thin structure and lack of distinct bands, the posterior capsule is ignored in kinematics 

studies, though the anterior capsule (AC) is noted in literature for its contribution to elbow stability.  It is 

described as a thin, translucent structure which has defined thickenings, implying that it serves a 

resistive role in joint motion.  Its thickness varies, though morphological studies have indicated the 

average thickness of the healthy AC as 0.6 ± 0.2mm [47].  Fibers of the capsule are oriented transverse 

and oblique, providing strength to the structure [9,46].  It is taut in full extension and becomes more lax 

throughout the flexion arc, reaching its greatest capacity for synovial fluid at approximately 80° of 

flexion [9].   

While one study described distinct thickenings within the joint capsule, naming them and giving 

them explicit functions [46], most have described simply the overall cruciate pattern of the capsular 

fibers [9,47,48].  Despite the general lack of research regarding the capsule because of a greater 

Figure 2.2-6: Anterior (L) and posterior (R) views of the elbow joint capsule (blue) [24]  
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emphasis on ligamentous, muscular, and bony contributions to stability [46,49], Morrey and An 

demonstrated that in extension 85% of the soft tissue resistance to distraction occurs in the anterior 

joint capsule alone [48].  Valgus stability was divided equally between the AC, bony articulation, and the 

medial collateral ligament in full extension, with capsular resistance transferring to the MCL throughout 

the flexion arc.  The AC also demonstrated 32% of the resistance to varus instability while in extension.  

At high flexion angles, the capsule contributed little or no stabilizing effects, less than 13% of overall 

stability, but the importance of the capsule for elbow joint stability is clear in lower flexion angles and in 

full extension [48].   

 

2.2.4. Distal Ligamentous Constraints 

Though not an immediate part of the elbow joint complex, several distal fibrous joints provide 

additional stability for the forearm, in turn influencing the kinematics of the elbow.  Disruption of these 

ligamentous constraints can cause laxity at the proximal radioulnar joint, so the understanding of these 

structures is paramount to the study of elbow motion.  The most proximal member of these stabilizers is 

the oblique band or cord, located just distal to the elbow joint capsule.  It is a small and inconsistent 

ligament formed by the fascia, which connects the distolateral edge of the coronoid process, alongside 

the insertion of the brachialis, to the distomedial radial tubercle, near the biceps attachment [50].  

Though it is shown to be taut in full supination, suggesting some radial stabilizing function, it shows 

significant morphological variability.  Thereby, it is largely considered to be of little functional 

significance [9,50]. 

Distal to the oblique band, the interosseous membrane (IOM) is a thin fibrous membrane which 

extends obliquely between the interosseous crests of the radius and ulna.  This structure provides a 

direct attachment for the entire breadth of the negative space between these two parallel bones.  The 
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IOM contains three bands, or thickenings of the tissue, with fibers directed in opposing directions to 

provide enhanced stability throughout all forearm rotations [50–53] (Figure 2.2-7).  Most proximal in the 

membrane is the central band (CB), located approximately mid-diaphysis of the two bones and oriented 

approximately 21°-28° from the ulnar diaphysis, angled toward the proximal radius [54,55].  The band 

and the long axis of the radius form an angle of approximately 20° [55].  Its average mid-substance 

depth is 1.1cm [51] and width is 9.7mm, making it the largest and thickest of the bands [50].  The size of 

the band indicates its importance for radioulnar stability, as studies indicate its restraint against radial 

proximal migration and importance for load distribution [52,53].   

 
Figure 2.2-7: Sagittal view of the forearm under neutral rotation. U=ulna; R=radius [56] 

 

Distal from the CB and oriented in a similar fashion is a fanned series of fibers called the accessory 

bands (AB).  These are less substantial than the CB, almost continuous with the rest of the membrane, 

and their exact location and number of bands varies between specimens [50].  Functionally the AB is 

considered to provide support to the central band.  The furthest portion of the IOM from the EJC is the 

distal oblique band (DOB), a relatively thick bundle whose orientation opposes that of the CB and AB.  It 

blends with the distal radioulnar joint capsule.  It originates in the distal one-sixth of the overall length 

of the ulna, and inserts into the inferior and medial rim of the radial sigmoid cavity.  It has a similar 

thickness to the CB, but is less wide.  This portion of the IOM is considered to provide secondary support 

at the DRUJ in distal and volar directions [50]. 
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Figure 2.2-8: Distal radioulnar joint with key ligaments, inferior view 

(R- radius, U- ulna) [56] 
 

Critical to forearm stability is a fan-shaped ligament with two distinct fiber bundles,  the dorsal and 

palmar distal radioulnar ligaments (DRUL) [57].  These ligaments support a triangular fibrocartilage disc 

(TFCC) spanning the dorsal-most area between the ulna and radius (Figure 2.2-8).  They originate in the 

ulnar fovea and extend to the dorsal and palmar margins of the sigmoid notch [53].  Cadaver studies 

suggest that the dorsal DRUL stabilizes the DRUJ in pronation and its palmer counterpart becomes the 

primary restraint under supinating loads [58].   

 

2.3. Local Joint Characterization 

Elbow and forearm positioning can be defined by specific articulations, which function collectively 

to cause two distinct types of motion.  Structurally, the elbow is classified as a synovial joint due to the 

presence of a joint capsule, instead of cartilaginous tissue, connecting articular surfaces.  Joint 

articulation is technically defined as trochoginglymus, describing the two primary motions of the elbow, 

flexion and forearm rotation [9].  The articulations of the humeroulnar and radiocapitellar joints within 
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the actual elbow joint share the same axis of rotation, and lead to elbow flexion and extension (F/E).  

The ulnohumeral joint, which dictates flexion and extension of the elbow, is pseudo-hinge, or a 

ginglymus joint.  This type of motion is the primary movement of the elbow, and the ulnohumeral joint 

constitutes a majority of bony articulation within the arm.  The radiocapitellar joint serves as a 

secondary stabilizer against valgus motion and provides a majority of the resistance against axial 

compression [9,40].  The other major rotation of the elbow, a pivoting motion called pronation and 

supination (P/S), is controlled by the proximal and distal radioulnar joints.   

The flexion/extension arc begins in full, slight hyperextension such that the forearm is angled 

slightly posterior from the long axis of the humerus.  The full flexion arc sweeps 150° [40] as the ulnar 

coronoid process rotates about the trochlea anteriorly [40], approximately in the sagittal plane.  Soft 

tissues prevent abutment of the ulnar olecranon or coronoid against the corresponding fossae on the 

humerus [40].  Though initial observation would indicate that the ulnohumeral articulation is simply a 

hinge joint with the axis of rotation passing through the medial and lateral epicondyles [59], there is a 

greater range of motion for F/E.   

Tracking the motion of the ulna shows that it tracks a helical path about the trochlea of the 

humerus, with the axis of rotation rotated internally 3°-8° from the plane of the epicondyles [9].  This is 

referred to as the screw displacement axis (SDA) [59,60].  The locus of rotation is located in a several 

millimeter range at the center of the trochlea [9].  Early electromagnetic tracking research indicated that 

the SDA translates and pivots as the forearm travels through the flexion arc [61].  Bottlang et al. 

calculated the SDA by utilizing algorithms described by Beggs in 1983, which predicted the motion of a 

body as it simultaneously rotated and translated about an axis [59,62].  Ulnar anteroposterior and 

mediolateral translations were also noted during Bottlang’s study (Figure 2.3-1) [59].   
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Figure 2.3-1: Visualization of SDA translation and rotation overlaid onto the elbow joint,  

anterior view (left) and the pathway of the SDA with respect to the humerus during flexion [63] 
 

 

Forearm rotation is the second motion of the arm, positioning the forearm and hand in space 

relative to the elbow flexion angle.  Supination refers to the anterior turning of the hand such that the 

palm faces upward when the elbow is flexed at 90°, while pronation turns the palm downward.  The 

radiocapitellar and the radioulnar joints allow 85° of supination and 75° of pronation [40].  Tissue 

impingement restrains pronation while supination is limited by bony articulations of the ulna  [9].  Full 

supination places the long axes of the ulna and radius nearly parallel to one another.  Pronation, 

conversely, causes the distal radius to rotate about the distal ulna while the proximal migrates 

proximally against the capitellum, forcing their projected long axes to intersect.  There is very little 

rotation or translation of the ulna [64].  The S/P axis of rotation extends from the geometric center of 

the radial head to the fovea on the distal ulna [40,64].  Thus, forearm rotation is oblique to the long axes 

of the radius and ulna and separate from the motion of elbow flexion.  Neutral forearm rotation is 

defined as when the radial and ulnar styloids are aligned parallel to the long axis of the humeral 

diaphysis [65]. 
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3. THREE-DIMENSIONAL BODY ACQUISITION AND SIMULATIONS 

 

3.1. Overview 

In order to create an elbow computational model which utilizes both accurate bony articulations 

and soft tissue constraints, proper recreation of these features is critical for accurate joint kinematics.  

Regarding bony anatomy, acquisition of 3D geometry was obtained through computed topography (CT) 

scans of a cadaveric specimen, thus transcribing the bony features into representative two-dimensional 

images.  These slice images could then be processed using meshing and triangulation techniques in the 

commercially available medical imaging program MIMICS (Materialise's Interactive Medical Imaging 

Control System, Materialise, Ann Arbor MI), which extrapolates 2D data into the third dimension and 

renders it into voxelated solid bodes.   

Three-dimensional representations of the humerus, radius, and ulna were then exported into the 

computer-aided design software SolidWorks (SolidWorks Corp., Concord, MA) for relative positioning in 

space, maintaining the precise placement of the original specimen.  SolidWorks functions were used to 

identify and label prominent anatomical features, while the program add-in COSMOSMotion was 

utilized to model solid body conditions such as penetration and body restoration, as well as soft tissue 

constraints, including constant muscle force vectors and tension-only ligament elements.  It also served 
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to apply perturbations and physical constraints to the model.  Iterative analysis of the model was 

performed by the ADAMS solver inherent to COSMOSMotion, a robust multibody dynamics and motion 

analysis software.  Thus, biomechanical function in this rigid body model of the elbow was controlled 

solely by accurate bony articulation, ligamentous and muscular soft tissue constraints, and external 

loading. 

 

3.2. Acquisition of 3D Bodies 

Computer topography scans were used from a previously described 91-year-old female cadaver 

upper extremity [17,66].  Three separate scans were performed on the specimen.  A scan with 2mm slice 

thickness was made of the entire extremity when flexed approximately 30°, captured in 348 slices, as 

well as two higher-resolution scans of 0.4mm slice thickness of the immediate elbow joint.  These two 

0.4mm scans, each with 390 slices covered an area approximately 10cm proximal and distal from the 

joint with the arm, and captured the joint in approximately 30° as well as 90° of flexion.      

 

3.2.1. Masking and Preprocessing 

Scans obtained from the cadaver specimen were saved as 2D DICOM (Digital Imaging and 

Communications in Medicine) images and uploaded into MIMICS, which was used to process these 

stacked files into three dimensional surface bodies.  The DICOM images were stacked according to the 

order of image capture with respect to scanner orientation.  Using algorithms that consider effects of 

partial volumes created between slice thickness, the program detects pixels located identically between 

slices and extrapolates edges between them, thus creating voxels from planar data.  The region of 
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interest (ROI) is determined by the designation of a common threshold value and creates sets of images 

called masks.  These masks can be edited individually to create separate solid bodies.   

The threshold chosen for mask designation to isolate the bones of the scans was measured in 

Hounsfield units (HU), based upon the Hounsfield scale which quantitatively describes radiodensity in 

radiographic images [67].  This scale normalizes the linear attenuation coefficient of scanned bodies 

relative to distilled water, and indicates the HU of bone to range from +400 to +1000.  However, the low 

density of trabecular bone found in the epiphyses caused the necessary Hounsfield unit to shift down to 

+225 for inclusion of all bony features of the elbow radiographic images.  A threshold of +225 HU is 

generally higher than that of soft tissues, and thus these features were excluded from the masks.  This 

allowed masking of all desired bony regions of interest, though masks also included some pixels 

extraneous to osseous tissue.  This excess data was filtered from the mask using preprocessing 

techniques. 

The MIMICS software features several functions which allow manual modification of the calculated 

mask to exclude unwanted information.  Multiple slice cropping is the most crude of these features, but 

allows rapid exclusion and inclusion of information from DICOM image slices not selected by the chosen 

Hounsfield threshold.  This employed a single-slice cropping tool combined with a multiple-slice edit 

tool, and was useful for two particular actions with creation of the elbow model.  First, the humerus, 

radius, and ulna could each be separated from one another by mass removal of the information 

regarding the other two bones.  The multiple-slice cropping also allowed for rough removal of any 

extraneous material, including skin and the armature used to support the cadaver arm in the scanner.   

As such, a solid body could be created for each individual bone, though this approach was too rough of 

an approximation to perform at the close-fit articular surfaces.  At these junctures the single-slice 

cropping tool was utilized to more specifically exclude, slice by slice, noise discontinuous from bony 
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tissue, as well as to individualize each bone at the tight articular surfaces.  These features allowed for a 

single bone to be actively selected for processing into a three-dimensional body.  

The creation of polylines established a set of contours on each slice, creating closed loops of active 

selected material in the mask and serving as the framework upon which the three-dimensional body was 

created.  Polylines, however, excluded the negative space of the intramedullary canal and trabecular 

bone in its closed loop.  These gaps were filled utilizing the ‘fill polylines’ function, encircling the cortical 

shell of the bone and selecting all material within.  This feature provided an avenue to quickly confirm 

the creation of continuous, non-pitted surfaces.  Any discontinuities in the cortical shell of the bone 

could then be selected slice-by-slice, as these slices would not complete the ‘fill polylines’ function and 

thus were easy to identify, and the aforementioned cropping tool could be used to select pertinent 

information and re-establish the polylines.      

In the epiphysis of each bone, porosity and density disparities between cortical and trabecular 

bone caused pitting in the calculated borders of the masks, though the original outline of the bone could 

be seen in each slice.  It was necessary to rectify these discontinuities for accurate 3D representation, 

and several functions inherent to MIMICS enabled this action.  Two functions, ‘dilate’ and ‘close’, 

projected active pixels onto surrounding inactive space based on user specifications.  Dilation of the 

mask, a coarse method, extended an active pixel onto those surrounding both in 2D and 3D, coarsely 

filling out holes in articular surfaces.  However, the crudeness of this feature and its inclusion of 

extraneous information caused this to be used sparsely.  A more refined method to the same end was 

the ‘close’ function, which only dilated areas with apparent discontinuities.  Thus, areas with good 

capture of the bony surface, such as the diaphysis of each bone, were not affected by this action while 

porous articular surfaces benefited greatly in defining the thin cortical shell.   
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With the completion of a single continuous mask for each bone and the establishment of polylines, 

shell reduction was performed, which limited the creation of polylines to the largest user-defined 

volumetric body, thus removing any final noise remnants from the feature.  Having completed this, 

hundreds of DICOM images were preprocessed to define each individual bone and allow for creation of 

three-dimensional bodies for the humerus, radius, and ulna. 

 

3.2.2. Characterization of Bony Structures 

Modeling of bony surfaces was but one facet of the characterization of these structures.  

Definitions of joint coordinate systems as well as motion necessitated a quantitative identification of 

bony geometry.  The commercially available MedCad module inherent to MIMICS allowed the 

application of line-, plane-, sphere-, and cylinder-fits of the bones of the elbow in a reproducible fashion.  

A fit was generated by isolating the anatomical feature of interest using the aforementioned cropping 

functions.  Isolations of the diaphyses of the three long bones, cropped to emphasize the region of the 

bones where the silhouette was roughly circular, were utilized to create a best fit line for the long axis of 

the humerus, radius and ulna.  Another of the radial neck and proximal ulna, taken above their 

respective tuberosities, were used to determine the central axis of both of these structures.  A sphere fit 

of both the humeral head and radial head was created to find their geometric centers, isolating the 

portions of the CT scans that captured the breadth of these two features; the application of a cylinder fit 

of the trochlea of the ulna was performed in a similar manner.  An example of the radial sphere and 

radial neck long axis fits overlaid on the proximal radius is shown in Figure 3.2-1.   
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Figure 3.2-1: Radial head with overlaid sphere fit, 

center of radial head and radial central axis 
 

Each of these fits was reported as a text file from MIMICS listing the fit lines as two Cartesian 

coordinates with a directional vector.  The spheres were described as the coordinates of a central point 

alongside those of a point on the outside edge of the sphere, such that the distance between the two 

points was equal to the radius length.  The module reported the cylinder fit as the Cartesian coordinates 

of the two ends of the central axis of the shape, as well as the radius length and the height of the 

cylinder.  The midpoint of this central axis was gleaned as located one-half the distance between the 

two ends of this axis.   

 

3.2.3. Stereolithography (STL) Files and Their Processing 

Solid bodies created in MIMICS were output as a file type known as stereolithography (STL), a file 

that can be read in both binary or ASCII.  This feature enabled the file size to be very compact while 
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being almost universally accepted by different 3D modeling software packages.  STL files describe 

surfaces via triangulation.  Each individual triangle is described by twelve Cartesian coordinates; nine of 

these coordinates locate the position of the three vertices of each triangle, while three direct the unit 

normal to the surface pointing out from the body. 

When the 3D body is first processed and triangulated after masking of the DICOM images, the 

created body has tens of thousands of triangular facets that represent the surface.  While this rendering 

is the most accurate representation of the scanned cadaver specimen based on the voxelated surfaces, 

the quantity of data is prohibitive in creating rigid body models in 3D modeling software.  It can lead to 

dramatic computational time and limitations in importing the file into a specific CAD program.  

Fortunately these highly detailed surfaces are often unnecessary for RBM, so it is appropriate to simplify 

the created surfaces without losing critical information.  A remeshing feature integrated into MIMICS 

allowed for selective refinement of the triangulated surfaces while maintaining an accurate 

representation of the original body, thus decreasing the amount of data associated with the file.   This 

action resulted in a 3D rendering of the bones of the elbow with a functional number of triangles that 

was reasonably smoothed and free from non-physiologic structures.   

Two methods of remeshing were used to simplify the contours of the bones.  The first, called 

smoothing, removes discontinuous cavities and features created due to density fluctuations and 

porosity in the cadaver specimen.  Smoothing is an iterative process which considers each vertex using 

the weighted contributions of neighboring triangles.  Calculations for the translation of a vertex are 

based on the user-defined Smoothing Factor ratio, which indicates an increased amount of smoothing as 

it approaches a value of 1.   

Triangle reduction is the other primary remeshing tool, and serves to shrink the thousands of 

triangles representing the body to a number usable to CAD programs while maintaining surface 
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contours.  While each body could have upwards of 100,000 triangles after creation, trial and error 

indicated the optimal triangle number for export into SolidWorks was twenty thousand, making triangle 

reduction critical.  To achieve this drastic triangle difference while preserving bony features, the first 

step was definition of a shape-quality threshold, which develops a more uniform mesh by removing 

highly acute triangles.  Though this would not significantly change the number, having uniform triangles 

would greatly increase the quality of the mesh.  The threshold for these models was defined as between 

0.15 and 0.30.   

The second step to triangle reduction considered the angle of two triangulated surfaces sharing a 

single edge.  A minimum angle, which would warrant preservation of two individual contours, was user 

defined.  Any two triangles meeting at an angle less than this were considered a single facet, and a 

geometrical error tolerance was applied to this which defined the total translation allowed between the 

original facets and new surface.  The default level of 0.05 defined in MIMICS was considered appropriate 

to maintain the quality of the contour and the volume of the body. 

To create the most accurate models within the triangle limitation, both the low resolution and high 

resolution CT scans of the cadaver specimen were utilized separately to create the 3D bodies for RBM.  

The low resolution (2mm) scans created the diaphysis and ends of the bones distal to the elbow joint 

complex, as emphasis was on the elbow joint.  Thus, the less important features could be smoothed and 

reduced without losing the quality of the articular surfaces.  In contrast, the 0.4mm thickness high 

resolution scans created the articular surfaces and were cropped just beyond the elbow joint, such that 

a maximum number of triangles could be devoted to each surface.  The humerus was cropped just 

proximal to the supracondylar ridges, while the ulna and radius were cropped just distal to their 

respective tuberosities.  Thus, the articular surfaces could have the largest number of triangles possible 
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without sacrificing the quality of any other feature, as these surfaces would dictate motion in rigid body 

modeling. 

MIMICS assigned a local coordinate system to each bone relative to one another with respect to 

the scanning orientation, which enabled accurate rebuilding of the model after export to a CAD 

program.  As mentioned in Section 3.2, two flexion angles were captured using the high resolution 

scans, approximately 30° and 90°.  Processing techniques were performed on both of these separate 

files and they were registered to each other within the same coordinate system.  This was performed so 

that flexion could be tracked and thus defined quantitatively in a CAD program for accurate 

representation of motion. 

 

3.3. Model Simulation 

Once created in the MIMICS imaging software, it was necessary to import the three-dimensional 

bodies into a CAD program to build a functional, manipulate-able model.  SolidWorks was used to 

assemble and constrain the separate long bones of the elbow in 3D space, faithfully restoring the scan 

orientation of flexion, forearm rotation and joint articular space (Figure 3.3-1).  The fits of the various 

bony features were imported into the program and important bony prominences were marked on the 

bodies.   Implementation of the SolidWorks add-in COSMOSMotion enabled the definition of 

ligamentous constraints and application of muscle forces, as well as boundary conditions for bony 

contact.  Ligaments were modeled as tension-only spring elements with applied pre-tensioning.  

Muscles were force vectors of constant magnitude.  The boundary conditions were defined using 

stiffness and involved setting parameters to govern contact between bones.  Calculations within 

COSMOSMotion were performed iteratively using the ADAMS solver, utilizing constitutive equations to 

solve resultant forces and body displacements.  The end result was a rigid body elbow model whose 
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motion was constrained only by bony contact, muscle forces, and ligamentous constraints to accurately 

replicate cadaver research. 

 

 
Figure 3.3-1: 3D models of the humerus (red), ulna (blue) and radius (yellow) after importation into 

SolidWorks, full view and joint close-up 

 

3.3.1. Origins and Insertions 

Triangulated surfaces created during the acquisition of 3D bodies resulted in thousands of easily 

identifiable facets, midpoints of edges, and vertices, each fixed in position on a landmark relative to its 

respective bone.  Thus, multitudes of locations were available to select as origins and insertions for soft 

tissue.  Using anatomic and cadaveric studies, origins and insertions were selected using these 

triangulated edges and facets  [9,23,24,51,52,55,68].  The origins and insertions of ligaments with small 

insertion sites, such as the LUCL and anterior MCL were modeled as single points on the triangulated 

surface, positioned at the qualitative center of the attachment to the bone.  In contrast, some soft tissue 

had broader insertion sites, like the interosseous membrane, the triceps insertion on the olecranon, the 

RCL bands, and the posterior MCL.  To accurately simulate this, these structures were represented with 
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multiple points throughout the breadth of the attachment sites.  Applied soft tissue constraints divided 

between several points simulated these widespread attachments functionally, to most effectively mimic 

native forces.  All ligament and muscle forces were applied as individual force vectors between the 

designated insertions and origins. 

 

3.3.2. Joint Characterization 

Elbow Flexion 

After positioning the bones in three-dimensional space as well as defining prominences and soft 

tissue attachments, it was necessary to implement idealized joints for passive preliminary positioning.  

Cadaveric experiments often restrain joint position; to this end, proper approximations of motion were 

required.  Two primary motions in the elbow, ulnohumeral flexion and forearm rotation, were 

simulated.  These were defined independent of one another to allow isolated physiologic changes in 

positioning of the elbow in full three-dimensional space.  However, once RBM simulations were begun, 

these idealized joints were suppressed such that only bony contacts and soft tissue constraints governed 

the resulting response. 

As previously mentioned in Section 2.3, passive elbow flexion was approximated using a screw 

displacement axis.  Though this axis of rotation is qualitatively described as passing through the 

approximate centers of the trochlea and capitellum, this was quantitatively defined using the high-

resolution scanned images of the joint area at 30° and 90° to track the relative movement of the ulna 

throughout the flexion arc.  Two separate assemblies were created using the 30° and 90° scans of the 

humerus and ulna.  Using the MIMICS STL registration feature of Section 3.1.2, the humerus in the 90° 

scan was overlapped vertex-by-vertex into the exact scan orientation of the 30° file, resulting in 

complete interference of the two humeri.  Following successful registration of the 90° humerus, the 
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associated ulna was transformed to the coordinate system of the 30° file as well.  Thus, when imported 

into SolidWorks the common distal humerus was used as an anchor to introduce a hybrid assembly of 

the two ulnas at differing flexion angles.   

Three distinct collinear points were defined on each ulna based on geometries characterized by the 

MedCad module within MIMICS to track the change in position between the two flexion angles.  The 

most proximal point of the coronoid process was marked on each ulna, as well as the centerline of each 

bone.  Another point was defined as the intersection between a line perpendicular to the centerline and 

another coincident with the tip of the coronoid process.  The third defining point was marked 20mm 

along the centerline proximal from the intersecting point.  These three distinct points captured motion 

of the ulna in 3D space from 30° to 90°, allowing the helical transformation to be determined between 

them.   

Using the methodology described by Beggs (1983), the screw displacement axis was defined using 

the positions of these three points on each ulna, considered the starting and ending positions to track 

motion.  The calculations behind this ulnohumeral SDA extrapolation were described in detail in 

previously published work [17,66], using a unique script in MATLAB programming software developed 

by Fisk et al. (2009).  This resulted in the output of a point in Cartesian coordinates intersecting the 

central axis alongside a directional vector, as well as the pitch of the helix about said axis.  The 

calculated SDA formed an angle of 84.96⁰ with the humeral diaphysis long axis fit.  In comparison, the 

line connecting the medial and lateral epicondyles of the humerus, per ISB recommendations for the 

axis of flexion for the elbow, created an angle of 83.19⁰.  The MedCAD module also reported the total 

rotation about the screw displacement axis between the start and end positions as 61.857°, which 

corresponded well to the flexion angles approximated during scanning.  This data was input into 

SolidWorks to define the ulna’s path rotating about the humerus, shown in Figure 3.3-2.   
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Figure 3.3-2: Distal humerus with SDA axis (grey) and 

helical path (yellow) visible (anteromedial view) 
 

To position the ulna of the intact joint in discrete flexion angles, the long axes of the humerus and 

ulna were projected onto a plane normal to the SDA.  The angle between the two was measured 

thereon and thus the ulna was moved about the SDA such that this measured angle equaled the desired 

flexion angle.  Per the International Society of Biomechanics (ISB) recommendations , flexion was 

defined as positive motion about the SDA [65].   This system indicated that the original position of the 

30° specimen had actually been flexed 36.63°, which closely agreed with the approximated motion 

performed during scanning.  

 

Pronation/Supination 

Forearm rotation, or pronation/supination was defined as movement of the radius about an axis 

which passes obliquely from the center of a sphere-fit of the radial head through the distal ulnar fovea.  

The MedCad module in MIMICS characterized the geometric center of the radial head as explained in 
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3.2.3 and the ulnar fovea was determined by inspection.  The radius was defined in the model in 3D 

space with respect to the ulna, as the ulna remains fixed while the radius causes forearm rotation.   

ISB recommendations indicated that neutral forearm flexion be defined as when the distal styloids 

of the radius and ulna are in parallel with the sagittal plane of the body with the elbow flexed at 90° 

[65].  This definition was implemented in the model as well.  Thus, neutral forearm was achieved at 90° 

such that the palm of the hand would face inward, thumbs turned proximal to the rest of the fingers.  

Supination required outward rotation of the forearm, causing the long axes of the radius and the ulna to 

be approximately parallel to one another and the palm facing anteriorly.  The converse defined 

pronation, which resulted in the radius crossing over the ulna so that the palm faced medial and inferior.  

Pronation is considered as positive forearm rotation.  Using these definitions, the scan position of the 

specimen was positioned in +14.13° pronation.   

For positioning of the forearm in specific angles of rotation, the angle was measured between the 

neutral position and end position of the radius, per ISB recommendations.  Points were marked in space 

defining -80°, 0° (neutral), and +80° to enable fixing of the radius at these specific angles of rotation.  

 

Carrying Angle 

The carrying angle is another characterization of position in the elbow, relating the ulnar and 

humeral long axes projected onto the frontal plane.  This angle occurs due to both the tilt of the screw 

displacement axis, or axis of flexion, and angulation of the ulna, and thus is passive and dependent on 

the flexion/extension axis [65].  Variation in this motion is referred to as lateral or medial ulnar 

deviation, or more commonly valgus or varus tilt, respectively, of the forearm.   
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3.3.3. Local Coordinate Systems 

Depending on the cadaveric study at hand and the tools used to implement motion tracking and 

define axes of motion, sometimes it was necessary to create a novel local coordinate system.  Such was 

the case for the studies replicated using this model, based on the information desired in the cadaveric 

research [37,38].  This unique joint characterization was first described by Morrey et al. (1989) and 

described a coordinate system to track the ulna with respect to a fixed humerus using an 

electromagnetic tracking device.  The origin of the system was located at the center of the trochlear 

groove, which was defined by the cylinder fit outlined in Section 3.2.2 (Figure 3.3-3).  A line ‘HT’ 

extended from the center of the humeral head to the center of the trochlear groove.  The Z-axis was 

described as normal to the flexion plane, or plane of the SDA, with +z pointed laterally.  The cross 

product of HT and the Z-axis resulted in the Y-axis, which pointed posterior from the joint.  Varus/valgus 

motion of the ulna rotated about this Y-axis.  The cross product of the Y- and Z-axes defined the X-axis 

and completed the orthogonal system; about this axis occurred ulnar internal and external rotation [45].   
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Figure 3.3-3: Local elbow joint coordinate system described by Morrey et al. [45] 

 

3.4. Ligamentous and Capsular Constraints   

Because of the stabilizing function of ligaments and their material properties, these soft tissues 

were modeled as linear tension-only forces with velocity-based damping.  Governing equations of 

function included constant stiffness as well as the application of length-dependent force, per the native 

function of ligaments.  These properties were determined using published cadaveric experiments.  

Applied ligaments were located in a method similar to the muscles, using defined insertions and origins 

per anatomical references.   
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3.4.1. Collateral Ligaments 

The lateral collateral ligaments, the RCL and LUCL, shared a common insertion just inferior on the 

lateral epicondyle (Figure 3.4-1).  The RCL was divided into three portions, the anterior, central, and 

posterior bands, which attached to the midpoint of the thickness of the annular ligament.  This 

expansion of the ligament into three bands accounted for the wide breadth of the radial collateral 

ligament, as it wraps around the lateral margin of the radial head and incorporates into the annular 

ligament.  The LUCL extended as a single element to the proximal margin of the ulnar tubercle.   

 
Figure 3.4-1: Lateral ligaments: radial collaterals (RCL-A, C, P), 

lateral ulnar collateral (LUCL), and annular (AL) 
 

 
One of the most unique structures in the elbow is the annular ligament: a sturdy ring of 

ligamentous tissue which wraps around the head of the radius to restrain it to the radial notch of the 

ulna.  It also serves as insertion for several other collateral ligaments, which blend with the tissue to 

provide stability to the joint.  Because of its structure, and the limitations of force wrapping around rigid 

bodies, the annular ligament was designed by Fisk et al. as a three-dimensional solid structure with 

ligaments attaching it to the anterior and posterior margins of the radial notch (Figure 3.4-1) [66].  Thus, 
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full stability could be maintained without the application of artificial restraints to motion, such that the 

model could be fully governed by soft tissue constraints.   This SolidWorks body relied upon a sweep of a 

silhouette which extended 225° around a central axis, consistent with the length of the native annular 

ligament.  The four solid corners of the body were used as ligament attachments sites to connect the 

body to the ulna.   

The annular ligament body was initially positioned in the elbow by aligning it collinear to the 

central axis of the radial head, as designated by the MedCad module of MIMICS.  However, this mate 

was suppressed prior to motion simulation, to not apply any unphysiologic constraints to the model.  

The body was defined with solid body parameters, prohibiting inappropriate interference of the body 

with the bones of the elbow.   

The medial collateral ligament (MCL) was segmented into three distinct bands (Figure 3.4-2).  The 

anterior band of the MCL was applied from the anterior, inferior margin of the medial epicondyle to the 

medial lip of the greater sigmoid notch.  The posterior portion of the MCL was further divided into an 

anterior and posterior element, originating on the posterior, inferior border of the medial epicondyle 

and extending to the medial articular rim of the greater sigmoid notch.   
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Figure 3.4-2: Medial collateral ligaments: anterior (MCL-A) and 

posterior (MCL-PA, MCL-PP) 
 

3.4.2. Distal Ligaments  

The interosseous membrane of the forearm was defined by further separation of its three bands 

into five discrete force applications to simulate the diffuse attachments between the diaphyses of the 

radius and ulna (Figure 3.4-3).  The central band of the membrane, located approximately mid-

substance between the two bones, was represented as two bands which extended distally from the 

radius to the ulna.  This portion of the IOM was modeled such that the bands met the long axis of the 

ulna at a 20° angle as according to literature [54], and the perpendicular width of this band was 

measured as 12.25mm, in accordance with cadaver studies [50].  Dividing the body into two forces 

allowed a better physiologic representation of the broad attachment of this ligament. 
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Figure 3.4-3: Distal ligamentous constraints, anteromedial view 

(CB: central band; AB: accessory band; DOB: distal oblique, DRUL: distal radioulnar) 
 

The accessory band, in the same coronal plane as the central, was also subdivided into two 

structures to model its diffuse attachment sites (Figure 3.4-3).  Because of its variable location and 

number of bands in specimens, the portion of the AB modeled was the distal portion, that which 

appears most consistently [50,54].  This is indicated by the gap between the CB and AB, despite being 

part of a continuous membrane.  The proximal most fiber ran in approximately the same direction as the 

central band [50] and spanned from the interosseous crest of the radius, distal to that of the ulna.  The 

distal fiber was chosen based on anatomical landmarks, thus the angle became more oblique.  Distal to 

the other bands of the IOM, the distal oblique band (DOB) ran counter to the direction of the CB and AB, 

passing from the crest of the ulna distal to the inferior margin of the sigmoid notch of the radius (Figure 

3.4-3) approximately 30° relative to the long axis of the ulna.   

The most distal modeled ligaments were the distal radioulnar attachments (DRUL), divided into a 

dorsal and palmar band.  These are representative of the borders of the TFCC.  The dorsal portion 

extended from the base of the ulnar styloid while the palmar from the ulnar fovea, to insert respectively 

onto the posterior and anterior radial sigmoid notch.   
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3.4.3. Joint Capsule 

Inclusion of the joint capsule was necessary to impart stability on the model and to fully reflect 

the soft tissue constraints of an elbow positioned at a low flexion angle.  The anterior capsule was added 

due to its major role in stabilizing the extended elbow, particularly in collateral ligament deficient joints.  

Conversely the posterior capsule was excluded, as no evidence indicates its role in joint kinematics.   

Insertions of the capsule were placed on the annular ligament solid, the coronoid process, and 

two points on the ulna medial to the coronoid which reflected the expansive coverage that the AC 

affords to the joint.  To determine the effective origins of these fibers, it was necessary to define lines of 

action for each.  Origins on the humerus were determined by demarcating the proximal border of the 

radial and coronoid fossae and defining lines of action from the insertions, creating a cruciate pattern 

over the joint.  From these, final origins were determined that would reflect the most distal point at 

which a fiber following this line of action would contact the bony surface of the humerus before crossing 

joint space to the ulna or annular ligament (Figure 3.4-4).  Determination of effective origins as opposed 

to actual origins was necessary because ligament and capsular forces were applied using mass-less force 

vectors, and those crossing from the origins bordering the radial and coronoid fossae on the humerus to 

the insertions on the annular ligament and ulna would result in forces intersecting bony matter.  This 

would result in unphysiologic lines of action and behaviors.  Adjusting these origins based upon lines of 

action allowed for “wrapping” of the capsular forces around the prominences of the humerus, thus 

ensuring behavior more reflective of the native state.  
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These capsular bands were labeled by number, based upon insertion location.  Beginning most 

medial, AC-1, AC-2, and AC-3 inserted on the ulna while AC-4 was oriented transversely to insert on the 

annular ligament solid (Figure 3.4-4).   

Due to a lack of information on biomechanical properties of the capsule, designation of material 

properties for the anterior capsule involved research of comparative structures.  The posterior capsule 

of the shoulder was deemed a similar tissue in both structure and function.  It is described as thin and 

translucent, much like the anterior capsule of the elbow, and its thickness has been determined as 

between 0.6-4.47mm [69,70].   Three separate bands within the capsule have been documented and 

stiffnesses designated for each, described as the inferior, medial and superior posterior bands (PC-I, PC-

M, PC-S) [71].  These properties were expanded upon by Elmore (2012) to include width, thickness, 

length, and modulus of elasticity (E) for each (Table 3.4-1) [20].   

 

Figure 3.4-4: Lines of action from origin to insertion with marked points for new origins (L) and 
resultant forces applied to model (R) in the anterior capsule. The R image indicates the humerus (H), 

radius (R), ulna (U) and annular ligament (AL), as well as each anterior capsule band (AC-x) 
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Capsular Band E (N/mm2) Stiffness (N/mm)* Width (mm) Thickness (mm) Length (mm) 
PC-I 56.8±39.8 15.36 8.47 1.3 40.7 

PC-M 44.9±22.8 14.95 8.47 1.6 40.7 
PC-S 28.4±16.5 13.59 8.47 2.3 40.7 

Table 3.4-1: Posterior shoulder capsule band material properties (Bey 2005*, Elmore 2012) 

 
A study directly comparing the shoulder and elbow capsules considered their structures with 

electrophoresis and material properties under tensile loading, with muscles excised and ligaments 

intact.  Similarity between the types of collagen bundles and individual fibrils within the shoulder and 

elbow capsules was found.  Upon mechanical testing, the shoulder capsule demonstrated more 

elasticity, though it was revealed that the force to rupture the capsule decreased significantly in older 

specimens.  In specimens similar in age to the cadaveric specimens used in studies performed by 

Chanlalit (2011, 2012) with respective mean ages of 82 and 76 years of age, the failure loads were 

similar between the shoulder and elbow capsule.  It was also determined that the shoulder capsule thins 

with age [37,38,72].  

A study performed by Cohen et al. on the structure of the elbow capsule after trauma 

determined that in control specimens with an average age of 63 years, capsular thickness was 0.6 ± 0.2 

mm.  Gross examination also described the capsule as “thin and of uniform thickness” [47].  Another 

determined joint capsule thickness in adults over 15 years of age as approaching 2mm [73].   

Using the properties described for the shoulder capsule and the discussed similarities to, and 

differences from those in the elbow, the mechanical properties for the elbow capsule were determined.  

A thickness of 0.6mm was assigned to the capsule based upon the results of Cohen et al. and Hogan et 

al., as well as the comparison between the shoulder and elbow thicknesses in Kaltsas et al. [47,72,73].  

Given that in older specimens, the behavior of the shoulder and elbow capsule are similar, the average 

modulus of elasticity was taken from the moduli of the three shoulder bands equaling 43.3667 N/mm2 

and used as the modulus of the elbow capsule. The width of each band was determined using the 
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distance which would cover the breadth of the joint capsule effectively and dividing it equally between 

the individual components.  This overall distance was 26.58mm based upon the scanned cadaveric 

specimen.  The bands which inserted most medially were assigned a width of 1/5w.  The single band 

oriented mediolaterally was assigned a width of 2/5w to accurately represent the space assigned to it.  

The length of each band was taken to be the measured distance between the insertion and origin in the 

model, such that the bands had 0% strain as no data exists regarding in situ strain within the capsule.  

Using the given width (w) and thickness (T) to determine cross-sectional area (A), the length (L), and the 

modulus (E), stiffnesses (k) were calculated using Equation 1, resulting in the properties listed in Table 

3.4-2. 

𝑘 = 𝐸𝐴
𝐿

        Eq. 1 

Another component of the joint capsule added was the distal portion of the capsule, which 

attaches the annular ligament to the body of the radius as described in Section 2.2.3.  This was done to 

ensure stability of the annular ligament and prevent shifting of the solid body over the native radial 

head as well as the smooth surfaces of the implemented radial head replacements.  Two bands 

originated along the midsection of the annular ligament to represent their absorption into the bands of 

the AL.  These then angled downward and towards each other slightly to insert opposite the most 

anterior border of the radial tuberosity.  A triangular shape was formed between the two bands, as per 

anatomical texts.  They were labeled the anterior and posterior band of the distal capsule (DC-AB, DC-

PB), with DC-PB oriented most medially with the forearm in 80° supination (Figure 3.4-5).   
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Figure 3.4-5: Posterolateral view of elbow, with humerus (H), radius, (R), 

ulna (U) and annular ligament (AL) labeled, as well as distal capsules (DC-AB, DC-PB) 
 
 

Properties for the distal capsule bands had been previously undetermined.  Thus, the length for 

each band was determined as equal to the measured length between the insertion and origin such that 

the band was under 0% in situ strain.  Each band was also assigned a width of 6.82 mm based upon the 

measured distance between their insertions and appropriate coverage without overlap.  Thickness and 

modulus of elasticity were assumed to be the same as in the anterior capsule, as this was considered a 

continuation of the capsule distal to the annular ligament.  Using these values in Equation 1 resulted in 

the stiffnesses listed in Table 3.4-2. 

Capsule Band Abbr. Width 
(mm) 

Thickness 
(mm) 

Modulus 
(N/mm2) 

Length 
(mm) 

Stiffness 
(N/mm) 

Anterior Capsule (1) AC-1 5.316 0.6 43.3667 4.58 30.2014 
Anterior Capsule (2) AC-2 5.316 0.6 43.3667 8.14 16.9929 
Anterior Capsule (3) AC-3 5.316 0.6 43.3667 7.68 18.0107 
Anterior Capsule (4) AC-4 10.632 0.6 43.3667 15.8 17.5092 

Distal Capsule, Anterior Band DC-AB 6.82 0.6 43.3667 16.51 10.7484 
Distal Capsule, Posterior Band DC-PB 6.82 0.6 43.3667 17.63 10.0656 

Table 3.4-2: Material and Mechanical Properties of Joint Capsule Bands 
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3.5. Motion Parameters 

The COSMOSMotion add-in for SolidWorks was utilized for simulating motion and calculating 

results for this rigid body model.  This feature integrates tools into SolidWorks that allow the application 

of forces, torques, and displacements to rigid bodies over a defined amount of time in a series of 

methods.  It is also possible to constrain bodies using three-dimensional contact parameters and inter-

body connections such as springs to simulate motion.  The add-in can define types of joints between 

bodies to limit degrees of freedom and calculate resultant motions, forces, contacts, velocities, and 

myriad other results from applied motion.  Because of its integration with SolidWorks, no previously 

defined positioning or orientations were lost in the utilization of this feature.   

It was necessary to define several key parameters prior to simulation.  The primary step 

regarded defining bodies as moveable or fixed in the system.  The fixed or “grounded” body was a 

modeled version of the armature of the experimental setup, later described in Chapter 4.  This limited 

the body to no degrees of freedom and maintained its position throughout all rigid body modeling.  The 

humerus, radius and ulna were defined as free, moveable parts and were thus able to move freely 

throughout all six degrees of freedom, constrained only by soft tissue and bony contact.  Gravitational 

forces oriented with respect to the grounded armature were applied to each bone at its centroid. 

The application of mechanical joints in COSMOSMotion limits movement of bodies relative to 

one another by removing specific degrees of freedom.  Though these apply unphysiologic restraints to 

the bodies, they can be utilized to apply external perturbations or limitations present in a cadaveric 

experimental setup. 
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3.5.1. Mechanical Properties 

Critical to proper model behavior was the designation of ligament mechanical properties, 

including the in situ strain, stiffness, and stress-free length.  These values were determined based upon 

published cadaveric data (Table 3.5-1).   

Ligament Abbr. 
Stiffness 
(N/mm) 

In Situ 
Strain (%) 

Tension-Free 
Flexion 

Angle (α) 

Annular, Anterior Distal AL-AD 28.5 2.0 n/a 
Annular, Anterior Proximal AL-AP 28.5 2.0 n/a 

Annular, Posterior Distal AL-PD 28.5 2.0 n/a 
Annular, Posterior Proximal AL-PP 28.5 2.0 n/a 

Lateral Ulnar Collateral LUCL 57.0 n/a 107° 
Medial Collateral, Anterior MCL-A 72.3 n/a 22° 

Medial Collateral, Posterior Bundle, Anterior MCL-PA 26.1 n/a 80° 
Medial Collateral, Posterior Bundle, Posterior MCL-PP 26.1 n/a 110° 

Radial Collateral, Anterior RCL-A 15.5 0.5-1 43° 
Radial Collateral, Central RCL-C 15.5 0.5-1 30° 

Radial Collateral, Posterior RCL-P 15.5 0.5-1 85° 
Table 3.5-1: Ligament Mechanical Properties 

 
The stiffnesses utilized for the model were applied as N/mm of elongation and selected based 

on cadaver research as described in Spratley et al. (2009) [17].  The medial collateral ligament was 

modeled such that its bands remained taut throughout the flexion arc, as suggested in Fuss et al. (1991) 

past its tension-free flexion angle [74,75] using an iterative process to ensure stability.  Stiffnesses of 

other flexion-angle dependent ligaments were derived from Regan et al. (1991) [75]. 

In situ strains were applied to isometric ligaments based upon published values wherever 

possible, particularly within the distal constraining ligaments.  Ligaments without published in situ 

strains but known to be isometric were modeled as having 2.0% strain, per Liacouras et al. (2007) [18].  

This approximation was applied to the annular and distal radioulnar ligaments.  The tension-free flexion 
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angles were derived from the research of Regan et al. (1991) [75], and the collateral ligaments were 

pretensioned with 0.5-1.0% strain to dampen the model and resist oscillations.   

The stress-free lengths of the elements with in situ strains but no reported stress-free length for 

a given flexion angle, specifically the annular ligaments were calculated using said in situ strains applied 

to the Lagrangian Equation 2:  

        Eq. 2 
 
where L was the distance between the origin and insertion and ɛ was the in situ strain of the given 

ligament. 

Ligaments that were flexion-angle dependent, particularly the collateral ligaments, had a 

defined stress-free length at a given flexion angle, as indicated in Table 3.5-1.  Thus, the stress-free 

length was measured manually in the model for each ligament only after the model had reached an 

equilibration due to applied ligament tension at each collateral ligament’s respective active flexion 

angle, without other applied forces.  The model was allowed to settle in order to prevent the inevitable 

ringing as lax ligaments suddenly became taut.  These measured stress-free lengths were then tested by 

iterative solving of the model at incrementally increasing stress-free lengths to verify that the model was 

evenly constrained by the various ligaments and reached equilibrium.     

 

3.5.2. Ligament Modeling Expressions 

Ligaments were modeled as linear force elements which were initially tensioned through the 

application of in situ strain and/or a stress-free length.  Though the features of COSMOSMotion easily 

allow the application and measurement of myriad variables within the RBM, it was necessary to find a 

method of incorporating the mechanical properties of ligamentous soft tissue to accurately predict 
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behavior of the elements.  A single governing equation for the mechanics of ligaments that combines 

element tensioning, movement, damping, and stiffness in calculating applied resisting force had to be 

determined.  The FORTRAN programming language, recognized for its high-performance computing, was 

utilized within COSMOSMotion to blend these variables into a single concise entity, which designated 

the applied force within an element as related to the change in length of the ligament and its inherent 

stiffness. 

Ligaments with a defined in situ strain were modeled using the designated origins and insertions 

mentioned in Section 3.4 as markers, and the COSMOSMotion resultant expressions measured the 3D 

distance between these markers during motion simulation.  A logic statement was applied to govern the 

force applied by the ligament based on the change of length of each element, given in Equation 3. 

        Eq. 3 
 
Thus, the tension within the ligament is applied with respect to the magnitude of the distance between 

the insertion and origin points, (DM(P1, P2)), minus the user-defined stress-free length (L0) for length 

changes less than, equal to, or greater than 0, such that: 

        Eq. 4 

where S is the stiffness in N/mm per cadaveric data and L is the length in millimeters observed between 

the insertion and origin at a given moment in time.  It is of note that the force generated when the 

length of an element surpasses its L0 is defined as negative due to the direction of forces defined by 

convention within Solidworks.  The negative definition causes the force to pull the origin and insertion 

toward one another as opposed to pushing them apart.   
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The third component of the FORTRAN statement was the inclusion of a velocity-dependent 

damper on the ligament, preventing a rapid tensioning of the ligaments during motion simulation.   This 

further served to prevent high-frequency ringing of the model and allow faster solving of the motion 

study.  The VR, or relative velocity term as seen in Equation 3 as (VR(P1,P2)) measured the velocity of 

movement between the origin and insertion of a given ligament, and applied a resistance to motion of 

the damping coefficient 0.1 N*s/mm.  Addition of this feature was intended as linear damping not 

completely indicative of the time-dependent viscoelastic behavior native to soft tissues.  Its inclusion 

served to bolster the stability of the model in a manner that would have no effect on the results of the 

computational study. 

 

3.6. Contact Parameters 

As this rigid body model was fully reliant on physiological limitations and not approximated 

joints, contact parameters between bodies were critical to honoring osteoarticular geometry during 

simulations.  Definition of surface to surface contacts was performed for each of the long bones of the 

arm as well as the modeled annular ligament body, thus limiting motion between these bodies.  The 3D 

contacts feature in COSMOSMotion allowed for user input for material properties and regulated 

penetration upon contact (Figure 3.6-1).  Also enabled in this feature was the containing of contact 

pairs, thus defining contact parameters between specific bodies while allowing penetration for others, 

as well as labeling places of interest for results calculations.   

 
Figure 3.6-1: COSMOSMotion interface for 3D contact parameters with user-designated values 
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The stiffness for the bodies was chosen as 8,000 N/mm to minimize body interference at bony 

articulations.  This value also minimized integration issues, which became prevalent as the stiffness 

increased due to the method by which COSMOSMotion calculates the restoring force after two bodies 

overlap.  COSMOSMotion iteratively solves for interference between designated bodies and compares 

the overlap with the maximum allowed penetration.  In the occurrence of interference, the program 

calculates penetration distance as well as the volume of overlap, considering exact triangulated 

surfaces, and applies an outward force on both intersecting bodies at the geometric centroid of the 

overlap.  The magnitude of this applied force is calculated as the product of the penetration distance in 

millimeters and the user-defined material stiffness of the body in N/mm.  Stabilization for this force is 

provided by a viscous element utilizing an exponent applied to the penetration distance, and the 

specified maximum damping is the boundary for the damping applied to the system as a function of the 

rate of interference, or velocity.   

Application of friction was another feature of the contact parameters, but the presence of 

synovial fluid in the native elbow between the articulating surfaces renders friction nearly negligible 

[76,77], and thus friction was not added to the model. 

 

3.7. Solver Parameters 

The behavior of bodies defined as moveable was calculated iteratively using algorithms of 

through the MSC ADAMS solver embedded within the COSMOSMotion add-in.  The equations of motion 

were applied to these bodies within the model, utilizing user-defined solver parameters.  Though a 

number of integrators are available within the software package, the “Gear Stiff Integrator” (GSTIFF) is 

the default method and was selected for its capabilities to solve “stiff” ordinary differential equations 
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(ODEs) in a concise and robust manner.  Stiff ODEs are so named for the extremely small time step 

necessary to solve these equations by particular numerical methods, especially in systems with high 

oscillations [78], thus leading to poor and slow solution calculation.  The GSTIFF algorithm accounts for 

this by applying a backwards differential formulation, a variable order method to predict the error of the 

system within a user-input step size range.  Thus, this algorithm is able to more rapidly solve the 

displacements of the model by dynamically adjusting and decreasing the time step to model short-term 

events such as body contact, despite oscillations [79].   

 
Figure 3.7-1: COSMOSMotion interface for solver parameters with user-defined values 

 

Other user-defined parameters were selected for the solving of the system within the ADAMS 

package (Figure 3.7-1).  These values were chosen based upon those default to the software package, as 

well as by trial and error for model stability.  The minimum time step was set to the minimum possible 

value to capture any possible movement in the model, as was the accuracy threshold.  The Jacobian 

pattern was set to its maximum, indicating the frequency at which the matrix was re-evaluated to give 

maximum accuracy, despite the slowing of computational time.  Adaptivity was set to its minimum to 
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allow the inclusion of all rigid body contact in each subsequent time step [79].  The combination of these 

parameters enabled the integrator to solve for movement of bodies accurately, with the calculation of 

even the minutest of contacts with the least amount of error in an efficient and time-effective method. 
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4. RADIOCAPITELLAR STABILITY WITH BI- AND MONOPOLAR RADIAL HEAD PROSTHETICS 

 

4.1. Overview 

To demonstrate the capabilities of the developed elbow rigid body model, it was first validated 

against a cadaver study performed by Chanlalit et al. (2011) entitled “Radiocapitellar stability: the effect 

of soft tissue integrity on bipolar versus monopolar radial head prostheses” [37] to examine how soft 

tissues would contribute to stability of the radiocapitellar joint for different radial head replacements.  

Cadaver specimens were subjected to implantation of a bipolar radial head prosthetic, modifiable into 

monopolarity via a custom-designed stabilizing cuff.   Displacing motions were applied to the radius 

while axial loading was applied to the humerus, and the subluxating force was quantified in both the 

intact ligament and lateral tissue insufficient states.  It was demonstrated that the force-displacement 

trends of the monopolar radial head more accurately represented the intact state than the bipolar in 

both ligament states.  The study showed statistically that in the intact state the monopolar prosthetic 

had greater overall stability.  Chanlalit also indicated that the bipolar prosthetic had a greater 

dependence on lateral soft tissues for stability than the monopolar, further enforcing the evidence that 

the monopolar prosthetic is superior in enhancing elbow stability [37]. 
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4.2. Experimental Method 

Twelve fresh frozen cadaver elbows were utilized, including six male and six female specimens 

with an average age of 82 years.  Skin and muscles were removed, maintaining integrity of the full joint 

capsule around the elbow.  A sagittal step-cut osteotomy of the lateral condyle was performed to allow 

radial head replacement, and was rigidly fixed with two compression screws.   Replacement of the radial 

head prosthetics was achieved by removal of the screws and lateral condyle for access, and fixing the 

osteotomy once again.  Radiocapitellar stability was tested before the osteotomy as well as after the 

specimen was reduced and fixed to compare these states and to isolate the effects of the radial 

replacements. 

The common press-fit Tornier SA bipolar radial head system (RHS) implant (Tornier SA, Saint-

Ismier, France) was chosen for the experiment, designed to allow ±10° bipolar tilt.  The head of this 

system is considered non-anatomic due to its circular shape and the evenly distributed concavity on its 

proximal surface, the depth of which reaches 1mm.  The bipolar prosthesis was converted by Chanlalit 

into monopolar by way of a removable custom-designed metal collar, attached to the radial neck region 

to prevent tilt of the radial head component.  Though the RHS is available in a variety of radial head 

lengths, the appropriate size was selected by measuring and matching the short radius of the native 

head to the manufactured head size closest to but not surpassing this length.  Accurate radial neck 

length was replicated by measurement of the collar and prosthetic size, and resection of the 

corresponding amount of native bone [37].   

To properly align the specimen, the humerus and proximal radius were potted using polymethyl 

methacrylate (PMMA) and affixed to a custom-designed materials testing apparatus [80].  The humerus 

was rigidly attached to the device mounted on a vertical slide in the Y-direction while the proximal 

radius was allowed to hang freely within an aluminum tube mounted on the load cell beneath.  
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Alignment of the radiocapitellar joint was established as the position to which the radius settled due to 

gravity, and the radius was then attached from this position to a 6-axis load cell.  The definition of 

motion axes was determined based on the proximal surface of the radial head, so the radius was potted 

in a position such that this surface was positioned along the horizontal.  The humerus was then 

positioned and fixed in 30° flexion with respect to the radial head proximal surface and the radius was 

aligned such that the radial tuberosity was oriented medially with the forearm in supination.  The stage 

to which the radius was fixed allowed motor-driven and computer-controlled translations in the 

horizontal XZ-plane.   

For radial head comparison, a mono- or bipolar replacement was selected at random and 

inserted into the specimen, the osteotomy was fixed again and testing progressed.  The untested radial 

head replacement was utilized for a second run, and results were compared.  Random selection of the 

radial head replacement prevented variation as a result of the testing sequence.  Comparison of the 

dependence of bi- and monopolar RH prosthetics on soft tissue integrity was derived from cutting and 

surgical repair of the lateral ligaments.  The lateral collateral ligament complex, involving the LUCL, RCL, 

and the overlying extensor tendon were detached from the lateral epicondyle; these were repaired 

using an Arthrex 5.5mm corkscrew suture anchor and two sutures.  Radial head prostheses were 

modified by untying the sutures for access, after which they were retied and testing resumed.  Thus, the 

study was performed upon eight separate specimen states: pre-operative intact (control), native radial 

head post-osteotomy fixation (surgical control), bipolar and monopolar radial head replacements with 

reduced and fixed osteotomies, bipolar and monopolar replacements with lateral soft tissues detached, 

and the two radial head replacements with lateral soft tissues repaired.    

Testing was performed by applying axial loading of 50 N upon the humerus with simultaneous 

translation of the radius 6mm from starting position at a rate of 2mm/s.  After each translation, motion 



 

69 
 

was reversed to return the radius to its original position and continue 6mm in the opposite direction, 

limiting motion to the sagittal plane.  Two cycles of subluxating motion were applied to the specimen 

and resisting forces were measured at a sampling frequency of 45 Hz.  The second cycle was utilized for 

data analysis [37]. 

 

4.3. Computational Method 

4.3.1. Overview 

The design of the computational model in 3-D space replicated that of the Chanlalit et al. 

cadaveric study.  Within the SolidWorks design space, components were created that reflected the 

materials testing apparatus of the experimental setup and the radius, ulna, and humerus were attached 

relative to these structures in the same orientations described.  Ligaments present in the cadaveric 

study as well as a joint capsule were activated, which included the annular ligament bands, the LUCL, 

posterior and anterior MCLs, and RCLs.  Reflected in the modeled humerus was a fixed-in-place humeral 

osteotomy like that in the experimental design.  The Tornier SA radial head replacement system (RHS) 

was also modeled and affixed to the radius per manufacturer’s instructions, such that it could be 

incorporated to model the elbow after implantation or removed to model an intact joint with the native 

radial head.  Force and displacement were applied to the humerus and radius respectively, and the 

restraining loads in the X-direction, i.e. the direction of displacement, were collected for the intact, 

monopolar RHS, and bipolar RHS states.  The rate at which the model was displaced was identical to that 

in the experiment, though only posterior displacement was performed as results were not published for 

applied motion in the anterior direction [37]. 
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4.3.2. Materials Testing Apparatus 

Experimental specimens were mounted into a testing apparatus to ensure alignment and 

control motion, which was replicated in the computational study using two structures as shown in 

Figure 4.3-1.  The primary structure was a base representing the overall apparatus, providing a definition 

of posterior displacement and axial loading using its local coordinate system.  Its position also defined 

the direction of gravitational forces applied to the bony components.  This construct consisted of a 

simple platform measuring 268mm x 200mm x 30mm, across the surface of which a second feature slid 

and displaced.  The platform was fixed in space based upon the inherent coordinate system defined 

within the design space of SolidWorks.  The second component, referred to as the stage, consisted of a 

smaller platform as well as a hollow cylinder representing the XZ stage of the experimental setup and 

the fixture for retaining the radial shaft in the Y-direction.  This was done in contrast to the design of the 

cadaveric study, which placed the stage in the XY-plane.  The stage was constrained onto the surface of 

the fixed platform to translate only in the X-direction.  Using this stage, displacement of the radius was 

defined [37].   

The experimental setup of the cadaveric study also included a restraint for the humerus which 

limited it to axial translation.  Due to the available motion constraints within the SolidWorks 

COSMOSMotion module, it was unnecessary to create this structure.  The humerus’ appropriate position 

was determined based upon positioning of the radius within the stage, and its axial translation was 

defined and constrained with respect to the platform (Figure 4.3-1) [37].  Its motion was defined in the 

Y-direction, which differed from the cadaveric study defining this as the Z-direction, though it did not 

affect the results of the model read in the X-direction.   
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Figure 4.3-1: Rendering of experimental setup (right) (Chanlalit 2011, 2012) and 

computational Materials Testing Apparatus platform and stage 
with radius, ulna, and humerus in position (left) 

 

4.3.3. Radial Head Replacements 

A key component to the experimental design was the Tornier RHS, a radial head prosthetic.  It 

has been designed to maximize the contact between the radial head and the capitellum of the humerus 

by implementing a bipolar head, allowing ±10° axial tilt on its straight neck.  The head is perfectly 

circular, modular and composed of cobalt chromium (CoCr) with an internal polyethylene liner.  There 

are four possible options for head diameters, ranging in two millimeter increments from 18-24mm.  The 

radial head height was limited to 12mm, the only option in this particular RHS.  Also critical to the design 

was the symmetrical concavity on the proximal surface of the radial head, which reached a maximum 

depth of 1mm.  The short press-fit stem, used in the cadaveric experiment, is also CoCr but coated with 

a titanium (Ti) spray to provide purchase to the bone.  An array of possible stem diameters range from 
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6-10mm in 1mm increments with stem lengths between 21-24mm.  This, according to manufacturer’s 

surgical instructions, accommodates neck resection levels of 13mm and 16mm.  Using the provided 

dimension charts within the manufacturer’s surgical technique pamphlet, a stem and radial head were 

created as individual parts (Figure 4.3-2).  The appropriate radial head and stem diameters were 

selected based upon manufacturer’s instructions, resulting in a head diameter of 20mm, a stem length 

of 22mm and a stem diameter of 6mm.  The concavity on the component’s proximal surface was 

modeled as well [81]. 

 

Within the cadaveric study, both a mono- and bipolar radial head system was implemented by 

the creation of a metal collar attached to the bipolar Tornier RHS between the stem and the articulating 

head, restricting its motion [37].  To accomplish this in the model, the radial head was fixed in position 

relative to the stem, creating monopolarity by prohibiting its motion.  In modeling the ±10° of tilt within 

the bipolar design, a conical structure with 10° angulation was created and fixed relative to the stem 

with its tip coincident to the center of the distal side of the head (Figure 4.3-3).  Motion of the head was 

limited by solid contact parameters to the surface of the cone, allowing the head to tilt in any direction 

Figure 4.3-2: Tornier RHS stem and attached head (left) and 
isometric view of head with dimensions (right) 
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that resulted in an angle less than or equal to 10°.  This cone did not affect any other components of the 

model, as contact parameters were defined only with respect to the radial head and not to any other 

feature.  

 

To implant the radial head replacement, an axis fit to the shaft of the radial neck was 

implemented using the MIMICS MedCad module and a plane normal to this axis was created at the most 

proximal point of the radial head (MPPRH).  A cut plane was defined parallel to this plane and positioned 

17mm distal from the MPPRH.  The Tornier head long axis was aligned with the long axis of the neck, 

and the collar portion of the stem was fixed to the cut plane.  The radial head replacement was 

positioned vertically such that its most distal surface was 5mm from the cut surface, ensuring with a 

12mm head height that the overall height of the replacement construct equaled 17mm.  This differs 

from the suggested cut plane within the manufacturer’s surgical procedure in that the stem is designed 

for a cut plane at either 16mm or 18mm from the MPPRH, though the suggested determination of the 

Figure 4.3-3: Tornier RHS, bipolar set-up with ±10° shown 
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plane is the same.  Though this specific specimen’s head and neck would clinically call for a 16mm cut 

height, 17mm was utilized for the purpose of visualization; the radial head replacement however was 

positioned such that there was no shortening or understuffing of the radial head replacement, achieving 

an identical end for computation as with a 16mm cut.   

In the monopolar experimental design, the RHS was fixed in place to the radius and combined 

into a single assembly.  Thus, the construct behaved as a single entity with continuous contact 

parameters, and the head was prevented from moving relative to the radius.  In contrast, the bipolar 

RHS was assigned as a distinct part in the model, separate from the assembly of the radius, and a 

spherical joint was implemented to allow full tilt of the head while maintaining its position relative to 

the radial neck.  Fixing the conical structure restricting the bipolar head’s motion to 10° tilt to the radius 

provided the RHS with its tilt limitations while moving as one single body with the radius.   

 

4.3.4. Computational Implementation of Experimental Setup 

The humerus was subjected to a fixed step-cut osteotomy within the SolidWorks design space, 

approaching from the lateral side 60 mm from the most distal point of the capitellum and cutting to the 

midsection of the medial body of the trochlea to maintain the integrity of the capitellum.  A total of 1.2 

mm of bony tissue was removed from the vertical cut to represent the kerf of the average small sagittal 

or oscillating bone saw.  The experimental method involved the pre-drilling of screw holes to maintain 

the intact height of the capitellum, so the fragment was fixed at its original height and not shortened the 

width of a saw blade (Figure 4.3-4).   
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Figure 4.3-4: Anterior view of humerus with post-osteotomy lateral fragment (green) 

fixed in position 1.2mm medial to the body of the humerus (pink), with height maintained 
 

 
The radius was attached to the stage at a level that, by visual inspection, reflected the 

positioning of the radial fixation in the cadaveric experiment.  The radial shaft was cut at the same level 

as in the study to prevent interference between the distal radius and the stage or platform.  The radius 

was positioned into 80° of supination, orienting the radial tuberosity medially per the experimental 

setup.  A planar fit of the proximal surface of the radial head was aligned parallel with the XZ-plane, 

reflecting the note in Chanlalit et al. that the radial head surface was aligned with the capitellum, thus 

ensuring its displacement in the X-direction [37].  Both the ulna and humerus were positioned relative to 

the radius; the humerus was angled using the screw displacement axis such that the forearm was in 30° 

flexion.  The diaphysis of the ulna was cut at such a level as to allow it to move beside the radius without 

interacting with the stage.   

Mechanical testing within the experiment involved a 50N axial load applied to the humerus 

while a 6mm displacement was applied to the radius via the platform at a rate of 2mm/s, moving 
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posteriorly said distance first then displacing 6mm anterior for two cycles [37].  In the computational 

analysis, a 50N load was applied to the humerus in the Z-direction over one second followed by a one 

second rest period, allowing the computational model to reach equilibrium before the application of the 

radial displacement.  A mathematical function governed this motion in COSMOSMotion, as designated 

by an equation controlling force application, STEP (0, 50, 0, 1).   Movement in the radius was defined as 

6mm displacement in the posterior direction at the given rate of 2mm/s governed by the expression in 

equation STEP (0, 2, 6, 5).  This statement harkened the STEP feature embedded within COSMOSMotion 

which determines the slope between the initial value, 0mm at 2 seconds, and the designated end value, 

6mm over the period of time designated, 3s.  This resulted in a 2mm/s displacement of the radius in the 

X-direction for a total of 6mm, at which time motion ceased and a one second equilibrating period 

occurred.   

In contrast to the experimental design, the anterior displacement was not modeled.  Results of 

anterior motion were not published in this paper as interest for the authors lay in posterior subluxation 

of the radius after radial head replacement.  Also, the cyclical nature of the cadaveric study, used to 

eliminate hysteresis in the viscoelastic ligaments and provide accurate data in the second cycle, was 

unnecessary in the computational model due to the exclusion of viscoelastic behavior. 

In running the computational model, it was discovered that a laxity existed in the ulna’s 

constraints such that it was able to move posteriorly an unphysiological amount.  To provide additional 

stability, a band of soft tissue was modeled between the shafts of the radius and ulna.  Descriptions of 

the cadaveric experimental method and images contained therein suggest that soft tissue related to the 

interosseous membrane was maintained between the radius and ulna, despite cutting of the bones 

proximal to the explicit IOM-CB.  This membrane was represented by a tether, which was positioned 

such that it would not cause unnecessary twisting of the ulna (Figure 4.3-5).  Its stiffness was derived 
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based upon a series of published cadaveric studies relating the tensions and thicknesses of the 

respective bands of the IOM, which determined that the central band of the IOM has a stiffness of 

65N/mm [51,82].  The stiffness assigned to the tether was set to be identical to the central band based 

upon its proximity to this band and its identical function.  Stress-free length was determined as 11mm 

through an iterative process used to affirm that the force generated in the band would not exceed 1N so 

as not to skew the computational test results.    

 
Figure 4.3-5: Ulnar tether (pink) positioned between the radial (yellow) shaft and 

ulnar (blue) shaft. Posterolateral view. 
 
 

The resulting forces in the X-direction which resisted motion of the radius under a compressive 

load were measured from the stage at a rate of 100 data points per second, resulting in a spreadsheet 

output of Force (N) vs. Time (s) with approximately 700 data points.  Differences between this number 

and the overall number of reported data points were due to periodic actions by the GSTIFF integrator 

solving the model under the user-prescribed default length of the initial time step (Section 3.7), resulting 

in the program decreasing the time step to enable solving.    
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Upon testing the intact, monopolar, and bipolar radial head states, the dependency of stability 

and these radial heads replacements with detached soft tissues was explored.  The cadaveric study 

included a separation of the lateral collateral ligament complex, including the LUCL, all bands of the RCL, 

and its common extensor tendon from the humerus.  In the computational study, the common extensor 

tendon was not included.  The LUCL and RCL were effectively removed by suppression of their action-

reaction forces, and the mono- and bipolar states were run once again.  It was not possible to accurately 

represent the repaired state in this model despite its inclusion in the cadaveric study, as the ligaments 

were repaired directly to their insertions and no artificial method of pre-straining the ligaments was 

described by the authors.   

 

4.4. Results 

Force resisting motion in the direction of the displacement was measured throughout the 

breadth of the study and tabulated into spreadsheet form.  A number of other quantities not observed 

in the cadaveric study were also measured, including forces within specific ligaments and capsular 

bands, as well as contact forces between bodies for further understanding of the behavior of the model.  

Universally across the radial head states there was a short period of great variations in magnitude over 

the initial time steps.  This was caused by high-frequency oscillations within the model between 0-0.1 

seconds which then dampened, leading to an equilibrated period after the 50N humeral loading.  When 

radial posterior (+X) displacement began at t=2s, these forces ramped smoothly in the +X-direction and 

then reached another steady-state plateau after the full displacement at t=5s.  Peak loading was seen 

consistently at the most extreme displacement before a slight decay, followed by another steady-state 

plateau for the final 5-7 seconds (Figure 4.4-1).   
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Figure 4.4-1: Intact RH run with displacement applied from 2-5s 

 
 

Loading was measured at a point at the center of the stage during the breadth of the study, 

representing a sum of the loads in the direction of displacement experienced by the radius during 

subluxation.  This included forces in the X-direction for all ligaments, capsular bands, and contacting 

surfaces.  Positive X-forces were directed posteriorly.  Results within Chanlalit et al. (2011) were 

reported as the average peak load during displacement with standard deviations based upon the twelve 

cadaveric specimens.  Comparisons between the cadaveric and computational studies for both intact 

and resected lateral collateral ligaments (LCLx) with a single standard deviation indicated in error bars 

are shown in Figures 4.4-2 and 4.4-3.  For further understanding of the model’s behavior over time, 

forces resisting subluxation throughout the posterior displacement were tracked and are displayed 

graphically in Figures. 4.4-4 and 4.4-5. 
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Figure 4.4-2: Peak resistive forces for intact, monopolar, and bipolar model 

compared to cadaveric data for intact ligaments 
 

 
Figure 4.4-3: Forces resisting subluxation across displacement in model for all 

radial head states with intact ligaments 
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Figure 4.4-4: Peak resistive forces for intact, monopolar, and bipolar model 

compared to cadaveric data for LCLx (resected LUCL, RCLs) 
 

 

 
Figure 4.4-5: Forces resisting subluxation across displacement in model for all 

radial head states with LCLx (resected LUCL, RCLs) 
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The results of the computational model correlate well with those of the cadaveric study.  The 

constraining forces decreased in the ligament-intact state from the native head to the monopolar, while 

the bipolar head provided the least resistance to subluxation.  The monopolar and bipolar states fell 

within one standard deviation, as seen in Figure 4.4-2.   The intact state reported forces lower than 

those in cadaveric testing with peak forces just outside of a single standard deviation.  Chanlalit et al. 

demonstrated that the restraining load of the monopolar radial head is only 65.6% of the intact, while 

the bipolar results in a significant decrease from the intact at 37.5% of the total.  The computational 

model experienced similar decreases.  The monopolar radial head state was 82.5% as stable as the 

intact.  Comparatively, only 56.9% of the subluxating force was seen in the bipolar state.    Also in the 

cadaveric study, the bipolar radial head resulted in 42.8% less constraining force than the monopolar, 

while a 31.1% decrease was seen in the model.  These similar results support the hypothesis that 

stability would decrease with implantation of a bipolar radial head.     

Regardless of radial head state, each model began with overall magnitude of loading in the –X-

direction, opposite the direction of displacement.  The intact radial head began with loads near zero, 

indicating a stable environment with little natural pull by the ligaments and capsule toward distraction 

of the radius.  The monopolar state experienced more negative loading at the start of displacement, 

indicating the capitellum interacted with the radial head on the posterior curvature of the concavity.  

These anteriorly-directed forces were aggrandized in the bipolar state with forces significantly higher in 

the negative X-direction. 

When observing the less stable, excised ligament state for the mono- and bipolar radial heads, 

the data well reflects the behavior demonstrated in the cadaveric study.  Results for the computational 

model were just outside of one standard deviation for the bipolar state, and within two standard 
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deviations in the monopolar, though the peak subluxating force in the monopolar state was lower than 

indicated in the experimental study.  However, the trends of the data were very similar to those 

reported.  Compared to when the lateral ligaments were intact, the monopolar head state experienced 

a 33.3% decrease in constraining forces with the experimental study, while a 47.1% decrease in the 

computational model.  The bipolar head was significantly more dependent on the lateral ligaments than 

the monopolar.  In the cadaveric study this less-stable state experienced an 83.3% decrease in stability 

from the bipolar state with ligaments intact.  Likewise, a 60.4% decrease was indicated by the 

computational model.  A larger decrease between the two states of ligaments intact and excised with 

the bipolar head shows an inherently greater dependence of this design on these lateral soft tissues as 

opposed to the monopolar.  Though the numerical peaks in data were outside of one standard deviation 

for the LCLx portion of the study, trends in data and percent decreases reflect a computational model 

accurately predicting the results of a cadaveric experiment.   

 

4.5. Discussion 

Chanlalit et al. (2011) made efforts to show that the bipolar radial head system, used clinically as 

a replacement for resected radial heads, does not accurately restore stability of the elbow, while the 

monopolar more readily reflects native function.  The cadaveric study also showed that the bipolar 

radial head replacement is more dependent on lateral tissues than the monopolar, indicating its 

unsuitability for elbow injuries involving ligament damage.  The described rigid body model of the elbow 

accurately predicted the behavior of the cadaveric specimens throughout various radial head states and 

with lateral soft tissues intact and resected.  It demonstrated that the bipolar head is the least stable of 

the replacement states, redirecting forces anteriorly in a severe manner and resulting in low resistance 

to posterior subluxation in comparison to the native head and monopolar replacement.  The monopolar 
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head behaved similarly to the intact, though it more easily allowed extreme subluxation than the intact 

head.  Also, the monopolar and bipolar testing resulted in peak loading within one standard deviation of 

the cadaveric data.  The experimental model further demonstrated its efficacy in a more unstable state, 

observing the decreases in resistive forces in the mono- and bipolar replacements with lateral collateral 

ligaments excised.  Furthermore, the model reflected a greater dependence of the bipolar radial head 

on lateral ligaments than the monopolar.  

Though prior experimental studies have emphasized the coronoid process and lateral ligaments 

as the primary stabilizers of the elbow, it becomes clear that the radial head is an important character 

which requires further exploration.  Upon the application of a posterior displacement, the native radial 

head affords significant stability; more than 20N of force were exhibited with the intact radial head and 

ligaments, resisting subluxation, and over 30N were shown in the cadaveric study.  Though the 

computational intact state fell outside of a single standard deviation, a large standard deviation of 7N 

with a sample size of only twelve specimens affords a focus on data trends across the various radial 

head states as opposed to raw results.  The monopolar and bipolar states further exemplify the radius as 

a key stabilizer and fell within a single standard deviation of the cadaveric data.  Replacement of the 

radial head with a monopolar prosthetic, which is structurally symmetrical, has a shallow cup and is not 

reflective of the native anatomy, resulted in a decrease in resisting forces of approximately 4N, almost 

20% of the intact.  The elbow with a bipolar prosthetic experienced a significant decrease in forces 

resisting subluxation, falling 10N below the intact state.  This decrease in stabilization by 40% clearly 

indicates that despite intact lateral ligaments, a destabilizing factor was demonstrated by only replacing 

the radial head, thus providing further evidence that the radial head is a key contributor to elbow joint 

contact forces and stability.   
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It was also evident that the bipolar state granted less stability than the monopolar.  Its ability to 

tilt, designed with the intent of allowing for accidental incorrect alignment during implantation, in fact 

enables the direction of contact forces to shift in non-physiological ways.  This is most evident in Figure 

4.4-3, which graphically demonstrates a shift in forces in the anterior direction under zero loading as 

well as axial loading.  While the native radial head experiences only slightly anterior forces, its loading is 

nearly centered over the proximal concavity.  This inherent alignment begins the elbow in a stable 

position prior to the application of axial loading or displacement.  The bipolar head experiences 

significant anterior loads approaching 35N, resulting in an unstable environment.  During the posterior 

displacement, the bipolar head results in the largest shift in loads from anterior to posterior, and the 

bipolar head tilts downward anteriorly as the head pulls away from the capitellum.  The tilt allows for an 

inappropriate freedom of motion that inherently flaws the design, as it does not accurately represent 

the functionality of the radial head and creates a state prone to subluxation.  The radial head tilt also 

decreases overall radiocapitellar joint contact forces, further destabilizing of the elbow.  

As was addressed in the cadaveric study, a coincidence between the resistive forces experienced 

with the intact and monopolar radial heads over the course of displacement occurred.  Between 2-4mm 

of displacement, the X-direction output similar results and the graphs reflected like curves.  The 

monopolar head, though more symmetrical than the intact, affords significantly more stability to the 

system than the bipolar.  In the non-distracted state, the symmetrical concavity of the monopolar head 

forced greater anterior loads than the intact, possibly due to the shallower cup shape.  However, low 

displacements resulted in the capitellum of the humerus interacting with the proximal, anterior slope of 

both the intact and monopolar heads in similar manners.  As the heads interacted with the ball of the 

capitellum, loads increased in a posterior direction and resulted in results between 10-15N; however, at 

larger displacements greater than 5mm, the stability created in the intact state increased accordingly 

while the monopolar head leveled off in its contribution.  This can be attributed to its symmetrical 
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shape.  The intact head has a greater radius in the anteroposterior direction than the monopolar, and 

thus the capitellum interacts more closely with its geometry and the resistive loads increase.   

The second portion of the experiment considered the reliance of the two prosthetic designs 

upon lateral soft tissues.  It is considered a standard approach to repair lateral ligaments and leave 

radial heads resected or replaced in cases of injuries where both structures are severely damaged.  This 

experiment demonstrated that in the absence of lateral soft tissues, the monopolar head still afforded 

stability to the joint that resisted displacement.  Almost 10N of force resulted, a decrease by one-half of 

the ligament-intact state but a stabilizing force nonetheless.  In contrast, the bipolar head granted little 

in the way of resistance to posterior motion.  When compared to an elbow with intact ligaments and 

radial head, restraining loads decreased by almost 57% in the case of the monopolar head and 78% with 

the bipolar implant.  In consideration of the forces over displacement, the bipolar head resulted in a 

state where loading remained opposite the intact and monopolar, directed in the anterior direction until 

more than half of the displacement was complete.  Together, these resistive loads clearly indicate a 

greater dependence of the bipolar state on lateral soft structures than the monopolar.   Though the 

behavior of the computational study accurately reflected the behavior of the cadaveric specimens, the 

results fell outside of a single standard deviation.  It is necessary to mention the exclusion of the 

common extensor tendon in the model, which has not been the subject of studies to determine its 

mechanical properties.  The high standard deviations, particularly in the case of the bipolar head, could 

also indicate inconsistencies in the cadaveric data which may be represented in the model. 

Further investigation into the distribution of loads in all directions indicated that the greatest 

forces were exhibited in the X-direction.  Forces in the Z-direction were generally consistent based upon 

the 50N axial load applied through the humerus, while the Y-direction experienced low forces.  This 
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provides further support that the results in the X-direction are the greatest contributors to resistance 

against posterior subluxation.    

Exploration of the loading across various ligaments throughout the computational study 

validated the behavior of the overall model.  Those flexion-angle dependent ligaments which are yet 

inactive in an elbow under 30° of flexion, such as the LUCL, RCL-A, RCL-P, and posterior bands of the 

MCL experienced zero loading throughout the breadth of the displacement.  The RCL-C and MCL-A, 

which are considered active in this position, exhibited appropriate loads.  The peak load in the central 

RCL band was achieved in the intact state, with 11.3N of force in the positive X-direction.  Loading 

decreased in the elbow with the monopolar replacement to 7.71N, but a more significant drop was 

discovered in that with the bipolar head.  Only 5.15N, less than half of the force restraining subluxation 

in the intact elbow, was read in the RCL-C in the unstable bipolar head.  At 30° of flexion, the RCL-C is 

the primary soft tissue stabilizer against varus motion, and though varus laxity was not considered in this 

experiment, it can be gleaned that at low flexion angles the bipolar radial head would provide less 

support than what is physiologically necessary to resist varus distraction.   

  The bands representing the annular ligament, which attached the ligamentous solid body 

around the head of the radius, are not flexion angle dependent and experienced loading throughout the 

breadth of the study.  It was validated that the ulnar tether maintained less than 1N of loading 

throughout the displacement, and the capsular ligaments experienced less loading than the active 

ligaments.  This is an expected outcome, as the explicit contribution of the capsule in kinematics is 

unknown, though it is known to afford some stability in low flexion angles and full extension.  It can be 

assumed that the capsule experiences less loading than ligaments, as its structure is less specified to 

resist motion than ligamentous tissue.   
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Observing ligament loading also brought to light an increased load for the MCL-A when lateral 

soft tissues are resected compared to the intact state.  A significant increase in forces was reported by 

the computational model for both radial head replacements.  As the lateral tissues release, the stability 

of the annular ligament about the radial head is lessened alongside the pull of the LUCL, which is 

antagonistic to the MCL-A.  This enables more freedom of movement for the largely unconstrained ulna, 

causing unnecessary strain on the MCL during posterior subluxation.  Other than the redirection of 

forces from the RCL-C to the MCL, joint contact forces also redistributed across the joint.  In the intact 

joint under an applied posterior displacement of the radius, ligament loading is the primary resistance.  

However, the radial head also interacts with the ulna during subluxation, creating almost 20N of force 

on the posterior ridge of the radial notch, resisting the displacement.  With mono- or bipolar radial head 

displacements, this resisting contact decreases slightly in the monopolar case and by almost half in the 

bipolar.  Resecting the lateral tissues aggrandized the issue, allowing more motion of the radius and thus 

allowing it to pass the radial notch without significant contact.  Ulnohumeral joint contact forces also 

increased with the suppression of lateral tissues, which afforded freedom to the annular ligament and 

permitted the humerus and ulna to abut each other during the displacement and applied humeral 

loading.  The ability to observe ligament tensions as well as joint contact forces which are difficult to 

measure experimentally is a key strength to computational modeling and allows an enriched 

understanding of the behavior of a joint under various stresses.   

One limitation in this study is the exclusion of the extensor tendon, whose inclusion could affect 

the overall forces.  This tendon originates on the lateral epicondyle and attaches the extensor muscles 

to the elbow before they insert on the radius and the dorsal side of the hand.  Inclusion of this tendon 

could further stabilize the radius and resist its motion, increasing loads required to move the radius 

posterior.  Also, further exploration of the representation of the capsule is necessary, as it has not yet 

been modeled in rigid body computational studies of the elbow.  Its inclusion is necessary for evaluation 
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of all resistive forces, as its anterior attachments in the humerus, ulna, and annular ligament would work 

in concert to resist posterior motion.   
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5. RADIAL HEAD PROSTHETIC DESIGN IN THE TERRIBLE TRIAD INJURY 

 

5.1. Overview 

Further evidence of the efficacy of the 3D anatomically accurate computational model was 

demonstrated by replication of a more complex study concerning the terrible triad. “The biomechanical 

effect of prosthetic design on radiocapitellar stability in a terrible triad model” by Chanlalit et al. (2012) 

quantified the respective stabilizations of the elbow of various radial head prosthetics in a highly 

unstable injury [38].  The devastating but uncommon terrible triad injury commonly requires repair of 

lateral ligaments, fixation of the coronoid process, and finally replacement of the radial head.  This study 

considered the most common prosthetics, mono- and bipolar non-anatomic, in comparison to the newly 

developed anatomic radial head prosthetic system (ARHS) in a joint in which ligament repair and 

coronoid fixation were implemented.  Cadaver specimens were subjected to a coronoid process tip 

subtype 2 fracture and radial head replacement, as well as LCL incision and repair.  Anterior and 

posterior subluxation was applied to the radius alongside axial compression upon the humerus.  

Chanlalit discovered that there was no statistical difference between the subluxating force of the native 

radial head and the anatomic radial head replacement, but there existed a definitive decrease in 

necessary force for the non-anatomic prosthetics.  Of these, the monopolar design was more 
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representative of the force-displacement curve achieved by the intact state and the ARHS.  This 

cadaveric study indicated that the newly-developed ARHS is the most reliable prosthetic at accurately 

representing the native radial head especially in states where elbow stability is compromised, but the 

monopolar replacement is also a consistently stabilizing option.  The bipolar prosthetic is the least 

desirable of the three designs, given its tendency towards subluxation with tilt [38]. 

 

5.2. Experimental Method 

Eight fresh-frozen cadaveric elbows with a mean age of 76 were used for the study, consisting of 

an even number of male and female specimens.  The joint capsule and tendon origins around the elbow 

were left intact with complete removal of skin, muscle, and tendons.  Near the humeral insertion site in 

the joint, a capsular incision removed all but the anterior bundle of the medial collateral ligament, which 

remained intact.   

To mimic the ulnar portion of the terrible triad injury, a controlled tip subtype 2 fracture of the 

coronoid process was created involving less than 30% of the structure, as defined by an imaginary line 

extending from the anterior-most tip of the olecranon.  The breakage was fixed by drilling a pilot hole 

and inserting a 2.7mm self-tapping cortical screw as a lag screw from posterior to anterior.  The lateral 

collateral ligament complex was repaired using a single suture. 

Two radial head replacement systems were utilized for efficacy comparison.  The 

aforementioned Tornier SA Radial Head System, a non-anatomic bipolar prosthetic, was selected and a 

custom-designed metal cuff was implemented to the system to create monopolarity.  The newer 

Anatomic Radial Head System (ARHS) (Acumed, Hillsboro, OR) was also selected for its novel design.  

Though monopolar in structure, the head of the ARHS is modified to better reflect the native geometry 
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of the radial head.  It has an elliptical head shape, offset by 4° in both the anteroposterior and 

mediolateral planes.  The proximal concavity for capitellar articulation is offset from the center of the 

head by 1mm with a varying radius of curvature, and reaches a depth of 2.0mm at its center.  A variety 

of radial head and neck sizes are available commercially for the RHS and ARHS, and the appropriate size 

was selected for each specimen per manufacturer recommendations.  The non-anatomic radial head 

was matched with the short axis of the native radial head, while the Acumed anatomic system matched 

with the long axis [38].   

Specimens were fixed into a custom-made mechanical testing device as described in Section 4.2 

[80].  Axial compression loads of 50N were applied to the humerus, while the radius was translated in a 

controlled fashion 6mm anteriorly from the starting position at a rate of 2mm/second, then returned to 

the starting position and tested in the posterior direction.  Data was collected by a load cell attached to 

the radius at 45 Hz, measuring compressive force data between the radial head replacement and 

capitellum.  Two cycles of the test were performed, though the second was utilized for data analysis.  

The experiment followed a particular sequence: the native radial head post-ligament repair (surgical 

control), post-radial head replacement (randomly selected between mono- or bipolar RHS), post-radial 

head replacement utilizing the RHS unused from the previous test, and post-ARHS replacement.  

Randomization between the non-anatomic mono- and bipolar radial head replacements eliminated 

variation of results possibly due to sequence [38].   

 

5.3. Computational Method 

5.3.1. Overview 

The experimental setup was created within the SolidWorks design space as with the mono- and 

bipolar RHS cadaveric study (Chapter 4).  The appropriate ligaments were activated, including the LUCL, 
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RCLs, anterior MCL and distal capsule bands; the anterior joint capsule and posterior MCLs were 

suppressed due to experimental protocol.  The aforementioned humeral osteotomy was unnecessary as 

the surgical approach changed, instead using an incomplete circumferential excision of the capsule and 

displacement of the elbow to expose the radial neck.  A repaired terrible triad injury was the focus of 

this study, so a shearing of the coronoid process was applied and the width of a standard oscillating 

bone saw blade was removed from the body of the coronoid before the tip was “repaired” back to the 

main body of the ulna.  Ligament repair was designed based upon images and descriptions from the 

cadaveric experiment.  The same Tornier bipolar radial head replacement with the monopolar option 

was utilized, as this particular study compared these two RHS conditions with the monopolar Acumed 

ARHS.  Having an identical materials testing apparatus, this study required development of a model of 

the ARHS for testing.  Axial loading was applied to the humerus while the radius displaced posterior, and 

the restraining loads in the X-direction were measured.  

 

5.3.2. Radial Head Replacements 

Three distinct types of radial head replacements were tested in this study.  The previously 

modeled Tornier bipolar head as well as its monopolar variation were utilized as an example of a non-

anatomic radial head design.  Its perfectly circular footprint and symmetrical concavity upon its proximal 

surface do not accurately represent the geometry of the native radial head.  In contrast, the Acumed 

ARHS was designed such that it more truthfully reflected the structure of the intact head, and thus it 

was chosen as a comparison to the non-anatomic system.   

The Acumed anatomic radial head system was designed to better restore the elbow post-injury 

through improving stability, kinematics and radiocapitellar contact forces.  This was achieved through 

closer consideration to anthropometric and cadaveric data to accurately design more advanced 
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instrumentation than what was previously available.  Its monopolar structure reflects the bony structure 

of the radial head and neck.  A greater variety of head and neck combinations exist for the ARHS than 

with the Tornier RHS.  The head is 10mm in height as opposed to 12mm in the Tornier, and its elliptical 

shape contrasts with the circular one of the older design.  The radial head replacement is measured and 

implanted using the long radius, or widest measurement of the native radial head, and comes in a range 

of sizes increasing in 2mm increments from 20 to 28mm.  The head chosen for the model was 22mm 

along the long diameter, reflecting the 22.04mm measurement of the intact head.  The short diameter 

of the implant, therefore, was 20.6mm per manufacturer’s dimensions (Figure 5.3-1).  Given that the 

structure of the stem was inconsequential, as the radial head in the computational model was fixed 

relative to the radius, the same stem was used for the Tornier system was implemented in the study as 

opposed to designing a new stem for the Acumed ARHS.   

 
Figure 5.3-1: Dimensions and structure of the Anatomic Radial Head System, 

pre-4° angulation of proximal surface (L) and after (R) 
 

 
According to the manufacturer’s description, the depth of the concavity on the proximal surface of the 

radial head replacement was 2.0mm, despite synopsis of the head’s structure in the cadaveric study 

which described it as 2.3mm.  Thus, an overall depth of 2.0mm was implemented in the design, and it 
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was offset by 1mm anterior from the center.    The articulating surface of the head was also canted in 

two planes by 4°, the mediolateral and anteroposterior (Figures 5.3-2, 5.3-3).   

 

 
Figure 5.3-2: Acumed visual of the ARHS implanted upon a 

sawbone, canted surface shown (Acumed) 
 

 

Figure 5.3-3: Modeled ARHS with tilt recreated using cut planes, shown 

 
Given the precise geometry of the ARHS and its representation of native articular structures it 

was necessary to define a precise method of placing the prosthetic on the radial neck.  The same radial 

neck cut plane was utilized as in the previous cadaveric study at 17mm from the most proximal point of 

the radial head (Chapter 4), and the implant attached at a position 5mm proximal to the radial neck cut.  
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This resulted in a 2mm understuffing of the joint, given the 10mm height of the structure.  Though 

seeming contrary to clinical methodology for implantation, this was considered an appropriate measure 

given the imprecise description of the ARHS’ placement on the stem in the cadaveric study.  Little 

research has been afforded to the correct positioning of radial head replacements such that there is 

maintenance of the native height.  It is known that in fitting radial head stem replacements to the 

widest diameter of the radial neck, considered a standard practice, the resulting stem and head 

combination have an average gap of 4mm between the radial head implant and the capitellum.  A range 

of 1-7mm of shortening has been recorded [36].   Other researchers have demonstrated that shortening 

or lengthening of greater than 2.5mm can have detrimental effects on the overall kinematics of the 

elbow joint [28].  It is a reasonable assumption therefore, based upon the description supplied in the 

cadaveric study, that the radiocapitellar joint could be understuffed to an extent.  However, in an effort 

to prevent this standard understuffing from affecting the overall joint stability, an understuffing of 2mm 

was deemed appropriate. 

On the radius, the mediolateral and anteroposterior planes were created based upon the 

International Society of Biomechanics’ suggestions, using the relative positions of the ulnar and radial 

styloids to determine the positioning planes of the radius [65].  Planes were then created based upon 

these that were offset by 4° in the appropriate directions, distally canted both medially and anteriorly.  

To position the prosthetic appropriately, the cut planes for the proximal surface of the ARHS were 

mated parallel to these, and the implant was locked through mates relative to the radius in this location.   

This ensured correct placement of the radial head system such that it represented fully the native 

geometry throughout the duration of the computational study. 
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5.3.3. Computational Implementation of Experimental Setup 

The cadaveric study utilized a different approach for replacing the radial head than in the 

previous study (Chapter 4), therefore modeling of a lateral humeral condylar osteotomy was 

unnecessary.  The humerus remained intact within the SolidWorks design space.  However, the 

described surgical approach required an incomplete circumferential excision of the capsule and 

displacement of the elbow, exposing the radial neck.  This rendered the previously described anterior 

capsule unwarranted and therefore it was removed from the study.  The annular ligament remained 

intact for this study, and thus the distal bands of the capsule also remained intact and were modeled in 

the same fashion as in the prior computational model.  

Instead of the humeral osteotomy, to mimic the terrible triad injury, the tip of the ulnar 

coronoid process was cut to mimic a tip subtype 2 fracture, indicating a break of more than 2mm of 

bone but involving less than 30% of the coronoid, a typical injury of the terrible triad [9].  This fracture 

was performed via a controlled transverse osteotomy and fixed to the body of the ulna using a 2.7mm 

self-tapping cortical screw inserted from posterior to anterior.  In the computational study, this repair 

had to be modeled for accurate representation of the results, and 25% of the coronoid height was 

determined an appropriate representation of the fracture.  As described by Morrey, 25% of the coronoid 

height was defined by a line demarcating the deepest margin of the sigmoid notch, as well as another 

perpendicular to this line extending to the most anterior tip of the coronoid process [9].  This was 

determined as the total height.  A plane fitted to these two lines was created, representing the central 

ridge of the trochlear notch, and the cut plane for the osteotomy was designated as normal to this 

trochlear notch plane.  Using these features, a cut at 25% of this height was implemented.  This 

fragment was shortened by the width of the average saw blade, 1.2mm, and reattached to the ulna to 

represent the fixing of the tip injury (Figure 5.3-4).  This state was indicated as CP-r, or coronoid process 

repaired.    
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Figure 5.3-4: Proximal ulna and CP resection.  Total height with 25% of height of CP indicated with cut 

plane in medial view (L). Repaired CP shown with cut plane and 1.2mm of bone removed, 
anteromedial view (R). 

 

Within this study, the lateral collateral ligament complex was also detached and repaired, and 

results were taken for the repaired state.  The repair method was described in the cadaveric study as a 

suture anchor with a 2.0 FiberWire suture implemented to reattach the dissected ligaments to their 

isometric origin.  However, images within the published study indicate reattachment not to the lateral 

epicondyle per anatomic texts, but instead to a position on the lateral surface of the capitellum 

approximately at the center of the feature (Figure 5.3-5) [38]. 
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Figure 5.3-5: Rendering of the experimental reattachment of the lateral ligament complex 

to a location on the lateral surface of the capitellum.  The repair site and origin are labeled. 
A blue arrow shows the soft tissue and its direction of reattachment (Chanlalit 2012) 

 
 
 

 
Figure 5.3-6: Modeled humerus, distolateral view, with marked 

unrepaired (anatomic) and repaired origins 
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This positioning of the lateral ligaments necessitated modeling of the repair in the 

computational experiment, described as LCL-r.  The repaired origin was defined as the point on the 

lateral surface of the capitellum which pierced the axis of rotation (Figure 5.3-6).  Given the change in 

position of the origin, new lengths and stiffnesses had to be determined for each lateral ligament to 

represent the repair while maintaining their properties.  This was done by taking the equation for 

calculating stiffness presented in Equation 1 (Section 3.4.3), and modifying it to isolate the cross-

sectional area and modulus of elasticity: 

𝐴𝐸 = 𝑘𝐿      Eq. 5 

Assuming that the modulus of elasticity and cross-sectional area of the repaired (r) ligament do not 

change from the intact form, this equation becomes: 

𝑘1𝐿1 = 𝐴𝐸 = 𝑘2𝐿2     Eq. 6 

𝑘1𝐿1 = 𝑘2𝐿2     Eq. 7 

Using this final form of the stiffness equation, the repaired lengths were measured within the 

SolidWorks design space and stiffness calculated accordingly.  The resulting values are listed in Table 

5.3-1. 

Ligament Abbr. Intact Length 
(mm) 

Repaired 
Length (mm) 

Intact 
Stiffness 
(N/mm) 

Repaired Stiffness 
(N/mm) 

Lateral Ulnar Collateral LUCL 36.36 33.52 57.0 61.8286 
Radial Collateral, Anterior RCL-A 25.07 18.24 15.5 21.3061 
Radial Collateral, Central RCL-C 17.92 17.63 15.5 15.7553 

Radial Collateral, Posterior RCL-P 27.58 24.23 15.5 17.6446 
Table 5.3-1: Material and Mechanical Properties of Repaired LCLs 

 
The same materials testing apparatus was implemented, with a stage and platform to define 

and restrict motion of the radius to the X- direction as it was displaced 6mm posteriorly.  The humerus 
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underwent 50N of axial loading, applied in the –Z-direction.  Results were read as total forces in the X-

direction and output to a spreadsheet with the same output parameters as described in the mono- vs. 

bipolar Chanlalit study (Chapter 4). 

 

5.4. Results 

As with Chanlalit et al. (2011), the subluxating force in the same direction as the applied radial 

distraction was tabulated throughout the study.  Forces were slightly higher for the intact, monopolar, 

and bipolar states than in the previous study despite the lateral ligament repair and coronoid process 

repair.   

Results for the constraining force within the cadaveric study were reported as the average peak 

load during displacement with standard deviations based upon eight separate specimens.  A comparison 

between the experimental and computational studies for all four radial head states is graphically 

represented in Figure 5.4-1.  A single standard deviation is represented for each experimental peak.  

Another chart showing the development of resistive forces over the course of the applied displacement 

for each state can be seen in Figure 5.4-2. 
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Figure 5.4-1: Comparison of peak resistive forces for intact radial head, anatomic, monopolar and 

bipolar replacements with LCL-r/CP-r in cadaveric study and computational model 
 
 

 
Figure 5.4-2: Forces resisting subluxation across displacement for all 

radial head states, with LCL-r/CP-r with replaced heads 
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The downward trend of the peak resistive forces across the various radial head states is evident 

in Figure 5.4-1, as is its similarity to the trend in the cadaveric data.  Though the computational data 

exists outside of a single standard deviation for all cases, percent changes are more reflective of the 

behavior of the model and indicate its accurate representation of the experiment.  Compared to the 

native, intact radial head, the percent decreases on constraining load are almost identical between the 

experimental and model results.  In the cadaveric specimens, on average the peak subluxating force of 

the anatomic radial head system was 88.9% of the intact, while the computational study resulted in 

91.9% of intact.  The circular monopolar radial head exhibited nearly identical behavior between the 

experimental and model, resulting in decreases in load from intact of 66.7% and 65.8% respectively.  

Furthermore, the bipolar radial head system showed significant changes in loading in both cases.  

Experimentally, the study indicated that the bipolar RHS resulted in a decrease of 94.4% in the 

constraining load.  Similarly, the model predicted a decrease of 112.1%, reflecting a change in direction 

of the load from the direction of displacement, instead toward the anterior, or –X-direction.  Therefore, 

the model effectively predicted the changes in elbow stability across several different radial head 

replacements and demonstrated the dangerous instability created by the bipolar system.   

Ligamentous loads were observed within the computational model, though not considered in 

the experimental study.  They indicated that ligaments behaved appropriately based upon their activity 

at 30° of flexion, and resulted in similar physiological forces as described in Chapter 4.  This occurred 

despite the repair of the lateral ligaments, indicating that their repair was appropriately modeled and 

ligaments maintained their contributions to stability.  The ulnar tether was also affirmed to exhibit less 

than 1N of loading throughout the course of the displacement.  The joint capsule was not considered, as 

it was considered ruptured in the semi-circumferential excision of the capsule.   
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5.5. Discussion 

Exploration of the forces resisting posterior subluxation with four different radial head states in 

an elbow afflicted with the terrible triad brought to light the strengths and weaknesses of various radial 

head replacements.  The terrible triad is a complex injury that is so named because of its inherent 

disruption of two key stabilizing elements: the coronoid process of the ulna and the lateral soft tissues.  

It also results in a fracturing of the radial head, forcing either its resection or replacement.  This 

particular study sought not only to emphasize the importance of the radial head in this unstable state, 

but also to show that the replacement that most accurately restores stability is the anatomic radial head 

system.  The ARHS is designed to best model the native geometry of the radial head, including its 

uneven radius of curvature, off-center proximal concavity, and the non-symmetrical footprint.  The 

study demonstrated the benefits of the ARHS, showing the similarity between its peak restraining loads 

as well as its overall trend of force over displacement compared to the intact radial head.  It also showed 

that another respectable replacement was the monopolar non-anatomic radial head prosthetic, though 

it afforded less stability at high displacements.  The replacement with the least function in resisting 

subluxation was the bipolar head, which relied heavily on other stabilizing structures and allowed 

motion with very little prevention.   

Peak subluxating forces of these four states follow closely with those presented in the cadaveric 

research.  Forces were slightly higher for the intact, monopolar, and bipolar states than in the previous 

study despite the lateral ligament repair and coronoid process repair due to the lack of a humeral 

osteotomy, allowing more complete and natural contact between the capitellum and the concavity on 

the proximal surface of the radial head.  Repositioning the capitellum by 1.2mm medial under 

application of the humeral osteotomy in the previous study caused the humeral articulating surface to 

contact more of the medial rim of the radial head, as opposed to the depths of the indention, thus 

decreasing loads in the X-direction slightly.  In the terrible triad study, restoration of the humerus and 
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the position of the capitellum granted better contact between the humerus and radius throughout the 

computational run. 

Compared to the native radial head, the anatomic radial head system only differs by fewer than 

2N, while the peak force of the circular head fell to 13.9N, more than 7N lower than the intact.  The 

bipolar, in contrast, peaked with forces directed in the opposite direction, at 2.557N in the anterior.  

These results reflect the close relationship between the model and cadaveric data, which showed no 

significant difference between the intact and anatomic replacement, but a statistical difference between 

the intact and monopolar.  The cadaveric study also indicated that the bipolar state experienced a 

dramatic decrease in resistive forces.  Similar differentials are demonstrated in Figure 5.4-1. 

Following the trends of forces over displacement for each type of radial head, several details 

become evident.  First, the intact, anatomic and monopolar heads undergo similar forces in the X-

direction under solely axial loading.  The capitellum interacts with each head such that they are under 

slight posterior loads, indicating its position slightly posterior in the proximal concavity on each radial 

head.  These forces also increase at similar rates for the three testing states until reaching extremes in 

displacement.  After approximately 4mm of posterior displacement, the rate of rise in forces for the 

monopolar radial head decreases and approaches a plateau.  Its symmetrical shape and smaller overall 

diameter provide less resistance to posterior motion than the other radial heads.  The capitellum 

instead rides up the slope of the proximal and anterior edge of the hardware, interacting more with the 

upper edge of the concavity as opposed to the cup shape which helps prevent posterior subluxation.  In 

comparison, the ARHS and intact state follow similar trends until approximately 5mm of displacement 

where they diverge slightly, resulting in a slightly lower peak for the anatomic system.  The anatomic 

radial head, more closely reflecting the native geometry, interacts with the capitellum for greater 

displacements than the monopolar because of its oblong shape in the anteroposterior direction.  Its 4° 
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of angulation in two planes also affords more interaction with the lateral edge and on the posterior side 

of the capitellum, even amidst the posterior motion.   

The bipolar head, the least representative of the intact state, exhibits opposite behavior and 

does not assist in stabilizing the elbow in the presence of a subluxating force.  The forces measured 

during the displacement were directed opposite to those in the intact state, in the anterior direction.  

Under pure axial loading, the bipolar head is allowed to tilt slightly lateral and anterior, resulting in 

anteriorly-directed forces.  Upon application of the displacement, the resistive forces rise slightly, 

shifting toward the posterior direction as the radius moves posterior and the capitellum begins to 

interact with the anterior edge of the head.  However, after 2mm of displacement, the head tilts further 

downward anteriorly, approaching the fully allowed 10° of tilt, and primarily interacts with the 

capitellum posteriorly, resulting in an increase in anterior, negative loads.  After full tilt of the radial 

head, the humerus moves downward to maintain 50N of load, resulting in a slight rise in forces toward 

the posterior direction as the capitellum interacts with some of triangular faces on the body which 

oppose motion.  However, this gradual rise never results in overall magnitudes that resist posterior 

subluxation.  This highlights a fundamental flaw in the design of the bipolar head.  The ability to tilt 

redirects radiocapitellar forces opposite of their natural inclination, thus causing an inherently more 

unstable environment.   

The model differed from the cadaveric data in that the results fell outside of a single standard 

deviation in all cases, while the anatomic and bipolar states were outside of two standard deviations.  

The native, anatomic, and circular radial heads resulted in higher peak forces than the cadaveric study, 

which could be due to the fact that the full viscoelastic behavior of the ligaments was not represented in 

the model.  The use of a solid body to represent the annular ligament is not entirely representative of 

the natural soft tissue, though it does provide a method by which the ligament can “wrap” around the 
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head of the radius.  The interaction between the radial head and the solid body of the annular ligament 

could also increase forces.  The bipolar radial head exhibited loads in the opposite direction than those 

described by the raw data of the cadaveric study, though their standard deviation compared to the peak 

force reported calls to question their sample size of eight, and also indicates that there could be a 

greater variability in the data with further testing.  Another figure presented in their study, represented 

as a line graph, indicates that the bipolar head followed a similar trend as that in the model, never 

reaching positive loads [38].  Despite the raw data, the aforementioned percent differences in the 

results are highly similar between the cadaveric study and the model.  This indicates that though the 

numerical peaks were outside of a standard deviation, the model under the experimental design 

behaves appropriately, and radiocapitellar stability is affected by each radial head state in almost 

identical ways between the two sets of data.  It accurately represents the behavior of the cadaveric 

study, and was able to predict effectively the behavior of the elbow under axial loading and posterior 

displacement in the complex terrible triad injury.  

Soft tissue loads and articular contact forces were collected during the simulation for further 

understanding of the behavior of the repaired lateral ligaments and to consider the redistribution of 

forces across the various radial head states.  Measured ligament loading remained similar between the 

intact and post-repaired states for most of the repaired ligaments, despite the repaired coronoid and 

suppression of the anterior capsule bands and posterior MCL.  This indicated that the repaired ligaments 

were appropriately modeled and maintained their typical contributions to stability.  However, though 

soft tissue forces remained comparable, peak forces during subluxation between the intact state and 

the repaired state of the intact radial head resulted in doubled contact forces between the RH and 

annular ligament solid body.  With the affected anterior capsule, higher forces were also measured in 

the anterior MCL and the anterior distal band of the annular ligament, presumably as it resisted motion 

while the radial head subluxed.  Forces were also measured in the repaired posterior RCL, which at 30° 
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of flexion should not be active.  This could have been due in part to the manner in which the repaired 

ligaments were described in the study and therefore replicated; it may also be reflective of the RCL-P 

trying to compensate for the lack of soft tissues elsewhere in the presence of a displacement.   

Also of note were similarities between the forces measured for the intact and anatomic radial 

head.  Joint contact forces were comparable between the native radial head and the novel anatomic 

replacement, as were soft tissue tensions.  Based upon the like distributions of forces in a compromised 

elbow for these two head states, the anatomic radial head seems to be a promising replacement for a 

patient with complex instabilities.  In contrast, ligamentous restraining forces and solid body contact 

forces decreased for the monopolar radial head and especially the bipolar.  Trends within individual 

ligaments over time were more similar between the monopolar and anatomic, though peaks were 

shorter.  Meanwhile, restraining forces were extremely low in the bipolar head, resulting in little 

resistance to the subluxation.   

The data gleaned from the model indicate clearly that replacement of the radial head with the 

anatomic radial head system is the most accurate manner by which radiocapitellar stability may be 

afforded to the joint, while the monopolar is another appropriate though less ideal option and the 

bipolar replacement should not be considered in the case where stability is an important outcome. 

Aside from the solid body representation of the annular ligament, one limitation of this study 

could be the representation of the repaired lateral ligaments.  The description of this repair in the 

cadaveric study was vague, and though it was modeled as closely as possible, there were still questions 

as to the exact location in which they were affixed and how they were pre-strained, if at all.  

Investigation into this method could result in a more accurate model.  Another limitation is the exclusion 

of cartilaginous tissue on the articular surfaces, which provide damping upon bony contact, and the 

smoother surfaces decrease friction.  Finally, expanding upon the method of modeling the ligaments to 
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include more viscoelastic properties would be ideal, and given greater computing power and new 

technologies, this may one day not increase run times towards being prohibitive.   

It is also of note that, comparing the previously described mono- versus bipolar radial head 

study and the terrible triad study, the intact state for each resulted in similar peak resisting loads in the 

model.  In contrast, the cadaveric model experienced a significant drop in the intact peak load with the 

application and repair of the terrible triad injury and release of the anterior capsule.  This fact calls to 

question the robustness of the method by which the anterior capsule was modeled, and could indicate 

that the assumptions made to derive its mechanical properties underestimated the modulus of the 

capsule.  It also draws attention to the repair of the lateral ligaments in the terrible triad cadaveric study 

compared to the model.  The method of repair utilized in the model restored the function of the 

ligaments by modifying their stiffnesses to accommodate their changes in length with a relocated 

common origin.  However, the repair in the cadaveric specimens may have affected the mechanical 

properties of these ligaments.  Accordingly, this would also cause a decrease in peak intact loads in the 

cadaver study while not affecting the results of the model.  A sensitivity analysis and uncertainty analysis 

of the model would be beneficial in determining the strength of these assumptions and could assist in 

the development of a final set of mechanical properties for the joint capsule and the repaired ligaments.  

Using a one-factor-at-a-time (OFAT) approach with these two features would be ideal to determine the 

modifications necessary to optimize the model for those uncertain inputs.   
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6. CONCLUSION 

 

Expanding upon previous rigid body models of the elbow [15,17], a model was created to 

redirect emphasis on elbow research to the under-represented radial head.  This model involved 

accurately represented 3D articular surfaces, while kinematics were determined by ligamentous 

constraints, articular contact forces and applied loadings.  A dearth of research regarding the radial 

head, a key stabilizer, has resulted in an array of radial head replacements which do not all accurately 

recreate radiocapitellar stability, and until recently an prosthetic which tried to accurately represent 

native geometries did not exist.  Different radial head prosthetic designs were explored by replication of 

two cadaveric studies, one considering the effects of mono- and bipolar circular radial head designs  on 

elbow stability and their dependence on soft tissue integrity, the other observing these same heads as 

well as an anatomic design in an elbow under the effects of the terrible triad injury [37,38].  Accurate 

representations of the 3D anatomy were created using MIMICS, a software program designed to convert 

through careful selection 3D bodies out of computed topography scans.  Using Hounsfield units to filter 

out soft tissue, bony material was selected and processed into triangulated surfaces, which were 

remeshed and processed into files of appropriate size which maintained the structures of the articular 

surfaces.  Once bodies were created for the humerus, radius, and ulna, these were imported into the 
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commercially available CAD program SolidWorks, wherein a rigid body model was created.  Within the 

SolidWorks design space, the solid bodies were manipulated to represent the cadaveric studies.   

Representations of the experimental materials testing devices were created as well as two 

distinct radial head implants.  The Tornier circular non-anatomic head was designed, which could be 

converted from mono- to bipolar, and another was built which represented the Acumed anatomic radial 

head system.    Ligaments were represented in the model using insertions, origins, and action-reaction 

forces which utilized velocity-based damping and in situ strain to govern natural motion of the bones 

relative to one another.  A joint capsule was added which expanded upon previously built models, 

affording more stability and physiologic behavior to the model than before.  Motion was simulated and 

analyzed through the COSMOSMotion add-in.  Thus, a computational model was developed which relied 

upon osseous structures, ligamentous constraints, and external perturbations to effectively predict the 

outcomes of cadaveric studies regarding applications of the radial head.     

Validation of this model first involved replication of a cadaveric study observing the effects of a 

mono- and bipolar radial head replacement compared to the native head in both an intact state and 

with lateral ligaments compromised [37].  A second study simulated involved the terrible triad injury and 

incorporated a third radial head state using a modern anatomic radial head system [38].  For each study, 

the model was modified in the design space to reflect the respective experimental designs and the 

forces resisting subluxation, largely dependent on the radiocapitellar joint contact force, were 

evaluated.  The model accurately represented the outcomes of each experiment, clearly resulting in the 

same trends as those exhibited in the cadaveric studies.  Resistive forces were exhibited which indicated 

a distinct similarity between the anatomic implant and native radial head.  It was also demonstrated 

that the monopolar radial head, though not fully restoring stability, adequately repaired the elbow 

without heavy reliance on lateral soft tissues.  The model indicated that the bipolar radial head 
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replacement not only relied upon lateral ligaments, but also afforded a non-physiologic amount of 

freedom and little resistance to posterior distraction.   

Not only did the model show the importance of radial head research when considering elbow 

stability but it also expanded on previous work through the incorporation of a joint capsule, which had 

previously been excluded.  Few publications broach the subject of the mechanical properties of the joint 

capsule, despite its contribution to stability for elbows in low flexion angles or extension.  Though 

assumptions were made regarding its properties and structure, these were necessary with the lack of 

data which currently exists.  However, the designed joint capsule granted more resistance to motion and 

further strengthened the various applications of this computational model.  The added stability 

improved the overall function of the model by more closely representing the native elbow joint.   

Despite the validity of the model, several assumptions were made which could possibly affect 

outcomes and can be expanded upon.  A primary assumption in this method of modeling involves 

representing bones as rigid bodies, which does not reflect the deformations which occur in the presence 

of articular cartilage.  The deformation of cartilage, which covers articulating surfaces of the humerus, 

radius, and ulna, could modify the output maximum loading through dampening contact forces.  

Consideration of incorporating finite element analysis or deformable bodies would remedy this concern, 

though the time in which it would take to run the model could be prohibitive.   

Another consideration is the modeling of ligaments as action-reaction force vectors, dependent 

on only the change in length to determine applied force.  This method does not take into consideration 

the viscoelastic properties inherent to ligaments.  The addition of a velocity-dependent damping helps 

to more effectively represent native ligamentous properties, though it does not represent viscoelastic 

function.  One key component to representation of ligaments would be further research into the specific 

mechanical properties of each.  Many ligaments of the elbow have not been fully researched regarding 
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these properties due to difficulties in testing small structures.  More accurate information could lead to 

better governing statements for modeling of ligamentous tissue.   

One other concern is the physiologic wrapping of ligaments about bony surfaces.  Representing 

these ligaments as solid bodies, or by creating secondary insertions to reflect lines of action are not the 

most effective methods of modeling.  The ideal would be the application of a deformable semi-rigid 

body over rigid surfaces, which attached on one structure, inserted on another, and maintained its own 

mechanical properties.  However, this technology is not within the modeling package available, though 

its inclusion would be an exciting addition to the computational model. 

An effort was made in this thesis to develop a rigid body model of the elbow which accurately 

predicted the outcomes of two cadaveric studies in an effort to highlight the contributions of the radial 

head to elbow stability.  This model was able to represent an intact, ligament deficient, and injured 

elbow effectively and explore the effects of three different radial head replacements: a monopolar 

circular implant, a bipolar circular implant, and an anatomic system.  It not only output the forces 

resisting subluxation, but it was also able to output myriad other types of data not easily gleaned 

experimentally, such as ligament tension.  Further use of this particular model could be in the study of 

the effects of the radial head on elbow kinematics, a topic of interest which is under-researched in 

current publications.  However, at a much lower cost than cadaveric studies, requiring fewer resources 

and utilizing commercially available software, this computational model was able to predict cadaveric 

results.  The benefit of a customizable model which could be modified to reflect any cadaveric study 

enables the researcher to explore in-depth factors not easily tested experimentally, and without the 

usage of valuable cadaveric specimens.  Computational modeling could be a key to not only furthering 

understanding of joint kinematics or other academic functions but also in a clinical setting, including the 

development of novel surgical approaches, the investigation of joint repair techniques, fixation devices, 
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and implants, and even patient-specific implant design or pre-operative decisions.  Rigid body modeling, 

therefore, has great implications as a tool for a wide array of joint research and promise as a predictive 

tool in clinical settings. 
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APPENDIX 
 

General Abbreviations 
 
2D  Two-dimensional 
3D  Three-dimensional 
ADAMS  Automatic Dynamic Analysis of Mechanical Systems 
ARHS  Anatomic Radial Head system 
CAD  Computer aided design 
CoCr  Cobalt chromium 
CT  Computer topography 
DICOM  Digital Imaging and Communications in Medicine 
FEA  Finite element analysis 
GSTIFF  Gear stiff integrator 
HU   Hounsfield units 
ISB  International Society of Biomechanics 
MIMICS  Materialise’s Interactive Medical Imaging Control System 
MRI   Magnetic resonance imaging  
MSC  MacNeal-Schwendler Corporation 
OFAT  One factor at a time 
PMMA  Polymethyl methacrylate 
RBM  Rigid body modeling 
RHS  Radial head system 
ROI  Region of interest 
SDA  Screw displacement axis 
STL  Stereolithography 
 
 
Anatomy Abbreviations 
 
AC   Anterior Capsule 
ACx  Anterior capsule resected 
AL-AD  Annular ligament, anterior distal 
AL-AP  Annular ligament, anterior proximal 
AL-PD  Annular ligament, posterior distal 
AL-PP   Annular ligament, posterior proximal 
CP   Coronoid process 
CP-r  Coronoid process repaired 
DC-AB  Distal capsule, anterior band 
DC-PB   Distal capsule, posterior band 
DRUJ  Distal radioulnar joint 
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EJC  Elbow joint complex 
EM  Medial epicondyle 
EL  Lateral epicondyle  
IOM-AB  Interosseous membrane, accessory band  
IOM-CB  Interosseous membrane, central band 
IOM-DOB Interosseous membrane, distal oblique band 
LCL-r  Lateral collateral ligaments repaired 
LCLx  Lateral collateral ligaments excised 
LUCL  Lateral ulnar collateral ligament 
MCL-A  Medial collateral ligament, anterior 
MCL-PA  Medial collateral ligament, posterior, anterior bundle 
MCL-PP  Medial collateral ligament, posterior, proximal bundle 
MPPRH  Most proximal point of radial head 
RCL-A  Radial collateral ligament, anterior band 
RCL-C  Radial collateral ligament, central band 
RCL-P  Radial collateral ligament, posterior band  
RH   Radial head 
PC-I  Posterior capsule of shoulder, inferior band 
PC-M  Posterior capsule of shoulder, medial band 
PC-S  Posterior capsule of shoulder, superior band 
TFCC  Triangular fibrocartilage disc  
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