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ABSTRACT

OPTIMIZATION AND SPATIAL QUEUEING MODELS TO SUPPORT

MULTI-SERVER DISPATCHING POLICIES WITH MULTIPLE SERVERS PER

STATION

by Sardar Ansari

Master of Science Thesis

Virginia Commonwealth University, 2013

Advisor: Laura A. McLay, Ph.D

Associate Professor, University of Wisconsin-Madison

Director: J. Paul Brooks, Ph.D

Associate Professor, Virginia Commonwealth University

In this thesis, we propose novel optimization and spatial queueing models that expand

the currently existing methods by allowing multiple servers to be located at the same station

and multiple servers to be dispatched to a single call. In particular, a mixed integer linear

programming (MILP) model is introduced that determines how to locate and dispatch am-

bulances such that the coverage level is maximized. The model allows multiple servers to

be located at the same station and balances the workload among them while maintaining
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contiguous first priority response districts. We also propose an extension to the approximate

Hypercube queueing model by allowing multi-server dispatches. Computational results sug-

gest that both models are effective in optimizing and analyzing the emergency systems. We

also introduce the M [G]/M/s/s queueing model as an extension to the M/M/s/s model

which allows for multiple servers to be assigned to a single customer.
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Chapter 1

Introduction

Optimization and spatial queueing models in emergency systems have been studied by oper-

ations research community for several decades. The performance of such systems is critical

for providing effective care and protecting the safety of the urban areas. There have been

numerous mathematical and statistical models proposed throughout the years to address dif-

ferent aspects of emergency systems. Some of these models focus on the stochastic aspects

of such systems. Most of them utilize queueing approaches to compute various different

quantities that characterize the stochastic aspects of these systems. For example, service

providers are often interested in measuring the utilization factors of their servers, i.e., the

proportion of times that a server is busy. Knowing the utilization factor for each server

allows the service provider to assess the availability of each server which can lead to effective

decisions regarding relocating the servers or increasing (decreasing) the number of servers at

a station for instance.

The steady-state probabilities are another set of values that characterize long-term be-

haviour of emergency systems. These probabilities indicate the distribution of busy servers
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in the system, i.e., the probability that n servers are busy in the system in the long-run.

Another set of values that can be computed for an emergency system is dispatch probabili-

ties. They represent the probability that a given station responds to a call from a given call

location.

Computing the exact values for these queueing factors are complicated and computation-

ally expensive. Several approximation methods have been proposed in the literature that are

manageable in terms of size and complexity. Each of these methods is specifically designed

to analyze a certain type of emergency system with certain features and characteristics. We

will present some of these queueing models later in the thesis. We also propose a novel

queueing model to analyze server dispatching systems with multiple servers per location and

multi-server dispatches.

Another type of models that have been proposed for studying the emergency systems

are the optimization models. The system administrators often need to answer questions

such as how many servers are required to cover the emergency calls in a certain area, where

should the servers be located in the area to minimize the service times, and how should

the servers be assigned to the calls to achieve a certain coverage level. The goal of these

optimization models is to address questions alike and to provide optimal solutions that can

improve the efficacy of the emergency systems. The early optimization models that were

proposed ignored the stochastic aspect of the system. Later work tried to propose more

realistic models by incorporating stochastic elements of the system. Some of these models

employed the queueing methods that estimate the stochastic aspects of the system. A review
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of these spatial queueing and optimization models will be presented later in this chapter.

Although the models that are proposed in this work can be valid for any types of emer-

gency systems, we will focus on emergency medical services (EMS) systems. Nevertheless,

these models can be used to model fire and 911 calls as well.

In the remainder of this chapter, we discuss the aims and motivations of this work and

provide a literature review. In Chapter 2, we introduce a mixed integer programming model

to optimize the dispatching policy for the ambulances in an EMS model. Then, a queueing

model for analyzing the emergency systems with multi-server dispatches is introduced in

Chapter 3. Finally, the summary of the thesis and the future works are presented in Chapter

4.

1.1 Aims

The goal of this thesis is to expand the currently existing optimization and spatial queueing

models to accommodate multiple servers per location and multi-server dispatches. We first

propose a linear mixed integer programming (MIP) model that employs the currently existing

spatial queueing models for analyzing the stochastic aspects of the emergency systems with

multiple servers per location. Our model seeks the optimal location for the servers as well as

the optimal dispatching policy that maximizes the coverage, i.e., the proportion of calls that

are reached within 9 minutes from the instant the call is received. The proposed model also

balances the offered load among the servers and allows for multiple call types. The model

uses the correction factors derived by the Hypercube model to approximate the dispatch
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probabilities. It then uses those probabilities to optimize the location of the servers and

the dispatching policy. The model uses an iterative approach such that the MIP remains

linear despite the non-linear nature of the Hypercube model. It also balances the workloads

of the servers and maintains contiguous first priority districts which leads to more intuitive

dispatching policies.

The second aim of this thesis is to expand the existing approximate Hypercube models to

accommodate for multi-server dispatches where a call can be responded to by more than one

server. The proposed queueing model also allows for multiple servers per station, making

it a more realistic model for emergency vehicles such as fire engines and police cars where

multiple vehicles often respond to a single call. We also propose an iterative procedure

that computes both server utilizations and dispatching policies. This approximate queueing

model can be used to create optimization models to find the optimal dispatch policies for

systems with multiple servers per location and multi-server dispatch policies.

1.2 Motivation

Emergency systems are one of the most time-sensitive areas in transportation. The response

time of the emergency units has a critical role in the effectiveness of such systems. For

example, Pell et al. (2001) reports that three quarters of the mortality caused by cardiac

arrest occurs in the community and that reducing the ambulance response time is crucial in

improving the survivability. Despite the ongoing work in the literature to address problems

that are associated with emergency systems, there is still a need to improve the currently
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existing models and propose new solutions that better represent the real-world emergency

systems.

There has been several spatial queueing and optimization models proposed to model the

emergency systems. However, most of the focus has been on models with single server per

location and single server dispatch policies. There is a need for more realistic models that can

better model the emergency systems in which more than one server is often located at each

station and multiple servers can respond to the calls. For example, fire departments usually

locate multiple fire engines at every fire station and respond to sever calls by dispatching

multiple engines. Likewise, the police departments often respond to high-risk 911 calls by

sending multiple police units. As a result, it is necessary to design spatial queueing models

that can analyze such systems by explicitly considering the multi-dispatch aspect of the calls.

Such models should also allow for multiple servers to be located at each station to represent

the real-world emergency systems such as EMS and fire stations.

1.3 Literature Review

This thesis proposes a MILP model for simultaneously locating and dispatching ambulances

to emergency medical patients, where ambulance busy probabilities and random travel times

are taken into account. It also proposes a new set of Hypercube correction factors and an

iterative procedure along with it to analyze emergency systems with multi-server dispatch

policies.

There is a rich operations research literature on ambulance location models (see Swersey
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(1994); Brotcorne et al. (2003); Goldberg (2004)). Early probabilistic models for ambulance

location maximize expected coverage by including ambulance busy probabilities. Daskin

(1983) assumes that all ambulances share a common busy probability and that ambulances

operate independently. Batta et al. (1989) lifts these assumptions by embedding a Hy-

percube model (Larson (1975)) into the location model to include ambulance dependencies

and location specific busy probabilities. Goldberg et al. (1990) extends the model by Daskin

(1983) by using stochastic travel and service times to compute ambulance busy probabilities,

allows for dispatch policies through a contingency table as we do in this thesis, and consid-

ers prioritized calls for service. Only a few papers in this area, however, balance workload

imbalances. Pirkul and Schilling (1988, 1991) provide mixed integer programming models

that balance the workload across the ambulances by adding workload balance constraints

that are similar to those considered in this thesis. Berman et al. (2009) study load balancing

when locating facilities on a network that is a tree by extending the p-median problem.

Other papers propose models that consider ambulances that are not always available.

ReVelle and Hogan (1989) propose two models that maximize the expected coverage over

a given reliability level. The first model assumes system-wide ambulance busy probability

while this assumption is relaxed in their second model by incorporating location specific busy

probabilities. The busy probabilities are estimated using the calls within each ambulance’s

region; however, the model does not capture ambulances not being available due to a call

from another region. Ball and Lin (1993) propose a reliability model that ensures that the

coverage of every demand location is above a prespecified reliability level.
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The papers listed thus far assume that travel times are deterministic with the exception of

the paper by Goldberg et al. (1990), leading to binary coverage for individual calls (i.e., they

are covered or they are not). This binary coverage is contingent on whether an ambulance

is available within the call’s covering area. Several papers consider random travel times that

lead to coverage that is real-valued instead of binary. Ingolfsson et al. (2008) use correction

factors and propose a model that minimizes the number of servers required to assure a pre-

specified coverage level while allowing for stochastic travel times and delays as well as pre-trip

delays. However, they assume that the dispatch policies are given in advance. Church and

Roberts (1983); Berman et al. (2003); Karasakal and Karasakal (2004); Alsalloum and Rand

(2006) also include partial coverage of calls via uncertain ambulance travel times. Erkut

et al. (2009) compare the model proposed in Ingolfsson et al. (2008) with four other models

proposed previously that ignore the stochastic aspects of EMS service completely or in part.

Their evaluation shows that inclusion of stochastic elements in the model can result in up

to 26% increase in the coverage, which suggests that uncertain travel times are important

for model realism.

Many of the optimization models listed above use Hypercube models for estimating ambu-

lance busy probabilities. Larson (1974) provides an exact method for modeling the statistical

dependence between the ambulances serving an area, and Larson (1975) develops an approx-

imate Hypercube model to compute Hypercube “correction factors.” Both the exact and

approximate Hypercube models assume Poisson arrival rates, exponential service times, ser-

vice times that are independent of call locations, and one responder per call. Moreover,
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they use a pre-specified contingency table to represent the dispatching policy as we do in

this thesis. The Hypercube model is used in several cities, including Boston, New York and

Orlando, to analyze and study the travel times (Brandeau and Larson (1986); Larson and

Rich (1987); Sacks and Grief (1994)). More recently, Larson (2004) uses the Hypercube

model as a deployment model to respond to emergency situations such as terrorist attacks.

Other studies that use the Hypercube model to build optimization models for server locations

and assignment are Chiyoshi et al. (2003); Saydam and Aytuğ (2003); Galvão et al. (2005).

Halpern (1977) improves the accuracy of the Hypercube model by allowing server dependent

service times. Jarvis (1985) further extends the Hypercube model approximation by allowing

for service times that depend on both the ambulance and the call location. Burwell et al.

(1993) proposed a modification to the Hypercube model approximation to accommodate

ambulances co-located at a single station through “preference ties,” i.e., when multiple am-

bulances are equally preferred to respond to a call. The advantage of this model compared

to similar models proposed earlier is that it is not limited by the computer storage. Budge

et al. (2009) proposed an approximate Hypercube model that considers station-specific busy

probabilities and explicitly allows multiple ambulances per location. Other extensions of the

hypercube model that relax the assumptions of the original model or improve its compu-

tational complexity can be found in Chelst and Jarvis (1979); Larson and Mcknew (1982);

Mendonça and Morabito (2001). We incorporate the model in Budge et al. (2009), which is

summarized in Section 2.2, into our proposed optimization model in Chapter 2. The queue-

ing model proposed in Chapter 3 extends the model in Budge et al. (2009) in order to allow
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for co-located servers and multi-server dispatches.

The distribution of the arrival time of the first vehicle that arrives at the scene when

multiple vehicles are dispatched is studied in Daskin and Haghani (1984). Chelst and Barlach

(1981) develop a model based on the Hypercube model that dispatches one or two ambulances

to a single call. Iannoni and Morabito (2007) extend the Hypercube model further and

propose a model for dispatching single, double and triple vehicles to a single call. Their

model assumes a specific dispatching policy designed for EMS units that operate on Brazilian

highways. On the contrary, the approximate Hypercube model that is proposed in Chapter

3 is neither restricted by the number of dispatches, nor it assumes a particular dispatching

policy. Moreover, Chelst and Barlach (1981) assume that the service times are independent

for the servers that are busy serving the same call. This is not a realistic assumption and

is relaxed in the proposed model. Our queueing model also allows multiple servers to be

co-located at the same station. Geroliminis et al. (2009) develop an exact Hypercube model

with service times that depend on the responding vehicle, and they embed the Hypercube

model in a location model that seeks to minimize the mean response time subject to meeting

a coverage level target.

The papers thus far assume that a dispatching policy is known a priori. Integrating am-

bulance dispatch with ambulance locations is an important aspect of our proposed model.

Carter et al. (1972) use a queueing optimization model to determine the locations of two

EMS response areas (i.e., beats) to balance the workload between two ambulances. Each

ambulance is assumed to always respond to patients within its response area, if the ambu-
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lance is available. If both ambulances are busy, patients are served by ambulances outside

of the area. They show that it is not always best to dispatch the closest ambulance. Jarvis

(1975) examines optimal dispatch with a Markov decision process model that embeds the

Hypercube queueing model for dispatching ambulances to patients such that the mean dis-

tance traveled when responding to a call is minimized. Weintraub et al. (1999) develop a

model for dispatching electric utility resources to prioritized customers.

Swersey (1982) develops a Markov model for determining how many fire engines to send

to prioritized fire calls that captures the cost of under-prioritizing calls and sending too few

fire engines. Ignall et al. (1982) extend Swersey’s model to account for which fire engines to

send when calls and fire engines are spatially distributed, and they provide a “preparedness”

heuristic. Both Andersson and Värbrand (2007) and Lee (2011) propose similar “prepared-

ness” heuristics for dispatching ambulances to calls. Iannoni et al. (2011) consider how to

locate ambulances along a highway while constructing primary and secondary districts. They

focus on one-dimensional location along a highway and their districts are only defined by

the distance between a vehicle and potential customers.

More recently, patient survivability models are applied to the ambulance location problem

using optimization models and Mont Carlo simulation in Erkut et al. (2008b). Knight et al.

(2012) propose a model for locating ambulances that respond to calls from multiple classes

of heterogeneous patient by maximizing the survival rate. McLay and Mayorga (2012b)

develop a Markov decision process for dispatching ambulances to prioritized patients to

maximize coverage that include uncertain travel times that depend on call locations and
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the responding ambulance. Their model is extended by McLay and Mayorga (2012a) to

consider “fair” dispatching policies. One such fair policy seeks to balance the workload

among the ambulances, since maximizing coverage can introduce workload inequities among

service providers. In both of these papers, the optimal policies do not always conform

to contingency tables. However, they note that decisions that violate a contingency table

paradigm are rare, which suggests that contingency tables are reasonable to use.

Much of the previous work in emergency medical dispatch has focused on either ambu-

lance location, queueing dynamics, or ambulance dispatch. In contrast to previous work

in the area, we investigate how to integrate these three issues in a single model that both

locates ambulances while determining how to use them while maintaining model realism

through uncertain travel times. Also, we introduce an extension to the currently existing

approximation Hypercube models by relaxing the assumption of single dispatch per call.

The model allows more than one server to be dispatched when a sever call arrives.
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Chapter 2

A Maximum Expected Covering
Problem for Locating and Dispatching
Servers

2.1 Introduction

Emergency medical service (EMS) systems deliver resources to patients, perform pre-hospital

care, and deliver patients to hospitals. The timely delivery of resources to patients is nec-

essary to ensure good patient outcomes such as high rates of patient survival. Locating

and dispatching medical units are two interrelated problems that are critical for identifying

effective responses for responding to and treating emergency medical patients.

When a new call arrives at an EMS dispatch center, a dispatcher determines the severity

of the call and sends appropriate medical units. The severity of the call reflects the type

of call (such as trauma, diabetes, or chest pains). When a call arrives, an ambulance is

immediately dispatched to a patient if one is available. Otherwise, patients enter a queue

and wait for an ambulance to become free. As a general rule, ambulance service cannot
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be preempted, and in most settings (and as considered in this thesis), when an ambulance

completes service, it returns to its home station. Nearly all EMS systems in the United States

use a coverage level performance measure to guide their use of resources, where the coverage

level reflects the proportion of high-priority patients that are responded to within a fixed

timeframe (usually within nine minutes of dispatch). This decision paradigm leads to two

challenges for an EMS system interested in maximizing coverage. While in nearly all cases

it is desirable to send a nearby ambulance to a patient, this does not imply that dispatching

decisions are simple. If a call for services arises that is located almost exactly between two

stations, it may be optimal to send the ambulance that is slightly farther if the call volume

surrounding the slightly closer ambulance is high (McLay and Mayorga (2012b)). Therefore,

effective dispatching must balance the needs of the current patient with potential future

patients that may arrive to the system. The dispatching issue becomes more complicated

when it is combined with the one-time design decision of where to locate ambulances, since

where ambulances are located influences how they are dispatched and vice versa.

This chapter proposes a mixed integer linear programming (MILP) model that identifies

how to locate and dispatch ambulances to emergency medical patients. The model objective

maximizes the coverage level, the proportion of high-priority patients who are responded to

within a fixed timeframe. This model locates and creates a series of districts for each open

station, where an open station is defined as a station where an ambulance is located. This

series of districts in turn define a dispatching policy.

This chapter makes the following three contributions to the literature. First, the model
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captures an important level of realism and practicality. To capture realism, the model here

incorporates two sources of uncertainty: (a) uncertainty in ambulance availability captured

by the inclusion of ambulance busy probabilities and (b) uncertainty in ambulance travel

times that lead to real-valued coverage as opposed to 0-1 coverage. To maintain practicality,

we add two sets of side constraints to the MILP model. The first set ensures that the

first-priority districts are contiguous, thus leading to more intuitive policies. The second

set maintains a balanced workload across the ambulances so that some personnel are not

overworked. The latter issue is important, since earlier works on dispatching suggests that

improvements made to dispatching may increase workload imbalances (McLay and Mayorga

(2012b,a)).

Second, the results provide a series of districts surrounding each open station that cor-

respond to a contingency table. In other words, an ambulance’s first district captures the

locations to which the ambulance would be the first preferred ambulance to send if it is

available, the second district captures the locations to which the ambulance would be sent

if a location’s first priority ambulance is busy, and so on. Defining dispatch through district

design allows for a linear formulation of the assignment of call locations to stations and is

a novel way to interpret and implement ambulance dispatching policies. It is also practical,

since contingency tables are widely used by EMS systems throughout the world.

Third, we provide an iterative two stage algorithm to solve the proposed MILP model that

simultaneously determines how to locate and dispatch ambulances. The input parameters

related to ambulance availability reflect the underlying queueing dynamics, which introduce
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nonlinearities into the MIP model. In the first stage, we estimate the input parameters

related to queueing using a Hypercube model approximation Budge et al. (2009), and these

parameters are then treated as constants in the MIP model. In the second stage, we solve

the MILP model using standard algorithms. Both stages are repeated until the ambulance

workloads are approximately equal (subject to tolerances). This solution procedure allows

for the solution of large-scale problem instances, and offers an improvement over earlier

models that relied on Markov decision process models and algorithms.

A real-world example illustrates the results across three models: (1) the base model that

does not maintain contiguity or a balanced workload amongst the ambulances, (2) a model

that balances the workload, and (3) a model that both maintains contiguity and a balanced

workload. The results suggest that load balancing and contiguity can be achieved with a

minimal impact on the coverage level. In one scenario, for example, the range of server

busy probabilities was 0.135 in the base model. This range reduced to 0.016 after load

balancing and contiguity constraints were enforced while the absolute reduction in coverage

level was only 0.1% relative to the base model. The example suggests that the proposed

model can effectively respond to temporal variations in demand by changing the location of

the ambulances and the dispatching policy.

The rest of the chapter is organized as follows. We review the Hypercube model approx-

imation that is used in the proposed MILP model in Section 2.2, since it is central to our

modeling paradigm. The proposed method is introduced in Section 2.3. A description of the

data used to evaluate the model follows. Section 2.4 presents the computational results and
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an assessment of the proposed model. Finally, the concluding remarks are given in the last

section.

2.2 Correction Factors for Location-Specific Service Times

and Multiple Units per Location

In this section, we review a Hypercube model approximation proposed by Budge et al. (2009).

The model facilitates the computation of the correction factors that take location-specific

service times into account and allows for more than one server at a station. This latter issue

is a characteristic of the MILP model proposed in the next section. Table 2.1 summarizes the

symbols used throughout this chapter. The Hypercube model approximation summarized in

this section computes the mean service time τ , offered load ρ, utilizations r and rw, w ∈ W ,

and correction factors qjpm, j ∈ J ; p = 1, 2, ..., s;m = 1, 2, ..., cw, for a dispatch policy with at

most cw servers per station. Repeating the same process iteratively, the model parameters

converge to a suboptimal solution to the dispatching problem.

When a dispatching policy (preference list) is given, Erkut et al. (2009) provides a mech-

anism to compute the server busy probabilities associated with that policy. This mechanism

assumes that the calls from a customer location j ∈ J arrive according to a to Poisson

process with arrival rate λj, where λj = λLj + λHj is the total demand rate from node j,

and there are s servers in the system to respond to the calls. Assume that the number of

servers located at station i ∈ I is denoted by si. When a call arrives, one of the available

servers located at a station i ∈ I responds to that call. The calls are responded to based on
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Table 2.1: Summary of the Symbols

Symbol Description Domain
J Set of all customer (demand) nodes.
W Set of all potential station locations.
s Total number of servers in the system.
si Number of servers at station i (

∑
i∈W si = s). i ∈ I

cw Capacity of station w (the maximum number of servers
that can be located at w).

w ∈ W

I Set of all open stations (i.e., I = {i ∈ W : si > 0}), with
I ⊆ W .

λHj (λLj ) Mean high-priority (low-priority) call arrival rate from
node j, with λj = λHj + λLj .

j ∈ J

λ System-wide total call arrival rate with λ =
∑

j∈J(λHj +

λLj ) =
∑

j∈J λj.

τwj Mean service time for calls originated from node j and
served by a server from a potential station w (replace w
with i for open stations).

w ∈ W , j ∈ J

τ System-wide mean service time.
ρ System-wide mean offered load per server.
r System-wide mean server utilization.
rw Utilization factor for a server located at station w. w ∈ W
aij Preference of server i for responding to a call from node

j in the dispatching policy.
i ∈ I, j ∈ J

bkj kth preferred station for calls from node j in the dis-
patching policy.

k = 1, ..., s, j ∈ J

Ps Loss probability: probability that all s servers are busy.
P0 Idle probability: probability that all servers are idle.
Rwj Fraction of calls from j that are reached by servers from

station w in nine minutes.
w ∈ W , j ∈ J

Qj({si}, ρ, k) The correction factors as a function of the distribution of
servers, offered load and the server.

i ∈ I, k = 1, ..., s

qjpm
A precomputed correction factor (constant) for customer
j’s pth priority station at which there are m servers
located.

j ∈ J , p = 1, ..., s,
m = 1, ..., cbpj

Nwj Set of demand nodes that are neighbors to j and are
closer to station w than j.

w ∈ W , j ∈ J

ε Server utilization deviation tolerance.
δ Server utilization imbalance tolerance.
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a dispatching policy, where aij denotes station i’s order in the preference list in responding

to a call from location j, i ∈ I, j ∈ J . That is, if aij = 2, then station i is the second most

preferred station to respond to calls at j, and therefore, servers from station i respond to

calls at j only when servers at the most preferred station are unavailable. Alternatively, the

kth preferred station for customer location j is denoted by bkj. For example, if station i is

the second preferred station for customer location j, then aij = 2 and b2j = i.

The service time for a server from station i responding to a call from customer location

j has a mean of τij, which includes the response (travel) time, the time spent at the site,

the travel time to the hospital if the patient is transferred and the travel time back to the

station. Jarvis (1985) suggests that the dispatch probabilities are not sensitive with respect

to the distribution of the service times. Therefore, the correction factors assume a general

distribution. The system is assumed to have zero-line capacity, i.e., the calls that arrive when

all the servers are busy are regarded as ‘lost’ demand. The loss probability, the probability

that all servers are busy, is denoted by Ps. In general, Pn is the probability that n servers

are busy responding to calls with P0 denoting the idle probability, the probability that all

servers are idle. It is worth noting that EMS systems are generally considered low-traffic EMS

systems, where the number of servers in the system lead to extremely low loss probabilities.

This observation also follows from the computational examples in Section 5.

The system-wide mean server utilization (i.e., busy probability) is given by r = (1−Ps)ρ,

where ρ represents the system-wide mean offered load per server. The number of servers

located at the kth preferred station for node j is denoted by s(k)j = sbkj . Also, the utilizations
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for those servers are shown by r(k)j = rbkj . Assume that station i is the kth preferred station

for customer location j, i.e., aij = k. Then dispatch probability fij, the probability that a

server from i responds to a call from j, is approximated as

fij ≈ Qj({s(k)j}, ρ, k)(1− rsii )
k−1∏
u=1

r
s(u)j
(u)j (2.1)

The factors Qj({s(k)j}, ρ, k) in (2.1) are the correction factors that approximately correct for

the unrealistic assumption of server independence. The server utilizations ri and correction

factors Qj are computed later in this section. Note that for each customer location j, the

dispatch probabilities and the loss probability should add up to 1,

∑
i∈I

fij + Ps = 1. (2.2)

The earlier papers (Larson (1975); Jarvis (1985)) assume that the correction factors are

independent from the customer locations and server locations, whereas the correction factors

in this model depend on both of these factors. Setting z(k)j = s(1)j + s(2)j + ... + s(k)j, the

cumulative number of servers in the top k preferred stations for customer location j, the

correction factors Qj can be expressed as

Qj({s(k)j}, ρ, k) =
P0

∑s−1
n=z(k−1)j

(ρs)n

n!
[
∏z(k−1)j−1

u=0
n−u
s−u −

∏z(k)j−1

u=0
n−u
s−u ]

rz(k−1)j(1− rs(k)j)
. (2.3)

The server utilizations ri, the average fraction of time server i is busy, are

ri =
1

si

∑
j∈J

λjfijτij. (2.4)

Equations (2.1), (2.3) and (2.4) form the elements of an iterative procedure for estimating

dispatch probabilities fij and server utilizations ri. The steps of this iterative procedure are

as follows.
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Step 0. The system-wide mean service time is initialized as

τ 0 =
1

λs

∑
i∈I

si
∑
j∈J

λjτij. (2.5)

To initialize the server utilizations, one needs to first compute the initial loss probability

using Erlang’s loss formula,

P 0
s =

(λτ 0)sP 0
0

s!
, (2.6)

where the initial idle probability P 0
0 is

P 0
0 =

1∑s
i=0

(λτ0)i

i!

. (2.7)

The server utilizations are then initialized as

r0
i = r0 =

λτ 0(1− P 0
s )

s
. (2.8)

The iteration counter t is set to one.

Step 1. The idle and loss probabilities are updated using the most recently computed

system-wide mean service time, τ t−1,

P t
0 =

1∑s
i=0

(λτ t−1)i

i!

, (2.9)

P t
s =

(λτ t−1)sP t
0

s!
. (2.10)

Step 2. Let

V t
i =

∑
j∈J

λjτijQj({s(k)j}, ρt−1, aij)

aij−1∏
u=1

(rt−1
(u)j)

s(u)j . (2.11)

The server utilizations are updated when rt−1
i ≤ 0.5 using

rti =
V t
i

si + (rt−1
i )si−1V t

i

, (2.12)
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otherwise using

rti =

(
V t
i

V t
i + si

(rt−1
i )si−1

) 1
si

. (2.13)

The correction factors Qj({s(k)j}, ρt−1, aij) are computed by (2.3).

Step 3. The dispatch probabilities are updated using

f tij ≈ Qj({s(k)j}, ρt−1, k)(1− (rti)
si)

k−1∏
u=1

(rt(u)j)
s(u)j . (2.14)

The resulting dispatch probabilities do not necessarily satisfy equation (2.2). Therefore,

they should be normalized using

f tij ← f tij
(1− P t

s)∑
i∈I f

t
ij

. (2.15)

for every i ∈ I and j ∈ J . Next, the system-wide mean service time, mean offered load

and mean server utilization are updated to

τ t =
1

λ(1− Ps)
∑
j∈J

λj
∑
i∈I

f tijτij, (2.16)

ρt =
λτ t

s
(2.17)

and

rt =
1

s

∑
i∈I

sir
t
i . (2.18)

Step 4. Check if |rti − rt−1
i | < ε holds for all i ∈ I for a given ε > 0, then terminate. Oth-

erwise, set t← t+ 1 and return to Step 1.
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The ri factors in the procedure above converge to the busy probabilities associated with the

dispatching policy represented by aij. These busy probabilities are then used in the mixed

integer programming model introduced in the next section to optimize the nine minute

coverage for high-priority calls while maintaining a balanced offered load for servers and

accommodating multiple servers per station. Although the convergence of the procedure is

not guaranteed in the general case, a restricted version of the method described in Budge

et al. (2009) is guaranteed to converge. Note that the iterative procedure converged in all

the experiments performed in this study.

2.3 The Maximum Expected Coverage with Balanced

Load Problem (MEXCBL)

The proposed model, MEXCBL, aims to find the optimal way to locate s servers at a set of

potential station locations W , and it assigns the demand nodes to the opened stations, thus

forming a preference list such that the nine-minute coverage is maximized. Each demand

node, j, is assigned an ordered list of opened stations, such that a server from the most

preferred station in the list that has an available server responds to a call generated from

j. If there are more than one server available at that station, one of the available servers

is randomly chosen and dispatched. Two of the important features of MEXCBL are (1)

balanced workload among the servers and (2) contiguity in the servers’ first priority districts.

The computational example in Section 2.4 successively adds these two features to a base

model, thus leading to three models for comparison.
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The variables zwjpm capture the dispatching policy, and these variables are defined as

follows.

zwjpm =



1 if there are p− 1 servers located at stations

that node j prefers over w and there are m ∀w ∈ W,∀j ∈ J,∀p = 1, ..., s,

servers located at station w, ∀m = 1, ..., κwp,

0 otherwise,

(2.19)

where κwp = min(cw, s − p + 1). The variable xwjp captures the demand node/station

assignments and the preferences associated with those assignments:

xwjp =



1 if p′ < p ≤ s− p′′ where p′ is the number of

servers located at stations that node j prefers

over w, and p′′ is the number of servers located ∀w ∈ W,∀j ∈ J,

at stations that node j prefers less than w, ∀p = 1, ..., s,

0 otherwise.

Note that variables xwjp and zwjpm are defined such that the model can locate multiple

servers per station. The number of servers located at station w is specified by the decision

variables yw, w ∈ W , in the model. Also, the real-valued and non-negative decision variables

ow capture the total offered load for servers at station w ∈ W .
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Figure 2.1: Illustration of an example with the values of xijp for a particular customer
location j. There are 7 servers and the number of servers at each station are shown on the
top.

It is worth comparing the variable xwjp to the preference list bkj. The main difference

is that xwjp describes servers while bkj describes stations: the index p in xwjp grows as we

encounter servers that are located at stations, whereas the index k in bkj grows with stations

regardless of the number of servers located at those station. For example, assume that there

are 7 servers in the system (s = 7) which are located at 3 stations (|I| = 3) and there

are 2, 3, and 2 servers at the first, second and third preferred stations for demand node j,

respectively (sb1j = s(1)j = 2, sb2j = s(2)j = 3 and sb3j = s(3)j = 2). Let x(k)jp be equal to

xwjp when awj = k. The corresponding values for x(k)jp are shown in Figure 2.1. There are

2 servers at the station that is more preferred than b(2)j and 2 servers at the station that is

less preferred than b(2)j. Therefore, x(2)jp is 1 when 3 ≤ p ≤ 5 = s − 2, as shown in Figure

2.1.

The MILP model for MEXCBL is formally stated.
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max
∑
w∈W

∑
j∈J

s∑
p=1

κwp∑
m=1

hwjpmzwjpm (2.20)

subject to
s∑

p=1

κwp∑
m=1

zwjpm ≤ 1 j ∈ J, w ∈ W (2.21)

s∑
p=1

κwp∑
m=1

zwjpm ≤ yw j ∈ J, w ∈ W (2.22)

xwjp′ =

p′∑
p=max(1,p′−cw+1)

κwp∑
m=p′−p+1

zwjpm j ∈ J, w ∈ W, p′ = 1, ..., s (2.23)

∑
w∈W

xwjp = 1 j ∈ J, p = 1, ..., s (2.24)

s∑
p=1

xwjp = yw j ∈ J, w ∈ W (2.25)

yw ≤ cw w ∈ W (2.26)

∑
w∈W

yw = s (2.27)

ow =
∑
j∈J

s∑
p=1

κwp∑
m=1

(λHj + λLj )qjpm(1− rm)rp−1τwjzwjpm w ∈ W (2.28)

ow ≥ (r − δ)yw w ∈ W (2.29)

ow ≤ (r + δ)yw w ∈ W (2.30)

xwj′1 ≥ xwj1 j ∈ J, w ∈ W, j′ ∈ Nwj
(2.31)

where

hwjpm = qjpm(1− rm)rp−1λHj Rwj. (2.32)
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The objective function in (2.20) reflects the high-priority coverage level. The coefficient

hwjpm is composed of two parts. The first part is the probability that a server from station

w is dispatched to a call from location j. It is computed as the probability that the p − 1

servers at stations which are more preferred than w are all busy (rp−1) times the probability

that at least one of the m servers at station w are available (1 − rm). The effect of the

independence assumption is obviated by multiplying this product with the correction factor

qjpm; the lowercase q here reflects that it is a MILP input parameter that is treated as a

constant, whereas the uppercase Q in the previous section reflects the queueing dynamics.

The second part in computing the coefficient hwjpm is the proportion of high priority calls

from location j that can be covered within the time limit (9 minutes here) by a server from

station w (λHj Rwj). Thus, hwjpm captures the partial coverage that is obtained if a station

w with m servers is assigned to be station j’s pth preferred station. Note that the correction

factors qjpm and the components rm and rp−1 are precomputed for all j ∈ J , p = 1, ..., s

and m = 1, ..., cj based on the mean server utilization r and are treated as constants in the

model. Therefore, the objective function is a linear function of zwjpm variables. Similarly,

all the constraints (2.21)-(2.31) are linear functions of the model variables.

Next, we describe the constraints in MEXCBL. The first set of constraints, (2.21), guar-

antees that a customer location is not assigned to a station more than once. The second set

of constraints (2.22) ensures that a station is assigned to a customer location only if that

station is open. Consider a system similar to that of Figure 2.1 with s = 7 servers where w

is the second preferred station for j (awj = 2) with 3 servers (yw = 3). Assume that there
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Figure 2.2: The bounds for the sums in (2.21) and (2.22) (the dotted lines) and the bounds
for the sums in (2.23) when p′ = 3 (the solid lines) over m and p . The example used is the
same as the one in Figure 1.

are 2 servers located at w′, station j’s first preferred station (yw′ = 2), and the capacity of

station w is 5 (cw = 5). The corresponding terms included in the sums in (2.21) and (2.22)

are shown in Figure 2.2 with the dotted box.

The variables xwjp, set via (2.23), are included in the model to facilitate explaining and

understanding the model. These variables and the constraint (2.23) could be eliminated by

substituting (2.23) into (2.24) and (2.25). The bounds for the sums in (2.23) are shown by

the solid box in Figure 2.2. To have a preference list, every customer location should have

an rank ordering of stations which contains all the preferences, which is enforced by (2.24).

Note that these preferences are formed around the servers instead of stations due to the

definition of xwjp. The number of ones in xijp for j ∈ J , w ∈ W and p = 1, ..., s should be
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the same as the number of servers located at j (yj), which is imposed by (2.25). Moreover,

(2.26) ensures that the number of servers located at a station does not exceed the station

capacity and (2.27) makes sure that the number of located servers is equal to the number of

available servers.

The server utilization ow for server w captured by (2.28) is constrained by lower and upper

limits in (2.29) and (2.30) to balance the workload among the servers within a tolerance of δ

relative to the mean server utilization. Each term in (2.28) has a coefficient that is composed

of two parts. The first part is the probability that a server from station w responds to a call

from j (qjpm(1− rm)rp−1 where there are p− 1 servers at stations that j prefers over w and

there are m servers at w). The second part is the utilization of the servers at w when they

respond to calls from j. Balancing the workload could lead to non-contiguous dispatching

regions. To avoid this problem, contiguity for the first priority districts is enforced by the

method that is suggested by Mehrotra et al. (1998). Constraint set (2.31) allows w to

be the first preferred station for j only if there is a neighbor of j, namely j′, whose first

preferred station is w and is geographically closer to w than j. We assume that the customer

locations are small enough that at most one station is located within each of them, i.e.,

∀w,w′ ∈ W,w 6= w′ : gw 6= gw′ where gw denotes the customer location in which station w is

located.

Three different versions of MEXCBL are compared in Section 2.4:

1. Base: base model without load-balancing or contiguity. This model contains con-

straints (2.21-2.27) and excludes the load balancing and contiguity constraints, (2.28-
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2.31).

2. LBM: a model with the load-balancing but without contiguity. This model includes

constraints (2.21-2.27) as well as the constraints that balance the offered loads, (2.28-

2.30).

3. LBCM: the full model with load-balancing and contiguity, containing constraints

(2.21–2.31).

One can show that the dispatching policy for the Base model is contiguous when servers

(ambulances) have been pre-located at stations such that no more than one server located

at each station with the additional assumptions that the travel time distribution is non-

decreasing with distance, which implies that travel time is merely a function of the distance

between all j and w. This leads to values of Rwj that are monotonically decreasing with

spatial distance, which in turn leads to first order districts that are spatially contiguous.

The following results describe the optimal dispatching policies for this restricted version

of the Base model. Theorem 1 indicates that the optimal solution to the Base model always

sends the closest server. Theorem 2 indicates that the policy of sending the closest server

leads to contiguous first-priority districts, and Corollary 1 shows that the first priority dis-

tricts for the Base model are contiguous when there is at most one server per station. The

results hold for any set of server locations, however, they cannot be used to identify the

optimal server locations.

Theorem 1 Let Dwj denote the distance between demand node j and station w and assume
that the travel times are captured by a monotonically decreasing function of distance for all
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pairs of j and w, i.e., Rwj = f(Dwj). Then, the first priority districts for the Base model
when there is no more than one server located at a station are equivalent to a ‘send-the-
closest-server’ policy.

Theorem 2 The ‘send-the-closest-server’ policy results in contiguous first priority districts.

Corollary 1 The first priority districts for the Base model are contiguous if there is no
more than one server located at every station.

The proofs for Theorem 1 and Theorem 2 can be found in the Appendix B. Corollary 1

follows directly from Theorems 1 and 2. If some stations have more than one server, then

(2.31) may be needed to maintain contiguity in the Base model. Discontiguity did not occur

in any of the Base model scenarios presented in Section 5, and therefore, (2.31) did not need

to be added to the Base model.

2.3.1 Iterative Procedure

The MILP model proposed in the previous section uses the system-wide mean server uti-

lization, r, to compute the coverage and server utilizations in (2.20) and (2.28), respectively,

since the model approximately balances the load by equalizing the server utilizations. The

mean utilization depends on the current dispatching policy and changes as a result of the

optimization process. Therefore, we employ an iterative procedure to recompute the mean

utilization and update the correction factors. For clarity, we index all of the variables by

iteration t. The steps of the procedure are as follows.

Step 0. Choose an initial dispatching policy, such as the ‘send-the-closest-server’ policy.

In this chapter, the initial dispatching policy is formed by solving a simplified ver-

sion of the MILP proposed in the previous section, where the servers are assumed

40



to be independent. Thus, all the correction factors qwjp are set to 1 for w ∈ W, j ∈

J, p = 1, ..., s. The initial mean server utilization r is computed as r = λτ/s where

τ = λ−1
∑

w∈W
∑

j∈J λjτwj assuming that Ps = 0. In addition, the server utilization

imbalance tolerance δ is set to 1.0, thus the load balancing constraint is not enforced.

Using the resulting initial dispatching policy, z0
wjpm, and the procedure explained in

Section 2.2, we compute the initial server utilization r0 and correction factors q0
wjpm.

Moreover, the initial server utilization imbalance tolerance δ0 is set to the smallest toler-

ance value that encompasses all the server utilizations rw, with δ = (max rw−min rw)/2.

Set t to 1.

Step 1. Solve the MILP model with the most recent values for server utilization (rt−1) and

correction factors (qt−1
wjpm) to find the new dispatching policy ztwjpm.

Step 2. Form the preference lists atij and btkj and the server distributions sti using the ztwjpm

variables (see the pseudo-code following this procedure.) Using these new values, com-

pute the new server utilization rt and the new correction factors qtwjpm using the al-

gorithm in Section 3. We reduce the server utilization imbalance margin by reducing

the imbalance tolerance δt to be equal to the standard deviation of server utilizations

in zt−1
wjpm, which ensures a shrinking margin. We then update the values for the mean

server utilization, the correction factors and the server utilization imbalance tolerance

in the MILP model.

Step 3. There are two termination criteria. The first is infeasibility of the MILP model that

can occur when constraints (2.29) and (2.30) cannot be satisfied, i.e., reducing the load
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imbalance any further leads to infeasibility. The second condition is reaching a server

utilization imbalance level that is less than an acceptable server utilization imbalance

threshold δ. If the termination criteria is not met, then increase t by 1 and go to Step

1.

Step 4. Derive the preference lists aij and bkj and the distribution of servers from the op-

timal dispatching policy zwjpm.

The iterative procedure never enters a cycle where two or more solutions to the MILP are

repeated in an infinite loop, since the server utilization imbalance tolerance, δ, is reduced

after every iteration. Therefore, the procedure is guaranteed to reach a stage where either

the IP model is infeasible or the server utilization imbalance level falls below δ.

The preference lists aij and bkj are based on the dispatching policy that is found by the

IP in Step 2 and Step 4. This procedure is captured by the following pseudo-code.

Pseudo-code for forming the preference lists:

for all j ∈ J do

p← 1 and p′ ← 1

while p ≤ s do

(w,m)←PREFERENCE(j,p)

awj ← p′, bp′j ← w, sw ← m, p← p+m, p′ ← p′ + 1

end while

end for

42



where

function preference(j,p)

for all w ∈ W do

for m = 1→ cw do

if zwjpm = 1 then return (w,m)

end if

end for

end for

end function

Both Base and LBCM are NP-complete in the strong sense. The proofs for NP-completeness

are presented in the Appendix.

2.4 Computational Results

The model is illustrated using real-world data from Hanover County, Virgina, a semi-rural,

semi-suburban county in the metropolitan Richmond area. The data contains the history of

emergency calls during a period of 19 months, which provides response times, service times,

and call arrival rates needed for the input parameters. The county has fifteen stations and

is divided into 175 two mile by two mile cells plus 36 one mile by one mile cells, which are

the nodes where calls arise. The cells and the distribution of demand among them averaged

across all days and times are illustrated in Figure 2.3. The potential stations are marked by

the black dots. We construct eight scenarios corresponding to each combination of day—
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weekdays (WD) or weekends (WE)—and time, where a day is divided into four six-hour

periods labeled as 12am6am, 6am12pm, 12pm6pm, and 6pm12am. Weekdays start from

Sunday 6pm and end at Friday 6pm. Likewise, weekends are from Friday 6pm to Sunday

6pm. Figures C.1 and C.2 in Appendix C show the changes in demand across the eight time

periods.

The proposed iterative procedure and MILP are evaluated using the data described above.

Six available servers (s = 6) are located at 15 stations in the experiments presented in this

section, unless otherwise is stated. All station capacities are set to two servers per station.

Parameters Nwj and gw are formed based on the map shown in Figure 2.3. Recall that

we compare three different versions of the model in this section, the base model without

load-balancing (Base), a model with load-balancing but without the contiguity constraint

(LBM), and a model with load-balancing and contiguity constraints (LBCM).

All computations were performed on a 2GHz quad core CPU with 3GB of RAM. The

iterative procedure for solving the Hypercube model approximation were implemented and

run in Python and the MILP models were solved using Gurobi 5.0.0. The average total

running times (including multiple solutions to the MILP as the parameters are updated

iteratively) for Base, LBM and LBCM were 3, 35 and 69 minutes, respectively. The average

number of iterations performed by the MILP were 1, 7.25 and 6.25 for Base, LBM and LBCM

respectively. Moreover, the iterative approximate queueing model introduced in Section 2.2

converged in 1 iteration within every iteration of MILP that was run throughout this work.

We confirm the analytical results by simulation, which we present at the end of this section.

44



Figure 2.3: The distribution of demand among the cells aggregated across all eight scenarios.
Red indicates a higher call volume while white represents the cells with very small or zero
demand.
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The simulation considers a M/M/s/s queue with s = 6, which matches the assumptions made

in Budge queueing model (see Section 2.2). The true distribution of the inter-arrival times is

a mixture of two lognormal distributions, corresponding to the calls where a patient is and is

not transferred to a hospital. The probability of transfer and the lognormal distributions are

computed based on historic data. For each time period, 30 runs of simulation are performed,

and each simulation is run until 10000 calls are served.

The MILP results across the three model variations (Base, LBM, and LBCM) illustrate

how server locations and district boundaries change under different operating criteria. Fig-

ures 2.4-2.6 depict the optimal stations to open and the first priority districts are depicted for

Base, LBM and LBCM, respectively, for the WD6pm12am period. Six stations are opened

in Base and one server located at each one of them. On the other hand, there are five open

stations in LBM and LBCM with two servers located at Ashland station and one server

located at every other open station.

First, we aggregate all eight scenarions to illustrate the importance of the load balancing

and contiguous constraints. Figure 2.4 illustrates the server locations and first priority

districts in the Base model. Without the contiguity constraints, the first priority districts in

LBM contain many discontiguities, as shown in Figure 2.5. The optimal solution to LBCM

balances the workload and maintains contiguous first priority districts, as shown in Figure

2.6. Figure 2.7 illustrates the offered loads associated with the three models.

The coverage level for LBCM is always lower than the coverage levels for Base and LBM.

However, the examples suggest that the coverage loss due to balancing the load and main-
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Figure 2.4: The first priority districts and the open stations when six servers are located and
assigned to demand nodes for Base on WD6pm12am.
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Figure 2.5: The first priority districts and the open stations when six servers are located and
assigned to demand nodes for LBM on WD6pm12am.
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Figure 2.6: The first priority districts and the open stations when six servers are located and
assigned to demand nodes for LBCM on WD6pm12am.
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Figure 2.7: Server utilizations for WD6pm12am for (a) Base (b) LBM (c) LCBM.
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Figure 2.8: The coverage level during each time period for Base and LBCM, which are com-
puted both numerically via optimization and using simulation. For the simulation results,
the 95% confidence intervals are shown by the black bars.

taining contiguity is extremely small. Figure 2.8 shows the nine-minute coverage for high

priority calls during different time periods. The first two bars in each cluster indicate the

coverage level for Base and LBCM, derived numerically by the model (objective value of the

MILP). The coverage levels for LBCM are lower than the coverage levels for Base.

We note that the assumption of a common server utilization for the Base model is in-

accurate. To address this issue, we retrospectively recompute the server utilizations after

solving the MILP through the iterative procedure to more accurately capture the server uti-

lizations. Figure 2.7 shows these recomputed server utilizations for the WD6pm12am time

period. It shows that the server utilizations for the Base model solutions range from 0.22 to

0.35, whereas the server utilizations for LBM and LBCM are all approximately 0.26. The

unequal server utilizations in the Base model lead to inflated coverage levels, since some
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servers receive a disproportionate amount of the total offered load. The simulation reflects

the actual queueing dynamics and thus reflects a more accurate coverage level, and therefore,

Figure 2.8 shows the simulated coverage level for Base and LCBM together with their 95%

confidence intervals (the third and fourth bars). For both Base and LBCM, the difference

between the numerical and simulated coverage levels relative to the MILP coverage level are

no more than 2% of the MILP solution values. Note that these values are within the 2%

error associated with the Hypercube model approximations. The simulated coverage for the

LCBM solutions are, on average, within 0.1% of the MILP solution values. The maximum

and average simulated difference between the coverage levels between a Base scenario and

the corresponding LBCM solution are 0.58% and 0.2% respectively, which again suggest

that the reduction in the coverage level when the workload is balanced may be minimal in

practice.

Next, we discuss the server locations and dispatching policies via the districts. Table 2.2

and Figure 2.9 shows the number of servers located at each station and the first priority

districts for different time periods in LBCM, respectively. The server locations change in

response to the changes in the distribution of calls in the regions. The sources of these

changes vary, and they include interstate travel, activities at an amusement park, a regular

“workday” pattern of people being at work, and people being at home in evenings, overnight,

and on weekends. Appendix C describes these changes in demand in greater detail.

Figure 2.9 illustrates the first priority districts for the LBCM solutions across all the

time periods. The Montpelier and East Hanover districts, which have the lowest offered
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Figure 2.9: The figure illustrates the first priority districts and the open stations in LBCM
at (a) WD12am6am (b) WD6am12pm (c) WD12pm6pm (d) WD6pm12am (e) WE12am6am
(f) WE6am12pm (g) WE12pm6pm (h) WE6pm12am. The total number of available servers
is six.
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Table 2.2: The table shows the number of servers located at different stations for each time
period. The times correspond to the beginning of the time period. Each column sums to six
since total number of available servers is six.

Station
Weekdays (WD) Weekends (WE)

12am 6am 12pm 6pm 12am 6am 12pm 6pm
Ashland 2 1 1 2 2 2 1 2
Beaverdam 0 0 0 0 0 0 0 0
Eastern Hanover 0 0 0 0 0 0 0 0
Doswell 0 0 0 0 0 0 1 1
Hanover 0 0 0 0 0 0 0 0
Henry 0 1 1 0 0 0 0 0
Mechanicsville 1 1 1 1 1 1 1 1
Montpelier 1 1 1 1 1 1 0 0
Rockville 0 0 0 0 0 0 0 0
Chickahominy 0 1 1 0 0 0 0 0
Farrington 0 0 0 0 0 0 1 0
Black Creek 0 0 0 0 0 0 0 0
Ashcake 1 0 0 1 1 1 1 1
East Hanover 1 1 1 1 1 1 1 1
West Hanover 0 0 0 0 0 0 0 0

loads in the Base model, cover larger geographic areas in the LBM and LBCM solutions.

On the other hand, the area surrounding the Mechanicsville station has high call volumes,

and therefore, it covers the smallest geographic area. The Chickahominy district in the Base

model solution is reallocated to two stations in the LBCM solution. One part is merged with

the district on its east, Henry, to form a new district which is covered by a server located

at the Ashcake station. Furthermore, the call locations in the western part of Chickahominy

district are added to the Ashland district. The Ashland district stations has two servers

in the LBCM solution. The solutions highlight the importance of the Ashland station in

the regionwide coverage due to its central location in the county. Servers located at this

station can effectively provide backup coverage to other districts in the county, reflected in
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the second through sixth priority districts.

Figure 2.10 illustrates the sensitivity of the Base, LBM, and LBCM coverage levels with

respect to the number of servers s. The coverage levels for Base, LBM and LBCM are very

close in both the numerical and simulation results. For the numerical results, the differences

between the coverage level of Base and LBCM are less than 1%. The only exception is when

s = 8, where the coverage of Base is higher than LBM and LBCM by 1.5% in the numerical

results. This is due to the larger variation in the utilizations in Base when s = 8 compared

to cases with fewer servers (e.g., a standard deviation of 0.063 when s = 8 versus 0.051

when s = 6). Due to a larger deviance between the actual and assumed workloads in Base,

balancing the load leads to a larger decline in the coverage. Similarly, the simulation results

show that Base has 0.5% higher coverage level than LBCM when s = 8. On the other hand,

the difference between the coverage levels of Base and LBCM is less than 0.3% when the

number of servers is less than 8. The overall pattern shows that the cost of enforcing load

balancing and contiguity on the coverage is very small across different numbers of servers

and is not sensitive to s. The simulation results deviate from the analytical results by no

more than 1.4% across all scenarios.

2.5 Conclusions

This chapter proposes a linear MIP model that simultaneously locates ambulances and dis-

patches ambulances to patients. The model maximizes the coverage level, the expected

proportion of high-priority calls that are covered within nine minutes, while maintaining a
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balanced load and contiguity in the first priority response districts. The model simultane-

ously locates ambulances at a set of potential stations and forms a preference list assigning

the demand nodes to those stations. The model also takes into account the stochastic aspects

of dispatching such as stochastic travel times and server availabilities. Moreover, the model

can locate multiple servers per location, resembling the reality of EMS systems. The exper-

iments show that balancing the workload amongst the servers leads to dispatching districts

that are not contiguous. The additional constraints for load balancing and contiguity lead

to a lower objective value and thus a lower coverage than in the Base model. However, the

experimental results suggest that the proposed model effectively balances the offered load

and maintains contiguity with a minimal negative effect on the coverage.

The proposed iterative procedure updates the model’s stochastic factors, such as busy

probabilities and correction factors. Next, the model uses these factors to find an optimal

dispatch policy. This policy is then used to reevaluate and update the stochastic factors.

The process repeats iteratively until the procedure converges to a solution. The solution is

potentially sub-optimal due to the queueing model approximation and due to the iterative

procedure.

The model can be extended in several ways. First, the possibility of incorporating relia-

bility factors into the model to ensure a minimum coverage level at every call location Ball

and Lin (1993) can be investigated. Erkut et al. (2008a) reviewed models that use maximum

reliability/availability as their objective function. The thesis concludes that the models that

maximize coverage are more effective than those maximizing reliability. However, it is sensi-

56



ble to build a model which maximizes the coverage level while ensuring that every customer

receives service with a minimum reliability level. That would result in a model that is more

fair to the customers while it maintains a balanced load. A second extension could consider

the impact of using multiple server types to respond to calls. There are cases where several

types of servers are dispatched to respond to a single call (e.g., many EMS departments use

both ambulances and fire engines for EMS calls). Third, this model could be extended to

integrate traffic and weather information into the model to effectively update the dispatch

policy in real-time.
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Chapter 3

Queueing Model for Server
Dispatching with Multiple Servers per
Location and Multi-Server Dispatches

3.1 Introduction

We start by introducing the notation that is used throughout this chapter, shown in Table

3.1, which is an extension of the notation that was used in the previous chapter. We often

replace the index i with (k)j which indicates the kth preferred station for customer j, e.g.,

s(k)j is the number of servers at customer j’s kth priority station. When we use k, it should

be interpreted as the priority of station i in the preference list of customer j where i and j

can be determined from the context.

In this chapter, we first introduce an iterative procedure to compute the steady-state

probabilities for an M [G]/M/s/s queueing model, which we define as an extension to the

M/M/s/s model with multi-server dispatches where G represents a general probability mass

function (pmf) for the number of servers that each incoming call requests. Then, we derive
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Table 3.1: Summary of the Symbols

Symbol Description Domain
J Set of all customer (demand) nodes.
I Set of all open stations.
aij Preference of server i for responding to a call from node j in

the dispatching policy.
i ∈ I, j ∈ J

bkj kth preferred station for calls from node j in the dispatching
policy.

k = 1, ..., |I|, j ∈ J

s Total number of servers in the system.
si Number of servers at station i (

∑
i∈I si = s). i ∈ I

s(k)j The number of servers at the kth priority station for customer
i, i.e., s(k)j = sbkj

.
k = 1, ..., |I|, j ∈ J

λj Call arrival rate for customer j. j ∈ J
λ System-wide total call arrival rate with λ =

∑
j∈J λj .

τij Mean service time for calls originated from node j and served
by a server from station i.

i ∈ I, j ∈ J

τ System-wide mean service time.
ρ System-wide mean offered load per server.
r System-wide mean server utilization.
ri Utilization factor for a server located at station i. i ∈ I
k The priority of the current station i responding to the current

call from j, i.e., k = aij .
zk The number of servers at the k most preferred station for the

current call.
k = 1, ..., |I|

Aijm The event that station i dispatches m servers to a call from
customer i.

i ∈ I, j ∈ J , m = 0, ..., si

Cijl The event that the stations that are more preferred than i for
customer j dispatch l servers to a call from j.

i ∈ I, j ∈ J , l = 0, ..., s

Dijm The event that station i dispatches m servers to a call from
customer j assuming an M [G]/M/s/s model.

i ∈ I, j ∈ J , m = 0, ..., si

Eijl The event that the stations that are more preferred than i for
customer j dispatch l servers a to call from j assuming an
M [G]/M/s/s model.

i ∈ I, j ∈ J , l = 0, ..., s

Rd The event that d servers are requested by the current call.
dmax The maximum number of servers that is requested by a single

call, i.e., Pr{Rd} = 0 for d > dmax.
Zn The event that there are exactly n busy servers in the system. n = 0, ..., s
Zi
n The event that there are exactly n busy servers at station i. n = 0, ..., si

fijm Probability that station i dispatches m servers to a call from
customer j, i.e., fijm = Pr{Aijm}.

i ∈ I, j ∈ J , m = 0, ..., si

pijm Probability that station i dispatches m servers to a call from
customer j assuming an M [G]/M/s/s model, i.e., pijm =
Pr{Dijm}.

i ∈ I, j ∈ J , m = 0, ..., si

Pn Probability that there are exactly n busy servers in the system,
i.e., Pn = Pr{Zn}.

n = 0, ..., si

Qijm The correction factor for when station i dispatches m servers to
customer j.

i ∈ I, j ∈ J , m = 0, ..., si

ε Server utilization deviation tolerance.
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the expressions for the server utilizations and dispatch probabilities in Section 3.3, using the

correction factors that are introduced in Section 3.4. We use the results from the previous

sections and integrate them into an iterative procedure that computes the queueing measures

for the dispatching models with multi-server dispatches. We discuss the simulation and data

that are used to evaluate the proposed model and present the results of the evaluations in

Section 3.6. Finally, the chapter is concluded in Section 3.7.

3.2 Steady-State Probabilities for a M [G]/M/s/s Model

Two of the most common queueing models are the M/M/s/s and M/M/s/∞ models with

exponential inter-arrival and service times and a queue length of zero and infinity, respec-

tively. However, it often happens in the emergency systems that some of the arriving calls

request multiple servers depending on the severity of the incident. For example, an EMS

dispatcher might receive a request to dispatch multiple servers to a severe car accident with

several casualties on a highway. Likewise, the fire engines and police cars are usually dis-

patched in bulks in response to sever fire and 911 calls. Such models cannot be analyzed

as an M/M/s model due to the difference in the arrival patterns. As a result, we intro-

duce an extension to the M/M/s model that allows for multi-server dispatches. Namely, a

M [G]/M/s model is a queueing model with s servers, Poisson arrivals, exponential service

times, and G denotes a general pmf function for the number of servers that are requested

per incoming call.

We will only focus on the zero-length case in this thesis since that is the assumption
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used by most of the emergency systems (Iannoni and Morabito (2007)), i.e., the calls that

arrive when all the servers are busy will be served by backup vehicles or by servers from

the neighboring districts. The M [G]/M/s model allows for partial dispatches when there

are not enough available servers in the system to complete the call, i.e., if an incoming call

requests four servers and there are only two servers available in the system, the dispatcher

will dispatch the two servers and the remaining two servers will be dispatched by a source

external to the system.

Before we derive the steady-state probabilities for this model, we need to define the state-

space. The steady-state probabilities in a M/M/s model only depend on the number of busy

servers in the system. Similarly, the steady-state probabilities for a system with multi-server

dispatches depend only on the number of calls that are being served by one, two, ... servers.

Therefore, state m is a vector Bm = [n1, n2, · · · , ns] where ni is a non-negative integer that

indicates the number of calls in the system that are being served by i servers. The state-space

S(B) can be defined as

S(B) = {[n1, n2, · · · , ns] : 0 ≤ ni ≤ bs/ic,
s∑
i=1

ini ≤ s}. (3.1)

We also define wi(Bm) = ni, w(Bm) =
∑s

i=1 ni =
∑s

i=1wi(Bm) and V (Bm) =
∑s

i=1 ini

where w(Bm) is the total number of calls being served and V (Bm) is the total number of

busy servers in state Bm. We represent the state transitions by a vector whose elements are

all zero expect the ith element,

Ci = {B : wi(B) = 1, wj(B) = 0 for j 6= i, j = 1, · · · , s}. (3.2)
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Now, if a call arrives which requires d servers while the system is in state Bm, the system will

move to state Bm +Cd if there are at least d servers available in the system. Likewise, if the

servers finish serving a call that required d servers, the system will move to state Bm − Cd.

First, we derive the balance equations for the states for which V (Bm) < s, i.e., the system

is non-exhausted,

(λ+ µw(Bm))Pr{Bm} =
s∑

d=1:wd(Bm)>0

λPr{Rd}Pr{Bm − Cd}

+
s∑

d=1:w(Bm)+d≤s

µ(wd(Bm) + 1)Pr{Bm + Cd}, (V (Bm) < s).

(3.3)

The left-hand side in equation above corresponds to the transitions out of state Bm while

the right-hand side represents the transitions into state Bm. The first sum on the right hand

side accounts for the arrivals that lead to state Bm and the second term corresponds to

the service completions that leave the system in state Bm. We also introduce the balance

equations for an exhausted system as

µw(Bm)Pr{Bm} =
s∑

d=1:wd(Bm)>0

dmax∑
d′=i

λPr{Rd′}Pr{Bm − Cd}

=
s∑

d=1:wd(Bm)>0

λPr{Bm − Cd}[1−
d−1∑
d′=1

Pr{Rd′}], (V (Bm) = s).

(3.4)

The left-hand side of the equation above correspond to the departures from state Bm through

service completions, and the right-hand side accounts for arrivals that lead to state Bm,

including the ones that will be responded to by partial dispatches due to insufficient number

of available servers.

Now, we can iteratively compute the probabilities Pr{Bm} for all the states and use them
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to compute the steady-state probabilities as

Pn =
∑

m:V (Bm)=n

Pr{Bm}. (3.5)

These steady-state probabilities will be later used in section 3.5 to compute the stochastic

components of the queueing model with an iterative procedure.

3.3 Server Utilizations and Dispatch Probabilities

Our main objective in this section is to compute the server utilizations ri, the proportion

of times when server i is busy, and the dispatch probabilities fijm, the probabilities that

station i dispatches m servers to a call generated by customer j. We start by conditioning

on the event that the stations that customer j prefers more than i have already dispatched

l servers and that d servers have been requested by the current call. For now, we assume

that m > 0, meaning that the more preferred stations than i do not have enough available

servers to dispatch the requested number of servers.

hijm = Pr{Aijm} =
dmax∑
d=m

min(zk−1,d−m)∑
l=0

Pr{Aijm|CijlRd}Pr{Cijl|Rd}Pr{Rd}

=
dmax∑
d=m

min(zk−1,d−m)∑
l=0

Pr{Aijm|CijlRd}Pr{Cijl}Pr{Rd}.

(3.6)

The last step above holds since we assumed that m > 0; hence, the more preferred stations

have already dispatched all of their available servers, the probability for that does not depend

on d. The probability Pr{Aijm|CijlRd} can be computed for two separate cases when the

current station has enough servers to complete the request by sending the remaining number

of requested servers (l + m = d) and when it does not (l + m < d). In the latter case,
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all servers at i will be examined to find the available servers. Therefore, this is a binomial

probability with probability of success (busy server) equal to ri,

Pr{Aijm|Cijl ∩Rd ∩ (l +m < d)} =

(
si
m

)
rsi−mi (1− ri)m. (3.7)

We condition on the event that there are n busy servers at station i, Zi
n, to compute the

probability in the case where l +m = d,

Pr{Aijm|Cijl ∩Rd ∩ (l +m = d)}

=

si−m∑
n=0

Pr{Aijm|Cij(d−m) ∩Rd ∩ Zi
n}Pr{Zi

n}.
(3.8)

Notice that the first term in the product is equal to 1 since we have conditioned on l+m = d,

i.e., the more preferred stations than i have dispatched d−m servers, and there are at least

m servers available at i. Therefore, the equation above can be simplified as

Pr{Aijm|Cijl ∩Rd ∩ (l +m = d)} =

si−m∑
n=0

Pr{Zi
n} =

si−m∑
n=0

(
si
n

)
rni (1− ri)si−n. (3.9)

The second term in the products in (3.6) are the probability that the more preferred

stations dispatch l servers in response to a call from j. This probability, which we will

denote by ξijl, can be expressed as

ξijl = Pr{Cijl} =
∑
φ∈Φij

l

k∏
u=1

(
si
φ(u)

)
r
si−φ(u)
i (1− ri)φ(u), (3.10)

where Φij
l is the set of all possible vectors of k non-negative integer numbers whose sum is

equal to l such that the uth number is less than or equal to s(u)j and φ(u) is the uth number

in vector φ corresponding to the uth priority station. In other words, (3.10) sums over all the
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possible combinations of l available servers and zk−1− l busy server at the first k−1 stations,

and computes the probability of each combination as the product of the binomial probabilities

corresponding to each station. This is a special case of the Poisson binomial distribution,

an extension of the binomial distribution for which the Bernouli trials are not identical, i.e.,

the probability of success is not necessarily the same for all the trials. Therefore, Pr{Cijl}

can be computed using the pmf of this distribution where l is the number of successes and

(1− ri)’s are the probabilities of success. Fernandez and Williams (2010) and Hong (2011)

proposed a closed-form expression for the pmf of the Poisson binomial distribution using

the Inverse Fourier transform of the characteristic function of the distribution. Using this

closed-form expression, we can express (3.10) as

ξijl =
1

zk−1 + 1

zk−1∑
u=0

K−ul
k−1∏
v=1

(1 + (Ku − 1)(1− r(v)j))
s(v)j , (3.11)

where K = exp( 2zπ
zk−1+1

) and z is the imaginary unit. Moreover, we can use the CDF of the

Poisson binomial distribution, denoted by Ξij(q), to compute the probability that the more

preferred stations than i dispatch no more than q servers to a call from j,

Ξij(q) =

q∑
l=0

ξijl =
1

zk−1 + 1

zk−1∑
u=0

1−Ku(q+1)

1−Ku

k−1∏
v=1

(1 + (Ku − 1)(1− r(v)j))
s(v)j . (3.12)
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By substituting (3.7), (3.9) and (3.11) in (3.6), we can obtain the equation for hijm as

hijm =
dmax∑
d=m

min(zk−1,d−m−1)∑
l=0

(
si
m

)
rsi−mi (1− ri)mξijl

Pr{Rd}

+

zk−1+m∑
d=m

(
si−m∑
n=0

(
si
n

)
rni (1− ri)si−nξij(d−m)

)
Pr{Rd}

=

(
si
m

)
rsi−mi (1− ri)m

dmax−m∑
t=0

min(zk−1,t−1)∑
l=0

ξijl

Pr{Rt+m}

+

(
si−m∑
n=0

(
si
n

)
rni (1− ri)si−n

)(
zk−1∑
t=0

ξijtPr{Rt+m}

)
.

(3.13)

Notice that d−m is substituted with t and the bounds for the sums are adjusted accordingly.

The sum inside the brackets is the CDF of the Poisson binomial distribution, mentioned in

(3.12). Hence, we can rewrite (3.13) as

hijm =

(
si
m

)
rsi−mi (1− ri)m

dmax−m∑
t=0

[Ξij(min(zk−1, t− 1))Pr{Rt+m}]

+

(
si−m∑
n=0

(
si
n

)
rni (1− ri)si−n

)(
zk−1∑
t=0

ξijtPr{Rt+m}

)
, (m > 0).

(3.14)

Also, we can find hijm when m = 0 as

hij0 = 1−
si∑

m=1

hijm. (3.15)

We can rewrite (3.14) as

hijm = (1− ri)siwijm, (3.16)

where wijm is defined as

wijm =

(
si
m

)
rsi−mi (1− ri)−si+m

dmax−m∑
t=0

[Ξij(min(zk−1, t− 1))Pr{Rt+m}]

+

(
si−m∑
n=0

(
si
n

)
rni (1− ri)−n

)(
zk−1∑
t=0

ξijtPr{Rt+m}

)
, (m > 0),

(3.17)
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and

wij0 =
hij0

(1− ri)si
=

1−
∑si

m=1 hijm
(1− ri)si

=
1−

∑si
m=1(1− ri)siwijm
(1− ri)si

=
1

(1− ri)si
−

si∑
m=1

wijm.

(3.18)

An approximation for hijm can be obtained by using the system-wide mean server utiliza-

tion, r, instead of the individual server utilizations. The approximation, hcijm can be derived

by replacing the Poisson binomial probabilities with binomial probabilities, as shown below.

hcijm =

(
si
m

)
rsi−m(1− r)m

dmax−m∑
t=0

min(zk−1,t−1)∑
l=0

(
zk−1

l

)
rzk−1−l(1− r)lPr{Rt+m}


+

(
si−m∑
n=0

(
si
n

)
rn(1− r)si−n

)(
zk−1∑
t=0

(
zk−1

t

)
rzk−1−t(1− r)tPr{Rt+m}

)
, (m > 0).

(3.19)

Likewise, the value for hcijm when m = 0 can be computed using (3.15) by summing over

hcijm’s instead of hijm’s. The probabilities in (3.14) are computed based on the assumption

that the status of each server is statistically independent from other servers. The probabilities

hcijm will be used in the next section to find the correction factors. These correction factors

are multiplied with hijm’s to reduce the effect of the server independence assumption. Hence,

the dispatch probabilities, fijm, can be approximated as

fijm = Qijmhijm = Qijm(1− ri)siwijm, (3.20)

where Qijm is the correction factor for customer j and m servers being dispatched from

station i.
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The utilization for the servers that are located at station i can be calculated as,

ri =
1

si

∑
j∈J

si∑
m=0

λjfijmmτij =
1

si

∑
j∈J

si∑
m=0

λjQijm(1− ri)siwijmmτij

=
1

si
(1− ri)siVi,

(3.21)

where

Vi =
∑
j∈J

si∑
m=0

λjQijmwijmmτij. (3.22)

We can rewrite the equation for ri as follows.

ri =
1

si
(1− ri)siVi ⇒

sir
si
i

rsi−1
i

= (1− ri)siVi ⇒
(

1− ri
ri

)si
=

si

rsi−1
i Vi

⇒

1− ri
ri

=

(
si

rsi−1
i Vi

)1/si

⇒ ri =
1(

si
r
si−1
i Vi

)1/si
+ 1

=
(rsi−1
i Vi)

1/si

s
1/si
i + (rsi−1

i Vi)
1/si
.

(3.23)

We will use this equation for ri later in our iterative procedure. Next, we will derive the

correction factors.

3.4 Correction Factors

In this section, we derive the correction factors by assuming that the system works according

to a M [G]/M/s/s model, an extension of the M/M/s/s model with multi-server dispatches

where G denotes a general pmf for the number of the requested servers per incoming call

call. The model does not incur a line and the calls that arrive when all the servers are busy

or the calls that are partially covered will receive service from the backup vehicles or from

the neighboring counties.

The first step in deriving the correction factors is to compute the probabilities pijm. We

do so by conditioning on Eijl, Zn and Rd.
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pijm = Pr{Dijm} =
s∑

n=0

dmax∑
d=m+L1

U2∑
l=L2

Pr{Dijm|EijlRdZn}Pr{EijlRdZn}

=
s∑

n=0

dmax∑
d=m+L1

U2∑
l=L2

Pr{Dijm|EijlRdZn}Pr{Eijl|RdZn}Pr{Rd}Pr{Zn},

(3.24)

where L1 = max(zk−1−n, 0), L2 = max(zk−1−n, zk−m−n, 0) and U2 = min(d−m, zk−1, s−

n−m). We assume that the number of requested servers does not depend on the status of

the system and therefore Rd and Zn are independent. Probabilities Pr{Rd} are known from

the input and probabilities Pr{Zn} are the steady-state probabilities that we have already

derived in section 3.2. Next, we need to find the expressions for Pr{Dijm|EijlRdZn} and

Pr{Eijl|RdZn}. Here, it is assumed that m > 0, i.e., the current station will dispatch at

least one server. There are two possibilities in computing Pr{Dijm|EijlRdZn}, the current

station either has enough available servers to complete the request (l+m = d) or it does not

(l+m < d). We first consider the later case. The probability that the first sampled server at

the kth preferred station is busy given that there are n busy servers in the system and that

the more preferred stations have already dispatched l server in response to the current call

is n−(zk−1−l)
s−zk−1

. Likewise, the probability that the second sampled server is busy is n−(zk−1−l)−1

s−zk−1−1
,
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and so on. Therefore, we can write,

Pr{Dijm|Eijl ∩Rd ∩ Zn ∩ (l +m < d)}

=

[(
1− n− (zk−1 − l)

s− zk−1

)
×
(

1− n− (zk−1 − l)
s− zk−1 − 1

)
× · · · ×

(
1− n− (zk−1 − l)

s− zk−1 − (m− 1)

)

× n− (zk−1 − l)
s− zk−1 −m

× n− (zk−1 − l)− 1

s− zk−1 − (m+ 1)
× · · · × n− (zk−1 − l)− (si −m− 1)

s− zk−1 − (si − 1)

]
+ · · ·

+

[
n− (zk−1 − l)
s− zk−1

× n− (zk−1 − l)− 1

s− zk−1 − 1
× · · · × n− (zk−1 − l)− (si −m− 1)

s− zk−1 − (si −m− 1)

×
(

1− n− (zk−1 − l)− (si −m)

s− zk−1 − (si −m)

)
×
(

1− n− (zk−1 − l)− (si −m)

s− zk−1 − (si −m+ 1)

)
× · · ·

×
(

1− n− (zk−1 − l)− (si −m)

s− zk−1 − (si − 1)

)]
,

(3.25)

where the sum involves all the possible orders of sampling m available servers and si − m

busy servers at station i. There are
(
si
m

)
terms in the sum and it can be simplified as

Pr{Dijm|Eijl ∩Rd ∩ Zn ∩ (l +m < t)}

=

(
si
m

)∏si−m−1
u=0 (n− (zk−1 − l)− u)

∏m−1
u=0 (s− n− l − u)∏si−1

u=0 (s− zk−1 − u)
.

(3.26)
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Next, we find the same probabilities given that l +m = d.

Pr{Dijm|Eijl ∩Rd ∩ Zn ∩ (l +m = d)}

=

[(
1− n− (zk−1 − l)

s− zk−1

)
×
(

1− n− (zk−1 − l)
s− zk−1 − 1

)
× · · · ×

(
1− n− (zk−1 − l)

s− zk−1 − (m− 1)

)]
+ · · ·

+

[
n− (zk−1 − l)
s− zk−1

× n− (zk−1 − l)− 1

s− zk−1 − 1
× · · · × n− (zk−1 − l)− U3 + 1

s− zk−1 − U3 + 1

×
(

1− n− (zk−1 − l)− U3

s− zk−1 − U3

)
×
(

1− n− (zk−1 − l)− U3

s− zk−1 − (U3 + 1)

)
× · · ·

×
(

1− n− (zk−1 − l)− U3

s− zk−1 − (U3 +m− 1)

)]
.

(3.27)

where U3 = min(si −m,n− zk−1 + r −m). We use v to denote the number of busy servers

that are sampled before we find the mth available server at the kth preferred station. Now

we can simplify (3.27) as

Pr{Dijm|Eijl ∩Rd ∩ Zn ∩ (l +m = t)}

=

U3∑
v=0

(
v +m− 1

v

)∏v−1
u=0(n− (zk−1 − l)− u)

∏m−1
u=0 (s− n− l − u)∏v+m−1

u=0 (s− zk−1 − u)
.

(3.28)

Next, we need to compute the probability Pr{Eijl|RdZn} in a similar manner. Since we

are assuming that m > 0, the more preferred stations should have dispatched all of their

available servers. Hence, the probability that l servers are dispatched by the more preferred

stations is only dependent on the number of busy (free) servers at those stations and not d.

71



As a result, we can write

Pr{Eijl|RdZn} = Pr{Eijl|Zn}

=

[(
1− n

s

)
×
(

1− n

s− 1

)
× · · · ×

(
1− n

s− (l − 1)

)
× n

s− l
× n− 1

s− (l + 1)
× · · ·

× n− (zk−1 − l − 1)

s− (zk−1 − 1)

]
+ · · ·+

[
n

s
× n− 1

s− 1
× · · · × n− (zk−1 − l − 1)

s− zk−1 − l − 1

×
(

1− n− (zk−1 − l)
s− (zk−1 − l)

)
×
(

1− n− (zk−1 − l)
s− (zk−1 − l + 1)

)
× · · · ×

(
1− n− (zk−1 − l)

s− (zk−1 − 1)

)]

=

(
zk−1

l

)∏zk−1−l−1
u=0 (n− u)

∏l−1
u=0(s− n− u)∏zk−1−1

u=0 (s− u)
.

(3.29)

Now we can rewrite (3.24) as

pijm = Pr{Dijm} =
s∑

n=0

dmax∑
d=m+L1

[(
U4∑
l=L2

Pr{Dijm|EijlRdZn}Pr{Eijl|Zn}

)

+Pr{Dijm|Cij(d−m)RdZn}Pr{Cij(d−m)|Zn}

]
Pr{Rd}Pr{Zn},

(3.30)

where U4 = min(d −m − 1, zk−1, s − n −m). We can obtain the first term by multiplying

(3.26) and (3.29). Given that (l +m < d),

Pr{Dijm|EijlRdZn}Pr{Eijl|Zn}

=

(
si
m

)∏si−m−1
u=0 (n− (zk−1 − l)− u)

∏m−1
u=0 (s− n− l − u)∏si−1

u=0 (s− zk−1 − u)

×
(
zk−1

l

)∏zk−1−l−1
u=0 (n− u)

∏l−1
u=0(s− n− u)∏zk−1−1

u=0 (s− u)

=

(
si
m

)(
zk−1

l

)∏zk−1−l−m−1
u=0 (n− u)

∏l+m−1
u=0 (s− n− u)∏si−1

u=0 (s− u)

(3.31)
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Likewise, we use (3.28) and (3.29) to obtain the second term in (3.30).

Pr{Dijm|Cij(d−m)RdZn}Pr{Cij(d−m)|Zn}

=

U3∑
v=0

(
v +m− 1

v

)∏v−1
u=0(n− (zk−1 − (d−m))− u)

∏m−1
u=0 (s− n− (d−m)− u)∏v+m−1

u=0 (s− zk−1 − u)

×
(
zk−1

d−m

)∏zk−1−(d−m)−1
u=0 (n− u)

∏(d−m)−1
u=0 (s− n− u)∏zk−1−1

u=0 (s− u)

=

(
zk−1

d−m

) U3∑
v=0

(
v +m− 1

v

)∏zk−1−(d−m)+(v−1)
u=0 (n− u)

∏d−1
u=0(s− n− u)∏zk−1+v+m−1

u=0 (s− u)

(3.32)

The final equation for pijm can be obtained by substituting (3.31) and (3.32) in (3.30),

pijm =
s∑

n=0

dmax∑
d=L1

[(
U4∑
l=L2

(
si
m

)(
zk−1

l

)∏zk−1−l−m−1
u=0 (n− u)

∏l+m−1
u=0 (s− n− u)∏zi−1

u=0 (s− u)

)

+

(
zk−1

d−m

) U3∑
v=0

(
v +m− 1

v

)∏zk−1−(d−m)+(v−1)
u=0 (n− u)

∏d−1
u=0(s− n− u)∏zk−1+v+m−1

u=0 (s− u)

]
Pr{Rd}Pr{Zn}.

(3.33)

The correction factors can be found by dividing pijm and hcijm,

Qijm =
pijm
hcijm

. (3.34)

These correction factors would reduce to the correction factors that Budge et al. (2009)

proposed when Pr{R1} = 1 and Pr{Rd} = 0 for d 6= 1.

3.5 Iterative Procedure

So far, we have derived the balance equations and the steady-state probabilities for an

M [G]/M/s/s queueing model, the equations for the dispatch probabilities, the server uti-

lizations and the correction factors. We will now introduce an iterative procedure that
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involves these elements to compute different stochastic components of a dispatching model

with multiple servers per station and multi-server dispatches.

The dispatching model that is proposed in this thesis can respond to a call by sending

multiple servers. The dispatched servers can be from different stations. In this work, all the

dispatched servers that are serving the same call will have identical service times, as opposed

to Chelst and Barlach (1981) which assumes independent service times for the servers that

are dispatched to serve the same call. As a result, service times should depend on the

identity of all the stations that are involved in serving the current call. This will lead to an

exponential number of service times which will not be easy to manage and also reduces the

scalability of the model. However, it is known that service times are composed of response

time, time at the scene, travel time to the hospital, and return time. Time at the scene

and travel time to the hospital only depend on the type and location of the call and not on

the stations from which the servers have been dispatched. Time at the scene is usually the

longest time among the four. Moreover, the emergency systems always try to minimize the

response and return times in order to maximize the coverage and minimize the server idle

times. Thus, it is reasonable to assume that the service times only depend on the customer.

This assumption greatly reduces the complexity of maintaining the individual service times

and computing the system-wide mean service time. In particular, the mean service time only

depends on the call arrival rates and the individual service times,

τ =
1

λ

∑
j∈J

λjτj. (3.35)

Therefore, τ remains constant during the iterative procedure. Likewise, the steady-state
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probabilities are a function of µ = 1/τ , λ and the probabilities Pr{Rj}, none of which

changes during the iterative procedure. Hence, the steady-state probabilities remain constant

as well. The system wide mean server utilization can be computed as

r =
s∑

n=1

nPn. (3.36)

Therefore, r does not change since Pn’s are constant during the procedure. As a result, τ ,

Pn’s and r can be computed in advance and used within the iterative procedure.

The algorithm starts with the initialization step, then it enters the main computation

loop, and terminates when the change in the server utilizations from the previous iteration

becomes less than a pre-specified threshold, ε.

Step 0. Compute τ using (3.35), Pn’s iteratively using (3.3),(3.4) and (3.5), and r using

(3.36). Initialize the station-specific utilities as ri = r. Set the iteration counter q to

1.

Step 1. Compute the correction factors Qijm using (3.19), (3.33) and (3.34).

Step 2. Use (3.11), (3.12), (3.17), (3.18) and the correction factors from step 1 to compute

V q
i by (3.22). Compute rqi using (3.23) having V q

i and rq−1
i . Normalize the utilizations

using

ri = r
sri∑

i′∈I si′ri′
. (3.37)

Step 3. If max |rqi − r
q−1
i | > ε, set q ← q + 1 and go to step 1; otherwise, go to step 4.
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Figure 3.1: The number of servers at each station for the four server distributions.

Step 4. Find the dispatch probabilities fijm using (3.20).

It is not guaranteed that the iterative procedure above always converges, but it did in

every case that we ran.

3.6 Simulation and Results

We evaluate the proposed approximate Hypercube model that was introduced in the previous

section. The results of the model are compared to those of a discrete-event simulation for
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Figure 3.2: The PMF of the number of requested servers per call for the four test cases.
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different number of servers, different server distributions and different pmf’s for the number

of requested server per each call. We use four different server distributions and four different

pmf’s that are depicted in Figures 3.1 and 3.2. The dispatching policies are randomly

generated for each server distribution. The first three pmf’s have decreasing probabilities as

the number of requested servers increases, with different spreads. The fourth pmf has the

highest probability at 4 requested servers, and then at 3 and 6 servers. Sixteen different

scenarios have been generated for the combinations of server distributions and pmf’s and

are used to test the proposed Hypercube model. Each scenario has 100 customer locations

where the call arrival rates and service times are generated randomly according to a uniform

distribution such with ρ = 0.4 where

ρ = d

∑
j∈J λjτj

sλ
, (3.38)

and d =
∑dmax

t=1 tPr{Rt}. The simulation for each scenario was run 30 times and each run

served 100000 calls. The results were then averaged across the runs. The relative error for

each scenario is shown in Figure 3.3. All the relative errors are below 2% for the first two

server distributions. The third distribution has the largest relative errors compared to the

other distributions. In particular, the relative error for the combination of the third server

distribution and pmf 1 is 6% which is the largest relative error among all the scenarios. The

relative error for the fourth distribution is less than 2.5% for all the combinations. Except

one of the stations in distribution 3, the rest of the combinations have relatively small errors;

hence, the proposed Hypercube model is successful in approximating the queueing dynamics

of most of the scenarios.
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Figure 3.3: The relative error for server utilizations for sixteen scenarios.
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Figure 3.4: The results of sensitivity analysis on ρ for server distribution 2 and PMF 2.
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Table 3.2: The absolute and relative errors comparing the server utilizations for the Approx-
imate Hypercube (AH) model and the simulation results with different PMF’s for Hanover
county. The stations are 1:Ashland, 4:Doswell, 6:Henry, 7:Mechanicsville, 8:Montpelier,
10:Chickahominy, 11:Farrington, 14:East Hanover.

Station 1 4 6 7 8 10 11 14 Average
si 2 1 1 2 1 1 1 2 1.375

PMF 1
(ρ = 0.13)

AH ri 0.216 0.118 0.186 0.205 0.166 0.170 0.136 0.154 0.169
Sim ri 0.221 0.114 0.180 0.208 0.166 0.166 0.134 0.154 0.168
Abs. Err. 0.005 0.004 0.006 0.004 0.000 0.004 0.002 0.000 0.003
Rel. Err. (%) 2.176 3.251 3.337 1.777 0.242 2.474 1.267 0.130 1.832

PMF 2
(ρ = 0.17)

AH ri 0.274 0.170 0.239 0.254 0.186 0.234 0.189 0.213 0.220
Sim ri 0.280 0.166 0.231 0.259 0.181 0.230 0.184 0.217 0.218
Abs. Err. 0.006 0.004 0.009 0.005 0.005 0.004 0.005 0.003 0.005
Rel. Err. (%) 2.109 2.598 3.729 1.890 2.936 1.607 2.776 1.524 2.396

PMF 3
(ρ = 0.24)

AH ri 0.348 0.253 0.327 0.328 0.240 0.324 0.277 0.299 0.299
Sim ri 0.351 0.247 0.327 0.330 0.226 0.326 0.272 0.304 0.298
Abs. Error 0.003 0.005 0.000 0.002 0.014 0.002 0.005 0.005 0.005
Rel. Error (%) 0.769 2.183 0.061 0.697 6.142 0.583 1.691 1.742 1.733

PMF 4
(ρ = 0.32)

AH ri 0.420 0.334 0.400 0.398 0.301 0.402 0.357 0.381 0.374
Sim ri 0.419 0.330 0.409 0.398 0.281 0.410 0.355 0.386 0.373
Abs. Error 0.001 0.004 0.009 0.001 0.020 0.008 0.002 0.005 0.006
Rel. Error (%) 0.263 1.364 2.151 0.201 6.970 1.878 0.592 1.323 1.843

A sensitivity analysis on the system-wide offered load was also performed. Server dis-

tribution 2 and PMF 2 were used for this analysis and ρ was varied from 0.1 to 0.9. The

corresponding relative errors are shown in Figure 3.4. The relative error is smaller than 2%

for all the cases except for station 3 when ρ = 0.1. The relative errors decrease on average

as ρ increases. This is because the relative error formula is more sensitive when the values

for server utilizations are smaller.

Next, we used the data from Hanover county and simulated the ambulance dispatcher

with multi-server dispatches. The county has 269 call locations and the call arrival rates

and service times are recorded by county’s EMS center. The service times are distributed

according to a mixture of two lognormal distributions. One of the lognormal distributions

corresponds to the calls where the patient is transferred to the hospital and the other one
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Figure 3.5: The absolute and relative errors for the steady-state probabilities (Pn) comparing
the results of balance equations in Section 3.2 and the simulation model with different PMF’s
for Hanover county.

corresponds to the calls where the ambulance returns to its station after it treats the patient

at the scene. The probability of transfer and the parameters of the lognormal distribution

are computed based on the historical data. We ran four different simulations for the four

PMF’s shown in Figure 3.2, which resulted in ρ’s of 0.13, 0.17, 0.24 and 0.32, computed

using (3.38). Each simulation was run 30 times and 100000 calls were treated in each run.

Eleven servers were located at eight station using the MEXCBL introduced in Chapter 2

and the optimal policy was used in the simulation. The number of servers located at each

station along with the utilizations computed by the approximate Hypercube model and the

simulation and the absolute and the relative errors are shown in Table 3.2. All the absolute

errors are smaller than 0.02 and all the relative errors are smaller than 4% except two cases

for Montpelier station when the third and fourth PMF’s are used. Overall, the average

absolute and relative errors are around 0.005 and 2%, respectively. As a result, the proposed

Hypercube model approximates the server utilizations for Hanover country data effectively.
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Moreover, the queueing factors seem to be insensitive to the distribution of the service times

beyond their mean, which was previously reported in Gross and Harris (1998).

The balance equations that are derived in Section 3.2 are used in the iterative procedure

to compute the steady-state probabilities. These probabilities are compared to the ones

obtained from the simulation and the errors are depicted in Figure 3.5. All the absolute

errors are smaller than 0.05%. Also, all the relative errors are smaller than 1% except for

n = 8, 9, 10 and 11 for PMF 1. The large relative errors in these four cases are due to very

small values for the steady-state probabilities (P8 = 0.0033, P9 = 0.0012, P10 = 0.0004 and

P11 = 0.0002 from the simulation). These are the values that the absolute values are divided

by, resulting in large relative errors.

All in the all, the results of the experiments with simulated data and the data from

Hanover county indicate that the proposed approximate Hypercube has a relative error

of less than 2% in most of the cases and thus it is sufficiently accurate for analyzing the

stochastic aspects of the emergency systems.

3.7 Conclusions

In this chapter, we expanded the M/M/s/s queueing model and introduced the M [G]/M/s/s

model to accommodate for policies with multi-server dispatches, where G denotes a general

pmf for the number of requested servers per call. We derived the balance equations for this

queueing model and used them to find the steady-state probabilities. Then, we derived the

equations for the server utilizations, dispatch probabilities and the correction factors. An
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iterative procedure was presented then to find the server utilizations and dispatch probabili-

ties. Finally, we evaluated the proposed Hypercube model by comparing its results to those

that were obtained from a simulation model. The results indicate that the proposed model

is sufficiently accurate.

The advantage of the proposed method is that it considers both co-located servers and

multi-server dispatches explicitly. Moreover, it is neither limited to a particular dispatch

policy nor it imposes any restriction on the number of servers per location or the number of

dispatched servers.

The drawback of this model is that it is computationally more complex than the previous

methods. Hence, a revised version of the model which is computationally more efficient

would be beneficial. Furthermore, the relative error exceeds 5% in some cases. This is due

to very small denominators in the relative error formula in some cases. In other cases, the

proposed model needs to be modified to improve the accuracy.
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Chapter 4

Summary and Future Work

4.1 Summary

The contributions of this thesis are three-fold. First, we introduced a MILP model to locate

ambulances in an area and design response districts by forming a dispatch policy that creates

priority lists for each call location. The proposed model balances the offered load, allows for

multiple ambulances to be located at the same station, and considers high and low priority

calls. The model allows for uncertainties in service times and ambulance availabilities by

incorporating the Hypercube correction factors that model the stochastic aspects of the

model. The model uses an iterative procedure that maintains a linear model although the

correction factors are highly non-linear.

The results obtained from the proposed model closely matches the simulation results.

Also, it effectively reduces the amount of load imbalance among the ambulances. It was

shown that the effect of load balancing and enforcing contiguity for the first priority districts

on the coverage level is minimal. Hence, the model achieves its goal of balancing the offered

load and maintaining the contiguity without incurring a significant negative impact on the
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coverage.

Second, we expanded the popularM/M/s/s queueing model and introduced theM [G]/M/s/s

model that allows multiple servers to serve a single call. The distribution of the number of

servers that are requested for service per call is determined by the general pmf G. We found

the steady-state probabilities for this model by iteratively solving the balance equations.

The results in Section 3.6 indicate that this iterative method is very accurate.

The third contribution of this thesis is extending the approximate Hypercube model that

was proposed in Budge et al. (2009) to accommodate for multi-server dispatches. Unlike

the previous works in the literature, our model allows for arbitrary number of servers to

be dispatched in response to a single call and it does not assume any particular dispatch

policy, which makes it more general than the previous models. Moreover, this model can

accommodate multiple servers per location as well. The proposed model is a step ahead in

providing spatial queueing models that better represent the real-world emergency systems.

The results of the proposed approximate Hypercube model are compared to simulation

results. The results indicate that the proposed model can successfully approximate the

queueing dynamics of an emergency system. The relative error between the results of the

Hypercube model and that of the simulation is less than 2% in most of the cases that we

tested, which is comparable to the other Hypercube models that were introduced before in

the literature.
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4.2 Future Work

The MILP model that was presented in this work can be extended by incorporating lower

limits on the coverage level for all the call locations. This will prevent some districts from

being under-served and provides a more fair dispatch policy that guarantees a minimum level

of coverage for all the customers. Moreover, multiple types of vehicles can be incorporated

into the model to achieve a higher level of realism.

The proposed extension for the M/M/s/s can be adapted for the infinite-length queues.

The balance equations for the M [G]/M/s/∞ model can be formed. The equations can then

be solved to find the steady-state probabilities.

The approximate Hypercube model can be extended to handle dependence between the

number of requested server and the location from which the call is originated. It can also

incorporate more complex ways of modeling the service times for the systems with multi-

server dispatching policies. Furthermore, the model will become more practical by assuming

service times for the servers that are dispatched to serve the same call to be dependent but

not identical.

The proposed approximate Hypercube model can be used to extend the MILP model in

Chapter 2 in order to optimize the server locations and dispatching policies for systems that

allow for multi-server dispatches.
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Appendix A

The NP-Completeness Proofs

A.1 Base Model

The Base Model is shown to be NP-complete in the strong sense through a polynomial

transformation from the k-median problem. We consider the equivalent minimization form

of the Base model objective function:

min−
∑
w∈W

∑
j∈J

s∑
p=1

κwp∑
m=1

hwjpmzwjpm

The decision version of k-median can be expressed as follows.

k-Median Instance: A set of n data points, S, their distances, Dij where i = 1, ..., n

and j = 1, ..., n, an integer k and a threshold t.

Question: Is it possible to find a subset of S of size k, called cluster centers C, such that

the sum of distances from each data point to the nearest cluster center is less than t?

The decision version of the Base model can be obtained by modifying the objective func-

tion and interpreting it as a threshold constraint where (2.20) is less than or equal to t. An

instance of k-median can be transformed into an instance of the Base model by setting both
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J and W to be equal to S, the set of input data points to k-median. Here, J represents

the data points while W represents the potential cluster centers. Also, the parameter Rwj is

equal to the distance between data point j and a potential cluster center w, i.e., Rwj = −Dwj,

for ∀w ∈ W and j ∈ J . The rest of the parameters for the Base model are set as s = k,

λHj = 1, λLj = 0, τwj = 0, r = 0 and cw = 1, for ∀j ∈ J and ∀w ∈ W . This transformation

implicitly assumes that all ambulances are available all the time since service times are zero,

and therefore, the districts other than the first priority districts are inconsequential.

The transformation requires O(n2) time, and therefore, the transformation is polynomial.

In order to prove the validity of the transformation, one needs to show that a yes instance

of k-median would translate in a yes instance of the Base model and a yes instance of the

Base model corresponds to a yes instance of k-median.

Assume a yes instance of k-median. We transform the k-median solution to a solution

to the Base model by setting yw = 1 if the point corresponding to w is a cluster center and

yw = 0 otherwise, and zwj11 = 1 if point j belongs to cluster w, and zwj11 = 0 otherwise.

The remaining zwjp1 variables, where p 6= 1, are set arbitrarily such that zwjp1 forms a

preference list satisfying (2.23)-(2.25). Note that the index m becomes singular since cw = 1.

Moreover, κwp = 1 and max(1, p′ − cw + 1) = p′ for ∀w ∈ W , p = 1, ..., s and p′ = 1, ..., s.

Therefore, xwjp′ = zwjp′1 by (2.23), and in particular xwj1 = zwj11. Also, (2.21) and (2.22)

become redundant since they are satisfied whenever (2.25) holds. Furthermore, the number

of cluster centers is k, therefore
∑

w∈W yw = k = s. The correction factor, qjp1, is equal to 1

when p = 1, and thus hwjpm = −Rwj, which is equal to the distance between cluster center
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w and data point j. When p > 1, hwjpm = 0 since rp−1 = 0p−1 = 0. Therefore, the objective

function reduces to
∑

w∈W
∑

j∈J Rwjzwj11 which is the same as the objective function of k-

median. Consequently, a solution to k-median with an objective value less than t leads to

a solution to the Base model with an objective value less than t. Having satisfied all the

constraints for the decision version of the Base model, a yes instance of k-median leads to a

yes instance for the Base model.

A yes instance of the Base model consists of a preference list, zwjpm, for which (2.21)-

(2.27) are satisfied. It also has an objective value that is less than t. This solution to the Base

model can be transformed into a solution to k-median by assigning a data point j to a cluster

w if zwj11 = 1 for ∀j ∈ J . The first priority assignment of this preference list is a partition of

the data points along with an assignment from partitions to the cluster centers. The number

of cluster centers is
∑

w∈W yw = s = k. Therefore, zwj11 is a solution to k-median with an

objective value less than t, leading to a yes instance of k-median. Hence, the transformation

from k-median to the Base model is valid and of polynomial time. Therefore, the Base model

is NP-complete in the strong sense.

A.2 Model with Load Balancing and Contiguity (LBCM)

Here, we show that identifying districts that balance the workload is NP-complete in the

strong sense using a transformation from the bin-packing problem. Bin-packing can be

expressed as follows.

Instance: A set of n items, S, with their sizes a1, a2, ..., an, a bin size V and an integer
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k where 0 < k ≤ n.

Question: Can we partition the items into k disjoint sets Bi (1 ≤ i ≤ k) such that∑
l∈Bi

al ≤ V for all 1 ≤ i ≤ k?

The decision version of LBCM is formed by removing the objective function and fixing

the ambulance locations, leading to a yes-no model that checks the feasibility of a solution

to LBCM. Therefore, we are interested in showing that finding a feasible way to form the

preference lists is NP-complete.

The transformation from bin-packing to LBCM sets J = S and W = 1, ..., k, the set of

k bins. Moreover, the high-priority demands, λHj , are set to be equal to the item sizes aj,

∀j ∈ J . Furthermore, the load imbalance threshold is set equal to the bin size, δ = V . The

rest of the parameters are set as s = k, λLj = 0, τwj = 1, r = 0, Rwj = 1, Nwj = ∅, cw = 1,

and gw are set arbitrarily for ∀w ∈ W, j ∈ J . The transformation requires O(nk) time, and

it is therefore polynomial.

Now, we need to show that a yes instance for bin-packing translates into a yes instance

for LBCM. Assume a solution to bin-packing and set yw = 1 for ∀w ∈ W , and zwj11 = 1

if item j ∈ Bw and zwj11 = 0 otherwise, ∀w ∈ W, j ∈ J . As in the transformation from

k-median to the Base model, the remaining zwjp1 variables when p 6= 1 are set such that

zwjp1 forms a preference list satisfying (2.23)-(2.25). Likewise, (2.21)-(2.26) are satisfied since

cw = 1 for ∀w ∈ W . Also, constraint (2.27) is satisfied since
∑

w∈W yw = |W | = k = s, and

(2.31) is relaxed since Nwj = ∅. Knowing that qj11 = 1 and rp−1 = 0p−1 = 0 when p > 1,

constraint (2.28) simplifies to ow =
∑

j∈J λ
H
j zwj11 =

∑
j∈J ajzwj11 for ∀w ∈ W . Hence, (2.29)
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and (2.30) can be expressed as −V ≤
∑

j∈J ajzwj11 ≤ V . Since we started with a solution

to bin-packing, we have
∑

j∈J ajzwj11 =
∑

l∈Bw
al ≤ V for ∀w ∈ W . Also,

∑
j∈J ajzwj11 ≥ 0

since aj ≥ 0 for ∀j ∈ J . Consequently, −V ≤ 0 ≤
∑

j∈J ajzwj11 ≤ V and therefore, (2.28)-

(2.30) are satisfied. All in all, a yes instance for bin-packing transforms into a yes instance

for LBCM.

Lastly, we need to show that a yes instance for LBCM corresponds to a yes instance

for bin-packing. A solution to LBCM can be transformed into a solution to bin-packing by

assigning an item j to a bin Bw when zwj11 = 1. This transformation is valid since the first

priority assignment of nodes in J to stations in W is a also a partition of nodes into s disjoint

sets, corresponding to the k bins. A yes instance for LBCM leads to a yes instance for bin-

packing since (2.28)-(2.30) imply that −V ≤
∑

j∈J λ
H
j zwj11 =

∑
j∈J ajzwj11 =

∑
l∈Bw

al ≤ V ,

satisfying the capacity constraint in the bin-packing. Therefore, the transformation is valid,

and LBCM is NP-complete in the strong sense.
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Appendix B

Proofs of Theorems 1 and 2

B.1 Proof of Theorem 1

Consider demand node j. Without loss of generality, we assume that station 1 is the closest

station to j, station 2 is the second closest station to j, and so on. As a result, R1j >

R2j > · · · > Rsj since Rwj = f(Dwj), a monotonically decreasing function of distance Dwj.

The effect of each demand node’s preference list on the objective function is independent

from the effects of preference lists for the other demand nodes since the terms in (2.20) do

not interact with each other. Therefore, the contribution of node j’s preference list to the

objective is

max
∑
w∈W

s∑
p=1

κwp∑
m=1

qjpm(1− rm)rp−1λHj Rwjzwjpm, ∀j ∈ J (B.1)

We can simplify the above as

max
∑
w∈W

s∑
p=1

fwjλ
H
j Rwjzwjp1, ∀j ∈ J (B.2)

where fwj = qjp1(1 − r)rp−1 are the dispatch probabilities. Note that m = 1 since there

is no more than one server located at every station. Therefore, the Base model objective
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function reduces to (B.2) for individual j’s. Note that the correction factors (2.3) reduce to

the Hypercube correction factors in Larson (1975) when there is no more than one server

located at every station, and therefore, fwj’s are monotonically decreasing with priority, i.e.,

fwj > fw′j if j prefers w over w′. The objective function contribution from j in (B.2) is

largest when f1j > f2j > · · · > fsj since R1j > R2j > · · · > Rsj Hardy et al. (1952).As a

result, we conclude that in an optimal solution, station 1 is the first priority responder to

calls from j, station 2 is the second, and so on. Therefore, the demand nodes whose first

priority responder is station w are those that are closest to w. Hence, we conclude that the

first priority districts for the Base model are the same as ‘send-the-closest-server’ when there

is no more than one server located at every station.

B.2 Proof of Theorem 2

Consider a demand node j and a station w that is the closest to j. We denote the distance

between two points by Dwj. Consider A to be the set of all demand nodes whose distances

to j is less than or equal to dwj. Note that there will be no open station located within any

of the nodes in A except for w, since w is closest to j.

Assume a second demand node, j′, along the line between j and w such that j′ is closer

to w than j. Let B be the set of demand nodes whose distances to j′ is less than or equal

to dwj′ . The triangle inequality implies that for any node j′′ within B, dj′′j ≤ dj′′j′ + dj′j.

Knowing that dj′′j′ ≤ dwj′ and dwj = dwj′ + dj′j, it turns out that dj′′j ≤ dwj′ + dj′j = dwj.

Therefore, B is a subset of A and thus, there is no open station located within B and w is
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the closest station to j′ too. As a result, w will be the first priority responder to the calls

from j′. That means, if j’s first priority responder is w, the first priority responder for any

demand node along the line from j to w is also w. Hence follows the contiguity of the first

priority districts.
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Appendix C

Demand across different time periods

Eight time periods are considered in the computational examples. Figure 2.3 shows the

aggregate demand across all time periods. Figure C.1 and C.2 illustrate the variations in

the demand level between different time periods for weekdays and weekends, respectively.

The red color indicates an increase in the call volume relative to the last time period while

the blue color indicates a decrease. These figures show that during the weekdays (aside

from the 12am6am period) the demand is more concentrated in the Southern region of the

county, whereas the demand is more spread out during the weekend. This shift in demand

necessitates different server locations and districts at different time periods.

Figure C.1a shows that there is an overall increase in the EMS calls in the mornings during

the week, while the largest increase is in the middle of the county and around Ashland and

Mechanicsville. Similarly, the demand rises in the middle of the county throughout the

afternoon as shown in Figure C.1b. The opposite pattern starts taking place from 6pm

and continues until 6am, as illustrated in Figure C.1c and C.1d. The overall demand starts

decreasing throughout the county with the largest decrease happening in the middle of the
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county.

Similar to the weekdays, the overall call volume increases in the morning throughout the

county in the weekends. However, this change, shown in Figure C.2a, in not concentrated in

the center of the county as much as it is during the weekdays. The Doswell area, whose call

volume starts increasing from 6am, faces a sharp increase in the demand at 12pm (Figure

C.2b). This in fact is due to an amusement park that is located in this area whose peak

times are at weekend afternoons. The call volume starts decreasing all over the county from

6pm on.
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Figure C.1: The figure shows the variations of demand through different time periods dur-
ing the weekdays. Red indicates an increase in the demand and blue indicates decreasing
demands. (a) The amount of variation from 12am6am period to 6am12pm period. (b) The
amount of variation from 6am12pm period to 12pm6pm period. (c) The amount of variation
from 12pm6pm period to 6pm12am period. (d) The amount of variation from 6pm12am
period to 12am6am period.
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Figure C.2: The figure shows the variations of demand through different time periods dur-
ing the weekends. Red indicates an increase in the demand and blue indicates decreasing
demands. (a) The amount of variation from 12am6am period to 6am12pm period. (b) The
amount of variation from 6am12pm period to 12pm6pm period. (c) The amount of variation
from 12pm6pm period to 6pm12am period. (d) The amount of variation from 6pm12am
period to 12am6am period.
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