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In1 his paper introducing fuzzy sets, L.A. Zadeh describes the difficulty of assigning some real-

world objects to a particular class when the notion of class membership is ambiguous. If exact 

classification is not obvious, most people approximate using intuition and may reach agreement 

by placing an object in more than one class. Numbers or ‘degrees of membership’ within these 

classes are used to provide an approximation that supports this intuitive process. This results in a 

‘fuzzy set’. This fuzzy set consists any number of ordered pairs to represent both the class and 

the class’s degree of membership to provide a formal representation that can be used to model 

this process.[2] 

 

Although the fuzzy approach to reasoning and classification makes sense, it does not comply 

with two of the basic principles of classical logic.[3,p.36] These principles are the laws of 

contradiction and excluded middle. While they play a significant role in logic, it is the violation 

of these principles that gives fuzzy logic its useful characteristics.[4] 
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The problem of this representation within a database system, however, is that the class and its 

degree of membership are represented by two separate, but indivisible attributes. Further, this 

representation may contain any number of such pairs of attributes. While the data for class and 

membership are maintained in individual attributes, neither of these attributes may exist without 

the other without sacrificing meaning. And, to maintain a variable number of such pairs within 

the representation is problematic. C. J. Date suggested a relation valued attribute (RVA)[5] which 

can not only encapsulate the attributes associated with the fuzzy set and impose constraints on 

their use, but also provide a relation which may contain any number of such pairs. 

 

The goal of this dissertation is to establish a context in which the relational database model can 

be extended through the implementation of an RVA to support of fuzzy data on an actual system. 

This goal represents an opportunity to study through application and observation, the use of 

fuzzy sets to support imprecise and uncertain data using database queries which appropriately 

adhere to the relational model. The intent is to create a pathway that may extend the support of 

database applications that need fuzzy logic and/or fuzzy data. 
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Chapter 1 Chapter 1 Chapter 1 Chapter 1 ----    IntroductionIntroductionIntroductionIntroduction    

    1.1 1.1 1.1 1.1 ObjectiveObjectiveObjectiveObjective    StatementStatementStatementStatement    

A fuzzy data value is represented by a set consisting of ordered pairs of values (c,w)[2]. The first 

member of this pair c represents the data's class consisting of any number of enumerated 

characteristic values within a domain such as haircolor where C = haircolor = {'blonde', 'brown', 

'black', 'red', 'grey'}. As such, c ∈ C. The other value, w, is in the interval W = [0,1] which is the 

fuzzy data value’s weight or  degree of membership and indicates the membership associated 

with c. w = 0 indicates that the fuzzy data has no degree of membership to c. w = 1 indicates that 

the fuzzy data has total membership with c. Any other value represents the degree to which the 

data can be said to be a member of c.  

 

Each part of (c,w), however, is indivisible from the other. A class without an associated degree 

of membership is meaningless just as a degree of membership without an associated class is 

meaningless. Further, a fuzzy data value consists of any number of such pairs. To represent such 

a fuzzy data value in a database it is necessary to represent (c,w) in such a way that neither c nor 

w can be retrieved without the other. Further, it is necessary that a system consisting of fuzzy 

data provide the means to support any number of such pairs, (c,w) for an associated object.  

Figure 1.1 illustrates a possible fuzzy data value for an individual's hair color using the values 

using the domains C and W described previously: 

Fuzzy Data Value = { ('Brown', 0.80), 
 ('Blonde', 0.75), 
 ('Red', 0.55)} 

 
Figure 1.1 - Fuzzy Data Value for Hair Color 
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 It can be seen that the fuzzy data value in Figure 1.1 is composed of three ordered pairs which, 

when seen from the perspective of the relational model, can be viewed as a relation comprised of 

two attributes from the domains C and W and three tuples. This value represents the ambiguous 

nature associated with the color of an individual's hair which can be said, to the various degrees 

specified, to be 'Brown', 'Blonde' and/or 'Red'.  

 

Current database management systems cannot enforce a constraint to ensure the requisite 

indivisibility of the ordered pair associated with the fuzzy data value. Nor can they accommodate 

the variable number of such pairs potentially contained within the value. Within the confines of 

such systems the number of pairs is therefore limited and either member of (c,w) can easily be 

excluded by a query rendering the fuzzy data value limited and meaningless.  

 

By way of a solution to this problem, this dissertation presents two primary accomplishments. 

The first is the design, development and validation of a new data type, a Relation Valued 

Attribute (RVA), that can be included in the relational database management system MySQL to 

support fuzzy data values. The RVA provides a constraint that is used to enforce the atomicity of 

(c,w) in the representation of a fuzzy data value. As a relation, an RVA also provides the benefit 

of allowing a fuzzy data value to have any number of such pairs. Secondly, the dissertation 

describes the engagement of a panel of users to evaluate this new system with respect to the use, 

costs and benefits of using an RVA to represent the fuzzy data values. This research effort 

contributes to a greater understanding of the benefits and use of relation valued attributes in 

support of fuzzy data.  
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    1.2 1.2 1.2 1.2 Overview of Overview of Overview of Overview of the Approachthe Approachthe Approachthe Approach    

These accomplishments required a modification to the relational database server provided by the 

open source database management system (DBMS) MySQL be designed, implemented and 

validated. This design provides the ability to use and maintain an RVA to support the 

encapsulation of a complex fuzzy data value. The new RVA data type, for the first time, provides 

a constraint that ensures the atomicity of (c,w) which is necessary to the use and representation 

of fuzzy data within the relational model.  

The system, as designed and implemented, demonstrated the feasibility of crisp data to coexist, 

in every respect, with fuzzy data. The system: 

1. Appropriately maintains the relational model. 

2. Does not affect existing or ‘normal’ relational functionality. 

3. Appropriately supports the principle elements of relational algebra, specifically, the 

Cartesian Product as well as the Project, Restrict, Intersect and Join operations.[7] 

4. Enforces a constraint on the atomicity of the ordered pair associated with fuzzy data. 

5. Provides the flexibility to work not just with fuzzy data, but with nested relations of any 

size and cardinality. 

6. Uses standard SQL syntax to obtain a result whether the query accesses crisp or fuzzy 

data. 

7. Enforces the constraint on the representation of the fuzzy data value while also allowing 

the underlying supporting data to be accessed for modification or update. 
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    1.3 1.3 1.3 1.3 ContributionContributionContributionContribution    

The unique contribution made as a result of this research is that for the first time, a relation 

valued attribute has been designed and implemented in an RDMS to support both crisp and fuzzy 

data values. The new data type not only provides a constraint that guarantees the atomicity of the 

ordered pair, but also allows the database administrator access to the underlying fuzzy data table 

for modification and update. This new system has been used to validate and study RVA's as an 

approach to the support of fuzzy data within the relational model.  

The new system also allowed us to test the reactions and acceptance of users with respect to 

fuzzy data as well as see how quickly they came to adapt to the new concept.  
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Chapter 2 Chapter 2 Chapter 2 Chapter 2 ----Foundation Principles of Fuzzy Set TheoryFoundation Principles of Fuzzy Set TheoryFoundation Principles of Fuzzy Set TheoryFoundation Principles of Fuzzy Set Theory    

    2.1 2.1 2.1 2.1 BackgroundBackgroundBackgroundBackground    

The relational data model with its strict application and adherence to two valued logic, 

recognized data dependencies, normalized decompositions and  straight forward query language 

has, for many years, provided practitioners with an extremely logical and well-ordered 

representation of their data environment. The concepts inherent to fuzzy set theory can be used to 

expand this well ordered environment to reflect a more uncertain real world while still 

maintaining some sense of order.  

    2.1.1 2.1.1 2.1.1 2.1.1 LogicLogicLogicLogic    

The laws of identity, contradiction, and excluded middle form the basis of 2-valued logic in 

which statements must be either true or false within the context a particular logical argument.[5] 

These laws can be expressed using classical logic and classical or ‘crisp’ set theory. 

    2.1.2 2.1.2 2.1.2 2.1.2 Law of IdentityLaw of IdentityLaw of IdentityLaw of Identity    

The law of identity states that ‘whatever is, is’ meaning a proposition is equivalent to itself and 

likewise a real-world object is identical to itself (i.e. both (P � P) and A = A are true). [5]  Fuzzy 

set theory is not in conflict with this law and a fuzzy object is always itself. 

    2.1.3 2.1.3 2.1.3 2.1.3 Law of ContradictionLaw of ContradictionLaw of ContradictionLaw of Contradiction    

The law of contradiction states “nothing can both be and not be" meaning a proposition cannot 

be both true and false at the same time, within the same context (i.e. both ¬(P  ∧ ¬P) and A ∩ Ā 

= ø are true). [5]  2-valued logic does not allow a real-world object to be placed in more than one 

class at a time. It is not possible for the same bottle to be both empty and not empty at the same 

time. Fuzzy set theory allows a real-world object to have membership in one or more classes. A 

single bottle may be judged to be empty to some extent and not empty to some extent. 
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    2.1.4 2.1.4 2.1.4 2.1.4 Law of Excluded MiddleLaw of Excluded MiddleLaw of Excluded MiddleLaw of Excluded Middle    

The law of excluded middle states ‘everything must either be or not be’ meaning either a 

proposition is true or its opposite is true; both cannot be true (i.e. both (P ∨¬P) and A∪Ā = U, 

are true). [5]  2-valued logic allows a real-world object to be in a single class and to only have the 

traits of this class. A bottle is full or not full, empty or not empty. Fuzzy set theory allows a real-

world object to have partial membership in one or more classes and to have the traits of each 

class in varying degrees. 

    2.2 2.2 2.2 2.2 Crisp Sets Compared to Fuzzy SetsCrisp Sets Compared to Fuzzy SetsCrisp Sets Compared to Fuzzy SetsCrisp Sets Compared to Fuzzy Sets    

Zadeh describes crisp set membership as ‘precise’ and fuzzy set membership as 

‘imprecise’.[2,p.338] Crisp sets classify an object as either in the set or not in the set. A 

characteristic function evaluates an object's set membership and returns 1 if the object is in the 

set or 0 if the object is not in the set. Fuzzy sets allow classification of objects using a varying 

scale of set membership. A membership function returns a value from the interval [0,1] to 

indicate the degree of membership. This allows an object to have partial membership in one or 

more sets. Zadeh is clear that fuzzy set degree of membership is not the probability of the object 

being present in the fuzzy set, but rather it is the extent to which the object actually belongs to 

the classification represented by the set.[2,pp.339-40][6] Degree of membership allows the fuzzy set to 

be imprecise. Because of this imprecision, there is ambiguity in interpreting the meaning of 

degree of membership. 

 

The imprecision of fuzzy sets can originate from more than one source during data entry and/or 

data querying. There may be uncertainty about the accuracy of the data used as the value for a 

fuzzy set element. The classification may be an opinion or a subjective point of view. The 
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criteria used to search a fuzzy set may be vague. The person searching may not have a clear 

understanding of match criteria or may not be aware that a fuzzy set represents a category of 

great breadth. In these cases, a data element's degree of fuzzy set membership provides a 

measure of breadth and depth for its classification and retrieval. 

 

If there is a need for fuzzy sets, the meaning of a real-world object's membership in one or more 

of these sets must be clearly established and stated as a requirement of the implementation. This 

is included in documentation to set the scope of the user's expectations. Once the semantics of a 

fuzzy set are clearly stated, the benefits of intuitive understanding are available to those using the 

set. 

    2.2.1 2.2.1 2.2.1 2.2.1 The Universe of Bottles using Fuzzy SetsThe Universe of Bottles using Fuzzy SetsThe Universe of Bottles using Fuzzy SetsThe Universe of Bottles using Fuzzy Sets    

In the universe of bottles, assume there are three fuzzy sets that describe the fullness or 

emptiness of bottles. Each of these sets is a fuzzy classification. It is possible for a bottle to have 

some degree of membership in one or more of these classes depending on the content of the 

bottle. 

 

The membership function for the fuzzy set of empty 20 ounce bottles, as shown in Equation 

(2.1), is plotted over the scale of bottle contents in fluid ounces with two other fuzzy classes in 

Figure 2.1. The empty bottle degree of membership at 0 ounces is 1, at 10 ounces it is 0.5, and at 

20 ounces it is 0. 

empty(x) ={  (20 - x) / 20  when 0 ≤ x ≤ 20 (2.1)    

 
The membership function for the fuzzy set of half-full bottles is given in Equation (2.2). 
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half_full(x) ={  

0   when x = 0 

(2.2)    
x / 10  when 0 < x ≤ 10 
(20 - x) / 10  when 10 < x < 20 
0   when x = 20 

 
The membership function for the fuzzy set of full bottles is given in Equation (2.3). 
 

full(x) ={  x / 20  when 0 ≤ x ≤ 20 (2.3)    

 

0.0
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Empty(x)

Half_Full(x)

Full(x)

 
Figure 2.1: Fuzzy Sets (Universe of 20 oz. bottles: empty, half−full, full)  

 
These three membership functions each define a fuzzy set that intuitively makes sense. This 

makes it possible to describe a bottle that contains 5 fluid ounces as ‘partially full’ and ‘almost 

empty’ or ‘not very full’ based its contents. In precise terms, it means that the membership 

degree of a  bottle that contains 9 fluid ounces is 0.55 in a fuzzy set defined by the function 

empty, 0.9 in a fuzzy set defined by the function half-full, and 0.45 in a fuzzy set defined by the 
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function full. While the fuzzy sets defined by these three functions provide an intuitive model of  

bottles, the actual data used as arguments to these functions is from a crisp set VOLUME which 

contains the number of fluid ounces in each  bottle. 

    2.3 2.3 2.3 2.3 Relational     Database ModelDatabase ModelDatabase ModelDatabase Model    

E.F. Codd based the relational model on first-order predicate logic.[7] In the relational model the 

database is a collection of predicates over a finite set of predicate variables and the data is 

represented by n-ary tuples created from the Cartesian product of these n sets. This mathematical 

model of data makes it possible to create a consistent collection of information and to perform 

operations using relational algebra and relational calculus.[7] 

 

Relational databases are collections of relational variables (relvars) that present the user with 

tables (relations) of data values in columns (attributes) and rows (tuples). A relation is composed 

of two parts. The first is the heading, which is a set of attribute names and domain type pairs. 

The heading is a predicate or truth-valued function in which the attribute names represent a set of 

parameters that range over the attribute domains of the specified relation. The second part of the 

relation is its body, which is a set of tuples. Each of these tuples is a proposition, which is true 

for its attribute values within the database.[8,pp.67-68] A tuple not present in the database is a 

proposition which is false. Thus a query which returns an empty result relation, shows no data 

that can indicate a true proposition. 

    2.4 2.4 2.4 2.4 FuzzyFuzzyFuzzyFuzzy    Database ModelDatabase ModelDatabase ModelDatabase Model    

Support for fuzzy logic can be added to the relational model by the addition of fuzzy attributes. 

To do this, a domain is taken as the universe of discourse for a fuzzy set. A fuzzy attribute may 
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be of the same type as any crisp attribute with the addition of a degree of membership, called the 

membership weight. 

 

Each tuple in the body of a query results relation is a proposition and true to the extent 

determined by the combined membership weights of its attributes. A crisp attribute value found 

in a relation is true with a weight of 1. A crisp attribute value not found is false with a weight of 

0. Fuzzy attributes are true with a membership weight in the interval (0,1]. A fuzzy attribute 

value not found is false with an attribute weight of 0. Methods of combining weights of n 

attributes in a tuple are addressed by fuzzy operations for intersection and union using t-norm 

and t-conorm functions. These functions are described in Section  2.7 . 

 

When the relational database model is extended to include attribute types based on fuzzy set 

theory, the foundation of logic and mathematics is retained and the model is extended to include 

features that support applications using fuzzy logic. 

 

A database management system which uses fuzzy attributes to represent missing information and 

multi-valued logic is possible. Fuzzy sets suggest a potential alternative to null as a 

representation of missing data and attribute weights offer increased granularity for attribute 

classifications while supporting the recommended 3-valued Boolean data type described by 

Codd.[9] 
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Database applications able to match vague queries to ambiguous data in an intuitive way should 

be possible. Fuzzy sets offer techniques such as linguistic labels, modifiers, and variables that 

can support features of natural language. This capability is described in Section 2.10. 

    2.5 2.5 2.5 2.5 Fuzzy ConceptsFuzzy ConceptsFuzzy ConceptsFuzzy Concepts    

    2.5.1 2.5.1 2.5.1 2.5.1 Crisp and Fuzzy SetsCrisp and Fuzzy SetsCrisp and Fuzzy SetsCrisp and Fuzzy Sets    

Fuzzy set theory is a generalization of crisp set theory. U is a space containing points that 

represent real-world objects. A generic element of U, denoted by u, ranges over this domain of 

discourse.[2, p.339] The elements used to define and create both crisp and fuzzy sets are from this 

universal set U, which is a crisp set. 

    2.5.2 2.5.2 2.5.2 2.5.2 Universe of DiscourseUniverse of DiscourseUniverse of DiscourseUniverse of Discourse    

In the context of a fuzzy relational database model, the universe of discourse represents a domain 

of all attribute values. The attribute domain is the set of values from the universe that a specific 

attribute may take. LASTNAME is a character string variable which could contain the value 

‘Smith’, but it also has a domain that includes ‘Smith’ and all other valid last names. 

 

This latter use models logical concepts within the semantics of both model-theoretic and proof-

theoretic database as described by Date.[8,p.776] This supports a notation in which attributes have a 

type that is defined by a domain which is a subset of values from the universe of discourse and 

referenced using a variable that ranges over this subset.[10,p.104] 

    2.5.3 2.5.3 2.5.3 2.5.3 Crisp Set MembershipCrisp Set MembershipCrisp Set MembershipCrisp Set Membership    

Membership of an element in a crisp set C is determined by the set's characteristic function 

which returns a value from the set {0,1}. A 0 indicates that the element is not in the set. A 1 

indicates that the element is a member of the set.[3,p.6] 



 

 22    
 

 

 CharC(u) : U � {0, 1} where C ⊆U (2.4) 

The domain of the characteristic function in Equation (2.4) is the crisp set U and the range is the 

crisp set {0,1}.  

    2.5.4 2.5.4 2.5.4 2.5.4 Fuzzy Set MembershipFuzzy Set MembershipFuzzy Set MembershipFuzzy Set Membership    

The degree of membership for an element in a fuzzy set F is a value determined by its 

membership function over the interval [0,1]. Fuzzy sets are created either by elements from crisp 

sets made fuzzy by the association of a membership weight with the element, or by combining 

elements from existing fuzzy sets. The membership function takes an element value as its 

argument and returns this value's membership weight for a specific fuzzy set. [3,p.11] 

 µF (u) : U � [0; 1]  (2.5) 

The domain of the membership function in Equation (2.5) is the crisp set U and the range is the 

closed interval [0,1]. A fuzzy set F is defined over the universe of discourse U, and composed of 

pairs of values, where u is a value from the crisp set U and µF(u) is the degree of membership or 

the membership weight of u determined by the function µF , the membership function for fuzzy 

set F as in Equation (2.6).[2,p.339] 

 F = { µF(u)/ u | u ∈ U, µF(u) ∈ [0, 1]}  (2.6) 

    2.6 2.6 2.6 2.6 Fuzzy Set OperationsFuzzy Set OperationsFuzzy Set OperationsFuzzy Set Operations    

    2.6.1 2.6.1 2.6.1 2.6.1 EqualityEqualityEqualityEquality    

Two fuzzy sets A and B defined over U are equal when:[11,p.7]
 

 ∀u ∈ U, µA(u) = µB(u)  (2.7) 

    2.6.2 2.6.2 2.6.2 2.6.2 InclusionInclusionInclusionInclusion    

For two fuzzy sets A and B defined over U, A is determined to be included in B when: [11,p.7]
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 ∀u ∈ U, µA(u) ≤ µB(u)  (2.8) 

    2.6.3 2.6.3 2.6.3 2.6.3 ComplementComplementComplementComplement    

The complement, defined in Equation (2.9), is the relative complement of set  with respect to the 

universe of discourse defined by set U. U is a crisp set so that the weight of µ (u) for an element 

u in U, but not in  is equal to 0. [3,p.7] 

 = { µ (u)/u | µF(u) = 1 - µ (u), u ∈ U}  (2.9) 

The complement, defined in Equation (2.10), is the active complement of set F with respect to 

itself. [3,p.7] This is the case for a fuzzy relational database where the set F is the ‘active domain’ 

as defined by Codd [7, p.380] and F is the ‘active complement’ of F. 

  = { µ (u)=u | µ (u) = 1 - µ (u), u ∈ U, µ (u) > 0}  (2.10) 

    2.6.4 2.6.4 2.6.4 2.6.4 IntersectionIntersectionIntersectionIntersection    

The intersection of two fuzzy sets requires a binary function to combine membership weights 

when an element in set A matches an element in set B. This function, fuzzy intersection in 

Equation (2.11), takes two membership weights as its argument and returns an appropriate 

membership weight for the fuzzy set intersection operation. The class of t-norm functions meets 

these requirements so that t-norm and fuzzy intersection are interchangeable terms.[3,pp.61-2] 

 fuzzy intersection: [0, 1] x [0, 1] � [0, 1]  (2.11) 

Fuzzy intersection is often determined using the min t-norm function. 

 A ∩ B = {µA∩B(u)/u | µA∩B(u) = min[µA(u), µB(u)], u ∈ A ∧ u ∈ B}  (2.12) 

    2.6.5 2.6.5 2.6.5 2.6.5 UnionUnionUnionUnion    

The union of two fuzzy sets is similar to fuzzy set intersection. A binary function is required to 

combine membership weights when an element in set A matches an element in set B or to return 

the membership weight of elements from either set that do not have a match in the other set. This 
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function, fuzzy union in Equation (2.13), takes two membership weights as its argument and 

returns an appropriate membership weight for the fuzzy set union operation. The class of t-

conorm functions meets these requirements so that t-conorm and fuzzy union are interchangeable 

terms. [3,pp.76-7] 

 fuzzy union : [0, 1] x [0, 1] � [0, 1]  (2.13) 

Fuzzy union is often determined using the max t-conorm function. 

 A ∪ B = {µA∪B(u)=u | µA∪B(x) = max[µA(u), µB(u)], u ∈ A ∨ u ∈∨ B} (2.14) 

    2.7 2.7 2.7 2.7 TTTT----norm and Tnorm and Tnorm and Tnorm and T----conormconormconormconorm    

Operations that combine sets choose elements to be included in the results set. The characteristic 

function of crisp sets is used with logical operators to create logic functions to choose set 

elements. Logic functions that perform the choice admit a truth value of 0 or 1. 

 

Operations that combine fuzzy sets use two kinds of operators to determine the degree of 

membership for each element selected for inclusion in the combined fuzzy set. The t-norm and t-

conorm are logic functions that generalize 2-valued logic by admitting truth values on the 

interval [0, 1]. This value is taken as the degree of membership for the chosen element in the 

combined fuzzy set. The operands used to compute t-norm and t-conorm are the values from 

fuzzy set membership functions.[12,p.45] 

    2.7.1 2.7.1 2.7.1 2.7.1 TTTT----norm norm norm norm     

 
The t-norm operator, , is used by the fuzzy set intersection function. There are many functions 

generically represented using  that satisfy the criteria of the t-norm. [3,pp.74] All t-norm functions 

are defined by the properties given in Table 2.1 such that these functions maintain the 
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relationship in Equation (2.15). [12,p.46] The min function meets these criteria, is simple and is 

considered the standard t-norm operator for fuzzy sets. [3,pp.50] It is proven that min represents the 

upper limit for all t-norm functions. [3,pp.63]  While either prefix (i.e. min(a,b)) or index (i.e. a ∧ 

b) notation is correct, the prefix notation is used here to avoid confusion with the logical and ∧ 

symbol. 

   (x, y) ≤ min(x, y)  (2.15) 
 

Property Equation 
function  : [0, 1] x [0, 1] � [0, 1] 
arguments ∀a, b, x, y, z ∈ [0, 1] 
boundary conditions  (x, 0) = 0,  (x, 1) = x 
commutativity  (x, y) =  (y, x) 
monotonicity (x ≤ a, y ≤ b) ) ⇒  (x, y) ≤  (a, b) 
associativity  (  (x, y), z) =  (x,  (y, z)) 

 
Table 2.1: Definitions for t-norm 

    2.7.2 2.7.2 2.7.2 2.7.2 TTTT----conorm conorm conorm conorm     

 
The t-conorm operator, , is used by the fuzzy set union function. There are many functions 

generically represented using  that satisfy the criteria of the t-conorm. [3,pp.82] All t-conorm 

functions are defined by the properties given in Table 2.2 such that these functions maintain the 

relationship in Equation (2.16). [12,pp.46]  The max function meets these criteria, is simple and is 

considered the standard t-conorm operator for fuzzy sets. [3,pp.50] It is proven that max represents 

the upper limit for all t-conorm functions. [3,pp.77] While either prefix (i.e. max(a, b)) or index (i.e. 

a ∨ b) notation is correct, the prefix notation is used here to avoid confusion with the logical or 

∨ symbol. 

  (x, y) ≤ max(x, y)  (2.16) 
 

Property Equation 
function  : [0, 1] x [0, 1] � [0, 1] 



 

 26    
 

arguments ∀a, b, x, y, z ∈ [0, 1] 
boundary conditions  (x, 0) = x,  (x, 1) = 1 
commutativity  (x, y) =  (y, x) 
monotonicity (x ≤ a, y ≤ b) ) ⇒  (x, y) ≤  (a, b) 
associativity  (  (x, y), z) =  (x,  (y, z)) 

 
 Table 2.2: Definitions for t-conorm 

 
    2.8 2.8 2.8 2.8 The Intrinsic Nature of Fuzzy SetsThe Intrinsic Nature of Fuzzy SetsThe Intrinsic Nature of Fuzzy SetsThe Intrinsic Nature of Fuzzy Sets    

Some of the differences between crisp and fuzzy sets are significant. In particular, the law of 

contradiction (Equation 2.17) and the law of excluded middle (Equation 2.18) are applicable to 

crisp sets, but do not apply to fuzzy sets. 

 C ∩  = Ø  (2.17) 

 C ∪= U  (2.18) 

It is possible for u ∈ U to have membership in both fuzzy set F and its complement . The 

complement of a fuzzy set has this property because fuzzy set theory allows objects to be placed 

into more than one classification as determined by the membership function associated with each 

fuzzy set. 

 

If 0 < µF(u) < 1, then u is included in F̄  . This is because u has partial membership in F and a 

corresponding partial membership in its complement, . 

 

If µF(u) = 0, then u is also included in F̄  . This is because u has no membership in set F and the 

corresponding membership of u ∈  is µ(u) = 1. 
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An element in a crisp set C cannot also belong to its crisp complement, C̄  . This characteristic of 

crisp sets is the basis of the laws of contradiction and excluded middle which are central to 

classical logic and crisp set theory. 

 

Multiple classifications allow fuzzy sets to represent real-world classification in an intuitive way 

and suggest techniques that use fuzzy logic to create multi-valued logic. 

    2.8.1 2.8.1 2.8.1 2.8.1 Law of ContradictionLaw of ContradictionLaw of ContradictionLaw of Contradiction    

 
Equation (2.17) defines the law of contradiction for crisp sets, but does not apply to fuzzy sets. 

[3,pp.25] The following example using fuzzy set F defined over the universe U demonstrates that 

the intersection of F and its complement  is not equal to the empty set. 

U = {a, b, c, d, e, f, g, h, i, j} (2.19) 

F = {1.0/a, 0.3/b, 0.8/c, 0.6/d, 0.2/e, 0.1/j} (2.20) 

F = {0.7/b, 0.2/c, 0.4/d, 0.8/e, 1.0/f, 1.0/g, 1.0/h, 1.0/i, 0.9/j} (2.21) 

F ∩  = {0.3/b, 0.2/c, 0.4/d, 0.2/e, 0.1/j} (2.22) 

    2.8.2 2.8.2 2.8.2 2.8.2 Law oLaw oLaw oLaw of Excluded Middlef Excluded Middlef Excluded Middlef Excluded Middle    

 
Equation (2.18) defines the law of excluded middle for crisp sets, but does not apply to fuzzy 

sets. [3,pp.25] The example using fuzzy set F defined above demonstrates that the union of F and its 

complement  is not equal to the universe U. 

F∪ = {1.0/a, 0.7/b, 0.8/c, 0.6/d, 0.8/e, 1.0/f, 1.0/g, 1.0/h, 1.0/i, 0.9/j} (2.23) 

    2.9 2.9 2.9 2.9 Representations Using Fuzzy SetsRepresentations Using Fuzzy SetsRepresentations Using Fuzzy SetsRepresentations Using Fuzzy Sets    

Fuzzy sets model notions of set membership in a way that is compatible with common sense. 

Part of this model of reasoning is the idea of natural language where subtle differences in the 
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strength of descriptive terms are generally understood. This approach is used to query and match 

elements in a fuzzy set using match criteria with an expectation of more-or-less close matches. 

    2.10 2.10 2.10 2.10 Linguistic LabelsLinguistic LabelsLinguistic LabelsLinguistic Labels    

Linguistic labels are natural language words (e.g. large, tall) that provide a method of expressing 

membership in a fuzzy set using human terminology. [11,pp.3] Each linguistic label represents a 

classification defined as a fuzzy set or a subset of a fuzzy set. A fuzzy set which is convex 

(Equation 2.24) and normal (Equation 2.26) is also defined to be a fuzzy number representing a 

range of close values. [13,pp.50] A linguistic label can now represent a range of values as 

represented as a fuzzy number. In terms of natural language, modifying the breadth of a 

classification to a greater or lesser extent is achieved, theoretically, by using adjectives (e.g. very 

large). In terms of fuzzy set definition, such modifications must be made to the membership 

weights in queries of the set or through ‘filters’ applied to fuzzy set membership weights. While 

synonyms may be implemented using linguistic labels, adjectives and filters are implemented 

using α-cuts and/or functions known as linguistic modifiers.  

    2.10.1 2.10.1 2.10.1 2.10.1 ConvexityConvexityConvexityConvexity    

The fuzzy set F defined over U is convex when: [13, pp.50-1]
 

 ∀x,y ∈ U, ∀λ∈ [0, 1], µF(λ· x + (1 - λ) · y) ≥ min(µF(x), µF(y))  (2.24) 

    2.10.2 2.10.2 2.10.2 2.10.2 HeightHeightHeightHeight    

The height of fuzzy set F is the greatest membership degree for any element in set F (i.e. the 

supremum α when αF ≠ Ø).[3, p.21] 

 Height(F) = supµF(u) (2.25) 

 u∈U 



 

 29    
 

    2.10.3 2.10.3 2.10.3 2.10.3 NormalNormalNormalNormal    

A fuzzy set F is normal if its height is equal to 1 and subnormal when its height is less than 1. [3, 

p.21] 

   

Normal(F)  = {  
0  Height(F) < 1 (2.26)    

1  Height(F) = 1  
   
 

   

Subnormal(F)  = {  
0  Height(F) = 1 (2.27)    

1  Height(F) < 1  
   
 
    2.10.4 2.10.4 2.10.4 2.10.4 αααα----cut and Strong αcut and Strong αcut and Strong αcut and Strong α----cutcutcutcut    

The α-cut of a fuzzy set F is a crisp set, denoted by αF is: 

 αF = {u | u ∈ U, µF(u) ≥ α, α ∈ [0, 1]}  (2.28) 

The strong α-cut of a fuzzy set F is a crisp set, denoted by α+F is: 

 α+F = {u | u ∈ U, µF(u) > α, α ∈ [0, 1]}  (2.29) 

The concepts of α-cut and strong α-cut have a significant role in the relationship between fuzzy 

sets and crisp sets. Because these sets are crisp sets, certain properties and operations of crisp 

sets can be extended to sets defined using either an α-cut or a strong α-cut. [3, p.19] α-cuts can be 

used to define classifications used to search fuzzy sets using linguistic labels. 

 

The α-cut and strong α-cut define fuzzy set match criteria in terms of membership thresholds. An 

α-cut of a fuzzy set is the subset of elements whose membership weights lie above a threshold 

established by the value α. Adjusting the threshold will expand or contract the subset in a way 
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that will focus its membership on elements which have lessor or greater membership weights. [3, 

p.19-21] 

    2.10.5 2.10.5 2.10.5 2.10.5 SupportSupportSupportSupport    

The support of a fuzzy set F is a crisp set of the element values from F that have a membership 

weight greater than zero. This is the equivalent of the strong α-cut where α is equal to zero (i.e. 

0+F). [3, p.21] 

 Support(F) = {u | u ∈ U, µF(u) > 0}  (2.30) 

    2.10.6 2.10.6 2.10.6 2.10.6 KernelKernelKernelKernel    

The kernel of a fuzzy set F is a crisp set of the element values from F that have a membership 

weight equal to one. These are the elements that completely belong to F. [13, p.51] 

 Kernel (F) = {u | u ∈ U, µF(u) = 1}  (2.31) 

    2.10.7 2.10.7 2.10.7 2.10.7 Linguistic ModifiersLinguistic ModifiersLinguistic ModifiersLinguistic Modifiers    

Linguistic modifiers can be used with fuzzy set membership functions and linguistic labels to 

shrink or expand the notion of fuzzy set membership by decreasing or increasing area under the 

membership functions graph. This is similar to how adjectives modify the meaning of nouns in 

natural language. This technique is referred to as linguistic hedging. Linguistic hedges are 

intentionally ambiguous statements. Fuzzy set modifier functions shift or squeeze the 

membership weights from a fuzzy set to create a set that can be referenced by an appropriate 

linguistic label. The linguistic label of the modified set is composed by concatenating the fuzzy 

set identifier with a descriptive label (i.e. an adjective) associated with the set modifier. [14, p.54-5] 

 

From the example in Section 2.2 the three membership functions (i.e. EMPTY, HALF-FULL or 

FULL) can be used with the crisp set VOLUME to create fuzzy sets. In Table 2.3 the 
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membership weights for full bottles of a particular VOLUME and the effects of weights for 

linguistic modifiers (i.e. concentration, dilation, and intensification) as defined in the following 

sections are shown. A 20 ounce  bottle that contains 15 ounces is full with a weight of µFULL(15) 

= 0.75, but it is very full with only a weight of µVERY-FULL(15) = 0.562. The bottle belongs in the 

set FULL more than it belongs in the set VERY FULL. If the same  bottle is described as 

somewhat full and contains 15 ounces, it has a weight of µSOMEWHAT-FULL(15) = 0.866 which 

emphasizes the fact that a  bottle this full is, to a greater degree, somewhat full. 

Crisp set of bottle content in fluid ounces. 

VOLUME = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20} 

Example, linguistic label creates a synonym for a fuzzy set: 

FULL-SODA-BOTTLE = full(VOLUME) 

Example, linguistic labels and modifiers create new fuzzy sets: 

VERY-FULL = CON(full(VOLUME)) 

SOMEWHAT-FULL = DIL(full(VOLUME))  

    2.10.7.1 2.10.7.1 2.10.7.1 2.10.7.1 ConcentrationConcentrationConcentrationConcentration    

Concentration decreases membership weights of all elements in a fuzzy set, but proportionally 

more for elements of lessor membership weight. Concentrating the membership weights of a 

fuzzy set decreases the spread of the set element weights. This linguistic modifier hedges a query 

as if it were an adjective such as “very." [14, p.54]  

 µCON(F)(u) = (µF(u))2   (2.32) 

The effect of concentration is shown visually in Figure 2.2 where the dotted plot lines cover a 

more narrow range of higher membership weights. 
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    2.10.7.2 2.10.7.2 2.10.7.2 2.10.7.2 DilationDilationDilationDilation    

Dilation increases membership weights for all elements in a fuzzy set, but proportionally more 

for elements of lessor membership weight. Dilating the membership weights of a fuzzy set 

increases the spread of the set element weights. This linguistic modifier hedges a query as if it 

were an adjective such as “more-or-less." [14, p.54]   

 µDIL(F)(u) = (µF(u))1/2    (2.33) 

The effect of dilation is shown visually in Figure 2.2 where the dashed plot lines cover a wider 

range of higher membership weights. 

    2.10.7.3 2.10.7.3 2.10.7.3 2.10.7.3 IntensificationIntensificationIntensificationIntensification    

Intensification combines the effects of dilation and concentration. Membership weights are 

increased (i.e. dilated) for elements of greater membership weight and decreases (i.e. 

concentrated) for elements of lessor membership weights. This change takes place at the mid-

point of the set membership weights in the interval [0, 1]. [14, p.54]   

µINT(F)(u) = {  
2  (µF(u))2 if  0 ≤ µF(u) ≤ 0.5 (2.34)    

1 -2 (1 - µF(u))2 if  0.5 ≤ µF(u) ≤ 1  
 
The effect of intensification is shown visually in Figure 2 where the dot-dash plot lines shift from 

concentration to dilation at the mid-point of the membership weights range. 
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Volume Full Concentrated Dilated Intensified 
0 0.00 0.000 0.000 0.000 
1 0.05 0.003 0.224 0.003 
2 0.10 0.010 0.316 0.010 
3 0.15 0.022 0.387 0.022 
4 0.20 0.040 0.447 0.040 
5 0.25 0.062 0.500 0.062 
6 0.30 0.090 0.548 0.090 
7 0.35 0.122 0.592 0.122 
8 0.40 0.160 0.632 0.160 
9 0.45 0.202 0.671 0.202 

10 0.50 0.250 0.707 0.250 
11 0.55 0.303 0.742 0.595 
12 0.60 0.360 0.775 0.680 
13 0.65 0.423 0.806 0.755 
14 0.70 0.490 0.837 0.820 
15 0.75 0.562 0.866 0.875 
16 0.80 0.640 0.894 0.920 
17 0.85 0.722 0.922 0.955 
18 0.90 0.810 0.949 0.980 
19 0.95 0.902 0.975 0.995 
20 1.00 1.000 1.000 1.000 

     
Table 2.3: Full Bottles Membership Weights with Modifier Weights 
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Figure 2.2: Full Bottles Membership Weights with Modifier Weights 
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    2.10.8 2.10.8 2.10.8 2.10.8 Alternative to Linguistic ModifiersAlternative to Linguistic ModifiersAlternative to Linguistic ModifiersAlternative to Linguistic Modifiers    

The problems inherent in the concept of linguistic based modifiers as proposed by Petry and 

others [14] lay in the fact that words are cumbersome, unique to the society using the system and 

cannot reasonably, accurately and consistently be interpreted as quantitative values. It can easily 

be argued that any attempt to quantify language in any precise way is an exercise in futility. Even 

if such linguistic/value associations are agreed to by the user community or a team of experts, 

adjectives do not represent values. The community cannot reasonably interpret the word ‘very’ 

consistently as 0.8, which is essentially the concept behind linguistic modifiers; words and their 

synonyms that represent quantitative values that will have a consistent modifying effect on the 

fuzzy number.  

 

Consider an even simpler example. Linguistic modifiers consist of words and their synonyms. 

These words are nothing more than character strings which themselves are nothing more than 

symbols that have a conceptual meaning to users who are familiar with the language being used. 

As such, the word ‘very’ is no more meaningful than ‘%xy&’ if the community determines that 

‘%xy&’ has a linguistic meaning. It follows then that if a character or string of characters has a 

linguistic meaning to the community, then nothing more than the letter x is necessary to play the 

role of linguistic modifier. If it can be said that ‘very’ = 0.8 than it can just as reasonably be said 

that x = 0.8 along with its ‘synonyms’ y or z.  

 

While a user may recall the quantitative value associated with ‘very’, there is no assurance that 

they will. In short, words as modifiers are themselves fuzzy with meanings only determined and 

maintained by a community.  
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As an alternative, graphic modifiers can be substituted for linguistic modifiers. Consider the 

example of an implementation of a linguistic modifier (Figure 2.3) where the user selects from a 

list of words to communicate the higher or lesser intensity of certainty.  

 

Figure 2.3: Use of Linguistic Modifier 
 

Compare the example in figure 2.3 with the examples in figure 2.4 which represent a graphic 

modifier to accomplish the same objective.  

 

 
 

 
 

Figure 2.4: Use of Graphic Modifiers 
 

A graphic modifier is not only more intuitive, but also does not require the user or the 

community to determine the significance or quantitative value of the modifier. In fact, the 

graphic modifier translates very easily into a quantitative value as the ‘less’ end of the spectrum 

logically represents a value of 0 while the other extreme logically represents a value of 1. 
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Furthermore, graphics are independent of any human language which eliminates the need to 

maintain a dictionary.  

 

Given the fact that the purpose of a modifier is to communicate the level of intensity associated 

with a fuzzy variable, a graphic modifier has clear advantages over the use of linguistic modifiers 

and the associated dictionary of words, synonyms and their associated values. Further, the use of 

and results emanating from a graphic modifier translate directly into a quantitative value which 

represents the same information a community and system would struggle with in their attempt to 

quantify language. 

 

From this point forward, any reference to modifiers will refer to values obtained through the use 

of quantitative graphic modifiers.  

    2.11 2.11 2.11 2.11 Possibility TheoryPossibility TheoryPossibility TheoryPossibility Theory    

Zadeh built upon the concept of the fuzzy set and proposed possibility theory. Possibility theory 

is an abstraction that uses fuzzy logic to construct a semantic model of the logical relationships 

and patterns found in data. Zadeh's goal is a representation of information that accounts for the 

intrinsic imprecision, vagueness, and ambiguity in human reasoning and natural language. 

Possibility theory has a relationship with probability theory and includes concepts which parallel 

probability.[6] 

 

Possibility theory references the same universe of discourse, U, as fuzzy set theory. The variable 

X takes the value of u from U as shown in Equation (2.35). 

 X = u  (2.35) 
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Let fuzzy set F be a subset of U with a membership function µF. If F acts as an elastic constraint 

to determine the values assigned to X as in Equation (2.36) and F is associated with X as a fuzzy 

restriction, the degree to which F satisfies the constraint on X is measured as µF(u) which also 

indicates the compatibility of u with the concept represented by F. The degree by which the 

constraint is stretched to allow this assignment is measured as 1 - µF(u) and is the distance 

between u and the concept represented by F. 

 X = u | µF(u)  (2.36) 

Let R(X) be defined as a fuzzy restriction on X. An assignment equation of the form in Equation 

(2.37) associates the fuzzy set F with the restriction on values for the variable X. 

 R(X) = F (2.37) 

The fuzzy restriction applied to variable X in Equation (2.37) can be translated as the proposition 

that “X is F.” Zadeh postulates that this proposition associates a possibility distribution, PosX, 

with X as a fuzzy restriction on X as given in Equation (2.38). 

 PosX  R(X) (2.38) 

The possibility distribution function of PosX is defined as posX and is the numeric equivalent of 

the membership function of X as shown in Equation (2.39). 

 posX  µF (2.39) 

X is now a fuzzy variable associated with the possibility distribution PosX in the same way a 

random variable may be associated with a probability distribution. The possibility distribution 

function posX(u) is the possibility that X = u and is postulated to equal µF(u). 

 

The relational assignment in Equation (2.37) which associates F with variable X may be restated 

using Equation (2.38) as follows in Equation (2.40). 
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 PosX = F (2.40) 

Equation (2.39) defines posX(u) to be equivalent to µF(u)  and the possibility that X = u, is 

postulated to be equal to µF(u). [6, p.12]  In the context of a fuzzy relational database, the 

membership weight of a fuzzy attribute represents the extent to which it is possible that the 

attribute value belongs in the classification represented by its associated fuzzy attribute. This 

allows posX(u) to be used to refer to the possibility of u. 

An Example 

Let X be a variable that may take the value of u ∈ U and let FULL be a fuzzy subset of U 

consisting of  bottles that are full to some degree (refer to Table 2.3). R(X) = FULL associates the 

fuzzy set FULL defined by the function full in Equation (2.3) as a fuzzy restriction on X. 

 

If X is FULL, the association of FULL with a possibility distribution for X may be expressed as 

PosX = FULL. Now the possibility of X taking the value of u is posX (u) or µFULL(u). If the value 

of u is 15, the possibility of X taking this value is 0.75. It is possible that a 20 ounce   bottle 

containing 15 ounces is full with a degree or weight of 0.75. 

    2.12 2.12 2.12 2.12 Vocabulary of FuzzinessVocabulary of FuzzinessVocabulary of FuzzinessVocabulary of Fuzziness    

Imprecise is defined as not exact; vague or indefinite in nature. Imprecise was the first term used 

by Zadeh to describe fuzzy data. [2,p.338] 

 

Vague is defined as being stated in general or indefinite terms; not having an exact or precise 

meaning. There are other definitions implying that the cause of vagueness is a lack of 

understanding, clouded thoughts or a hazy mental state. While the first definition describes fuzzy 

data, the latter describes the mental state of the user rather than the data.[6][13] 
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Subjective is defined as being determined from opinions, intuition, or feelings rather than 

observation and reason. Subjectivity represents preconceptions derived from within the observer; 

not necessarily based on the external environment.[15] This is similar to the idea that vagueness 

may originate in the mind of the user rather than within the data. In the context of a database 

query, this suggests that the user may have expectations that acceptable results must match. 

 

Unclear is defined as being not explicitly defined, or indecipherable. Undefined data are similar 

to missing or not yet complete data. [15]  Data that are indecipherable are perhaps incomplete, but 

may also indicate that there is confusion on the part of the person interpreting the data. 

 

Ambiguous is defined as capable of being classified in two or more categories, which reflects the 

concept of partial membership in more than one fuzzy set. [13] Ambiguity is closely related to 

subjectivity, opinion, and perception. 

 

Uncertain has a number of relevant definitions that depend on context. A fact may be uncertain if 

there is doubt or the fact is not known. A numeric value is uncertain if it cannot be accurately 

measured or determined. Places and things are uncertain if not identified or located. Events in the 

past may be uncertain if they are of an indefinite date and time, as are events in the future that 

may not occur.[2] 
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Incomplete is defined as not being finished or not having all of its components. Missing data, 

unknown data, not applicable, or data not yet available are all meaningful descriptions of 

incomplete data.[9] 

 

Inconsistent is defined as showing contradiction; a proposition with parts that cannot all be true. 

Data integrity rules are intended to enforce data consistency requirements when a relational 

database is modified. If inconsistent data can be represented using fuzzy sets, the necessary 

membership weights may be set using database integrity rules.[ 13] 

 

Ma presents five classifications of imperfect data (i.e. inconsistent, imprecise, vague, uncertain, 

and ambiguous) for use when modeling fuzzy data. [13,p.47] But a careful analysis of these five 

classifications and the eight commonly used terms to describe fuzzy data suggests four kinds of 

fuzzy data described in the sections below. These types of fuzzy data are characterized by data 

structures of one or more related values and operators that manipulate these data as necessary to 

represent imperfect fuzzy data at both a syntactic and logical level. 

    2.12.1 2.12.1 2.12.1 2.12.1 Imprecise and VagueImprecise and VagueImprecise and VagueImprecise and Vague    

 
Both imprecise and vague describe values that may be known approximately, but not exactly. 

Imprecise numeric input is best represented as a data range that is likely to contain the accurate, 

but unknown value. A membership weight must be calculated for the approximate numeric 

value. Alternately, the input value may be a natural language term that is mapped by a process 

that determines an approximate numeric value and its ranges as well as the fuzzy weight that 

indicates how much the numeric value represents the natural language term. Vague queries with 

arguments defined in terms of natural language are the corresponding search for this approximate 
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value. The query term should map to the approximate value. An alternate search technique for 

approximate values is the use of α-cuts to select those values at and above a specified 

membership weight.[6][13] 

 

The database user intuitively knows if an answer is close or acceptable and can judge the query 

results. These imprecise numeric values are fuzzy numbers that are represented as weighted 

approximations mapped within a minimum/maximum range. 

    2.12.2 2.12.2 2.12.2 2.12.2 Subjective and UnclearSubjective and UnclearSubjective and UnclearSubjective and Unclear    

 
Application design and queries must encompass user subjectivity and data clarity. While unclear 

data may be incomplete data, it is also possible that lack of clarity is related to the data collection 

process or intrinsic data ambiguity and thus related to user subjectivity.[15] The database user's 

point of view is the focus of subjectivity and is represented by expectations for query results. If it 

is not clear how the database user will perceive the data, accurate query results depend on good 

database design and a clear understanding of application requirements specification. Queries 

derived from application requirements can be anticipated during application design and this 

awareness may be used to create stored query procedures that take advantage of this knowledge. 

Ad hoc queries may require a different strategy by using α -cuts to constrain searches. A solution 

may be to return a broadly defined result relation and allow the user to refine the ad hoc query 

interactively to seek more accurate results. 

    2.12.3 2.12.3 2.12.3 2.12.3 Ambiguous and UncertainAmbiguous and UncertainAmbiguous and UncertainAmbiguous and Uncertain    

 
Ambiguity may require multiple data classifications and membership weights. An ambiguous 

domain is represented by a data value of some appropriate type and one or more fuzzy 
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membership weights associated with the attribute as classification. Each classification is a set in 

which the data value has partial membership.[13] 

 

A common partial membership classification for fuzzy data is uncertainty. Application 

requirements should anticipate the potential of uncertainty and database design can then include 

a certainty membership weight. The certainty of an attribute value may vary over time (e.g. a 

value that is certain with a low membership weight at data entry may be updated with greater 

certainty later). Queries that answer questions can use the certainty weight when evaluating the 

truth of propositions in the search results. 

    2.12.4 2.12.4 2.12.4 2.12.4 Incomplete and InconsistentIncomplete and InconsistentIncomplete and InconsistentIncomplete and Inconsistent    

 
Incomplete data is a characteristic of change. Incomplete data must be stored as is until missing 

information is available. This is a known issue for the relational database model.[9] A fuzzy 

classification similar to data certainty may solve this problem.[6] An incomplete data value may 

have partial membership in a classification named complete. A search for data that is not 

complete can be used by a data validation process. A query that answers questions can use the 

weight of completeness to determine data reliability and to evaluate the truth of propositions in 

the search results. 

 

Inconsistent data is another issue and is related to database design rather than the relational 

database model. This is the case where different data values for the same attribute of the same 

object occur in different locations within the database. Inconsistent data indicates incorrect 

database design which can be corrected without using fuzzy logic. 
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Chapter 3 Chapter 3 Chapter 3 Chapter 3 ----    Relational Database SystemsRelational Database SystemsRelational Database SystemsRelational Database Systems    

 
    3.1 3.1 3.1 3.1 Problems Inherent to Relational Database SystemsProblems Inherent to Relational Database SystemsProblems Inherent to Relational Database SystemsProblems Inherent to Relational Database Systems    

There are unsolved problems in database systems that implement the relational model. The 

relational model was extended [9] to address the missing data problem and the extension was 

partially implemented in many relational database management systems. Imprecise and uncertain 

data remain an unsolved problem that may be solved by extension to the relational model and 

enhancements to existing database systems. 

    3.1.1 3.1.1 3.1.1 3.1.1 Relvar Data TypeRelvar Data TypeRelvar Data TypeRelvar Data Type    

The relational model allows a relation to be nested within an attribute as a value (i.e. a relation 

valued attribute). [16,p.23-24]  Relvars have a type defined by their heading and an existing relvar 

may be used as a template to create an identical relvar, but there is no declared relvar data type. 

[17,p.28]  For this reason, a relation valued attribute (RVA) has an implied data type of “relation” or 

RVA and its domain is all relations. 

    3.1.2 3.1.2 3.1.2 3.1.2 Attribute Data TypeAttribute Data TypeAttribute Data TypeAttribute Data Type    

 
The data types in the relational model are restricted to the domain types used to declare 

attributes. Current relational database management systems (RDBMS) do not support user 

defined data types that can be integrated into domain definitions. Current RDBMS domains 

allow Boolean, character, string, integer, floating-point and unstructured binary data types. What 

is typically considered a user defined data type in a current RDBMS is nothing more than a 

restriction on the range of numerical values allowed. 
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    3.2 3.2 3.2 3.2 Fuzzy Relational DatabaseFuzzy Relational DatabaseFuzzy Relational DatabaseFuzzy Relational Database    

Database applications may be more intuitive and usable when queries are allowed to be vague 

and results are enhanced with information derived by inference. Using fuzzy set theory to extend 

the relational model may provide a uniform method of support for vague queries. 

 

The relational model has been extended[9] and continues to be refined.[16] Database systems based 

upon the relational model have changed a great deal and in some cases are not consistent with 

the model. The use of null to represent missing data and 3VL are extensions to the relational 

model. Null was added to the SQL standard, but no RDBMS productsi implement a 

corresponding Boolean data type that includes the “unknown" value to support 3VL.[18,pp.13-4] 

 

An extension to the relational model based on fuzzy set theory is acceptable as long as the model 

is not violated. The model was based on crisp sets which are a specific case subsumed by fuzzy 

set theory. A fuzzy extension must be developed with an understanding of relational database 

theory, formal logic systems, and fuzzy set theory so that database domains can be implemented 

as fuzzy sets where attributes have names, types, and membership weights. This must be done in 

a way that makes sense and follows Codd's Twelve Rules, Date's “Rule Zero," (i.e. requirement 

that a relational database management system use its relational management facilities to manage 

the database), and the “Golden Rule" which requires that the set of relvars that constitute a 

database remain consistent with its integrity constraints at all times). [8] [19] [20] [21] [22] [23] [24] [25] 

                                                 
 
i In 2013, a search of the world wide web, product documentation and experiments using DBMS products indicate that Microsoft 

SQL Server[17], Microsoft Access[18], Oracle[19], Ingres[20], PostgresSQL[21] and MySQL[22] either implement a Boolean type capable 
of no more than 2-valued logic or that have no Boolean type at all. This requires the user to designate some other data type and a 
set of values to represent false, true, and unknown. 
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    3.2.1 3.2.1 3.2.1 3.2.1 Extending RDB with Fuzzy TypesExtending RDB with Fuzzy TypesExtending RDB with Fuzzy TypesExtending RDB with Fuzzy Types    

 
The relational model can be extended using fuzzy set theory to allow relvar attributes which have 

domains that are fuzzy sets. To make this extension, the appropriate distinction must be made 

between domains based on ordinary or crisp sets and those based on fuzzy sets. Such a 

distinction has been included in experiments using RDBMS products such as Microsoft SQL 

Server and Access, Oracle, Ingres, Postgres, and MySQL which either implement a Boolean type 

capable of no more than 2-valued logic or have no Boolean type at all. This requires the database 

user to designate some other data type and a set of values to represent false, true and unknown. 

    3.2.2 3.2.2 3.2.2 3.2.2 Representation of Unknown and Uncertain DataRepresentation of Unknown and Uncertain DataRepresentation of Unknown and Uncertain DataRepresentation of Unknown and Uncertain Data    

 
Codd added null and 3VL to the relational model to represent unknown or uncertain data. [9] 

Fuzzy sets are able to represent uncertainty. Zadeh gives an example application for fuzzy sets 

which suggests an implementation of 3VL using a fuzzy set using two value levels α and β with 

the relationships defined in Equation (3.1). 

 0 < α < 1 
 0 < β < 1 (3.1) 
 β < α 
 
A 3VL is defined using the attribute membership weights over the interval [0,1] with an 

application specific definition of the meaning for the α and β value levels. [2,pp.341-2] The formula 

for this logic is shown in Equation (3.2).  
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3VL for set F ={  

false  when µF(u) = [0, β]  

unknown  when µF(u) = (β, α) (3.2) 

true  when µF(u) = [α, 1]  

 
    3.2.3 3.2.3 3.2.3 3.2.3 A A A A Fuzzy Weight AttributeFuzzy Weight AttributeFuzzy Weight AttributeFuzzy Weight Attribute    

 
A fuzzy domain type must represent the membership weight constrained to (0,1] for 

compatibility with crisp data types. A crisp data type could be extended by the addition of a 

membership weight. Simply stated the fuzzy-typed attribute is both a membership weight in (0,1] 

and a crisp attribute. There must be a mechanism to associate the weight with a crisp value. This 

will create a (c,w) pair which satisfies first normal form. It must be possible to associate multiple 

(c,w) pairs to an attribute of another data type to allow database values membership in more than 

one classification. These features will allow fuzzy data types to be used within a DBMS 

implementation. 

    3.2.4 3.2.4 3.2.4 3.2.4 Fuzzy Fuzzy Fuzzy Fuzzy DDDData Categoriesata Categoriesata Categoriesata Categories    

Not every type of data is suited to a fuzzy interpretation. If the effort necessary to support a 

fuzzy-typed attribute is to be worthwhile, the use of fuzzy data must enhance the application. In 

Section 2.12 our categories of fuzzy data were defined. Each of these categories requires the 

selection of an appropriate scale of measurement before the classifications for fuzzy-typed 

attributes can be determined. There are five scale types which may apply to an attribute that is a 

candidate for fuzzy interpretation. These are the nominal, ordinal, interval, ratio, and absolute 

scales.[26,p.53] The data represented using these scales can be either numeric or a string used as a 

descriptive label. 
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Imprecise and vague data is from the ratio scale and is typically a floating-point value 

represented by a fuzzy number and/or a linguistic variable. Ratio data may be used to calculate 

totals and averages. Subjective and unclear data typically requires one or more partial 

classifications using fuzzy-typed attributes and may be from the nominal, ordinal, interval, or 

ratio scale. Ambiguous and uncertain data always requires partial classification using fuzzy-

typed attributes and may be from the nominal, ordinal, interval, or ratio scale. Incomplete data 

attributes may be from the nominal, ordinal, interval, or ratio scale and must be associated with a 

partial classification using a fuzzy-typed attribute that represents the level of data completeness. 

Inconsistent data indicates a flawed database design and cannot be fixed by fuzzy logic. 

 

Fuzzy classifications are given adjectives for names because of the necessary descriptive nature 

of attribute properties. The attribute and classification in combination describe some salient trait 

of an entity. The classification must be defined so the expected weight is greater than zero and if 

there is a default value, it is one. For example, the uncertainty of most data may be zero. If the 

uncertainty of an attribute value is a weight of 0.2, its certainty is 1 – 0.2 and the classification 

associated with the attribute is then represented as CERTAIN with a weight of 0.8.  

    3.3 3.3 3.3 3.3 Setting ExpectationsSetting ExpectationsSetting ExpectationsSetting Expectations    

A challenge to working with fuzzy data is the management or setting of user expectations. Using 

classic 2 valued logic, the response to a query returns data based on the evaluation of the 

predicate used to obtain that data as being true. This response reflects the classic two-valued 

logic that have come to expect. For example, users requesting a list of students enrolled in a 

specific class, say CS 301, expect the query to return any and all students who are enrolled in CS 
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301. The expectation is further confined to only those students enrolled in CS 301. The user 

would not expect students from another class to be included. In fact, such a response would be an 

error. The user's expectations follow the same logic as the query. If the student is enrolled in CS 

301 the predicate evaluates as true. If the student is not in CS 301 the predicate evaluates as false 

and the result will reflect this fact by the exclusion of that student from the response set. But 

fuzzy sets expand the capability of classical logic beyond the traditional two values. By necessity 

it also expands the user's expectations concerning the response. Because fuzzy set theory allows 

a real-world object to have membership in one or more classes, user expectations must be 

adjusted to expect and benefit from this outcome. 

 

As an illustration, consider a search engine on the Internet. The inner workings of a modern 

search engine are well known and no implication is being made that a search engine operates 

according to the tenets of fuzzy set theory. This example is intended only to highlight the 

importance and the role of user expectation in the query and response operation where the input 

and response is inherently uncertain. When a user enters a word or phrase into the search field, 

the engine returns associated web links that most closely match the user's input. For example, 

someone might enter "Three brave xxwy# men" in the search field of the search engine. 

Obviously, or at least it is assumed, "xxwy#" is meaningless and no sites exist on the Internet for 

this value. Using precise, two-valued classical logic, no web sites should be returned. But users 

have come to expect the search engine to return those sites that most closely match the selection 

criteria and to do so in descending order of the closeness of the match. There is any number of 

web sites containing the words `three', `brave' or `men'. There are probably a number of sites that 

have the phrase 'Three brave' or 'brave men' which, depending on the algorithm used would 
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either have greater or lesser prominence than the individual words. But this is not a fuzzy result 

set. Modern search engines may not assign membership weights to the set returned by the search 

query and so the concept of weighted membership has no role in this process. In fact, if none of 

the four words entered into the search field were on the Internet, nothing would be returned. In 

order to get a response set, some crisp value from the query must be present in the data. So there 

is an appearance of imprecision and uncertainty, but this imprecision is restricted to the presence 

of crisp data in some form. The search predicate evaluates as 'true' for some word, words or 

phrase contained in the query. And yet, despite this fact, this example serves to illustrate a 

situation where the user expects a result even if that result is not precisely or completely what 

they asked for. 

 

With the shift from classical two-valued logic to logic that accepts an object existing in more 

than one class and to varying degrees, the paradigm with respect to user expectations must shift 

as well, but only in logical ways. The user looking for students enrolled in class CS 301 should 

still expect a response that contains all and only those students enrolled in CS 301. In this 

situation, adding students enrolled in CS 312 and assigning a degree of membership would not 

make sense. In such a case, any application developed to accommodate fuzzy set theory should 

still operate in a way appropriate to the situation and in accordance with the user's expectations. 

The user, on the other hand, will need to expand those expectations to include either a crisp set or 

a fuzzy set response as logically appropriate. 

    3.4 3.4 3.4 3.4 Four Kinds of Database UpdateFour Kinds of Database UpdateFour Kinds of Database UpdateFour Kinds of Database Update    

The motivation for using fuzzy data is driven by application requirements and must be supported 

by a combination of database capability and design. When data is fuzzy it is necessary to 
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determine the nature and extent of this fuzziness using a consistent analytical process. The 

complexity of data entry and update is increased by the need to set a fuzzy-typed attribute 

weight. The data entry process must employ techniques that interpret the values entered for 

database update and map membership weights from these values. The semantic content of fuzzy 

data is stored in a relational database using crisp values that populate data structures designed to 

represent the components of fuzzy types (i.e. partial classification, multiple classification, fuzzy 

number, or linguistic variable). The impact on data entry applications that use these mapping 

techniques is significant, but data entry should be assisted by using parameters stored in the 

database catalog instead of being encoded in the application. 

    3.4.1 3.4.1 3.4.1 3.4.1 Crisp Data to Crisp DomainCrisp Data to Crisp DomainCrisp Data to Crisp DomainCrisp Data to Crisp Domain    

 
A crisp data value updated and stored in the database is the typical case. The expectation of the 

database designer and the application developer is an accurate transfer of data values from data 

entry forms or measurement instruments to database storage. 

    3.4.1.1 3.4.1.1 3.4.1.1 3.4.1.1         A SimpA SimpA SimpA Simple Examplele Examplele Examplele Example    

A database of business contacts is an example of a simple crisp database application. Each tuple 

includes a contact name, organization name, mailing address, email address and phone number. 

Salesmen collect business cards from potential customers and someone enters the data from each 

card into the database. The data source for this application is certain and crisp. The database 

domains are crisp. 

    3.4.1.2 3.4.1.2 3.4.1.2 3.4.1.2     Height ExampleHeight ExampleHeight ExampleHeight Example    

Data entry accepts the height in inches for a male subject age 20 and over. There is no 

expectation of error or subjective opinion. The measurement process is documented for a precise 
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measurement device operated by a skilled and trained technician who transcribes the 

measurement to a data entry form. 

    3.4.2 3.4.2 3.4.2 3.4.2 Fuzzy Data to Crisp DomainFuzzy Data to Crisp DomainFuzzy Data to Crisp DomainFuzzy Data to Crisp Domain    

 
This is the case where the opinions, point of view, and judgment of the person who collects 

and/or enters the data are used to adjust a value before it is added to the database. A mapping 

from a fuzzy concept to an appropriate precise value in a crisp domain may be needed, but it is 

also likely that data is missing and requires processing as an exception. If there is no default 

value, data entry must either follow some instruction set or enter a sentinel value that can be 

corrected later. It is likely uncertainty remains at the end of this process and information is lost. 

    3.4.2.1 3.4.2.1 3.4.2.1 3.4.2.1     A Simple ExampleA Simple ExampleA Simple ExampleA Simple Example    

The business contacts application is enhanced to include estimated sales data. These estimates 

are developed by the salesman after meeting with a customer. Salesmen are expected to estimate 

sales for current year using their expert opinion. This makes the data fuzzy, but some salesmen 

take it a step further and estimate a minimum and a maximum for expected sales as the estimate. 

They argue that the best estimate is somewhere in this range. The data entry operator enters the 

contact information and must include the estimated sales. If the estimate is a range, the data entry 

operator calculates the mid-point of the minimum and maximum and enters it as the estimate. 

Later the database administrator adds attributes for the minimum and maximum to the database 

with a function that calculates the sales estimate as the mid-point. If the salesman includes an 

estimate with a range, the calculated estimate can be overwritten. This creates a crisp version of a 

fuzzy number without a membership weight to measure the expert's belief in the approximated 

number. The expected sales data is fuzzy and the domain is crisp, but information is lost. 
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    3.4.2.2 3.4.2.2 3.4.2.2 3.4.2.2     Height Example Height Example Height Example Height Example     

Data entry accepts height in descriptive terms using natural language for a male subject age 20 

and over. The expectation of a subjective opinion is accepted. The measurement may be reported 

as an estimate by the subject who does not know his height or by another person. The height as a 

descriptive term may be short, average, tall, very short, normal, and “I am tall or almost tall.” 

Data entry is allowed to ask about the estimate and use the replies to enter a precise and specific 

height value in inches. Data entry must consider the height of the individual who estimated the 

subject's height. If the estimator believes that he and the subject are tall, but appears to be 5 feet 

in height, the estimation should be adjusted downward. If the estimator believes he is average 

height, but appears to be over 6 feet in height, and estimates the subject is very tall, the 

estimation should be adjusted upwards. If the estimator reports his height in inches and confirms 

that the subject was about the same height, this height can be entered. Using these techniques to 

map fuzzy data to a crisp domain will result in some instances where information is lost because 

there is no associated fuzzy-typed attribute to indicate certainty. 

    3.4.3 3.4.3 3.4.3 3.4.3 Crisp Data to Fuzzy DomainCrisp Data to Fuzzy DomainCrisp Data to Fuzzy DomainCrisp Data to Fuzzy Domain    

Crisp data may be used to update fuzzy domains designed for partial membership and/or multiple 

membership classifications. Fuzziness originates from the relationship between the crisp value 

and the fuzzy category. The membership weight is calculated based on this relationship which is 

an aspect of the application for which the database must be designed. The information needed to 

classify data values may be included on a data entry form or be available as part of the data 

collection process in a point-of-entry system. A well designed user interface for data entry is 

necessary to guide the process of category selection. 
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An example of crisp data update to a fuzzy domain is data collection under circumstances that 

indicate uncertainty about the accuracy of the data as it is collected or measured. In this case the 

crisp data values are entered with a weight of certainty. The alternative is to enter this data into a 

crisp domain with a qualification warning that the data is as accurate as possible, but the level of 

this accuracy is not known. 

 

Data can be missing because it is not yet available, does not exist, or is not applicable. In this 

case, a data entry option that allows a selection among classifications is necessary. The 

categories are represented by fuzzy-typed attributes and should be positive (i.e. with a weight of 

1 as the typical case) such as PRESENT vs. missing, KNOWN vs. unknown, AVAILABLE vs. 

unavailable, or APPLICABLE vs. not applicable with the choice of category used to calculate 

membership weight indicating the state of data completion as COMPLETE. An alternate 

approach is to rely on a sentinel value entered in place of the missing data and used to determine 

status of data completion. 

    3.4.3.1 3.4.3.1 3.4.3.1 3.4.3.1     A Simple ExampleA Simple ExampleA Simple ExampleA Simple Example    

The business contacts application is modified to require the data entry operator to classify the 

business using the information on the business cards both printed and written by the salesman. 

The database administrator decides the need for an opinion from the data entry operator requires 

that fuzzy data be stored in the database. A fuzzy classification to measure the uncertainty of this 

opinion is associated with the kind-of-business attribute. Expectations are that in most cases 

there is no uncertainty so the default membership weight for uncertainty is 0. The classification 

is changed to measure certainty and named CERTAIN. The default membership is 1.0, but the 

data entry operator may adjust this to any value on the interval (0,1]. There is no list of 
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appropriate categories for the attribute named KIND-OF-BUSINESS so the database 

administrator makes a snap decision to add another fuzzy classification. The prevailing opinion 

of the data entry operator is accepted, but if necessary, a sentinel value of unknown or missing 

can be entered for the kind of business. This fuzzy classification for unknown or missing data 

and is associated with KIND-OF-BUSINESS using the name UNKNOWN with a default 

membership weight of 0. The data entry application sets UNKNOWN to 1 if the KIND-OF-

BUSINESS value is unknown or to 0.5 for the value missing. If the missing data becomes 

available, a search for unknown values can match on the UNKNOWN membership weight 1 and 

data is updated. The data source is crisp, but the domain is made fuzzy by the addition of 

subjective data to the database. 

    3.4.3.2 3.4.3.2 3.4.3.2 3.4.3.2     Height ExampleHeight ExampleHeight ExampleHeight Example    

Data entry accepts the height in inches for a male subject age 20 and over from a verbal report. 

The report may be from a technician who used a precise measurement device to measure the 

individual or from clerical staff who asked the individual about his height. It is necessary to ask 

about measurement accuracy and include an accuracy membership weight with the height data. 

 

Data entry is required to ask a series of questions and set the accuracy membership weight 

according to the answers and several rules. “Did you measure the individual with an 

instrument?", “If not, did you estimate height or ask the individual?", and “If you asked the 

individual his height, was he standing up and does he appear to be that tall?" An accuracy weight 

in the interval (0,1] is determined from these questions and used to valuate the CERTAIN fuzzy-

typed attribute associated with the precise height value in the database. 
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    3.4.4 3.4.4 3.4.4 3.4.4 Fuzzy Data to Fuzzy DomainFuzzy Data to Fuzzy DomainFuzzy Data to Fuzzy DomainFuzzy Data to Fuzzy Domain    

Fuzzy domains are designed to store fuzzy data in a way that preserves the meaning of the data 

and minimizes loss of information. A database designed for fuzzy domains that are compatible 

with the application requirements for data representation can support any and all fuzzy data types 

including partial classification, multiple classifications, fuzzy numbers, and linguistic variables. 

Fuzzy data entry requires methods that can both store values in fuzzy type data structures and 

map these values to fuzzy membership weights. 

    3.4.4.1 3.4.4.1 3.4.4.1 3.4.4.1     A Simple ExampleA Simple ExampleA Simple ExampleA Simple Example    

The business contacts application is enhanced to reduce the number of business classification 

errors, correct a fuzzy database design flaw related to unknown data, and improve the 

representation of sales estimates using a genuine fuzzy number in place of crisp values.  

 

The data entry operator now classifies the business type using information from the business card 

and a pull-down list of acceptable classifications derived from the database administrator's 

domain analysis of customers. This list of categories eliminates confusion created by typing 

errors, synonyms, and conflict between the singular and plural. The certainty of a classification 

for KIND-OF-BUSINES selected from the pull-down list is a default CERTAIN weight of 1.0, 

but the data entry operator may adjust this to any value in the interval (0,1]. If the kind of 

business is unclear or the information is missing, radio-buttons are used to select a either 

unknown or missing instead of a classification from the pull-down list.  

 

Implementing this change allows the database administrator to correct a database design flaw 

introduced with the fuzzy typed-attribute UNKNOWN. The membership weight for an unknown 
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data value is 1 which means that the membership weight for a known data value is 0. While this 

seems logical, in the context of the relational model and crisp set theory, a value that is in the 

database has a weight of 1 and values not present have a weight of 0. To correct this problem, the 

UNKNOWN category is replaced with a fuzzy-type attribute named KNOWN and the database 

weights are changed. If a KIND-OF-BUSINESS is selected from the pull-down list the default 

KNOWN weight is 1.0. If the unknown button is selected the KNOWN weight is set to 0.1, the 

database administrator chose this value because it is a low value in the interval (0,1]. If the 

missing button is selected the KNOWN weight is set to 0.7. These weights are less than one and 

can be matched by queries and updated if the missing information becomes available.  

 

The estimated sales data introduced to the business contacts application is enhanced to use a 

fuzzy-number attribute in place of the crisp attributes representing the estimate. To 

management's surprise the salesmen were correct and the best estimate of sales for the years is an 

approximate value between the estimated minimum/maximum. The database administrator 

replaces the attributes for minimum expected sales, maximum expect sales, and estimated sales 

with a fuzzy number that uses a triangle function to represent the sales estimate. The triangle 

function for each customer in the contact database uses the minimum and maximum range as the 

base of the triangle on the x axis and is normalized such that the estimated sales has a 

membership weight of 1. The salesmen are asked to enter all three values on the business card, 

but if the range is the best estimate, the mid-point value is used as the estimate. Using a fuzzy 

number supports sales queries using approximate numbers and fuzzy arithmetic that can sum the 

estimated sales for multiple customers giving another fuzzy number.  
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The business contacts database is easy to use and provides unexpected useful information. The 

data source and the domain are both fuzzy. 

    3.4.4.2 3.4.4.2 3.4.4.2 3.4.4.2     Height ExampleHeight ExampleHeight ExampleHeight Example    

Fuzzy sets are defined using crisp data from the National Health Statistics Reports[27,p.16] to 

develop a fuzzy height domain for men age 20 and over, the fuzzy sets defined from this data are 

used to derive partial classifications, multiple classification, fuzzy numbers and linguistic 

variables that support fuzzy data update for precise data from overlapping ranges.  

 

Once defined, the meaning of fuzzy terms or values and the significance of fuzzy set 

membership weight must be understood in the context of the domain defined for the fuzzy data. 

This understanding can be established by a meaningful crisp attribute name (i.e. HEIGHT), an 

association with relevant fuzzy-typed attributes (i.e. CERTAIN and KNOWN), and metadata that 

defines the fuzzy domain (i.e. as a linguistic variable). The attribute HEIGHT is a crisp attribute 

on the domain of positive floating point numbers in the range of possible measurements of 

stature for adult men. Additionally, it is a fuzzy number based on the range of heights from the 

linguistic labels (i.e. short, average, and tall) from Table 4 and a linguistic variable defined by 

the membership functions for short in Equation (3.2), average in Equation (3.4), and tall in 

Equation (3.5). These functions are virtual fuzzy sets represented as metadata and stored in the 

database system catalog. The use of linguistic labels for data entry requires the HEIGHT be 

associated with a fuzzy-typed attribute CERTAIN with partial membership in this category to 

measure any uncertainty implied by imprecise input and to support vague query. If it is possible 

for HEIGHT to a valid unknown value, it must also be associated with a fuzzy-typed attribute 

named KNOWN with partial membership. 
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Figure 3.3: Height Men over Age of 20. 
 
The membership function for the fuzzy set of short men over the age of 20 shown in Equation 

(3.2) is plotted as half of a trapezoid over the scale of height in inches in Figure 3.3. The short 

membership weight at 60 inches is 1 and it falls to 0 when height reaches 69 inches. 

 

short(x) ={  

1   when x ≤ 64 

(3.2) (70 - x) / 6  when 64 < x < 70 

0  when x ≥ 70 

 
The membership function for the fuzzy set of men of average height over the age of 20 shown in 

Equation (3.3) is plotted as a trapezoid over the scale of height in inches in Figure 3.3. The 

average height membership weight from 69 to 71 inches is 1 and it falls to 0 as height either 

decreases or increases. 
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average(x) ={  

0   when x ≤ 60 or x ≥ 76 

(3.3) 
(x - 60) / 6  when 60 < x < 66 

(76 - x) / 6  when 70 < x < 76 

1  when 66 ≤ x ≤ 70 
 
The membership function for the fuzzy set of tall men over the age of 20 shown in Equation 

(3.4) is plotted as half of a trapezoid over the scale of height in inches in Figure 3.3. The tall 

membership weight at 80 inches is 1 and it falls to 0 as height falls to 71 inches. 

 

tall(x) ={  

0   when x ≤ 66 

(3.4) (x - 66) / 6  when 66 < x < 72 

1  when x ≥ 72 

 
    3.5 3.5 3.5 3.5 Four Kinds of Database QueryFour Kinds of Database QueryFour Kinds of Database QueryFour Kinds of Database Query    

The impact of fuzzy search on the data query processor may be significant. The complexity of 

data query is increased by the need to evaluate fuzzy-typed attribute weights in the results. The 

semantic content of fuzzy data stored in a relational database using data structures designed to 

represent the components of each fuzzy type (i.e. partial classification, multiple classification, 

fuzzy number, or linguistic variable) must be evaluated by the query processor and compared to 

both precise and vague search terms. Search effectiveness and consistency can be enhanced by 

using parameters stored in the database catalog instead of being encoded in the application. 

These search techniques must interpret database attribute values and associated membership 

weights for presentation. An alternate approach is to let the database user rely on intuition to 

evaluate results. For example, membership weights for data certainty and completeness may be 

self-evident. 
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    3.5.1 3.5.1 3.5.1 3.5.1 Crisp Query of Crisp DataCrisp Query of Crisp DataCrisp Query of Crisp DataCrisp Query of Crisp Data    

 
A exact match of data query arguments to precise data stored in the database is the typical crisp 

case. If the search criteria are accurate and complete, a corresponding crisp result set is expected. 

If the search criteria are terms that the user believes may match in some cases, the search criteria 

are incomplete, but a useful match on one or more term is possible. 

    3.5.1.1 3.5.1.1 3.5.1.1 3.5.1.1     A Simple ExampleA Simple ExampleA Simple ExampleA Simple Example    

The business contacts database from Section 3.4 is queried using a value to match an attribute of 

interest. This could be the last name of the contact or the name of the organization. The query 

and results are crisp. If there is not an exact match, there are no tuples in the result. 

    3.5.1.2 3.5.1.2 3.5.1.2 3.5.1.2     Height EHeight EHeight EHeight Exxxxampleampleampleample    

The user queries a database of males age 20 and over for those who are 72 inches or greater in 

height. There is no expectation of error in the database. A result set of those men who were 

precisely measured at 72 inches or taller are founds and included in the query results. 

    3.5.2 3.5.2 3.5.2 3.5.2 Fuzzy Query of Crisp DataFuzzy Query of Crisp DataFuzzy Query of Crisp DataFuzzy Query of Crisp Data    

The goal to support fuzzy query of crisp data requires a retrofit to the classical database. The 

capability of vague search depends on an understanding of the nature of the data and if this has 

not been built into the database by design, it must be implemented in the application's query 

programs. This may be done by adding fuzzy-typed attributes to represent classification with 

partial membership for categories such as certainty of data accuracy or data completeness. 

Another approach is to create tables of linguistic labels that represent ranges of data values to 

support a more user friendly interface. In both cases the association between the crisp data and 

the fuzzy retrofit must be implemented in the application.  
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    3.5.2.1 3.5.2.1 3.5.2.1 3.5.2.1     A SiA SiA SiA Simple Examplemple Examplemple Examplemple Example    

The business contacts database from Section 3.4 is queried using a stored procedure. This 

procedure is a search for approximate estimated sales as a match to the value of its argument. 

The query compares the argument value to the minimum sales, estimated sales, and maximum 

sales in the business contact database and returns all tuples where the argument falls within a 

value range. The results set is ranked using the range of estimated sales to maximum sales 

expected and then using the range of minimum expected sales to estimated sales. This is a 

simulated fuzzy query that returns all estimates that are close to the search argument. Most of the 

sales estimates are mid-points between the minimum and maximum and give very rough 

estimates. Totaling or averaging sales gives approximate results. The crisp data in the database 

represents fuzzy data. 

    3.5.2.2 3.5.2.2 3.5.2.2 3.5.2.2     Height ExampleHeight ExampleHeight ExampleHeight Example    

A person's height can be measured precisely and verified. If they turn out to be taller or shorter, 

there may be error in the measurement process rather than the measurement system. There is no 

judgment involved in determining a person's height when a calibrated measurement device is 

used. 

 

There is uncertainty when the issue is whether a person who measures 6 feet in height is tall. The 

answer varies widely given a person's perspective. A community may have a consensus, but this 

is only a combination of individual opinions. A universal consensus is unlikely because the local 

definition of tall will depend on the average height of the individuals in the community. If the 

community is short then “average” height may be considered tall. 
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It is possible for the members of the community to change. If the members of the original 

community tend to be short, the community conception of tall may increase as the population of 

the community becomes taller. It is reasonable to expect the community to change its opinions as 

its membership changes; therefore it is futile to define a static definition for tall. 

 

It is important to include the perspective of the observer in the process that defines what is 

considered tall. It is also important to respect the lower and upper limits of human height. In 

Figure 3.3, it can be seen that a male with a height of 67 inches or greater is considered to be tall. 

At a height of 72 inches a male is tall with a membership weight of µTALL(x) = 1.0, but those of 

average height may have some degree of membership in the tall classification. The cross-over 

point for the average height and tall membership functions is at 74 inches where µAVERAGE(x) = 

0.83 and µTALL(x) = 0.83. This means that at a height of 71 inches a male may be considered to be 

of average height with a weight of 0.83 and tall with a weight of 0.83. Membership is fuzzy at 

the cross-over point allowing membership equally in multiple classifications.  

 

To allow a search using a descriptive phrase such as a “tall adult male," a synonym table must be 

provided for the user interface so that fuzzy query terms can be selected and used to create a 

phrase that can map to a crisp value. The synonym table includes search terms and α-cuts which 

are values calculated from the height values close to the meaning of the term. Once an 

appropriate α-cut is identified the database may be search to find values equal to or greater than 

the α-cut which will be included in the results relation. 
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Additionally, modifiers such as “very” could be factored into the degree, modifying the value of 

membership function of height at its extremes, to further refine the weighted response. For 

example, VERY(x) = µINT(HEIGHT)(x) uses an linguistic modifier to concentrate height towards the 

greater values of µheight(x). This technique allows “very tall” to be included in the synonym table 

and associated with an α-cut of greater value that that for “tall.” 

    3.5.3 3.5.3 3.5.3 3.5.3 Crisp Query of Fuzzy DataCrisp Query of Fuzzy DataCrisp Query of Fuzzy DataCrisp Query of Fuzzy Data    

 
A precise query for fuzzy data may be the case of using an ad hoc query to examine data and 

resolve an anomaly in the database or a problem in the application. It may also be the case of a 

user checking a fact with a general purpose data query tool. The search criteria are precise terms 

the user expects to match a particular tuple in the database. Retrieving this data value for 

interpretation is the purpose of this kind of query. 

    3.5.3.1 3.5.3.1 3.5.3.1 3.5.3.1     A Simple EA Simple EA Simple EA Simple Examplexamplexamplexample    

The business contacts database from Section 3.4 (Crisp Data to Fuzzy Domain) is queried using 

general purpose tool included with the database management system. The database administrator 

needs a report of the KIND-OF-BUSINESS attribute values to conduct a domain analysis of 

customers and wants to evaluate the data entry operator's level of certainty associated fuzzy-

typed attribute CERTAIN. The crisp query is ordered by the values in KIND-OF-BUSINESS 

and the fuzzy membership weights are interpreted by the database administrator as values on the 

interval (0.1]. 

    3.5.3.2 3.5.3.2 3.5.3.2 3.5.3.2     Height ExampleHeight ExampleHeight ExampleHeight Example    

The user queries a database of males age 20 and over for those who are 72 inches or greater in 

height. There is no expectation of error in the database. A results set of those men who were 
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precisely measured at 72 inches or taller is found and included in the query results. But the 

attribute HEIGHT in the database is fuzzy and includes a fuzzy attribute UNCERTAINTY 

because the data entry process allowed either height in inches or a descriptive phrase as input. 

The data entry user interface relied on fuzzy constraints to enter the data and determine its 

membership weight in UNCERTAINTY. If the user query requests all attributes, there is a 

column in the results table indicating the certainty that the height is accurate. 

    3.5.3.3 3.5.3.3 3.5.3.3 3.5.3.3     Issues and ExpectationsIssues and ExpectationsIssues and ExpectationsIssues and Expectations    

By its very nature, a precise query set expects a precise response set to be returned. If a user asks 

for students taking Course 310, the user will expect to see these students and only these students 

contained in the response set. It would be inappropriate to also include students enrolled in 

course 311 and associate these students with a weighted possibility. 

 

Nor would it be appropriate to return a set containing a value of anything other than 'Large' if the 

user selects boxes where size is equal to 'Large'. While the characteristic 'Large' may be seen as 

subjective and its application uncertain, it would not be stored or maintained as a subjective 

value in a set. Seemingly subjective values such as Large, Medium and Small would be assigned 

within the set based on certain quantifiable and community agreed upon criteria. While the 

concept of size is thus 'fuzzy', its application within the set is not. Size is, in fact, given certainty 

by its assignment of a value. In its use, the query for a box where the seemingly subjective size is 

'Large' would be just as definitive as a query where the course equals '310'. While the data is 

inherently uncertain in its definition, that definition is given crisp form by its application as a 

value in a set. 
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Another example of this type might be that of an asset class. An asset class might contain a value 

of `Boat', `Car' or `Truck'. Individuals can debate what characteristics uniquely and indisputably 

qualify an asset to be a `Car', but the fact that the characteristics are debatable implies 

uncertainty. For example, there is a vehicle called a 'Duck' that was designed to go off of the 

road and into the water and propel itself like a boat. Then there is the popular American classic 

automobile, the El Camino, which was distinguished by appearing to have all the characteristics 

commonly associated with a `Car' but possessing a truck bed. So the question arises, is the Duck 

a `Car' or a `Boat'? Is the El Camino a `Car' or a `Truck'? Well, when a user extracts from a set 

all assets of class `Car', the system will return all those assets which have been assigned a class 

value of 'Car'. The uncertainty is within the user's mind only. The uncertainty generally does not 

exist within the elements of the set. But what if the system were to take the preceding example 

and assign a membership weight to the value contained in the CLASS attribute? If it were 

determined that the El Camino is 0.6 a `Truck' class asset and 0.9 a `Car' class asset, and request 

all assets where the class is equal to `Car', one might get something of a fuzzy set as represented 

in Table 3.5. 

 
Asset    µµµµcar(x) Classification 

Bentley 1.0 Car 
Thunderbird 1.0 Car 
El Camino 0.9 Car 
Duck 0.6 Car 
F-150 0.0 Car 

 
Table 3.5: Cars 

 
Would this result be meaningful? Would it have a practical application? In such a case, the 

possibilistic value would need to be assigned by the community up front. The decision would 

need to be made and a value assigned that an El Camino has a 0.9 membership in the `Car' class. 
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Or, taken from the other side, there is a 0.1 possibility that it is not a `Car'. The result set would 

then be ranked by its membership weight, this time in decreasing order of likelihood. 
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Figure 3.4: Classification of Cars and Trucks 
 
While the graph shows the F-150 to have a membership within this set of 0.0, it could be argued 

and agreed to by the community that the F-150, though a 'Truck', does transport passengers and 

so is, to some degree of truth, a car. 

 

So there is a challenge with assigned and static membership weightings relating to the 

complexity of maintaining the data. This example is a fairly easy one. The task of establishing 

and maintaining a 'possibility of truth' for all values and all permutations at first blush seems 

unreasonable. Suppose there are asset classes for car, truck, boat, machine, computer 

(automobiles have computers contained within them) and then these are categorized as light 
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weight, heavy weight, medium weight and the scope of the exercise and the system gets a little 

out of hand, particularly when these weights are reviewed and reevaluated. 

    3.5.4 3.5.4 3.5.4 3.5.4 Fuzzy Query of Fuzzy DataFuzzy Query of Fuzzy DataFuzzy Query of Fuzzy DataFuzzy Query of Fuzzy Data    

Fuzzy queries are designed to match the information encoded in structures designed for fuzzy 

data types including partial classification, multiple classifications, fuzzy numbers, and linguistic 

variables. Fuzzy queries require methods that can map search criteria to values in fuzzy data 

structures, retrieve these data, and interpret fuzzy membership weights in a meaningful way. The 

fuzzy database and query application interface must be designed to be compatible with 

application requirements. Adequate data representation is a prerequisite for good data 

presentation. 

    3.5.4.1 3.5.4.1 3.5.4.1 3.5.4.1 A Simple ExampleA Simple ExampleA Simple ExampleA Simple Example    

The business contacts database from Section 3.4 (Fuzzy Data to Fuzzy Domain) is searched 

using a query program developed for the business contacts application. The database user 

interface form includes each database attribute, but matches using only the query arguments 

entered in this form. A sample query returns the contact name and phone number of a specific 

type of organization (i.e. KIND-OF-BUSINESS) selected from the pull-down list if the expected 

sales for the year are approximately a million dollars or more with a possibility of 0.9 or greater. 

 

The search returns three tuples that represent the proposition interpreted as “the business contact 

NAME can be reached at PHONE NUMBER where approximately ESTIMATED SALES worth 

of sales with a possibility of SALES-WEIGHT are expected.” These three tuples are ranked 

using an aggregation of the membership weights for all crisp and fuzzy attributes in the search. 
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This aggregation is interpreted as the overall truth represented its associated tuple (i.e. 

proposition). 

    3.5.4.2 3.5.4.2 3.5.4.2 3.5.4.2 Height ExampleHeight ExampleHeight ExampleHeight Example    

Fuzzy sets are defined using crisp data from the National Health Statistics Reports [27,p.16] to 

develop a fuzzy height domain for men age 20 and over, the fuzzy sets defined from this data are 

used to derive partial classifications, multiple classification, fuzzy numbers and linguistic 

variables that support fuzzy queries such as “above average height” and “maybe tall” for use 

with precise and fuzzy data that overlaps in ranges. This example may be identical to the Height 

Example in 4.4.2 (Fuzzy Query of Crisp Data). 
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Chapter 4 Chapter 4 Chapter 4 Chapter 4 ----    Modeling Fuzzy Relations Modeling Fuzzy Relations Modeling Fuzzy Relations Modeling Fuzzy Relations     

 

    4.1 4.1 4.1 4.1 Overview of Entity Relationship ModelingOverview of Entity Relationship ModelingOverview of Entity Relationship ModelingOverview of Entity Relationship Modeling    

A relational database is composed of individual entities and the relationships that exist between 

them. Each entity and relationship is defined by the attributes contained within the entity or 

relationship which will evolve into the relational variable or ‘relvar’ and the data model 

associated with the entity or relationship. In order to communicate the characteristics of a 

relational database, the entities, the relationships and their attributes, a modeling methodology is 

useful. Various symbologies have been devised with the first being proposed by Dr. Peter 

Chen.[28] Together these symbols are used to construct an ‘Entity-Relationship’ (E-R) Diagram. 

While the specific characteristics and symbols used can have a rather personal styling, there are 

some common elements essential to all E-R diagrams as described below.  

    4.1.1 4.1.1 4.1.1 4.1.1 Entity or Entity SetEntity or Entity SetEntity or Entity SetEntity or Entity Set    

 
An entity is something that exists and has properties such as an employee, a supplier or an asset. 

Similar entities form an entity set. There is a predicate associated with entity sets that we can use 

to test whether the entity belongs in a set. For example, we know that if a supplier is in the entity 

set ‘Supplier’ that it contains all the essential properties associated with the entity supplier. Let Ei 

denote an entity set and ei  an instance of an entity within the set. A supplier may be contained 

within Ei  as a parts supplier or as a supplier of some other good or service that will be 

represented in the database.[28] But both suppliers have common properties and both, despite their 

different role, would be contained in the entity set Ei. Such a representation might be described 

using an ‘ISA’ representation where PARTS_SUPPLIER is a SUPPLIER and 

MATL_SUPPLIER is a SUPPLIER and both share common essential attributes.  



 

 70 
 

    4.1.2 4.1.2 4.1.2 4.1.2 Weak Weak Weak Weak EEEEntitiesntitiesntitiesntities    

A weak entity is an entity that contains information that can not exist without the existence of in 

another, owner entity. For example, an entity ‘Child’ would be weak, since without a related 

‘Parent’ owner entity no instances of children in the Child entity could exist. In all other respects, 

however, weak entities maintain the same characteristics as any other entity. 

    4.1.3 4.1.3 4.1.3 4.1.3 Relationship or Relationship SetRelationship or Relationship SetRelationship or Relationship SetRelationship or Relationship Set    

Relationships consider the associations between entities.[28] The role of a relationship is the 

function that that relationship plays between other entities. A supplier ‘supplies’ parts or an 

employee ‘works in’ a department. Formally, let Ei again denote an entity set. Let ei denote an 

instance of Ei. The role of an entity can be stated as r i/ ei  where r i is the role of ei in the 

relationship.   

    4.1.4 4.1.4 4.1.4 4.1.4 Weak RelationshipsWeak RelationshipsWeak RelationshipsWeak Relationships    

Weak relationships associate weak entities with their owner entity.  

    4.1.5 4.1.5 4.1.5 4.1.5 Attributes Attributes Attributes Attributes     

Attributes and their values are represented by attribute/value pairs. The attributes themselves 

describe the essential information specific to an entity or a relationship such as ‘supplier 

number’, ‘supplier name’ or ‘supplier address’. The values are the values associated with these 

attributes in an instance of the entity or relationship. As Peter Chen puts it, “An attribute can be 

formally defined as a function which maps from an entity set or a relationship set into a value set 

or a Cartesian product of value sets.”[28] 

 f: Ei or Ri � Vi or Vi1 x Vi2 x … Vin (4.1) 
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    4.1.6 4.1.6 4.1.6 4.1.6 Derived AttributeDerived AttributeDerived AttributeDerived Attribute    

A derived attribute is one which does not formally exist as an attribute associated with an entity 

or a relationship and whose value is not physically stored in a table. It can be represented as an 

attribute, but its value will be derived from another attribute or attributes. For example, a 

person’s age can be derived from subtracting a person’s birthday from a given date. As such, 

there would be no need to for the database to store ‘age’ as an attribute within a table. The 

benefit of such a derived attribute is that its value is not necessarily static. As with age, if a 

person was born on August 26, 1960, they would be 50 years old on August 26, 2010. On that 

day, the derived attribute ‘age’ would return the value ‘50’. If the system maintained the age as a 

static value, the age would not be correct in 2011 unless updated. Using a derived attribute 

contributes to the accuracy and the efficiency of  the attribute ‘age’ in the system at both the 

logical and the physical levels.  

    4.1.7 4.1.7 4.1.7 4.1.7 FunctionalityFunctionalityFunctionalityFunctionality    

The functionality of a relationship between entities relates to the relative number of instances 

that these entities can share. For example, many employees may work in many departments 

resulting in a many to many functionality. In another example, one department may be managed 

by only one employee. Such a one to one circumstance is denoted with a functionality of 1:1. In 

yet another example, employees may be assigned to work in accordance with a set number of 

occurrences, for example, 1, 2 or 3 departments. This circumstance would be denoted as n:m. 

Within the entity relationship diagram, functionality can be represented in many different ways. 

However, for the purposes of this dissertation, the following designations will be used to 

represent functionality: 
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1  – One and only one instance within an entity. 
n  – A number > 0.   
m  – An indeterminate number from 0 to x.  
 
    4.1.8 4.1.8 4.1.8 4.1.8 Entity Relationship Component RepresentationEntity Relationship Component RepresentationEntity Relationship Component RepresentationEntity Relationship Component Representation    

Each of the components described above are represented in their most basic form as shown 

below.  

Entity Relationship 
Attribute 

(As Primary Key) 

 Suppliers SNO 

Weak Entity Weak Relationship Derived Attribute 

 
Dependent AGE 

Figure 4.1 
 

Putting these components together, a simple E-R diagram can be illustrated as follows. 

 
 
 
 
 
 
 
 

 

Figure 4.2 
 

The diagram represented above is composed of  

• two entities, ‘Supplier’ and ‘Parts’,  
• their keys are denoted by an underlined fields, SNO and PNO,  
• the relationship between them is ‘Supplies’ which is the role that the supplier has with the 

parts,  
• the attributes of each relation and  
• the functionality of the relationship such that ‘many’ suppliers supply ‘many’ parts.  

 

Supplies 

SNO 

SNAME 

REGION PNO PNAME 
QTY 

m m Supplier Parts 

Supplier 

Child 
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The relation for the relationship ‘Supplies’ contains two implied attributes SNO and PNO which 

are traditionally not shown on the diagram and one additional attribute that describes the quantity 

(QTY) of the PNO supplied by the particular SNO. The implied attributes would combine to 

represent a composite key {SNO, PNO} within the relation. 

 

It should be noted that the process of designing a well thought out E-R diagram will generally 

result in a database whose relations will be fully normalized and the relvars that eventually 

evolve from the entities and their relationships can be joined losslessly.  

    4.2 4.2 4.2 4.2     Extending the Entity Relationship DiagramExtending the Entity Relationship DiagramExtending the Entity Relationship DiagramExtending the Entity Relationship Diagram    

One advantage of the relational database model as represented in the E-R diagram is that it 

clearly relates the most salient aspects of the entities, relationships and attributes that make up 

the database being modeled. A key element of the E-R diagram is that it can be used to 

communicate the database being modeled not just to data administrators and practitioners, but to 

end users as well. There is a tendency to over complicate the E-R diagram by injecting more and 

more information so that it becomes extremely complicated and confusing. So there is a question 

as to what is appropriate and what is too much. Is the symbology clear and intuitive and does it 

represent the essential elements of the database design?  

 

When the relational model is extended to include the concepts associated with fuzzy set theory to 

create an Extended Entity Relation (EER) diagram, this question must be revisited and given 

serious consideration. Much has been written and proposed as to how best to represent a fuzzy 

database in the entity relation diagram. The sections below describe some of these approaches 

and concludes with the approach that seems most appropriate for this research.  
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    4.2.1 4.2.1 4.2.1 4.2.1 Fuzzy Entity Relationship ConsiderFuzzy Entity Relationship ConsiderFuzzy Entity Relationship ConsiderFuzzy Entity Relationship Considerationsationsationsations    

An attribute may be inherently fuzzy or an attribute may be crisp, but treated and used as a fuzzy 

attribute. If an entity contains a fuzzy attribute, is the entity itself fuzzy or is the ‘fuzziness’ 

limited to the attribute? There are a number of particular characteristics associated with a fuzzy 

data object. How can these characteristics be communicated clearly?  

    4.2.1.1 4.2.1.1 4.2.1.1 4.2.1.1 Zvieli and Chen ApproachZvieli and Chen ApproachZvieli and Chen ApproachZvieli and Chen Approach    

Zvieli and Chen [29] offered the first approach to the representation of fuzzy data. This approach 

consists of three basic levels and is simple. It applies a fuzzy notation at the entity, relationship 

and attribute levels as appropriate to differentiate them from crisp components. The main 

criticism of this initial approach is that it fails to take into account the various ‘meanings’ of 

fuzziness such as membership, importance and so on which will be discussed in Section 4.2.1.3.  

 
 

 
 

 
 
 

Figure 4.3. The Zvieli and Chen Approach 
 

As can be seen in Figure 4.3, fuzzy attributes or other EER components are recognized by the 

inclusion of a fuzzy weight paired with the component name. The attribute ‘COLOR’, for 

example, is shown as an attribute with a ‘weight’ of 0.8 in the entity ‘Parts’. Such a weight could 

represent the level or degree of importance of the COLOR attribute in the entity Parts. In this 

instance, the weight of importance would apply to all values contained in the COLOR attribute 

rather than be individually applied to each tuple instance within the relation as would otherwise 

be the case.  

Supplier 
Parts Supplies 

REGION 

SNAME 

SNO 

m 

PNAME 

QTY PNO 

0.8/COLOR 
m 
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    4.2.1.2 4.2.1.2 4.2.1.2 4.2.1.2 Chaudhry, Moyne and Rundensteiner ApproachChaudhry, Moyne and Rundensteiner ApproachChaudhry, Moyne and Rundensteiner ApproachChaudhry, Moyne and Rundensteiner Approach    

Chaudhry, Moyne and Rundensteiner [30] proposed an extension to the E-R model that 

incorporates the conversion of crisp data into fuzzy data by defining linguistic labels as n fuzzy 

sets over the universe of an attribute. Data contained within a crisp tuple is transformed into a 

fuzzy tuple with a linguistic modifier applied to the value and the degree of membership 

associated with it. The, now fuzzified, entity is represented as a separate entity with its data 

values stored or represented separately from the crisp representation.  

 

Figure 4.4 – DB Fuzzifier Transformation 
 

As shown in Figure 4.4, the specific number of processes may be known. A piece of equipment 

may have twenty steps to an assembly process and a factory may have any number of such 

machines.  At any point in time, the database may store the actual number of processes taking 

place. In a crisp database, a report may return this information to the operator. A point in time 

query specifying the predicate WHERE NUMBEROFPROCESSES = 10 might return only one 

equipment number. But if the query were ‘fuzzified’ to communicate the request as ‘WHERE 

NUMBEROFPROCESSES <is about> 10’, the query might return 3, 4 or any number of 

ActiveEquipment 

ActiveEquipment F 

f 

DBFuzzifier (NumberOfProcesses) 

EquipmentNum 

NumberOfProcesses0 

EquipmentNum 

NumberOfProcesses 
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equipment numbers whose current number of processes was ‘about 10’. The question, then, is 

what does ‘about 10’ mean? How would the result set be arrived at? And this would be a 

question that the implementation team would need to address. For purposes of an extended E-R 

diagram, however, all that is necessary is to communicate the fact that there is an expectation 

that crisp data will be fuzzified. Questions of ‘how’ and ‘to what extent’ would be left to the 

implementation phase. 

 

This particular contribution holds significant promise as research into the access and use of crisp 

data within a fuzzy context is important.  

    4.2.1.3 4.2.1.3 4.2.1.3 4.2.1.3 Galindo, Urrutia and Piattini ApproachGalindo, Urrutia and Piattini ApproachGalindo, Urrutia and Piattini ApproachGalindo, Urrutia and Piattini Approach    

In 2006, Galindo, Urrutia and Piattini not only addressed the confusion introduced by Ma, 

Zhang, Ma and Chen, but introduced several new concepts inherent in the use and application of 

fuzzy data. [31] 

    4.2.1.3.1 4.2.1.3.1 4.2.1.3.1 4.2.1.3.1  Fuzzy Attribute TypesFuzzy Attribute TypesFuzzy Attribute TypesFuzzy Attribute Types    

Galindo et al proposed four fuzzy attribute types, each with differing characteristics. This data, 

as represented in an EER diagram as attributes, can be broken down as follows. 

    4.2.1.3.1.1 4.2.1.3.1.1 4.2.1.3.1.1 4.2.1.3.1.1  Type 1 Type 1 Type 1 Type 1     

Precise Data: Precise data is crisp data that can be fuzzified. For example, the crisp value held by 

an attribute Height = 72 might be made fuzzy by the application of the linguistic label ‘Tall’ and 

assigned a weight of membership.  Another example might be a search for a 2 inch bolt. The 

predicate ‘Where length = 2’ against a crisp data set would return only bolts where length is, in 

fact, ‘2’. But the expectations and the concept might be extended to ‘about 2 inches’ which might 

return not only bolts with a length of 2 inches, but those that were ‘about’ 2 inches with an 
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appropriately applied weight of membership. This type of data can be used to extend traditional 

relational databases as fuzzy databases through the use of crisp data as fuzzy. 

    4.2.1.3.1.2 4.2.1.3.1.2 4.2.1.3.1.2 4.2.1.3.1.2  Type 2 Type 2 Type 2 Type 2     

Imprecise Data Over an Ordered Referential: This data type can contain both crisp and fuzzy 

data but is essentially an extension of Type 1 in the form of a possibility distribution over an 

ordered domain. For example, “The vehicle weighs approximately 3,500 lbs.” While the actual 

weight may be known, the concept of approximation, particularly when grouped with other 

vehicles of approximately the same weight is significant.  

    4.2.1.3.1.3 4.2.1.3.1.3 4.2.1.3.1.3 4.2.1.3.1.3  Type 3 Type 3 Type 3 Type 3     

Data of Discreet, Non-Ordered Domains With Analogy: This data type represents the more 

common concept of fuzzy data by dealing with data values that are similar, but by their 

imprecision, not the same. For example, ‘Blonde’ or ‘Brown’ hair each describes a similar color, 

but while variations make the colors similar, they are not necessarily equal to one another. The 

attribute type also lends itself to the possibility distribution or degree of membership within the 

set as µCOLOR(‘Blonde’) � 0.6/Blonde.  

    4.2.1.3.1.4 4.2.1.3.1.4 4.2.1.3.1.4 4.2.1.3.1.4  Type 4 Type 4 Type 4 Type 4     

This attribute type is similar to Type 3, but removes the requirement that the attributes be 

evaluated based on their similarity. For example, a vehicle may have a particular role within a 

fleet of vehicles, but its role is not evaluated with respect to its similarity or dis-similarity in 

relation to other vehicles.  
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    4.2.1.3.2 4.2.1.3.2 4.2.1.3.2 4.2.1.3.2  RepreRepreRepreRepressssenting Fuzzy Attributes enting Fuzzy Attributes enting Fuzzy Attributes enting Fuzzy Attributes     

The confusion inherent in the EER symbology provided by Chen can be addressed by Galindo’s 

suggested alternatives for the representation of fuzzy attributes and the type with which they are 

associated.[11]  The following table combines these two aspects of fuzzy data representation. 

 

Type Representation 

Type 1 Simple 

 

Fuzzy attribute, Type in were n ∈ {2, 3, 4} 
simple. 

 

Derived fuzzy attribute 

             
 
           d 

Figure 4.5 
 

The following illustration presents a simple example of these symbols in use with an entity. The 

diagram illustrates an example of an employee entity composed of a crisp employee 

identification number ‘EmplID’ attribute, a crisp ‘Height’ attribute and three fuzzy attributes, 

‘Age’, ‘Hair’ and ‘Eyes’ with their associated fuzzy classification. Age is of fuzzy type T2, 

imprecise data over an ordered referential. Hair is of fuzzy type T3, which represents data of 

discreet, non-ordered domains with analogy. And eye color is of type T4, which is similar to type 

T3, but removes the requirement that the attributes be evaluated based on their similarity. 
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Figure 4.6 
 

    4.2.1.3.3 4.2.1.3.3 4.2.1.3.3 4.2.1.3.3  Representing Fuzzy DegreesRepresenting Fuzzy DegreesRepresenting Fuzzy DegreesRepresenting Fuzzy Degrees    

To this point, fuzzy attributes have been considered to represent the degree of membership 

within a fuzzy set. This representation is valid but may be too general. It should be noted that 

there are other, more granular representations of this degree.[13] 

Membership Degree   The membership weight designated as G0. 

Fulfillment Degree   The property that a certain attribute can fulfill a requirement to a degree 

between two extremes is designated G1. 

Uncertainty Degree  The property that we are certain that the value represented is accurate. This 

is designated G2. 

Possibility Degree   The measurement or degree that the value represented is possible is 

designated G3. 

Importance Degree   Different attributes can have differing levels of importance. This 

importance is designated as G4. 

 
EMPLOYEE 

EmpID 

T1:Height 

T2:Age {young, mature, elderly} 

T3:Hair {blonde, black, ginger} 

T4:Eyes {blue, brown, green, hazel} 
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While the common expectation and standard is Membership Degree, it should be considered 

significant that if one degree type can be represented, other degree types can be represented for 

the same attribute to give the representation even more depth and meaning. 

    4.2.1.3.4 4.2.1.3.4 4.2.1.3.4 4.2.1.3.4  How Degrees Are AssignedHow Degrees Are AssignedHow Degrees Are AssignedHow Degrees Are Assigned    

A degree, whether it be membership, possibility, or importance must be assigned if the attribute 

is going to have any meaning. This degree can be arrived at in one of two ways. 

Derived – A degree that is derived is determined based on a function. For example, if the a bottle 

is said to be ‘half empty’, the degree of membership for the volume contained within a bottle is 

determined based on the parameters established for ‘half-full’ and the volume contained within 

the bottle. This degree of membership can be calculated and a value assigned. For example: 

 

half_full(x) ={  

0   when x = 0 

(4.3)   
x / 10  when 0 < x ≤ 10 
(20 - x) / 10  when 10 < x < 20 
0   when x = 20 

 
 
Non-Derived – A degree that is non-derived is one that has been assigned. The degree is 

typically maintained as a crisp data value within the database and is returned with the 

corresponding attribute value as its degree of membership. 

    4.2.1.3.5 4.2.1.3.5 4.2.1.3.5 4.2.1.3.5  Fuzzy EntitiesFuzzy EntitiesFuzzy EntitiesFuzzy Entities    

Entities can be fuzzy objects in much the same way that an entity can represent crisp objects. The 

distinction lies in the fact that a fuzzy entity will possess a degree of membership as an entity 

whether its attributes are crisp or fuzzy. For example, a sub-type of ‘Vehicle’ may be ‘Truck’. 

This sub-type may be a fuzzy data object as the actual ‘Truck’ may possess a weight of 

membership in the truck class of 0.6. Formally, let E be a fuzzy entity and e be an instance of E.  

 ∀ ei ∈ E with i = 1, 2, …, n, µE(ei) ∈ [0, 1]} (4.4) 
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A fuzzy entity is represented by a box framed by a dashed line rather than a solid line. To 

continue with the vehicle entity just described, the representation looks like Figure 4.7 as the 

relationship model shows vehicle types ‘Automobile’ and ‘Truck’. There are a number of notable 

aspects to this representation.  

1. A vehicle has an ‘ISA’ (casually thought of as ‘is a’) relationship with the TRUCK class 

(‘truck’) to a degree of membership, but the same vehicle could also have an ISA 

relationship as an AUTOMOBILE (‘automobile’) with an appropriate weight of 

membership. Simply put, a vehicle could be an automobile and a truck, but to the same or 

different weights of membership. This ability to exist in both domains at the same time is 

significant.  

2. It is further significant that an object’s existence in one domain will generally have no 

effect on the object’s existence in another. In other words, a vehicle’s existence as an 

‘automobile’ is independent of a vehicle’s existence as a ‘truck’.  

3. A weight of membership could appropriately be assigned to the vehicle entity as a whole. 

4. Both automobile and truck can have fuzzy attributes contained within their list of 

attributes. It should be noted that these fuzzy attributes do not represent the fuzzy weight 

of membership of the entity but only the weight of memberships for the specific attribute 

data type. 

5. Lastly, attributes considered to be specific to one class of asset may contain an 

appropriate value or a fuzzy weight/value pair for that asset class. Those attributes that 

are not associated with the asset class may contain a ‘null’ value for these same attributes. 

For example, attribute TOW_CAPACITY contains a value of 5,000 to reflect the asset’s 

towing capacity. Towing capacity is particular to trucks and generally not to automobiles. 
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On the other hand, STORAGE_CAPACITY, or storage capacity, is considered specific to 

automobiles rather than trucks and so no value for STORAGE_CAPACITY would be 

assigned to the TRUCK class of this asset. The presence of nulls in any relation is a 

potential issue that must be considered. 

 

VID MAKE MODEL LICENSE P_CAP T_CAP ABILITY S_CAP SIZE 
0.9/Truck/3324 Ford F150 243-FRG 3 5000 0.9/Heavy   
0.3/Automobile/3324 Ford F150 243-FRG 3   350 06/Medium 

Figure 4.7 

    4.2.1.4 4.2.1.4 4.2.1.4 4.2.1.4 Fuzzy RelationshipsFuzzy RelationshipsFuzzy RelationshipsFuzzy Relationships    

A fuzzy relationship describes a relationship between entities to a fuzzy degree of membership. 

Figure 4.8 describes the relationship of properties near one another.  
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Figure 4.8 
 

In Figure 4.8, a property is a crisp entity with a fuzzy attribute ‘Type’ which determines the 

weight of membership of the property in the Type fuzzy class. The properties, however, are 

situated in proximity to one another to varying degrees. This proximity can be in ‘Proximity’ to 

any number of properties with possible values of ‘near’, ‘far’ or ‘adjacent’. 

    4.3 4.3 4.3 4.3 AggregationAggregationAggregationAggregation    

 
The definition of the word ‘aggregate’ is to ‘group’. Yet, the word has several very specific 

meanings with respect to modeling entities, their relationships and queries. 

    4.3.1 4.3.1 4.3.1 4.3.1 Aggregation in Extended Entity Relationship ModelsAggregation in Extended Entity Relationship ModelsAggregation in Extended Entity Relationship ModelsAggregation in Extended Entity Relationship Models    

Aggregation in EER modeling is used to simplify or generalize the model by grouping related 

items together. At a high level, and within a complex relational model, related entities might be 

aggregated and represented by a single, generalized entity. For example, an entity ‘Vehicle’ may 

contain its own attributes, but also be comprised of any number of ‘sub entities’ such as ‘engine’, 

‘radio’ or ‘chassis’. This complex object might only be represented as the ‘Vehicle’ entity within 

the relational model. At the lower level, attributes might be aggregated for a similar reason. For 



 

 84 
 

example, a person’s street, city, state and zip code might be aggregated or generalized as 

‘address’ in the model while the actual tables derived from this model, would hold the specific 

attributes that make up the address. 

    4.3.2 4.3.2 4.3.2 4.3.2 Extending Aggregation to Accommodate Fuzzy DataExtending Aggregation to Accommodate Fuzzy DataExtending Aggregation to Accommodate Fuzzy DataExtending Aggregation to Accommodate Fuzzy Data    

Aggregation within the data model is particularly important for the communication of those 

aspects that comprise the fuzzy attribute or entity.  

 

 

Figure 4.9. 
 

Figure 4.9 illustrates an example of an entity relating a flight crew member’s Crew ID, their job 

and the aggregation of two fuzzy attributes, Experience (type 3) and Ability (type 2) along with a 

third, derived attribute that constitutes the ‘grade’ of the crew member’s qualifications. Here, 

grade is degree G2, uncertainty. How certain is the assessment of the crew member’s experience 

and ability? An additional degree could be applied for type G4, importance. How important is the 

degree of experience or ability of the individual and their position? One might assume that a 

pilot’s ability and experience might be of a higher degree of importance than the steward staff 

crew member.  
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The grade for experience and ability is an aggregated grade. The grade, G2, represents the 

combined fuzzy weight of membership between experience and ability giving the entity a ‘tuple 

weight of membership’ in relation to other Crew tuples.  

 

As can be seen, the representation of a fuzzy attribute or attributes can get quite complex and 

convey significant information from a number of different perspectives. The tools illustrated here 

provide an example of how this information can be conveyed. It is up to the database designer to 

determine which tools to use and to what extent based on the needs of the system under 

development. 

    4.4 4.4 4.4 4.4 Relation Valued Attributes Relation Valued Attributes Relation Valued Attributes Relation Valued Attributes     

In 1989, C.J. Date proposed that a relation could contain attributes that are, themselves, 

relations.[32] He called these attributes Relation Valued Attributes (RVA). Typical attributes 

possess relatively simple characteristics such as ‘integer’ or variable length character strings, but 

a relation valued attribute can be comprised of integers and variable length strings within the 

same attribute. In fact, it can contain any combination of base attribute types. Representing this 

attribute type in a relational model is relatively simple as relations have already been defined. It 

is a fairly straight forward extension of the entity relation diagram to incorporate the symbology 

of the RVA into the more complex entity relation. 

    4.4.1 4.4.1 4.4.1 4.4.1 Crisp RVACrisp RVACrisp RVACrisp RVA    

Like any relation, an RVA is composed of attributes. These attributes are then consolidated into 

a single relation valued attribute. Figure 4.10 below shows an RVA labeled SUPPLIED_PART 

which is composed of two attributes, PART_NO and QUANTITY. As an RVA, 
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SUPPLIED_PART represents a single attribute within the entity Supplier_Part. As a result, the 

entity Supplier_Part has a degree of five, not six.  

 

Figure 4.10 

 
Table 4.2 below illustrates what the data would look like if the entity were developed within a 

relational database. Note that the cardinality of the table represented by this example is 2 and, 

again, the degree is 5. The RVA represents a single instance of the attribute contained within one 

relation whose relvar is itself composed of two attributes. The tuples contained within each of 

these two records attribute exist only within their respective tuple instance attributes.  

Supplier_Part SNO 

SNAME 

STATUS 

CITY 

- PART_NO 

- QUANTITY 

SUPPLIED_PART 
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SNO SNAME STATUS CITY SUPPLIED_PART 
S1 Acme 10 London PART_NO QUANTITY  
 P1 200 

P3 150 
P4 300 

S2 Breeze Master 30 Athens PART_NO QUANTITY  
 P1 200 

P2 180 
P5 200 
P6 145 

Table 4.2 
 

Date argues that because the relation contained within the RVA is encapsulated within a single 

attribute, the attribute is merely of an arbitrarily complex domain and as such satisfies the 

requirements of First Normal Form.[32]  

    4.4.2 4.4.2 4.4.2 4.4.2 Using RVA’s to Represent Fuzzy DataUsing RVA’s to Represent Fuzzy DataUsing RVA’s to Represent Fuzzy DataUsing RVA’s to Represent Fuzzy Data    

One of the criticisms of the representation of fuzzy data as individual attributes within a relation 

is that the fuzzy degree of membership is not physically ‘bound’ to the value to which they are 

associated. In other words, if a value’s degree of membership is contained in one attribute and 

the value itself is contained in another, it is possible for one, the other or both to be excluded 

from a result set or ordered in such a way that there is no obvious association between degree of 

membership and value to the user. Because a relation valued attribute contains all of its 

associated attributes within its well defined structure, RVA’s are well suited to the representation 

of fuzzy data. A fuzzy attribute represented by an RVA contains not only the value itself, but any 

number of fuzzy degree of membership. And, because the attributes contained within the RVA 

are all ‘bound’ within the RVA, they cannot easily be separated or disordered. The following 

example of an RVA containing fuzzy data involves a threat assessment database with multiple 

threats and multiple sources of information. In this example, the entity THREAT is fuzzy while 

having a crisp primary key as the threat identification number or TID. Two crisp attributes 
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provide basic information about the threat such as NAME and the GPS_COORD as the location 

of the threat. The overall threat level of the entity is maintained at the entity level, not at the 

attribute level. The threat level in this example is ‘derived’ or determined to be a value calculated 

through a function or aggregation using other system data. As such, it is not a physical attribute 

within the tuple and is not shown as an attribute in the relation’s ER diagram. This being the 

case, the overall level of the ‘Threat’ is HIGH, MEDIUM or LOW to a determined degree. This 

point is significant. Up to this point, a weight of membership has been significant within a tuple 

or used to discriminate among the same attribute in other tuples of the relation. This example, 

however, illustrates how a tuple can have a ‘tuple wide’ weight of membership within the 

relation and sorted based on this tuple weight of membership among other tuples. The TID is 

assigned and crisp. The relation valued attribute ASSESSMENT has one crisp attribute to 

represent the groups of general information sources as SOURCE_TYPE and three fuzzy degree 

of membership types, MEMBERSHIP, CERTAINTY and IMPORTANCE. By including an 

RVA rather than storing the information in separate tables, two important things are 

accomplished. First, a degree of membership for this threat can be associated with the threat at 

the entity level. In this way, each threat could be displayed in order of the threat’s membership in 

any of the threat classes. The second benefit of this approach is that multiple perspectives of 

‘membership’ such as degree of membership, certainty and importance can be related through 

the data. The EER diagram might look something like the one shown in Figure 4.12.  
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Figure 4.11 
 

A representation of the table structure and some sample data for the entity ‘THREAT’ is shown 

in Table 4.3. TID, NAME and GPS_COORD are represented as one might expect. The relation 

valued attribute ASSESSMENT, however, contains all four ‘sub-attributes’ described by the 

EER diagram. The cardinality of this relation is 2 as there are only two threats reported in the 

result. The degree of membership of this relation is 5 since the threat level represented by µHIGH is 

derived and displayed as an attribute or column although it has no physical domain in the 

underlying table. ASSESSMENT is represented as an RVA and is composed within a single 

attribute. 

Threat TID 

NAME 

MEMBERSHIP(G0) 

CERTAINTY(G2) 

IMPORTANCE(G4) 

GPS_COORD 

SOURCE_TYPE 

µHIGH (THREAT) 
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µHIGH  TID NAME GPS_COORD ASSESSMENT 
0.54 003 A 

Threat 
35 51.052/  
78 53.163 SOURCE_TYPE MEMBERSHIP CERTAINTY IMPORTANCE  

 Informant 0.60 0.90 1.00 
Email Traffic 0.48 0.75 0.70 
Phone Traffic 0.39 0.68 0.75 

0.48 004 B 
Threat 

45 32.016/  
81 30.094 SOURCE_TYPE MEMBERSHIP CERTAINTY IMPORTANCE  

 Informant 0.54 0.83 0.94 
News 0.49 0.84 0.83 
Outside Analysis 0.46 0.84 0.83 
Phone Traffic 0.41 0.63 0.70 

Table 4.3 
 

Notice that because the attribute ASSESSMENT is an RVA, the attribute can contain any 

number of records, SOURCE_TYPES, for the base TID tuple. Records contained within the 

RVA must adhere to the same relational constraints as any base relation.  

    4.4.3 4.4.3 4.4.3 4.4.3 Fuzzy Attributes as RelationsFuzzy Attributes as RelationsFuzzy Attributes as RelationsFuzzy Attributes as Relations    

As can be seen in the preceding section, it could be argued that as relation valued attributes, a 

fuzzy attribute is itself an entity or a relationship and could very possibly be represented as a 

relation. Consider the following example based on the Threat Assessment example above. The 

RVA composed of the attributes SOURCE_TYPE, MEMBERSHIP, CERTAINTY and 

IMPORTANCE can be mapped in an E-R diagram as a relationship between the entities Threat 

and SourceType. The weight of membership between the two entities is contained within their 

relationship. As a result, it could be argued that the threat assessment example shown in Table 

4.3 is nothing more than the join of the two entities via their relationship as described by the E-R 

diagram shown in Figure 4.12.  
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Figure 4.12 

 
The tables resulting from this approach are shown below in Tables 4.4a through 4.4c using the 

same sample data provided in Table 4.3 above.   

µHIGH  TID NAME GPS_COORD 
0.54 003 A Threat 35 51.052/  

78 53.163 
0.48 004 B Threat 45 32.016/  

81 30.094 
Table 4.4a 

 
TID  SOURCE_TYPE MEMBERSHIP CERTAINTY IMPORTANCE  
003 Informant 0.60 0.90 1.00 
003 Email Traffic 0.48 0.75 0.70 
003 Phone Traffic 0.39 0.68 0.75 
004 Informant 0.54 0.83 0.94 
004 News 0.49 0.84 0.83 
004 Outside Analysis 0.46 0.84 0.83 
004 Phone Traffic 0.41 0.63 0.70 

Table 4.4b 
 

SOURCE_TYPE 
Informant 

Email Traffic 
Phone Traffic 

Assessment 

MEMBERSHIP(G0) 

CERTAINTY(G2) 

IMPORTANCE(G4) 

SOURCE_TYPE 

Threat 

SourceType 

TID 

NAME 

GPS_COORD 

µHIGH  
µMEDIUM  
µLOW  
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News 
Outside Analysis 

Table 4.4c 
 

In order to provide the data in a structure similar to that shown in Table 4.3, however, these three 

tables must be joined. Such a representation is shown in table 4.5. 

µHIGH TID  NAME GPS_COORD SOURCE_TYPE MEMBERSHIP CERTAINTY IMPORTANCE  
0.54 003 A Threat 35 51.052/  

78 53.163 
Informant 0.60 0.90 1.00 

0.54 003 A Threat 35 51.052/  
78 53.163 

Email Traffic 0.48 0.75 0.70 

0.54 003 A Threat 35 51.052/  
78 53.163 

Phone Traffic 0.39 0.68 0.75 

0.48 004 B Threat 45 32.016/  
81 30.094 

Informant 0.54 0.83 0.94 

0.48 004 B Threat 45 32.016/  
81 30.094 

News 0.49 0.84 0.83 

0.48 004 B Threat 45 32.016/  
81 30.094 

Outside Analysis 0.46 0.84 0.83 

0.48 004 B Threat 45 32.016/  
81 30.094 

Phone Traffic 0.41 0.63 0.70 

Table 4.5 
 

Note that the representation shown in Table 4.5 contains a great deal of redundancy. Such 

redundancy is common when tables are joined, but the representation in Table 4.3 eliminates this 

redundancy. Further, the encapsulation of the fuzzy attributes within the RVA attribute 

ASSESSMENT is lost along with the direct and intuitive association these attributes had with 

their source type in Table 4.5. It should also be noted that Table 4.5 has a degree of 7 and a 

cardinality of 7 as compared with the RVA representation in Table 4.3 that has a degree of 5 and 

a cardinality of 2. Given these factors, the data representation illustrated in Table 4.5, as is often 

the case with joining tables, is not in third normal form (3NF) where the RVA representation 

illustrated in Table 4.3 is giving the implementation the option of storing the data as the RVA 

representation or within separate tables depending on the access and maintenance preferences 

inherent in the system’s design. Table 4.5 does not have this luxury of choice and would, out of 

responsible necessity, exist only as separate tables. 

 



 

 93  

And yet, it could be further argued that any fuzzy weights of membership were nothing more 

than the representation of a relationship between one entity and another entity representing a 

characteristic in question. Consider a ‘Suspect’ entity and any number of descriptive 

characteristics such as HairColor, EyeColor or Height with the various relationships respecting 

weight of membership between them. The question then is, should fuzzy attributes structured as 

RVA’s be included as attributes within a single relation or broken out as a separate relationship 

and maintained as its own relation? The answer, it seems, is; it depends. The point is, there are 

options. 

 



 

 94  
 

Chapter 5 Chapter 5 Chapter 5 Chapter 5 ----    RVARVARVARVA    as aas aas aas a    ConstrainConstrainConstrainConstraint tot tot tot to    thethethethe    Representation of Representation of Representation of Representation of 
Fuzzy DataFuzzy DataFuzzy DataFuzzy Data    

 
    5.1 5.1 5.1 5.1 IntroductionIntroductionIntroductionIntroduction    

The preceding chapters discussed the theory behind both fuzzy data and relation valued 

attributes. This discussion has described the requirements necessary for the representation of 

fuzzy data. This representation requires both a class and a weight of membership to represent the 

fuzzy data value. Both of these attributes must be provided in a result or neither should be 

provided. In other words, the atomicity of fuzzy data requires both attributes or neither.[37] The 

relation valued attribute (RVA) provides a solution. The RVA is an attribute and as an attribute 

can be included or excluded from the selection predicate of an SQL query. But the domain of an 

RVA is a relation that is well suited to contain the required ordered pairs of attributes associated 

with a fuzzy data value. Encapsulating the relation within the attribute of an RVA data type 

without direct access to the relation's members ensures that neither the class nor the weight of 

measurement can be addressed specifically for inclusion or exclusion from an SQL query and 

thus ensures the atomicity of the fuzzy data value.   

 

The purpose of this research was to design, implement and study a database system that, for the 

first time, not only supports the use of fuzzy data within a relational database system, but does so 

through the use of relation valued attributes which will enforce not only the generally accepted 

capabilities and constraints established for an attribute by the relational model, but also provides 

additional capabilities and constraints specific to the use and maintenance of fuzzy data.    
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This chapter will address the considerations and approach taken to design and implement a proof 

of concept implementation of a relational database using an RVA data type to support fuzzy data. 

    5.2 5.2 5.2 5.2 Design ConsiderationsDesign ConsiderationsDesign ConsiderationsDesign Considerations    

    5.2.1 5.2.1 5.2.1 5.2.1 Metadata ConsiderationsMetadata ConsiderationsMetadata ConsiderationsMetadata Considerations    

Implementations of the relational model store metadata about tables, rows, columns, indexes, 

types, and constraints in system tables that can be queried.[33] Extending the relational model to 

include fuzzy data requires that fuzzy metadata be included and accessible in some form within 

the system. The fuzzy RDBMS, the database administrator, and the application developer will all 

use the metadata to work with defined RVA data types.  

    5.2.1.1 5.2.1.1 5.2.1.1 5.2.1.1 Database Design ConsiderationsDatabase Design ConsiderationsDatabase Design ConsiderationsDatabase Design Considerations    

The implementation of a relation valued attribute as an extension to the structured query 

language (SQL) requires an approach that will allow the RVA to be maintained at the physical 

level and a modification to the associated data definition language (DDL) to support the creation 

of an RVA data type. At the logical level, consideration must be given to the data manipulation 

language and whether it will require  modification to provide the user with the ability to retrieve 

and manage the data within the database.  

    5.2.1.2 5.2.1.2 5.2.1.2 5.2.1.2 Approach ConsiderationsApproach ConsiderationsApproach ConsiderationsApproach Considerations    

 
Two basic approaches were considered in the design of the RVA. Each approach was considered 

given the constraints and capabilities of the chosen development environment provided by the 

open source database system MySQL.  

 

The first approach was to create a table within a table. In theory, this approach seemed plausible. 

In fact, the database system and the database engines provided in MySQL already had many of 
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the features thought necessary to the implementation of this approach.[38] The second approach 

considered was the creation of a new type of attribute, an RVA attribute that would contain the 

metadata associated with the relation valued attribute such as the table, the key to the table and 

the attributes desired within the relation. Using the information contained within this attribute, 

the relation associated within the RVA could be identified and the data associated with this 

relation nested within the result of the calling query.  

 

The following sections discuss the these two approaches in detail and conclude with the reasons 

why the second approach was chosen for implementation. 

    5.2.1.2.1 5.2.1.2.1 5.2.1.2.1 5.2.1.2.1  Creation of a Table Within a TableCreation of a Table Within a TableCreation of a Table Within a TableCreation of a Table Within a Table    

Creating a table within a table to support the implementation of RVA's adds a particular 

challenge to the storage, organization, indexing and management of the underlying  files. RVA's 

require their own storage, indexing and query strategies just as is the case with the higher level 

nesting relation. To compound the complexity, each of these housekeeping tasks must be 

inextricably associated with and linked to the nesting relation. For example, in order to access a 

value from a component contained with an RVA, the nesting relation must first be considered so 

that the query can efficiently access the components of the associated nested relation. Inefficient 

storage and indexing strategies would lead to poor database performance when using an RVA of 

this type. This section looks at some of the more common file storage, index and query methods 

and how they might have been applied to attributes containing relations. 

 

There are a number of different approaches to the storage and indexing of database objects at the 

physical level. Given the nature of RVA's, however, extra consideration needs to be given to 
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such a design. While there are certain circumstances where an RVA will have one and only one 

record, the likelihood is that it will have more than one. Not only would the base table be 

expanding and contracting as records are inserted and deleted, but in the case of RVA’s, would 

the nested relation. So, as a relation within a relation, the RVA may be seen as separate from its 

base table, but inextricably linked to the base table and at the tuple level! Given these 

characteristics, reading, writing and maintaining a table containing an RVA in secondary 

memory would require special consideration and even some limitations. The following section 

reviews the more common approaches to database files and their associated page abstraction at 

the physical level and looks at some of the advantages and disadvantages of each. 

    5.2.1.2.2 5.2.1.2.2 5.2.1.2.2 5.2.1.2.2  Fixed Length RecordsFixed Length RecordsFixed Length RecordsFixed Length Records    

The simplest database file format is a fixed length record written to disk using a collection of 

pages.[34] Using a fixed length file format for the base table or the RVA would be an appropriate 

approach if these two were separate tables, but they are not. The RVA is contained within the 

base relation and both the base relation and the RVA (or multiple RVA's) may have a variable 

number of records inserted into and deleted from them which, while fixed in length, will likely 

result in a true record of frequently changing length. As a result, this approach was dismissed as 

a viable option. 

    5.2.1.2.3 5.2.1.2.3 5.2.1.2.3 5.2.1.2.3  Variable Length RecordsVariable Length RecordsVariable Length RecordsVariable Length Records    

If the tuple containing an RVA is a variable length record, the page contained on the disk cannot 

be divided into a fixed collection of slots. Instead, the database’s disk space manager will need to 

find free space of an appropriate length to accommodate the complex tuple.[34] As data is added 

to this record within the complex data structure, the allocation of space becomes of critical 
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importance. The task of disk management of variable length records can be accommodated using 

a slot directory containing record offset and record length pairs for each slot.  

 

The offset is essentially a pointer to the start of the data record and, as records are deleted the 

offset is set to -1 to indicate free space. Maintaining the variable length records laying end to 

end, a pointer maintained by the slot directory provides the offset of the area of free space where 

new records may be written. If a record is too large to fit into the remaining free space, the page 

may be reorganized and defragmented to free up a contiguous block of free space sufficient for 

the record’s needs or the record would be written to the next page in sequence. 

    5.2.1.2.4 5.2.1.2.4 5.2.1.2.4 5.2.1.2.4  VariaVariaVariaVariable Attribute Recordsble Attribute Recordsble Attribute Recordsble Attribute Records    

The challenge with RVA's is that they are relations. As relations, rather than individual ‘simple’ 

attributes, they can be composed of a relvar of a significant degree and cardinality. In a sense, a 

relation valued attribute is ‘variable’ in both length and width as well as composition. As a result, 

neither the simple fixed length record layout nor even the variable length record layout is 

appropriate to the requirements of an RVA.  

In order to illustrate the physical implementation of an RVA within a base table, consider a 

simplified version of the supplier/parts database shown in Table 5.1. There is a base table 

consisting of three attributes, SID, NAME and SPART.  SID and NAME are standard data types. 

Attribute SPART is an RVA and as such consists of a nested relation consisting of its own 

attributes, PID and QTY.  
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SID NAME SPART 
011 Acme PID QTY  
 010 200 

023 150 
030 253 

025 Breeze Master PID QTY  
 010 200 

049 180 
060 206 
072 145 

Table 5.1 – SUPPLIER 

Query 5.1 below outlines how the query language might be modified and used to create the 

structure of the SUPPLIER relvar with the nested structure SPART: 

Create Table SUPPLIER 
    ( 
 SID Integer  Primary Key 
 NAME Char(25) 
 SPART  RVA (Type SPART 
   PID Integer Primary Key 
   QTY Integer 
   ) 
 ); 
 

Query 5.1 – SUPPLIER Data Definition 

The structure of the SUPPLIER table contains the field SPART that is typed as an RVA 

referencing the structure SPART that was previously defined in the database.  SPART is defined 

as a relation and with the part identification number PID designated as the primary key. Once the 

table has been defined, the technical characteristics of the table provide the structure to the RVA. 

A potential issue with this approach is that data dictionary structures are subject to change. If, for 

example, a part NAME were added to the SPART table structure, how would this change affect 

existing instances of SPART that were based on the original incarnation of the SPART structure? 

In theory, every instance of SPART associated with a SUPPLIER tuple will need to be modified 
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to accommodate the underlying structural change. MySQL provides such a tool in its ALTER 

TABLE function, but this tool would need to be modified to accommodate not just the nesting 

table alteration, but the nested RVA alteration as well. This task would not be insignificant. 

While this approach shows some promise as it gives a well defined and re-useable structure to 

the RVA attribute, there is a necessary requirement to modify not just the table structure and the 

attributes, but to modify the underlying SQL functions as well.   

 

Figure 5.1 shows how the supplier table structure might be created with reference to an 

associated RVA table structure SPART. The B-Tree example and the sample data representation 

shown suggests only one method of how the data might be accessed using a sample query.[35] 

Note that a pointer from the base table SUPPLIER is used to access the SPART data area. RVA's 

used in this way will consist, essentially, of many instances of their referenced table. In other 

words, there may be many instances of the SPART table existing in memory with each instance 

potentially consisting of many records. So the question might be, how will the SPART instance 

associated with each tuple be accessed? One obvious approach is to include a pointer to each 

nesting table’s defined RVA instances.  In fact, no other approach seems plausible. Further 

research and analysis, however, may uncover other possible approaches.  
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Figure 5.1 
 

In another slightly more complex example, reconsider the threat assessment database from 

Section 4.4.2. Table 5.2 below provides a review of this table.  

µHIGH  TID NAME GPS_COORD ASSESSMENT 
0.54 003 A 

Threat 
35 51.052/  
78 53.163 

SOURCE_TYPE MEMBERSHIP CERTAINTY IMPORTANCE  

 Informant 0.60 0.90 1.00 
Email Traffic 0.48 0.75 0.70 
Phone Traffic 0.39 0.68 0.75 

0.48 004 B 
Threat 

45 32.016/  
81 30.094 

SOURCE_TYPE MEMBERSHIP CERTAINTY IMPORTANCE  

 Informant 0.54 0.83 0.94 
News 0.49 0.84 0.83 
Outside Analysis 0.46 0.84 0.83 
Phone Traffic 0.41 0.63 0.70 

Table 5.2 

The dependencies between the attributes contained within the RVA relvar are inexorably linked 

and have been minimized. Each tuple instance of data contained within the attributes 

SOURCE_TYPE, MEMBERSHIP, CERTAINTY and IMPORTANCE cannot be separated 

System Table:
Create Table SUPPLIER

(
SID Integer Primary Key
NAME Char(25)
SPART RVA (Create Table SPART

PID Integer Primary Key
QTY Integer

)
);

SQL Query:
SELECT QTY

FROM SUPPLIER
WHERE SID = `011`

AND SPART-PID = `30`;

10      20      30

2       4        6       8 12      14      16    18

1 3 5 7 9 11 13 15 17 19

SUPPLIER-SID

PTR SID NAME

1FB2 011 ACME

100    200    300

20     40     60     80

10 30 50 70 90

SUPPLIER-SPART-PID

PTR SID

030 253
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without losing information and there is no logical ‘break’ between them. As a result, the data 

model defined to contain ASSESSMENT might exist at a minimum as follows: 

 

Figure 5.2 

At this point, each additional instance of ASSESSMENT could either be set end to end within 

contiguous blocks in memory as fixed length records or a pointer might be assigned a value to 

the next instance within the physical structure of the attribute. But this is a design question that is 

answered for standard tables as well as for RVA instances. As was the case with the supplier 

database discussed earlier, a pointer from the base relation would likely be a requirement. Putting 

an example together, the data in threat TID 003 might look something like the following: 

 

Figure 5.3. 

The data dictionary tables contained within the SYSTEM table space would provide the address 

of the THREAT table. The database would then access a particular record by the primary key. 

All ASSESSMENT records would be accessed using the pointer contained within the THREAT 

record. The challenge to using RVAs, even in this seemingly straight forward way, is how the 
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data dictionary table would need to be modified to reflect the added structural features contained 

within the RVA.  

    5.2.1.2.5 5.2.1.2.5 5.2.1.2.5 5.2.1.2.5  Indexes and RVAsIndexes and RVAsIndexes and RVAsIndexes and RVAs    

Performance of database queries and operations are greatly improved through the use of indexes. 

Indexes are files containing ‘data entries’ and their particular key search criteria k denoted as k*. 

Each data entry contains enough information to efficiently locate an associated record’s location 

given its record identification number or ‘RID’.  Ramakrishnan and Gehrke suggest that there are 

three general options for indexes to be structured and used.[36] Specifically: 

1. A data entry k* is an actual data record with a search key value k. 

2. A data entry is a <k, rid> pair, where rid is the record id of a data record with search key 

value k. 

3. A data entry is a <k, rid-list> pair, where rid-list is list of record ids of data records with 

search key value k. 

If a data file for employees called, employee, contains four fields, EID (for ‘employee 

identification number), NAME, AGE and SALARY where EID is a key,  an index file may be 

created for the employee field EID to support efficient query and data access to the records held 

within the table’s data file. This file would have an entry for every employee identification 

number with information related to the EID record given one of the three options outlined above. 

It should be noted, however, that the employee table would only have one index file on field 

EID. And, repeating the point above, this field would contain a column for every EID in the 

employee table. RVA’s, however, are themselves relations. Each instance of an RVA within a 

nesting table is a table unto itself. If one were to follow the index file strategy outlined so far, 

each RVA instance would have its own index file on key attribute(s). In the threat assessment 
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example outlined in table 5.2 above, an index file may be created on SOURCE_TYPE so as to 

increase query and table maintenance efficiency on this key attribute of the threat assessment’s 

RVA ASSESSMENT. Within the limited confines of the example, maintaining these index files 

and their data may not be a significant task. But real world tables are far larger, containing many 

records and the maintenance of each index created in support of each RVA instance would be 

overwhelming.  

    5.2.1.2.6 5.2.1.2.6 5.2.1.2.6 5.2.1.2.6  Data Definition Language for RVAs Data Definition Language for RVAs Data Definition Language for RVAs Data Definition Language for RVAs     

Creation of a relation containing one or more RVA's is a multi-step process and the data 

definition language needs to be extended to allow for the complex metadata inherent in an RVA. 

The first step is to create the relvar for the RVA. Creating the structure of this relvar will include 

the data structure of the relvar in the data dictionary to include any other existing table or RVA. 

By creating a reference structure, all attributes, data types and constraints applicable to the 

structure will be assigned and enforced on the complex RVA type attribute. For the purposes of 

this example, create an assessment structure called ASSESS_STRUCT. This structure is an 

included structure and will not, itself, contain any data. As in included structure, tables can be 

provided with their complex characteristics much the same way that an attribute derives its 

characteristics from a domain. 

CREATE TABLE ASSESS_STRUCT 
 ( 

SOURCE_TYPE CHAR(25)  PRIMARY KEY, 
MEMBERSHIP DECIMAL(3,2), 
CERTAINTY DECIMAL(3,2), 
IMPORTANCE  DECIMAL(3,2) 
); 

Query 5.2 – ASSESS_STRUCT Data Definition 
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Once the RVA’s relvar is created, it can be included as the structural relvar for an RVA in the 

table THREAT.  The structure field SOURCE_TYPE is designated as the Primary Key. Each 

RVA structure, like any base relation structure, must have a designated primary key. The values 

contained in any table created from this structure would have this key attribute and must be 

unique within the RVA for each base relation tuple. For example, the ASSESSMENT RVA can 

only contain one ‘Informant’ source type for each associated THREAT record. As with any base 

relation, dependencies and normal form constraints would be adhered to. Using data type ‘RVA’ 

includes the referenced structure as the underlying format for the attribute.  

 
CREATE TABLE THREAT 
 ( 

TID INT(4) ZEROFILL  PRIMARY KEY, 
NAME CHAR(30) NOT NULL, 
GPS_COORD CHAR(30), 
ASSESSMENT  RVA(ASSESS_STRUCT) 
);  

Query 5.3 – THREAT Data Definition 

By assigning the data type RVA to the base table, two things occur. First, the RVA takes on the 

complex structure of the data object it references without having to define the object within the 

‘CREATE TABLE’ SQL. Secondly, the use of the RVA data type tells the data dictionary to 

include a pointer from the base relation to the RVA’s associated data. 

    5.2.2 5.2.2 5.2.2 5.2.2 Creation of a Nesting Function Between TablesCreation of a Nesting Function Between TablesCreation of a Nesting Function Between TablesCreation of a Nesting Function Between Tables    

When Date introduced his theories concerning relation valued attributes, he described the state of 

the tables comprising the RVA as being in a nested or an unnested state.[37] In their nested state, 

the data and the comprised tables combined to create a single, nested relation similar to that 

shown in Table 5.1. In their unnested state, the comprised tables exist as independent entities. 
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They are related, but exist independent of each other. For example, consider the supplier/parts 

relation illustrated here again as query 5.1 shown below: 

Create Table SUPPLIER 
    ( 
 SID Integer  Primary Key 
 NAME Char(25) 
 SPART  RVA (Type SPART 
   PID Integer Primary Key 
   QTY Integer 
   ) 
 ); 

 
Query 5.1 

The result of this query is the creation of a table within another table to create a single, 

inseparable entity. Compare this to the following representation of an unnested version of this 

entity consisting of two independent tables: 

Create Table SUPPLIER 
    ( 
 SID Integer  Primary Key 
 NAME Char(25) 
 SPART  RVAChar(125) 
 ); 
 

Query 5.4 – SUPPLIER Data Definition 

 

Create Table PART 
    ( 
 SID Integer Primary Key 
 PID Integer Primary Key 
 QTY Integer 
 ); 
 

Query 5.5 – PART Data Definition 

Just as the case of the threat assessment example described in 2.1.2.4, two individual tables are 

created.  
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SID NAME SPART 
011 Acme @Table:SUPPLIER@Key:SID@Fields:PID, QTY 
025 Breeze Master @Table:SUPPLIER@Key:SID@Fields:PID, QTY 

 
Table 5.4 – SUPPLIER 

 
SID PID QTY  

011 010 200 
011 023 150 
011 030 253 
025 010 200 
025 049 180 
025 060 206 
025 072 145 

 
Table 5.5 – PARTS 

 
Unlike the approach shown in Section 5.2.1.2.4, both tables have a common field SID which acts 

as a primary key in Table SUPPLIER and a component of the composite key in Table PARTS. 

There is no pointer in this table structure. Each table is created, populated and maintained 

independently of the other with the exception of a foreign key relationship to ensure that no parts 

are added to the PARTS table for which there is no supplier. The value shown in RVA field 

SPART is explained in detail in Section 5.3.1.2. Everything in the example thus far is 

accomplished using existing SQL functionality. No new index algorithms or storage 

functionality is required. Standard SQL constraints are enforced without any system 

modification. It is only when the two tables are nested that new functionality is introduced in this 

approach.  

 

The only changes to the SQL processing at this point are to create the new data type and the 

nesting process along with the process strategy necessary to initiate nesting of the two separate 

tables. In this way, the vast majority of MySQL’s native functionality and features can be 

leveraged with a minimum of modification to the core processes. 
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    5.2.2.1 5.2.2.1 5.2.2.1 5.2.2.1 Considerations for Selecting the Normal StateConsiderations for Selecting the Normal StateConsiderations for Selecting the Normal StateConsiderations for Selecting the Normal State    

 
If the normal state of the relation was to be the nested state, then the development efforts 

associated with the RVA type would need to focus on the creation and maintenance of a nested 

relation within an attribute. Additional functionality would need to be developed that would 

provide the ability to unnest the relation from the attribute to create an independent relation. In 

fact, early development efforts pursued this approach and an effort was made to physically create 

a table within a table. It was soon learned, however, that MySQL was designed and written to 

prevent developers from doing this very thing. When a table is being created in MySQL a lock is 

placed on the table being created that precludes any other tables from being created within it at 

this point.[38] To change this functionality would have far reaching and potentially unpredictable 

ramifications within the MySQL process. 

 

On the other hand, if the normal state of the relation were to be the unnested state then the 

relation could be created and maintained outside of the nesting table using existing MySQL 

functionality and the development efforts could focus on the nesting functionality necessary to 

encapsulate the values contained in the relation within the attribute. In this way, a table could be 

created with attributes and constraints with both primary and foreign keys assigned just as with 

any other table in MySQL. This approach was seen as being highly advantageous because there 

was no reason to reinvent functionality that already existed in MySQL. The problem, then, 

resolved to be only one; how to nest the nested relation as an attribute within the nesting 

relation?  
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    5.3 5.3 5.3 5.3 Design Features of the RVACharDesign Features of the RVACharDesign Features of the RVACharDesign Features of the RVAChar    

Given the advantages of maintaining the RVA as a separate table, it was determined that this 

approach was to be taken. As separate tables, both the nesting and the nested table could be 

created, maintained and populated separately, utilizing MySQL's native capabilities. But still, the 

problem remained; how and when should nesting take place. 

    5.3.1 5.3.1 5.3.1 5.3.1 The ‘How’ and ‘When’ of itThe ‘How’ and ‘When’ of itThe ‘How’ and ‘When’ of itThe ‘How’ and ‘When’ of it    

There are two steps to solving the problem of when and how to nest the RVA's relation within 

the result set of a query. The first step is to create a new data type called an ‘rvachar’. This new 

data type has knowledge embedded within it such that, when used in a query, it provides the 

information required to access and nest an RVA within the nesting relation. Once the state of the 

relation has been determined the second step is to figure out how this nesting will take place, 

under what circumstances and when will the nesting take place?  

    5.3.2 5.3.2 5.3.2 5.3.2 The Knowledge Contained Within the RVACharThe Knowledge Contained Within the RVACharThe Knowledge Contained Within the RVACharThe Knowledge Contained Within the RVAChar    

The rvachar data type has knowledge embedded within it. This knowledge is composed of a 

string of three parts which act as tokens when the string is parsed. For example: 

 @Table:v_type@Key:vid@Fields:class,weight; 

The 'Table' value is the name of the nested table associated with the attribute. The 'Key' value is 

the common key shared with the nesting table. The key in the nested table may have a foreign 

key relationship with the nesting table but the RVA may only require an abbreviated version of 

the nesting table's key which is why it is specified within the knowledge string. The 'Fields' 

component in the value specifies the attributes within the RVA that will be contained in the 

result. In this way, the RVA is suitable not only for use with the specific requirements of fuzzy 

data, but of any relation that the database designer chooses to include in the RVA's result. In this 
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way, the designer is free to specify only those attributes she determines to be necessary to her 

needs. When declaring an attribute of the rvachar data type, the attribute is created as a field that 

is not null and with a default value consisting of the knowledge string that is set at the time of 

creation. Because this value is the default, the value will be set each time a new row is added to 

the table and this value will be the same for all instances of the field. Once the field has been 

created within the table and a default value assigned for all instances, it can be maintained as any 

other table. The field can be deleted, created and the default value can be viewed or changed by 

using MySQL’s standard ‘modify’ or ‘describe’ command. But the ‘knowledge’ value of the 

rvachar data type field cannot be returned as a result using a select statement. This prohibition is 

because data types in MySQL are defined as objects with methods. When an attribute defined as 

an RVA data type is included in the selection of a query, the knowledge contained within the 

attribute is first selected using the data type's val_str() method. This method extracts the 

knowledge contained within the initial value retrieved and uses this knowledge to nest the 

relation specified within the base nesting table. As a result, the relation contained within the 

RVA attribute is returned with the result rather than the knowledge value used to obtain and nest 

it. The val_str() method operates as the nesting function for the RVA.[37]  

    5.3.3 5.3.3 5.3.3 5.3.3 How the 'Knowledge' WorksHow the 'Knowledge' WorksHow the 'Knowledge' WorksHow the 'Knowledge' Works    

When a query is made against a table containing an RVA attribute, the MySQL parser builds a 

complex tree structure called a 'thread' to contain all of the tokens extracted from the query as 

well as the network, client and buffer specifications required to successfully execute and return a 

result to the client. Once the thread is populated with the query's tokens, MySQL begins the task 

of collecting the data that satisfies the query. One of the first steps in the collection of data is to 

obtain the value of the RVAChar specified in the SELECT predicate. The first time that the 
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thread attempts to obtain the value associated with the RVAChar attribute the process enters the 

RVAChar class method ‘val_str()’ which accepts as parameters values containing the original 

query string, the knowledge contained within the RVA attribute and all the information 

necessary to take control of the original query. The following is a summary of the steps taken by 

this method to obtain and return a result satisfying the requirements of the original query as well 

as the specified relation nested within the result[ii] : 

1. The query processing enters rvachar method val_str(). 

2. The original query string is saved in a variable. 

3. The rvachar value is saved in a variable.  

4. Using the knowledge contained in the rvachar value, the original query string is syntactically 

modified to join the nesting and the nested tables. 

5. A new thread is created and initialized.  

6. The new query is assigned to the new thread element using the build_query() method. This 

method takes the knowledge contained in the RVA attribute's value and, using the 

information contained in the original thread's parsing structure creates a new query that will 

be sent back through they MySQL parser in the new thread.  

7. The new thread’s memory root variables are initialized with appropriate block and memory 

size allocations. 

8. The network or ‘net’ values from the original thread are assigned to the new thread. This step 

is important because the network and portal settings are the door through which the original 

query came and where the result must be returned. 

                                                 
 
ii Full code for the val_str() and build_query() methods are provided in Appendices C and D. 
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9. The query buffers are initialized with the new query being assigned to the ‘buff’, ‘read_pos’ 

and ‘write_pos’ variable assigned the new query value. 

10. The security profile settings contained within the original thread are assigned to the new 

thread so that both threads now have the same profile and authorizations. 

11. The parser state of the query is reset for the new thread and the cache settings are assigned 

for the new result. 

12. A new packet is created for the new thread to create the memory for, and to hold the results 

of, the query.  

13. The MySQL method my_pthread_setspecific_ptr(THR_THD, select_thd) is called. This step 

is a very important one as it sets the value of the global MySQL variable current_thd. A great 

many methods in MySQL check the value of the thread entering as a parameter to the value 

of current_thd to ensure that ‘this’ thread is the current thread. If not, both processing and the 

server connections will fail.  

14. With the new thread fully initialized and assigned, MySQL method mysql_parse() is called: 

mysql_parse( select_thd,     New thread 
    select_thd�query(),    New query string 
    select_thd�query_length(),  New query length  
    my_parser_state   );   Parser state of the new thread 

 
mysql_parse() will validate the new query, parse the query into the tables, commands 

and fields (items) contained within it, validate the ‘user’ authorizations, check and lock 

tables as necessary and, if all validations are passed, will execute the query placing the 

result in query buffer. 

 

15. Mysql_parse() returns no value and but when it returns to the calling process within the 

val_str() method a select_send variable is initialized. The select_send variable is responsible 
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for closing the query, cleaning the server and sending the ‘End Statement’ to the server 

which will send the result to the client through the original query’s port. 

16. At this point, the result is or has been sent to the client. 

17. Call an ‘error’. This error does not specify a thread and so will be called on the original 

thread. Calling an error inserts an artificial error into the original thread.  

18. Call MySQL method my_pthread_setspecific_ptr(THR_THD, table�in_use) to reset the 

current thread back to the original thread. The variable table�in_use contains the structure 

and values of the original thread. 

19. Set the is_sent variable of both the original and the new thread to FALSE. In doing so, the 

error set earlier will be processed by the original thread.   

20. Upon recognizing that an 'error' has occurred, the original thread will stop all further 

processing of the original query, back out and clean up all the original query buffers and 

return control to the client.  

Using this design, MySQL was modified to create a relational database system in which the use 

of relation valued attributes is possible. This enabled the use of RVA's to implement the storage 

and use of fuzzy data values. 

    5.4 5.4 5.4 5.4 Maintenance Benefits of the 'KnMaintenance Benefits of the 'KnMaintenance Benefits of the 'KnMaintenance Benefits of the 'Knowledge' Approachowledge' Approachowledge' Approachowledge' Approach    

There are a number of benefits to using an approach with knowledge embedded in the field's 

value. As Section 5.3 mentioned, both the nesting and the nested tables are maintained 

separately. By maintaining the tables separately, maintenance tasks are greatly simplified. This 

section discusses several of these tasks and the approach to their use with an attribute of the  

RVAChar type. 
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    5.4.1 5.4.1 5.4.1 5.4.1 Create TableCreate TableCreate TableCreate Table    

Creating the nesting table containing the RVAChar and the nested table that the knowledge 

contained within the RVAChar attribute uses standard SQL.  

 

First, the nesting table is created with the RVA attribute provided with a name, specified as an 

'rvachar' of a length appropriate to the anticipated length of the knowledge string and provided 

with the specific knowledge string value as a default. Because the attribute is created with the 

knowledge value as the default value, no value need ever be written to the field again. When a 

record is added to the nesting table for the base attributes, the RVA field will be assigned the 

knowledge value by default for each new record.  

 

Second, the nested table is created. This table, too, is created using standard SQL specifying a 

key that contains, at a minimum, the nesting table's key. The table structure must also contain the 

fields specified in the nesting table's RVA knowledge.  

 

When the RVA is called in a query, it reads the knowledge provided in the RVA field as the 

default and uses this knowledge to access the nesting table's key and the fields configured for 

access by the knowledge.  

    5.4.2 5.4.2 5.4.2 5.4.2 Drop TableDrop TableDrop TableDrop Table    

Typically, the nested table will be created with a foreign key relationship to the nesting table. 

Using standard SQL the foreign key can be specified to cascade on delete. In this way, dropping 
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a table containing an RVA and the nested table it refers to is no different than dropping any other 

related tables in a database. 

    5.4.3 5.4.3 5.4.3 5.4.3 Add, Delete and Update Fuzzy Data ValuesAdd, Delete and Update Fuzzy Data ValuesAdd, Delete and Update Fuzzy Data ValuesAdd, Delete and Update Fuzzy Data Values    

The fuzzy data value embedded in the RVA is maintained in a separate table. The attribute 

merely accesses this data when called for in a query. As such, adding, deleting or updating fuzzy 

data values is accomplished through the use of standard SQL just as it is with any other table. 

Maintaining the data in this way has no affect on the functionality of the RVA. 

    5.4.4 5.4.4 5.4.4 5.4.4 Modifying the KnowledgeModifying the KnowledgeModifying the KnowledgeModifying the Knowledge    

The knowledge contained within the RVA attribute can also be maintained using standard SQL. 

Using the UPDATE command, the value of the knowledge can be set to what ever new default is 

desired. In this way, an RVA can easily be expanded to include other fuzzy data values such as 

'importance' or 'certainty' for a particular object merely by adding these columns to the nested 

table and modifying the RVA's knowledge to access them using the UPDATE command.  

  



 

 116  
 

Chapter 6 Chapter 6 Chapter 6 Chapter 6 ----    Implementation of a RelImplementation of a RelImplementation of a RelImplementation of a Relation Valued Attribute in ation Valued Attribute in ation Valued Attribute in ation Valued Attribute in 
MySQLMySQLMySQLMySQL    

 
    6.1 6.1 6.1 6.1 Steps to ImplementationSteps to ImplementationSteps to ImplementationSteps to Implementation    

The client server SQL based database product MySQL was chosen for the implementation of a 

Relation Valued Attribute (RVA) because it is open source and readily available for download 

and modification. The following technical specifications are provided: 

Product Version Comment 
MySQL 5.5.20 Database System 
Microsoft Visual Studio 
2010 

10 Development Environment 

CMake 2.8.6 Development Product Build 
System 

Bison 2.4.1 YACC Compatible Parser 
Generator 

Table 6.1 - System Specification 
 

    6.1.1 6.1.1 6.1.1 6.1.1 Implementation ConsiderationsImplementation ConsiderationsImplementation ConsiderationsImplementation Considerations    

Because MySQL is open source, there were a number of issues that presented challenges to the 

implementation of a new attribute type and the process logic used to access and use it.  

The primary issue encountered was the use of the query thread as a global variable in some 

classes and methods. There are methods in MySQL that use the FIELD class global variable 

'table->in_use', 'current_thd' or 'thd' as a global representation of the active thread rather than 

passing the thread under consideration as a parameter. At times, the method logic would check 

the value of 'table->in_use' against the 'current_thd' via the following assertion: 

 DBUG_ASSERT(table->in_use == current_thd); 

 
As a result, the RVA thread would enter a parsing method and fail due to the fact that global 

thread representation was still assigned to the value of the original thread. Encountering this 

circumstance is one reason that it is good practice to eliminate global variables by encapsulating 
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them within a method either by declaring them within the method or passing them to a method 

by reference.[39] This issue was overcome by assigning the new RVA thread 'select_thd' to 

'current_thread' through the use of the method my_pthread_setspecific_ptr(THR_THD, 

select_thd) prior to calling the parsing method and setting it back to the original thread using the 

same method after the result was sent to the client.  

The second significant issue encountered resulted from the inherent nature of object oriented 

programming and the method construct used. Because the RVA and the nesting functionality 

created to accommodate it accessed methods common to other data types and SQL functionality, 

the optimal approach recommended that any change to the method functionality be avoided if 

possible. If changes were necessary, they must be implemented in such a way as to have no mal-

affect on other functionality of other data types. Generally, the solution to this problem was to 

encapsulate any changes necessary by interrogating the data type under consideration by using 

the item class method field_type() to distinguish functionality specific to the requirements of the 

RVA from any others. 

    6.1.2 6.1.2 6.1.2 6.1.2 Steps to Implementation Steps to Implementation Steps to Implementation Steps to Implementation     

The implementation of an RVA in MySQL had two parts. First, a new RVA data type was be 

created along with the process methods necessary to support the data type’s functionality. 

Second, and most importantly, the underlying MySQL processes were changed to accommodate 

the functionality associated with an attribute that is also a relation.  

    6.1.2.1 6.1.2.1 6.1.2.1 6.1.2.1 Creation of an RVA Data TypeCreation of an RVA Data TypeCreation of an RVA Data TypeCreation of an RVA Data Type    

There are two steps to the creation of a new data type in MySQL. The first is to create the data 

type in the file sql_yacc.yy which creates a ‘token’ for the new type. The second step is to create 

the methods in MySQL to accommodate the characteristics that the data type will have. 
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    6.1.2.2 6.1.2.2 6.1.2.2 6.1.2.2 Modifying the sql_yacc.yy FileModifying the sql_yacc.yy FileModifying the sql_yacc.yy FileModifying the sql_yacc.yy File    

 
The first step to creating a new data type within MySQL is to modify the file sql_yacc.yy. The 

purpose of the ‘yacc’ file is to define ‘tokens’ which are recognizable by the MySQL binary 

code. The yacc contains tokens for data types and all major MySQL functionality such as 

‘SELECT’. Even the ‘EQ’ symbol used in the standard SQL is defined as a function. Once 

defined in sql_yacc, a handle is associated with the token which passes the primary parameters 

into MySQL. For example, here is the code for ‘SELECT’: 

/* Select: Retrieve data from table */ 
select: 
 select_init 

{ 
LEX *lex = Lex; 
lex�sql_command = SQLCOM_SELECT; 

} 
; 
 

First, the word ‘select’ is referenced and everything that follows the ‘:’ symbol defines the 

essential variable components of the select command as it will exist in MySQL. Second, 

SQLCOM_SELECT is the hook into ‘MySQL proper’ that associates this token with the 

appropriate MySQL constant.  

When a data type is defined, the token represented by the data type must be initialized. Here is 

the sql_yacc definition and initialization of the RVACHAR data type: 

1. First define the token. Tokens are defined in sql_yacc in alphabetic order and the 

RVACHAR token is: 

%token RVACHAR 
 

2.  Next, the type is defined. A ‘type’ in this instance is a command or object type, not a data 

type. Among the many ‘types’ are ‘delete’, ‘drop’ and ‘insert’ along with the actual data 
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types. Because the RVACHAR token is patterned off of a STRING data type, the 

RVACHAR token was placed among the string and character types.  

…opt_delete_option rvachar varchar nchar… 

3.  The type is then further defined as follows. Again, because the STRING data type was 

used as the pattern for the creation of the rvachar data type, the same type definition was 

used.  

type: 
| rvachar field_length opt_binary  
{ 
 $$ = MYSQL_TYPE_RVACHAR; 
} 

 
4.   Finally, the rvachar is referenced to its internal MySQL type using the new token 

RVACHAR. 

rvachar 
  RVACHAR { } 
 ; 

 
These changes are all that were required within the sql_yacc file. After saving the file, the 

sql_yacc.yy file was run through bison to generate new sql_yacc.cc and sql_yacc.h files. This 

action generate two new files which were renamed in the source directory as shown: 

 y.tab.c must be renamed as sql_yacc.cc  
 y.tab.h must be renamed as sql_yacc.h 

 
    6.1.3 6.1.3 6.1.3 6.1.3 Modifying the MySQL Source CodeModifying the MySQL Source CodeModifying the MySQL Source CodeModifying the MySQL Source Code    

 
The MySQL source files mysql_com.h, mysql.cc, item.cc,[iii]  field.h and field.cc are where the 

new data type is defined and its code embedded.  

 
                                                 
 
iii  The term 'item' is synonymous with the term 'field' or 'attribute' within the MySQL context. 
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    6.1.3.1 6.1.3.1 6.1.3.1 6.1.3.1 Defining the Data Type in mysql_com.hDefining the Data Type in mysql_com.hDefining the Data Type in mysql_com.hDefining the Data Type in mysql_com.h    

 
All data types are ‘registered’ or defined within a list of enumerated constants and defined in 

MySQL source file mysql_com.h. Essentially, this creates a ‘legal’ value within the population 

of data type constants. Among enumerated data types enum_field_types the new field type 

MYSQL_TYPE_RVACHAR  was added. 

    6.1.3.2 6.1.3.2 6.1.3.2 6.1.3.2 LinkLinkLinkLinking ing ing ing the Data Type to its Defined Constantthe Data Type to its Defined Constantthe Data Type to its Defined Constantthe Data Type to its Defined Constant    

The enumerated constant that is defined for any data type that is not specifically ‘primitive’ must 

be linked to an internal type. In this case, the constant MYSQL_TYPE_RVACHAR is linked to 

the ‘actual’ data type RVACHAR. Specifically, the method 

static const char *fieldtype2str(enum enum_field_types type) 

 

gets a new line 

     case MYSQL_TYPE_RVACHAR:      return  "RVACHAR" ; 
 

which associates the actual data type with the defined data type.  
 
    6.1.4 6.1.4 6.1.4 6.1.4 Distributing the Data Type through the Server ProcessesDistributing the Data Type through the Server ProcessesDistributing the Data Type through the Server ProcessesDistributing the Data Type through the Server Processes    

Now that the data type has been defined, the token can now be defined as an object and, again 

following the lead of the basic STRING type, distributed through the MySQL server processes. 

The following are given in something of a ‘priority’ order, although that priority is subjective. 

    6.1.4.1 6.1.4.1 6.1.4.1 6.1.4.1 Modifying item.cc To Define the Data TypeModifying item.cc To Define the Data TypeModifying item.cc To Define the Data TypeModifying item.cc To Define the Data Type    

Because the RVACHAR is a special purpose string, the RVACHAR behaves in most ways just 

like a string. To support this behavior, any features or functions that are specific to strings should 

also apply to the RVACHAR data type. Many of these features exist in the MySQL file item.cc. 

The specific changes made to this file are shown as they are appear in the string type. 

Specifically: 
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1. Create the RVACHAR as a string type. The new string type will be an RVACHAR, not a 

string because we have defined the data type to have a unique identifier as shown by the use 

of the method type( ) which pushes the field construction down to the more basic 

Field_string. 

2. The second change is to the method tmp_table_field_from_field_type shown as defined 

below. 

Field *Item::tmp_table_field_from_field_type(TABLE *table, bool fixed_length) 
 

This method is used, essentially, to create an ‘item’ or attribute for any of the defined data 

types. It should be noted that the word ‘item’ is used within the MySQL code to imply 

‘field’. Once inside this method, the RVA data type once again follows the lead of the 

STRING type to create the field when this method is called. 

 
   switch (field_type( )) { 

  case MYSQL_TYPE_RVACHAR:  
  case MYSQL_TYPE_STRING: 
    if  (fixed_length && max_length < CONVERT_IF_BIGGER_TO_BLOB) 
    { 
      field= new Field_string(max_length, maybe_null, name, 
                              collation.collation); 
      break; 
    } 
 

3. The next change to the item.cc file is to the ‘send’ method defined below.  

bool Item::send(Protocol *protocol, String *buffer) 

 

This method returns a Boolean result indicating success or failure and is extremely important. 

As the name implies, it is instrumental in the storage and sending of the field’s result. If this 

method is not successfully accessed, the value of the data is not stored and will not be 

returned to the client. The structure surrounding the ‘protocol’ member will be discussed 
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shortly when the thread structure is discussed. For the moment, all that is required is to 

associate the RVA data type in line with the similar data types, particularly STRING. 

    6.1.4.2 6.1.4.2 6.1.4.2 6.1.4.2 Modifying field.h To Define the Data TypeModifying field.h To Define the Data TypeModifying field.h To Define the Data TypeModifying field.h To Define the Data Type    

All but the primitive data types in MySQL are created as classes. Each data type class contains 

all of the essential, and many very useful, methods necessary for the functions and features that 

support the data type. The MySQL type STRING was used as the pattern for the new 

RVACHAR data type. In fact, the string methods were copied in their entirety with very few 

changes. The only changes made to the class definition were to reference the new data type 

created earlier. Specifically:  

 
1. The new class is defined with a unique identifier 

class Field_rvachar :public Field_longstr 

2. The type( ) and real_type( ) method return the defined field type as enumerated 

enum_field_types type( )   const { return MYSQL_TYPE_RVACHAR; } 
enum_field_types real_type( )  const { return MYSQL_TYPE_RVACHAR; } 
 

    6.1.4.3 6.1.4.3 6.1.4.3 6.1.4.3 Modifying field.cc To Support Data Type FunctionalityModifying field.cc To Support Data Type FunctionalityModifying field.cc To Support Data Type FunctionalityModifying field.cc To Support Data Type Functionality    

Now that the class and its methods have been defined in the header file, the methods must be 

provided with the logic required to function not only as a character string, but as the RVA data 

type it is intended to be.[iv]  Fortunately, the logic associated with the new RVA data type is 

essentially the same as it is for the STRING data type. As a result, all but one of the methods 

associated with the Field_string class were replicated as Field_rvachar methods.  That one 

                                                 
 
iv The methods discussed in these sections are available in their complete form in Appendices C 
and D. 
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exception was the ‘val_str()’ method which is the key to the implementation of the relation 

valued attribute in MySQL.  

Within MySQL, each data type has a method whose purpose is to return the value obtained for 

that specific type. While many data types have a ‘val_str()’ method that returns a string 

representation of the value obtained for that data type, each instance of val_str() is specific to the 

data type. By creating a new data type rvachar, we are assured that when an attribute of the RVA 

data type is used in a query that MySQL will consistently access the val_str() method associated 

with the rvachar class to obtain the value appropriate to that query’s requirements. When using 

an RVA attribute, however, the val_str() method is accessed only one time. The first time that 

the val_str() method is accessed during the course of processing a SELECT statement, a new 

query, based on the original query is created. The example shown below illustrates how the 

original query is used and modified within the val_str() method to create the relation valued 

attribute. The modifications are shown in red. 

Original Query:   New Query: 
SELECT VID, TYPE   SELECT A.VID, B.CLASS, B.WEIGHT 
   FROM VEHICLE;      FROM VEHICLE AS A 
       INNER JOIN V_TYPE AS B 
                                                           ON A.VID = B.VID; 

 

While still within the val_str() method, this new query is passed back through the MySQL 

parser. Notice that the VEHICLE field TYPE does not exist in the new query. As a result, the 

new query will never again enter the rvachar method val_str(). It is the result of this new query 

containing the RVA data nested inside the original base table that is returned to the user while an 

error is set in the original query that terminates it and returns control to the user. 
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    6.1.4.4 6.1.4.4 6.1.4.4 6.1.4.4 Detailed Description of the Detailed Description of the Detailed Description of the Detailed Description of the val_str()val_str()val_str()val_str()    Method FunctionalityMethod FunctionalityMethod FunctionalityMethod Functionality    

 

All of the processing logic necessary to nest the nested table within the nesting table is contained 

within the rvachar class’ val_str() method. The following sections describe, in detail, the steps 

taken to produce a result containing an RVA. 

    6.1.4.4.1 6.1.4.4.1 6.1.4.4.1 6.1.4.4.1  Method HeaderMethod HeaderMethod HeaderMethod Header    

 

The val_str() method header is shown below. 
 

String *Field_rvachar::val_str(String *val_buffer __attribute__((unused)), 

 String *val_ptr) 

 

The *val_buffer is unused, but the *val_ptr is intended to hold the result string that is passed 

back to the calling process. In fact, this method’s return statement is, ‘return val_ptr’ and the 

val_ptr still returns this value.  Because an error has been inserted into the original thread’s 

structure, however, this value will essentially be discarded upon return and all further processing 

of the original query is halted.  

    6.1.4.4.2 6.1.4.4.2 6.1.4.4.2 6.1.4.4.2  Normal Processing: Checking the Normal Processing: Checking the Normal Processing: Checking the Normal Processing: Checking the AAAActive ctive ctive ctive TTTThreadhreadhreadhread    

 

The first thing that this method does is to check that the active thread is the current thread. This 

is a very important check that occurs frequently in MySQL. The following statement compares 

the variable table�in_use to the global variable current_thd. In the val_str() method, 

table�in_use is the active thread. All references to the original query or the original thread can 

be seen as synonymous with the variable table�in_use. 

DBUG_ASSERT(table->in_use == current_thd); 

 

Under normal operations, when a query is sent to the server and begins processing, the pthread 

method my_pthread_setspecific_ptr(THR_THD, thd) is called. This method sets the value of 
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current_thd to the active thread. Many methods called within MySQL begin with the assertion 

shown above and if the active thread does not match the current thread all further processing 

stops and the connection to the server will be lost. It is imperative, then, that these two threads 

evaluate as equal. 

    6.1.4.4.3 6.1.4.4.3 6.1.4.4.3 6.1.4.4.3  Normal ProcesNormal ProcesNormal ProcesNormal Processing: Saving sing: Saving sing: Saving sing: Saving Off the ‘KOff the ‘KOff the ‘KOff the ‘Knowledge’ nowledge’ nowledge’ nowledge’     

The value contained within the RVA field TYPE contains the knowledge needed to nest the table 

such as the name of the table to be nested and the key to that table which must match a portion of 

the key in the nesting table. As a result, normal val_str() processing is initially still important. 

After some basic validation, the value contained in the attribute is assigned to val_ptr parameter 

using the ‘set’ string method. 

 val_ptr->set((const char*) ptr, length, field_charset); 

 
The value passed to val_ptr is saved off to character attribute rva_val in the first step to utilizing 

this information for query string modification. If, at this point, the value contained by rva_val is 

NULL, the RVA table attribute has not been set up properly, there is no knowledge that can be 

used to nest the two tables and so RVA processing is skipped and the original query is processed 

with no further interruption. 

    6.1.4.4.4 6.1.4.4.4 6.1.4.4.4 6.1.4.4.4  RVA Processing: Saving off the RVA Processing: Saving off the RVA Processing: Saving off the RVA Processing: Saving off the Original Thread QueryOriginal Thread QueryOriginal Thread QueryOriginal Thread Query    

If, on the other hand, the rva_val variable does contain the necessary knowledge, the next step is 

to save off the original query so that it can be modified to accomplish the nesting of the two 

tables in this example. This action is fairly straight forward as the query is contained in the 

‘query_string’ member of the original thread. The following command accomplishes this task. 

sql_select = select_thd->query_string.str(); 
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    6.1.4.4.5 6.1.4.4.5 6.1.4.4.5 6.1.4.4.5  RVA Processing: Evaluating the SQL CommandRVA Processing: Evaluating the SQL CommandRVA Processing: Evaluating the SQL CommandRVA Processing: Evaluating the SQL Command    

Theoretically, the only reason that a query should ever enter the val_str() method is to satisfy the 

requirements of an SQL select statement. To be on the safe side, however, the SQL command is 

evaluated. As with most other required information, the SQL command associated with the 

original thread is contained in the ‘sql_command’ member located off of the ‘lex’ member 

branch of the thread tree. 

enum enum_sql_command sql_command= table->in_use->lex->sql_command; 

If the SQL command evaluates as equal to SQLCOM_SELECT, the query is a ‘select’ query and 

the tables must be nested. If not, the original query proceeds without any interruption from the 

nesting process.  

    6.1.4.4.6 6.1.4.4.6 6.1.4.4.6 6.1.4.4.6  RVA Processing: Building the new threadRVA Processing: Building the new threadRVA Processing: Building the new threadRVA Processing: Building the new thread    

At this point, the process has obtained the original query, the knowledge necessary to modify it 

and has confirmed that this is a select statement. The process has everything that it needs to 

create the new query. The first step in this process is to create a new thread to contain the new 

query and the myriad details associated with it. It is at this point that the original query is 

‘hijacked’ by the new query that will return the nested RVA results. The following commands 

create a new thread and initialize the base thread elements. 

select_thd = new THD; 
select_thd->init(); 

 

The new thread is now a basic thread with its elements ready to be populated with the values 

necessary to accomplish its purpose. 

It bears repeating here that a ‘thread’ in MySQL is not a thread in the traditional or classic sense. 

It is, in fact, a highly complex data structure that contains all aspects required of any type of 

query in MySQL. In the process of returning an RVA within a result relation, it will not be 
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necessary to use even most of the elements and functions provided by the THD class. This 

dissertation addresses only those elements that are required of the RVA query and response. The 

reader is invited to peruse the internal structure of a MySQL thread, preferably within a 

debugging session, so that the data contained in the elements will provide insight into the use 

and purpose of the elements contained within the THD structure. 

    6.1.4.4.7 6.1.4.4.7 6.1.4.4.7 6.1.4.4.7  RVA Processing: Building the new queryRVA Processing: Building the new queryRVA Processing: Building the new queryRVA Processing: Building the new query    

When the process gets to the val_str() method, we extract two critical pieces of data; the original 

thread which contains the token assignments from the original query and the knowledge encased 

in the value of the RVA data type. To review the example: 

Original Query:   New Query: 
SELECT VID, TYPE   SELECT VEHICLE.VID,  
   FROM VEHICLE;                                          V_TYPE.CLASS,  

                        WHERE VEHICLE.VID >= ‘2’;                       V_TYPE.WEIGHT 
                                  FROM VEHICLE AS VEHICLE 
        INNER JOIN V_TYPE AS V_TYPE 
                                                           ON VEHICLE.VID = V_TYPE.VID 
                                                               WHERE VEHICLE.VID >= ‘2’; 

 

The original query shown above comes in as token assignments made during the parsing of the 

original query. An example of this token assignment structure is shown in Figure 6.1 below. The 

‘item_list’ is the thread structure component that contains the fields contained in the thread.  
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Figure 6.1 - Item_list Structure in thread. 

The names of the fields are extracted from this structure using the MySQL object 

‘List_iterator_fast’ and the <Item> structure shown here as it is used in the build_query() 

method:  

List_iterator_fast<Item>  it(thread->lex->select_lex.item_list): 

 The knowledge contained in the RVA type field is similar to that shown here:  

"@TABLE:V_TYPE@KEY:VID@FIELDS:WEIGHT,CLASS"  

It contains the table to be nested, the key to the nested data and the fields to be nested. Note that 

there is no limit to the number of nested fields. The thread information and this knowledge are 

both passed to the ‘build_query()’ method which returns a character string containing the new 

query to the val_str() method. The build_query() method is defined as (For the full 

implementation, please refer to Appendix D: 
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char *Field_rvachar::build_query(THD *thread, CHARSET_INFO *set, char *knowledge, char 

*query) 
 

Because the build_query() method uses the parsed version of the original query, accessing the 

query tokens is easy and reliable. The build_query() method uses these same tokens to build a 

new query. The first tokens that the query builder looks for are the fields contained in the 

SELECT statement.. In the case of the example above, these tokens contained in the item_list are 

VID and TYPE where TYPE is the RVA data type. Using this information, the builder will first 

append ‘SELECT’ to a new string buffer variable. It will then append the table name obtained 

(i.e. ‘VEHICLE’) from the table_list token and a period (‘.’) to the string ‘VID,’. Thus modified, 

it will append the new string ‘VEHICLE.VID’ to the SELECT string buffer. Using the 

knowledge contained in the knowledge string, the builder will add the two fuzzy data attributes 

weight and class, to the string buffer with each proceeded, in this case, by a ‘V_TYPE.’. With 

the result being: 

 SELECT VEHICLE.VID, V_TYPE.WEIGHT, V_TYPE.CLASS 

We now have the SELECT portion of the new query. Using the tables obtained for the SELECT 

predicate described earlier, the builder then begins to build the ‘FROM’ clause. It does so by 

creating a JOIN using the two tables, VEHICLE and V_TYPE, and the value associated with the 

KEY found in the knowledge. In the case of this example, the FROM predicate would appear as: 

 FROM VEHICLE AS VEHICLE  

           INNER JOIN V_TYPE AS V_TYPE  

                  ON VEHICLE.VID = V_TYPE.VID 

This new FROM clause would be added to the SELECT string buffer. Specifically, ‘VEHICLE’ 

will follow the FROM clause and will be succeeded by the string ‘AS VEHICLE’ to become the 

string section ‘VEHICLE AS VEHICLE’. This section will then be appended to the buffer string. 
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Again using the table passed by the knowledge in the method, the string V_TYPE will be 

preceded by ‘INNER JOIN’ and succeeded by the string ‘AS V_TYPE’. Combined, this new 

string ‘INNER JOIN V_TYPE AS V_TYPE’ is appended to the string buffer. Finally, in this 

example, using the knowledge passed to the method, the value associated with ‘@KEY:’ is 

evaluated on both sides of the equality. The table ‘VEHICLE.’ and  ‘V_TYPE.’ precede the key 

attribute string VID to create a string ‘ON VEHICLE.VID = V_TYPE.VID’ with the whole 

being added to the query string. At this point, the build_query() method consist of the string,  

“SELECT VEHICLE.VID, V_TYPE.WEIGHT, V_TYPE.CLASS  

    FROM VEHICLE AS VEHICLE INNER JOIN V_TYPE AS V_TYPE  

         ON VEHICLE.VID = V_TYPE.VID” 

The last part of this example is the restriction found in the WHERE predicate. The restriction is, 

without a doubt, the most complicated of the query sections and this complexity is reflected in 

the thread structure. It is beyond the scope of this research to accommodate all WHERE 

predicate possibilities, but the example demonstrates the essential approach being used by 

MySQL. It is necessary here to briefly describe the WHERE component of the thread structure 

and how it works. To begin with, recall that the WHERE predicate was stated as: 

WHERE VID >= ‘2’;  

The select_lex.where element of the thread is a linked list that prepends the tokens to the list in 

prefix order. The followings screens illustrate how VID >= ‘2’ is maintained in the WHERE list.  

 

Figure 6.2 - Item Function 
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The head of the list is the ‘func_type’ which in this case is ‘greater than or equal to’ or ‘GE’. The 

pointer to the next element in the list shows the value = 2. 

 

Figure 6.3 - Item Value 

The func_type for this element is, essentially, ‘int’ which is the data type of the value. The field 

VID is of type integer and so it is only appropriate that an integer value be evaluated to it. 

 

Figure 6.4 - Item Field 

The last element of the WHERE list has the func_type ‘field’ and contains the value ‘VID’.  So 

the list elements flow in prefix fashion as ‘GE’ � ‘2’ � VID which are the two values to be 

compared and the comparison operator between them. So the WHERE list has all of the elements 

contained in the WHERE clause. The job now is to access them and create a string with these 

elements to finish off the selection query.  

 

Because the WHERE predicate can contain more than one comparison, the build_query() method 

provides an Item pointer to the next item in the where list, starting with the first. It is declared as: 

Item *ptr_next . This pointer allows the process to traverse the WHERE list and because it is of 

type Item, it contains all of the members inherent in the WHERE list which is of type Item.  
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The next object provided for use to the method is a variable called ‘my_func’ which is defined 

as:  Item_func::Functype my_func. This variable and the method Functype contained with the 

object Item_func are of critical importance. In Figure 6.2, the element ‘func_item_ge’ is an 

element of an Item_func array. Each of these functions contain complex members appropriate to 

just that function type.  Fortunately, all that the build_query() method requires from this complex 

structure is the comparison operator. The process obtains this value through the assignment: 

my_func = ((Item_func*)ptr_next)->functype(); 

 
my_func will be assigned a number. This number will correspond to a member in the enumerated 

list of operators contained in Item_func’s functype variable. Below is the list of enumerated 

values. Those of particular interest to the build_query() method are shown below: 

enum Functype { UNKNOWN_FUNC,EQ_FUNC,EQUAL_FUNC,NE_FUNC,LT_FUNC,LE_FUNC, 

    GE_FUNC,GT_FUNC...}; 

 
Notice, however, that there are many very familiar SQL function types from OR, XOR, AND 

and IN to those used for nested and more complex queries.  

 

The next token obtained is the value being compared, in this case ‘2’. Then, the field being 

compared is obtained which in this case is ‘VID’. Putting these three tokens together in a string 

with WHERE, the result is WHERE VID >= 2 which is what is needed. This string is appended 

to the whole to leave the build_query() with a final select statement of: 

SELECT VEHICLE.VID,  Query 6.1 
                V_TYPE.CLASS,  

                                        V_TYPE.WEIGHT 
   FROM VEHICLE AS VEHICLE 
  INNER JOIN V_TYPE AS V_TYPE 
        ON VEHICLE.VID = V_TYPE.VID 
WHERE VEHICLE.VID >= ‘2’; 
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The final query string is then assigned to the character string ‘query’ and returned to the val_str() 

method from which it was called. 

    6.1.4.4.8 6.1.4.4.8 6.1.4.4.8 6.1.4.4.8  RRRRVVVVA Processing: Processing the new queryA Processing: Processing the new queryA Processing: Processing the new queryA Processing: Processing the new query    

When the new query string is returned to the val_str() method, it is measured using the standard 

strlen(*String ) method and saved to the thread ‘query_string’ element with the method calls 

select_thd->set_query(my_sql_string, query_length ); 

select_thd->query_string = CSET_STRING(my_sql_string, query_length,field_charset); 

 

This key section is critical. The new query must be a reliably well-formed statement. Once 

created, however, any errors in the statement will be returned to the user as though the query was 

passed to the server in its new form. For example, if the new query were malformed, an error 

returned may not reference any element in the original query. Such messages would be quite 

confusing to a user who would have no ability to affect the syntax of the ‘built’ query.  

    6.1.4.4.9 6.1.4.4.9 6.1.4.4.9 6.1.4.4.9  RVA Processing: Allocating MemoryRVA Processing: Allocating MemoryRVA Processing: Allocating MemoryRVA Processing: Allocating Memory    

Memory allocation and buffer size is critical to execution of a query. In some cases, memory is 

dynamically allocated during the query execution. In other cases it is not. But an initial value 

sufficient to the queries needs can be assigned at this point. The first step is to create a new 

mem_root element in the select_thd. Once created, the mem_root allocations in the val_str() 

method were set to default values.  

Separate, but related, the select thread query allocation is set in the ‘alloc’ member of the 

select_thd to a length equal to the length of the new query built earlier. 

 unsigned int query_size = query_length; 

 select_thd->alloc(query_size); 
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    6.1.4.4.10 6.1.4.4.10 6.1.4.4.10 6.1.4.4.10  Assigning the ‘net’ element to the threadAssigning the ‘net’ element to the threadAssigning the ‘net’ element to the threadAssigning the ‘net’ element to the thread    

 
There are a number of critical elements contained within the original thread that must be 

assigned to the new thread. Perhaps the most critical of these elements is the ‘net’ element. The 

net element is the ‘client connection descriptor’ and contains both the network parameters as 

well as the client identifier. Without this information, the communication back to the client is 

lost. The only information that needs to be changed in the net element is the contents of the 

buffer, which will contain the new query and the lengths of these buffers to hold the new query 

header and result. These buffers will be addressed in a moment. For now, here is the assignment 

of the net element to the new thread.  

 select_thd->net            = table->in_use->net; 

 select_thd->stmt_da        = table->in_use->stmt_da; 
 

    6.1.4.4.11 6.1.4.4.11 6.1.4.4.11 6.1.4.4.11  RVA Processing: Preparing the query buffersRVA Processing: Preparing the query buffersRVA Processing: Preparing the query buffersRVA Processing: Preparing the query buffers    

The query thread uses four ‘working buffers’ to hold the query, navigate the request and hold the 

result. These buffers are the buff, buff_end, write_pos and read_pos. Initially, the buff, write_pos 

and read_pos variables contain the query as submitted. As the parser moves through the query 

string and extracts the markers these buffers are consumed. During the actual data selection, 

these buffers will contain various result components which will then be written to the ‘packet’ 

which will be discussed in Section 6.1.4.4.12. In short, the buffer areas are an important element 

in the thread structure as these are the workhorse buffers that provide temporary storage for 

query operations. 

 

The variable buff_end marks the limit of the query. This is a very important variable that must be 

set large enough to handle the result set and the ‘header’ which is written before the selection. 
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Here, the buff_end variable is set to the default value and should be more than sufficient to the 

need. 

    6.1.4.4.12 6.1.4.4.12 6.1.4.4.12 6.1.4.4.12  RVA Processing: The packetRVA Processing: The packetRVA Processing: The packetRVA Processing: The packet    

The packet holds the entire result set. By the time the original query gets to the val_str() 

structure, its packet has been ‘polluted’ with results already obtained from the original query. As 

a result, the new thread is provided with a clean, new packet area with an initial default memory 

allocation. At the completion of the query process, the ‘send’ class object will access the new 

thread’s packet rather than the original thread’s packet and ‘flush’ it to the client as output. 

    6.1.4.4.13 6.1.4.4.13 6.1.4.4.13 6.1.4.4.13  RVA Processing: Security settingsRVA Processing: Security settingsRVA Processing: Security settingsRVA Processing: Security settings    

When the new thread is created, it has no security value. Without a security value, the ‘user’ 

authorizations cannot be interrogated by the query execution to determine whether the user has 

authorization to this particular action or the specific tables involved. The simple thing to do here 

is to copy the security settings that came in the original query. The val_str() method does just 

that. 

    6.1.4.4.14 6.1.4.4.14 6.1.4.4.14 6.1.4.4.14  RVA Processing: The Parser StateRVA Processing: The Parser StateRVA Processing: The Parser StateRVA Processing: The Parser State    

When the new thread is created, it has no active parser state. The primary element of the parser 

state is the Lex input stream. The first step is to initialize a new parser state element for the new 

thread. Next, a new Lex input stream or ‘lip’ must be created, initialized and have its initial value 

assigned to it. The MySQL documentation provides a good summary of the Lexical input stream 

and is presented here. 
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The parameters passed to the lexical input stream are the thread pointer, the query string and the 

query string’s length. Once instantiated and with initial values assigned, the ‘lip’ is assigned to 

the parser state.  

 

A new parser state is created for the new thread, too. But this is not the same parser state. In fact, 

all that is required for the thread is to instantiate the parser state and assign a value of NULL 

while a value of 0 is assigned to the ‘safe_to_cache_query’ element on the lex branch of the 

thread tree to signal that the query is safe to cache.  

    6.1.4.4.15 6.1.4.4.15 6.1.4.4.15 6.1.4.4.15  RVA Processing: ProtocolRVA Processing: ProtocolRVA Processing: ProtocolRVA Processing: Protocol    

The ‘protocol’ element of the thread handles the status of the query processing and more 

importantly the ‘send status’ and the ‘end_statement’. It is by calling the protocol’s end 

statement method that the results contained within the packet are actually sent to the client. At 

this point, however, all that is required is that the protocol element be initialized to reference the 

new thread.  

   select_thd->protocol->init(select_thd); 
 

 

Class: Lex_input_stream 
 
This class represents the character input stream consumed during lexical analysis. 
 
In addition to consuming the input stream, this class performs some comment 
preprocessing, by filtering out-of-bound special text from the query input stream.  
Two buffers, with pointers inside each buffer, are maintained in parallel. The 'raw' 
buffer is the original query text, which may contain out-of-bound comments. The 
'cpp' (for comments preprocessor) is the pre-processed buffer that contains only 
the query text that should be seen once out-of-bound data is removed. 
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    6.1.4.4.16 6.1.4.4.16 6.1.4.4.16 6.1.4.4.16  RVA Processing: Client capabilitiesRVA Processing: Client capabilitiesRVA Processing: Client capabilitiesRVA Processing: Client capabilities    

The client_capabilities element of the thread variable express whether the client is capable of 

such things as multiple queries or multiple statements. It is not necessary to determine this value 

for the new thread. Rather, the client_capabilities value can be copied directly from the original 

thread. 

 select_thd->client_capabilities = table->in_use->client_capabilities; 

 

    6.1.4.4.17 6.1.4.4.17 6.1.4.4.17 6.1.4.4.17  RVA Processing: Setting the current threadRVA Processing: Setting the current threadRVA Processing: Setting the current threadRVA Processing: Setting the current thread    

Because MySQL is a client server product and methods can be called through various client 

threads at any time, there are a number of checks to ensure that the thread entering a particular 

method is the ‘current thread’. The current thread is represented by a value in the variable 

current_thd. When the original query enters the val_str() method, the value contained in 

current_thd is equal to the original thread. In fact, the evaluation of the thread within the methods 

is through the debug macro DEBUG_ASSERT(thd = = current_thd). If the assertion returns in 

the negative, the link between the client and server is dropped. It is therefore necessary to set the 

new thread to the current thread. This is done using the statement shown below. 

 my_pthread_setspecific_ptr(THR_THD, select_thd); 

 

    6.1.4.4.18 6.1.4.4.18 6.1.4.4.18 6.1.4.4.18  RVA Processing: Calling RVA Processing: Calling RVA Processing: Calling RVA Processing: Calling mysql_parse()mysql_parse()mysql_parse()mysql_parse()    

Everything that must be done and provided for the new thread has now been done. The query has 

been set, the network parameters have been established, the buffers have been instantiated and 

populated as necessary and the required memory has been allocated. The process now calls the 

MySQL method mysql_parse() as follows. 

mysql_parse(select_thd,  

       select_thd->query(),  

       select_thd->query_length(),  
       my_parser_state); 
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The four parameters are: 

1. The new thread variable containing the basic, but essential elements necessary to 

parse and execute the query. 

2. The query string. 

3. The length of the query string. 

4. The independent parser state 

    6.1.4.4.19 6.1.4.4.19 6.1.4.4.19 6.1.4.4.19  RVA Processing: RVA Processing: RVA Processing: RVA Processing: UUUUse of se of se of se of the the the the mysql_parse()mysql_parse()mysql_parse()mysql_parse()    MMMMethodethodethodethod    RationaleRationaleRationaleRationale    

There is a reason that the mysql_parse() method was used in this instance. Several methods and 

alternatives were considered and tried. As mentioned earlier, the THD or thread structure at the 

heart of MySQL is extraordinarily complex. Nearly all of the methods contained in MySQL 

either read data from or write data to this object. As a result, the problem with selecting the 

‘right’ method had to do with finding the right ‘entry point’ for the new thread and making a 

determination as to which of these entry points would provide the new thread with the most 

MySQL functionality. Choosing the wrong method would have meant spending considerable 

effort in replicating the processes that already existed in MySQL and resulted in a product that 

was error prone and highly unreliable.  

 

It was originally thought that the MySQL method ‘mysql_select()’ was the appropriate entry 

point to use. The method’s parameters appeared to have all the ‘pieces and parts’ necessary to 

proceed if only the process could be designed to appropriately assign a value to each of these 

parameters. Considerable effort was expended in an attempt to do this. Two facts eventually 

became apparent. First, given the wide variety of selections being made in a query, it would be 

almost impossible to correctly populate all of the associated thread elements and variables. More 
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importantly, however, attempting to do so would replicate, in most every respect, the job already 

being done by the parser method. It is the job of the parser to collect an input string and to break 

the tokens contained within the string down into its various components. In fact, the parser 

method, ‘mysql_parse()’ required only four parameters; the thread to hold the communications 

information and the results of the parser’s efforts, the query for the parser to ‘parse’, the length 

of the query to assist in string manipulation and a variable provided to hold the parser state of the 

object. By using the MySQL parser method, the entry point for the new method was far enough 

‘up stream’ to utilize all of the MySQL functionality necessary to populate the thread with every 

piece of required information. In addition, if the query were a well formed and executable 

statement, it was the job of the parser method to execute the query and store the results of the 

query. Essentially, the input to the parser was the query to be processed. The output of the parser 

was the results of the query’s execution.  

 

Using the parser allowed all of the RVA’s nesting functionality to be called from and 

encapsulated within the val_str() method. With rare and minor exception, no other MySQL 

process functionality required change. While the use of almost all of the MySQL functionality is 

an obvious benefit to this approach, the other key benefit was the fact that using this approach 

completely eliminated any potential and unforeseen mal-effect to changing MySQL code outside 

of the val_str() method.   

    6.1.4.4.20 6.1.4.4.20 6.1.4.4.20 6.1.4.4.20  RVA PRVA PRVA PRVA Processing: Sending the result to the clientrocessing: Sending the result to the clientrocessing: Sending the result to the clientrocessing: Sending the result to the client    

The output of a successful call to the parser method is a packet variable containing the results of 

the query contained within the thread structure. The next step is to access this packet and send it 
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to the client as the result. To accomplish this task, a select_send object needed to be initialized 

and assigned the value of the thread and its essential elements.  

 

Once prepared, the thread would update the server with the appropriate status flags and call the 

‘end_statement()’ method. It is the end_statement() method that actually sends the result to the 

client by flushing the results buffer. The result buffer contains the result header consisting of the 

column headings and the results consisting of the ‘items’ contained within each result record.  

    6.1.4.4.21 6.1.4.4.21 6.1.4.4.21 6.1.4.4.21  RVA Processing: Terminating the original queryRVA Processing: Terminating the original queryRVA Processing: Terminating the original queryRVA Processing: Terminating the original query    

As alluded to earlier, the val_str() method was called as part of the original query processing. 

The method that called the val_str() method expects a string to be returned to it and to then 

continue processing the original query. The RVA val_str() method, however, has already 

processed and returned a result from its query. As a result, the original query must be terminated 

and control must return to the user on the client side. To accomplish this, an ‘error’ is set. By 

setting an error, the calling method will receive a result, but that result will come with an error.  

/* Set the error that stops further original SQL processing. */ 

 success.set("RVA Success", 11, field_charset); 

 my_error(ER_CHECK_NOT_IMPLEMENTED, MYF(0), success); 
 

Before the process returns, however, the global current_thd  set to the new thread must first be 

reset back to the original thread. To do this, the original thread is simply passed as a parameter to 

the set specific method. 

       my_pthread_setspecific_ptr(THR_THD, table->in_use); 

 

The is_sent element of both the original and the new thread must be set to FALSE. MySQL will 

drop the connection between the client and the server if a process tries to send an error to the 

client after the result has been sent. If an error occurs in processing the expectation is that it will 
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occur before a result is obtained and sent to the user. In testing, however, there has been no mal-

effect from setting the ‘is_sent’ element to FALSE even though the result has, in fact, been sent.  

When the calling method is informed that an error has occurred, it will stop all further 

processing, free any allocated memory, unlock the tables used in the original query and return 

control to the user.  
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Chapter 7 Chapter 7 Chapter 7 Chapter 7 ----    ValidationValidationValidationValidation    

 
    7.1 7.1 7.1 7.1 The Approach to ValidationThe Approach to ValidationThe Approach to ValidationThe Approach to Validation    

A validation of the system developed for the use of RVA’s in support of fuzzy data was 

performed to confirm and demonstrate the ability of the system to satisfy several primary goals. 

The first of these goals was to demonstrate that the system not only supports the necessary 

functionality of the relational database, but also adheres to the strict mathematical requirements 

of the relational model. Specifically, the use of RVA’s must appropriately accommodate the five 

primitive operations established by Codd as required for the relational model; the Cartesian 

Product and the Restriction, Projection, Join and Intersection operations.[7]  

 

The next goal was to demonstrate the ability of the system to accommodate the use of RVA’s in 

the support of non-fuzzy data. While the focus of this research is the use of RVA’s to represent 

fuzzy data, RVA’s are not limited to this task. RVA's can also be used to represent other, more 

common, data requirements. To illustrate this additional role of relation valued attributes, a non-

fuzzy data example is provided and discussed in Section 7.2.6.  

 

Another important goal of this research is to consider the representation of an RVA within the 

result of a query. There are two general representations that have been used. Chapter 9 discusses 

these representations, their benefits and drawbacks. During the formal system study the opinions 

of users as to which representation is more meaningful and suitable to their needs was elicited.  

 

In addition to the representation, the new database system provides the user with a new and 

unfamiliar tool. Queries are somewhat different and the results may not be as expected. In order 
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to help gauge the effect on the user resulting from these differences a number of heuristic 

questions were asked to gain insight into the user’s reaction. 

Finally, it was necessary to demonstrate and confirm that the introduction of the RVA within the 

database does not affect the normal functionality of the database to support and maintain non-

fuzzy data.  

    7.2 7.2 7.2 7.2     Data Used in ValidationData Used in ValidationData Used in ValidationData Used in Validation    

The tests used to validate the representation of fuzzy data using relation valued attributes 

consisted of a database comprised of tables VEH_TAMPA, VEH_MIAMI and V_TYPE. The 

structure of VEH_TAMPA and VEH_MIAMI are shown in Table 7.1. Table V_TYPE is shown 

in Table 7.2: 

+-------+--------------+------+-----+-------------- -----------------------------+ 
| Field | Type         | Null | Key | Default                                   | 
+-------+--------------+------+-----+-------------- -----------------------------+ 
| vid   | int(11)      | NO   | PRI | NULL                                      | 
| loc   | char(25)     | YES  |     | Tampa                                     | 
| name  | char(25)     | YES  |     | NULL                                      | 
| manuf | char(25)     | YES  |     | NULL                                      | 
| type  | rvachar(125) | NO   |     | @table:v_type @key:vid@fields:weight,class | 
+-------+--------------+------+-----+-------------- -----------------------------+ 

Table 7.1 - VEH_TAMPA and VEH_MIAMI 

+--------+---------------------------+------+-----+ ---------+ 
| Field  | Type                      | Null | Key |  Default | 
+--------+---------------------------+------+-----+ ---------+ 
| vid    | int(11)                   | NO   | PRI |  NULL    | 
| weight | decimal(4,2)              | YES  |     |  NULL    | 
| class  | enum('Car','Truck','Van') | NO   | PRI |  Car     | 
+--------+---------------------------+------+-----+ ---------+ 

Table 7.2 - V_TYPE 

 The data contained within these tables are shown in Tables 7.3, 7.4 and 7.5. The query to select 

the data from the tables is shown with the result of the query. VEH_TAMPA and VEH_MIAMI 

RVA attribute type is specified.  When specified in the query, the relation specified by the RVA, 
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namely V_TYPE consisting of attributes containing the ordered pair (weight,class) necessary for 

the representation of fuzzy data is nested within the base table.[2][v]   

 
mysql-VCU> select vid, loc, name, manuf, type from 
veh_tampa; 
+-----+-------+-----------+----------- +--------+-------+  
| vid | loc   | name      | manuf     | WEIGHT | CLASS |  
+-----+-------+-----------+----------- +--------+-------+  
|   1 | Tampa | El Camino | Chevrolet |   0.90 | Car   |  
|   1 | Tampa | El Camino | Chevrolet |   0.60 | Truck |  
|   2 | Tampa | Camero    | Chevrolet |   1.00 | Car   |  
|   3 | Tampa | F-150     | Ford      |   0.70 | Car   |  
|   3 | Tampa | F-150     | Ford      |   1.00 | Truck |  
+-----+-------+-----------+----------- +--------+-------+  
5 rows in set (0.18 sec) 
 Table 7.3 - VEH_TAMPA Data 
 
mysql-VCU> select vid, loc, name, manuf, type from 
 veh_miami; 
+-----+-------+---------+------- +--------+-------+  
| vid | loc   | name    | manuf | WEIGHT | CLASS |  
+-----+-------+---------+------- +--------+-------+  
|   3 | Miami | F-150   | Ford  |   0.70 | Car   |  
|   3 | Miami | F-150   | Ford  |   1.00 | Truck |  
|   4 | Miami | Caravan | Dodge |   0.80 | Car   |  
|   4 | Miami | Caravan | Dodge |   0.90 | Van   |  
|   5 | Miami | Mustang | Ford  |   1.00 | Car   |  
+-----+-------+---------+------- +--------+-------+  
5 rows in set (0.01 sec) 
 Table 7.4 - VEH_MIAMI Data 
 

The value in the RVA field type consists of the data knowledge required to nest table V_TYPE 
into the nesting tables as appropriate, assigning the various fuzzy data relations to the associated 
vid.  
 

                                                 
 
v   Note: In order to maintain the format of the results, the fixed font 'Courier New' has been used to display the results of the queries which 

were copied directly from the system screens. In this way, the integrity of the result is best maintained.  
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mysql-VCU> select * from v_type; 
+-----+--------+-------+ 
| vid | weight | class | 
+-----+--------+-------+ 
|   1 |   0.90 | Car   | 
|   1 |   0.60 | Truck | 
|   2 |   1.00 | Car   | 
|   3 |   0.70 | Car   | 
|   3 |   1.00 | Truck | 
|   4 |   0.80 | Car   | 
|   4 |   0.90 | Van   | 
|   5 |   1.00 | Car   | 
+-----+--------+-------+ 
8 rows in set (0.09 sec) 

 Table 7.5 - V_TYPE Data 
    7.2.1 7.2.1 7.2.1 7.2.1 Cartesian ProductCartesian ProductCartesian ProductCartesian Product    

The Cartesian product consists of two vehicle tables, VEH_TAMPA and VEH_MIAMI, both of 

which contain an RVA attribute TYPE. In both cases, TYPE contains data consisting of the 

following knowledge as shown in the description in Table 7.1: 

@TABLE:V_TYPE@KEY:VID@FIELDS:WEIGHT,CLASS;  
 
The Cartesian product will return a set consisting of data from both tables, each containing the 

RVA data appropriate to both. The sequence of the SQL query entered by the user, the query as 

modified by the nesting method ‘build_query()’ based on the thread elements involved and the 

final query used to return the result set is as follows: 

Original Query: 
  

Select *          Query 7.1  
   From veh_tampa, veh_miami; 

 
 
Thread����Item:  

select veh_tampa.vid, veh_tampa.loc,  
          a.class, a.weight,  TYPE for tampa 
          veh_miami.vid, veh_miami.loc,  
          b.class, b.weight  TYPE for Miami 

 
Thread����Tables: 

  from veh_tampa as veh_tampa inner join v_type as a on veh_tampa.vid = a.vid, 
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           veh_miami as veh_miami inner join v_type as b on veh_miami.vid = b.vid  
 
Final Query:  

Select veh_tampa.vid, veh_tampa.loc, a.class, a.weight 
           veh_miami.vid, veh_miami.loc, b.class, b.weight 
 
   From veh_tampa as veh_tampa inner join v_type as a on veh_tampa.vid = a.vid, 
             veh_miami as veh_miami inner join v_type as b on veh_miami.vid = b.vid; 
 

The result is shown in Table 7.6: 
 



 

 147  
 

 
mysql-VCU> select * from veh_tampa, veh_miami; 
+-----+-------+-----------+-----------+--------+--- ----+-----+-------+---------+-------+--------+----- --+ 
| vid | loc   | name      | manuf     | WEIGHT | CL ASS | vid | loc   | name    | manuf | WEIGHT | CLAS S | 
+-----+-------+-----------+-----------+--------+--- ----+-----+-------+---------+-------+--------+----- --+ 
|   1 | Tampa | El Camino | Chevrolet |   0.90 | Ca r   |   3 | Miami | F-150   | Ford  |   0.70 | Car   | 
|   1 | Tampa | El Camino | Chevrolet |   0.90 | Ca r   |   3 | Miami | F-150   | Ford  |   1.00 | Truc k | 
|   1 | Tampa | El Camino | Chevrolet |   0.60 | Tr uck |   3 | Miami | F-150   | Ford  |   0.70 | Car   | 
|   1 | Tampa | El Camino | Chevrolet |   0.60 | Tr uck |   3 | Miami | F-150   | Ford  |   1.00 | Truc k | 
|   2 | Tampa | Camero    | Chevrolet |   1.00 | Ca r   |   3 | Miami | F-150   | Ford  |   0.70 | Car   | 
|   2 | Tampa | Camero    | Chevrolet |   1.00 | Ca r   |   3 | Miami | F-150   | Ford  |   1.00 | Truc k | 
|   3 | Tampa | F-150     | Ford      |   0.70 | Ca r   |   3 | Miami | F-150   | Ford  |   0.70 | Car   | 
|   3 | Tampa | F-150     | Ford      |   0.70 | Ca r   |   3 | Miami | F-150   | Ford  |   1.00 | Truc k | 
|   3 | Tampa | F-150     | Ford      |   1.00 | Tr uck |   3 | Miami | F-150   | Ford  |   0.70 | Car   | 
|   3 | Tampa | F-150     | Ford      |   1.00 | Tr uck |   3 | Miami | F-150   | Ford  |   1.00 | Truc k | 
|   1 | Tampa | El Camino | Chevrolet |   0.90 | Ca r   |   4 | Miami | Caravan | Dodge |   0.80 | Car   | 
|   1 | Tampa | El Camino | Chevrolet |   0.90 | Ca r   |   4 | Miami | Caravan | Dodge |   0.90 | Van   | 
|   1 | Tampa | El Camino | Chevrolet |   0.60 | Tr uck |   4 | Miami | Caravan | Dodge |   0.80 | Car   | 
|   1 | Tampa | El Camino | Chevrolet |   0.60 | Tr uck |   4 | Miami | Caravan | Dodge |   0.90 | Van   | 
|   2 | Tampa | Camero    | Chevrolet |   1.00 | Ca r   |   4 | Miami | Caravan | Dodge |   0.80 | Car   | 
|   2 | Tampa | Camero    | Chevrolet |   1.00 | Ca r   |   4 | Miami | Caravan | Dodge |   0.90 | Van   | 
|   3 | Tampa | F-150     | Ford      |   0.70 | Ca r   |   4 | Miami | Caravan | Dodge |   0.80 | Car   | 
|   3 | Tampa | F-150     | Ford      |   0.70 | Ca r   |   4 | Miami | Caravan | Dodge |   0.90 | Van   | 
|   3 | Tampa | F-150     | Ford      |   1.00 | Tr uck |   4 | Miami | Caravan | Dodge |   0.80 | Car   | 
|   3 | Tampa | F-150     | Ford      |   1.00 | Tr uck |   4 | Miami | Caravan | Dodge |   0.90 | Van   | 
|   1 | Tampa | El Camino | Chevrolet |   0.90 | Ca r   |   5 | Miami | Mustang | Ford  |   1.00 | Car   | 
|   1 | Tampa | El Camino | Chevrolet |   0.60 | Tr uck |   5 | Miami | Mustang | Ford  |   1.00 | Car   | 
|   2 | Tampa | Camero    | Chevrolet |   1.00 | Ca r   |   5 | Miami | Mustang | Ford  |   1.00 | Car   | 
|   3 | Tampa | F-150     | Ford      |   0.70 | Ca r   |   5 | Miami | Mustang | Ford  |   1.00 | Car   | 
|   3 | Tampa | F-150     | Ford      |   1.00 | Tr uck |   5 | Miami | Mustang | Ford  |   1.00 | Car   | 
+-----+-------+-----------+-----------+--------+--- ----+-----+-------+---------+-------+--------+----- --+ 
25 rows in set (0.24 sec) 

   Table 7.6 
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    7.2.2 7.2.2 7.2.2 7.2.2 RestrictRestrictRestrictRestrict    

The restrict operation limits the result by the value specified in the WHERE predicate of the 

query. When used with non-fuzzy data, the restrict operation is straight forward. The example in 

Query 7.2 demonstrates this operation using non-fuzzy data both as an example and to confirm 

that the incorporation of an RVA within the relation database does not affect the standard 

functionality of the database. Query 7.2 selects the attributes vid, loc, manuf and name from table 

VEH_TAMPA where the manuf is equal to ‘Chevrolet’ and displays it in Table 7.7. The RVA 

attribute type was intentionally omitted. 

mysql-VCU> select vid, loc, manuf, name        Query 7.2 
             from veh_tampa  
            where manuf = 'Chevrolet'; 
 
 
+-----+-------+-----------+-----------+ 
| vid | loc   | manuf     | name      | 
+-----+-------+-----------+-----------+ 
|   1 | Tampa | Chevrolet | El Camino | 
|   2 | Tampa | Chevrolet | Camero    | 
+-----+-------+-----------+-----------+ 
2 rows in set (0.00 sec) 

Table 7.7 
 
The attribute type can also be selected in a restriction as any other attribute. For example, Query 

7.3 can be modified to include attribute type and provide the result shown in Table 7.8. 

mysql-VCU> select vid, loc, manuf, name, type       Query 7.3 
             from veh_tampa  
            where manuf = 'Chevrolet'; 
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+-----+-------+-----------+-----------+--------+--- ----+ 
| vid | loc   | name      | manuf     | WEIGHT | CL ASS | 
+-----+-------+-----------+-----------+--------+--- ----+ 
|   1 | Tampa | El Camino | Chevrolet |   0.65 | Ca r   | 
|   1 | Tampa | El Camino | Chevrolet |   0.75 | Tr uck | 
|   2 | Tampa | Camero    | Chevrolet |   1.00 | Ca r   | 
+-----+-------+-----------+-----------+--------+--- ----+ 
3 rows in set (0.06 sec) 

Table 7.8 
 
When the query includes an RVA and there is the necessity to specifically restrict on a value 

contained in the RVA, the restrict operation is somewhat different. For example, the user cannot 

directly access the RVA's attribute class. This is because class is not an attribute contained in 

table VEH_TAMPA. The attribute class is a member of the relation nested in the RVA attribute 

type. As a result, a user cannot simply specify where class = 'Car'. But using the intersection 

operator IN, the same result can be obtained. Query 7.4 demonstrates this feature by selecting 

vehicle data from table VEH_TAMPA where the class of the vehicle is 'Car'. In this case, all that 

is required is to transform the original selection to an inner join. The restriction provided by the 

inner join is sufficient to limit the result set to only those values appropriate to the request. 

Notice that in this case, the WHERE predicate references the IN operator and specifies the RVA 

restrictions within the nested SELECT of table V_TYPE. The sequence of the SQL query 

entered by the user, the query as modified by the nesting method ‘build_query()’ based on the 

thread elements involved and the final query used to return the result set is as follows:  

Query:          Query 7.4 
 

Select vid, manuf, name, type 
 From veh_tampa 

           Where vid in (select vid from v_type 
                     Where class = 'Car'); 

 
Thread����Item:  

select veh_tampa.vid, veh_tampa.manuf, veh_tampa.name, 
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          a.class, a.weight,  TYPE for tampa 
 
Thread����Tables: 

  from veh_tampa as veh_tampa  
  inner join v_type as a  
      on veh_tampa.vid = a.vid 
    and a.class = 'Car' ); 

 
Final Query:  
 

select veh_tampa.vid, veh_tampa.manuf, veh_tampa.name, 
          a.class, a.weight,   
 from veh_tampa as veh_tampa  
 inner join v_type as a  
     on veh_tampa.vid = a.vid 
   and a.class = 'Car'); 
 

The Result appears in Table 7.9: 
 

+-----+-----------+-----------+--------+-------+ 
| vid | manuf     | name      | WEIGHT | CLASS | 
+-----+-----------+-----------+--------+-------+ 
|   1 | Chevrolet | El Camino |   0.90 | Car   | 
|   2 | Chevrolet | Camero    |   1.00 | Car   | 
|   3 | Ford      | F-150     |   0.70 | Car   | 
+-----+-----------+-----------+--------+-------+ 

  3 rows in set (0.12 sec) 
 Table 7.9 
 

The functional operations, ‘=’, ‘>’, ‘<’ and even ‘IN’ are contained within the ‘WHERE’ 

element of the query thread. The ‘greater than’ operation used to evaluate the attribute weight 

and the value under consideration are obtained through the use of the func_type() method.  

    7.2.3 7.2.3 7.2.3 7.2.3 ProjectProjectProjectProject    

The project operation specifies attributes and the order in which they will appear in the result. 

Continuing the example from Query 7.3, the example shown in Query 7.5 selects the attributes 

vid,  manuf and name from table VEH_TAMPA. The attribute loc, shown in Query 7.3 has been 

excluded from or ‘projected out’ of the selection and subsequent result. Query 7.5 demonstrates 
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this operation both as an example and to confirm that the incorporation of an RVA within the 

relation database does not affect the standard functionality of the database. 

mysql-VCU> select vid, manuf, name                              Query 7.5 
             from veh_tampa; 
 
 

+-----+-----------+-----------+ 
| vid | manuf     | name      | 
+-----+-----------+-----------+ 
|   1 | Chevrolet | El Camino | 
|   2 | Chevrolet | Camero    | 
|   3 | Ford      | F-150     | 
+-----+-----------+-----------+ 
3 rows in set (0.00 sec) 

 Table 7.10 
 
 
The purpose of the RVA, however, is to prohibit the exclusion of either element of the ordered 

pair necessary to the representation of fuzzy data. In fact, the primary objective of this research 

was to prohibit the individual exclusion of either class or weight of membership from the result. 

So, while it is possible and desirable to access the attributes WEIGHT and CLASS directly by 

selecting these values from the unnested table V_TYPE, it is not possible to access values from 

the WEIGHT or CLASS attributes individually from the RVA attribute TYPE. Values from 

these individual attributes cannot be directly accessed using the SELECT predicate against table 

VEH_TAMPA because the attributes contained within the relation nested inside the RVA cannot 

be accessed directly. Query 7.6 illustrates what happens when such an attempt is made.  

mysql-VCU> select vid, manuf, name, type.class  Query 7.6 
             from veh_tampa; 
 
ERROR 1054 (42S22): Unknown column 'type.class'  in 'field list' 
 

Selecting attribute TYPE from table VEH_TAMPA returns both WEIGHT and CLASS in the 

order specified by the RVA type without exception. Because table V_TYPE exists in its natural 

state as a standard table in MySQL, it can be maintained and assigned values just as any other 
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table using SQL. This point is a very important one as it allows the MySQL processes and the 

natural SQL language to affect table V_TYPE just as any other table in MySQL. That is because 

it is a table in MySQL. It is the RVA attribute TYPE that gives this table a special purpose and 

constrains the access to its data through the unique means. 

    7.2.4 7.2.4 7.2.4 7.2.4 JoinJoinJoinJoin    

 
As the name suggests, the join operation joins two or more tables together to provide one result.  

    7.2.4.1 7.2.4.1 7.2.4.1 7.2.4.1 Natural JoinNatural JoinNatural JoinNatural Join    

To demonstrate this operation, a new table MAINT was added to the database. The structure of 

this table and sample data is provided in Tables 7.11 and 7.12. 

+--------+-------------------------------+------+-- ---+---------+ 
| Field  | Type                          | Null | K ey | Default | 
+--------+-------------------------------+------+-- ---+---------+ 
| vid    | int(11)                       | NO   | P RI | NULL    | 
| engine | char(20)                      | YES  |     | NULL    | 
| trans  | enum('Auto','Manual','Other') | YES  |     | NULL    | 
| axles  | int(2)                        | YES  |     | NULL    | 
+--------+-------------------------------+------+-- ---+---------+ 

 Table 7.11 - Structure of Table MAINT 
 

+-----+-------------------+--------+-------+ 
| vid | engine            | trans  | axles | 
+-----+-------------------+--------+-------+ 
|   1 | short block 350   | Manual |     2 | 
|   2 | 323 horsepower V6 | Manual |     2 | 
|   3 | 3.7-liter V6      | Auto   |     2 | 
+-----+-------------------+--------+-------+ 

 Table 7.12 - Data in Table MAINT 
 

Using the data in tables VEH_TAMPA and MAINT, an example of a join using non-fuzzy data 

is shown in Query 7.7. Query 7.7 provides as an example to confirm that the incorporation of an 

RVA within the relation database does not affect the standard functionality of the join operation 

as it is used in the relational database. 

 



 

 153

mysql-VCU> select a.vid, a.name, a.manuf,  Query 7.7 
                  b.engine, b.trans, b.axles  
             from veh_tampa  as a  
            inner join maint as b  
               on a.vid = b.vid; 

 
 
+-----+-----------+-----------+-------------------+ --------+-------+ 
| vid | name      | manuf     | engine            |  trans  | axles | 
+-----+-----------+-----------+-------------------+ --------+-------+ 
|   1 | El Camino | Chevrolet | short block 350   |  Manual |     2 | 
|   2 | Camero    | Chevrolet | 323 horsepower V6 |  Manual |     2 | 
|   3 | F-150     | Ford      | 3.7-liter V6      |  Auto   |     2 | 
+-----+-----------+-----------+-------------------+ --------+-------+ 
3 rows in set (0.00 sec) 

 Table 7.13 
 
This table contains a primary key VID which has a foreign key relationship with base table 

VEH_TAMPA as well as attributes containing ENGINE, TRANS (Transmission), AXLES 

(Number of Axles).  

    7.2.4.2 7.2.4.2 7.2.4.2 7.2.4.2 Join with Table Containing an RVAJoin with Table Containing an RVAJoin with Table Containing an RVAJoin with Table Containing an RVA    

The RVA is, first and foremost, an attribute. As such, it can be specified as any other attribute in 

the selection of data. The example shown in Query 7.8 demonstrates this operation on a selection 

containing an RVA. 

The Query:          Query 7.8 
SELECT veh_tampa.vid,  
                veh_tampa.name,  
                veh_tampa.type, 
                maint.engine, 
                maint.trans, 
                maint.axles  
    FROM veh_tampa as veh_tampa inner join  
                maint as maint 
         ON veh_tampa.vid = maint.vid  
 WHERE veh_tampa.manuf = 'Ford'; 

 
Thread ���� Item 

SELECT veh_tampa.vid,  
                veh_tampa.name,  
                a.weight, 
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                a.class, 
                maint.engine, 
                maint.trans, 
                maint.axles  

Thread ���� Where 
    FROM veh_tampa as veh_tampa  
                inner join  v_type as a 
         ON tampa.vid = a.vid,   
                inner join maint as maint 
         ON veh_tampa.vid = maint.vid  
 WHERE tampa.manuf = 'Ford'; 
 

Final Query:  
SELECT veh_tampa.vid, veh_tampa.name, 
                a.weight, a.class, 
                maint.engine, maint.trans, maint.axles 
   FROM veh_tampa as veh_tampa  
                inner join v_type as a  
         ON a.vid = veh_tampa.vid  
                inner join maint as maint  
         ON maint.vid = veh_tampa.vid  
WHERE veh_tampa.manuf = 'Ford'; 

 
The Result is shown in Table 7.14 
 
+-----+-------+--------+-------+--------------+---- ---+-------+ 
| vid | name  | WEIGHT | CLASS | engine       | tra ns | axles | 
+-----+-------+--------+-------+--------------+---- ---+-------+ 
|   3 | F-150 |   0.70 | Car   | 3.7-liter V6 | Aut o  |     2 | 
|   3 | F-150 |   1.00 | Truck | 3.7-liter V6 | Aut o  |     2 | 
+-----+-------+--------+-------+--------------+---- ---+-------+ 
2 rows in set (0.01 sec) 

 Table 7.14 
 
As can be seen, the changes to the original query are relatively minor. All that is required is to 

insert the attributes WEIGHT and CLASS and the INNER JOIN on table V_TYPE into the 

query by the server. 

 select tampa.vid, tampa.name,a.weight,a.class,maint.engine,maint.trans  
  from veh_tampa as tampa inner join v_type as a on a.vid = tampa.vid, 
             inner join maint as maint on maint.vid = tampa.vid where tampa.manuf = 'Ford'; 
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    7.2.4.3 7.2.4.3 7.2.4.3 7.2.4.3 Join on Two Relation Valued AttributesJoin on Two Relation Valued AttributesJoin on Two Relation Valued AttributesJoin on Two Relation Valued Attributes    

The ability to join two tables based on the values contained in a common RVA is theoretically 

possible. This functionality, however, is not yet available in the current version of MySQL but 

may be included in future research and a brief discussion of this operation is appropriate here. 

Because an RVA is an attribute, the precept shown in Query 7.9 is a valid SQL condition.  

SELECT A.VID, A.LOC AS LOC1, B.LOC AS LOC2,  Query 7.9 
                A.NAME, A.MANUF, A.TYPE  
   FROM  VEH_TAMPA AS A 
  INNER  JOIN VEH_MIAMI AS B 
         ON A.TYPE = B.TYPE; 
 

But because an RVA is also a relation, we are essentially saying that the SQL precept shown in 

Query 7.10 is the same as the contrived precept shown in Query 7.11:  

ON <TABLE A> = <TABLE B> Query 7.10 

 

   ON A.MY_RVA.Attr1 = B.MY_RVA.Attr1 Query 7.11 

AND A.MY_RVA.Attr2 = B.MY_RVA.Attr2  

AND A.MY_RVA.Attr3 = B.MY_RVA.Attr3 
�    
�    

 

And so on until all relation attributes and all attributes in the RVA relation are specified. This 

precept, too, is a valid SQL condition. If the SQL were modified to accommodate Query 7.11, 

this precept would also be valid. In fact, specifying all of a table’s attributes in the join condition 

is not uncommon. The result of joining two tables on an RVA as shown in Query 7.10 is shown 

in Table 7.15. 
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VID  LOC1 LOC2 Name Manuf Type 
1 Tampa Miami El Camino Chevrolet Membership Class 

 0.90 Car 
0.60 Truck 

3 Tampa Miami F-150 Ford Membership Class 
 0.70 Car 

1.00 Truck 
Table 7.15 

The RVA field type behaves exactly as one would expect any attribute to behave. It is not 

necessary to specify the tables associated with Type contained in relations, namely VEH_MIAMI 

and VEH_TAMPA, because the knowledge and supporting table for both is V_TYPE. And, in 

the end, the individual relations contained in the RVA remain encapsulated within the attribute 

Type. Here again, the Membership and Class attributes contained within Type are inseparable.  

    7.2.5 7.2.5 7.2.5 7.2.5 IntersectIntersectIntersectIntersectionionionion    

Unlike a number of other SQL products, MySQL does not support a true INTERSECTION set 

operator. The functionality behind the INTERSECTION operation can, however, be obtained 

using the ‘IN’ operator as shown in the example below: 

SELECT <fields to be selected> 
   FROM <table a> 
WHERE (value) IN (SELECT value  
                                     FROM <table b>  
                                  WHERE <value predicate>); 

 
In an example using the test database used to this point, in intersection could be created joining 

tables VEH_TAMPA and VEH_MIAMI on the value MANUF = ‘Ford’. The intersection, then, 

is the records associated with VID = 3 as this is the only record present in both tables where the 

MANUF value = ‘Ford’ and the VID values are equal in both tables. 

Query:            
SELECT veh_tampa.vid,        Query 7.12 
                veh_tampa.loc,  
                veh_tampa.name, 
                veh_tampa.manuf,  
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                veh_tampa.type,  
                veh_miami.vid,  
                veh_miami.loc 
    FROM veh_tampa as veh_tampa inner join  
                veh_miami as veh_miami  
         ON veh_tampa.vid = veh_miami.vid 

             WHERE veh_tampa.vid IN (SELECT vid  
                                                  FROM veh_miami  
                                               WHERE manuf = 'Ford'); 

 
In some ways this selection is much more complex. Recall that attribute VEH_TAMPA-TYPE is 

a relation valued attribute and so, in many ways, this adds a third table to the selection. In other 

ways, however, the use of the RVA table V_TYPE simplifies the query. The ‘IN’ portion of the 

WHERE predicate is incorporated into a nested inner join just as was done in the restriction 

described in Section 7.2.2. The changes made to the selection in order to accommodate the RVA 

are shown below: 

Thread����Item:  
 

SELECT veh_tampa.vid,  
                veh_tampa.name,  
                veh_tampa.manuf,  
                a.weight, 
                a.class,  
                veh_miami.vid,  
                veh_miami.loc  
 

Thread����Tables: 
 
    FROM veh_tampa as veh_tampa  

     INNER JOIN v_type as a ON veh_tampa.vid = a.vid  
     INNER JOIN veh_miami as veh_miami  

          ON veh_tampa.vid = veh_miami.vid  
       AND veh_miami.manuf = 'Ford'; 
 

Final Query: 
 

SELECT veh_tampa.vid,  
                veh_tampa.name,  
                veh_tampa.manuf,  
                a.weight, 
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                a.class,  
                veh_miami.vid,  
                veh_miami.loc  
    FROM veh_tampa as veh_tampa  

     INNER JOIN v_type as a ON veh_tampa.vid = a.vid  
     INNER JOIN veh_miami as veh_miami  

          ON veh_tampa.vid = veh_miami.vid  
       AND veh_miami.manuf = 'Ford'; 
 

The result is shown in table 7.16: 
 
+-----+-------+-------+-------+--------+-------+--- --+-------+ 
| vid | loc   | name  | manuf | WEIGHT | CLASS | vi d | loc   | 
+-----+-------+-------+-------+--------+-------+--- --+-------+ 
|   3 | Tampa | F-150 | Ford  |   0.70 | Car   |   3 | Miami | 
|   3 | Tampa | F-150 | Ford  |   1.00 | Truck |   3 | Miami | 
+-----+-------+-------+-------+--------+-------+--- --+-------+ 
2 rows in set (0.16 sec) 

 Table 7.16 
    7.2.6 7.2.6 7.2.6 7.2.6 NNNNonononon----RVA TestsRVA TestsRVA TestsRVA Tests    

 
In nesting the RVA relation within the base relation, the relation contained within the RVA 

attribute is joined to the base relation. As a result, the final queries shown in the previous 

sections are precisely what would be required if there were no relation valued attributes. But 

there is one major difference and that difference is a critical one. Section 7.2.3 describes the fact 

that when using an RVA any attributes contained within an RVA cannot be ‘projected out’ of the 

result. Through the use of RVA’s all attributes contained within the nested relation will always 

be represented. This is particularly important when dealing with fuzzy data as a class without a 

weight of membership or a weight of membership without a respective class renders the result 

fairly meaningless. Query 7.12 demonstrates a query against tables VEH_TAMPA and V_TYPE 

without specifying the RVA attribute type. As a result, the vehicle’s class can be projected out of 

the result. The query from section 7.2.2 is used out of interest. The attribute a.class is absent 

from the query used in section 7.2.2: 

select veh_tampa.vid,  Query 7.12 
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          veh_tampa.manuf,  
          veh_tampa.name, 
          a.weight  
from veh_tampa as veh_tampa  
 inner join v_type as a  
     on veh_tampa.vid = a.vid 
   and a.weight > 0.6; 
 

Without the use of an RVA, this sort of representation would be quite easy to achieve. With an 

RVA, however, this sort of representation would be impossible to achieve as was demonstrated 

in Section 7.2.3. 

    7.3 7.3 7.3 7.3 Metrics Metrics Metrics Metrics     

To be acceptable to the relational model, the result of any query must be both accurate and 

complete. Using the RVA within MySQL satisfies both of these requirements. 

    7.3.1 7.3.1 7.3.1 7.3.1 AccuracyAccuracyAccuracyAccuracy    

As previously stated, a fuzzy data value is a set of (c,v) pairs. The RVA data type must both 

maintain the atomicity of the (c,v) pair and return the values contained within each pair 

accurately for the associated object as maintained for all pairs in the nested relation.  

 

Let Accuracy = [0,1] where 1 is total accuracy and 0 is total inaccuracy. Equation 7.1 states that 

the ratio of complete (c,v) pairs returned to the number of possible (c,v) pairs existing for an 

object is 1 when all (c,v) pairs are accurately returned and 0 when none are correctly returned.  

Accuracy = 1 -  The number of complete (c,v) Equation 7.1 

The number of (c,v) pairs 
 

    7.3.1.1 7.3.1.1 7.3.1.1 7.3.1.1 Accuracy in Accuracy in Accuracy in Accuracy in SystSystSystSystems without RVA Data Typesems without RVA Data Typesems without RVA Data Typesems without RVA Data Types    

Current systems that do not possess the constraint provided by the RVA can return an inaccurate 

result from a poorly written query. As Equation 7.1 illustrates, if a query were to neglect to 
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specify both attributes required for the (c,v) pair in the result for the associated object the fuzzy 

data values for each object can be incorrect. 

    7.3.1.2 7.3.1.2 7.3.1.2 7.3.1.2 Accuracy in Accuracy in Accuracy in Accuracy in Systems with RVA Data TypesSystems with RVA Data TypesSystems with RVA Data TypesSystems with RVA Data Types    

It is not possible to return an inaccurate fuzzy data value when using an RVA. Through the use 

of an RVA, the accuracy of the fuzzy data value is guaranteed to be 1. 

    7.3.2 7.3.2 7.3.2 7.3.2 CompletenessCompletenessCompletenessCompleteness    

All requested (c,v) pairs associated with an object in the nesting table must be returned when 

requested.  

Let Completeness = [0,1] where 1 is complete and 0 is incomplete. Equation 7.2 states that the 

ratio of all (c,v) returned to the number of possible (c,v) pairs existing for an object is 1 when all 

(c,v) are returned and 0 when none are returned. 

Completeness =           The number of (c,v) pairs returned         Equation 7.2 

The number of (c,v) pairs in fuzzy data value 
 

    7.3.2.1 7.3.2.1 7.3.2.1 7.3.2.1 Completeness in Systems without RVA Data TypesCompleteness in Systems without RVA Data TypesCompleteness in Systems without RVA Data TypesCompleteness in Systems without RVA Data Types    

In systems without an RVA data type, it is possible to write a query that excludes some (c,v) 

pairs from a result. Using the vehicle database discussed throughout this dissertation, it is 

possible to write a query that returns only Cars. It is a requirement of the user to know all classes 

associated with an object and to maintain any embedded queries in such a way that new classes, 

such as 'SUV', are returned with the result of a fuzzy data query. 

    7.3.2.2 7.3.2.2 7.3.2.2 7.3.2.2 Completeness in Systems with RVA Data TypesCompleteness in Systems with RVA Data TypesCompleteness in Systems with RVA Data TypesCompleteness in Systems with RVA Data Types    

In systems using an RVA data type, it is not possible to omit a (c,v) pair unintentionally. The 

result can be restricted to only those desired, but if not specifically restricted, completeness using 

the RVA data type is guaranteed to be 1.  
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    7.4 7.4 7.4 7.4 Conclusions Conclusions Conclusions Conclusions     

The system validation demonstrated that the system as designed, implemented and used satisfied  

all of the established goals.  The system demonstrated that the incorporation of an RVA into a 

relational database system provided an enhanced capability while not affecting normal 

functionality. The system also appropriately adhered to the relational model through a 

demonstrated ability to obtain the Cartesian Product and perform the Restriction, Projection, Join 

and Intersection operations necessary to the use of the relational database.     
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Chapter 8 Chapter 8 Chapter 8 Chapter 8 ----    NonNonNonNon----Fuzzy ApplicationFuzzy ApplicationFuzzy ApplicationFuzzy Application    

 
    8.1 8.1 8.1 8.1 Benefit of Benefit of Benefit of Benefit of anananan    RVA in a NonRVA in a NonRVA in a NonRVA in a Non----Fuzzy ApplicationFuzzy ApplicationFuzzy ApplicationFuzzy Application    

While the purpose of this research has been to demonstrate the benefits of relation valued 

attributes in support of the particular needs of fuzzy data, it should be noted that RVA’s provide 

general purpose benefit as well. To illustrate the use of an RVA in a non-fuzzy data application, 

Tables DEPT and D_ROOM were created (See Tables 8.1 and 8.2): 

Field Description Type Key Default 
CODE Dept. Code Char(3) Yes  
NAME Dept. Name Char(15) No  
HEAD Dept. Head Char(15) No  
ADMIN Dept. Admin Char(15) No  
CONTACT Dept. Contact Char(8) No  

ROOM Room RVA RVAChar(120) No 
@table:D_ROOM@key:CODE@fields:
NUMBER,TYPE,AVAIL,NETWORK; 

 Table 8.1 - DEPT 
 

Field Description Type Key Default 
CODE Dept. Code Char(3) Yes  
NUMBER Room No. Char(4) Yes  
TYPE Room Type Enum('Meeting','Patient','Office','Labratory') No  
AVAIL Available? Enum(‘Y’,’N’) No ‘Y’ 
NETWORK Networked? Enum(‘Y’,’N’) No ‘Y’ 

 Table 8.2 - D_ROOM 
 

Note that DEPT attribute room is specified as an RVAChar with the requisite knowledge 

provided as the default value. The data provided for the two tables is shown in the screen shots 

from the system below. The attribute room was left off of the query against table DEPT so that 

only the base data within table DEPT was displayed. Recall that any time an RVA field is 

selected, the nested data contained within the RVA’s attribute will be displayed as a part of the 

result. 
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Table 8.3 - DEPT Data 

 

 
Table 8.4 - D_ROOM Data 

 
When the table DEPT is queried with the RVA attribute included in the selection clause, the 

following example illustrates the result that would be returned. (NOTE: Due to the output and 

formatting limitations of the console, attributes admin and contact were excluded from this 

query.) As can be seen, the RVA attribute room returns the room data associated with each of the 

Departments as a relation containing attributes number, type, avail and network. As a result, this 

simple query returns a much more significant response, a response limited only by the 

knowledge value specified in the RVA. But, because the attribute room is an RVA, the 

cardinality of this result is still only 4 with an index of only 3 tuples. 

The Query:          Query 8.1 

SELECT CODE, NAME, HEAD, ROOM 
    FROM DEPT. 
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The Result is shown in Table 8.5: 
 

 

 Table 8.5 - The Result
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Chapter 9 Chapter 9 Chapter 9 Chapter 9 ----    Representation of Fuzzy DataRepresentation of Fuzzy DataRepresentation of Fuzzy DataRepresentation of Fuzzy Data    

 
    9.1 9.1 9.1 9.1 Types of RVA RepresentationTypes of RVA RepresentationTypes of RVA RepresentationTypes of RVA Representation    

There has been much debate as to the representation of fuzzy data in a result set. Below are the 

two representations under consideration using the data contained in sample table VEH_TAMPA. 

The query used to obtain this result is a simple one: 

SELECT vid, loc, name, manuf, type Query 9.1 
   FROM veh_tampa; 
 

The result of this query could be provided to the user in one of two formats, either a standard 

grid or a grouped grid format as shown in Tables 9.1 and 9.2: 

VID LOC NAME MANUF WEIGHT CLASS 
1 Tampa El Camino Chevrolet 0.90 Car 
1 Tampa El Camino Chevrolet 0.60 Truck 
2 Tampa Camero Chevrolet 1.00 Car 
3 Tampa F-150 Ford 0.70 Car 
3 Tampa F-150 Ford 1.00 Truck 

Table 9.1 – Standard Grid Representation 

VID LOC NAME MANUF TYPE 
1 Tampa El Camino Chevrolet WEIGHT CLASS 
 0.90 Car 

0.60 Truck 
2 Tampa Camero Chevrolet WEIGHT CLASS 
 1.00 Car 
3 Tampa F-150 Ford WEIGHT CLASS 
 0.70 Car 

1.00 Truck 
Table 9.2 – Grouped Grid Representation 

Table 9.1 is the format currently returned by the implementation in MySQL. As the MySQL 

server accumulates the data in response to a query, it stores the data in a buffer packet. At the 

conclusion of the query, the buffer is flushed and the result is sent to the client in its raw, 

structured format. As can be seen in this representation, each line of the RVA is associated with 

the non-RVA attributes which consist of the base table. The representation displayed in Table 9.2 
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shows the RVA as it is associated with a single ‘tuple’ of the base table attributes. There are 

clear advantages and disadvantages to both representations. In fact, the choice of representations 

may become merely a design issue based on user need. As a result, the following sections do not 

resolve this debate, but merely seek to discuss the various costs and benefits of each 

representation. 

    9.1.1 9.1.1 9.1.1 9.1.1 Standard Grid RepresentationStandard Grid RepresentationStandard Grid RepresentationStandard Grid Representation    

The primary benefit of the standard grid representation is the fact that is represents the data in a 

format that the user is accustomed to seeing. While the relation is obviously in First Normal 

Form only, each of the WEIGHT and CLASS tuples contained within the RVA are seen as 

associated with its base relation. 

 

Another, not inconsiderable, benefit depends on how the user interacts with the MySQL server. 

If the user is accessing data through the console mode in a query � result fashion, the 

transaction is completed when the result from the query is returned to the user. If the user is 

accessing the server using the MySQL workbench, however, the interaction between client and 

server is more interactive. The result returned is a temporary and active relation consisting of the 

data resulting from a specific query with open links to both the tables and attributes involved. As 

a result, a change to the temporary relation is communicated to the involved tables and their 

attributes as a modification. In this way, the data comprising such representations of the RVA 

and its base relation could be maintained as a single relation rather than individually as would 

otherwise be the case. 
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    9.1.2 9.1.2 9.1.2 9.1.2 Grouped Grid RepresentationGrouped Grid RepresentationGrouped Grid RepresentationGrouped Grid Representation    

The grouped grid representation is one in which the RVA tuples are contained with a single tuple 

of the base relation. In such a case, there is a single instance of the base relation tuple and any 

number of tuples contained in the representation of the RVA nested relation. Date argues that 

such a representation is in 3rd Normal Form [37] given the structure of the representation 

consisting of a single normalized base table tuple and any number of tuples normalized within 

the RVA. The primary benefit here is the clear visual association of the RVA as a relation with a 

tuple with both an attribute heading (type) and attribute names displayed for all attributes within 

the relation. In using the standard grid representation, this visual association is potentially 

diminished depending on the perspective and acuity of the user.  

 

It would be a fairly straight forward exercise to modify the database system to return this 

representation. 
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Chapter 10 Chapter 10 Chapter 10 Chapter 10 ----    Formal Formal Formal Formal System StudySystem StudySystem StudySystem Study    

 
    10.1 10.1 10.1 10.1 OverviewOverviewOverviewOverview    

A formal system study plan was developed and submitted to the University's Institutional 

Review Board (IRB) for exemption. The exemption was approved on 28 November 2012. This 

chapter details the goals of the study and the steps taken to achieve these goals.  

 

The purpose of this study was to gain input from students in Computer Science, Information 

Systems and Bioinformatics. This input provided their insight into three major areas of interest in 

the use of RVA’s in the support of fuzzy data. The first of these areas was the acceptance and 

understanding of fuzzy data by the user community. How intuitive was the concept of fuzzy data 

and did they feel it had relevance in the ‘real world’. Secondly, the study sought to gain insight 

into two different representations of fuzzy data using RVA’s. One representation was the 

standard grid. The other was a grouped grid. Thirdly, the study provided the users with an 

opportunity to try to break the association between an entity’s class and its weight of 

membership. Perhaps the most important purpose of this research was to devise and demonstrate 

a means by which a constraint could be applied to the fuzzy data value representation that would 

preclude the separation of class from its associated weight of membership.  

    10.2 10.2 10.2 10.2 PreparationPreparationPreparationPreparation    

An application for an exemption from the IRB was required to proceed with the study using 

students from the University as participants. Once the exemption was obtained, participants from 

the University’s student body were recruited and arrangements made for University resources 

such as facilities, computers and presentation equipment. At this point, a presentation outlining 
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the subject matter of the research, research objectives and a script reflecting these objectives 

were developed. 

    10.2.1 10.2.1 10.2.1 10.2.1 ApplicationApplicationApplicationApplication    to the to the to the to the Institutional Review BoardInstitutional Review BoardInstitutional Review BoardInstitutional Review Board    

In October 2012, an application was made to IRB. The study would neither collect nor maintain 

any personally identifying information on the participants. Nor would the study be in any way 

invasive. In light of these points, the application to perform the study (Appendix E) was 

submitted and subsequently approved for exemption by the IRB on 28 November 2012.  

 10.2.2 RecruitmentRecruitmentRecruitmentRecruitment 

The target demographic of participants for this study consisted of both graduate and 

undergraduate students from Computer Science, Information Systems, Business and 

Bioinformatics. It was believed that this demographic would possess the necessary level of 

education and familiarity with information systems and the requisite ‘mind set’ to provide 

meaningful feedback and insight into the system and research topic under review. In order to 

recruit and attract this demographic, a number of brief presentations were made in selected 

classes. Information sheets reiterating the study’s purpose and the contact information necessary 

to reserve a place in the study were left with the students and posted in common areas.  

    10.2.3 10.2.3 10.2.3 10.2.3 PreparationPreparationPreparationPreparation    

A study script was prepared that reflected the objectives of the operations to be performed. These 

objectives included information on functionality and provided a level of heuristic perspective.  

Using these study objectives as a guide, the next step was to prepare a lesson plan that provided a 

basic, minimum level of SQL knowledge to complete the steps contained within the study. 

Thirdly, an overview presentation was prepared to introduce the participants to the concepts 
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pertaining to fuzzy data and RVA’s. Lastly, flash drives containing the working systems and the 

database to be used for the study were prepared for each user.  

    10.2.3.1 10.2.3.1 10.2.3.1 10.2.3.1 Study ObjectivesStudy ObjectivesStudy ObjectivesStudy Objectives    

The study being performed had the following primary objectives. 
 

• Did the system function as designed and developed? 

• Did the use of an RVA data type obey the dictates of the relational model? 

• Was the representation of fuzzy data easily understandable? 

• Was it possible to separate an entity’s class and weight of measurement using an RVA? 

• Which representation of the RVA was preferred and why? 

• Was the use of an RVA type attribute in the SQL consistent with the use of other data 
types? 

• What was the user’s impression of using an RVA data type for purposes other than fuzzy 
data? 

In support of these objectives, a test script was designed using a mix of exercises, open ended 

questions and closed questions where the participant was asked to rate a particular aspect on a 

scale of 1 to 5. The test script was loaded onto a flash drive and when complete, the script could 

be saved and sent by the participant using university email to the research team for review and 

analysis. Once received by the research team, the scripts would be downloaded, given generic 

names in numbered sequence and any identifiable association with a participant would be 

destroyed. 

    10.2.4 10.2.4 10.2.4 10.2.4 Heuristic TestsHeuristic TestsHeuristic TestsHeuristic Tests    

While system testing is an important component in the analysis and validation of how relation 

valued attributes are used in the support of fuzzy data, heuristic testing can also provide valuable 

insight into user and community acceptance of this approach. In his paper describing the ten 
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most important heuristic system tests, Jakob Nielsen lists his top ten usability heuristics.[40] 

While not all of these heuristics apply to the use of RVA’s, a number are applicable and useful in 

the evaluation of the finished system and user acceptance of the system. The following section 

lists the heuristics deemed pertinent to the study of the system and Nielsen’s description of their 

use. 

Visibility of system status 

The system should always keep users informed about what is going on, through 

appropriate feedback within reasonable time. 

Does the result coincide with user expectations? 

• Is the feedback provided by the result, i.e. number of records and layout, 

intuitive and meaningful? 

Match between system and the real world 

The system should speak the users' language, with words, phrases and concepts familiar 

to the user, rather than system-oriented terms. Follow real-world conventions, making 

information appear in a natural and logical order. 

• Does the user see a real world application for fuzzy data? 

• Does the user see the benefit of using an RVA in support of fuzzy data? 

Consistency and standards 

Users should not have to wonder whether different words, situations, or actions mean 

the same thing. Follow platform conventions. 

• Is the request (query) of fuzzy data consistent and logical? 

Error prevention 

Even better than good error messages is a careful design which prevents a problem 

from occurring in the first place. Either eliminate error-prone conditions or check for 

them and present users with a confirmation option before they commit to the action. 

• Are the error messages appropriate? 

• Do the error messages make sense? 

• Is the system reliable? 

Aesthetic and minimalist design 

Dialogues should not contain information which is irrelevant or rarely needed. Every 

extra unit of information in a dialogue competes with the relevant units of information 

and diminishes their relative visibility. 

• Are query constructs sufficient? 

• Are query constructs excessive? 
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    10.2.5 10.2.5 10.2.5 10.2.5 TrainingTrainingTrainingTraining    

While the participant population was well educated and familiar with a wide range of 

information systems, it was imperative that there be a degree of surety in at least a minimum 

level of competence using the database query language SQL. To ensure this competence, a brief, 

interactive SQL practicum would be held to impart the necessary level of knowledge and 

understanding to effectively participate in and complete the study. 

    10.2.6 10.2.6 10.2.6 10.2.6 Overview of Fuzzy Data and the Role of the RVAOverview of Fuzzy Data and the Role of the RVAOverview of Fuzzy Data and the Role of the RVAOverview of Fuzzy Data and the Role of the RVA    

In order to carry out a system study on the use of an RVA data type in support of fuzzy data, 

users needed to be provided with a certain level of knowledge and understanding of the what 

fuzzy data was, how it might be represented and the problems inherent in that presentation. It 

was important, however, that participants not be made ‘expert’ in either fuzzy data or relation 

valued attributes. The approach used for this study was to obtain the perspective of the 

participant and a fresh insight rather than have the participant merely parrot back the perspective 

of the presenter. In support of this approach, participants would be given a brief overview of 

fuzzy data, RVA’s and the objectives behind the research. It was anticipated that as they 

progressed through their evaluation, the participant’s grasp of both RVA’s and fuzzy data would 

evolve. 

    10.2.7 10.2.7 10.2.7 10.2.7 Working Working Working Working SystemsSystemsSystemsSystems    

Prior to the commencement of the study session, flash drives containing the modified MySQL 

database client/server system with an accompanying test database complete with tables 

containing RVA type data attributes were put on each computer in the laboratory utilized for the 

study. During the interactive SQL training session participants would be able to interact with 

MySQL as appropriate to reinforce the training concepts and eventually carry out the study steps. 
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During the training session, and presentations, proctors would be available to answer questions 

or address any technical issues that might arise. At the conclusion of the study, participants were 

allowed to take the flash drive with them in appreciation for their participation. 

    10.3 10.3 10.3 10.3 Study ResultsStudy ResultsStudy ResultsStudy Results    

Of the 55 participants, 31 completed or partially completed study scripts were returned.  While 

this number is not statistically viable, it was sufficient to meet the study objectives by providing 

antidotal observation and insight.  

    10.3.1 10.3.1 10.3.1 10.3.1 System FunctionalitySystem FunctionalitySystem FunctionalitySystem Functionality    

The computers used for the study had significant security and ‘terminal stay resident’ (TSR) 

software running to ensure system protection and user validation. As a result, while the system 

functioned well and was sufficient for testing, it was not as stable as the system used for 

development which had greater memory, an updated operating system and fewer constraints on 

the operations. It was determined that reliability increased when the result returned from a query 

was limited through the use of a restriction in the ‘WHERE’ predicate. As a result, some 

participants were allowed to restrict their result which, while returning fewer records, 

accomplished the goal sufficient to the requirements of the study step.  

Over all, however, the system functioned satisfactorily and returned the expected result for each 

step in the study.  

    10.3.2 10.3.2 10.3.2 10.3.2 Adherence to the Relational ModelAdherence to the Relational ModelAdherence to the Relational ModelAdherence to the Relational Model    

The study further validated that the system as designed and developed adheres to the 

mathematical dictates of the relational model. To this end, the study included queries that 

required the participants to carry out a project, restrict and intersect operations on two related 
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tables using standard SQL. The results obtained when the RVA typed attribute was specified was 

presented accurately and appropriately in the result as the relation associated with each entity.  

 

A separate step in the study challenged participants to try to write a query that would 

intentionally exclude either the class or the weight of membership from the RVA attribute’s 

result. None of the participants were successful in accomplishing this objective despite quite a 

number of very serious attempts.  

    10.3.3 10.3.3 10.3.3 10.3.3 User AcceptanceUser AcceptanceUser AcceptanceUser Acceptance    

The ability of the user to understand and grow accustomed to the use of an RVA had a number of 

factors of interest. 

    10.3.3.1 10.3.3.1 10.3.3.1 10.3.3.1 Displayed ViewDisplayed ViewDisplayed ViewDisplayed View    

How the RVA containing the fuzzy data was represented in the result was a major factor for the 

users. While discussed in greater detail in Chapter 9, users seemed to prefer to see both the 

attribute name Hair as well as the RVA relation’s attributes Weight and Class displayed in the 

heading of the result. 

    10.3.4 10.3.4 10.3.4 10.3.4 Enforced Constraint on Ordered PairEnforced Constraint on Ordered PairEnforced Constraint on Ordered PairEnforced Constraint on Ordered Pair    

The primary focus of this research was to devise a way in which a fuzzy data value consisting of 

the ordered pair class and weight of membership could be constrained in such a way as to be 

indivisible through selection.  In keeping with this objective, the study challenged the 

participants to devise a way, using the SQL, to separate either class or weight of membership 

from the other member. This challenge was accepted to such a degree by the participants that, 

unfortunately, more than a few concentrated so heavily on breaking this pair that there was not 

time enough to finish the rest of the study questions. Below are some of the methods attempted 
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or comments describing how the pair might be separated? None, however, were successful in 

writing a query that overcame this challenge as it is not possible, using the RVA, to separate or 

exclude class or weight of membership from the result. Nor is it possible to order the relation 

returned in a way contrary to that specified in the RVA’s knowledge.  

• “The weight and class are meaningless if we exclude one to another.” Which is both correct 
and concise. 

• “I tried numerous ways to separate them, including selecting all attributes except weight (but 
of course that is part of hair). So, stumped.” Note that this was only the second question in 
the study and already the realization into the critical importance of both attributes was taking 
hold. 

• “Select ekey, last, first, hair from emp where hair != weight; This is just my suggestion. I 
really have no idea.” A number of similar SQL approaches were attempted, but because 
neither Class nor Weight were attributes of table EMP, neither could be accessed nor 
excluded. 

• “mysql-VCU>Select ekey, first, mi, last, dob, hair.class from EMP;  

To be more specific, suppose hair consists of weight, color, and length, the query excluding 
only weight would be written as 
 
mysql-VCU>Select ekey, first, mi, last, dob, hair.weight, hair.length from EMP;”  
 
This participant provided two example SQL statements. Both were actually tried and failed 
since class is an attribute containing a table, but is not itself a table. Still, it was impressive 
that this user was already considering an attribute with a compound structure and had even 
given the compound member a syntax. 
 

    10.3.5 10.3.5 10.3.5 10.3.5 RVA RepresentationRVA RepresentationRVA RepresentationRVA Representation    

During the early stages of research there was some debate as to which representation was more 

appropriate for the use of an RVA. In the end, the decision as to how to display an RVA in a 

result was a design decision, one of preference. Once the result was obtained by the server, the 

representation of the result could be shown in, essentially, one of two different ways. In 

development, the representation shown in Table 4.16 was chosen. In order to gain insight and 

perspective from this user community, however, participants were given examples of the two 
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different representations of the RVA in an example result and asked which was more 

understandable and which was more accurate. The two representations shown below contain the 

exact same data, but in different formats.   

 

EKEY FIRST MI LAST AGE CLASS WEIGHT 

16 Charles W Backman 88 Grey 0.50 

16 Charles W Backman 88 Black 0.60 

17 Bill H Smith 52 Brown 0.75 

17 Bill H Smith 52 Grey 0.25 

17 Bill H Smith 52 Blonde 0.15 

Table 10.1 – Standard Grid Representation 

EKEY FIRST MI LAST AGE HAIR 

16 Charles W Backman 88 CLASS WEIGHT 

 Grey 0.50 

Black 0.60 

17 Bill H Smith 52 CLASS WEIGHT 

 Brown 0.75 

Grey 0.25 

Blonde 0.15 

Table 10.2 – Grouped Grid Representation 

It should be understood that neither representation is right or wrong. The objective here was 

simply to ascertain which representation made more sense to the users and why.  
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    10.3.5.1 10.3.5.1 10.3.5.1 10.3.5.1 UnderstandabilityUnderstandabilityUnderstandabilityUnderstandability    

By a fair margin, participants offered that the representation shown in Table 10.2 was the most 

understandable. The comments suggest that there were two reasons for this opinion. The first is 

that unlike the Standard representation, the Grouped representation actually shows the Hair 

attribute in the heading. Table 4.16 does not and so the user is left wondering why they selected 

Hair and got Class and Weight. Of course, Class and Weight are Hair and in time, with practice 

and experience, this new perspective would be accepted. But the representation in Table 10.2 

requires no practice or experience. Hair is in the result and it is shown to consist of Class and 

Weight which, to most, made the most sense. The second reason was that the multiple lines of 

employee information in Table 10.1 seemed redundant to a number of participants. Table 10.2 

did not contain this ‘repetition’ and so had a ‘cleaner’ appearance. To those who believed that 

Table 10.1 was the more understandable representation, however, it was this very repetition that 

seemed to appeal to them. To them, the repetition made it clear which Class and Weight went 

with which employee. These participants, now possessing some experience and a growing 

familiarity with an RVA and had no problem picking out the attributes which comprise the RVA 

Hair. Some of the relevant comments from both points of view are provided below. 

• “<Grouped> is more understandable because without the sub label of hair, we have no idea 
what the .50 grey even means. The hair is 50% grey? We can't tell without using 
<Grouped>.” 

• “I think <Grouped>  is more understandable because it doesn't repeat a lot of the same 
information from the two people.” 

• “<Grouped> is more understandable but I can see how <Standard>  might be more 
understandable to someone who is more familiar with the computer programming. 
<Grouped>  looks neater and the information is easier to pick out at first glance.” 

• “<Standard>  because even though the names are repeated, it is easier to go line by line and 
read the data.” 
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    10.3.5.2 10.3.5.2 10.3.5.2 10.3.5.2 AccuracyAccuracyAccuracyAccuracy    

The information in Tables 10.1 and 10.2 are exactly the same. Neither is technically ‘more 

accurate’ than the other and yet because of impressions expressed in Section 10.3.5.1, there 

seemed to be a ‘prejudice’ toward a greater accuracy in Table 10.2. While the comments were 

not as verbose in this question, some of the comments are telling. Also telling is the concept of 

credibility. If a particular display gives even some of these more informed users more confidence 

in the accuracy of the data represented, this confidence is significant.  

    10.3.6 10.3.6 10.3.6 10.3.6 Consistency of UseConsistency of UseConsistency of UseConsistency of Use    

An RVA is an attribute with a more complex data structure, specifically a relation. So, when the 

RVA is included in a query, its use and operation is no different than any other attribute. When it 

is used to restrict the result as it is in the WHERE predicate of a query, the use of an RVA is not 

consistent. This inconsistency is the result of the fact that while primarily an attribute, it is also a 

relation. The characteristic that gives the RVA its strength in being used to encapsulate a fuzzy 

data value requires a somewhat complicated approach to its use in restricting the same fuzzy data 

value to a specific value. When asked to select employees whose hair was ‘black’, participants 

were required to write a query similar to that shown below: 

SELECT ekey, first, last, hair  Query 10.1 
  FROM emp  
 WHERE ekey IN (SELECT ekey  
                  FROM ehair  
                 WHERE class = 'black') 

 
Because the attribute Class is not accessible through the attribute Hair,  the user is required to 

obtain the employee key Ekey from a nested select of the table EHAIR. In this way, the results 

returned by the query are restricted to only those employees whose hair is black. Note that this 

allows the selection of Hair to be restricted on an attribute of EHAIR and yet remain inaccessible 
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in the select clause. A number of participants made the valid point that it would be much easier 

to simply write the query to say: 

SELECT ekey, first, last, hair  Query 10.2 
  FROM emp  
 WHERE class = 'black' 

 
This would be easier for the user. But Class is not an attribute of table EMP. Class is an attribute 

in the relation nested within the RVA Hair.  But Ekey is an attribute of table EMP. It is also an 

attribute of table EHAIR and so Class can only be used to select the value of the common 

attribute Ekey while restricting the result in the query to only those employee’s who have some 

membership in the Class = ‘black’.   

    10.3.7 10.3.7 10.3.7 10.3.7 Use of RVA’s Outside of Fuzzy DataUse of RVA’s Outside of Fuzzy DataUse of RVA’s Outside of Fuzzy DataUse of RVA’s Outside of Fuzzy Data    

During the initial stages of research, the suggestion was made to expand the use of the RVA 

beyond its use solely for the representation of fuzzy data. Nothing had to change during the 

development of the RVA data type to accommodate this suggestion. When an RVA data type is 

included in the definition of a table, three pieces of knowledge are assigned as a default value to 

the attribute: 

� Table:  The name of the table that contains the data to be nested within the RVA. 
� Key:  The key of this table that is common to the table containing the RVA.  
� Fields:  Any number of fields within the nested table and in the order of their appearance. 

 
In the case of fuzzy data, the knowledge assigned to the value of an RVA might appear as:  
 

@Table:EHAIR@Key:EKEY@Fields:CLASS,WEIGHT; 
 
This knowledge tells the server that the RVA will consist of data from table EHAIR which has 

the common key EKEY and will consist of the EHAIR attributes Class and Weight. As there is 

no restriction on the table, key or fields that can be specified in the RVA’s knowledge string, 

there is no restriction on the size or scope of the data returned by the use of an RVA in a table 
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selection.  To illustrate and confirm this functionality, two tables were included in the test 

database, DEPT and D_ROOM. Examples of these tables, their structure and the test data 

included appears below.  

CODE NAME HEAD ADMIN ROOM 
001 Oncology Jamison Albright  

RVA: D_ROOM 002 Obstetrics Steward Simms 
003 General Practice Cho Johnson 

Table 10.3 - DEPT 
 

CODE NUMBER TYPE AVAIL NETWORK 
001 2101 Patient N Y 
001 2102 Patient Y N 
001 3405 Office Y Y 
001 3406 Office Y Y 
002 2103 Patient Y Y 
002 2104 Office N N 
002 4001 Patient N N 
003 2105 Patient Y Y 
003 2106 Office Y N 
003 3408 Office N Y 

Table 10.4 - D_ROOM 
 

Unlike the RVA data type configured to support fuzzy data, the only change required of the 

RVA data type ROOM to configure it to support the requirements of the DEPT table was to 

include the desired fields from table D_ROOM in the RVA's knowledge as follows: 

@Table:d_room@Key:code@Fields:number,type,avail,network 

In this step, participants were asked what they believed would be the result of the following 

query against table DEPT that included the attribute Room.  

SELECT code, name, head, room Query 10.3 
  FROM dept 
 WHERE code = ‘001’; 
 

In this case, Room is an RVA which contains the knowledge necessary for all but the key field 

Code in table D_ROOM to be nested within it.  The result is shown in the Table 10.5. 
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+------+----------+---------+--------+---------+--- ----+---------+ 
| code | name     | head    | NUMBER | TYPE    | AV AIL | NETWORK | 
+------+----------+---------+--------+---------+--- ----+---------+ 
| 001  | Oncology | Jamison | 2101   | Patient | N     | Y       | 
| 001  | Oncology | Jamison | 2102   | Patient | Y     | Y       | 
| 001  | Oncology | Jamison | 3405   | Office  | Y     | Y       | 
| 001  | Oncology | Jamison | 3406   | Office  | Y     | Y       | 
+------+----------+---------+--------+---------+--- ----+---------+ 

Table 10.5 - Query Result 
 

By this time, participants were nearly through with the study questions. For as long as 30 to 40 

minutes, participants had applied themselves to the task. They had been introduced to RVA’s and 

had written queries to obtain RVA’s consisting of fuzzy data.  And they generally appeared to be 

flagging which may explain the inconsistency in the responses to the study questions. Almost 

uniformly, participants responded that a query against table DEPT, despite seeing an RVA 

attribute in the table structure and a table name associated with that attribute, responded that the 

query would return the data contained in table DEPT. Not a single mention was made of the data 

contained in table D_ROOM. And yet when asked if the result of this query met with their 

expectations, the response was almost uniformly high that the data contained in Table D_ROOM 

was as expected. “Matched perfectly with my expectations.”  Some responses, however, 

displayed some understandable confusion as the scores were either very high or very low with 

few in the middle. This was not fuzzy data. The impression had certainly been given that RVA’s 

would be used for fuzzy data. There was no expectation on the part of the user that RVA’s 

should or would be used for anything else. And yet the fact that so many accepted the presence 

of data from table D_ROOM in the result when selecting the attribute Room clearly indicates a 

growing understanding and acceptance of RVA’s and their use in the support not only of fuzzy 

data, but of any data where encapsulation is an important factor. 
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Chapter 11 Chapter 11 Chapter 11 Chapter 11 ----    ConclusionConclusionConclusionConclusion    

 
    11.1 11.1 11.1 11.1 Restating the ProblemRestating the ProblemRestating the ProblemRestating the Problem    

The complex nature of a fuzzy data value requires a data structure and representation that 

supports a set of ordered pairs of values (c,w) [2]. The values contained in this pair represents the 

data's class, c, consisting of any number of enumerated characteristic values within a domain C 

= {Universe of possible classes}. As such, c ∈ C. The other value, w, is in the interval W = [0,1] 

which is the fuzzy data value’s weight or  degree of membership and indicates the membership 

associated with c.   

 

There are two significant challenges to the representation (c,w). The first is that one element 

without the other element of the pair is meaningless. The second challenge is that a fuzzy data 

value consists of a set of such pairs. To represent a fuzzy data value in a database it is necessary 

to represent the set of (c,w) in such a way that neither c nor w can be retrieved without the other 

and that a system supporting such data provide the means to support a set of such (c,w) pairs for 

an associated object. 

 

Current database management systems do not have the ability to enforce a constraint which 

would ensure the requisite atomicity of the ordered pair associated with the fuzzy data value 

while at the same time accommodate the variable number of such pairs potentially contained 

within the value.  

 

The goals of this research were two fold. The first goal was to design and engineer an RVA on 

the server of the open source DBMS MySQL that could provide the complex data structure 
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necessary for the representation and retrieval of fuzzy data. This design must allow fuzzy data to 

coexist in every respect with crisp data using the standard SQL language. The new data type 

needed to be flexible and easily configured using the standard SQL language and present the 

fuzzy data value to the user in an understandable and meaningful way. But most of all, the new 

data type must adhere to the tenets established for the relational model. 

 

The second goal was to assess the understanding, usability and acceptance of fuzzy data on the 

part of users not involved with the research. Technology, after all, can be well designed and 

implemented, but if not well understood and useful to the community has little value. 

    11.2 11.2 11.2 11.2 The Use of 'Knowledge'The Use of 'Knowledge'The Use of 'Knowledge'The Use of 'Knowledge'    

By using the 'knowledge' approach, the basic functionality of the server was not changed, but it 

was enhanced. The 'knowledge' approach provided a constraint on the data contained in the result 

by default. No new constraints needed to be created to accomplish this critical aspect of the 

design. Further, the data contained in the RVA was accessible outside the RVA. Its structure, the 

data contained within it, all could be changed outside the RVA or the nesting table without 

affecting base relation in any way. And lastly, the knowledge can be simply changed to specify 

new tables, attributes and order merely by configuring the default value of the RVA's 

knowledge.  

    11.3 11.3 11.3 11.3 The The The The build_query()build_query()build_query()build_query()    MethodMethodMethodMethod    

It was decided that rather than reinvent the parser, the build_query() should access the thread 

structure and obtain the values that the new query would need and construct a new query which 

would then be submitted back into the parser, essentially letting MySQL do its job.  
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This approach proved quite useful in that the thread structure was well designed with any 

number of accessor methods available to extract the data and build the new query string. 

    11.4 11.4 11.4 11.4 Not Just ForNot Just ForNot Just ForNot Just For    Fuzzy DataFuzzy DataFuzzy DataFuzzy Data    

At the onset of this research, the focus was on fuzzy data and the use of RVA's to support only 

fuzzy data values. Early on, the question was asked, "Can the RVA handle only fuzzy data or can 

it be used for any data requirement that would benefit from the unique characteristics of an 

RVA?" As the design phase became more detailed it became apparent that the design, without 

any change, should be able to handle a relation of any size or cardinality merely by specifying 

the table and the attributes to be included in the configuration of the 'knowledge'. This 

understanding turned out to be the case as shown by the examples in Chapter 8.   

    11.5 11.5 11.5 11.5 ConclusionsConclusionsConclusionsConclusions    

A relation valued attribute has, for the first time, been designed, engineered and integrated into a 

relational database management system. The design of this new attribute as been successfully 

implemented into the server of MySQL and has been used to support the complex data structure 

required of fuzzy data. Specifically, it maintains and guarantees the atomicity of the fuzzy pair 

(c,w) as attributes and provides the capacity to support any number of such pairs as tuples within 

the attribute's relation to represent the fuzzy data value.  

 

Further, the design has been validated in that it satisfies the requirements of the relational model. 

Through examples using standard SQL with both crisp and fuzzy data, the design provides the 

user with the ability to obtain the Cartesian Product as well as to appropriately perform the 

project, restrict, intersect and join operations necessary to the use of a relational database system.  
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A database system now enhanced through the implementation of the RVA data type in support of 

fuzzy data is now available to provide a laboratory for further enhancement and research in the 

advancement of both fuzzy data and the use of RVA's in a relational database. 

 

Finally, the study has shown that after a brief learning curve, users found the concept, use and 

results provided by the new RVA type to be intuitive and easy to understand.  
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Chapter 12 Chapter 12 Chapter 12 Chapter 12 ----    Future ResearchFuture ResearchFuture ResearchFuture Research    

    12.1 12.1 12.1 12.1     IntIntIntIntrrrroductionoductionoductionoduction    

One of the goals of this research was that a relational database system would be in place that 

would allow further research and study into the application, benefits and limitations of fuzzy data 

as supported by an RVA. This goal was achieved. The system now available provides the 

opportunity to do further research into this important aspect of Computer Science. The following 

sections suggest some research areas that  show the most need and promise.[41] 

    1.1 1.1 1.1 1.1 Use of Fuzzy Data EquaUse of Fuzzy Data EquaUse of Fuzzy Data EquaUse of Fuzzy Data Equality in SQL Operationslity in SQL Operationslity in SQL Operationslity in SQL Operations    

 
The value contained within an integer or character data type is easy to equate. If x = 1 and y = 1, 

queries can be written to query a result where x = y. Fuzzy data, however, and in particular fuzzy 

data encapsulated within an RVA presents a challenge. This challenge is comparable to the test 

of determining the equality between Table X to Table Y. But the challenge is compounded by 

the fact that the two tables being tested may not be the entire population of Table X and Table Y, 

but only the subset associated with a key in the nesting table.  The data provided in Tables 12.1 

and 12.2 provide the base data contained in a modified version of Tables VEH_TAMPA and 

VEH_MIAMI. Tables 12.3 and 12.4 provide the data with the fuzzy data nested within the base 

table for reference. Table 12.5 provides the source containing the fuzzy data contained in Table 

V_TYPE.  

VID  LOC NAME MANUF TYPE 
1 Tampa El Camino Chevrolet  
1 Tampa El Camino Chevrolet RVA Data Type 
2 Tampa Camero Chevrolet Nested Table: V_TYPE 
3 Tampa F-150 Ford  
3 Tampa F-150 Ford  
 Table 12.1 - VEH_TAMPA 
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VID  LOC NAME MANUF TYPE 
3 Tampa F-150 Ford  
3 Tampa F-150 Ford RVA Data Type 
4 Miami Silverado Chevrolet Nested Table: V_TYPE 
4 Miami Silverado Chevrolet  
5 Miami Beetle Volkswagen  
 Table 12.2 - VEH_MIAMI 
 
VID  LOC NAME MANUF WEIGHT CLASS 

1 Tampa El Camino Chevrolet 0.90 Car 
1 Tampa El Camino Chevrolet 0.60  Truck 
2 Tampa Camero Chevrolet 1.00 Car 
3 Tampa F-150 Ford 0.70 Car 
3 Tampa F-150 Ford 1.00 Truck 
 Table 12.3 
 
VID  LOC NAME MANUF WEIGHT CLASS 

3 Tampa F-150 Ford 0.70 Car 
3 Tampa F-150 Ford 1.00 Truck 
4 Miami Silverado Chevrolet 0.70 Car 
4 Miami Silverado Chevrolet 1.00 Truck 
5 Miami Beetle Volkswagen 1.00 Car 
 Table 12.4 
 

VID  CLASS WEIGHT 
1 Car 0.90 
1 Truck 0.60  
2 Car 1.00 
3 Car 0.70 
3 Truck 1.00 
4 Car 0.70 
4 Truck 1.00 
5 Car 1.00 

 Table 12.5 - V_TYPE 
 

Given the data contained in VEH_TAMPA and VEH_MIAMI, there is functionality currently 

does not exist within the database system that could compare the two tables for equality of each 

table's attribute type. Query 12.1 provides an example: 

SELECT VEH_MIAMI.vid, Query 12.1  
       VEH_MIAMI.name,  
       VEH_MIAMI.manuf,  
       VEH_MIAMI.type 
  FROM VEH_TAMPA as VEH_TAMPA, 
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       VEH_MIAMI as VEH_MIAMI  
 WHERE VEH_TAMPA.TYPE = VEH_MIAMI.TYPE; 

 

This query would return all records in table VEH_MIAMI where the RVA relation's value in 

attribute VEH_MAIMI.type is equal to the RVA relation's value in VEH_TAMPA.type. The 

result is shown in Table 12.6. 

VID  NAME MANUF WEIGHT CLASS 
3 F-150 Ford 0.70 Car 
3 F-150 Ford 1.00 Truck 
4 Silverado Chevrolet 0.70 Car 
4 Silverado Chevrolet 1.00 Truck 

 Table 12.6 
 

In order to achieve this result, all records in the relation nested in the VEH_TAMPA attribute 

type would need to be compared to all records in the relation nested in the VEH_MIAMI 

attribute type for each value in attribute vid as each relation contained in RVA attribute type is 

dependent on the base table's primary key vid. By extension, this means that the nested relation is 

dependent on the nesting table's primary key as well. But the query is not comparing the relations 

in attribute type, it is comparing the value in attribute type to the value in the other attribute type. 

That value is a relation. 

    1.2 1.2 1.2 1.2     RepresentaRepresentaRepresentaRepresentation of a Relation Valued Attributetion of a Relation Valued Attributetion of a Relation Valued Attributetion of a Relation Valued Attribute    

 
There has been a great deal of discussion on the topic of how the data presented by an RVA 

should be represented. Tables 12.7, the standard grid representation, and 12.8, the grouped grid 

representation, provide examples of the two most discussed representations. The first, Table 

12.7, is the representation used in the current system. During the system study, however, users 

felt that the representation shown in Table 12.8 was the more understandable and, by extension, 

accurate. Further research can modify the MySQL database management system to return a 
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result in the grouped grid representation. This change could then be used to further study impact 

on user perceptions and expectations.   

 

EKEY FIRST MI LAST AGE CLASS WEIGHT 

16 Charles W Backman 88 Grey 0.50 

16 Charles W Backman 88 Black 0.60 

17 Bill H Smith 52 Brown 0.75 

17 Bill H Smith 52 Grey 0.25 

17 Bill H Smith 52 Blonde 0.15 

 Table 12.7 - Standard Grid Representation 

EKEY FIRST MI LAST AGE HAIR 

16 Charles W Backman 88 CLASS WEIGHT 

 Grey 0.50 

Black 0.60 

17 Bill H Smith 52 CLASS WEIGHT 

 Brown 0.75 

Grey 0.25 

Blonde 0.15 

 Table 12.8 - Grouped Grid Representation 

    1.3 1.3 1.3 1.3     Use of a Derived Fuzzy Value in an RVAUse of a Derived Fuzzy Value in an RVAUse of a Derived Fuzzy Value in an RVAUse of a Derived Fuzzy Value in an RVA    

The focus of this dissertation was the implementation of an RVA data type to represent a fuzzy 

data value maintained in a table as a non-derived value. That is to say a generally static value 

maintained and stored in a permanent table created and accessed by the server. Derived data, 

however, is not stored in tables but is calculated in the select clause of a query. The example in 
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Query 12.2 illustrates such a derived fuzzy data value using the Bottle database discussed in 

Chapter 2. 

            SELECT bid, contents,       Query 12.2 
     ( (quantity/size) as MEMBERSHIP,  
     ‘Full’ as CLASS )  as STATE  'As' an RVA labeled state. 
  FROM BOTTLES 
 WHERE bid = ‘A’ 
   AND state = ‘Full’; 
 

In this case, the RVA is state which consists of two attributes, membership and class which will 

contain the fuzzy data value {quantity/size, FULL}. The challenge here is that the RVA is 

created in the SELECT clause of the query. As such, and in theory, such a clause could 

mistakenly exclude either class or membership. It is this specific scenario which the new data 

type rvachar has been designed to prevent. It is believed that this challenge could be overcome 

by modifying the aggregating functionality possibly through the use of a key word such as "as 

rva STATE" that could perform a validation derived attributes and their values.  

    1.4 1.4 1.4 1.4     Incorporation of Ambiguity in Database SystemsIncorporation of Ambiguity in Database SystemsIncorporation of Ambiguity in Database SystemsIncorporation of Ambiguity in Database Systems    

‘Incorporation of ambiguity’ was not specifically considered in the goals of the study. There 

were no specific questions or steps to measure or give insight into this concept. During the 

system study on fuzzy data heads would 'nod in agreement'. As students answered the study 

questions or performed the exercises, questions were sometimes asked not about the study, but 

about fuzzy data. Is it used? Where is it used? Why isn’t it used more? Little of this was captured 

on the studies returned, but if the study were revised and repeated, more concentration could be 

given to capture this perspective.[ 

    1.5 1.5 1.5 1.5     Sensitivity AnalysisSensitivity AnalysisSensitivity AnalysisSensitivity Analysis    

Fuzzy data, by its very nature, reflects the many aspects of ambiguity that exists in the real 

world. As Ma points out, this ambiguity can take on and reflect many forms of fuzziness such as 
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membership within a class as has been primarily discussed within this dissertation but also other 

forms such as certainty and importance. (See Section 4.2.1.3.3 )[13]  Further, an object can possess 

many different fuzzy classifications. For example, a 'suspect' may have a fuzzy data value 

reflecting the ambiguity of hair color and another values reflecting eye color, skin tone and 

height. Given the many fuzzy attributes that can be represented by a fuzzy data value, the 

subjectivity of that value and the many perspectives that that value can represent, changes to one 

or more of these values can affect the ordinality of the result.  

 
Applications using fuzzy data values of this sort will benefit from the ability to incorporate a 

degree of sensitivity modeling and analysis, particularly in the area of multi-criteria decision 

making. An application with the ability to easily modify a fuzzy data value and refresh the result 

to simulate an alternative result would add significant value to the usability of the underlying 

fuzzy data. 

    1.6 1.6 1.6 1.6     Beneficial Enhancements to the ManBeneficial Enhancements to the ManBeneficial Enhancements to the ManBeneficial Enhancements to the Man----Machine InterfaceMachine InterfaceMachine InterfaceMachine Interface    

One of the criticisms in the use of fuzzy data has been the amount of data required to maintain 

and use fuzzy data. For example, within a crisp database, hair color might be assigned a value of 

'blonde'. Entering a single such value requires a minimal and acceptable level of effort. A fuzzy 

data value, however, might have a value similar to the value shown in Equation 12.1. 

Fuzzy Data Value = {('blonde', 0.00), Equation 12.1 
 ('brown', 0.80), 
 ('black', 0.00), 
 ('red', 0.10), 
 ('grey',0.00)}; 
 

Such a value would necessarily require far more data entry and data management. And this fuzzy 

data value is a very limited one! Fuzzy data within a enterprise system would contain many more 

such attributes and require a great deal of effort to populate and maintain the values contained 
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within them. The effort required to maintain fuzzy data could very easily undermine the value of 

fuzzy data.  

 

It is possible, however, that the significance of this effort could be mitigated through the use of 

available tools to facilitate the man-machine interface. A significant area of future research 

should be focused on the design, implementation, use and analysis of various approaches toward 

the facilitation of the fuzzy data interface. 

    1.7 1.7 1.7 1.7     Nested RVA'sNested RVA'sNested RVA'sNested RVA's    

The current MySQL implementation of the rvachar data type nests only one RVA into a nesting 

table. Because the relation contained within an RVA is a relation, this relation must be able to 

contain an RVA as an attribute within its value. Effort should be made into the design and 

implementation of RVA values to be nested within other, superior, RVA values.  
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        Appendix A Appendix A Appendix A Appendix A ––––    The Database Management SystemThe Database Management SystemThe Database Management SystemThe Database Management System    
 
 

 
 

 

Reference: Ramakrishnan, Raghu, and Johannes Gehrke. Database Management Systems. 
Boston [u.a.: McGraw-Hill, 2008. 



 

 196

        Appendix B Appendix B Appendix B Appendix B ––––    Overview of Issues Concerning Data Overview of Issues Concerning Data Overview of Issues Concerning Data Overview of Issues Concerning Data TypesTypesTypesTypes    
 

    1 1 1 1 Representation of Unknown or Missing DataRepresentation of Unknown or Missing DataRepresentation of Unknown or Missing DataRepresentation of Unknown or Missing Data    

 
The relational model allows data to change over time, but does not account for unknown and 

uncertain data. A business process may result in data that is missing because it is not yet known. 

While expected to be a temporary database state, there is no assurance the missing data will be 

included once it is available. Other data values may be permanently missing because an attribute 

may not be applicable under circumstances not anticipated when the database was designed. The 

solution to both of these problems is to enter all data known or applicable and to mark attributes 

that do not have values. Null is such a mark, but it requires implementation of a 3-valued logic 

(3VL). This logic must use null correctly and include a Boolean type with logic operators that 

supports true, unknown, and false values. 

 

Null is implemented in most significant RDBMS and the corresponding support for a 3VL 

Boolean type is required by the SQL standard.[41,p.24]  Although Codd's 3VL is included in the 

relational model, it is difficult to use and has been challenged. [15] The problems caused by 

unknown and missing data are not fully solved.  

    2 2 2 2 Attribute Domains and Domain TypesAttribute Domains and Domain TypesAttribute Domains and Domain TypesAttribute Domains and Domain Types    

 
C. J. Date advocates for domains created from user defined data types including complex types 

composed using existing domains.[17,p.27-53]  A domain is a set of values from which an attribute in 

a relation may take its values. This concept is similar to programming languages which allow a 

variable to assume only values compatible with its declared type. The programming language 

type must either be built into the language or defined by the user of the language. Date argues 
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that a similar typing capability for the relational database attribute is consistent with the 

relational model. 
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AAAAppendix ppendix ppendix ppendix CCCC    ––––    The The The The val_strval_strval_strval_str()()()()    MethodMethodMethodMethod    
 
String *Field_rvachar::val_str(String *val_buffer __attribute__((unused)), String *val_ptr) 
{ 
 /* Various test variables */ 
 char           *rva_val; 
 uchar          *dummy = new uchar(); 
 select_result  *my_result; 
 Item           *test_item; 
 String         rva_select; 
 Query_arena    *set = new Query_arena; 
 THD            *select_thd; 
 char           *sql_select; 
 String         test_query; 
 int            test_val  = 0; 
 int            my_strlen = 0; 
 bool           my_res    = 0; 
 int            rc        = 0; 
 char           *my_sql_string; 
 String         success; 
 CSET_STRING    sql_statement; 
 Statement      my_statement; 
 uint32         query_length = 0; 
 unsigned long  buff_length = 0; 
 ulong          setup_tables_done_option = 0; 
 
 DBUG_ENTER("Field_rvachar::val_str"); 
 /* Original val_str logic */ 
 ASSERT_COLUMN_MARKED_FOR_READ; 
 /************************************************** ***********/  
 /* PROGRAMMING NOTES AND REMINDERS                          */ 

/* See the comment for Field_long::store(long long)          */ 
 /* See the comment for ha_innobase::open in ha_innodb.cc    */ 
 /* See the comment in ha_innodb.cc:                           */ 
 /*    #define EQ_MY_THD(thd)      ((thd) == thd)             */ 
 /*    check_trx_exists()                                       */ 
 /*    innobase_trx_allocate()                                  */ 
 /*    innobase_trx_init()                                      */ 
 /*    ha_innobase::table_flags()                              */ 
 /*    ha_innobase::store_lock()                               */ 
 /*    ha_innobase::change_active_index()                      */ 
 /* sql_error.cc line 422 commented out.                       */ 
 /* sql_class.cc method select_send::send_data                 */ 
 /* sql_class.h  method select_send::send_data                 */ 
 /************************************************** ***********/  
 DBUG_ASSERT(table->in_use == current_thd); 
 uint length; 
 
 if  (table->in_use->variables.sql_mode & 
  MODE_PAD_CHAR_TO_FULL_LENGTH) 
  length= my_charpos(field_charset, ptr, ptr + field_length, 
  field_length / field_charset->mbmaxlen); 
 else 
  length= field_charset->cset->lengthsp(field_charset, (const char*) ptr, 
  field_length); 
 
 val_ptr->set((const char*) ptr, length, field_charset); 
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 /************************** RVA Value. We just need  one! ***************************/  
 rva_val = new char[val_ptr->length() + 1]; 
 // Save off the RVA string 
 rva_val = val_ptr->c_ptr(); 
 /************************************************** ********************************/  
 
 // If it's Null, ignore it. If not, we have some work to do. 
 if  (rva_val == NULL) 
  test_val = 2; 
 else 
 { 
  test_val = 1; 
 
  /* Save off the current state. We only do this once */ 
  /******************* The selection string coming in to the query ****************/  
  my_result  = table->in_use->lex->select_lex.join->result; 
  my_result->cleanup(); 
 
  enum enum_sql_command sql_command= table->in_use->lex->sql_command;  // SQL Command 
 
  /************************ Handle only if 'Select' * **************************/  
  if (sql_command == SQLCOM_SELECT) { 
   /* Create a new thread to send through the parser                                             */ 
   /* See comment in sql_parse method check_stack_overrun                             */ 
   select_thd                              = new THD; 
 
   mysql_reset_thd_for_next_command(select_thd); 
 
   THD *test_thd = current_thd; 
 
   test_val = test_thd->id; 
 
   select_thd->init(); 
 
   // Set up hard coded test query. 
   query_length = strlen("Select a.vid, b.weight, b.type from vehicle as a inner join v_type 

                  as b on a.vid = b.vid;"); 
   my_sql_string  
    = new char[query_length]; 
   my_sql_string  
   = "Select a.vid, b.weight, b.type from vehicle as a inner join v_type as b on a.vid = b.vid;"; 
   select_thd->set_query("Select a.vid, b.weight, b.type from vehicle as a inner join 
                                                                                     v_type as b on a.vid = b.vid;", query_length); 
   select_thd->stmt_arena->set_query_arena(set); 
 
   MEM_ROOT my_root; 
   Open_table_context my_context(select_thd, MYSQL_OPEN_TEMPORARY_ONLY); 
   my_context.can_recover_from_failed_open(); 
 
   /* SQL Thread Statement assignment*/ 
   select_thd->db                          = "test"; 
   select_thd->db_length                   = 4; 
 
   select_thd->query_string= 
    CSET_STRING(my_sql_string, query_length, field_charset); 
 
   select_thd->current_tablenr             = 2; 
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   size_t test = 1; 
   unsigned int query_size = query_length; 
   select_thd->mem_root = new MEM_ROOT; 
   select_thd->mem_root->free              = 0; 
   select_thd->mem_root->used              = 0; 
   select_thd->mem_root->pre_alloc         = select_thd->mem_root->free; 
   select_thd->mem_root->min_malloc        = 32; 
   select_thd->mem_root->block_size        = 8164; 
   select_thd->mem_root->block_num         = 16; 
   select_thd->mem_root->first_block_usage = 0; 
   select_thd->mem_root->error_handler     = 0; 
 
   select_thd->alloc(query_size); 
 
   /* Thread Net Structure */ 
   select_thd->net                         = table->in_use->net; 
   select_thd->stmt_da                     = table->in_use->stmt_da; 
 
            /* Reset buffers */ 
         select_thd->net.buff      = new unsigned char[query_length]; 
   buff_length = 16384; 
   select_thd->net.buff_end  = new unsigned char[buff_length];; 
   select_thd->net.pkt_nr    = 1; 
 
   strmake((char*) (*select_thd).net.buff, my_sql_string, query_length); 
   select_thd->net.write_pos = select_thd->net.buff; 
   select_thd->net.read_pos  = select_thd->net.buff; 
 
   select_thd->main_security_ctx           = *table->in_use->security_ctx; 
   select_thd->security_ctx                = &select_thd->main_security_ctx; 
 
   /* Parser State Required Variables */ 
   Parser_state *my_parser_state           = new Parser_state; 
 
   Lex_input_stream *my_lip                = new Lex_input_stream; 
   my_lip->init(select_thd, my_sql_string, query_length); 
 
   my_parser_state->m_lip                  = *my_lip; 
   my_parser_state->m_lip.m_thd = select_thd; 
   my_parser_state->m_lip.lookahead_token  = -1; // Less than zero 
 
   /* Select_thd initialization */ 
   select_thd->m_parser_state              = new Parser_state; 
   select_thd->m_parser_state              = NULL; 
   select_thd->lex->m_stmt                 = NULL; 
   select_thd->lex->safe_to_cache_query    = 0; 
 
   table->in_use->packet.free(); 
   String new_packet; 
   select_thd->packet = new_packet; 
   select_thd->packet.set("" , 0, field_charset);  
   select_thd->packet.alloc(16384); 
 
   select_thd->protocol->init(select_thd); 
   select_thd->client_capabilities = table->in_use->client_capabilities; 
 
   my_pthread_setspecific_ptr(THR_THD, select_thd); 
 /************************************************** ************************************/  
  /* Send thread and parser state to mysql_parse                                       */ 
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 /* This is the key. We send a new thread back into the parser to be parsed, validated */ 
 /* and processed.                                                                     */ 
   mysql_parse(select_thd,  
            select_thd->query(),  
      select_thd->query_length(),  
      my_parser_state); 
 /************************************************* *************************************/  
 
       select_send my_send ; 
   my_send.set_thd(select_thd); 
   my_send.prepare(select_thd->lex->select_lex.item_list, &select_thd->lex->unit); 
 
 /* Finalize server status flags after executing a command.                            */ 
   select_thd->update_server_status(); 
   select_thd->protocol->end_statement(); 
 
 /* Set the error that stops further original SQL processing.                          */ 
   success.set("RVA Success", 11, field_charset); 
   my_error(ER_CHECK_NOT_IMPLEMENTED, MYF(0), success); 
 
         my_pthread_setspecific_ptr(THR_THD, table->in_use); 
 
   goto end; 
  } 
 
 } 
 return val_ptr; 
 
end: 
 /* Reset is_sent required to allow an error to be processed. MySQL will not process */ 
 /* any errors once a good result has been sent. The process would then fail.        */ 
 table->in_use->stmt_da->is_sent = FALSE; 
 select_thd->stmt_da->is_sent    = FALSE; 
 DBUG_RETURN(val_ptr); 
}  
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  ApApApAppendix pendix pendix pendix DDDD    ––––    The The The The build_querybuild_querybuild_querybuild_query()()()()    MethodMethodMethodMethod 

 

char *Field_rvachar::build_query(THD *thread, CHARSET_INFO *set, char *knowledge, char 

*query) 
{ 

 List_iterator_fast<Item>  it(thread->lex->select_lex.item_list); 

 SQL_I_List<TABLE_LIST> tab = thread->lex->select_lex.table_list; 
 size_t s_pos = 0; 

 size_t e_pos = 0; 

 size_t s_len = 0; 

 int found    = 0; 
 int i        = 0; 

 int length   = 0; 

 int end      = 1; 
 

 String tables; 

 String base_tab; 
 String rva_tab; 

 String rva_key; 

 String func_type; 
 String key; 

 String fields; 

 String find; 

 String ampersand; 
 String value; 

 String new_query; 

 String old_query; 
 String str_work; 

 String str_knowledge; 

 enum_field_types my_type; 
 

 /* Make knowledge case uniform */ 

 while(knowledge[i]) 

 { 
  knowledge[i] = toupper(knowledge[i]); 

  i++; 

 } 
 

 i = 0; 

 while(query[i]) 
 { 

  query[i]     = toupper(query[i]); 

  i++; 
 } 

 

 /* Get Key words into a string for manipulation */ 

 tables.copy("@TABLE:", strlen("@TABLES:"), set); 
 key.copy("@KEY:", strlen("@KEY:"), set); 

 fields.copy("@FIELDS:", strlen("@FIELDS:"), set); 

 str_knowledge.copy(knowledge, strlen(knowledge), set); 
 

 //Base Table 

 base_tab.copy(thread->lex->select_lex.table_list.first->table_name,  
            strlen(thread->lex->select_lex.table_list.first->table_name),  

            set); 

 //RVA Table 
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 ampersand.copy("@",1,set); 

 s_pos = str_knowledge.strstr(tables, 0); 
 s_pos = s_pos + tables.length(); 

 e_pos = str_knowledge.strstr(ampersand, s_pos); 

 e_pos = e_pos - s_pos; 
 rva_tab.set(str_knowledge,s_pos,e_pos); 

 

 //RVA Key 

 s_pos = s_pos + e_pos; 
 s_pos = str_knowledge.strstr(key, 0); 

 s_pos = s_pos + key.length();                  

 e_pos = str_knowledge.strstr(ampersand, s_pos);   
 e_pos = e_pos - s_pos; 

 rva_key.set(str_knowledge,s_pos,e_pos); 

 
 old_query.append(query); 

 

 /*** Create the SELECT segment ***/ 

 new_query.append("SELECT"); 
  

   for (Item *item= it++; item; item= it++) 

   { 
 

/* If this is the RVA field, we have to extract the attribute fields from the knowledge 

*/ 
/* value passed to the method and append it as a 'b.' table to the selection. 

Otherwise,*/ 

/* we extract the field value from the item list and append it as an 'a.' table to the  
*/ 

/* selection predicate.                                                                 

*/ 

    my_type = item->field_type(); 
 

    if (item->field_type() == MYSQL_TYPE_RVACHAR) 

    { 
   s_pos = str_knowledge.strstr(fields, 0); // Get RVA field values... 

   s_pos = s_pos + fields.length(); 

   s_len = str_knowledge.strstr(ampersand, s_pos); 
   find.copy(",", strlen(","),set); 

   do 

   { 

    e_pos = str_knowledge.strstr(find, s_pos); 
     

    if (e_pos == -1) 

    { 
        e_pos = str_knowledge.length() - s_pos; 

     end   = 0; 

    } 
    else 

    { 

     e_pos = e_pos - s_pos; 

     end   = 1; 
    } 

 

    new_query.append(" "); 
    new_query.append(rva_tab);  // RVA Table 

    new_query.append("."); 

    value.set(str_knowledge,s_pos,e_pos); 
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    new_query.append(value); 

    new_query.append(","); 
    s_pos = s_pos + e_pos + end; 

 

   }while(s_pos != strlen(knowledge)); 
    } 

    else 

    { 

    new_query.append(" "); 
    new_query.append(base_tab);  // Base Table 

    new_query.append("."); 

        new_query.append(item->name); 
       new_query.append(","); 

    } 

 
   } 

 

 /* Chop off the last comma */ 

   length = new_query.length(); 
   new_query.chop(); 

 

 
 /*** Create the FROM JOIN segment ***/ 

   end = 1; 

   new_query.append(" FROM "); 
   new_query.append(base_tab);   // Base Table 

   new_query.append(" as "); 

   new_query.append(base_tab); 
   new_query.append(" inner join "); 

 

   new_query.append(rva_tab);   // RVATable 

   new_query.append(" as "); 
   new_query.append(rva_tab); 

   new_query.append(" on "); 

   new_query.append(base_tab); 
   new_query.append("."); 

   new_query.append(rva_key); 

   new_query.append(" = "); 
   new_query.append(rva_tab); 

   new_query.append("."); 

   new_query.append(rva_key); 

 
   /** The nested include value...**/ 

   /*select vid from vehicle where vid in (select vid from v_type where class = 

'Car');*/ 
 

   find.copy("(", strlen("("),set); 

   found = old_query.strstr(find,0); 
   if (found > 0) 

   { 

    s_pos = found; 

    find.copy("WHERE", 5,set); 
    e_pos = s_pos; 

    if (old_query.strstr(find,s_pos) > 0) 

    { 
      s_pos = old_query.strstr(find,s_pos); 

    } 

    if (s_pos > e_pos) 
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    { 

     s_pos = s_pos + 6; 
     find.copy(")", strlen(")"),set);  

     e_pos = old_query.strstr(find, s_pos); 

     e_pos = e_pos - s_pos; 
     value.set(old_query,s_pos,e_pos); 

     value.strip_sp(); 

     new_query.append(" and "); 

     new_query.append(rva_tab); 
     new_query.append("."); 

     new_query.append(value); 

    } 
   } 

   else 

   { 
    /*******************************/ 

    /*** Create the WHERE segment ***/ 

    if (thread->lex->select_lex.where != NULL) 

    { 
     Item *ptr_next; //Used to iterate throught 'where' tree. 

     Item_func::Functype my_func; 

     ptr_next = thread->lex->select_lex.where; 
     new_query.append(" WHERE "); 

     do 

     { 
                  my_func = ((Item_func*)ptr_next)->functype(); 

      if (my_func == 12) //Item_func[COND_AND_FUNC]) 

       i = i; 
      else 

      { 

      new_query.append(base_tab); 

      new_query.append("."); 
      new_query.append(ptr_next->next->name); 

 

      switch(my_func) 
      { 

      case 1: 

       func_type.copy(" = ",strlen(" = "),set); 
        break; 

      case 3: 

        func_type.copy(" <> ",strlen(" <> "),set); 

        break; 
      case 4: 

        func_type.copy(" < ",strlen(" > "),set); 

        break; 
      case 5: 

        func_type.copy(" <= ",strlen(" <= "),set); 

        break; 
      case 6: 

        func_type.copy(" >= ",strlen(" >= "),set); 

        break; 

      case 7: 
        func_type.copy(" > ",strlen(" > "),set); 

        break; 

      } 
 

      new_query.append(func_type); 

      //new_query.append(find); 
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      find.copy("'", strlen("'"),set); 

      new_query.append(find); 
      new_query.append(ptr_next->name); 

      new_query.append(find); 

      } 
      ptr_next = ptr_next->next; 

     } 

     while (ptr_next != NULL); 

    } 
   } 

   find.copy(";", strlen(";"),set); 

   new_query.append(find); 
 

   query = new char[new_query.length() + 1]; 

 
   strcpy(query, new_query.c_ptr()); 

 

 return query; 

} 
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  Appendix Appendix Appendix Appendix EEEE    ––––    The Test ScriptThe Test ScriptThe Test ScriptThe Test Script 
Test Script  

When answering a question, please consider 1 being ‘low’ or ‘not 
very much’ and 5 being ‘high’ or ‘a great deal’.  

  

If you have any questions, please do not hesitate t o ask.  

Have fun!  

The working tables shown below are for your referen ce with 
respect to attribute headings, data and table names .  

  

Table: EMP 

EKEY FIRST MI LAST DOB PT HAIR 

11 Edgar F Codd 1923 0  
 

R 
V 
A 
 

E 
H 
A 
I 
R 

12 Chris J Date 1941 0 
13 Hugh NULL Darwen NULL 0 
14 Andrew NULL Warden NULL 0 
15 NULL NULL Parker 1985 0 
16 Charles W Bachman 1924 0 
17 Bill H Smith 1960 0 
21 Jeffrey D Ullman 1942 1 
22 Margo I Seltzer NULL 1 
23 Fabian NULL Pascal NULL 1 
24 David ? McGoveran -1 1 
25 Chris NULL Date 1941 1 
26 Andrew NULL Warden NULL 1 

  

Table: EHAIR 

EKEY CLASS WEIGHT 
11 brown 0.90 
11 grey 0.20 
12 blonde 0.60 
12 blonde 0.60 
12 brown 0.75 
12 red 0.20 
13 black 0.75 
13 brown 0.85 
14 brown 0.70 
14 grey 0.40 
15 blonde 0.70 
15 brown 0.65 
16 black 1.00 
17 black 0.85 
17 grey 0.65 
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1.a. Please write a SQL statement that chooses all data from 
EMP. Cut and paste your query and the result below.  

  

  

1.b.  Does the result you received meet your expectations ? On a 
scale of 1=Very Little to 5=Very Much: _____  

  

Comments:  

  

  

 2. The result in question 1.a. includes an RVA fiel d hair which 
contains a relation consisting of two fields, weight and class.  

  

   Given what you have seen to this point, how do you believe that 
you would write a query that would exclude the attr ibute 
weight  out  of the query? Please write your query and share 
your comments in the space provided below.  

  

3. Adapt the query in question 1, to choose all rec ords from EMP 
where ekey = 16. Cut and paste your query and the result 
below.  

  

  

4. Please choose all records from EMP where ekey in (select ekey 
from ehair where class = 'black') . Cut and paste  your result 
below.  
  
  

   

5. Please enter the following query into the system  and record 
your results by cutting and pasting your result in the space 
below the query.  

   select emp.ekey, first, last,  
          class, weight  
     from emp, ehair  
    where emp.ekey = ehair.ekey;  
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 Now, please enter the same query, but this time lea ve out the 
field class  from the select clause and paste your result 
below.  

 

   Is this result meaningful to you? Why or why not?  

  

  

Given the following tables:  

 Table: DEPT 
 
CODE NAME HEAD ADMIN ROOM 
001 Oncology Jamison Albright  

RVA: D_ROOM 002 Obstetrics Steward Simms 
003 General 

Practice 
Cho Johnson 

 
 

Table: D_ROOM 
 

CODE NUMBER TYPE AVAIL  NETWORK 
001 2101 Patient N Y 
001 2102 Patient Y N 
001 3405 Office Y Y 
001 3406 Office Y Y 
002 2103 Patient Y Y 
002 2104 Office N N 
002 4001 Patient N N 
003 2105 Patient Y Y 
003 2106 Office Y N 
003 3408 Office N Y 

 
  

6.a. What do you think the query in part 7.b. below  does?  

 

  

6.b. Please enter the following query into the syst em and paste 
the result in the space below the query.  
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   SELECT code, name, head, room  
     FROM dept;  
  

  
  
  
6.c. Did the result you received meet with your exp ectations? On 
a scale of 1=Very Little to 5=Very Much: _____  
  
  
  
  

7. Below are two somewhat different representations  of fuzzy 
data.  Both representations contain the same data.  

 

EKEY FIRST MI LAST AGE CLASS WEIGHT 

16 Charles W Backman 88 Grey 0.50 

16 Charles W Backman 88 Black 0.60 

17 Bill H Smith 52 Brown 0.75 

17 Bill H Smith 52 Grey 0.25 

17 Bill H Smith 52 Blonde 0.15 

Table A – Standard Grid Representation 

EKEY FIRST MI LAST AGE HAIR 

16 Charles W Backman 88 CLASS WEIGHT 

 Grey 0.50 

Black 0.60 

17 Bill H Smith 52 CLASS WEIGHT 

 Brown 0.75 

Grey 0.25 

Blonde 0.15 

Table B – Grouped Grid Representation 
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7.a. Do you think Table A or Table B is more unders tandable? 

Why? 

 
  
  

7.b. Do think the information in Table A or Table B  is more 
accurate? Why?  
   
  
Observations  
  
Please answer the following questions on a scale of  1 to 5 with 
1 being ‘low’ or ‘not very much’ and 5 being ‘high’  or ‘a great 
deal’.  

8.a. Were the results you received with respect to fuzzy data 
meaningful and understandable? _____  

  

8.b. Do you see a real world benefit to the use of fuzzy data in 
database systems? _____  

  

8.c. Do you see a real world benefit to the use of RVA’s in 
support of fuzzy data? _____  

  

8.d. Do you think the queries used to access fuzzy data are 
logical? _____  

  

8.e. If you received error messages, were they appr opriate? 
Please enter 0 if this question is not applicable. _____  

  

8.f. Was it easy to write queries to obtain the res ult desired? 
_____  

  

8.g. Were the queries hard to write in order to obt ain the 
result desired? _____  

PLEASE LET US KNOW WHEN YOU FINISH  

AND WE WILL SAVE THIS FILE  

Thank you very much for your help!
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Slide 1 

Structured Query Language (SQL)

Presented by
Larry R. Williams

And
Bob Morrissett

Virginia Commonwealth University
School of Engineering

Department of Computer Science

 
Slide 2 

A Table

Columns of data types

Key

Rows of 
items

TABLE: EMP
+------+---------+------+---------+------+
| ekey | first   | mi   | last    | age  |
+------+---------+------+---------+------+
|   11 | Edgar   | F    | Codd    |   79 |
|   12 | Chris   | J    | Date    |   71 |
|   13 | Hugh    | NULL | Darwen  | NULL |
|   14 | Andrew  | NULL | Warden  | NULL |
|   15 | NULL    | NULL | Parker  |   27 |
|   16 | Charles | W    | Bachman |   88 |
+------+---------+------+---------+------+
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Slide 3 

A Database

A database is a collection of related tables.

TABLE: EMP
+------+---------+------+---------+------+
| ekey | first   | mi   | last    | age  |
+------+---------+------+---------+------+
|   11 | Edgar   | F    | Codd    |   79 |
|   12 | Chris   | J    | Date    |   71 |
|   13 | Hugh    | NULL | Darwen  | NULL |
|   14 | Andrew  | NULL | Warden  | NULL |
|   15 | NULL    | NULL | Parker  |   27 |
|   16 | Charles | W    | Bachman |   88 |
+------+---------+------+---------+------+

TABLE: ASSIGN
+------+------+---------+------------+
| ekey | pkey | percent | eff_date   |
+------+------+---------+------------+
|   11 | P1   |    0.50 | 2012-12-13 |
|   11 | P3   |    0.50 | 2012-10-01 |
|   12 | P1   |    1.00 | 2012-08-16 |
|   13 | P1   |    0.75 | 2012-08-01 |
|   13 | P2   |    0.25 | 2012-06-15 |
|   14 | P2   |    1.00 | 2012-01-12 |
|   24 | P3   |    1.00 | 2012-06-01 |
|   25 | P2   |    1.00 | 2012-09-13 |
+------+------+---------+------------+

 
Slide 4 

Starting MySQL

Change directory to F:

Start the server ‘mysqld’

Open a new window

Change the directory to F:

Start the client ‘mysql’
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Slide 5 

(SQL) select columns

Table: EMP

Select EKEY, FIRST, LAST

EKEY FIRST MI LAST AGE

11 Edgar F Codd 79

12 Chris J Date 71

13 Hugh NULL Darwin NULL

14 Andrew NULL Warden NULL

15 NULL NULL Parker 27

16 Charles W Backman 88

 
Slide 6 

(SQL) from a table

Table: EMP

Select EKEY, FIRST, LAST

From EMP;

EKEY FIRST LAST

11 Edgar Codd

12 Chris Date

13 Hugh Darwin

14 Andrew Warden

15 NULL Parker

16 Charles Backman
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Slide 7 

(SQL) where something matches

Table: EMP

Select FIRST, LAST, DOB

From EMP

Where DOB = 1960;

FIRST LAST DOB

Bill Smith 1960

 
Slide 8 

(SQL) select from two tables

Select EMP.EKEY, FIRST,
LAST, PKEY, PERCENT

From EMP, ASSIGN
Where EMP.EKEY = ASSIGN.EKEY;

Table: EMP
EKEY FIRST MI LAST DOB

11 Edgar F Codd 1923

12 Chris J Date 1941

13 Hugh NULL Darwin NULL

14 Andrew NULL Warden NULL

15 NULL NULL Parker 1985

16 Charles W Backman 1924

Table: ASSIGN
EKEY PKEY PERCENT EFF_DATE

11 P1 0.50 12/13/2012

11 P3 0.50 10/01/2012

12 P1 1.00 08/16/2012

13 P1 0.75 08/01/2012

13 P2 0.25 06/15/2012

14 P2 1.00 01/12/2013

24 P3 1.00 06/01/2011

25 P2 1.00 09/13/2012
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Slide 9 

(SQL) create a result table

EMP.EKEY FIRST LAST PKEY PERCENT

11 Edgar Codd P1 0.50

11 Edgar Codd P3 0.50

12 Chris Date P1 0.50

13 Hugh Darwin P1 0.75

13 Hugh Darwin P2 1.00

14 Andrew Warden P2 1.00

Select EMP.EKEY, FIRST,
LAST, PKEY, PERCENT

From EMP, ASSIGN
Where EMP.EKEY = ASSIGN.EKEY;

 
Slide 10 

(SQL) connect the related rows in 
the tables
� Join

Table: EMP
EKEY FIRST MI LAST DOB

11 Edgar F Codd 1923

12 Chris J Date 1941

13 Hugh NULL Darwin NULL

14 Andrew NULL Warden NULL

15 NULL NULL Parker 1985

16 Charles W Backman 1924

Table: ASSIGN
EKEY PKEY PERCENT EFF_DATE

11 P1 0.50 12/13/2012

11 P3 0.50 10/01/2012

12 P1 1.00 08/16/2012

13 P1 0.75 08/01/2012

13 P2 0.25 06/15/2012

14 P2 1.00 01/12/2013

24 P3 1.00 06/01/2011

25 P2 1.00 09/13/2012
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Slide 11 

(SQL) select from both tables

Select EKEY
From ASSIGN

Where PERCENT > 0.50;

Select EKEY, FIRST, LAST
From EMP;

Table: EMP
EKEY FIRST MI LAST DOB

11 Edgar F Codd 1923

12 Chris J Date 1941

13 Hugh NULL Darwin NULL

14 Andrew NULL Warden NULL

15 NULL NULL Parker 1985

16 Charles W Backman 1924

Table: ASSIGN
EKEY PKEY PERCENT EFF_DATE

11 P1 0.50 12/13/2012

11 P3 0.50 10/01/2012

12 P1 1.00 08/16/2012

13 P1 0.75 08/01/2012

13 P2 0.25 06/15/2012

14 P2 1.00 01/12/2013

24 P3 1.00 06/01/2011

25 P2 1.00 09/13/2012

 
Slide 12 

(SQL) match values from one table to 
those in another table

EKEY FIRST LAST

12 Chris Date

13 Hugh Darwin

14 Andrew Warden

EKEY

12

13

14

24

25

Select EKEY, FIRST, LAST
From EMP 

Where EKEY IN ( Select EKEY
From ASSIGN

Where PERCENT > 0.50 ) ;
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Slide 13 

Fuzzy Data

What color is this man’s hair?

 
Slide 14 

Fuzzy Data

What color is this man’s hair?

0.75/Brown

0.25/Grey

0.15/Blonde
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Slide 15 

Fuzzy Data

What color is this man’s hair?

EKEY CLASS WEIGHT

17 Brown 0.75

17 Grey 0.25

17 Blonde 0.15

 
Slide 16 

Fuzzy Data

Table: EMP

EKEY FIRST MI LAST DOB CLASS WEIGHT

16 Charles W Backman 1924 Grey 0.50

16 Charles W Backman 1924 Black 0.60

17 Bill H Smith 1960 Brown 0.75

17 Bill H Smith 1960 Grey 0.25

17 Bill H Smith 1960 Blonde 0.15

Select EKEY, WEIGHT 
From EMP_FT;

EKEY WEIGHT

16 0.50

16 0.60

17 0.75

17 0.25

17 0.15
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Slide 17 

Fuzzy Data

Table: EMP

EKEY FIRST MI LAST DOB CLASS WEIGHT

16 Charles W Backman 1924 Grey 0.50

16 Charles W Backman 1924 Black 0.60

17 Bill H Smith 1960 Brown 0.75

17 Bill H Smith 1960 Grey 0.25

17 Bill H Smith 1960 Blonde 0.15

HAIR

 
Slide 18 

Fuzzy Data

Table: EMP

EKEY FIRST MI LAST DOB HAIR

16 Charles W Backman 1924 CLASS WEIGHT

Grey 0.50

Black 0.60

17 Bill H Smith 1960 CLASS WEIGHT

Brown 0.75

Grey 0.25

Blonde 0.15

Relation Valued Attribute (RVA) ‘HAIR’
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Slide 19 

Fuzzy Data

Table: EMP

EKEY FIRST MI LAST DOB HAIR

16 Charles W Backman 1924 CLASS WEIGHT

Grey 0.50

Black 0.60

17 Bill H Smith 1960 CLASS WEIGHT

Brown 0.75

Grey 0.25

Blonde 0.15

Select EKEY, HAIR
From EMP

Where EKEY = ’17’;

 
Slide 20 

Fuzzy Data

EKEY HAIR

17 CLASS WEIGHT

Black 0.85

Grey 0.65

Select EKEY, HAIR
From EMP

Where EKEY = ’17’;

+------+--------+-------+
| ekey | WEIGHT | CLASS |
+------+--------+-------+
|   17 |   0.85 | black |
|   17 |   0.65 | grey  |
+------+--------+-------+

Actual Screen Display
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        Appendix Appendix Appendix Appendix GGGG    ––––    VitaVitaVitaVita    
 
 

Larry Ritchie Williams, Jr. was born at the Naval Hospital at Naval Air Station (NAS) Mayport, 

Florida in 1960 to then Lieutenant Larry R. Williams, USMC and his wife Betty 'Whitt' 

Williams, RN.[vi]  As the son of a Marine officer, Larry grew up living in many different States 

and Europe.  

Larry attended the Virginia Military Institute in Lexington, Virginia where he received his BA in 

1982. He received his MS in Systems Management in 1988 from the University of Southern 

California in Los Angeles, California. Prior to beginning his studies at Virginia Commonwealth 

University, Larry supplemented his education through various under graduate and graduate 

courses in Computer Science at George Mason University. 

Larry's professional career has been spent primarily as a software engineer and information 

systems consultant working for such companies as KPMG Peat Marwick, the United States 

Department of the Navy, Dominion Resources, Altria, and Reynolds Metals with whom he spent 

two years working in Bunbury, Western Australia assisting in the effort to transition the 

information systems from a refinery's mainframe to an SAP enterprise system.  In 2002, Larry 

founded Sterncastle Consulting, Incorporated and has been working since this time as a software 

engineering consultant to the United States Customs and Border Protection Service and the 

Department of Homeland Security. 

He has been married to the former Lynne Jacobson for over 25 years. They have two children, 

Zachary and Joshua, both of whom they are justifiably proud. 
                                                 
 
vi  Lt. Williams would later retire from the Marine Corps at the rank of Colonel and receive his 

PhD from George Washington University in 1994. He is currently a Collegiate Professor 
teaching in the Graduate School at University of Maryland, University College. 
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