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Abstract

Genetic Dissection of Quantitative Trait Loci for Substances of Abuse
By Jo Lynne Harenza, M.S.
A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor

of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2013.

Major Director, Michael F. Miles, M.D., Ph.D.,

Professor, Pharmacology and Toxicology and Neurology

It has been reported that an individual’s initial level of response to a drug might
be predictive of his or her future risk of becoming dependent, thus basal gene
expression profiles underlying those drug responses may be informative for both
predicting addiction susceptibility and determining targets for intervention. This
dissertation research aims to elucidate genetic risk factors underlying acute alcohol and
nicotine dependence phenotypes using mouse genetic models of addiction.
Phenotyping, brain region-specific mMRNA expression profiling, and genetic mapping of a

recombinant inbred panel of over 25 mouse strains were performed in order to identify



XXii

quantitative trait loci (QTL) harboring candidate genes that may modulate these
phenotypes. Previous BXD (B6 x D2) behavioral studies performed in our laboratory
identified an ethanol-induced anxiolysis-like QTL (Etanq1) in the light dark box (LDB).
We hypothesized that genetic variation within Nin (a gene within the Etanq1 support
interval involved in microtubule-anchoring) may modulate anxiolytic-like responses to
acute ethanol in the LDB as well as other preclinical models of anxiety, the elevated
plus maze (EPM), and marble burying (MB) task. Molecular studies have allowed us to
confirm cis regulation of Nin transcript levels in the NAc. To elucidate potential
mechanisms mediating Etanq1, the pharmacological tools, diazepam and HZ166 (a
benzodiazepine derivative) were utilized to interrogate whether GABAa receptor
activation modulates ethanol’s anxiety-like behaviors in the LDB. We show that the LDB
phenotype, percent time spent (PTS) in the light following a brief restraint stress, is not
being modulated through direct activation of GABAa a2/a3 receptor subunits. To
genetically dissect Etanq1 as well as parse the ethanol anxiolytic-like phenotype, we
have assayed 8 inbred strains, selected based on genotypes at Nin, in various
preclinical models of anxiety. Principal components analysis of these behavioral data
suggests that the gene(s) modulating the ethanol anxiolytic-like component in the LDB
do not overlap with similar phenotypes in the elevated plus maze (EPM), nor the MB
phenotype. Furthermore, site-specific delivery of an sh-Nin lentivirus into the NAc of D2
mice revealed that Nin may modulate one LDB endophenotype, latency to enter the
light side of the LDB, which loaded as a part of the “anxiolysis” principal component.
These data strongly imply that basal neuronal Nin expression in the NAc is important for

acute ethanol anxiolytic-like behavior, perhaps through a novel mechanism involving



Xxiii

synaptic remodeling. In separate behavioral QTL mapping studies, we hypothesized
that genetic variation regulating expression of Chrna7 modulates the reward-like
phenotype, conditioned place preference (CPP), for nicotine. We provide evidence for
genetic regulation of Chrna7 across the BXD panel of mice and through
pharmacological and genetic behavioral studies, confirm Chrna7 as a quantitative trait
gene modulating CPP for nicotine in mice. Microarrays, followed by network analyses,
allowed us to identify a genetically co-regulated network within the nucleus accumbens
(NAc), differentially expressed in mice null for Chrna7, which was similarly correlated in
the BXD panel of mice. Our network and molecular analyses suggest a putative role for
Chrna7 in regulating insulin signaling in the NAc, which together, may contribute to the
enhanced sensitivity to nicotine observed in strains of mice that lack or have low mRNA
levels of Chrna7 in the NAc. Overall, this research has elucidated and confirmed new
genetic risk factors underlying alcohol and nicotine dependence phenotypes and has
enabled a better understanding of the neurogenomic bases of alcohol and nicotine
addiction. Future studies that further investigate the signaling pathways and/or gene
interactions involving Nin and Chrna7 may lead the field to new candidates for
pharmacotherapies that may be tailored for use in individuals with susceptible
genotypes. Supported by NIAAA grants P20AA017828 and RO1AA020634 to MFM,

NIDA T32DA007027 to WLD, and NIDA RO1DA032246 to MFM and MID.



Chapter 1 - Introduction

Alcohol and nicotine are two of the most widely abused drugs in the world,
accounting for nearly 8 million deaths globally and $5 million of the drug abuse-related
socioeconomic burden of the United States each year (World Health Organization,
2011). Risk for developing various aspects of drug addiction, such as tolerance and
dependence, is determined by a combination of interactions among an individual’s
genetic makeup, environment, and neuroadaptations that occur following acute and
repeated drug exposure. Alcohol and nicotine dependence each have estimated
heritabilities ranging between 30-60% (Heath, 1997; Cloninger, 1981; Swan, 1997;
Kendler, 1999; Heath, 1993; True, 1999), thus, a strong genetic component influences
these traits. Furthermore, these complex interactions manifest themselves
heterogeneously among individuals, and as such, there remains a need to understand
the biological and genetic bases of risk for developing different stages of the disease at
the level of the individual.

In order to dissect neuronal and genetic mechanisms underlying substance use
disorders, it is essential to acknowledge that drug addiction occurs through a
progression of cycles, which lead to an evolution of neurogenomic changes that
ultimately hijack the brain’s executive function center such that control over drug-taking
is lost (Koob, 2010). In one such model for the progression from acute to chronic drug

use, the first stage begins with drug-induced activation of the mesocorticolimbic reward



circuit, which consists of the ventral tegmental area (VTA), ventral striatum or nucleus
accumbens (NAc), and prefrontal cortex (PFC). See Figure 1.1 for a schematic of the
neurocircuitry in this pathway. Similar to natural rewards, such as food, liquids, and sex,
most drugs of abuse, including alcohol and nicotine, increase firing of dopaminergic
neurons from the VTA to increase synaptic concentrations of the excitatory
neurotransmitter, dopamine, in the NAc following acute use (DiChiara, 1988).
Interestingly, our laboratory found that in response to a single administration of a
modest dose of ethanol in mice, over 300 genes’ expression levels were significantly
altered in this reward circuit (Kerns, 2005), demonstrating the sensitivity of the central
nervous system to one dose of a drug. In fact, a single exposure to cocaine in mice has
been shown to excite dopamine neurons in the VTA and result in subsequent activation
of AMPA and NMDA receptors which persisted for at least five days (Ungless, 2001),
suggesting that acute drug use can result in at least short-term synaptic plasticity in the
mesolimbic reward pathway. It follows then, that repeated drug use, which progressively
activates this reward circuit, results in a variety of neuroplastic changes in the VTA and
NAc, leading to recruitment of feedback circuits in the dorsal striatum (consisting of the
caudate and putamen). Repeated activation of the ventral-dorsal striatal loop is thought
to lead to habit formation and drug-seeking automaticity, which are key drivers of
compulsive behaviors (Koob, 2010). Eventually, these neuroadaptations may lead to
compulsive drug use and loss of executive function maintained by the frontal cortex
structures, leading to poor decision-making and addiction. Once in full-blown addiction,

periods of abstinence are characterized by negative withdrawal symptoms, thought to



EE Dopamine u Opioid receptors
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Figure 1.1 - Neuronal projections involved in mediating effects during the acute
and reinforcing stages of substance abuse disorders. Sagittal representation of a
rat brain depicting the neuronal circuitry implicated the early stages of drug addiction.
(VTA=ventral tegmental area, AC=anterior commissure, N.Acc=nucleus accumbens,
FC=frontal cortex, C-P=caudate putamen, AMG=amygdala, BNST=bed nucleus of the
stria terminalis, VP=ventral palladium, ARC=arcuate nucleus, LH=lateral hypothalamus,
Snr=substantia nigra pars reticula, RPn=reticular pontine nucleus, LC=locus coeruleus.
Image adapted from (Koob, 2010).



result from the gain-of-function of stress systems, such as the extended amygdala
circuit. Thus, a negative affective state caused by dysregulation of neurocircuitry often
leads to successive episodes of drug use to curb these symptoms (Koob, 2010).
Furthermore, in those aspiring to quit, the combination of both a loss of control and
enhanced negative emotional state often prevents rehabilitation, as the nervous
systems of these addicted individuals have essentially been “re-wired” (Figure 1.2). In
fact, 70% of adult smokers aspire to quit smoking, but only 4-7% are successful without
medication and just 25% of those using current cessation therapies are able to abstain
from smoking for six months (American Cancer Society, 2013). The high rates of
relapse are thought to result from difficulty in managing cravings and withdrawal
symptoms (National Institutes of Health, 2008). Additionally, alcoholics frequently self-
report anxiety as a motive for initiation of drinking (Brown, 1991; Pohorecky, 1991) and/
or a reason for relapse. Accordingly, alcohol’s ability to relieve anxiety is thought to
contribute to multiple facets of the alcohol use disorder, including the initiation of
drinking, the progression to excessive drinking by attempting to curb withdrawal-induced
anxiety, and consequently, recidivism (Spanagel, 1995; Pandey 2003; Sloan, 2003).
Thus, understanding the neurogenomic basis of the acute behavioral responses to
drugs of abuse may be important in uncovering new drug targets and/or lead to new
therapeutic strategies for intervention.

The major foci of this dissertation are to genetically dissect acute behavioral
responses to ethanol and nicotine using mouse models of ethanol-induced anxiolysis
and nicotine reward. It is important to note that in many cases of substance abuse

disorders, individuals also have occurrences of psychiatric illness and/or an additional



Extended
amygdala

gain-of-function
stress systems

/ A
, Prefrontal

~ ~» loss-of-function
| systems

executive systems

Dorsal
Striatum

/ N
/ Nucleus ~ _ ventral-dorsal-striatal loop (habit formation)

I accumbens
Mesolimbic DA ~ I excitability, potentiation of DA neuron firing

Neuroplasticity with increasing use

Compulsivity — loss of control

Y

Figure 1.2 - Diagram illustrating one model for the progression from acute to
chronic drug use. Neuroplastic changes occurring as a result of acute and cycles of
repeated drug use are thought to contribute to compulsive drug use and ultimately lead
to addiction. Acute drug use promotes increases in synaptic dopamine within NAc and
with repeated use, activation of the neuronal loop between the ventral and dorsal
striatum results in habit formation. Successive drug use leads to alteration of the frontal
cortical circuitry, resulting in poor decision-making and continued use. Chronic drug use
engages the extended amygdala, leading to increases in neuronal stress systems,
which drug users attempt to counteract by increasing drug use. This cycle eventually
leads to compulsive dr