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Abstract 

Obesity develops when energy intake exceeds energy expenditure. Defect in the 

function of brown fat and skeletal muscle, two of the major tissues that contribute 

towards energy expenditure, lead to the development of obesity and metabolic 

syndrome. Our previous findings suggest that Tyk2 deficient mice become obese and 

develop the metabolic syndrome. Tyk2, which is a tyrosine kinase of the JAK-STAT 

signaling family, is important for optimal brown development and function. Since brown 

fat and skeletal muscle, both are derived from the Myf5+ lineage of mesenchymal stem 

cells, we also characterized the role of Tyk2 in the development and function of skeletal 

muscle. We found that Tyk2 deficient mice do not display a structural defect in skeletal 

muscle development; however, the function of skeletal muscle is severely impaired in 

these mice. Expression of troponins, which regulate the muscle contraction and muscle 

creatine kinase, which regulates the levels of phosphocreatine, a major fuel for skeletal 

muscle, is downregulated in Tyk2 deficient mice. Skeletal muscle mitochondria also 

display an abnormal morphology along with decreased respiration capacity, which is a 

function of decreased activity of complex IV of the electron transport chain. Interestingly, 

Tyk2 deficient mice also exhibit an increased proportion of fast, glycolytic, Type II fibers 

in the skeletal muscle. Using an in-vitro system for skeletal muscle differentiation, we 

found that Tyk2 levels increase during differentiation, suggesting a role for Tyk2 in 

proper development and function of the skeletal muscle.  

Our previous studies suggested that a kinase-inactive (Tyk2KD) form of Tyk2 is also 

efficient in restoring the function of Tyk2 deficient brown fat preadipocytes. We 

generated transgenic mice that expressed a wild type (Tyk2WT) and kinase inactive 



 
 

(Tyk2 KD) form of tyk2 in brown fat and skeletal muscle under Myf5 cre and in skeletal 

muscle using MCK cre mice. Expression of Tyk2 using the Myf5 cre (E8.0) reverts the 

obese and the metabolic phenotype observed in the Tyk2 deficient mice. Interestingly, 

expressing Tyk2 under MCK cre (E13.0) also reverts the obese phenotype, suggesting 

that the temporal and spatial expression of Tyk2 is critical in regulating energy 

expenditure. 

Our studies also highlight the role of Tyk2, not as a kinase, but as a component of the 

transcriptional assembly regulating the expression of genes involved brown fat and 

skeletal muscle differentiation and function.  
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Chapter I: Introduction 

Obesity is a global phenomenon affecting at least 200 billion adults to date. In the 

United States alone, over a third of the population is obese. Obesity in children and 

adolescents has also increased from 5% in the 1980s to 18% in 2012. Obesity is usually 

defined by the body mass index (BMI; weight in kilograms divided by length in squared 

meters, kg/m2). A BMI >25 kg/m2 represents overweight, >30 kg/m2 obese and >40 

kg/m2 morbidly obese individuals (1). Incidence of Type II diabetes is also linked to 

obesity. As such, the world health organization (WHO) estimates that the number of 

diabetics will reach around 300 billion in 2025 (2).  

Obesity is a result of increased energy intake and/or decreased energy expenditure. 

This excess weight is stored in adipose tissue, which consists of fat cells, or adipocytes, 

which have an incredible capacity for storing surplus energy in the form of lipid (3). 

Obesity is also associated with many abnormalities collectively known as the metabolic 

syndrome, including dyslipidemia, increased risk for cardiovascular disease, and 

abnormal glucose metabolism. All of these alterations can easily factor into the 

development of insulin resistance and type II diabetes (4). 

Changing diet and lifestyle are the common treatments suggested for obesity, however, 

in morbidly obese patients, bariatric surgery has been the only effective treatment to 

date (1). Currently, there are drugs that aim at decreasing energy intake by acting on 

the satiety centers in the brain. Nonetheless, decreasing food intake is known to trigger 

the starvation response in mammals and hence these treatments become ineffective 

after a while (5). Developing alternative therapies that will enhance energy expenditure 
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in obese individuals is the need of the hour. Mammals have two major thermogenic 

tissues- Brown Adipose Tissue (BAT) and Skeletal Muscle (SKM), which are involved in 

regulation of energy expenditure. Increasing the thermogenic capacities of these tissues 

and hence increasing overall energy expenditure may provide an alternative means of 

combating obesity.  

1.1: Brown Adipose Tissue in obesity 

Mammals have two functionally different types of adipose tissues- white adipose tissue 

(WAT) and brown adipose tissue (BAT). WAT mainly functions as an energy store 

whereas the main function of BAT is to dissipate energy in the form of heat (6). 

Differences between BAT and WAT are listed in Table 1.1. In rodents BAT is present 

throughout life. Major depots are located primarily in the interscapular region and the 

axillae, whereas minor amounts exist near the thymus and in the dorsal midline region 

of the thorax and abdomen. The activity of BAT in non- hibernating animals is strictly 

related to the environmental temperature with cold exposure inducing its action. In 

neonates and hibernating animals, BAT serves as an important regulator of the body 

temperature via non- shivering thermogenesis.  

Studies on rodent models suggest that BAT also plays an important role in prevention of 

obesity. Transgenic mice with ablated BAT exhibit metabolic syndrome (7). Uncoupling 

protein 1 (UCP1) is unique to brown fat and is responsible for dissipating the 

mitochondrial proton gradient, thus releasing this potential energy as heat. UCP1 null 

mice exhibit an obese phenotype (8). Additional examples of the relevance of BAT 

against the development of obesity come from genetically obese mouse models like the 
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ob/ob and db/db strains where BAT is dysfunctional (9). BAT activity is also lower in 

overweight and obese individuals compared to the lean individuals. Whereas BMI and 

body fat percentage showed an inverse correlation with BAT activity, resting metabolic 

rate exhibited a positive correlation with BAT activity. Interestingly, it has been observed 

that higher levels of BAT might protect against age-related obesity (6).  

The presence of active brown fat depots in human newborns and its role in non-

shivering thermogenesis has been well studied. However little was known about the 

presence of active brown fat depots in adult humans. It was a well-conceived notion that 

brown adipose tissue is rapidly lost postnatally, within the first (few) years of life, and 

that older adults do not possess more than vestigial amounts of brown adipose tissue 

(10).  

The recent discovery with the use of fluorodeoxyglucose positron emission tomography 

(FDG PET) suggested that adult humans possess active brown fat depots (10) has 

sparked a renewed interest in using brown fat thermogenesis as a treatment for obesity.  
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Table 1.1: Differences between WAT and BAT (adapted from (11)) 

 WAT BAT 

Function 

Energy storage in form of fatty 

acids, triglycerides, secretion of 

adipokines 

Heat production, thermogenesis, 

low fat storage capacity 

Location 
Subcutaneous, abdominal, 

perirenal, gonadal 

Intrascapular, paravertebral, 

axillary and perineal 

Macroscopic 

Features 

Sympathetic and parasympathetic 

innervation, small lobules of 

densely packed cells 

Sympathetic innervation, 

Lobular organization with gland-

like structure 

Microscopic 

Features 

One single large droplet, few, 

small elongated mitochondria 

Multilocular, small lipid droplets, 

abundant, large, round 

mitochondria 
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1.1.1: Development of brown fat 

Brown adipose tissue (BAT), a unique organ to mammals, is developed in the later 

stages of embryonic development (12).  Its major function is dissipation of energy as 

heat, for defense against cold (12, 13). Brown fat, is developed from the Myf5+ lineage 

of mesenchymal stem cells (14), Myf5 is one of the earliest myogenic factors to be 

expressed and determines the myogenic lineage (15).  Brown fat, hence, is a close 

relative of skeletal muscle than white adipose tissue (WAT). Functionally, WAT and BAT 

carry entirely different functions, the major function of WAT being storage of energy 

whereas of BAT being dissipation of energy as heat. Although, WAT and BAT share 

some common adipogenic factors in development, BAT development occurs early in 

embryogenesis, whereas it is not until after birth that WAT depots are developed (13). 

Let’s take a quick look at some of the transcription factors important for BAT 

development.  

a) C/EBP and PPARs 

Peroxisome proliferator-activated receptors (PPAR) are ligand-activated transcription 

factors belonging to the nuclear receptor superfamily. The three known subtypes 

PPARα, PPARγ and PPARδ have different tissue distributions and play a key role as 

regulators of glucose and lipid homeostasis as well as in cell proliferation, differentiation 

and inflammatory responses (16). PPARγ plays a central role in differentiation of both 

brown and white adipocytes (17). The C/EBP (CCAAT/enhancer-binding proteins) 

family consists of 6 members- C/EBPα, C/EBPβ, C/EBPγ, C/EBPδ, C/EBPε and 

C/EBPζ (18). Of the C/EBP family, C/EBPα and C/EBPβ were identified as key 

transcription factors driving fat cell differentiation (18). C/EBPs function cooperatively 
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with PPARγ and promote a transcriptional cascade that promotes and maintains the 

stable differentiated state of adipocytes (19). Interestingly, ectopic expression of 

C/EBPβ in white fat cells has been shown to promote the expression of BAT selective 

genes (17).  

b) PGC1α 

PPARγ coactivator 1α (PGC1α) was identified from brown fat cells as a cold-inducible 

coactivator of PPARγ and other nuclear hormone receptors (20). PGC1α is an important 

regulator of mitochondrial biogenesis (21) and plays an important role in regulating the 

function of mitochondria-rich BAT. Ectopic expression of PGC1α in white adipocytes 

has been shown to induce the expression of UCP1 and promote differentiation toward 

the brown fat phenotype (22). Despite its importance in the thermogenic function of 

BAT, PGC1α still remains dispensable for differentiation of BAT. 

c) PRDM16 

PRD1-BF1-RIZ1-containing homologous domain containing protein 16 (PRDM16) was 

identified in a screen that involved determining the transcriptional factors selectively 

expressed in BAT (23). PRDM16 is highly enriched in BAT as compared to WAT and 

when ectopically expressed in white preadipocytes and fibroblasts, it can initiate 

complete brown fat differentiation. Expression of PRDM16 is not induced during cold 

exposure, suggesting that it is only acting as a brown fat determinant and not in its 

function. Interestingly, mutating the DNA binding residue in PRDM16 does not alter its 

ability to initiate brown fat differentiation nor its interaction with PGC1α, suggesting that 

PRDM16 acts in a transcriptional complex to regulate brown fat determination (23). 

Knockdown of PRDM16 in brown adipocytes induces the expression of skeletal muscle 
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specific genes like MCK, MyoD and Myogenin, suggesting that PRDM16 may also act 

as a Myf5+ lineage specific determinant (24). 

1.1.2: Brown fat in Thermogenesis 

Brown fat is mainly involved in maintaining the body temperature via nonshivering 

thermogenesis. Nonshivering thermogenesis is independent of shivering, which occurs 

in the skeletal muscle. Studies from the 1950s demonstrated that following 

norepinephrine injection, there was an increase in BAT thermogenesis. Recent studies 

have shown that cold induced adaptive thermogenesis is UCP1 dependent and requires 

activation of the sympathetic nervous system, of which norepinephrine is the primary 

signaling component (25). Cold induced responses can also be mimicked by injecting 

mice with norepinephrine. The hypothalamus motor neurons senses any changes in 

temperature and activates the sympathetic nervous system. Thermogenesis in BAT is 

activated by the nor-epinephrine released by the sympathetic nervous system, mainly 

by activation of the β3 adrenergic receptors. This leads to an increase in intracellular 

cAMP concentration, downstream of the G-protein coupled β3 adrenergic receptors and 

thus activation of PKA, which triggers lipolysis. Increased lipolysis lead to an increased 

cellular concentration of free fatty acids which are transported to mitochondria, leading 

to the activation of mitochondrial electron transport chain and the mitochondrial 

uncoupling protein UCP1 (26).  

The mitochondrial electron transport chain (ETC) consists of a series of four complexes 

(Complex I-IV) and electron carriers (coenzyme Q,cytochrome c). The flow of electrons 

via these complexes pumps protons across the inner mitochondrial membrane, thus 
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generating a proton gradient across the inner mitochondrial membrane. The proton 

gradient then drives the synthesis of ATP as protons flow passively back into the 

mitochondrial matrix through a pore that is associated with ATP synthase (or complex 

V) to generate ATP from ADP and Pi. 

The uncoupling proteins (UCPs) belong to a class of mitochondrial transporter proteins, 

spanning across the inner mitochondrial membrane. Similar to other mitochondrial 

proton channels like Adenine nucleotide transporter (ANT), UCP1 increases the 

permeability of the inner mitochondrial membrane, allowing the passage of protons 

against the gradient back into the mitochondrial matrix. This releases the stored 

potential energy and is lost as heat, rather than being converted into chemical energy in 

form of ATP by mitochondrial ATP synthase. UCP1 is primarily expressed in the brown 

fat, whereas UCP2 exhibits a global tissue distribution. UCP3 is restricted to the skeletal 

muscle. Besides UCP1, the role of other UCPs in uncoupling mitochondrial ETC from 

oxidative phosphorylation is not well characterized (27). BAT heavily relies on the 

mitochondrial uncouplers for generation of heat.  



11 
 

 

Figure 1.1: UCP1 along with mitochondrial electron transport chain: Mitochondrial 

oxidative phosphorylation begins with the entry of electrons into the ETC, which is 

impermeable to low-molecular-weight solutes. Electrons flow through the four 

membrane bound complexes (Complex I-IV) with the aid of the electron carriers. The 

transfer of the electrons generates a membrane potential (ΔΨm) across the inner 

mitochondrial membrane. UCP1 dissipates this proton gradient, thus releasing the 

potential energy as heat. (Modified from (28)). 
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Figure 1.2: Norepinephrine mediated activation of non-shivering thermogenesis 

in brown fat. Thermogenesis occurs in brown adipocytes with the stimulation of β-

adrenergic receptors (βARs), initiating a signal transduction cascade that produces 

cyclic AMP (cAMP) and activates protein kinase A (PKA), which then activates multiple 

enzymes responsible for converting the catabolic end products of macronutrients 

(carbohydrates, fats (triacylglycerols (TAG) and free fatty acids (FFA)) and proteins) into 

mitochondrial fuel. The electrons generated by the TCA cycle feed into the electron 

transport chain, generating a proton gradient, which is dissipated by UCP1 and heat is 

generated in this process (5). 
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1.2: Skeletal Muscle in obesity  

Skeletal muscle is an important metabolic tissue in mammals. In humans, SKM 

comprises roughly 30-50% of the body mass and handles almost 80-95% of insulin 

mediated glucose uptake (29). Impaired glucose uptake and decreased oxidative 

capacity of skeletal muscle is one of the major contributors toward the pathophysiology 

of obesity and metabolic syndrome. Skeletal-muscle is also a non-adipose site for lipid 

accumulation (29) and plays an important role in fatty acid oxidation thereby controlling 

circulating lipid levels (30). Obesity and metabolic syndrome are correlated with the 

level of physical activity as well as the accumulation of intramyocellular lipids and fatty 

acid oxidation in SKM (30). Skeletal muscles are also specialized to dissipate energy 

directly as heat (figure 1.4) in response to external stimuli and hence important in 

energy expenditure (5). These studies suggest that a defect in SKM plays a significant 

role in the pathogenesis of obesity and metabolic syndrome. 

1.2.1: Structure of Skeletal Muscle 

Skeletal muscle, along with heart, is an important contractile tissue in mammals. The 

smallest contractile unit of skeletal muscle is termed as a sarcomere. A sarcomere 

consists of an assembly of thick filaments (myosin heavy and light chains) and thin 

filaments (actin) inserted between two z-discs and an M line running through the center 

(Figure 1.3). A complex of Troponins (Troponin T, Troponin I and Troponin C) and 

Tropomyosins sit on the thin filaments (31, 32).  
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Figure 1.3: Structure of skeletal muscle: Sarcomeric assembly consists of a thick 

filament (composed of myosins) and a thin filament (composed of actin units) arranged 

between two Z-discs and an M line running through the center. Troponins and 

tropomyosines are arranged on the thin filament (31).  
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Muscle contraction is initiated by an incoming action potential from the nerve endings, 

transmitted via the acetylcholine receptors at the neuromuscular junction, which in turn 

triggers the calcium release from the sarcoplasmic reticulum via the Ryanodyne 

receptors (RyR) (5). The increase in cytosolic calcium concentration triggers calcium 

binding to the Troponins, which changes their confirmation, providing a binding site for 

the myosins. This leads to ATP hydrolysis by the myosins and a change in crossbridge 

linking between actin and myosin, thus initiating muscle contraction (33). Sarcoplasmic 

Reticulum Calcium ATPase (SERCA) pumps back the calcium in the sarcoplasmic 

reticulum to cease the contraction. 

The ability of skeletal muscle to generate force depends on the type of Myosin heavy 

chain (MHC) present within the myofiber. Based on the MHC present, skeletal muscle 

fibers can be classified into four fiber types: TypeI, Type IIa, Type IIb and Type IIx. 

Differences between the fiber types are listed in Table 1.2. Type I fibers are the slow 

twitch fibers, which are oxidative in nature owing to their high mitochondrial content. 

They are important for endurance. Type II fibers are fast twitch fibers, IIa being 

moderately fast and IIb and IIx being extremely fast, rely on anaerobic glycolysis for 

energy, which makes them more prone to fatigue than Type I fibers (22). Interestingly, it 

has been observed that obese individuals and type II diabetics have an increased 

proportion of Type II fibers (29). 

An important determinant of the skeletal muscle fiber types is PGC1α. PGC1α was 

shown to be preferentially expressed in Type I fibers (34)and also shown to induce 

mitochondrial biogenesis in skeletal muscle cells (35). Expression of PGC1α in Type II 
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fibers in transgenic mice lead to their conversion to the mitochondria rich, type I fibers 

(34) is the principal fiber type determinant. 
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Table1.2: Fiber types in skeletal muscle  

 
Type I 

fibers 

Type IIa 

fibers 

Type IIx 

fibers 

Type IIb 

fibers 

Contraction time 
Slow 

Moderateley 

fast 
Fast Fast 

Resistance to 

fatigue 

High Fairly high Moderate Low 

Activity used for 
Aerobic 

Long term 

anaerobic 

Short term 

anaerobic 

Short term 

anaerobic 

Maximum duration 

of use 

Hours <30 mins <5 mins <1 min 

Power produced 
Low Medium High Very high 

Mitochondrial 

density 

Very high High Medium Low 

Oxidative Capacity 
High High Moderate Low 

Major Storage fuel 
Triglycerides 

Creatine 

phosphate, 

glycogen 

ATP, creatine 

phosphate, 

glycogen 

ATP creatine 

phosphate 
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1.2.2: Thermogenesis in Skeletal Muscle 

Skeletal muscle, apart from brown fat, is an important organ for thermogenesis. Three 

types of thermogenesis occur in skeletal muscle- exercise induced thermogenesis, non-

exercise induced thermogenesis and cold induced shivering thermogenesis (5). 

Exercise induced thermogenesis is a well studied mechanism of decreasing body fat. 

Non-exercise induced thermogenesis includes maintenance of general posture and 

other activities of daily life. The most well known mechanism of defending the body 

temperature in response to cold is shivering thermogenesis. Shivering is primarily a 

function of skeletal muscle and is the body’s first response to cold. Shivering is known 

to increase oxygen consumption by up to 5 times the basal metabolic rate (BMR) and 

hence a very effective means of energy expenditure (36). A slight drop in core body 

temperature activates the primary motor nerve center in the hypothalamus and triggers 

the signal for skeletal muscle contraction. As the muscle contraction does not translate 

into work, the energy is released as heat. During cold exposure (4-8oC), shivering 

initially sets in, (it can take place for days during longer periods of cold exposure), until it 

is replaced by non-shivering thermogenesis (NST), which is a primary function of brown 

fat. NST is also beneficial because it prevents from any tissue damage to the skeletal 

muscle because of excessive use. Recent studies have also shown that skeletal muscle 

can contribute to NST (37). Skeletal muscle possesses sarcolipin, which uncouples 

SERCA pump from the Ca2+ releasing Ryanodyne receptors and causes futile Ca2+ 

cycling, which leads to generation of heat. This effect was also observed in UCP1 

deleted, brown fat ablated mice, suggesting that skeletal muscle is also capable of NST. 

A potential mechanism for skeletal muscle NST could be through mitochondrial 
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uncoupling, as occurs in BAT. Although skeletal muscle possesses UCP3, a homologue 

of UCP1, its role in mitochondrial uncoupling is highly debated (38). No specific 

uncoupling proteins like UCP1 have yet been identified in the skeletal muscle. 
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Figure 1.4: Shivering thermogenesis in Muscle. Neurotransmitter-mediated opening 

of cell-surface Na+ channels (1) leads to release of Ca2+into the cytoplasm from 

sources both outside the cell (2) and the sarcoplasmic reticulum (3) via the ryanodine 

receptor (RyR). Ca2+ release results in heat generation by ATP hydrolysis (4) during 

both muscle relaxation and actin–myosin crossbridge cycling during sustained 

contraction. Additional heat energy is released when Ca2+ ions are pumped back into 

the sarcoplasmic reticulum by the sarcoplasmic reticulum Ca2+ ATPases (SERCAs) (5) 

(5). 
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1.3: Brown fat and Skeletal Muscle- Two peas in a pod? 

Given the common adipogenic features of both tissues, white fat and brown fat were 

though to share a common developmental lineage. However, recent studies have 

highlighted the fact that brown adipocytes carry a myogenic signature and are derived 

from Myf5+ progenitors that give rise to the muscle cells (24). Although little was known 

about the developmental origins of brown fat at this time, there were some studies that 

suggested the finding that brown fat shares a developmental origin with skeletal muscle. 

Hasty et al showed that myogenin mutant mice have defects in forming skeletal muscle, 

but showed increased brown fat bundles in cervical and interscapular regions (39). This 

finding was confirmed by Kablar et al almost 10 years after Hasty et al reported their 

findings, that mice deficient in the myogenic transcription factors Myf5/Myod, have 

defects in muscle formation, but they show an increased expression of adipose tissue in 

place of muscle bundles (40). They however did not distinguish whether the excess 

adipose tissue was white or brown. Lineage tracing experiments by Atit et al suggested 

that some populations of brown fat, skeletal muscle and dermis all arise from Engrailed1 

(En1) expressing population of the dermamyotome cells, which depends on the Wnt 

signaling pathway (41).  Microarray experiments from the Swedish group Cannon and 

Nedergaard (42) again confirmed the myogenic signature of the brown fat.  Another set 

of independent studies identified PRDM16 as the ‘master regulator’ that controlled the 

brown fat to skeletal muscle cell fate of the Myf5+ cells (24). Interestingly, when 

PRDM16 was knocked out, the Myf5+ cells assumed a myogenic fate, suggesting that 

PRDM16 plays an inhibitory role on differentiation of Myf5+ cells into skeletal muscle. 

Given the common features of brown fat and skeletal muscle (abundance of 
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mitochondria, regulation of energy expenditure and thermogenesis), these two tissues 

make an attractive target for the treatment of obesity. 
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Figure 1.5: Brown fat and skeletal muscle share a common developmental origin. 

(11). 
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1.4: Mitochondria in obesity and metabolic syndrome 

Mitochondria are important organelles in eukaryotes involved in the production of 

chemical energy in form of ATP from oxidation of nutrients consumed. Mitochondria 

have an inner and outer membrane, intermembrane space and a matrix. The inner 

membrane is highly invaginated, forming numerous cristae. Breakdown of glucose by 

glycolysis and tri-carboxylic acid cycle and oxidation of fatty acids generates substrates 

(NADH and FADH2) that feed in to the electron transport chain (ETC) located in the 

inner mitochondrial membrane (43). As mentioned in section 1.1.2, flow of electrons 

across the ETC generates a proton gradient, which is harnessed by the ATP synthase 

to generate ATP by phosphorylation of ADP.  

Mitochondria play an important role in metabolic regulation and hence affect the whole 

body energy homeostasis. Dysfunction of mitochondria can affect energy expenditure 

and hence lead to the development of obesity (43). Studies on insulin resistant 

individuals have highlighted the role of mitochondrial dysfunction- including decreased 

number of mitochondria, decreased expression of the subunits of the electron transport 

chain and also smaller mitochondria in skeletal muscle (30, 44). The mitochondria not 

only show decreased respiration capacity, but also defective cristae formation and 

overall structure. Interestingly expression of PGC1α, which is known to regulate 

mitochondrial biogenesis, is downregulated in patients with Type II diabetes, suggesting 

a co-relation between mitochondria number and development of insulin resistance (22). 

Mitochondria are important for skeletal muscle function, which handles almost 80% of 

insulin mediated glucose uptake and also for production of adequate amounts of ATP 

required for skeletal muscle contraction. Dysregulation of mitochondrial function in 
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skeletal muscle affects their ability to generate enough ATP, thereby decreasing the 

necessary force production required for muscle contraction. This affects the overall 

muscle function (43), leading to impaired substrate utilization (glucose and fatty acids), 

which can lead to the development of obesity and metabolic syndrome (45). 

Mitochondria also possess uncoupling proteins (UCP1, UCP2, UCP3) (46)in their inner 

mitochondrial membranes. UCP1 is primarily present in brown fat whereas UCP2 shows 

a more global distribution. UCP3 is present mainly in the skeletal muscle. So far, only 

UCP1 is considered to be a true ‘uncoupling’ protein. UCP1 dissipates the ETC proton 

gradient as heat, thereby increasing energy expenditure. Brown adipose tissue is also 

extremely rich in mitochondria and any functional defects in mitochondria translate into 

decreased energy expenditure and thermogenesis, which can ultimately result in 

development of obesity (43). 
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1.5: The JAK-STAT pathway 

Discovered in the early 1990s while studying the actions of Interferon on cells, the JAK-

STAT pathway is still being unraveled after twenty years. The JAKs (Janus kinases/ 

Just Another Kinases) and STATs (Signal Transducers and Activators of Transcription) 

are a part of the signal transduction scheme acting downstream of the Interferon (IFN) 

and cytokine receptors and are important for initial innate immune responses. The JAK-

STAT pathway is also involved in regulating a multitude of cellular processes including 

cell growth, differentiation and immune responses (47). 

The cytokine receptors are comprised of a single transmembrane domain and an 

extracellular domain that promotes ligand binding (48). Binding of a ligand causes 

receptor homo or hetero dimerization or multimerization, depending on the ligand. The 

receptors themselves lack any kinase activity, but receptor associated JAKs are brought 

in close proximity and they auto and trans phosphorylate each other, leading to their 

activation. Activated JAKs phosphorylate specific phosphotyrosine residues on the 

receptor, which provides a binding site for the SH2 domain possessing STATs. The 

STATs are also phosphorylated by JAKs, which releases them from the receptors, 

allows them to dimerize, translocate to the nucleus and activate transcription of 

respective genes (47, 49-51). 
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Figure 1.6: The classical JAK-STAT pathway (Adapted from (50)) 
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1.5.1: JAK family of tyrosine kinases 

Mammals have four JAKs- JAK1, JAK2, JAK3 and Tyk2 and seven STATs (STAT1-4, 

STAT5A, 5B and 6). JAK1, JAK2 and Tyk2 are ubiquitously expressed, whereas JAK3 

expression is restricted to the hematopoietic lineage (48, 50). JAKs are 120-140kd 

proteins and share a common structure. The N-terminus of JAKs contains a Band 4.1 

ezrin, radixin and moesin (FERM) domain (JH6-JH7) and an SH2-like domain (JH3-

JH4). The FERM domain of JAKs is implicated in mediating interaction with the cytokine 

receptors.  At the C-terminus, JAKs possess a kinase like (pseudokinase) domain (JH2) 

and a kinase domain (JH1). The kinase like domain does not possess an ATP binding 

catalytic site, however it is important for complete kinase activity of JAKs (48)The 

phenotypes of JAK knockout mice are listed in Table 1.3. Apart from STATS, JAKs are 

known to have other targets including SOCS proteins, IRS1/2,  Grb2 and c-abl, (48). 

JAKs are found on the plasma membrane, associated with their receptors; however 

recent studies have provided a completely new perspective on JAK localization and 

function. JAK2 has been shown to be present in the nucleus of numerous cell types 

including hematopoietic cells, where it was shown to directly phosphorylate Y41 on 

histone H3 (52). JAK1, along with JAK2 was also found to be constitutively present in 

the nucleus of CHO cells (53). Interestingly, JAKs also affect transcription of genes 

which are not STAT dependent. Tyk2 also shows constitutive localization in the nucleus 

of human fibrosarcoma cells (54). Tyk2, along with the receptor complex, was also 

shown to bind the promoters of IFN inducible genes following interferon treatment of 

cells (55). The FERM domain contains an arginine rich region, which is thought to be 

the putative nuclear localization sequence (NLS) for JAKs (54). 
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Figure 1.7: Schematic structure of JAKs (Adapted from  (50)) 
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Table 1.3: Phenotypes of JAK knockout mice (Adapted from (50)). 

Gene Phenotype of mouse knockout 
Cytokines whose signaling requires 

this Jak 

Jak1 
Viable but early postnatal lethal 

owing to neurological deficits; SCID 

Families of receptor with the shared 

subunits γc or gp130; IFNs 

Jak2 
Embryonic lethal owing to a defect of 

erythropoiesis 

IL-3; family of receptors with the shared 

subunit gp130; IFN-γ hormone-like 

cytokines (EPO, GH, PRL, TPO) 

Jak3 SCID, viable and fertile 
Family of receptor with the shared 

subunit γc 

Tyk2 

Viable and fertile; susceptible to 

parasite infection; resistant to LPS; 

resistant to collagen-induced arthritis 

IL-12; LPS 
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1.5.2: Tyk2 - structure, function and what we already know. 

Tyk2 was the first of the JAKs to be discovered (56), and was found to play an important 

role in IFNα/β signaling (57). Most of the early studies on Tyk2 were carried out in Tyk2 

null human fibrosarcoma cells (58). Tyk2 requires the presence of both kinase like 

domain and kinase domain for full catalytic activity (59). Point mutations in the kinase 

like domain also lead to impaired kinase activity of Tyk2 (60). Tyk2 has two Tyrosines in 

the kinase domain (Y1051/1052 in mice), phosphorylation of both is important for 

complete ligand dependent activation of Tyk2, however mutation of the YYs does not 

impair the kinase activity of Tyk2 (61). Interestingly, mutation of catalytic lysine K930 in 

the ATP binding pocket of Tyk2 renders it kinase inactive, and is not phosphorylated 

basally, however it is still capable of being phosphorylated upon IFN treatment (61). 

While deletion of the N-terminus of Tyk2 has no direct effect on its catalytic activity, it is 

indispensible for stabilizing interaction of Tyk2 with its receptors (62). 

Tyk2 knockout mice were generated by three independent groups- Shimoda et al 

replaced the first coding exon with a neo resistant gene cassette (63), Karshigoff et al 

disrupted exons 3-9 (64) and Sheehan et al deleted the 5”UTR and the first coding ATG 

(65). A naturally occurring mutant mouse of Tyk2 was also reported (66), containing a 

single point mutation in the pseudokinase domain. Tyk2 knockout mice are viable and 

fertile. Interestingly, as opposed to what was observed in the in-vitro model, Tyk2 

knockout mice were found to be dispensable for their role in IFNα/β signaling (63, 64). 

Tyk2 however plays an important role in protection from bacterial, protozoan and viral 

infections by activating IL12 mediated IFNγ production in NK and T cells (67). Tyk2 also 

plays an important role in allergic inflammations by regulating the downregulation of Th2 
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mediated antibody production and recruitment of eosinophils in the airways (68). 

Interestingly, Tyk2 knockout mice are Th2 skewed and also show increased IgE 

production (68). Tyk2 deficient pro-B cells were shown to have a decreased 

mitochondrial respiration capacity (69). Recent studies from our lab have highlighted a 

novel role of Tyk2 in obesity. It was found that Tyk2 deficient mice become obese with 

age (70) and develop the classical hallmarks of metabolic syndrome (Insulin resistance, 

glucose intolerance). These mice do not have an increased energy intake, however they 

clearly have a deficiency in energy expenditure. Brown fat, a key thermogenic tissue, 

was developmentally and functionally defective in Tyk2 knockout mice. These mice also 

cannot survive in the cold past 12 hours, whereas a wild type a mouse can survive in 

cold i.e 4oC for up to weeks/months. This suggests that in the absence of Tyk2, there is 

both, an impaired shivering response mediated by skeletal muscle and non-shivering 

thermogenesis mainly mediated by the brown fat. Interestingly, Tyk2 knockout mice also 

show exercise intolerance (69) when exercised on a treadmill, suggesting that they may 

have defects in their skeletal muscle function.  
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Figure 1.8: Tyk2 and its various activator cytokines (71). Tyk2 is usually found in 

combination with other JAKs (JAk1 and JAK2) at the cytokine (IL and IFN) receptors.  
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Two cases of Tyk2 deficiency in humans have been reported to date (72, 73). 

Minegashi et al reported a 22 year old Japanese patient that displayed a Hyper-IgE like 

syndrome. Similarly, Kilic et al reported an 8 year old Turkish patient that exhibited a 

trend for elevated serum IgE levels, but not as significantly elevated as the Japanese 

patient. Interestingly, both patients were susceptible to bacterial and viral infections. 

Diagnosis of Tyk2 deficiency reported in the Turkish patient is fairly recent and hence 

limited observations are reported till date, including deafness and a mental condition. 

Studies on Japanese patient are consistent with the observations reported in Tyk2 mice, 

including restricted response to IFNα/β, increased proportion of Th2 cells and 

decreased IFNAR1 expression.  

Given the skewed physiology observed in Tyk2 deficient mice and also human subjects, 

more detailed studies on Tyk2 will help consolidate the role it plays and its targets in the 

various physiological functions, which will help develop novel strategies to overcome 

those deficiencies.  

The following studies presented in this thesis highlight the role of Tyk2 in the lineage 

specific determination of brown fat and skeletal muscle and also in their function.  
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Chapter II: Materials and Methods 

2.1: Reagents and antibodies 

All chemicals and reagents were purchased from Sigma-Aldrich or indicated otherwise. 

Antibodies were purchased from Cell Signaling (mouse monoclonal Stat3), Sigma-

Aldrich (mouse monoclonal alpha-tubulin), Abcam (rabbit polyclonal UCP1, rabbit 

polyclonal PRDM16, mouse monoclonal CEBPβ, rabbit polyclonal PGC1α). Rabbit Tyk2 

antisera was a kind gift of Dr. Birgit Strobl (University of Veterinary Medicine, Vienna, 

Austria). Mouse monoclonal antibodies, MHC2b (antibody developed by Stefano 

Schiaffino), myogenin (antibody developed Woodring Wright) and MyHC (antibody 

developed by Helen Blau) were obtained from the Developmental Studies Hybridoma 

Bank, developed under the auspices of the NICHD and maintained by University of 

Iowa, Department of Biology, Iowa City, IA-52242. MHC2a (goat polyclonal antibody) 

was a kind gift from Dr. Zhen Yan (University of Virginia, Charlottesville, VA).  

2.2: Animals 

All the mice were bred and maintained in the MCV/VCU animal facility according to 

Institutional Animal Care and Use Committee (IACUC) regulations. Male mice were 

used for these studies. Tyk2 deficient mice (C57BL/6) were kindly provided by Dr. Ana 

Gamero (Temple University School of Medicine, Philadelphia, USA). Mice carrying a 

transgene encoding the Wild Type (WT) or Kinase Dead (KD) form of Tyk2, including an 

upstream loxP- flanked stop sequence in the ubiquitously expressed Rosa26 locus were 

generated. These mice were crossed 5 generations to Tyk2-/- mice (on C57Bl6/J 

background) to eliminate interference from endogenous Tyk2 in the studies. Control 
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animals were obtained by crossing WT and KD transgenics with a wild type (Tyk2+/+) 

mouse (on C57Bl6/J background) for 5 generations. Mice (transgenic WT and KD on 

Tyk2-/- and Tyk2+/+ background) expressing the WT or KD form of Tyk2 in BAT (brown 

adipose tissue) and SKM (skeletal muscle) were obtained by crossing WT or KD 

transgenic animals with mice expressing the Cre recombinase under control of the Myf5 

promoter, allowing Myf5 lineage-specific expression of Cre  (24). SKM and Heart 

specific expression of WT or KD form of Tyk2 was obtained by crossing the transgenic 

mice with mice expressing Cre recombinase under control of MCK promotor (Muscle 

Creatine Kinase) (74). Animals from the same mixed background strain generation were 

compared. Mice were genotyped to confirm the expression of the transgene and the 

specific cre recombinase. 

2.3: Genotypings 

Mice were genotyped using a modified HotSHOT genomic DNA isolation protocol. 

Briefly, a tail snip was taken and incubated in 75μL of alkaline buffer (25mM NaOH, 

0.2mM EDTA,pH 12.0) for 30minutes at 95°C. Samples were then cooled on ice and 

then 75L of neutralization buffer (40mM Tris-HCl, pH2.0) was added. Samples were 

vortexed and then centrifuged at 16,000xg for 5 minutes at room temperature. Then 

100L of the reaction (approximately 100ng/L) was removed and stored at -20°C until 

used for genotyping. To determine the genotype of the mice, the following PCR 

reactions were set up. For Rosa, 2L DNA, 0.3l of 10M Rosa1, 0.3l of 10M Rosa2, 

0.3l of 10M EGFP1 and 0.3l of 10M EGFP2 Primers,12.5L 2x GoTaq Hot Start 

Green Master Mix (Promega, Madison, WI) and 5.3 L dH2O were added to a PCR 

tube. The following PCR cycles were used 1) 95°C for 4minutes, 2) 95°C for 30 
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seconds, 60°C for 30 seconds, 72°C for 45 seconds repeated 35 cycles 3) 72°C for 7 

minutes.  Myf5 cre PCR was set as follows- 2L DNA, 1.5l of 10M Myf5F, 1.5l of 

10M Myf5R, 1.5l of 10M Myf5 mutant Primers,12.5L 2x GoTaq Hot Start Green 

Master Mix (Promega, Madison, WI) and 6 L dH2O. For Tyk2 genotyping,  PCR was 

set as follows- 2L DNA, 1.0l of 10M Tyk2F, 1.0l of 10M Tyk2R, 1.0l of 10M 

Primers,12.5L 2x GoTaq Hot Start Green Master Mix (Promega, Madison, WI) and 

8.5L dH2O. For Neo genotyping,  PCR was set as follows- 2L DNA, 1.0l of 10M 

Tyk2F, 1.0l of 10M Neo8, 1.0l of Neo9 10M Primers,12.5L 2x GoTaq Hot Start 

Green Master Mix (Promega, Madison, WI) and 8.5L dH2O. The following PCR cycles 

were used for Myf5, Tyk2 and Neo: 1) 95°C for 3minutes, 2) 95°C for 30 seconds, 55°C 

for 30 seconds, 72°C for 30 seconds repeated 35 cycles 3) 73°C for 5 minutes. For 

MCK cre genotyping,  PCR was set as follows- 2L DNA, 1.0l of 10M MCK F, 1.0l of 

10M MCK R, 1.0l of 10M Primers,12.5L 2x GoTaq Hot Start Green Master Mix 

(Promega, Madison, WI) and 8.5L dH2O. The following PCR cycles were used 1) 95°C 

for 3 minutes, 2) 95°C for 30 seconds, 50°C for 30 seconds, 72°C for 45 seconds 

repeated 35 cycles 3) 72°C for 10 minutes.  The PCR products were resolved on a 1% 

agarose/TBE gel with EtBr (ethidium bromide) to visualize the bands. Sequences of 

primers used for genotypings are listed in Table 2.1. 

2.4: Cell Culture 

Brown fat preadipocytes were isolated as previously described (75, 76). Interscapular 

brown adipose tissue was isolated from newborn Tyk2+/+, Tyk2-/-, Tyk2-/-+WT, Tyk2-/-

+KD mice, minced and subjected to collagenase A digestion (1.5 mg/ml in isolation 
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buffer containing 123 mM NaCl, 5 mM KCl, 1.3 mM CaCl2, 5 mM glucose, 100 mM 

HEPES and 4% BSA) for 40 min at 37oC. The digested tissue was filtered through a 

70μM filter. Collected cells were centrifuged at 1500 rpm at room temperature for 5 min 

and then resuspended in 1 ml of primary culture medium (Dulbecco’s modified Eagle 

medium, 4500 mg/L glucose Gibco, Carlsbad, CA) containing 20% FBS, 20 mM HEPES 

and 1% penicillin-streptomycin), transferred into 12 well plates and grown in a 

humidified atmosphere of 5% CO2 and 95% O2 at 37°C. After 3 days of culture, cells 

were immortalized by infection with puromycin resistance retroviral vector pBabe 

encoding SV40 Large T antigen. 24 hrs after infection cells were split into 10 cm dishes 

and maintained in primary culture media for the next 24 hrs and then subjected to 

selection with puromycin at a concentration of 2 μg/ml in DMEM with 20% FBS for one 

week. 

For differentiation, brown preadipocytes were grown to 100% confluence in the 

differentiation medium: DMEM containing 4500 mg/L glucose, 10% FBS, 20 nM insulin 

and 1 nM triiodothyronine. Fully confluent cells were incubated for 48 h in differentiation 

medium supplemented with Induction medium- 0.5 mM isobutylmethylxanthine (IBMX), 

0.5μM dexamethasone and 0.125 mM indomethacin. After 48 hrs of induction, cells 

were maintained in differentiation medium for 5 days.  

2.5: Constructs and viral transductions 

293T cells, used as packaging cells, were grown in complete DMEM medium containing 

10% FBS and 1% penicillin-streptomycin. Cells were transfected in 10 cm dishes using 

Fugene reagent, 5μg plasmid and 5μg of helper vector. (Roche Diagnostics, 

Indianapolis, IN) according to the manufacturer’s instructions.  Media was changed 24 
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hrs after transfection. The virus-containing medium was collected 48 hrs after 

transfection, centrifuged for 10 min at 500 x g and filtered through 0.45 μm filter. Viral 

supernatants were added to the cells for 24 hrs in the presence of Polybrene (8 μg/ml 

polybrene, Chemicon Int., Temecula,CA), then diluted twice with the fresh medium. The 

next day the viral supernatant was removed and replaced by fresh medium. 

2.6: Mitochondrial preparation 

Skeletal muscle mitochondria were prepared as described previously (77) with a few 

modifications. Briefly, muscles were minced finely with a blade, trimmed clean of visible 

fat and connective tissue, and placed in 4 ml of modified Chappell-Perry (CP) buffer 

(buffer CP1: 100 mM KCl, 50 mM 3-(N-morpholino) propanesulfonic acid (MOPS), 1 

mM ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid (EGTA), 5 mM 

MgSO47H2O) supplemented with trypsin (8 mg per 2g of wet tissue). After 20 min 

incubation at 4°C on a rotator, the digestion was stopped by adding an equal volume of 

CP2 (CP1 supplemented with 5% defatted BSA). The tissue was homogenized using a 

motor-driven Teflon-glass Potter homogenizer (3x). The supernatant was transferred to 

a 50ml falcon tube and centrifuged at 1000 ×g for 5 min at 4°C. Mitochondria containing 

supernatant was transferred to fresh eppendorfs and spun at 7800xg for 10 mins at 4°C. 

Mito pellet was washed 3x with CP1 buffer. The final mitochondrial pellet after 3 washes 

was resuspended in CP1 buffer and protein concentration was measured using the 

Lowry method. 
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2.7: Blue Native-PAGE 

Electrophoresis of mitochondrial proteins in native conditions was performed using 

NativePAGE Novex Bis-Tris Gel System (Invitrogen, Carlsbad,CA), according to the 

manufacturer’s instructions with modifications. All chemicals purchased from Invitrogen 

or stated otherwise. Briefly, mitochondria were solubilized in cold 1x NativePAGE 

Sample Buffer containing DDM (n-dodecyl-β-D-maltoside) in the ratio of 1.6 g of 

detergent per 1 g mitochondrial protein or containing digitonin in the ratio of 6 g of 

detergent per 1 g protein. After 15 min of incubation on ice, the samples were 

centrifuged at 16,000 x g for 30 min at 4oC and supernatants transferred to the new 

tubes. The protein concentration of the lysates was determined using Bio-Rad protein 

assay. Prior to the electrophoresis, 30 μg of the extract was combined with Coomassie 

blue G-250 dye (detergent/dye ratio of 8 g per 1 g). Blue Native-PAGE was run using 4 

– 16% gradient Novex NativePAGE Bis-Tris gels and NativePAGE Running Buffer. The 

conditions of a run were as follows: low temperature (4oC) run, 150 V constant for 60 

min, then the voltage was increased to 250 V constant for the remainder of the run 

(about 60 min), upper (inner) chamber contained dark blue cathode buffer (NativePAGE 

running buffer mixed with 0.02% Coomassie blue G-250 dye) which was exchanged 

after the dye front reached 1/3rd of the gel into the light blue cathode buffer (0.002% G-

250). After the run gels were subjected to Coomassie staining. For Coomassie protein 

staining, the native gels were first placed in 100 ml of Fix solution (40 % methanol, 10 % 

acetic acid) and microwaved on high 60 (950 – 1100 watts) for 45 seconds followed by 

30 min of incubation on an orbital shaker at RT. This procedure was repeated once and 

gels were immersed in EZBlue Coomassie Brilliant Blue G-250 colloidal protein stain 
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(Sigma-Aldrich, Saint Louis, MO) and left on orbital shaker for overnight at RT. Next 

day, staining solution was decanted and gels were de-stained using ultrapure water until 

the desired background was obtained, and they were then scanned. 

2.8: In Gel complex assays 

Following BN-PAGE on mitochondria samples solubilized in 10% DDM, the gel was 

stained as follows for determining the activity of individual ETC complexes. 

Complex I: Gel was incubated with 2mM Tris-HCl, pH 7.4, 0.1mg/mlNADH and 

2.5mg/ml nitroblue tetrazolium at RT for 20 mins. 

Complex II: Gel was incubated with 4.5mM EDTA, 10mM KCN, 0.2mM phenazine 

methosulfate, 84mM succinic acid and 50mM nitroblue tetrazolium in 1.5mM phosphate 

buffer, pH 7.4 at RT for 3 hrs. 

Complex IV: Gel was incubated in 5mg diaminobenzidine dissolved in 9ml of 50mM 

sodium phosphate, pH 7.2, 1ml catalase (20mg/ml), 10mg cytochrome c and 750mg 

sucrose at RT for 3 hrs. 

The color development for bands was preserved by fixing the gels in 50% methanol with 

10% acetic acid for 15 mins. The fixed gels were stored in 10% acetic acid. The 

resulting bands were quantified by densitometry with the help of Image-J software.  

2.9: Oxygen Consumption assay 

Polarographic measurement of oxygen consumption by intact mitochondria was 

performed in a glass chamber equipped with Clark-type oxygen electrode (Strathkelvin 

Instruments, Glasgow, Scotland) as previously described (75). The measurements were 

done at 30oC in 500 μl of a respiration buffer (80 mM KCl, 50 mM MOPS, 1 mM EGTA, 
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5 mM KH2PO4 and 1 mg/ml defatted BSA, at pH 7.4). For glutamate/malate-dependent 

respiration (complex I) 300 μg of mitochondrial protein was used. For succinate-

dependent respiration (complex II), 200 μg of mitochondrial protein was used, and for 

TMPD (N,N,N′,N′-tetramethyl-p-phenylenediamine)/ascorbate (complex IV), 100 μg of 

protein was used. Next, the selected substrates for complex I (20 mM glutamate+5 mM 

malate), complex II (20 mM succinate with 7.5 μM rotenone), or complex IV (1 mM 

TMPD/20 mM L- ascorbate with 7.5 μM rotenone) of the respiratory chain were added 

to the chamber. State 3 respiration was initiated by the addition of 0.2 mM ADP (final 

concentration) followed by state 4 respiration. After state 4 was attained, 2 mM ADP 

was added to the chambers to measure maximum rate of state 3 respiration. Finally, 

0.04 mM uncoupler DNP (2,4-dinitrophenol) was used to measure the uncoupled 

respiration rate. In case of TMPD/ascorbate, only maximum rate of state 3 (2 mM ADP) 

was measurable. At the end of that measurement, 2 mM azide was added to determine 

the specificity of complex IV-dependent oxygen consumption. 

ADP-stimulated (state 3) and ADP-limited (state 4) respirations were defined and 

calculated according to the method of Chance and Williams (75).  

2.10: Histology 

Skeletal muscle was fixed in 10% formalin and were paraffin-embedded. Multiple 

sections were prepared and stained with hematoxylin and eosin (H&E) at the Pathology 

Research Service Facility (VCU Medical Center, Richmond, VA). 
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2.11: Electron microscopy 

Skeletal muscle was fixed in 2% paraformaldehyde- 2% glutaraldehyde in 0.1 M 

cacodylate buffer. The tissue samples were processed and analyzed at the Microscopy 

Core Facility at the Department of Anatomy and Neurobiology (VCU Medical Center, 

Richmond, VA). 

2.12: Oil red O staining  

The Oil red O staining was used to test for lipid accumulation in fully differentiated cells. 

Plates with cells were rinsed once with PBS and then fixed with buffered formalin for 1 

hr at room temperature. Fresh Oil red O working solution was prepared by adding 6 ml 

of the stock solution (0.5 g Oil red O in 100 ml of 2-propanol) to 4 ml of dH2O, mixed 

and filtered through Whatman filter paper. Following fixation the cells were incubated for 

1hr at room temperature with Oil red O stain. Then plates were carefully rinsed several 

times with dH2O and air-dried before collecting images under the inverted microscope.  

2.13: RNA extraction and real-time qPCR 

Total RNA was isolated with TRI Reagent (Molecular Research, Cincinnati, OH), 

according to the manufacturer’s instructions. Briefly tissues were harvested and minced 

finely and resuspended in 1ml TRI-reagent. Samples were incubated for 30 mins on a 

rotator-shaker at 4°C.Then 250L cholorform was added to the Tri Reagent and the 

samples were vortexed for 30 seconds and spun down at 13,200 rpm for 10 minutes at 

4°C. The aqueous phase was taken and 500L of isopropanol was added. Samples 

were vortexed and then incubated at -20oC for 30 minutes. RNA was pelleted at 13,200 

rpm for 15 minutes at 4°C. The supernatant was removed and the RNA pellet was 
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washed with 75% ethanol. The samples were then centrifuged at 13,200 rpm for 10 

minutes at 4°C. Supernatant was removed and RNA pellet was dried at 37°C. RNA was 

then re-suspended in the appropriate amount of DEPC H2O depending pellet size and 

then incubated at 55°C for 10 minutes. Isolated RNAs were treated with DNase 

(Promega, Madison, WI) in a 1:10 ratio with DNase and Buffer and incubated at 37°C 

for 30 minutes. The treatment was stopped by using Stop Buffer (Promega, Madison, 

WI) in a 1:10 ratio and incubated at 65°C for 10 minutes. RNA concentration was 

measured using a nanodrop. cDNA was synthesized from 2 μg of RNA with the Tetro 

cDNA Synthesis Kit (Bioline, Taunton, MA). 2g RNA, 1L Random Hexamer Primer 

Mix, 1L 10mM dNTPs mix were preheated at 95°C for 1 minute then cooled to 4°C. 

Then the 5x RT Buffer, 200U Reverse Transcriptase, 10U RNase Inhibitors, and DEPC 

H2O was added to a final volume of 20L. The PCR was set as follows: 42°C for 50 

minutes, 70°C for 15 minutes and then cooled to 4°C.  

Real-time qPCR was performed using SensiMix SYBR and Fluorescein Kit (Bioline, 

Taunton, MA) according to manufacturer’s instruction. . Briefly, the cDNA was diluted to 

1:20 ratio and then 5L of the cDNA was used as the template for the reaction. The 

reaction mixtures for internal controls were prepared as followed: 12.5L of SYBER 

Green mix, 1L 5M forward primer, 1L 5M reverse primer, and 5.5L of dH2O. For 

any other gene the mixture reaction is as followed: 12.5L of SYBER Green, 2.5L 5M 

forward primer, 2.5L 5M reverse primer, and 2.5L dH2O. All the samples were 

assayed in duplicates and analyzed using a CFX96 Real-Time PCR Detection System 

(Bio-Rad, Hercules, CA). Table 2.2 contains a full list of the primer sequences. Primers 
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for Jak1 and Jak2 were purchased from SuperArray (Qiagen SABioscience, Frederick, 

MD). 

2.14: Protein Extraction 

Cells were lysed in ice-cold extraction buffer (20 mM HEPES, 300 mM NaCl, 10 mM 

KCl, 1 mM MgCl2, 20% glycerol, 1% Triton X-100) with added protease (COMPLETE-

Roche) and phosphatase inhibitor cocktails (Roche, Indianapolis, IN) for 30 min at 4°C. 

For isolation of protein from tissues, tissues were harvested and minced finely with a 

blade and incubated with ice-cold extraction buffer for 30 mins on a rotator-shaker. After 

lysis, cell debris was removed from the lysates by centrifugation at 13,000 x g for 10 min 

at 4°C. The protein concentration in the supernatants was determined using a Bio-Rad 

protein assay (Bio-Rad, Hercules, CA).  

2.15: Western blot analysis 

Equal amounts of protein were mixed 1:1 with 2X Laemmli sample buffer containing 1 

mM β-mercaptoethanol. Samples were incubated at 95°C for 5 mins and separated 

using SDS-PAGE electrophoresis (Running buffer: 25 mM Tris, 192 mM glycine, 

0.1%SDS). The proteins were transferred to Immobilon-P polyvinyldifluoridine 

membrane (activated by methanol) and soaked in transfer buffer (70% methanol, Tris-

Hcl) (Millipore, Billerica, MA) using a semi-dry transfer apparatus (Bio-Rad, Hercules, 

CA). Membranes were blocked for 1 h at room temperature with 5% non fat dry milk in 

TBS-T buffer (20nM Tris-HCl, pH 7.5, 500mM NaCl, and 0.05% Tween-20) and then 

incubated overnight at 4oC with the indicated primary antibodies in 5%BSA in TBS-T. 

The blots were washed 3x in TBS-T. Secondary antibody was added (5% non fat dry 
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milk in TBS-T buffer) for 1h at room temp. Samples were washed 3x in TBS-T and then 

developed using ECL-Plus (Pierce Thermo Scientific, Rockford, IL). 

2.16: Immunoprecipitation 

250μg whole cell extracts were diluted with in an IP buffer pH 7.4 (150 mM NaCl, 50mM 

Tris-HCl, 1% Triton, 1 mM EDTA with added protease and phosphatase inhibitor 

cocktails (Roche, Indianapolis, IN) at 0.5μg/μl concentration. Samples were incubated 

overnight at 4°C with Tyk2 antibodies (1:100 dilution) and 20μl agarose beads or control 

IgG and agarose beads. Immunoprecipitates were washed five times with 1xPBS with 

protease and phosphatase inhibitor cocktails. Beads were resuspended in laemlli buffer 

with 1 mM β-mercaptoethanol. Samples were incubated at 95°C for 5 mins and beads 

were pelleted. The supernatant was separated by SDS-PAGE and blotted with indicated 

antibodies.  

2.17: Chromatin Immunoprecipation (ChIP) assay 

Tissues were isolated from mice, minced finely and resuspended in 20ml media 

supplemented with 750μl formaldehyde for crosslinking. The samples were incubated 

on a shaker 37°C for 20 minutes. To stop crosslinking, 125mM glycine was added and 

samples were incubated on a shaker at RT for another 10 mins. The samples were then 

spun down at 4°C, 450xg for 10 minutes. The supernatant was removed and pellet was 

resuspended in 5ml PBS (supplemented with protease inhibitors). The samples were 

then homogenised using a glass homogenizer till the homogenate was clear. This 

homogenate was filtered using a 70μM cel strainer to get a single cell suspension. 

Homogenate was aliquoted into eppendorf tubes and frozen at -80°C. Samples were 
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then thawed and spun at 4°C , 7000rpm for 5 minutes. The pellet was resuspended in 

1ml of lysis buffer (1%SDS, 10mM EDTA pH8.0, 50mM Tris-HCl, pH 8.0) and sonicated 

10x 10 sec on-20 sec off cycle. The samples were then spun 4°C, 7000rpm for 10 

minutes. Supernatant (chromatin) was pre-cleared as follows: 100μl supertanant+1ml IP 

buffer (0.01%SDS, 1.1% Triton X, 1.2mM EDTA, 16.7mM Tris-HCl, pH 8.0, 16.7mM 

NaCl) with inhibitors + 10μl ChIP beads (3x washed protein G sepharose beads 

resuspended in equal volume of ChIP buffer with 10μl 1mg/ml BSA/ 100μl beads and 

5μl 10mg.ml red herring DNA/100μl beads) on rotator at 4°C for 30 minutes. Beads 

were pelleted to give a pre-cleared chromatin. 200μl was saved as input. IP was set as 

follows: 1ml pre-cleared chromatin + 5μl antibodies on rotator at 4°C overnight. The 

next day, 50μl ChIP beads were added and samples were incubated on a rotator at 4°C 

for 2hrs. Beads were spun down at 6000 rpm at 4°C for 1 min and were washed 2x 

(10mins rocking at 4°C followed by a spin at 6000 rpm for 1 min) with each of the 

following buffers: ChIP buffer I (0.1%SDS, 1% Triton X, 2mM EDTA, 20mM Tris-HCl, pH 

8.0, 150mM Nacl), ChIP buffer II (0.1%SDS, 1% Triton X, 2mM EDTA, 20mM Tris-HCl, 

pH 8.0, 500mM Nacl), ChIP buffer III (0.25M LiCl, 1% NP.-40, 1% Sodium 

Deoxycholate, 1mM EDTA, 20mM Tris-HCl, pH 8.0) and ChIP buffer IV (10mM Tris-

HCl, pH 8.0, 1mM EDTA). DNA was then eluted from the beads by adding 200μL ChIP 

elution buffer (1%SDS, 0.1M NaHCO3) and rocking for 15 mins at RT. The beads were 

pelleted at 6000 rpm. The supernatant (and also input sample that was saved 

previously) was reverse cross-linked by adding 8μl 5M NaCl followed by o/n incubation 

at 65°C. 1ml PB was addded and samples were purified on miniprep colums. Final DNA 
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was eluted with 50μl buffer EB. This DNA was then used to set up qPCR for respective 

promoters. 

For setting up ChIP from cells, 1% formaldehyde was added to the media for 10mins to 

fix cells. The cells were then washed with ice-cold PBS supplemented with 125mM 

Glycine and protease inhibitors. The cells were scraped off in 1ml of PBS, transferred to 

an eppendorf and pelleted at 6000 rpm, 4°C for 4 mins. The pellet was resuspended in 

1ml ChIP lysis buffer and protocol was followed as described above. 

2.18: Site-Directed Mutagenesis 

Site-Directed mutagenesis was carried out according to manufactures instructions 

(Strategene). Briefly, a PCR reaction was set as follows-5 µl of 10× reaction buffer, X µl 

(50 ng) of dsDNA template, 1µl (125 ng) of oligonucleotide forward primer, 1 µl (125 ng) 

of oligonucleotide reverse primer, 1 µl of dNTP mix , 1 µl pfu turbo, ddH2O to a final 

volume of 50 µl.  The PCR was set as follows: 1) 95°C for 30 sec 2) 95°C for 30 

seconds, 55°C for 30 seconds, 68°C for 1min/kb of plasmid length, repeated 35 cycles 

3) 72°C for 10 minutes.  The PCR product was digested with Dpn1 at 37°C for 1 hr. 2 µl 

of the digested product was then transformed into XL-gold ultracompetent cells (On ice 

for 15 minutes, heat shock at  42°C for 50 sec, ice for 2 mins. Add 950 µl SOC medium 

and shake at 37°C for 1hr. 50 µl of transformed bacteria was plated onto an ampicillin 

selection plate and incubate o/n at 37°C). The resulting colonies were screened for the 

mutation. 
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2.19: Statistical analysis 

Results are presented as the mean ± SE. Statistical comparison was performed using 

two-tailed Student’s t-test. While interpreting the data results a p-value less than 0.05 

was considered statistically significant and annotated by *.  
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Table 2.1: List of Primers for Genotyping 

Primer Sequence 

Myf5 F CGT AGA CGC CTG AAG AAG GTC AAC CA 

Myf5 R CAC ATT AGA AAA CCT GCC AAC ACC 

Myf5 mutant ACG AAG TTA GGT CCC TCG AC 

Rosa1 F 
CAA CGC CCA CAC ACC AGG TTA G 

Rosa1 R 
GCA CGT TTC CGA CTT GAG TTG CC 

EGFP1 F 
GCA AGC TGA CCC TGA AGT TCA TC 

EGFP1 R 
TCG TCC ATG CCG AGA GTG ATC C 

MCK F 
ATG TCC AAT TTA CTG ACC G 

MCK R 
CGC CGC ATA ACC AGT GAA AC 

Tyk2 F 
TGG ACA AAA TGG AGT GAG TGT AAG 

Tyk2 R 
CTG GGT CAT GGC TGG AAA AGC CCA 

Neo8 
GAT CGG CCA TTG AAC AAG ATG 

Neo9 
CGC CAA GTC CTT CAG CAA TAT 
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Table 2.2: List of Primers for qPCR  

Primer Sequence 

UCP1 

F: CTG GGC TTA ACG GGT CCT C 

R: CTGGGCTAGGTAGTGCCAGTG 

PRDM16 

F: CAGCACGGTGAAGCCATTC 

R: GCGTGCATCCGCTTGTG 

Cidea 

F: TGC TCT TCT GTA TCG CCC AGT 

R: GCC GTG TTA AGG AAT CTG CTG 

MHCI 

F: GCCAACTATGCTGGAGCTGATGCCC- 

R: GGTGCGTGGAGCGCAAGTTTGTCATAAG 

MHC2a 

F: GGCACAAACTGCTGAAGCAGAGGC 

R: GGTGCTCCTGAGGTTGGTCATCAGC 

MHC2b 

F: GAGCTACTGGATGCCAGTGAGCGC- 

R: CTGGACGATGTCTTCCATCTCTCC 

MHC2x 

F:GGCAGCAGCAGCTGCGGAAGCAGAGTCTGG 

R: GAGTGCTCCTCAGATTGGTCATTAGC 
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titin 

F: GGA TGG AAA GGC TAT TGC AC 

R: CCT CGG TGT CTT CAG CT 

Ryr1 

F: GCCATCCTCAGACCCTAGC 

R: CACTGCAGGACCACTTCATC 

Serca1 

F: ACTGGGGTCAGAACTTCGTG 

R: CCAGGGGGTGATGTGTTTCT 

TnnT1 

F: CTTTGATTCCCCCGAAGATT 

R: CCTTTTTCCGCTGTTCAAAG 

TnnT3 

F: CGCTGAGAAGGAGCGGGAA 

R: GCCAGGTAGCTGCTGTAGT 

TnnI1 

F: AGCCCTCTTCACCTGTCTCA 

R: TTACGGGAGGCAGTGATCTT 

TnnI2 

F: GATCTCAGGATGGGAGATGAG 

R:TCTTTCTCCAGCTCTGTGGC 

TnnC2 

F: CACCTTTGGGTGGTGGAGT 

R: GCCTTGAACTCAGCGATCAT 
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Chapter III: Results 

3.1: Tyk2-/- mice have normal skeletal muscle morphology 

Our previous studies have shown that Tyk2-/- mice have defects in brown adipose 

tissue (BAT) formation (70). Since brown adipose tissue and skeletal muscle are 

derived from the same lineage of Myf5+ve mesenchymal stem cells (24), we wanted to 

investigate if SKM of Tyk2-/- mice have any structural defects. Gastrocnemius, 

plantarius and soleus muscle from 12 week old mice were isolated, fixed, sectioned and 

stained with Hematoxylin and Eosin. As seen in Figure 3.1, Tyk2-/- mice exhibit a 

normal skeletal muscle fiber formation and structure. This suggests that Tyk2 is not 

required for differentiation of skeletal muscle.  
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Figure 3.1: Tyk2-/- mice have a normal skeletal muscle morphology: Hematoxylin 

and Eosin staining of Gastrocnemius muscle of 12 week old Tyk2+/+ and Tyk2-/- mice. 
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3.2: Skeletal muscle of Tyk2-/- mice is not hypertrophied 

NMR studies on Tyk2-/- mice indicated that 3 month old Tyk2-/- mice have increased 

lean mass as compared to Tyk2+/+ mice (Gornicka et al, unpublished). To determine 

whether the increased muscle mass is due to increased muscle hypertrophy or 

increased number of muscle fibers, we measured individual muscle fiber area using 

image-J software. As seen in Figure 3.2A, Tyk2-/- mice do not show an increase in fiber 

size nor do they have increased number of fibers in a muscle cross section. We also 

weighed individual Gastrocnemius, plantaris and soleus muscle from Tyk2+/+ and Tyk2-

/- mice. As seen in Figure 3.2B, the gross weights of individual muscle types are not 

significantly changed. This suggests that the increase in muscle mass is not due to 

hypertrophied muscle, but an overall increase in the body muscle mass.  
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Figure 3.2: Skeletal muscle of Tyk2-/- mice is hot hypertrophied. A) Quantification 

of muscle fiber area of a muscle cross section from figure 3.1, using Image-J software 

(n= 6). B) Weights of individual muscle types isolated from 12-14 week old Tyk2+/+ and 

Tyk2-/- mice (n=6), **p<0.01. Data are expressed as mean ± SEM. 

A 
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3.3: Expression of muscle transcription factors is unaltered in SKM of Tyk2-/- 

mice 

Our previous studies indicate that BAT of Tyk2-/- mice show increased expression of 

skeletal muscle specific genes (70), most likely due to an imbalance in commitment of 

the Myf5+ progenitors towards skeletal muscle, mediated by PRDM 16 (24). Since 

Tyk2-/- mice also have increased muscle mass, we investigated whether there is also 

an imbalance in the expression level of muscle specific genes in the skeletal muscle of 

Tyk2-/- mice. As seen in figure 3.3, expression levels of the muscle transcription factors 

MyoD and myogenin, and the uncoupling protein, UCP3, are not changed in Tyk2-/- 

mice. Interestingly, the levels of muscle creatine kinase (MCK) are downregulated in 

Tyk2-/- mice. MCK is responsible for phosphorylation of creatine, which is one of the 

major fuels utilized by SKM. This would suggest an imbalance in energy utilization 

(78)in Tyk2-/- mice. 
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Figure 3.3: Expression of muscle specific mRNAs in Tyk2-/- mice: q-RT PCR on 

gastrocnemius muscle of 12-14 week old Tyk2-/- and Tyk2+/+ mice. (n=6-8 mice per 

group), **p<0.01. Data are expressed as mean ± SEM. 
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3.4: Tyk2-/- mice may exhibit contractile defects 

Since muscle contraction is an important function of the skeletal muscle, we wanted to 

determine if Tyk2-/- mice exhibit any contractile defects. We measured the expression 

of different troponins, which are a part of the sarcomeric assembly and involved in 

muscle contraction. qRT-PCR analysis on SKM of 12-14 week old mice showed that the 

expression of troponins is downregulated in Tyk2-/- mice (Figure 3.4). This suggests 

that Tyk2-/- may play a role in regulating contractility of the skeletal muscle.  
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Figure 3.4: Tyk2-/- mice may exhibit contractile defects: Expression of troponins T1, 

T3, I1 and I2 in GA muscle of 12-14 week old mice measured by qRT-PCR. (n=6-8 mice 

per group). **p<0.01, ***p<0.0001. Data are expressed as mean ± SEM. 

  



61 
 

3.5: Tyk2-/- mice may exhibit defects in calcium signaling 

Since calcium release triggers muscle contraction, we wanted to determine if Tyk2-/- 

mice show a defect in calcium release which could affect the muscle contraction. We 

measured the expression of Ryanodyne and SERCA receptors which are responsible 

for calcium release and calcium take-up after a stimulus. Figure 3.5 suggests that Tyk2-

/- mice may exhibit a defect in calcium mediated contraction and could affect the muscle 

function and its thermogenic capacity.  
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Figure 3.5: Tyk2-/- mice have decreased expression of mRNAs regulating calcium 

release: Expression of SERCA and Ryanodyne receptors in GA muscle of 12-14 week 

old mice measured by qRT-PCR. (n=6-8 mice per group). *p<0.05, **p<0.01. Data are 

expressed as mean ± SEM. 
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3.6: Tyk2-/- do not show defects in sarcomere assembly 

Our previous studies have shown that Tyk2-/- mice may have a defect in shivering 

thermogenesis which is a function of skeletal muscle contraction (70). We wanted to 

determine if these contractile defects in SKM function were due to a disorganised 

sarcomere assembly. We isolated gastrocnemius, plantarius and soleus muscle from 

Tyk2+/+ and Tyk2-/- mice and subjected them to electron microscopy. The electron 

micrographs (Figure 3.6) reveal an organised structure of the sarcomere assembly in 

Tyk2-/- mice, suggesting that the defects in SKM function in Tyk2-/- mice is not due to a 

defect in structural assembly of the skeletal muscle.  
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Figure 3.6: Tyk2-/- mice exhibit a normal skeletal muscle structure: Electron 

micrographs of GA muscle, in 12 week old mice, showing the sarcomere assembly. N = 

4-6 mice per group. 
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3.7: Tyk2-/- mice do not have defects in neuro-muscular junction assembly  

The neuro-muscular junction (NMJ) is responsible for transmitting signals from the 

incoming nerve to the skeletal muscle in response to various stimuli including cold 

exposure, which is responsible for inducing muscle contraction. Since Tyk2-/- mice 

exhibit defects in stimuli induced muscle contraction, we wanted to determine whether 

the defect was due to improper transmission of the incoming signal or due to the 

downstream effectors involved in muscle contraction. To determine this, we isolated 

individual muscle types (gastrocnemius, soleus, plantaris, tibelis anterior, diaphragm) 

and stained them with labelled α-bungarotoxin from snake venom, which binds 

specifically to the Acetylcholine receptors at the NMJ. As seen in figure 3.7, both 

Tyk2+/+ and Tyk2-/- exhibit a normal NMJ assembly (characterized by pretzel shaped 

staining), suggesting that the defects in Tyk2-/- mice lie downstream of the NMJ.  
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Figure 3.7: Tyk2-/- mice have a normal NMJ assembly: a-bungarotoxin staining of 

acetyl choline receptors at the NMJ assembly in GA muscle of 12 week old Tyk2+/+ and 

Tyk2-/- mice. N= 3 mice per group. 
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3.8: Contractile defects in Tyk2-/- are SKM specific 

Apart from skeletal muscle, heart is another contractile tissue with similar contractile 

apparatus. As seen in Figure 3.8, expression of titin, one of the sarcomeric assembly 

proteins is downregulated in SKM, but is unchanged in the heart. This suggests that the 

defect lies specific to the contractile apparatus of skeletal muscle. 
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Figure 3.8: Contractile defects in Tyk2-/- mice are skeletal muscle specific: 

Expression of Titin in GA muscle and heart of 12-14 week old mice measured by qRT-

PCR. (n=6-8 mice per group). **p<0.01. Data are expressed as mean ± SEM. 
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3.9: Tyk2-/- mice have increased glycolytic fibers 

Fast-twitch fibers (glycolytic) contain low numbers of mitochondria and are responsible 

for short term muscle activities. Slow-twitch fibers (oxidative) are rich in mitochondria 

and are responsible for endurance functions. Our previous studies demonstrate that 

Tyk2-/- mice are exercise intolerent (69) and show a relatively lower endurance 

capacity. Since oxidative fibers and mitochondria play an important role in endurance 

function, we wanted to determine whether Tyk2-/- mice show an increased proportion of 

glycolytic fibers which could contribute to this phenotype. As seen in Figure 3.9, Tyk2-/- 

mice show an increased expression of MHC2b (the glycolytic fiber specific myosin 

heavy chain) and a decresed expression of MHC2a (the oxidative fiber specific myosin 

heavy chain) in gastrocnemius (mixed muscle). However, the expression of total myosin 

heavy chains or myogenin (marker of terminal muscle differentiation) are unchanged. 

This suggests that the decreased endurance phenotype is contributed by the increased 

proportion of fast-twitch fibers. 
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Figure 3.9: Tyk2-/- mice have an increased proportion of glycolytic fibers: Protein 

expression of MHCs for Type I (MHC2a), Type II (MHC2b) and total MHCs in whole cell 

extract on GA muscle of 12-14 week old mice was analysed by western blot. 
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3.10: PGC1α is downregulated in SKM of Tyk2-/- mice 

PGC1α plays an important role in skeletal muscle function as it is the key factor that 

determines the different fiber types (fast-twitch versus slow-twitch) and also is involved 

in mitochondrial biogenesis. Since Tyk2-/- mice showed a decrease in the slow, 

oxidative fibers, we wanted to determine if PGC1α was one of the contributing factors. 

RNA was isolated from gastrocnemius muscle of 12 week old mice and PGC1α 

expression was determined by qRT-PCR.  As seen in Figure 3.10, Tyk2-/- mice exhibit 

decreased PGC1α expression, and this downregulation is skeletal muscle specific, 

suggesting that PGC1α is one of the contributing factors towards the Tyk2-/- phenotype. 
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Figure 3.10:PGC1α is downregulated in Tyk2-/- mice: Expression of PGC1α in GA 

muscle and heart of 12-14 week old mice measured by qRT-PCR. (n=6-8 mice per 

group). *p<0.05. Data are expressed as mean ± SEM. 
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3.11: Tyk2-/- mice exhibit altered mitochondria morphology in SKM 

From the previous figure, we know that PGC1α expression is downregulated in SKM of 

Tyk2-/- mice. Since PGC1α is also the master regulator of mitochondrial biogenesis, we 

wanted to determine whether the mitochondria morphology and number was affected in 

SKM of Tyk2-/- mice. Electron micrographs on gastrocnemius (glycolytic) (Figures 

3.11C, 3.11D) and soleus (oxidative) (Figures 3.11A, 3.11B) muscles of 12 week old 

mice reveal that the number of mitochondria is not changed, however the morphology is 

grossly altered (Figures 3.11A, 3.11C). Mitochondria in Tyk2-/- mice appear smaller as 

compared to Tyk2+/+ mice in both Type I (mitochondria-rich) and Type II (mitochondria-

poor) fibers and also show deformed cristae formation. This suggests that Tyk2 may 

play a role in regulating the mitochondrial structure. 
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Figure 3.11:Mitochondria in Tyk2-/- mice are deformed: Representative Electron 

micrographs of Soleus (A),(B) and plantaris (C),(D) muscle in 12 week old Tyk2+/+ and 

Tyk2-/- mice.  
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3.12: Tyk2-/- mice exhibit defects in mitochondrial respiration 

Next, we wanted to determine whether the mitochondria exhibit a defect in function 

along with the structural defects. We isolated mitochondria from skeletal muscle of 12-

14 week old Tyk2+/+ and Tyk2-/- mice and measured respiration on isolated 

mitochondria using a Clark-type oxygen electrode. We measured electron flow through 

Complex I, Complex II and Complex IV by adddition of specific substrates. As seen in 

Figure 3.12, Tyk2-/- mice exhibit decreased Glutamate-Malate (complex I), succinate 

(complex II) and TMPD-ascorbate (Complex IV) dependent respiration. This could be 

due to a defect in activities of all ETC complexes or Complex IV which is the last one in 

the chain.  Figure 3.12, also shows that State 3 (ADP-dependent) and State 4 (ADP-

independent) respiration are both lower in Tyk2-/- mice.  DNP and azide uncoupled 

respiration is also decreased, suggesting that the defects lie in electron flow through 

ETC and not in ATP synthase (Complex V). 
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Figure 3.12: Tyk2-/- mice exhibit a defect in mitochondrial respiration: Oxygen 

consumption was measured from isolated mitochondria of 12-14 week old Tyk2+/+ and 

Tyk2-/- mice using specific substrates (Glutamate-malate for Complex I, succinate for 

complex II and TMPD-Ascorbate for complex IV) in a Clark-type oxygen electrode. State 

3 (ADP dependent), State 4 (ADP-independent), and uncoupled (DNP for complex I and 

II and azide for complex IV) values are represented in the figure. (n= 10-12 mice per 

group) *p<0.05. 
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3.13: Tyk2-/- mice exhibit defect in CIV activity 

To identify which ETC complex contributed to decreased in oxygen consumption in 

skeletal muscle mitochondria, we measured activities of the different ETC complexes 

using an In-gel assay. Isolated mitochondria from skeletal muscle of 12-14 week old 

mice were resolved on a Blue-Native gel to separate the individual complexes and 

enzymatic activities were measured based on colorimetric analysis (79). Figure 3.13 

suggests that the defect lies in activity of Complex IV, which could contribute to the 

overall decreased mitochondrial respiration. 
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Figure 3.13: Complex IV activity is decreased in Tyk2-/- mice: (A) Activities of 

complex I, complex II and complex IV were measured on isolated mitochondria from 12-

14 week old Tyk2+/+ and Tyk2-/- mice using an In-gel assay afterBN-PAGE. (B) 

Quantification of Complex IV activity from (A) using Image-J software.  N=4-6 mice per 

group, *p<0.05. 
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3.14: Decreased ComplexIV activity in Tyk2-/- mice is not due to a defect in 

assembly of the ETC 

Decreased complex IV activity in the SKM mitochondria of Tyk2-/- mice could be due to 

decreased expression of complex IV proteins or a defect in overall assembly of the ETC 

complexes. Figure 3.14A shows that Tyk2-/- mice do not show any changes in the 

expression or assembly of the different ETC complexes, nor the expression of 

mitochondrial proteins (Figure 3.14B) is different between Tyk2+/+ and Tyk2-/- mice, 

suggesting that the defect is activity of complex IV is not due to a structural defect in the 

assembly of ETC components.  
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Figure 3.14: Decreased ComplexIV activity in Tyk2-/- mice is not due to a defect in 

assembly of the ETC: Mitochondria were isolated from 12-14 week old Tyk2+/+ and 

Tyk2-/- mice and resolved on BN-PAGE. Mitochondria solobilised with DDM show ETC 

complexes while mitochondria solubilised using digitonin show ETC supercomplex 

formation. B) Western blot on isolated mitochondria from 12-14 week old Tyk2+/+ and 

Tyk2-/- mice.  
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3.15: Tyk2-/- mice exhibit SKM defects from birth 

We wanted to determine whether the defects seen in SKM of Tyk2-/- mice are present 

from birth or they develop with age.  We isolated RNA from skeletal muscles from 1-3 

day old newborn pups and measured the expression of troponins and MHCs by qRT-

PCR. As seen in Figure 3.15 A, expression of troponins is downregulated in Tyk2-/- 

mice suggesting that the pups also exhibit contractile defects. Figure 3.16B shows that 

expression of MHCI, the slow-oxidative type muscle fiber MHC is downregulated, 

suggesting that Tyk2-/- mice exhibit a developmental defect in SKM function.  
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Figure 3.15: Tyk2-/- mice exhibit SKM defects from birth: Expression of Troponins 

(A) and Myosin Heavy Chains (B) in skeletal muscle 1-3 day old newborn pups 

measured by qRT-PCR. (n=8-10 mice per group). *p<0.05. **p<0.01. Data are 

expressed as mean ± SEM. 



84 
 

3.16: Tyk2 is induced during differentiation of C2C12 myocytes 

To determine if Tyk2 is involved during the differentiation of SKM, we used an in-vitro 

approach. We measured the levels of Tyk2 RNA and protein during the differenetiation 

of C2C12 myocytes. As seen in Figure 3.16A, Tyk2 is barely detectable in 

undifferentiated, proliferating myocytes. However, Tyk2 levels increase (~20 fold) soon 

after C2C12 myocytes are induced for differentiation and the upregulation is maintained 

in differentiated myocytes. We also measured the expression of Jak1 and Jak2 (Figure 

3.16B), which are known to be involved in myogenic differentiation. Jak1 is known to be 

upregulated during the proliferation stage (80)and Jak2 is known to be involved in the 

differentiation of C2C12 myocytes (81). This suggests that Tyk2 may be involved in 

differentiation of myocytes and is indispensable for SKM function. 
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Figure 3.16: Tyk2 is induced during differentiation of C2C12 myocytes: Western 

blot analysis (A) and qPCR (B) on whole cell extracts of C2C12 myocytes during the 

course of differentiation.  
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3.17: Restoring expression of Tyk2 in BAT and SKM (Myf5 cre) 

We next wanted to determine whether restroring the expression of Tyk2 in the Myf5 

positive progenitors- BAT and SKM, will reverse the obese phenotype in Tyk2-/- mice. 

Our preliminary results showed that restoring the expression of Tyk2 (Tyk2 WT) in 

Tyk2-/- brown preadipocytes can differentiate into brown fat in-vitro (70). We also 

expressed kinase inactive Tyk2 (Tyk2 KD) in Tyk2-/- preadipocytes as a control for 

kinase activity. To our surprise, expression of Tyk2 KD also induced differentiation of 

brown fat preadipocytes in vitro. To further investigate the role of kinase inactive Tyk2, 

we generated mice carrying Tyk2 (Tyk2 WT) and kinase inactive Tyk2 (Tyk2 KD) 

transgene. These mice were bred with Tyk2-/- mice on C57/Bl6 background. These 

mice were then crossed to Myf5 cre mice (on Tyk2-/- background) to generate 

transgenic mice that expressed either Tyk2 WT (Tyk2WTMyf5) or Tyk2 KD (Tyk2KDMyf5) 

proteins. Tyk2-/- littermate control animals carried the inactive transgene.  Tyk2+/+ 

control animals were generated in a similar fashion, the only difference being that they 

expressed endogenous Tyk2 and carried an inactive transgene. As seen in figure 3.17, 

the transgene was expressed only in BAT and SKM, but not other tissues. 
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Figure 3.17: Expressing Tyk2 in the Myf5 lineage: Whole cell extracts from BAT, 

SKM, WAT and Heart from Tyk2+/+, Tyk2-/-, Tyk2-/-+Tyk2WT, Tyk2-/-+Tyk2KD mice 

were analysed by western blot forTyk2 levels in 4 week old male mice. N= 3-4 mice per 

group. 
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3.18: Tyk2 expression in BAT and SKM restores the obese phenotype 

The first question that we wanted to address using the transgenic model was whether 

mice expressing Tyk2WTMyf5 and Tyk2KDMyf5 revert their obese phenotype. Mice were 

weighed every week for 6 months. The weights are plotted in Figure 3.18. Figure 3.18A 

shows that the lean phenotype is restored in both Tyk2WTMyf5 and Tyk2KDMyf5 mice as 

early as 12 weeks of age and is maintained till the mice are 6 months old (Figure 

3.18B). This suggests that kinase activity of Tyk2 is not required for its role in regulating 

the obese phenotype and that restoring expression of Tyk2 in BAT and SKM is sufficient 

to revert the obese phenotype of Tyk2-/- mice.  
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Figure 3.18: Tyk2 expression in BAT and SKM restores the obese phenotype: 

Body weight of mice at 12 weeks (A) and 24 weeks (B) fed a breeder chow diet. (n= 15-

24 mice per group). ***p<0.0001. Data are expressed as mean ± SEM. 
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3.19: Tyk2 expression in BAT (Myf5 cre) restores the brown fat phenotype in 

primary preadipocytes 

To determine whether brown fat development was restored in mice expressing 

Tyk2WTMyf5 and Tyk2KDMyf5, we isolated preadipocytes from 1-3 day old newborn pups 

and subjected them to in-vitro differentiation.  As seen in Figure 3.19A, expression of 

Tyk2WT and Tyk2KD restored the expression of brown fat specific genes (UCP1, cidea, 

PRDM16) and fat specific genes (PPARα, PGC1α). Also, muscle specific genes (MCK, 

MyoD) that were upregulated in Tyk2-/- mice were downregulated back to their normal 

levels in both Tyk2WT and Tyk2KD preadipocytes (figure 3.19B). This suggests that 

expression of Tyk2 in myf5 cre restores the brown fat phenotype in these mice. 
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Figure 3.19: Expression of Tyk2 in BAT rescues the brown fat phenotype: 

Expression of brown fat specific genes (UCP1, cidea, PRDM16) and fat specific genes 

(PPARa, PGC1a) (A) and muscle specific genes (MCK, MyoD) (B) in differentiated 

primary brow fat adipocytes measured by qRT-PCR. (n=3-5 mice per group). *p<0.05. 

**p<0.01. Data are expressed as mean ± SEM. 



92 
 

3.20: Restoring Tyk2 expression in BAT and SKM restores the thermogenic 

function of these tissues 

Since Tyk2-/- mice showed a defective response to cold exposure, we next determined 

whether Tyk2WTMyf5 and Tyk2KDMyf5 transgenics restored their ability for cold tolerance. 

12-14 week old mice were subjected to cold stress at 4oC for a period of 12 hours. Core 

body temperature was monitored at regular intervals. Figure 3.21 shows that both 

Tyk2WTMyf5 and Tyk2KDMyf5 can maintain the core body temperature as effectively as 

the Tyk2+/+ mice. This shows that function of SKM and BAT is not dependent on kinase 

activity of Tyk2. 
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Figure 3.20: Tyk2 expression in BAT and SKM restores the thermogenic function 

of these tissues: Core body temperature measured at 0.5, 1.5, 3, 6 and 12 hours using 

a rectal thermometer in 12-14 week old mice placed at 4oC for 12 hours. (n=3-7 mice 

per group) p<0.05. Data are expressed as mean ± SEM. 
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3.21: Restoring Tyk2 expression in the SKM alone reverts the obese phenotype in 

Tyk2-/- mice 

Since SKM is an important tissue controlling energy expenditure, we wanted to 

determine whether expressing Tyk2WT and Tyk2KD only in the SKM, but not BAT, of 

Tyk2-/- mice is sufficient to revert the obese phenotype. We crossed the Tyk2WT and 

Tyk2KD transgenic mice on Tyk2-/- background to mice carrying the cre recombinase 

under the MCK (muscle creatine kinase) promoter. This allows expression of the 

transgene in SKM and heart, but not BAT. The mice generated (along with Tyk2-/- and 

Tyk2+/+ controls) were weighed every week for a period of 6 months. As seen in Figure 

3.21A, at 12 weeks, Tyk2WTMCK and Tyk2KDMCK mice are significantly lighter than 

Tyk2-/- mice, but are still heavy compared to Tyk2+/+ mice. Interestingly, at 24 weeks 

(figure 3.21B), the Tyk2KDMCK mice show a complete reversal of obese phenotype, 

whereas Tyk2WTMCK mice show a moderate reversal. The effects seen are SKM 

specific, as the expression of genes involved in BAT function are downregulated, as in 

Tyk2-/- mice (Figure 3.21C). This suggests that expressing Tyk2 in the SKM alone can 

overcome the weight gain in Tyk2-/- mice and that kinase inactive form of Tyk2 is more 

effective in reversal of obese phenotype in Tyk2-/- mice. 

  



95 
 

A 

 

B 

 
  



96 
 

C 

 
 

Figure 3.21: Tyk2 expression in SKM alone partially reverts the obese phenotype 

in Tyk2-/- mice: Body weight of mice at A) 12 weeks B) 24 weeks fed a breeder chow 

diet. (n= 5-24 mice per group)  C) Expression of BAT specific genes-UCP1, PRDM16 

and cidea in BAT of 24 week old mice analysed by qPCR. ***p<0.0001, **p<0.01, 

*p<0.05. Data are expressed as mean ± SEM. 
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3.22: FERM domain of Tyk2 is required for the control of obesity  

From the previous figures, we can conclude that kinase activity of Tyk2, as a function of 

K927 in the JH1 domain, is dispensable for its role in regulating obesity, suggesting that 

Tyk2 may act as an adaptor protein and not as a kinase. Reports suggest that the N-

term FERM domain is important for protein-protein interaction of Tyk2. To determine 

whether the FERM domain is involved in mediating function of Tyk2 in obesity, we 

generated FERM domain deletion of Tyk2. Brown fat preadipocytes from Tyk2-/- mice 

were infected with these constructs and differentiated in- vitro. Oil-red O staining was 

used as a marker for differentiation. As seen in figure 3.22, deletion of FERM domain in 

both WT and KD forms of Tyk2, did not restore the differentiation of Tyk2-/- 

preadipocytes. This suggests that the FERM domain of Tyk2 may be involved in 

regulation of its function in obesity. 
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Figure 3.22: FERM domain of Tyk2 is important for its role in regulating obesity: 

Brown fat preadipocytes infected with the FERM domain deleted forms of Tyk2, sorted 

by FACS to selects cells expressing the tyk2 constructs (GFP) .Oil red-O staining was 

carried out after differentiation   N = 3. 
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3.23: Tyk2 interacts with transcription factors involved in BAT differentiation and 

function 

It has been well defined that the FERM domain of Tyk2 contains a nuclear-localization 

sequence (NLS) (54) and that Tyk2 also binds to the promoter region of IFN inducible 

genes along with its receptors IFNAR1 and IFNAR2 (55). We wanted to investigate 

whether the function of Tyk2 in obesity is because of its nuclear interactions. We 

immunoprecipitated Tyk2 from BAT of Tyk2WTMyf5 and Tyk2KDMyf5 mice and 

determined its interaction with transcription factors involved in BAT differentiation 

(PRDM16, C/EBPβ) and function (PGC1α,). As seen in Figure 3.25A, both Tyk2WT and 

Tyk2KD interact with PRDM16, C/EBPβ and PGC1α, suggesting that Tyk2 may be a 

part of the transcriptional complex regulating brown fat differentiation and function. We 

also performed a chromatin immunoprecipitation assay (ChIP) in brown fat of Tyk2+/+ 

mice with Tyk2 antibody and determined Tyk2 binding at the promoter regions of brown 

fat genes, UCP1 and PRDM16. As seen in Figure 3.23B, we did observe Tyk2 binding 

at these promoters and this binding is highly specific (figure 3.23C), suggesting a role 

for Tyk2 in regulating expression of genes involved in brown fat differentiation and 

function. 

  



100 
 

A 

 
 
B 

 
 
 



101 
 

 
C 

 
 
Figure 3.23: Tyk2 interacts with transcription factors involved in BAT 

differentiation and function: A) Whole cell extracts of BAT from Tyk2WTMyf5 and 

Tyk2KDMyf5 mice were immunoprecipitated with antibodies against Tyk2 and western 

blotted for PGC1α, C/EBPβ and PRDM16. IgG was used as unspecific control. N = 3. 

ChIP on BAT of 12 week old Tyk2+/+ mice. BAT from age matched Tyk2-/- mice were 

used as an unspecific control. qPCR was carried out to check for Tyk2 binding at  A) 

UCP1 and PRDM16 promotor regions B) different regions upstream of UCP1 promoter 

showing the specificity of Tyk2 binding. N = 3, ***p<0.001. 
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3.24: Interaction of Tyk2 with PGC1α is induced under starvation in SKM 

To further investigate whether the involvement of Tyk2 in skeletal muscle function is 

also beacuse of its nuclear interactions, we immunoprecipitated Tyk2 from SKM of 

Tyk2+/+ mice and determined its interaction with PGC1α which is important for skeletal 

muscle function. As seen in Figure 3.24, Tyk2 interacts with PGC1α, under starvation, 

when PGC1α levels are elevated (82). Interestingly, Tyk2 also interacts with the 

transcription factor C/EBPβ, which is involved in adult myogenesis. This suggests that 

Tyk2 may be a part of the transcriptional complex regulating skeletal muscle 

differentiation and function. 
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Figure 3.24: Tyk2 intercats with PGC1α in a starvation dependent fashion: Whole 

cell extracts of SKM Tyk2+/+ mice were immunoprecipitated with antibodies against 

Tyk2 and western blotted for PGC1α, C/EBPβ. IgG was used as unspecific control. 

N=3. 
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Chapter IV: Discussion 

The work presented in this thesis highlights the role of Tyk2 in regulating the 

development and function brown fat and skeletal muscle derived from the Myf5+ 

progenitors of the mesenchymal lineage. Our previous work characterized the functional 

defects in brown fat of Tyk2 deficient mice (70). 

Since we used a global knockout of Tyk2, the obese phenotype seen in the Tyk2 

deficient mice could be a function of not only brown fat, but also other important 

contributing factors including a defect in the regulation of energy balance mediated by 

the hypothalamus (83), decreased energy expenditure as a function of skeletal muscle  

(29, 44) and adipose tissue inflammation leading to insulin resistance (84). Skeletal 

muscle, like brown fat, is a mitochondria rich tissue, is important in regulating energy 

expenditure (38) and handles almost 80% of insulin mediated glucose uptake (30). 

Since both brown fat and skeletal muscle share common embryonic origins, we wanted 

to investigate the role of Tyk2 in skeletal muscle development and function. 

Interestingly, Tyk2 along with Jak2 has been observed in regulation of lineage specific 

determination of mouse embryonic stem cells (85). All JAKs are known to be expressed 

in mouse embryonic stem cells (mESCs). Tyk2 is phosphorylated along with JAK1 and 

JAK2 in mESCs following LIF treatment, suggesting their involvement in regulating 

mESC cell renewal (86).  

Body composition of Tyk2 deficient mice by NMR suggested that 3 month old knockout 

mice have an increased proportion of lean mass as compared to fat mass (A. Gornicka, 

unpublished data). Interestingly, brown adipose tissue also exhibited an increased 
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proportion of muscle specific genes (70), suggesting a dysregulation of the Myf5+ 

descendants.  The increased skeletal muscle mass could be a result of hypertrophied 

muscle. Cross sections of Tyk2 deficient skeletal muscle ruled out muscle hypertrophy, 

suggesting that there was an increase in overall number of skeletal muscle fibers in the 

Tyk2 deficient animals. Interestingly, as observed in brown fat, Tyk2 deficient mice did 

not exhibit an increased expression of skeletal muscle genes in the muscle. On the 

contrary, levels of muscle creatine kinase, which also regulates the phosphorylation of 

creatine, was downregulated in these mice. Phospho-creatine is a major source of fuel 

for the muscles. This suggested an energy imbalance (78) and insufficient supply of fuel 

to the muscles for contraction.  

Tyk2 deficient mice also show decreased expression of troponins, which are involved in 

regulating skeletal muscle contraction. This defect is observed even in newborn pups 

suggesting that the defects in muscle contraction are developmental and do not just 

accumulate with age. Previous studies by our group showed that Tyk2 deficient mice 

are exercise intolerant (69). This defect could be a function of impaired skeletal muscle 

contraction and/or dysfunctional mitochondria, which provide the necessary fuel for 

muscle contraction. Electron micrographs on skeletal muscle show smaller mitochondria 

with improper cristae formation in Tyk2 deficient mice. Interestingly, the number of 

mitochondria as observed in the different fiber types (both mitochondria rich type I and 

mitochondria poor Type II) was not much different between the wild type and Tyk2 

deficient mice. These mitochondria are not only structurally defective, but they also 

exhibit decreased oxygen consumption as a function of decreased activity of complex IV 
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of the ETC. This suggests a role for Tyk2 in regulating the skeletal muscle contraction 

and also mitochondria formation and function. 

Interestingly, expression of PGC1α, which is an important regulator of mitochondrial 

biogenesis, is also downregulated in Tyk2 deficient mice. PGC1α regulates the skeletal 

muscle fiber type determination (22). Tyk2 deficient mice exhibit an increased 

proportion of Type IIb (glycolytic) fibers, which have relatively low abundance of 

mitochondria. This could account for the exercise intolerant phenotype observed in Tyk2 

deficient mice.  

Numerous reports suggest the involvement of JAK-STAT pathway in regulating 

myogenesis (81, 87). JAK1 is required during initial myoblast proliferation stage 

whereas JAK2 is activated during the differentiation phage. JAK1 along with STAT1 and 

STAT3 also functions as a checkpoint to prevent myoblasts from premature 

differentiation. Knockdown of JAK1 induces increased myogenic differentiation with a 

concomitant reduction in cell proliferation  (88). Interestingly, JAK2 along with STAT2 

and STAT3 regulates the myoblast differentiation by activating the transcription factors 

MyoD and MFE2, which are involved in myogenic differentiation (81). As opposed to 

JAK1, knockdown of JAK2 inhibited myogenic differentiation, suggesting that JAK2 is 

required for skeletal muscle differentiation. JAK3, which was known to be restricted to 

the hematopoetic lineage, was also detected in proliferating myoblasts (89) and shown 

to play an inhibitory role on proliferating myoblasts. Apart from its involvement in 

myogenesis, JAK2 was found at the neuro-muscular junction along with ephrin receptor 

4A (Epr4A) and shown to regulate the expression of acetylcholine esterase, the critical 
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enzyme that hydrolyzed the neurotransmitter acetylcholine at the NMJ. This suggests a 

functional role for JAKs in regulating muscle contraction.  

We used an in-vitro system to determine whether Tyk2 plays a role in the development 

of skeletal muscle. During differentiation of C2C12 myocytes, we observed that Tyk2 

protein levels dramatically increase during the initial differentiation phase and stay 

elevated throughout differentiation. This increase is specific to Tyk2 and not other JAKs. 

This suggests that although Tyk2 levels are regulated during differentiation of skeletal 

muscle, it is dispensable for structural development of skeletal muscle. However, is  

required for the function of skeletal muscle.  

The development of obesity in Tyk2 knockout mice was a result of global Tyk2 

knockdown. Although expression of constitutively active Stat3 in the brown fat of Tyk2-/- 

mice, using the fat-specific ap2 cre (expresses in brown fat, white fat or both, after birth) 

reverted the obese phenotype (70), expression of Tyk2 transgene (Tyk2WT and 

Tyk2KD) in brown fat alone using the ap2 cre, was not sufficient to revert the obese 

phenotype (M. Derecka, unpublished data). This suggested that either Tyk2 has to be 

expressed in tissues other than brown fat and/or the timing of Tyk2 expression is very 

critical and needs to be expressed early in development. We addressed this issue of 

temporal and spatial regulation of Tyk2 using two cre systems. Using Myf5 cre, we 

expressed Tyk2 in both brown fat and skeletal muscle at E8.5 in the mouse embryo. We 

also used MCK cre, which allowed the expression of Tyk2 in skeletal muscle and heart, 

but not brown fat. Our earlier studies pointed that expressing a kinase inactive form of 

Tyk2 in Tyk2-/- brown fat preadipocytes can restore their differentiation in vitro 

(M.Derecka, unpublished data), suggesting that Tyk2 may not function as a kinase in 
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brown fat development. To this end, we generated two transgenic mouse lines that 

carried the wild type and kinase inactive allele of Tyk2. With both transgenes activated 

under the Myf5 promoter, we observed a complete reversal of the obese phenotype. 

This effect was observed as early as in 12 week old mice and the lean phenotype was 

maintained even in 6 month old animals. Cold exposure studies confirmed activation of 

thermogenesis in the transgenic mice, suggesting the functional rescue of both/either 

brown fat and skeletal muscle.  The in-vitro differentiation of brown fat preadipocytes 

was also recovered in both the transgenic lines, confirming the novel role of kinase 

inactive Tyk2 in brown fat differentiation and function.  

Using the MCK cre transgenic mice, we wanted to delineate whether expression of Tyk2 

in skeletal muscle was sufficient to revert the obese phenotype or it also required the 

function of brown fat.  12 week old Tyk2WTMCK and Tyk2KDMCK mice are significantly 

lighter than Tyk2-/- mice, but are still heavy compared to Tyk2+/+ mice. Interestingly, at 

24 weeks, the Tyk2KDMCK mice completely revert the obese phenotype, whereas the 

Tyk2WTMCK mice partially revert the obese phenotype. This suggests that the kinase 

activity of Tyk2 is not required for its role in skeletal muscle function. Interestingly, these 

results go along with our in-vitro brown preadipocyte differentiation model where we 

observe that kinase dead Tyk2 is more effective in rescuing the differentiation in Tyk2-/- 

preadipocytes. Why the kinase inactive Tyk2 appears to be more effective than the wild-

type form of Tyk2 is still not clear. One reason could be that the kinase activity of Tyk2 

may have an inhibitory role on its function. Since Tyk2 has been shown to have nuclear 

actions, it may be possible that Tyk2 could phosphorylate the histones and inhibit 

transcription of genes that regulate skeletal muscle function. Alternatively, the kinase 
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inactive Tyk2 is more effective in interacting with proteins regulating muscle function. 

More studies need to be carried out to address this issue. Unlike the reports suggesting 

that kinase inactive form of Tyk2 is prone to proteasomal degradation  (90), we did not 

see any differences in the expression of Tyk2 levels in our Tyk2KDMCK and Tyk2KDMyf5 

transgenic mice. Also, BAT development is not restored in these mice. This suggests 

that Tyk2 expression is required for proper skeletal muscle function and/or kinase 

activity of Tyk2 is inhibitory in skeletal muscle function. Co-expression of Tyk2 in brown 

fat and skeletal muscle may be required for optimal regulation of energy expenditure.  

Our results suggest that Tyk2 does not function as a classical JAK-STAT tyrosine 

kinase, since the kinase dead form of Tyk2 works as effectively as wild type Tyk2 to 

revert the obese phenotype in Tyk2 deficient mice. Non-classical functions of the JAK 

kinases are not unheard of. Until recently, involvement of JAKs in gene expression was 

thought to be restricted to their actions as receptor-associated tyrosine kinases, 

activating the STAT transcription factors. Recent reports suggest the presence of JAKs 

in the nucleus and also provide evidence that JAKs also can phosphorylate other target 

molecules apart from STATs (91). JAK2 in the nucleus was shown to phosphorylate 

Y41 on histone H3 and regulate genes involved in hematopoiesis and leukemia (52). 

Reports also suggest a nuclear localization of Tyk2 (54) and its role in gene regulation 

by binding to their promoters (55). On similar lines, we found an interaction of Tyk2 with 

PRDM16, PGC1α and C/EBPβ, the transcriptional complex regulating brown fat 

differentiation and function. In skeletal muscle, we found starvation-induced association 

of Tyk2 with PGC1α. The FERM domain deletion mutant of Tyk2, which is known to 

affect its nuclear localization, did not recover the differentiation capacity of Tyk2-/- 
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brown fat preadipocytes. This suggests that nuclear actions of Tyk2 are required for its 

role in regulation and differentiation of the thermogenic tissues. We speculate that Tyk2, 

along with PRDM16, may be a part of the transcriptional machinery regulating the 

brown fat differentiation.  

Our studies suggest that Tyk2 is required at two different stages of development. First, it 

may be required for the commitment of the Myf5+ progenitors towards developing 

brown fat and plays an inhibitory role towards commitment of these progenitors towards 

skeletal muscle (Figure 4.1). Secondly, Tyk2 may also be required for the function of 

brown fat and skeletal muscle, by regulating the expression of genes involved in brown 

fat and skeletal muscle differentiation and/or function (Figure 4.2). It is also interesting 

to note that levels of Tyk2 in the skeletal muscle are much lower compared to other 

tissues in a mouse (70), suggesting that Tyk2 may play an inhibitory role in 

maintenance of skeletal muscle progenitors. The role of Tyk2 needs to be further 

explored with respect to what other genes does it control, how is it activated in response 

to cold and what other proteins it interacts with.  

Therapies for obesity include increasing energy expenditure by exercise and reducing 

caloric intake. Unfortunately, only a small proportion of obese individuals are able to 

maintain their reduced body weight on a diet and exercise regime. Bariatric surgery is 

recommended for extreme obese patients, however it also comes with side effects  (5). 

As of today, FDA has approved three drugs for treatment of obesity which aim at 

decreasing energy intake. Sibutramine and Phentermine act on the satiety centers in 

the brain and thus control food intake by obese individuals. Orlistat reduces absorption 

of fatty acids in the intestine (92). However, apart from the unpleasant side effects that 
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these drugs possess, clinical studies on patients have shown that once the treatment is 

stopped, weight gain is accelerated, thus limiting the success of these treatments. 

Reducing caloric intake also triggers the starvation response in mammals, which may 

also reduce the efficacy of these drugs.  

The other promising treatment for obesity is increasing energy expenditure. Increasing 

the thermogenic potential of brown fat and skeletal muscle could provide means to 

increase energy wasting by these tissues, thus potentiating their anti-obesity effects. 

However, increasing energy expenditure has to be maintained in a controlled manner. If 

the inherent function of brown fat and skeletal muscle could be modified, which would 

change the basal metabolic rate (BMR) of an individual, these effects would be 

beneficial in the long run. In the 1930s, mitochondrial uncoupler 2, 4 dinitrophenol 

(DNP) gained popularity as an anti-obesity drug. DNP, like UCP1, created a proton leak 

in the mitochondrial membrane, thus dissipating the potential energy as heat.  Although 

DNP was successful in reducing obesity, continuous use of DNP generated unwanted 

side effects including hyperthermia, which resulted in death in some cases. Hence, 

when aiming to develop drugs that increase energy expenditure, careful considerations 

about not expending excessive energy should be taken into account. If a balance 

between energy intake and expenditure could be maintained, that will be a better way to 

combat obesity.  

Given the role of Tyk2 in regulating function of brown fat and skeletal muscle, controlled 

activation of Tyk2 to improve the energy expenditure in these thermogenic tissues could 

provide an attractive therapy for treatment of obesity.  

  



112 
 

 

 

 

Figure 4.1: Tyk2 may be required for the commitment of Myf5+ progenitors: Tyk2 

may be required along with PRDM16 for commitment of Myf5+ mesenchymal stem cells 

towards brown adipocytes and may also play an inhibitory role in commitment of the 

Myf5+ cells towards skeletal muscle development.  
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Figure 4.2: Tyk2 regulates genes involved in BAT and SKM differentiation and/or 

function: Tyk2 may be a part of a multiprotein transcriptional complex regulating genes 

involved in BAT and SKM differentiation/function.  



114 
 

References 

1. Schigt A, Gerdes VE, Cense HA, Berends FJ, van Dielen FM, Janssen I, et al. 

Bariatric surgery is an effective treatment for morbid obesity. Neth J Med. 2013 

Jan;71(1):4-9. 

2. Seidell JC. Obesity, insulin resistance and diabetes--a worldwide epidemic. Br J Nutr. 

2000 Mar;83 Suppl 1:S5-8. 

3. Wu J, Cohen P, Spiegelman BM. Adaptive thermogenesis in adipocytes: Is beige the 

new brown? Genes Dev. 2013 Feb 1;27(3):234-50. 

4. Lopez-Soriano J, Chiellini C, Maffei M, Grimaldi PA, Argiles JM. Roles of skeletal 

muscle and peroxisome proliferator-activated receptors in the development and 

treatment of obesity. Endocr Rev. 2006 May;27(3):318-29. 

5. Tseng YH, Cypess AM, Kahn CR. Cellular bioenergetics as a target for obesity 

therapy. Nat Rev Drug Discov. 2010 Jun;9(6):465-82. 

6. Cypess AM, Kahn CR. Brown fat as a therapy for obesity and diabetes. Curr Opin 

Endocrinol Diabetes Obes. 2010 Apr;17(2):143-9. 

7. Lowell BB, S-Susulic V, Hamann A, Lawitts JA, Himms-Hagen J, Boyer BB, et al. 

Development of obesity in transgenic mice after genetic ablation of brown adipose 

tissue. Nature. 1993 Dec 23-30;366(6457):740-2. 



115 
 

8. Feldmann HM, Golozoubova V, Cannon B, Nedergaard J. UCP1 ablation induces 

obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress 

by living at thermoneutrality. Cell Metab. 2009 Feb;9(2):203-9. 

9. Hansen JB, Kristiansen K. Regulatory circuits controlling white versus brown 

adipocyte differentiation. Biochem J. 2006 Sep 1;398(2):153-68. 

10. Nedergaard J, Bengtsson T, Cannon B. Unexpected evidence for active brown 

adipose tissue in adult humans. Am J Physiol Endocrinol Metab. 2007 

Aug;293(2):E444-52. 

11. Fruhbeck G, Becerril S, Sainz N, Garrastachu P, Garcia-Velloso MJ. BAT: A new 

target for human obesity? Trends Pharmacol Sci. 2009 Aug;30(8):387-96. 

12. Cannon B, Nedergaard J. Brown adipose tissue: Function and physiological 

significance. Physiol Rev. 2004 Jan;84(1):277-359. 

13. Seale P. Transcriptional control of brown adipocyte development and 

thermogenesis. Int J Obes (Lond). 2010 Oct;34 Suppl 1:S17-22. 

14. Seale P, Kajimura S, Yang W, Chin S, Rohas LM, Uldry M, et al. Transcriptional 

control of brown fat determination by PRDM16. Cell Metab. 2007 Jul;6(1):38-54. 

15. Francetic T, Li Q. Skeletal myogenesis and Myf5 activation. Transcription. 2011 

May;2(3):109-14. 



116 
 

16. Cristancho AG, Lazar MA. Forming functional fat: A growing understanding of 

adipocyte differentiation. Nat Rev Mol Cell Biol. 2011 Sep 28;12(11):722-34. 

17. Seale P, Kajimura S, Spiegelman BM. Transcriptional control of brown adipocyte 

development and physiological function--of mice and men. Genes Dev. 2009 Apr 

1;23(7):788-97. 

18. Tsukada J, Yoshida Y, Kominato Y, Auron PE. The CCAAT/enhancer (C/EBP) 

family of basic-leucine zipper (bZIP) transcription factors is a multifaceted highly-

regulated system for gene regulation. Cytokine. 2011 Apr;54(1):6-19. 

19. Kajimura S, Seale P, Spiegelman BM. Transcriptional control of brown fat 

development. Cell Metab. 2010 Apr 7;11(4):257-62. 

20. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. A cold-

inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 1998 

Mar 20;92(6):829-39. 

21. Lin J, Handschin C, Spiegelman BM. Metabolic control through the PGC-1 family of 

transcription coactivators. Cell Metab. 2005 Jun;1(6):361-70. 

22. Puigserver P. Tissue-specific regulation of metabolic pathways through the 

transcriptional coactivator PGC1-alpha. Int J Obes (Lond). 2005 Mar;29 Suppl 1:S5-9. 

23. Seale P, Kajimura S, Yang W, Chin S, Rohas LM, Uldry M, et al. Transcriptional 

control of brown fat determination by PRDM16. Cell Metab. 2007 Jul;6(1):38-54. 



117 
 

24. Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, et al. PRDM16 controls a 

brown fat/skeletal muscle switch. Nature. 2008 Aug 21;454(7207):961-7. 

25. Golozoubova V, Cannon B, Nedergaard J. UCP1 is essential for adaptive 

adrenergic nonshivering thermogenesis. Am J Physiol Endocrinol Metab. 2006 

Aug;291(2):E350-7. 

26. Cannon B, Houstek J, Nedergaard J. Brown adipose tissue. more than an effector of 

thermogenesis? Ann N Y Acad Sci. 1998 Sep 29;856:171-87. 

27. Cannon B, Nedergaard J. Brown adipose tissue: Function and physiological 

significance. Physiol Rev. 2004 Jan;84(1):277-359. 

28. Ow YP, Green DR, Hao Z, Mak TW. Cytochrome c: Functions beyond respiration. 

Nat Rev Mol Cell Biol. 2008 Jul;9(7):532-42. 

29. Stump CS, Henriksen EJ, Wei Y, Sowers JR. The metabolic syndrome: Role of 

skeletal muscle metabolism. Ann Med. 2006;38(6):389-402. 

30. Wells GD, Noseworthy MD, Hamilton J, Tarnopolski M, Tein I. Skeletal muscle 

metabolic dysfunction in obesity and metabolic syndrome. Can J Neurol Sci. 2008 

Mar;35(1):31-40. 

31. Morimoto S. Sarcomeric proteins and inherited cardiomyopathies. Cardiovasc Res. 

2008 Mar 1;77(4):659-66. 



118 
 

32. Gordon AM, Homsher E, Regnier M. Regulation of contraction in striated muscle. 

Physiol Rev. 2000 Apr;80(2):853-924. 

33. Zot AS, Potter JD. Structural aspects of troponin-tropomyosin regulation of skeletal 

muscle contraction. Annu Rev Biophys Biophys Chem. 1987;16:535-59. 

34. Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, et al. Transcriptional co-activator 

PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature. 2002 Aug 

15;418(6899):797-801. 

35. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, et al. 

Mechanisms controlling mitochondrial biogenesis and respiration through the 

thermogenic coactivator PGC-1. Cell. 1999 Jul 9;98(1):115-24. 

36. Wijers SL, Saris WH, van Marken Lichtenbelt WD. Recent advances in adaptive 

thermogenesis: Potential implications for the treatment of obesity. Obes Rev. 2009 

Mar;10(2):218-26. 

37. Bal NC, Maurya SK, Sopariwala DH, Sahoo SK, Gupta SC, Shaikh SA, et al. 

Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals. 

Nat Med. 2012 Oct;18(10):1575-9. 

38. van den Berg SA, van Marken Lichtenbelt W, Willems van Dijk K, Schrauwen P. 

Skeletal muscle mitochondrial uncoupling, adaptive thermogenesis and energy 

expenditure. Curr Opin Clin Nutr Metab Care. 2011 May;14(3):243-9. 



119 
 

39. Hasty P, Bradley A, Morris JH, Edmondson DG, Venuti JM, Olson EN, et al. Muscle 

deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. 

Nature. 1993 Aug 5;364(6437):501-6. 

40. Kablar B, Krastel K, Tajbakhsh S, Rudnicki MA. Myf5 and MyoD activation define 

independent myogenic compartments during embryonic development. Dev Biol. 2003 

Jun 15;258(2):307-18. 

41. Atit R, Sgaier SK, Mohamed OA, Taketo MM, Dufort D, Joyner AL, et al. Beta-

catenin activation is necessary and sufficient to specify the dorsal dermal fate in the 

mouse. Dev Biol. 2006 Aug 1;296(1):164-76. 

42. Timmons JA, Wennmalm K, Larsson O, Walden TB, Lassmann T, Petrovic N, et al. 

Myogenic gene expression signature establishes that brown and white adipocytes 

originate from distinct cell lineages. Proc Natl Acad Sci U S A. 2007 Mar 

13;104(11):4401-6. 

43. Patti ME, Corvera S. The role of mitochondria in the pathogenesis of type 2 

diabetes. Endocr Rev. 2010 Jun;31(3):364-95. 

44. Kelley DE, He J, Menshikova EV, Ritov VB. Dysfunction of mitochondria in human 

skeletal muscle in type 2 diabetes. Diabetes. 2002 Oct;51(10):2944-50. 

45. Kim JA, Wei Y, Sowers JR. Role of mitochondrial dysfunction in insulin resistance. 

Circ Res. 2008 Feb 29;102(4):401-14. 



120 
 

46. Cannon B, Nedergaard J. Respiratory and thermogenic capacities of cells and 

mitochondria from brown and white adipose tissue. Methods Mol Biol. 2001;155:295-

303. 

47. Harrison DA. The jak/STAT pathway. Cold Spring Harb Perspect Biol. 2012 Mar 

1;4(3):10.1101/cshperspect.a011205. 

48. Yeh TC, Pellegrini S. The janus kinase family of protein tyrosine kinases and their 

role in signaling. Cell Mol Life Sci. 1999 Sep;55(12):1523-34. 

49. Kisseleva T, Bhattacharya S, Braunstein J, Schindler CW. Signaling through the 

JAK/STAT pathway, recent advances and future challenges. Gene. 2002 Feb 20;285(1-

2):1-24. 

50. Yamaoka K, Saharinen P, Pesu M, Holt VE,3rd, Silvennoinen O, O'Shea JJ. The 

janus kinases (jaks). Genome Biol. 2004;5(12):253. 

51. Rawlings JS, Rosler KM, Harrison DA. The JAK/STAT signaling pathway. J Cell Sci. 

2004 Mar 15;117(Pt 8):1281-3. 

52. Dawson MA, Bannister AJ, Gottgens B, Foster SD, Bartke T, Green AR, et al. JAK2 

phosphorylates histone H3Y41 and excludes HP1alpha from chromatin. Nature. 2009 

Oct 8;461(7265):819-22. 

53. Lobie PE, Ronsin B, Silvennoinen O, Haldosen LA, Norstedt G, Morel G. 

Constitutive nuclear localization of janus kinases 1 and 2. Endocrinology. 1996 

Sep;137(9):4037-45. 



121 
 

54. Ragimbeau J, Dondi E, Vasserot A, Romero P, Uze G, Pellegrini S. The receptor 

interaction region of Tyk2 contains a motif required for its nuclear localization. J Biol 

Chem. 2001 Aug 17;276(33):30812-8. 

55. Ahmed CM, Noon-Song EN, Kemppainen K, Pascalli MP, Johnson HM. Type I IFN 

receptor controls activated TYK2 in the nucleus: Implications for EAE therapy. J 

Neuroimmunol. 2013 Jan 15;254(1-2):101-9. 

56. Firmbach-Kraft I, Byers M, Shows T, Dalla-Favera R, Krolewski JJ. Tyk2, prototype 

of a novel class of non-receptor tyrosine kinase genes. Oncogene. 1990 Sep;5(9):1329-

36. 

57. Barbieri G, Velazquez L, Scrobogna M, Fellous M, Pellegrini S. Activation of the 

protein tyrosine kinase tyk2 by interferon alpha/beta. Eur J Biochem. 1994 Jul 

15;223(2):427-35. 

58. Pellegrini S, Dusanter-Fourt I. The structure, regulation and function of the janus 

kinases (JAKs) and the signal transducers and activators of transcription (STATs). Eur J 

Biochem. 1997 Sep 15;248(3):615-33. 

59. Velazquez L, Mogensen KE, Barbieri G, Fellous M, Uze G, Pellegrini S. Distinct 

domains of the protein tyrosine kinase tyk2 required for binding of interferon-alpha/beta 

and for signal transduction. J Biol Chem. 1995 Feb 17;270(7):3327-34. 



122 
 

60. Yeh TC, Dondi E, Uze G, Pellegrini S. A dual role for the kinase-like domain of the 

tyrosine kinase Tyk2 in interferon-alpha signaling. Proc Natl Acad Sci U S A. 2000 Aug 

1;97(16):8991-6. 

61. Gauzzi MC, Velazquez L, McKendry R, Mogensen KE, Fellous M, Pellegrini S. 

Interferon-alpha-dependent activation of Tyk2 requires phosphorylation of positive 

regulatory tyrosines by another kinase. J Biol Chem. 1996 Aug 23;271(34):20494-500. 

62. Gauzzi MC, Barbieri G, Richter MF, Uze G, Ling L, Fellous M, et al. The amino-

terminal region of Tyk2 sustains the level of interferon alpha receptor 1, a component of 

the interferon alpha/beta receptor. Proc Natl Acad Sci U S A. 1997 Oct 

28;94(22):11839-44. 

63. Shimoda K, Kato K, Aoki K, Matsuda T, Miyamoto A, Shibamori M, et al. Tyk2 plays 

a restricted role in IFN alpha signaling, although it is required for IL-12-mediated T cell 

function. Immunity. 2000 Oct;13(4):561-71. 

64. Karaghiosoff M, Neubauer H, Lassnig C, Kovarik P, Schindler H, Pircher H, et al. 

Partial impairment of cytokine responses in Tyk2-deficient mice. Immunity. 2000 

Oct;13(4):549-60. 

65. Sheehan KC, Lai KS, Dunn GP, Bruce AT, Diamond MS, Heutel JD, et al. Blocking 

monoclonal antibodies specific for mouse IFN-alpha/beta receptor subunit 1 (IFNAR-1) 

from mice immunized by in vivo hydrodynamic transfection. J Interferon Cytokine Res. 

2006 Nov;26(11):804-19. 



123 
 

66. Shaw MH, Boyartchuk V, Wong S, Karaghiosoff M, Ragimbeau J, Pellegrini S, et al. 

A natural mutation in the Tyk2 pseudokinase domain underlies altered susceptibility of 

B10.Q/J mice to infection and autoimmunity. Proc Natl Acad Sci U S A. 2003 Sep 

30;100(20):11594-9. 

67. Strobl B, Stoiber D, Sexl V, Mueller M. Tyrosine kinase 2 (TYK2) in cytokine 

signalling and host immunity. Front Biosci. 2011 Jun 1;16:3214-32. 

68. Seto Y, Nakajima H, Suto A, Shimoda K, Saito Y, Nakayama KI, et al. Enhanced 

Th2 cell-mediated allergic inflammation in Tyk2-deficient mice. J Immunol. 2003 Jan 

15;170(2):1077-83. 

69. Potla R, Koeck T, Wegrzyn J, Cherukuri S, Shimoda K, Baker DP, et al. Tyk2 

tyrosine kinase expression is required for the maintenance of mitochondrial respiration 

in primary pro-B lymphocytes. Mol Cell Biol. 2006 Nov;26(22):8562-71. 

70. Derecka M, Gornicka A, Koralov SB, Szczepanek K, Morgan M, Raje V, et al. Tyk2 

and Stat3 regulate brown adipose tissue differentiation and obesity. Cell Metab. 2012 

Dec 5;16(6):814-24. 

71. Strobl B, Stoiber D, Sexl V, Mueller M. Tyrosine kinase 2 (TYK2) in cytokine 

signalling and host immunity. Front Biosci. 2011 Jun 1;16:3214-32. 

72. Minegishi Y, Saito M, Morio T, Watanabe K, Agematsu K, Tsuchiya S, et al. Human 

tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals 

involved in innate and acquired immunity. Immunity. 2006 Nov;25(5):745-55. 



124 
 

73. Kilic SS, Hacimustafaoglu M, Boisson-Dupuis S, Kreins AY, Grant AV, Abel L, et al. 

A patient with tyrosine kinase 2 deficiency without hyper-IgE syndrome. J Pediatr. 2012 

Jun;160(6):1055-7. 

74. Bruning JC, Michael MD, Winnay JN, Hayashi T, Horsch D, Accili D, et al. A muscle-

specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM 

without altering glucose tolerance. Mol Cell. 1998 Nov;2(5):559-69. 

75. CHANCE B, WILLIAMS GR. A simple and rapid assay of oxidative phosphorylation. 

Nature. 1955 Jun 25;175(4469):1120-1. 

76. Klein J, Fasshauer M, Ito M, Lowell BB, Benito M, Kahn CR. Beta(3)-adrenergic 

stimulation differentially inhibits insulin signaling and decreases insulin-induced glucose 

uptake in brown adipocytes. J Biol Chem. 1999 Dec 3;274(49):34795-802. 

77. Wende AR, Schaeffer PJ, Parker GJ, Zechner C, Han DH, Chen MM, et al. A role 

for the transcriptional coactivator PGC-1alpha in muscle refueling. J Biol Chem. 2007 

Dec 14;282(50):36642-51. 

78. van Deursen J, Ruitenbeek W, Heerschap A, Jap P, ter Laak H, Wieringa B. 

Creatine kinase (CK) in skeletal muscle energy metabolism: A study of mouse mutants 

with graded reduction in muscle CK expression. Proc Natl Acad Sci U S A. 1994 Sep 

13;91(19):9091-5. 



125 
 

79. Jung C, Higgins CM, Xu Z. Measuring the quantity and activity of mitochondrial 

electron transport chain complexes in tissues of central nervous system using blue 

native polyacrylamide gel electrophoresis. Anal Biochem. 2000 Nov 15;286(2):214-23. 

80. Trenerry MK, Della Gatta PA, Cameron-Smith D. JAK/STAT signaling and human in 

vitro myogenesis. BMC Physiol. 2011 Mar 9;11:6,6793-11-6. 

81. Wang K, Wang C, Xiao F, Wang H, Wu Z. JAK2/STAT2/STAT3 are required for 

myogenic differentiation. J Biol Chem. 2008 Dec 5;283(49):34029-36. 

82. Potthoff MJ, Inagaki T, Satapati S, Ding X, He T, Goetz R, et al. FGF21 induces 

PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive 

starvation response. Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):10853-8. 

83. Williams LM. Hypothalamic dysfunction in obesity. Proc Nutr Soc. 2012 

Nov;71(4):521-33. 

84. Havel PJ. Role of adipose tissue in body-weight regulation: Mechanisms regulating 

leptin production and energy balance. Proc Nutr Soc. 2000 Aug;59(3):359-71. 

85. Chung BM, Kang HC, Han SY, Heo HS, Lee JJ, Jeon J, et al. Jak2 and Tyk2 are 

necessary for lineage-specific differentiation, but not for the maintenance of self-renewal 

of mouse embryonic stem cells. Biochem Biophys Res Commun. 2006 Dec 

22;351(3):682-8. 



126 
 

86. Ernst M, Oates A, Dunn AR. Gp130-mediated signal transduction in embryonic stem 

cells involves activation of jak and ras/mitogen-activated protein kinase pathways. J Biol 

Chem. 1996 Nov 22;271(47):30136-43. 

87. Diao Y, Wang X, Wu Z. SOCS1, SOCS3, and PIAS1 promote myogenic 

differentiation by inhibiting the leukemia inhibitory factor-induced JAK1/STAT1/STAT3 

pathway. Mol Cell Biol. 2009 Sep;29(18):5084-93. 

88. Sun L, Ma K, Wang H, Xiao F, Gao Y, Zhang W, et al. JAK1-STAT1-STAT3, a key 

pathway promoting proliferation and preventing premature differentiation of myoblasts. J 

Cell Biol. 2007 Oct 8;179(1):129-38. 

89. Jang YN, Lee IJ, Park MC, Baik EJ. Role of JAK3 in myogenic differentiation. Cell 

Signal. 2012 Mar;24(3):742-9. 

90. Prchal-Murphy M, Semper C, Lassnig C, Wallner B, Gausterer C, Teppner-Klymiuk 

I, et al. TYK2 kinase activity is required for functional type I interferon responses in vivo. 

PLoS One. 2012;7(6):e39141. 

91. Zouein FA, Duhe RJ, Booz GW. JAKs go nuclear: Emerging role of nuclear JAK1 

and JAK2 in gene expression and cell growth. Growth Factors. 2011 Dec;29(6):245-52. 

92. Padwal RS, Majumdar SR. Drug treatments for obesity: Orlistat, sibutramine, and 

rimonabant. Lancet. 2007 Jan 6;369(9555):71-7. 

 

 


	Virginia Commonwealth University
	VCU Scholars Compass
	2013

	Role of Tyk2 in regulating energy expenditure and preventing obesity
	Vidisha Raje
	Downloaded from


	References

