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Abstract

DETECTING AND CORRECTING BATCH EFFECTS IN HIGH-THROUGHPUT GE-
NOMIC EXPERIMENTS

By Sarah Elizabeth Reese

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor
of Philosophy at Virginia Commonwealth University

Virginia Commonwealth University, 2013

Director: Kellie J. Archer, Ph.D., Associate Professor, Department of Biostatistics;
Director, VCU Massey Cancer Center Biostatistics Shared Resource

Batch effects are due to probe-specific systematic variation between groups of samples

(batches) resulting from experimental features that are not of biological interest. Princi-

pal components analysis (PCA) is commonly used as a visual tool to determine whether

batch effects exist after applying a global normalization method. However, PCA yields

linear combinations of the variables that contribute maximum variance and thus will not

necessarily detect batch effects if they are not the largest source of variability in the data.

We present an extension of principal components analysis to quantify the existence of batch

effects, called guided PCA (gPCA). We describe a test statistic that uses gPCA to test if a

batch effect exists. We apply our proposed test statistic derived using gPCA to simulated

data and to two copy number variation case studies: the first study consisted of 614 samples

from a breast cancer family study using Illumina Human 660 bead-chip arrays whereas the



second case study consisted of 703 samples from a family blood pressure study that used

Affymetrix SNP Array 6.0. We demonstrate that our statistic has good statistical properties

and is able to identify significant batch effects in two copy number variation case studies.

We further compare existing batch effect correction methods and apply gPCA to test their

effectiveness. We conclude that our novel statistic that utilizes guided principal components

analysis to identify whether batch effects exist in high-throughput genomic data is effective.

Although our examples pertain to copy number data, gPCA is general and can be used on

other data types as well.
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1 Introduction

1.1 Batch Effects

Batch effects are defined to be systematic non-biological variation between groups of sam-

ples (or batches) due to experimental artifacts [2, 8, 22, 31, 35]. Many factors contribute to

the generation of batch effects. Some of these include chip type, platform, lab, technician,

storage and shipment conditions, protocols (which include sample extraction, amplification,

labeling, and hybridization methods), cRNA/cDNA synthesis, wash conditions, etc.[31]. Of-

ten, ‘batch’ is a term that represents that a group of microarrays were processed at the same

time, by the same technician, in the same lab, or with the same materials [8, 22, 25, 26]. Due

to the scale of microarray experiments and the limitations of microarray technology, batch

effects are unavoidable [8], but out of the thousands of microarray papers that are published

every year, few actually address the problem of batch effects [8] and even fewer use a method

to detect whether their data includes effects due to batch.

An early literature reference pertaining to batch effects in array studies was an abnor-

mality affecting uniformity and reproducibility of fluorescent signal discovered in DNA mi-

croarrays [14]. The researchers observed that the quality of the batch-processed arrays was

correlated to environmental ozone levels during posthybridization array washing. They mea-

sured fluorescent intensity and ratio reproducibility to determine the effect of ozone on the

arrays.
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1.2 Methods of Batch Effect Identification

There are few methods that have been developed to statistically test for batch effects. For

expression data, methods include hierarchical clustering [2, 9, 22, 24], Pearson’s correlation

[5], and principal components analysis/singular value decomposition (PCA/SVD) [16, 41].

Johnson et al. [22], Konstantinopoulos et al. [24], and Chow et al. [9] used unsupervised hier-

archical clustering to identify the batch effects, prior to using an empirical Bayes framework

(of Johnson et al. [22]) to adjust for batch effects. Bylesjö et al. [5] use Pearson correlation

to identify potential batch effects. Alter et al. [1], Yang et al. [41], and Holmes et al. [16] use

methods based on singular value decomposition or principal components analysis to detect

batch effects. Each method is described in the following subsections. These methods are

limited in that they do no provide a statistical test for batch effects.

1.2.1 Hierarchical Clustering

Hierarchical clustering is one of the most common methods used to detect batch effects. The

algorithm is applied to the microarray data and if the data appears to group according to a

potential batch effect source, like date or lab, then it is concluded that batch effect should be

accounted for in downstream analysis [26]. Eisen et al. [13] and Lazar et al. [26] discuss how

hierarchical clustering methods are useful in gene expression data analysis. There are two

general classes of clustering methods, supervised clustering in which samples or features are

clustered with respect to known phenotypic features, and unsupervised clustering in which

we have no a priori phenotypic knowledge or choose not to account for any known phenotype

in the analysis [13]. In most cases unsupervised hierarchical clustering is used for batch effect

detection because we do not know if there are batch effects or what could be causing them.

2



Commonly, the clustering results are visualized by plotting a dendrogram which shows

homogenous groups in which samples cluster [13, 26]. Dendrograms represent the relationship

between samples with a tree-like structure where the branch lengths indicate the degree of

similarity between the samples as assessed by the clustering algorithm. The GENEMAM

data consists of 614 samples across 8 96-well Illumina 660 plates. In Figure 1.1, a dendrogram

is displayed where average linkage hierarchical clustering was applied to the GENEMAM data

set using one minus the correlation, 1 − ρ, as the dissimilarity measure between features.

Branches are labeled using the plate number for each sample. Plates 1-4, plate 5, and plates

6-8 form clusters in this plot which corresponds to the run time of these plates.

Figure 1.1: Average Linkage Hierarchical clustering plot using 1 − ρ as the dissimilarity
measure between samples of the GENEMAM data. Branches are labeled with plate numbers
for each sample.

Johnson et al. [22] used the “standard [average linkage] hierarchical clustering algorithm

3



produced using the dChip software [30]” to show that the samples in their data grouped by

batch “indicating that the clustering algorithm recognized the batch-to-batch variation as

the most significant source of variation” in the data set [22]. Johnson et al. [22] produced

heatmaps with dendrograms for their raw data, after standardizing within batch, and after

applying empirical Bayes batch adjustments. Konstantinopoulos et al. [24] combined mul-

tiple data sets and used hierarchical clustering on this combined training data set to show

that their combined data separated by data set prior to batch adjustment and after batch

adjustment samples from the different data sets were mixed. Chow et al. [9] used average

linkage hierarchical clustering to assess their data for batch effects and found notable batch

effects. In all three of the previous experiments, the authors used the empirical Bayes frame-

work of Johnson et al. [22] to adjust their data for batch effects (see 1.3.7 below). Benito

et al. [2] used hierarchical clustering both before batch adjustment to identify batches and

after batch adjustment with their method distance weighted discrimination (DWD; see 1.3.6

below) to verify that their adjustment method removed the batch effects.

1.2.2 Principal Components Analysis (PCA)

A common method for visualizing the existence of batch effects is principal components anal-

ysis (PCA), and as the numerical workhorse of PCA, singular value decomposition (SVD).

PCA is a form of unsupervised learning used for data reduction and interpretation. It looks

for the linear combination of variables (probes, genes, features, etc. in genomic data) that

explain the greatest variation in the data. The first two principal components are plotted

with each sample colored by the suspected batch and separation of colors is taken as evidence

of a batch effect. Figure 1.2 shows an example PCA plot using the GENEMAM data. In

4



this case study, batch is the largest source of variation in the data, therefore the PCA plot

separates the plates based on time of analysis.

Yang et al. [41] determined by looking at PCA plots that the batch effects in their data

were confounded with the experimental factor, and they could not be removed. To adjust

for batch effects, Holmes et al. [16] redid part of their experiment using only one protocol in

data collection for samples that were identified using PCA as having batch effects. In their

analysis, they paired experimental and control samples to minimize experimental bias.

However, as pointed out by Benito et al. [2], if the batch effect is not the greatest source

of variation then PCA methods do not work well since they look for the directions of greatest

variation. The SVD/PCA approach can easily fail when variation due to systematic bias is

similar or smaller than variation due to other experimental effects. Also, visual inspection

of the first and second principal components is subjective. Thus, methods that can detect

batch effects are needed as ignoring the potential for batch effects can have a serious effect

on downstream analysis results. Although various methods have been used to detect the

presence of batch effects, they are largely subjective. In this thesis, an inferential testing

framework for detecting the presence of batch effects is proposed and evaluated.

1.2.3 Correlation

To quantify the batch effects in a two-channel microarray experiment to specifically account

for the array bias in their data, Bylesjö et al. [5] used the Pearson correlation coefficient

between the Y-orthogonal score vector and the average A values, where Y is the response

matrix containing, for example, phenotypic data, and A = log2(
√

RG) where R and G

are the red and green florescence intensities, respectively. To identify potential array-dye or

5



Figure 1.2: GENEMAM - Unguided PCA of X. Samples for each plate are denoted by a
different color and/or symbol.
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array-spatial interaction effects, they looked at the corresponding loading vector for system-

atic trends.

1.3 Methods of Batch Effect Correction

Although a few subjective methods for detecting the presence of batch effects have been

described, several methods have been developed to correct for batch effects. These include

various normalization techniques [1, 5, 39], frozen robust multiarray analysis (fRMA) [29, 33],

orthogonal projections to latent structures (OPLS) [5], corrected robust linear models with

maximum likelihood classification (CRLMMv2) [6], prediction analysis for microarrays or

batch mean centering (PAMR/BMC) [31, 38, 40], distance weighted discrimination (DWD)

[2, 17, 18, 32], empirical Bayes [9, 22, 24, 29, 39], and surrogate variable anlaysis (SVA)

[27, 29]. Additionally, Luo et al. [31] looked at the impact of batch effect removal on cross-

batch prediction performance and Lazar et al. [26] and Chen et al. [8] provided surveys of

some of the many methods of batch effect removal. Below I provide a brief description of

the aforementioned methods to correct for batch effects. Table 1.1 provides sources that

implement the various correction methods and the platforms they used.

1.3.1 Global Normalization

Sun et al. [39] evaluated three common global normalization methods and investigated their

performance with respect to batch effect removal using three human methylation datasets

(Illumina HumanMethylation27 BeadChips) with different degrees of of batch effects. The

three global normalization methods they assessed were quantile normalization at average β

value (QNβ), two step quantile normalization at probe signals (lumi), and quantile normal-

ization of A and B signal separately (ABnorm). Sun et al. [39] found that the three methods
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Method Implementation Platform

Empirical Bayes (EB or ComBat) [22] [9, 24, 29, 39] Microarray, CNV

Distance Weighted Discrimination (DWD) [32] [2, 17, 18] Microarray

Batch-mean Centering (BMC) [38] [31, 38, 40] Microarray

Frozen Robust Multiarray Analysis (fRMA) [33] [29, 33] Microarray
(Affymetrix
specifically)

Corrected Robust Linear Models with Maximum
Likelihood Classification (CRLMM) [6]

[6] SNP, microarray

Surrogate Variable Analysis (SVA) [27] [28, 29] Expression Microarray

Table 1.1: Methods of batch effect correction, implementation and platform of those methods.

could remove a portion of the batch effects and their effectiveness differed depending on the

severity of the batch effects; however, all methods left substantial batch effects intact in the

datasets with obvious batch effects and further correction was necessary. Empirical Bayes

(EB) batch adjustment [22] (see 1.3.7 and chapter 5 for more details) was subsequently eval-

uated which successfully removed the remaining non-biological effects and thus Sun et al.

[39] recommend EB correction along with global normalization procedures for effective batch

effect removal. Standard global normalization procedures are not enough to remove varia-

tion due to batch effects since they only account for global effects, that is, they correct for

sources of variability that affect all probes similarly [22, 26]. Batch effects that exist after

global normalization has been performed are likely due to probe-specific effects and therefore

require an additional normalization step.

To correct for batch effects, Alter et al. [1] used normalization to filter out the batch

effect indicative eigengenes that were found using SVD. Alter et al. [1] define SVD as “a
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linear transformation of the expression data from the genes × arrays space to the reduced

‘eigengenes’ × ‘eigenarrays’ space.” They used the Shannon entropy, e, to determine whether

one eigengene captures all the expression in the dataset (e = 0) or all eigengenes are equally

expressed (e = 1), where e is calculated as

0 ≤ e =
−1

log(Q)

Q∑
q=1

pq log(pq) ≤ 1

and Q = min(n, p) and pq =
λ2q∑Q
q=1 λ

2
q

is the average of the squared singular values, λ, re-

sulting from the SVD on the data X and n and p are the number of samples and features,

respectively. Alter et al. [1] then normalized the data by filtering out the eigengenes that

represent noise or experimental artifacts according to the entropy measure by substitut-

ing zero for singular values found to represent noise, λq = 0, and reconstructing the data X

according the the SVD equation X = UDV′ where λq are the non-zero diagonal entries of D.

1.3.2 Frozen Robust Multiarray Analysis (fRMA)

McCall et al. [33] present a new method based on Robust Multiarray Analysis (RMA) [20]

which performs background correction, global normalization, and summarization in a mod-

ular way for gene expression microarrays. RMA has many benefits, however it is dependent

on multiple arrays being analyzed simultaneously preventing it from being used in clinical

settings where samples are processed individually or in small batches and data sets that

are preprocessed separately are not comparable. A similar preprocessing algorithm called

frozen RMA (fRMA) is presented which allows microarrays to be analyzed individually or

in small batches and combined for analysis. fRMA provides similar background correction,
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normalization, and summarization steps as RMA, however it accounts for between-probe and

between-batch variability in the summarization step that allows single arrays or small batches

of arrays to be processed. This method was developed specifically for use with Affymetrix

GeneChips. McCall et al. [33] found “that fRMA is comparable to RMA when the data are

analyzed as a single batch and outperforms RMA when analyzing multiple batches.” Leek

et al. [29] adapted fRMA in their R package sva to remove latent variation in data and in

samples obtained in future studies which Leek et al. [29] called frozen SVA (fSVA).

1.3.3 Orthogonal Projections to Latent Structures (OPLS)

Bylesjö et al. [5] introduced a multivariate latent variable regression method to identify and

discard various forms of systematic bias using orthogonal projections to latent structures

(OPLS). Bylesjö et al. [5] present a normalization strategy for multi-channel microarray

data which utilizes a multivariate regression method to identify and discard various forms

of systematic bias using OPLS. OPLS “identifies joint variation within biological samples to

enable removal of sources of variation that are mathematically independent (orthogonal) to

the within-sample variation. This ensures that systematic variation related to the under-

lying biological samples is separated from the remaining, bias-related sources of structured

variation.” OPLS uses information from a response matrix Y to decompose a data matrix

X into correlated, orthogonal, and residual structures of information such that

X = TpP
T
p + ToP

T
o + E

where Tp is the predictive score matrix for X, PT
p is the predictive loading matrix for X, To

is the Y-orthogonal score matrix, PT
o is the loading matrix of the Y-orthogonal components,
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and E is the residual matrix of X. The data X are then normalized by removing the struc-

tured variation that is portrayed by ToP
T
o , leaving the normalized data X∗ = TpP

T
p + E

which represents the biological variation in the data. Bylesjö et al. [5] apply their method

to publicly available dual-channel microarray data. OPLS performs well when compared to

various other global normalization methods including global median, global loess, print-tip

loess, and global loess with ANOVA.

1.3.4 Corrected Robust Linear Models with Maximum Likelihood Classification

Version 2 (CRLMMv2)

In an analysis of Genome Wide Association Study (GWAS) data in which single nucleotide

polymorphism (SNPs) were examined, Carvalho et al. [6] found that“variability in microarray

output quality across different SNPs, different arrays, and different sample batches have

substantial influence on the accuracy of genotype calls made by existing algorithms. Failure

to account for these sources of variability can adversely affect the quality of findings reported

by the GWAS.” For SNP/copy number data, the authors developed the corrected robust

linear models with maximum likelihood classification (CRLMM) version 2 to enhance their

existing method, the multi-level model used by CRLMM version 1 (CRLMMv1), to account

for variability across batches which allows for the identification of low-quality SNPs, samples

and batches.

CRLMMv1 defines a training set using HapMap calls from known genotypes and then uses

a two-stage hierarchical model for a supervised learning approach. CRLMMv1 defines M ≡

log2(IA/IB) where IA and IB are the summarized intensities of alleles A and B for each SNP,

respectively. Since M is known to be dependent on the overall intensity S ≡ log2(
√
IAIB),
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splines are fit using a mixture model and adjust for this bias using fitted curves. CRLMMv1

then models the distribution of M for a SNP, given the genotype, as Normal. Each SNP

is assigned a mean µi and standard deviation σi for i = 1, . . . , I, which are estimated from

the training data. To improve the precision of the model parameters µi and σi, CRLMMv1

uses a hierarchical model using an empirical Bayes approach. They assume the means given

the genotype have a multivariate normal distribution and the variances follow an inverse

gamma distribution. Then, given the observed log-ratio M , the posterior probabilities for

each genotype are computed where the estimated parameters are considered known. The

posterior probabilities are used as confidence measures. These confidence measures were

found to not be optimal and an ad hoc adjustment was proposed, which CRLMMv1 uses.

However, there are still considerable limitations to the method, including overly optimistic

posteriors, ignoring the statistical uncertainty of estimates from the training step, and failing

to model the shift in the genotype parameters from batch to batch.

Carvalho et al. [6] employ an enhanced hierarchical model to address the limitations of

CRLMMv1. To estimate the SNP-specific shifts they propose an empirical Bayes approach

to estimate the variance of the shifts for each SNP. To estimate the batch-specific shifts

they used a two-stage process involving using the previously estimated SNP specific shift

parameters to produce preliminary posteriors for each genotype, which were then used to

create a pseudo-training dataset. The batch effects associated with each SNP were then

estimated using an empirical Bayes approach similar to the one used to estimate the SNP

specific shifts. “To account for the uncertainty associated with estimating the SNP- and

batch-specific shifts” Carvalho et al. [6] developed a procedure involving producing posterior

probabilities. They then produced quality scores for SNPs or batches by assigning a posterior
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probability of being an outlier to each shift or batch.

CRLMMv2 assumes

Zij iid trinomial

(
1

3
,
1

3
,
1

3

)
[µi|Zij = g] iid N3(0,V)

[λij|µi, Zij = g] iid N3(0,Uj)

[Mijk|µig, λijg] = fjkg(Sijk) + µig + λijg + σigεijkg

[εijkg|µ,λ] iid t6(0)

σ2
ig iid dgs

2
g

1

χ2
dg

where i = 1, . . . , I indicates SNP, j = 1, . . . , J indicates batch, k = 1, . . . , K indicates sample,

and g = AA,AB, or BB are the genotypes. The Zij are unobserved, true genotypes, the

Mijk are observed log-ratios, µi are the shifts for SNP i, λij are the batch effects associated

with SNP i and batch j, σ2
ig is the SNP-specific variance for genotype g, dg are the degrees

of freedom for the variance s2g of a SNP, where dg and s2g are estimated from the training

data. The hyperparameter V is estimated using an empirical Bayes approach. The batch-

specific shifts λ were estimated using a two-stage process using the previously estimated

SNP specific shift parameters. The R/BioConductor package crlmm allows implementation

of these methods.

Carvalho et al. [6] applied their method to three datasets, two HapMap datasets and one

GoKinD dataset from the Genetic Association Information Network (GAIN). They found

that their method “accounts for three levels of variability in SNP array data i) SNP-specific

shifts, ii) hybridization batch shifts to each SNP, and iii) heavy tailed measurement error.
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By explicitly modeling these sources of uncertainty, the estimated posterior probabilities are

much improved as compared with those offered by CRLMM version 1.”

1.3.5 Batch Mean Centering (BMC)

Sims et al. [38] employs batch mean-centering (BMC) in their analysis of breast cancer data

sets to reduce the variation levels between experiments which allows cross-dataset compar-

ison of the raw transcript levels. Sims et al. [38] found that BMC outperformed distance

weighted discrimination (Section 1.3.6) when adjusting for systematic bias in microarray

data. Tibshirani et al. [40] include batch mean-centering in their R package pamr that em-

ploys their method of nearest shrunken centroid classification to identify subsets of genes

that best characterize each class.

BMC simply centers the data within a batch, so that the batch means are all zero. This is

also referred to as one-way analysis of variance adjustment by Luo et al. [31]. Mathematically,

the batch means across each feature j and within each batch k are calculated as

x̄jk =
1

nk

nk∑
i=1

xijk .

The data xijk is then adjusted by

x∗ijk = xijk − x̄jk

and the x∗ijk are used in downstream analyses. Sims et al. [38] found that BMC successfully

reduced the amount of between batch (or dataset) variation, while maintaining the within

batch variation, allowing multiple batches (or datasets) to be further analyzed together, thus
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increasing the statistical power of future analyses.

1.3.6 Distance Weighted Discrimination (DWD)

Marron and Todd [32] present their method Distance Weighted Discrimination (DWD).

DWD addresses the generalizability of Support Vector Machines (SVM) and improves upon

SVM in high dimension, low sample size (HDLSS) settings. Their new method avoids the

problem of“data piling”which is inherent in SVM. DWD computation“is based on computa-

tionally intensive optimization, but while the SVM uses well-known quadratic programming

algorithms, the DWD uses recently developed interior-point methods for so-called Second-

Order Cone Programming (SCOP) problems...The improvement available in HDLSS settings

from the DWD comes from solving an optimization problem which yields improved data pil-

ing properties.”

Marron and Todd [32] introduce DWD, focusing on two class linear discrimination, mean-

ing that “the discrimination rule is a simple linear function of the new data vector.” They

introduce a direction vector w and threshold β such that the new data vector x is assigned

to the positive class (+1) when x′w + β ≥ 0, where the two classes have labels +1 and −1.

Marron and Todd [32] introduce a new optimization method that optimizes the sum of the

inverse distances from the data to the separating hyperplane which allows the distances, ri,

to influence the direction vector w.

Marron and Todd [32] let the training data consist of n vectors xi of length p with

corresponding class indicators yi where class is indicated by +1 or −1. Then X is the p× n

matrix with columns xi and y is a length n vector indicating the sample classes. The number

of samples in each class can be written n+ =
∑n

i=1 1{yi=+1} and n− =
∑n

i=1 1{yi=−1} so that
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n = n++n−. Marron and Todd [32] let Y be a n×n diagonal matrix with y on the diagonal.

Then, they choose the direction vector (or normal vector) to be w ∈ Rp as the hyperplane

and the position to be β ∈ R. The residual of the ith data point is then

r̄i = yi(x
′
iw + β)

or, in matrix notation,

r̄ = Y(X′w + βe) = YX′w + βy

where e is a length n vector of ones. Ideally, w and β would be chosen such that the residuals

are all positive and relatively large. The vector “w is scaled to have unit norm so that the

residuals measure the signed distances of the points from the hyperplane.” Since the positive

and negative data might not be able to be separated linearly, an error vector ξ ∈ Rn
+ is added

(and penalized) and the perturbed residuals are

r = YX′w + βy + ξ

Marron and Todd [32] discuss the optimization problem for the DWD approach in depth. In

short, they minimize the sum of the reciprocals of the residuals, perturbed by a penalized

vector ξ, such that

min
r,w,β,ξ

∑
i(1/ri) + Ce′ξ, r = YX′w + βy + ξ, (1/2)w′w = 1/2, r ≥ 0, ξ ≥ 0

where C > 0 is a penalty parameter. They further apply a second-order cone programing

(SCOP) problem, an interior-point method, for optimization. Further details on the opti-
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mization methods and choice of the tuning parameter C can be found in Marron and Todd

[32].

Benito et al. [2] expand on DWD for identifying and adjusting for systematic biases that

are present in microarray data sets. They provide methodology to produce batch corrected

data matrices using DWD. Their methodology for batch adjustment for binary classes is

a) find the DWD direction vector w; b) project subpopulations in the DWD direction, (v+ =

x+w and v− = x−w); c) compute projected subpopulation means (µ+ =
∑
v+/n+ and

µ− =
∑
v−/n−); and d) shift each subpopulation in the DWD direction by an appropriate

amount (found by subtracting the DWD direction vector multiplied by each projected mean

for each gene; x∗+ = x+ − µ+we and x∗− = x− − µ−we where e is a length n vector of ones).

This produces a batch corrected data matrix x∗ which can be used in further analyses.

Huang et al. [18] further extend binary DWD to the multicategory case and provide a

description of their R package R/DWD [17] that implements the classification method distance

weighted discrimination (DWD) of Marron and Todd [32] and Benito et al. [2] and their own

multiclass method. The batch adjustment procedure of Huang et al. [18] is

a) find the p× n matrix of MDWD direction vectors w which generates a subspace V ;

b) project the subpopulations (e.g. respective batch subsets) onto that subspace (PVk =

Xkw where PVk is nk × b for each k = 1, . . . , b);

c) compute the coordinates of the subpopulation projected means (µPVk
= 1

nk

∑nk

i=1 PVki ,

essentially, the column means of the projection matrix PVk for each batch k); and

d) shift each subpopulation such that its projected mean is moved in the subspace to a fixed

point which is common to all subpopulations (X∗k = Xk −
(
wµPVk

enk

)′
where enk

is a
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1×nk matrix of ones and wµPVk
is an p× 1 matrix of the direction matrix multiplied by

the projected means for batch k).

Since the MDWD direction vectors maximize the separation between the batches and ignore

the variation in the data, MDWD preserves the variation that is not due to batch effects.

1.3.7 Empirical Bayes (EB)

Johnson et al. [22] “propose parametric and non-parametric empirical Bayes frameworks

for adjusting data for batch effects that is robust to outliers in small sample sizes and

performs comparable to existing methods for large samples.” They apply their method to

two microarray data sets. The main benefit of their method over other methods, such as

SVD, DWD, and location and scale (L/S) adjustments, is that it works well on small sample

sizes where the other methods they mention require more samples per batch since they are

not robust to outliers in small sample sizes. Their method estimates the parameters from the

L/S model that represent batch effects. This reduces the batch effect parameter estimates

to the across genes overall mean of the batch effect estimates by pooling across genes. They

then adjust the data for batch effects by using these EB estimates which provides a more

robust adjustment for batch effects on each gene. After global normalization, estimation

of expression values, and filtering of genes declared absent in more than 80% of samples,

the EB method was applied. Johnson et al. [22] show that their method is a very flexible

framework for adjusting for additive, multiplicative, and exponential batch effects, and allows

for combination of multiple data sets and is robust to small samples sizes.

The EB frameworks assume the data have been globally normalized and thus normalized

expression values are available for all features and samples. Let the data contain i = 1, . . . , n
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samples and k = 1, . . . , b batches where each batch includes nk samples and j = 1, . . . , p

features. We assume the model

Xijk = αj + Y βj + γjk + δjkεijk

where Xijk is the normalized expression data, αj is the overall expression for feature j, Y

is a design matrix of sample conditions (for example, batch), βj is the vector of regression

coefficients corresponding to Y for feature j, γjk are the additive batch effects for batch k for

feature j, and δjk are the multiplicative batch effects for batch k for feature j. The errors,

εijk, are assumed to be normally distributed with mean zero and variance σ2
j .

Step 1: Standardize the data To avoid the potential for bias due to expression magnitude

differences across features, the data are standardized gene-wise to have similar mean and

variance as

Zijk =
Xijk − α̂j − Y β̂j

σ̂j

where the model parameters αj, βj, and γjk have been estimated as α̂j, β̂j, and γ̂jk for

k = 1, . . . , b and j = 1, . . . , p. Johnson et al. [22] employ gene-wise ordinary least squares

to estimate the parameters and to make sure the parameters are identifiable, they constrain∑
i niγ̂jk = 0 for all j = 1, . . . , p. The variance can the be estimated as σ̂2

j = 1
N

∑
ik(Xijk −

α̂j − Y β̂j − γ̂jk)2 where N is the total number of samples (N =
∑

k nk).

Step 2a: EB batch effect parameter estimates using parametric empirical priors

The standardized data are assumed to satisfy Zijk ∼ N(γjk, δ
2
jk). The parametric forms of
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the prior distributions of the batch effect parameters are assumed to be

γjk ∼ N(Xk, τ
2
k ) and δ2jk ∼ Inverse Gamma(λk, θk)

where the hyperparameters γk, τ
2
k , λk, and θk are estimated empirically using the method

of moments from the standardized data. Johnson et al. [22] chose these prior distributions

due to their conjugacy with the Normal assumption of the standardized data. Based on the

above distributional assumptions, the EB estimates for the batch effects parameters γjk and

δ2jk are given by the conditional posterior means

γ∗jk =
nkτ̄

2
k γ̂jk + δ2∗jk γ̄k

nkτ̄ 2k + δ2∗jk
and δ2∗jk =

θ̄k + 1
2

∑
i(Zijk − γ∗jk)2

nk

2
+ λ̄k − 1

,

respectively.

Step 2b: EB batch effect parameter estimates using non-parametric empirical

priors The standardized data are assumed to satisfy Zijk ∼ N(γjk, δ
2
jk) as above. We further

assume

γ̂jk =
1

nk

∑
i

Zijk and δ̂2jk =
1

nk − 1

∑
i

(Zijk − γ̂jk)2 .

The batch effect parameters γjk and δ2jk are then estimated using estimates of the posterior

expectations of the batch effect parameters, E[γjk] and E[δ2jk]. We let Zjk be a vector

containing Zijk for i = 1, . . . , nk. Then the posterior expectation of γjk is

E[γjk] =

∫
γjkπ(Zjk, γjk, δ

2
jk)d(γjk, δ

2
jk) (1.1)
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given the posterior distribution π(Zjk, γjk, δ
2
jk) of the data Zjk and the batch effect parameters

γjk and δ2jk. Let the unspecified density function for the prior for the parameters γjk and δ2jk be

π(γjk, δ
2
jk) and let the likelihood L(Zjk | γjk, δ2jk) =

∏
i ϕ(Zijk, γjk, δ

2
jk) where ϕ(Zijk, γjk, δ

2
jk)

is the probability density function (pdf) of a random variable distributed N(γjk, δ
2
jk) and

evaluated at Zijk. Equation 1.1 above can then be written

E[γjk] =
1

C(Zjk)

∫
γjkL(Zjk | γjk, δ2jk)π(γjk, δ

2
jk)d(γjk, δ

2
jk) (1.2)

where C(Zjk) =
∫
L(Zjk | γjk, δ2jk)π(γjk, δ

2
jk)d(γjk, δ

2
jk). Johnson et al. [22] then estimated

both C(Zjk) and the integral in 1.2 using Monte Carlo integration using the empirically

estimated (γjk, δ
2
jk) pairs. These pairs are considered random selections from π(γjk, δ

2
jk).

Finally, if we let wjk′′ = L(Zjk | γ̂jk′′ , δ̂2jk′′) for j′′ = 1, . . . , p, then we can estimate C(Zjk) as

Ĉ(Zjk) = 1
n

∑
j′′ wjk′′ and equation 1.2 can be estimated by

γ∗jk = Ê[γjk] =

∑′′
j wjk′′ γ̂jk′′

nĈ(Zjk)

The same method is used to find the posterior expectation of δ2jk. The non-parametric EB

batch adjustments are then given by

γ∗jk =

∑
j′′ wjk′′ γ̂jk′′∑
j′′ wjk′′

and δ2∗jk =

∑
j′′ wjk′′ δ̂

2
jk′′∑

j′′ wjk′′
.
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Step 3: Adjust the data for batch effects The data can now be adjusted using the EB

estimated batch effect parameters as

γ∗ijk =
σ̂j

δ̂∗jk
(Zijk − γ̂∗jk) + α̂j + Y β̂j .

Our test statistic δ can then be applied to the EB batch corrected data γ∗ijk to test whether

EB batch correction successfully corrected the data for batch effects or not.

Konstantinopoulos et al. [24] and Chow et al. [9] apply EB to their datasets for batch

correction and Sun et al. [39] applied EB after normalization techniques failed to remove

sufficient batch effects from their data. Leek et al. [29] use the EB framework in their R

package sva for direct adjustment of known batch effects.

1.3.8 Surrogate Variable Analysis (SVA)

Leek and Storey [27] introduce their method surrogate variable analysis (SVA) to overcome

problems caused by heterogeneity in expression studies. They use the term “expression

heterogeneity” (EH) to describe patterns of variation due to any un-modeled factor, of which

batch effects are one. They consider major sources of expression variation due to technical,

environmental, demographic, or genetic factors. They find that applying SVA to data with

EH “produces operating characteristics nearly equivalent to what one would obtain with no

EH at all.”

SVA allows X to be the normalized p × n expression matrix for i = 1, . . . , n arrays and

j = 1, . . . , p genes and y to be a length n vector of the primary variable of interest. Leek

and Storey [27] then model xij = µj + fj(yi) + eij where µj is the baseline expression level,

fj(yi) = E(xij|yi)− µj represents the relationship between the measured variable of interest

22



and gene j, and eij is random noise with mean 0. They suppose there are L biologically

meaningful unmodeled factors (e.g. age, environmental exposure, genotype, etc.) and gl

(l = 1, . . . , L) is an arbitrarily complicated function of the lth factor across all n arrays. The

expression of gene j on array i can be modeled by xij = µj + fj(yi) +
∑L

l=1 γljgli + e∗ij where

γlj is a gene-specific coefficient for the lth unmodeled factor and the inter-gene dependent

eij have been replaced by
∑L

l=1 γljgli + e∗ij where e∗ij is the true gene-specific noise which is

independent across genes and
∑L

l=1 γljgli represents dependent variation across genes due

to unmodeled factors. Since it is not possible to directly estimate the unmodeled gl, Leek

and Storey [27] identify an orthogonal set of vectors hk for k = 1, . . . , K and K ≤ L with

coefficients λki such that
∑L

l=1 γljgli =
∑K

k=1 λkjhki and

xij = µj + fj(yi) +
L∑
l=1

γljgli + e∗ij

= µj + fj(yi) +
K∑
k=1

λkjhki + e∗ij

The set of K orthogonal vectors hk are chosen to be the right non-zero singular vectors from

the singular value decomposition (SVD) of the p×n matrix with (j, i) entry
∑L

l=1 γljgli. The

hk are the surrogate variables. The SVA algorithm then estimates the surrogate variables

hk based on certain consistent expression variation patterns so that they represent signal

due to sources other than the primary variable of interest. Leek and Storey [27] provide an

algorithm to estimate the surrogate variables. To detect unmodeled factors:

1. “Form estimates µ̂j and f̂j by fitting the model xij = µj + fj(yi) + eij, and calculate

the residuals rij = xij − µ̂j − f̂j(yi) to remove the effect of the primary variable on

expression. Form the p× n residual matrix R where the (j, i) element of R is rij.
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2. Calculate the SVD of the residual expression matrix R = UDV′.

3. Let dl be the lth eigenvalue, which is the lth diagonal element of D, for l = 1, . . . , n. If

df is the degrees of freedom of the model fit µ̂j + f̂j(yi), then by construction the last

df eigenvalues are exactly zero and we remove them from consideration. For eigengene

k = 1, . . . , n− df set the observed statistic to be

Tk =
d2k∑n−df
l=1 d2l

which is the variance explained by the kth eigengene.

4. Form a matrix R∗ by permuting each row of R independently to remove and structure

in the matrix. Denote the (j, i) entry of R∗ by r∗ij.

5. Fit the model r∗ij = µ∗j + f ∗j (yi) + e∗ij and calculate the residuals r0ij = r∗ij − µ̂∗j − f̂ ∗j (yi)

to form the p× n model-subracted mull matrix R0.

6. Calculate the SVD of the centered and permuted expression matrix R0 = U0D0V
′
0.

7. For the eigengene k form a null statistic

T 0
k =

d20k∑n−df
l=1 d20l

as above, where d0l is the lth diagonal element of D0.

8. Repeat steps 4-7 a total of M times to obtain null statistics T 0m
k for m = 1, . . . ,M and

k = 1, . . . , n− df .
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9. Compute the p-value for eigengene k as:

pk =
#{T 0m

k ≥ Tk;m = 1, . . . ,M}
M

Since eigengene k should be significant whenever eigengene k′ is (where k′ > k), we

conservatively force monotonicity among the p-values. Thus, set pk = max(pk−1, pk)

for k = 2, . . . , n− df .

10. For a user-chosen significance level 0 ≤ α ≤ 1, call eigengene k a significant signature

of residual EH if pk < α.”

To construct the surrogate variables:

1. “Form estimates µ̂j and f̂j by fitting the model xij = µj + fj(yi) + eij, and calculate

the residuals rij = xij − µ̂j − f̂j(yi) to remove the effect of the primary variable on

expression. Form the p× n residual matrix R where the (j, i) element of R is rij.

2. Calculate the SVD of the residual expression matrix R = UDV′. Let ek = (ek1, . . . , ekn)′

be the kth column of V (for k = 1, . . . , n). These ek are the residual eigengenes and

represent orthogonal residual EH signals independent of the signal due to the primary

variable.

3. Set K̂ to the number of significant eigengenes found by the above algorithm. Note

that “significant” means that the eigengene represents a greater proportion of variation

than expected by chance.

4. For each significant eigengene ek, k = 1, . . . , K̂, regress ek on the xj (j = 1, . . . , p)

and calculate a p-value testing for an association between the residual eigengene and
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each gene’s expression. This p-value measures the strength of association between the

residual eigengene ek and the expression for gene j.

5. Let π0 be the proportion of genes with expression not truly associated with ek; form an

estimate π̂0 and estimate the number of genes associated with the residual eigengene

by p̂1 = b(1 − π̂0 × p)c. Let s1, . . . , sp̂1 be the indices of the genes with p̂1 smallest

p-values from this test.

6. Form the p̂1 × n reduced expression matrix Xr = (xs1, . . . ,xsm̂1
)′. Since m̂1 is an

estimate of the number of genes associated with residual eigengene k, the reduced

expression matrix represents the expression of those genes estimated to contain the

EH signature represented by so hk as described above. As was done for R, calculated

the eigengenes of Xr, and denote these by eri for i = 1, . . . , n.

7. Let i∗ = arg max1≤i≤n for(ek, e
r
i ) and set ĥk = eri∗ . In other words, set the estimate of

the surrogate variable to be the eigengene of the reduced matrix most correlated with

the corresponding residual eigengene. Since the reduced matrix is enriched for genes

associated with this residual eignegene, this is a principled choice for the estimated

surrogate variable that allows for correlation with the primary variable.

8. In any subsequent analysis, employ the model xij = µj + fj(yi) +
∑K

k=1 λkjĥki + e∗ij,

which serves as an estimate of the ideal model xij = µj + fj(yi) +
∑K

k=1 λkjhki + e∗ij.

Leek et al. [29] discuss their package sva for identifying, estimating, and removing batch

effects in high-throughput experiments. Their package uses surrogate variable estimation

with the sva function, direct adjustment for known batch effects with the ComBat function

[22], and adjustment for batch and latent variables in prediction problems with the fsva
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function (similar to fRMA of McCall et al. [33]).

1.4 Evaluation Method

Various methods exist to evaluate the many different batch effect adjustment methods. Lazar

et al. [26] discuss both qualitative and quantitative methods. To evaluate batch effect removal

tools visually they recommend boxplots of gene expression data of two or more experiments

to be combined, density plots that show the distribution of gene expression values for a

few randomly selected genes, dendrograms resulting from hierarchical clustering analyses (as

previously discussed in 1.2.1), principal components plots (also previously discussed in 1.2.2),

and relative log expression plots (a boxplot for each sample of the deviation of the median

log expression for each gene from the sample median log expression value). Lazar et al. [26]

discuss several quantitative measures of evaluation including principal variance component

analysis (PVCA) and correlation coefficients. PVCA combines two data analysis methods,

principal components analysis and variance components analysis, and is used as a method

to determine the sources of variation in data [35]. Lazar et al. [26] ultimately categorize the

evaluated methods based on model complexity, the minimum number of samples required, the

number of datasets required, covariate flexibility, requirement of additional prior information,

and computational time. See [26] for more detail on these methods.

Chen et al. [8] assess the amount of variation due to batch before and after batch adjust-

ment using PVCA, the precision of the batch adjustment method using correlation among

replicates (either Pearson’s correlation for pairs or intraclass correlation for groups), the ac-

curacy of the batch adjustment method using the correlation between nominal fold change

and observed fold change, and the overall batch effect adjustment performance using ROC
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curves and area under the curve (AUC). They compared DWD, mean-centering (BMC),

SVA, geometric ratio-based method (Ratio G), and EB using both parametric (ComBat p)

and non-parametric (ComBat n) methods. By classifying these six batch adjustment meth-

ods using the above evaluation methods, Chen et al. [8] were able to assess the the precision,

accuracy, and overall performance of each of them and give a better comparison of the true

abilities of each batch adjustment method. They ultimately found that either EB method

outperformed the other batch adjustment methods.

1.5 Guided Principal Component Analysis (gPCA)

We propose a test statistic derived using both the traditional PCA method and a new

method, guided PCA (gPCA; see Chapter 2) [34], for detecting batch effects. We evaluate

the performance of our test in extensive simulation studies (Chapter 3). We also demonstrate

the difference between PCA and gPCA using two copy number variation datasets (Chapter

4). Though our illustration pertains to copy number data, the methods are appropriate

for any type of high-throughput genomic data. Our proposed test statistic may be useful

for identifying whether any of the listed batch adjustment methods should be applied prior

to statistical analysis. The effectiveness of different batch effect adjustment methods is as-

sessed by applying out test statistic to the raw data then subsequently to batch corrected

data (Chapter 5). An R program that implements our test statistic is described (Chapter 6).

Conclusions and future directions are discussed in Chapter 7.
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2 Statistical Methods

2.1 Principal Components Analysis (PCA)

Principal components analysis (PCA) is used for data reduction and interpretation. It is

used to explain the variance-covariance structure of a set of variables through linear combi-

nations of the variables [21]. PCA is a form of unsupervised learning that seeks to find the

“combination of conditions that explain the greatest variation in the data”[41]. It is used

in many types of analyses including neuroscience and computer graphics [37], in addition

to microarray data analyses [16, 41]. The numerical workhorse of PCA is singular-value

decomposition (SVD).

Singular-value decomposition (SVD) Let X be a centered n×p matrix of real numbers

where n denotes sample and p denotes genomic feature (e.g., probe). Then there exists an

n× n orthogonal matrix U and a p× p orthogonal matrix V such that

X = UDV′

where the n× p matrix D has diagonal (q, q) entry λq ≥ 0 for q = 1, . . . ,min(n, p) where, by

convention, λ1 ≥ λ2 ≥ · · · ≥ λmin(n,p) and the other entries are zero. The positive constants
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λq are called the singular values of D [21]. The matrix D has form

D′ =



λ1 0 · · · 0

0 λ2 · · · 0

...
...

. . .
...

0 0 · · · λn

. . . . . . . . . . . . . . .

0 0 0 0

...
...

...
...

0 0 0 0


when we let min(n, p) = n.

Principal components are the length n column vectors (P1, P2, . . . , Pp) of

P = XV

where X is an n × p matrix of features, V is the p × p matrix of right singular vectors,

v1,v2, . . . ,vp, from the singular value decomposition and P is the n×p principal components

matrix.

The first principal component is the linear combination of the variables having the largest

variance, the second principal component has the next largest variance under the constraint

that it is uncorrelated with the proceeding principal component, etc. Typically, PCA is

performed on X alone after standardizing each variable in X. Herein, we refer to this as

“unguided” PCA. Unguided PCA finds a linear combination (or projection) of variables in
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X with coefficients from V with maximum variance. As discussed in Chapter 1, use of

unguided PCA is subjective as one is required to interpret a plot of the first and second

principal components against one another. Moreover, unguided PCA is not effective for

identifying batch effects if they are not the largest source of variation. In this case, it does

not mean that batch effects do not exist in the data, but that alternate methods must be

used to find them.

2.2 Guided PCA

For detecting batch effects, a more informative version of PCA is on Y′X where Y is an

n × b indicator matrix where b denotes batch. Each batch is comprised of nk observations

such that
∑

k nk = n. The indicator matrix consists of b blocks with nk rows, k = 1, . . . , b,

and k columns where, for each block,

Yb =

 1 k=b

0 otherwise

so that

Y =



1 0 · · · 0

0 1 · · · 0

...
...

. . .
...

0 0 · · · 1


where 1 and 0 are vectors with

yik =

 1 if sample i is in batch k

0 otherwise
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for i = 1, . . . , n and k = 1, . . . , b. Performing SVD on Y′X results in a b × b matrix U

that denotes the batch loadings and the p × p matrix V that denotes the probe loadings.

Large singular values imply that the batch is important for the corresponding principal

component. gPCA guides the SVD to look for batch effects in the data based on the batch

indicator matrix Y, which can be defined to indicate any type of potential batch effect.

Another commonly used method in this situation is Canonical Correlation Analysis

(CCA), which finds the linear combination with maximum correlation; however, we are

interested in variance, not correlation.

2.3 Proposed Method: Test statistic for testing if batch effect exists

Our test statistic, δ, quantifies the proportion of variance due to batch effects in experimental

genomic data. The proportion of total variance due to batch is taken to be the ratio of the

variance of the first principal component from gPCA to the variance of the first principal

component from unguided PCA

δ =
var(XVg1)

var(XVu1)

where g indicates gPCA and u indicates unguided PCA. V is the matrix of probe loadings

resulting from gPCA or PCA, respectively. Large values of δ (values near 1) imply that the

batch effect is large.

To determine whether δ is significantly larger than would be expected by chance, a p-

value is estimated using a permutation distribution created by permuting the batch vector

M = 1000 times so that δpm is computed form = 1, . . . ,M where p indicates the permutation.

Here δpm is the proportion of the total variance due to the first principal component from the

mth permutation from gPCA to the total variance due to the first principal component from

unguided PCA. A one-sided p-value (testing H0 : δpm = δ versus H1 : δpm > δ) is estimated as
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the proportion of times the observed δ was in the extreme tail of the permutation distribution

p-value =

∑M
m=1 (δpm > δ)

M
.

Estimating percent of total variation explained by batch The percent of total vari-

ation explained by batch is then calculated as

P̂Cg − P̂Cu

P̂Cg

× 100

where

P̂Cu =
var(XVu1)∑n
i=1 var(XVui

)
and P̂Cg =

var(XVg1)∑b
k=1 var(XVgk

)

where u and g represent unguided PCA and gPCA, respectively.

All analyses were performed in R 2.15.2.
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3 Simulation Study

3.1 Description of Simulation Study

Most often investigators are interested in modeling their data in the presence of a known

phenotype. Therefore, we simulated data to represent copy number data under three scenar-

ios: (1) feature data (here, feature denotes probe) with no phenotypic variable; (2) feature

data having a high variance phenotypic effect; and (3) feature data having a low variance

phenotypic effect. The feature data were generated from an independent normal distribution

with p = 1000 features and n = 90 observations. To study Type I and II errors, for all three

scenarios, the data were simulated in two ways, to include a true batch effect and without a

true batch effect.

3.1.1 Evaluating Type I Error

To evaluate Type I error for all three scenarios, the data were simulated without a true

batch effect. The resulting proportion of p-values that were < 0.05 formed our estimate of

the Type I error. Type I error was estimated when the variance associated with batch was

σb = 0.5 and 1 for all three scenarios. For the low variance phenotype scenario, Type I error

was additionally assessed when the proportion of features affected by the phenotype was 0.1

or 0.05. Table 3.1 shows the parameters for all Type I error simulation scenarios.

3.1.2 Evaluating Power

To study power for all three scenarios, the data were simulated with a true batch effect.

When a batch effect was present, there were two batches with means µb1 = 0 and µb2 = 1

and an equal number of observations in each batch. We varied the variance within each

batch allowing it to be either σb = 0.5 or σb = 1 for each feature and features were generated
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Table 3.1: Type I Error Simulation Scenarios: n = 90 and p = 1000 for all scenarios. µb1
and µb2 are the batch means, σb is the variance associated with batch, µp1 and µp2 are the
phenotypic means, σp is the variance associated with phenotype, and pprop is the proportion
of features effected by phenotype.

µb1 µb2 σb µp1 µp2 σp pprop
No Phenotype - - 0.5 or 1.0 - - - -
High Variance Phenotype 0 1 0.5 or 1.0 0 1 2.0 0.1
Low Variance Phenotype 0 1 0.5 or 1.0 0 1 0.2 0.1 or 0.05

independently. The features with a batch effect were simulated from multivariate normal

distribution such that b1
b2

 where b1 ∼ Nn1

(
µb1 , σ

2
bI
)

and b2 ∼ Nn2


 µb1
µb2

 , σ2
bI


where b2 has mean vector µb2 of length bprop∗p for a proportion of the features specified by

bprop and mean vector µb1 of length (1−bprop)∗p for a proportion of the features specified

by 1− bprop. The batch feature data were randomly assigned to observations based on the

randomly assigned batch labels. For all three scenarios, the proportion of p-values < 0.05

formed our estimate of the power. Power was estimated at varying levels of the proportion of

features affected by batch. Table 3.2 shows the parameters for all power simulation scenarios.

3.1.3 Simulating Phenotypic Effects

In the true phenotype scenarios, 10% of the features were affected by phenotype using means

µp1 = 0 and µp2 = 1 and variance σp = 2 for the high variance scenario and σp = 0.2 for the

low variance scenario. The proportion of features affected by the phenotype (pprop) was 0.1

or 0.05. The phenotypic effect was simulated from a multivariate normal distribution such
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Table 3.2: Power Simulation Scenarios: n = 90 and p = 1000 for all scenarios. b denotes
the number of batches, n1 and n2 give the number of samples in each batch, µb1 and µb2 are
the batch means, σb is the variance associated with batch, µp1 and µp2 are the phenotypic
means, σp is the variance associated with phenotype, and pprop is the proportion of features
effected by phenotype.

b n1 n2 µb1 µb2 σb µp1 µp2 σp pprop
No Phenotype 2 45 45 0 1 0.5 or 1.0 - - - -
High Variance Phenotype 2 45 45 0 1 0.5 or 1.0 0 1 2.0 0.1
Low Variance Phenotype 2 45 45 0 1 0.5 or 1.0 0 1 0.2 0.1 or 0.05

that  p1
p2

 where p1 ∼ Nn1

(
µp1 , σ

2
pI
)

and p2 ∼ Nn2


 µp1
µp2

 , σ2
pI


where p2 has mean vector µp2 of length pprop ∗ p for a proportion of the features specified

by pprop and mean vector µp1 of length (1 − pprop) ∗ p for a proportion of the features

specified by 1−pprop. In all scenarios with a phenotypic effect, the phenotype was generated

independent from batch effect.

An additional phenotypic simulation was performed that allowed phenotype and batch

to be dependent. In this scenario each feature j for j = 1, . . . , p was assigned to have no

phenotypic effect, a phenotypic effect only, a batch effect only, or both batch and phenotypic

effects. For feature j, we let

fj = βppjpheno + βbbjbatch + e

where p and b are length p vectors indicating whether each feature had a phenotypic or batch

36



effect, respectively, pheno and batch are length n vectors giving the phenotype and batch

effect for each sample, and e ∼ N(0, σb) is a random error term. The βp and βb parameters

determine the magnitude of the phenotypic and batch effects, respectively. If feature j has

both a phenotype effect and a batch effect then p = b = 1, if j has only a phenotype effect

then p = 1 and b = 0, if j has only a batch effect then p = 0 and b = 1, and finally if j

has neither effect then p = b = 0. The fj feature vectors for j = 1, . . . , p form our n × p

feature data matrix X. The vectors b and p can be calculated in two ways. Either as in

the independent continuous simulation, where a random sample of the p features determined

by bprop and pprop, respectively, and since they are no longer independent any overlap

in the features determines which features have both effects. Alternatively, the number of

features with each effect can be specifically set so that the exact number in each group,

batch effect, phenotype effect, and batch and phenotype effect, is specified, so the number

with both effects is predetermined. For our dependent continuous phenotype simulation, the

simulation parameters were βp = 0.5 and βb = 1 and otherwise as in Table 3.2, however, for

this scenario, the batch and phenotype means are unnecessary so were not used.

Each simulation scenario was repeated 500 times. Phenotype here can be thought of as

any variable of interest, whether categorical (e.g., case versus control, smoker versus non-

smoker) or continuous (e.g., mammographic density, age, body mass index).

3.2 Results

The estimates for Type I error for all scenarios are reported in Table 3.3. The proportion

of features with a phenotypic effect is pprop= 0.1 for scenarios (b-c) and 0.05 for scenario

(d). In all scenarios, the Type I error is at or below the nominal 0.05 level. Figure 3.1

shows power of our test statistic as a function of the proportion of features affected by batch
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if there is no true phenotypic effect. If σb = 0.5, then our test statistic has 80% power if

approximately 0.3% of the features are affected by batch. If σb = 1, then approximately

0.5% of features need to have a batch effect in order to achieve 80% power. If a high

variance phenotypic effect exists, then approximately 1.5% or 2% of the features need to

have a batch effect in order to achieve 80% power for σb = 0.5 and σb = 1, respectively

(Figure 3.2). Similarly, if a low variance phenotype exists and 10% of features are affected

by phenotype, then approximately 1.5% or 2% of the features need to have a batch effect in

order to achieve 80% power for σb = 0.5 and σb = 1, respectively, and if 5% of features are

affected by phenotype, then approximately 0.75% of the features need to have a batch effect

in order to achieve 80% power for both σb = 0.5 and σb = 1 (Figure 3.3). Therefore, if a

phenotypic effect is truly present, a larger proportion of features need to be affected by batch

in order to detect if a batch effect is present compared to when there is no phenotypic effect

present in the feature data. Figure 3.4 shows the cumulative variance of the unguided and

guided principal components for the low variance phenotypic simulated data which indicates

that when the batch variance is larger, the proportion of the variance explained by the first

principal component is smaller than when the true batch variance is smaller.

Power is also higher when the batch variance is smaller given the same level of separation

in batch means. Further simulations with batch and phenotype effects simulated so that

they are not independent, varying the batch variance, with the difference between batch

means smaller than the difference between the phenotype means, and with high proportions

of features affected by batch can be found in Sections 3.2.1, 3.2.2 and 3.2.3. Additionally,

data for the three scenarios were simulated and a sensitivity to batch correction analysis was

performed using the batch mean centering method of Sims et al. [38] (Section 5.4.1).
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σb = 0.5 σb = 1
(a) No Phenotype 0.034 0.034
(b) High Variance Phenotype (pprop=0.1) 0.014 0.014
(c) Low Variance Phenotype (pprop=0.1) 0.000 0.002
(d) Low Variance Phenotype (pprop=0.05) 0.010 0.046

Table 3.3: Estimated Type I Error: For all scenarios there is no true batch effect. Scenario
(a) has no phenotypic effect in the data, however scenario (b) has a high variance phenotypic
effect included in the analysis with phenotypic effect at pprop = 0.1 and scenarios (c-d)
have low variance phenotypic effects included in the analysis with phenotypic effect at pprop
= 0.1 or 0.05, respectively.

3.2.1 Dependent Batch and Phenotype Effects

The true phenotype simulations with batch and phenotype as independent does not take

into account the possibility that a feature will have both a batch and phenotype affecting

it. We performed an additional simulation that simulated the feature data such that some

features had both a batch and phenotype effect. Figure 3.5 shows power for our test statistic

when batch effect and phenotype are simulated so that they are not independent. Between

0.2% and 0.3% of features need to have a batch effect in order to achieve 80% power when

σ = 0.5 and approximately 0.55% of features need to have batch effect in order to achieve

80% power when σ = 1. In this scenario, similar to the above simulations, power is higher

when variance is smaller.

3.2.2 Varied Batch Variance and Phenotypic Means Greater than Batch Means

The sensitivity of gPCA results to the level of batch variance was assessed through additional

simulation analyses. For the no phenotype, high variance phenotype, and low variance

phenotype scenarios, estimated power was calculated while varying the variance associated

with batch between σb = 0.5 and σb = 2. The proportion of features affected by batch

39



Figure 3.1: Power for detecting batch effect as a function of the proportion of features that
are affected by batch when no true phenotype was included with batch proportion ranging
from 0.1 to 1%. The variance associated with batch is σb = 0.5 or σb = 1.0.

(bprop) were held constant at 0.010, 0.050, and 0.100 for the no phenotype, high variance

phenotype, and low variance phenotype scenarios, respectively. The batch means were held

constant at µb1 = 0 and µb2 = 1. These values of the batch proportion and means were found

to have good power when varying the batch proportion in our previous simulations. For the

true phenotype scenarios, the phenotype means were also varied as an assessment of gPCA
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Figure 3.2: Power for detecting batch effect as a function of the proportion of features that
are affected by batch when a true high variance phenotype was included in the data with
batch proportion ranging from 0.1 to 2.5%. The variance associated with batch is σb = 0.5
or σb = 1.0.

when the phenotypic means (µp1 = 0 and µp2 = 1.5 or µp2 = 2) are higher than the batch

means (µb = 0 and µb = 1). Figure 3.6 shows the power plots for the three scenarios.

We found that as batch variance increased, so did the estimated power and the smaller

the difference in the phenotypic means, the higher the power. In the no phenotype scenario,
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Figure 3.3: Power for detecting batch effect as a function of the proportion of features that
are affected by batch when a true low variance phenotype was included in the data with
batch proportion ranging from 0.1 to 2.5%. The variance associated with batch is σb = 0.5
or σb = 1.0 and the proportion of features affected by phenotype is either pprop= 0.1 or
pprop= 0.05.

when holding the batch means fixed, we found that power decreased as the batch variance

increased since when there is no phenotype, the unguided PCA has only the batch variance

as does gPCA.
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Figure 3.4: Cumulative variance of the principal components from unguided and guided
PCA.

(a) Unguided (b) Guided

3.2.3 High Proportion of Features Affected by Batch

It is of interest to investigate the performance of gPCA when the proportion of features

affected by batch is high. Simulations were assessed with batch proportion between 50 and

90% of features. Table 3.4 shows the estimated power is 100% for all scenarios so good results

can be expected even when a large proportion of features are affected by batch.

3.2.4 Sensitivity of gPCA Results to Filtering of Simulation Data

Data were also simulated as in our main simulation study, but with p = 20, 000 features and

n = 90 samples. For each of the three phenotype scenarios, no phenotype, high variance

phenotype, and low variance phenotype, data were simulated with batch and phenotype

means µb1 = µp1 = 0 and µb2 = µp2 = 1 where p denotes phenotype and b denotes batch.
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Table 3.4: Power for detecting batch effect as a function of the proportion of features that
are affected by batch at 50 to 90% when no phenotypic, high variance phenotypic, or low
variance phenotypic data were included in gPCA.

σ bprop power
0.5 0.500 1
0.5 0.633 1
0.5 0.767 1
0.5 0.900 1
1.0 0.500 1
1.0 0.633 1
1.0 0.767 1
1.0 0.900 1

(a) No Phenotype

σ σp bprop power
0.5 2.0 0.500 1
0.5 2.0 0.633 1
0.5 2.0 0.767 1
0.5 2.0 0.900 1
1.0 2.0 0.500 1
1.0 2.0 0.633 1
1.0 2.0 0.767 1
1.0 2.0 0.900 1

(b) High Variance Phenotype

σ σp pprop bprop power
0.5 0.2 0.05 0.500 1
0.5 0.2 0.05 0.633 1
0.5 0.2 0.05 0.767 1
0.5 0.2 0.05 0.900 1
0.5 0.2 0.10 0.500 1
0.5 0.2 0.10 0.633 1
0.5 0.2 0.10 0.767 1
0.5 0.2 0.10 0.900 1
1.0 0.2 0.05 0.500 1
1.0 0.2 0.05 0.633 1
1.0 0.2 0.05 0.767 1
1.0 0.2 0.05 0.900 1
1.0 0.2 0.10 0.500 1
1.0 0.2 0.10 0.633 1
1.0 0.2 0.10 0.767 1
1.0 0.2 0.10 0.900 1

(c) Low Variance Phenotype
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Figure 3.5: Power for detecting batch effect as a function of the proportion of features
that are affected by batch when a true phenotype was included in the data and batch and
phenotype effect are not independent. The batch proportion ranges from 0.1 to 1%. The
variance associated with batch is σb = 0.5 or σb = 1.0 and the proportion of features affected
by phenotype is either pprop= 0.1 or pprop= 0.05. The parameters βp = 0.5 and βb = 1

The batch variance was σb = 0.5, the phenotype variance for the high variance scenario

was σp = 2, and the phenotype variance for the low variance scenario was σp = 0.2. The

proportion of features affected by batch was held constant at 0.004, 0.017, and 0.025 for the
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no, high variance, and low variance phenotype scenarios, respectively, each of which had good

power in the previous simulation study. The proportion of features affected by phenotype in

the high variance and low variance scenarios was pprop= 0.01. Table 3.5 shows the resulting

p-values from retaining between 10 and all features from the simulated data sets. The test

statistic applied to the simulated data were not affected by filtering provided that the percent

of features retained was 5% (1000 features) when there was a phenotype with high variance

(a somewhat weak phenotypic effect) and approximately 50% (10,000 features) when there

was a phenotype with low variance (that is, a strong phenotypic effect) and thus filtering can

be used as a method to reduce the analysis time required provided it is judiciously applied

(Table 3.5).

3.2.5 Analysis of Varying Batch Sample Size

A simulation analysis was performed that varied the batch sample sizes allowing the sample

sizes of the two batches to be vary between nk = 12 and 84 for k = 1, . . . , b where b = 2.

Table 3.6 shows the results of these analyses. There is no difference in either the value of

δ or the p-values when computing the batch indicator matrix Y with 0’s and 1’s indicating

whether a sample is in batch k or not versus computing Y scaling by batch sample size nk

(i.e. with 0’s and 1/nk’s). These results indicate that scaling the batch indicator matrix by

batch sample size nk has no effect on our gPCA δ test statistic results.
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Table 3.5: Variance Filtering Sensitivity Results: δ, corresponding p-values resulting from
retaining between 10 and all features from the simulation data sets. The last column gives
the system time in minutes required to run gPCA as discussed in Section 4.2.4.

Features % Features δ p-value System Time (min)
10 0.05 0.9991 < 0.001 0.027
100 0.50 0.9976 < 0.001 0.030
1000 5.00 0.9918 < 0.001 0.048
2000 10.00 0.9896 < 0.001 0.069
5000 25.00 0.9856 < 0.001 0.133
10000 50.00 0.9839 < 0.001 0.241
15000 75.00 0.9787 < 0.001 0.350
20000 100.00 0.9795 < 0.001 0.445

(a) No Phenotype

Features % Features δ p-value System Time (min)
10 0.05 0.5571 0.673 0.029
100 0.50 0.4314 0.086 0.029
1000 5.00 0.4015 0.037 0.049
2000 10.00 0.4429 0.021 0.071
5000 25.00 0.4977 0.009 0.138
10000 50.00 0.5495 0.004 0.252
15000 75.00 0.5846 0.003 0.366
20000 100.00 0.6211 0.002 0.469

(b) High Variance Phenotype

Features % Features δ p-value System Time (min)
10 0.05 0.9968 < 0.001 0.026
100 0.50 0.9996 < 0.001 0.028
1000 5.00 0.9998 < 0.001 0.047
2000 10.00 0.9996 < 0.001 0.067
5000 25.00 0.9993 < 0.001 0.130
10000 50.00 0.9988 < 0.001 0.238
15000 75.00 0.9985 < 0.001 0.351
20000 100.00 0.3913 0.027 0.452

(c) Low Variance Phenotype
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Table 3.6: Test statistic δ and corresponding p-value resulting from varying the batch sample
sizes between 12 and 84. δs and ps indicate the results of the test when considering the batch
effect indicator matrix Y as scaled by batch sample size nk.

n1 n2 δ p δs ps
12 12 0.827 0.257 0.827 0.257
36 12 0.805 0.001 0.805 0.001
60 12 0.712 0.092 0.712 0.092
84 12 0.699 0.033 0.699 0.033
36 36 0.791 <0.001 0.791 <0.001
60 36 0.819 <0.001 0.819 <0.001
84 36 0.806 <0.001 0.806 <0.001
60 60 0.814 <0.001 0.814 <0.001
84 60 0.768 <0.001 0.768 <0.001
84 84 0.844 <0.001 0.844 <0.001

(a) No Phenotype

n1 n2 δ p δs ps
12 12 0.800 0.078 0.800 0.078
36 12 0.741 0.01 0.741 0.01
60 12 0.645 0.078 0.645 0.078
84 12 0.536 0.106 0.536 0.106
36 36 0.649 0.003 0.649 0.003
60 36 0.664 <0.001 0.664 <0.001
84 36 0.586 <0.001 0.586 <0.001
60 60 0.610 <0.001 0.610 <0.001
84 60 0.532 0.001 0.532 0.001
84 84 0.572 <0.001 0.572 <0.001

(b) High Variance Phenotype

n1 n2 δ p δs ps
12 12 0.627 0.094 0.627 0.094
36 12 0.489 0.067 0.489 0.067
60 12 0.446 0.027 0.446 0.027
84 12 0.319 0.119 0.319 0.119
36 36 0.468 0.010 0.468 0.010
60 36 0.494 0.003 0.494 0.003
84 36 0.375 0.015 0.375 0.015
60 60 0.467 0.002 0.467 0.002
84 60 0.397 0.006 0.397 0.006
84 84 0.393 0.005 0.393 0.005

(c) Low Variance Phenotype
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Figure 3.6: Power plots while varying the variance associated with batch and the phenotype
means.

(a) No Phenotype (b) High Variance Phenotype

(c) Low Variance Phenotype
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4 Applications

Our test statistic was applied to two case studies. The U and V matrices are assumed to be

orthogonal n× n (or b× b for gPCA) and p× p matrices, respectively. To adjust for missing

values, mean value imputation was performed on the centered data X prior to PCA. Results

were considered significant at a level of α = 0.05.

4.1 Data

4.1.1 Filtering

For unsupervised learning problems, non-informative features contribute random noise to

distance calculations. The resulting effect is that non-informative features mask useful in-

formation provided by informative features. Therefore, non-informative features should be

assigned a zero weight in the clustering algorithm [23]. The simplest implementation is to

exclude identified non-informative features in the clustering analysis. This filtering step is

applied to genomic data to remove sources of obscuring variation prior to applying a clus-

tering algorithm. In our simulation studies, we observed higher power when the proportion

of features affected by batch increased, therefore, we filtered our data stringently to keep

the most variable or informative features. A variance filter was applied to the data to re-

move noise and reduce the number of features. The standard deviation of each feature was

calculated and the 1000 most variable features were retained [7, 12, 19].

The sensitivity of guided principal components analysis (gPCA) to different levels of

variance filtering were investigated, allowing the number of features retained by the variance

filter to range between 500 and the full GENEMAM data set (657,366 features). A further

analysis implementing an ANOVA filter was also investigated. The limma package was used
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to fit an ANOVA (lmFit()) model with phenotype represented in the design matrix. The

eBayes() function was subsequently used to compute the moderated F statistics and create

an indicator of significant features to be used to filter the centered, mean-value imputed

data. The methods of Benjamini and Hochberg [3] and Bonferroni were used to adjust for

multiple comparisons at significance levels of α = 0.05 and 0.01. The main goal of filtering

in our analyses is to remove non-informative features and to reduce the time required for the

analysis and corresponding permutations. An run time analysis is provided in section 4.2.4.

4.1.2 GENEMAM

The GENetic Epidemiology of MAMmogr-aphic Density (GENEMAM) study data included

614 samples from the Minnesota Breast Cancer family study [36]. These samples were

genotyped using the Illumina Human 660 bead-chip array. Samples were processed over

three time periods on 8 plates. Forty-two samples failed quality-control checks from plates

1-4 due to an Illumina reagent problem and these samples were replated on plate 5, along

with 6 other samples. Samples on plates 6-8 were genotyped at a later date. This effectively

yielded three batches corresponding to the three different runs. Data for all chromosomes

were used. Illumina’s GenomeStudio software was used to obtain the Log2 R ratio (LRR)

values. LRR is a measure of relative intensity where R is the sum of the normalized allelic

probe intensities produced by SNP assays and the ratio is of observed R divided by the

expected value [25].

4.1.3 GENOA

The GENOA data included 1,418 of the non-Hispanic white adults enrolled in the Genetic

Epidemiology Network of Arteriopathy (GENOA) study of the Family Blood Pressure Pro-

gram (FBPP), a study designed to identify germline genetic determinants of hypertension in
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multiple ethnic groups. These samples were genotyped on Affymetrix SNP Array 6.0 chips

and all samples had contrast QC values greater than 0.4. The PennCNV-Affy Protocol1 was

followed to obtain the LRR values. The analysis focused on chromosome 22 data using the

first 10 plates consisting of 703 samples.

4.2 Results

4.2.1 GENEMAM

The standard use of PCA is to look at the plot of the first principal component of the data

(n × p matrix X where n denotes sample and p denotes probe) versus the second principal

component (Figure 4.2a). The GENEMAM data has an obvious batch effect and the PCA

plot of the first two principal components shows that this batch effect is due to plate when

colored by plate with three batches consisting of plates 1-4, 5, and 6-8. As is common with

batch effects, this batch effect is due to the plates being run at different times.

Next, we performed a gPCA with plate as the batch indicator. The gPCA plot of the first

two principal components (Figure 4.2b) shows greater separation in the batches, especially

of plate 3 from plates 1, 2 and 4, than the unguided principal component plot (Figure 4.2a),

but shows the same groupings of plates for these data. After filtering out all but the p = 1000

most variable features, our permutation test confirms that there is a significant batch effect

separating the plates (δ = 0.5987; p − value < 0.001). Of the variance due to features in

these data 87.3% of the total variation is explained by batch.

Physical sample well location on each plate was looked at as a potential source of poor

quality for each plate. Figure 4.2 shows heatmaps of PC1 and PC2 for gPCA based on the

sample well location for each sample on the 96-well plates. The colors represent the value of

1http://www.openbioinformatics.org/penncnv/penncnv tutorial affy gw6.html
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Figure 4.1: GENEMAM - (a) Unguided PCA of X of Y′X. Samples for each plate are
denoted by a different color and/or symbol.

(a) Unguided PCA

the principal component for that sample and the scale for the colors is standardized across all

plates. These plots show that PC1 separates plates 6 through 8, from 5, and from 1 through

4. PC2 separates the first half of plate 3 from all the rest. This analysis identifies potential

quality issues with plate 3. White space on the plates in the heatmaps represents missing
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Figure 4.1: GENEMAM - (b) Guided PCA of Y′X. Samples for each plate are denoted by
a different color and/or symbol.

(b) Guided PCA

samples.

This case study is an example with an obvious batch effect and thus did not require

specialized methods to detect since batch was the largest source of variability.
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Figure 4.2: GENEMAM - Standardized Heatmaps showing the (a) PC1 values at each sample
well location. White spaces indicate missing samples for the plate. Plates 5 and 8 were
incomplete plates.

(a) PC1

4.2.2 GENOA

In this case study, batch is not so easily detected using unguided PCA. Unguided PCA was

performed and Figure 4.4a shows the PCA plot of the first two principal components. Figure
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Figure 4.2: GENEMAM - Standardized Heatmaps showing the (b) PC2 values at each sample
well location. White spaces indicate missing samples for the plate. Plates 5 and 8 were
incomplete plates.

(b) PC2

4.4a shows that plates 7 and 8 might be slightly separated from the rest of the plates. A

gPCA with batch indicated by plate (Figure 4.4b) shows that plates 7 and 8 along with

plate 4 separate slightly from the other plates. It is not obvious from the unguided PCA on
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X that plate 4 is separate from the rest of the plates. However, gPCA shows a separation

between 4 and the rest of the plates. After filtering out all but the p = 1000 most variable

features, our permutation test shows that there is a significant batch effect separating the

plates (δ = 0.9219; p − value < 0.001). Of the variance due to SNPs in this data 71% of

the total variation is explained by batch. gPCA identifies a batch (plate 4) that does not

otherwise stand out in an unguided principal component plot.

4.2.3 Sensitivity of gPCA Results to Filtering

We also performed a sensitivity analysis allowing the number of features retained by the

variance filter to range between 10 and the full GENEMAM data set. We also implemented

an ANOVA filter where feature-level linear models were fit where the batch indicators were

predictors and the overall F -test were used. Features were considered significant if their

Benjamini and Hochberg [3] adjusted p-value was < 0.05.

The GENEMAM and GENOA case study data were filtered using a variance filter to

retain the 1000 most variable features. The sensitivity of the results of gPCA to this filtering

was investigated using the both data sets and simulated data. Table 4.1 shows the resulting

p-values from retaining between 10 and all features from the full (a) GENEMAM data set

or (b) GENOA data set. For the GENEMAM data, as long as 7.6% (500 features) or more

features are retained, significant batch effects are found. Since filtering to retain 500 features

takes approximately 1 minute to run, there is no need to retain fewer features. For the

GENOA data, as long as 21.6% (100 features) or more features are retained, significant

batch effects are found, which takes approximately 8 seconds to run. We found that gPCA

is not sensitive to filtering for the application datasets and thus filtering can be used as a

method to reduce the analysis time required provided it is judiciously applied (Table 4.1).
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Table 4.1: Variance Filtering Sensitivity Results: δ, corresponding p-values resulting from
retaining between 10 and all features from the full data set. The last column gives the system
time in minutes required to run gPCA as discussed in Section 4.2.4.

Features % Features δ p-value System Time (min)
10 0.002 0.6878 0.511 0.812
20 0.003 0.5617 0.706 0.779
50 0.008 0.6129 0.119 0.841
100 0.015 0.4603 0.264 0.866
200 0.030 0.4194 0.268 0.892
500 0.076 0.5428 0.012 0.965
1000 0.152 0.5987 < 0.001 1.144
2000 0.304 0.6914 < 0.001 1.453
5000 0.761 0.7244 < 0.001 2.479
10000 1.521 0.8344 < 0.001 3.895
20000 3.042 0.9814 < 0.001 7.620
50000 7.606 0.9807 < 0.001 15.348
100000 15.212 0.9819 < 0.001 33.395
200000 30.424 0.9835 < 0.001 60.809
500000 76.061 0.9839 < 0.001 162.075
657366 100.000 0.9839 < 0.001 206.657

(a) GENEMAM

Features % Features δ p-value System Time (min)
10 0.043 0.8664 0.087 0.118
20 0.087 0.8117 0.063 0.118
50 0.216 0.7693 0.025 0.129
100 0.433 0.7421 0.008 0.146
200 0.865 0.8315 < 0.001 0.183
500 2.163 0.9220 < 0.001 0.302
1000 4.326 0.9219 < 0.001 0.520
2000 8.652 0.9006 < 0.001 0.977
5000 21.631 0.8811 < 0.001 2.394
10000 43.262 0.8620 0.006 4.052
20000 86.524 0.8338 0.012 8.051
23115 100.000 0.8282 0.013 9.388

(b) GENOA
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Figure 4.3: GENOA - (a) Unguided PCA of X. Samples for each plate are denoted by a
different color and/or symbol.

(a) PCA

ANOVA Filtering An analysis of variance (ANOVA) filter was applied to the GENEMAM

data to assess it as an alternative to variance filtering. Table 4.2 shows the number of features

retained from each adjustment method. In all cases the number of features is very large owing

to the large batch effect present in this dataset and the data being only globally normalized.
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Figure 4.3: GENOA - (b) Guided PCA of Y′X. Samples for each plate are denoted by a
different color and/or symbol.

(b) gPCA

As shown in section 4.2.3, gPCA is not sensitive to filtering, so filtering can be used to reduce

the data dimension and facilitate implementing gPCA by reducing the analysis time without

worry.
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Table 4.2: Number of features retained using an ANOVA filtering method with different
multiple comparison adjustment methods and stringencies.

Adj. Method α Feat. Retained
BH 0.05 636141
BH 0.01 624797

Bonferroni 0.05 546012
Bonferroni 0.01 535708

4.2.4 gPCA Run Time Analysis

An analysis of the time it takes to run gPCA on varying sizes of data was performed. Table

4.1(a) gives the time it takes to run gPCA on the GENEMAM data with between 10 and the

full set of features. There were n = 614 samples and the data was centered and mean-value

imputed prior to performing gPCA. Table 4.1(b) gives the time it takes to run gPCA on the

GENOA data with between p = 10 and the full set of features. There were n = 703 samples

and the data was not centered prior to performing gPCA. There were no missing values so

mean-value imputation was not necessary.

As can be seen in these analyses, batch effects can be a prominent source of variation

in high-throughput genomic data. Our new statistic δ uses gPCA to successfully test for

batch effect. In Chapter 5, we demonstrate that our test statistic can be used to evaluate

the performance of batch correction methods.

4.2.5 Analysis of Batch and Phenotype Confounding

An analysis of the effects of confounding of batch and phenotype was performed to asses how

the gPCA δ statistic performs and to show the effects of confounding on batch correction.

The GENEMAM data was used with run time considered to be batch and plate considered

to be phenotype after filtering to retain the 1000 most variable features. Run time and plate

are highly confounded (Pearson’s ρ = 0.9) since plates 1-4, plate 5, and plates 6-8 were run
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in three separate batches at different times.

After fitting a linear model using the lmFit() function with plate as phenotype as the

predictor, the number of significant features in the GENEMAM data was assessed using

the eBayes() function in the limma package both prior to batch correction and after batch

correction using the batch-mean centering (BMC) method of Sims et al. [38]. For batch

correction, BMC was implemented using the pamr.batchadjust() function in the pamr

package.

Table 4.3 provides a contingency table of the results. Prior to batch correction 191 of the

1000 features were found to be significant in terms of the phenotype and a significant batch

effect was found (δ = 0.5828; p−value < 0.001), but after batch correction using run time as

batch, only 7 features were found to be significant and no significant batch effect was found

(δ = 0.044; p− value = 1). This indicates that if a phenotype of interest is confounded with

batch, any batch correction procedure would remove that variation from the data resulting

in finding no significant features associated with that phenotype.

Table 4.3: Results of Confounding Batch and Phenotype: Number of significant features
prior to and post-batch correction using BMC when batch and phenotype are confounded.
Rows give the results of the test prior to batch correction and the columns give results of
the test post-batch correction. The “Reject” column and row indicate the number of features
that are significantly predicted by phenotype.

Fail to reject Reject
Fail to reject 809 0

Reject 184 7
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5 Comparison of Batch Effect Adjustment Methods

5.1 Introduction

Batch effects are commonly observed systematic non-biological variation between groups of

samples due to experimental artifacts, such as processing date, lab, or technician. Combining

samples from multiple batches can cause the true biological variation in a high-throughput

experiment to be obscured by variation due to batch. Global normalization methods such as

ANOVA [10], loess-based methods [12], and quantile [4] correct for experimental artifacts that

effect all probes similarly. However, post-global normalization probe-specific batch effects

are commonly present, as often detected by principal components analysis (PCA). Many

methods have been developed to correct high-throughput data for batch effects including

normalization methods [39], frozen robust multiarray average (fRMA) for gene expression

microarray data [33], orthogonal projections to latent structures (OPLS) for multi-channel

microarray data [5], corrected robust linear models with maximum likelihood classification

version 2 (CRLMMv2) for SNP-based microarray platforms [6], surrogate variable analysis

(SVA) for gene expression microarray data [27], batch mean-centering (BMC) for microarray

data [31, 38], distance weighted discrimination (DWD) for microarray data [2, 17, 18, 32],

and empirical Bayes (EB) for gene expression and CNV data [22]. Many of these methods

have been previously reviewed by Chen et al. [8], Lazar et al. [26], and Luo et al. [31]. These

methods were introduced in Chapter 1.

Previous studies have found that BMC, DWD, and EB generally outperform all other

methods [8, 26]. Both BMC and EB produce batch corrected data sets. After further data

manipulation according to the methods of Benito et al. [2] and Huang et al. [18], the results
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of DWD can also be converted into a batch corrected matrix. In this chapter we will apply

these three methods to two case studies that have known significant batch effects and to

three simulated data sets, and assess their usefulness at batch effect removal using our test

statistic δ that employs guided principal components analysis (gPCA) [34].

5.2 Statistical Methods

5.2.1 Guided Principal Components Analysis

Introduced in Chapter 2, guided principal components analysis (gPCA) is an extension of

principal components analysis (PCA) that replaces the data X matrix in the singular value

decomposition (SVD) of PCA with Y′X such that

Y′X = UDV′

where Y is an n× b indicator matrix where n denotes sample and b denotes batch. Each of

the k = 1, . . . , b batches is comprised of nk observations such that
∑

k nk = n. The indicator

matrix consists of b blocks with nk rows for k = 1, . . . , b, and k columns where, for each

block,

Yk =

 1 if k = b

0 otherwise .

Performing SVD on Y′X results in a b × b batch loadings matrix U and a p × p probe

loadings matrix V. Large singular values (the diagonal elements of the q×q matrix D where

q = min(n, p)) imply that the batch is important for the corresponding principal component.

gPCA guides the SVD to look for batch effects in the data based on the batch indicator

matrix Y, which can be defined to indicate any type of potential batch effect.

In Chapter 2, we proposed a test statistic δ that quantifies the proportion of variance
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due to batch effects in experimental genomic data. The proportion of total variance due to

the first principal component is taken to be the ratio of the variance of the first principal

component from gPCA to the variance of the first principal component from unguided PCA

δ =
var(XVg1)

var(XVu1)

where g indicates gPCA and u indicates unguided PCA. V is the matrix of probe loadings

resulting from gPCA or PCA, respectively. Large values of δ (values near 1) imply that the

batch effect is large.

To determine whether δ is significantly larger than would be expected by chance, a p-

value is estimated using a permutation distribution created by permuting the batch vector

M = 1000 times so that δpm is computed form = 1, . . . ,M where p indicates the permutation.

Here δpm is the proportion of the total variance due to the first principal component from the

mth permutation from gPCA to the total variance due to the first principal component from

the mth permutation from unguided PCA. A one-sided p-value (testing H0 : δpm = δ versus

H1 : δpm > δ) is estimated as the proportion of times the observed δ was in the extreme tail

of the permutation distribution

p-value =

∑M
m=1 (δpm > δ)

M
.

For more details on gPCA see Chapter 2.

5.2.2 Batch Mean-Centering

Sims et al. [38] introduced batch mean-centering (BMC) as a means of adjusting high-

throughput genomic data for batch effects. BMC simply centers the data within a batch, so
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that the batch means are all zero. This is also referred to as one-way analysis of variance

adjustment by Luo et al. [31]. Mathematically, the batch means across each feature j and

within each batch k are calculated as

x̄jk =
1

nk

nk∑
i=1

xijk .

The data xijk are then adjusted by

x∗ijk = xijk − x̄jk .

Sims et al. [38] found that BMC successfully reduced the amount of between batch (or

dataset) variation, while maintaining the within batch variation, allowing multiple batches

(or datasets) to be further analyzed together, thus increasing the statistical power of future

analyses.

5.2.3 Distance Weighted Discrimination

As described in Chapter 1 Section 1.3.6, distance weighted discrimination (DWD) is a classi-

fication method developed by Marron and Todd [32] that overcomes the data-piling problems

in high dimension low sample size (HDLSS) situations of other methods such as support vec-

tor machines (SVM) [2, 32]. In HDLSS data scenarios, DWD improves generalizability as

well. The binary classification with DWD is well documented [2, 32]; however, the multiclass

case is not as developed. Huang et al. [17, 18] have developed an extension of DWD to

multicategory classification called MDWD and provide an R package DWD that includes mul-

ticlass DWD functionality. DWD can be used to combine multiple datasets while adjusting

for dataset or to adjust for variation due to batch effects. Since our case study datasets have
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more than two batches, the multiclass methods are necessary.

Binary DWD Marron and Todd [32] introduce DWD, focusing on two class linear discrim-

ination, meaning that “the discrimination rule is a simple linear function of the new data

vector.” They introduce a direction vector w and threshold β such that the new data vector

x is assigned to the positive class (+1) when x′w + β ≥ 0, where the two classes have labels

+1 and −1. Marron and Todd [32] introduce a new optimization method that optimizes the

sum of the inverse distances from the data to the separating hyperplane which allows the

distances, ri, to influence the direction vector w.

Marron and Todd [32] let the training data consist of n vectors xi of length p with

corresponding class indicators yi where class is indicated by +1 or −1. Then X is the p× n

matrix with columns xi and y is a length n vector indicating the sample classes. The number

of samples in each class can be written n+ =
∑n

i=1 1{yi=+1} and n− =
∑n

i=1 1{yi=−1} so that

n = n++n−. Marron and Todd [32] let Y be a n×n diagonal matrix with y on the diagonal.

Then, they choose the direction vector (or normal vector) to be w ∈ Rp as the hyperplane

and the position to be β ∈ R. The residual of the ith data point is then

r̄i = yi(x
′
iw + β)

or, in matrix notation,

r̄ = Y(X′w + βe) = YX′w + βy

where e is a length n vector of ones. Ideally, w and β would be chosen such that the residuals

are all positive and relatively large. The vector “w is scaled to have unit norm so that the

residuals measure the signed distances of the points from the hyperplane.” Since the positive
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and negative data might not be able to be separated linearly, an error vector ξ ∈ Rn
+ is added

(and penalized) and the perturbed residuals are

r = YX′w + βy + ξ

Marron and Todd [32] discuss the optimization problem for the DWD approach in depth. In

short, they minimize the sum of the reciprocals of the residuals, perturbed by a penalized

vector ξ, such that

min
r,w,β,ξ

∑
i(1/ri) + Ce′ξ, r = YX′w + βy + ξ, (1/2)w′w = 1/2, r ≥ 0, ξ ≥ 0

where C > 0 is a penalty parameter. They further apply a second-order cone programing

(SCOP) problem, an interior-point method, for optimization. Further details on the opti-

mization methods and choice of the tuning parameter C can be found in Marron and Todd

[32].

Benito et al. [2] provide methodology to produce batch corrected data matrices using

DWD. Their methodology for batch adjustment for binary classes is a) find the DWD direc-

tion vector w; b) project subpopulations in the DWD direction, (v+ = x+w and v− = x−w);

c) compute projected subpopulation means (µ+ =
∑
v+/n+ and µ− =

∑
v−/n−); and

d) shift each subpopulation in the DWD direction by an appropriate amount (found by

subtracting the DWD direction vector multiplied by each projected mean for each gene;

x∗+ = x+−µ+we and x∗− = x−−µ−we where e is a length n vector of ones). This produces

a batch corrected data matrix x∗ which can be used in further analyses.
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Multiclass DWD Huang et al. [18] discuss extending binary DWD to the multicategory

case in their forthcoming paper. They discuss multiple strategies that account for more than

two classes by solving a series of binary problems using One-Versus-One (OVO) or One-

Versus-The-Rest (OVR) approaches of Duda et al. [11] and Hastie et al. [15], respectively,

and introduce a new method that accounts for multiple classes globally. Huang et al. [18]’s

multiclass DWD (MDWD) method address the b class problem which simultaneously pro-

duces b direction vectors. These direction vectors provide the basis of their batch adjustment

method. “The b normal direction vectors determine a subspace which contains each class

mean. [They] move each class in such a way that the class means move to a common point

in this subspace.” The batch adjustment procedure of Huang et al. [18] is

a) find the p× n matrix of MDWD direction vectors w which generates a subspace V ;

b) project the subpopulations (e.g. respective batch subsets) onto that subspace (PVk =

Xkw where PVk is nk × b for each k = 1, . . . , b);

c) compute the coordinates of the subpopulation projected means (µPVk
= 1

nk

∑nk

i=1 PVki ,

essentially, the column means of the projection matrix PVk for each batch k); and

d) shift each subpopulation such that its projected mean is moved in the subspace to a fixed

point which is common to all subpopulations (X∗k = Xk −
(
wµPVk

enk

)′
where enk

is a

1×nk matrix of ones and wµPVk
is an p× 1 matrix of the direction matrix multiplied by

the projected means for batch k).

Since the MDWD direction vectors maximize the separation between the batches and ignore

the variation in the data, MDWD preserves the variation that is not due to batch effects.

Further details on the optimization process of Huang et al. [18] can be found in their paper.
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5.2.4 Empirical Bayes

Empirical Bayes (EB) methods have long been applied to microarray data analysis due to

“their ability to robustly handle high-dimensional data when sample sizes are small”[22].

Johnson et al. [22] extend the EB methods to adjust for batch effects in microarray data

and provide both parametric and non-parametric shrinkage adjustments. Parametric Bayes

assumes data follows a prior probability distribution, and that the parameters of that distri-

bution themselves follow prior distributions. Non-parametric Bayes assumes that the data

follows a prior distribution, but the parameters of the distribution are estimated using the

posterior distribution. There are three basic steps to the EB framework, step 2 of which

varies between parametric (Step 2a) and non-parametric (Step 2b) methods.

The EB frameworks assume the data have been globally normalized and thus normalized

expression values are available for all features and samples. Let the data contain i = 1, . . . , n

samples and k = 1, . . . , b batches where each batch includes nk samples and j = 1, . . . , p

features. We assume the model

Xijk = αj + Y βj + γjk + δjkεijk

where Xijk is the normalized expression data, αj is the overall expression for feature j, Y

is a design matrix of sample conditions (for example, batch), βj is the vector of regression

coefficients corresponding to Y for feature j, γjk are the additive batch effects for batch k for

feature j, and δjk are the multiplicative batch effects for batch k for feature j. The errors,

εijk, are assumed to be normally distributed with mean zero and variance σ2
j .
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Step 1: Standardize the data The first step of the method proposed by Johnson et al.

[22] is to account for bias in the EB estimates due to expression magnitude differences across

features which could cause αj, βj, γjk, and σ2
j to vary across features. To avoid the potential

for bias from this source, the data are standardized gene-wise to have similar mean and

variance as

Zijk =
Xijk − α̂j − Y β̂j

σ̂j

where the model parameters αj, βj, and γjk have been estimated as α̂j, β̂j, and γ̂jk for

k = 1, . . . , b and j = 1, . . . , p. Johnson et al. [22] employ gene-wise ordinary least squares

to estimate the parameters and to make sure the parameters are identifiable, they constrain∑
i niγ̂jk = 0 for all j = 1, . . . , p. The variance can the be estimated as σ̂2

j = 1
N

∑
ik(Xijk −

α̂j − Y β̂j − γ̂jk)2 where N is the total number of samples (N =
∑

k nk).

Step 2a: EB batch effect parameter estimates using parametric empirical priors

The standardized data are assumed to satisfy Zijk ∼ N(γjk, δ
2
jk). The parametric forms of

the prior distributions of the batch effect parameters are assumed to be

γjk ∼ N(Xk, τ
2
k ) and δ2jk ∼ Inverse Gamma(λk, θk)

where the hyperparameters γk, τ
2
k , λk, and θk are estimated empirically using the method

of moments from the standardized data. Johnson et al. [22] chose these prior distributions

due to their conjugacy with the Normal assumption of the standardized data. Based on the

above distributional assumptions, the EB estimates for the batch effects parameters γjk and
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δ2jk are given by the conditional posterior means

γ∗jk =
nkτ̄

2
k γ̂jk + δ2∗jk γ̄k

nkτ̄ 2k + δ2∗jk
and δ2∗jk =

θ̄k + 1
2

∑
i(Zijk − γ∗jk)2

nk

2
+ λ̄k − 1

,

respectively.

Step 2b: EB batch effect parameter estimates using non-parametric empirical

priors The standardized data are assumed to satisfy Zijk ∼ N(γjk, δ
2
jk) as above. We further

assume

γ̂jk =
1

nk

∑
i

Zijk and δ̂2jk =
1

nk − 1

∑
i

(Zijk − γ̂jk)2 .

The batch effect parameters γjk and δ2jk are then estimated using estimates of the posterior

expectations of the batch effect parameters, E[γjk] and E[δ2jk]. We let Zjk be a vector

containing Zijk for i = 1, . . . , nk. Then the posterior expectation of γjk is

E[γjk] =

∫
γjkπ(Zjk, γjk, δ

2
jk)d(γjk, δ

2
jk) (5.1)

given the posterior distribution π(Zjk, γjk, δ
2
jk) of the data Zjk and the batch effect parameters

γjk and δ2jk. Let the unspecified density function for the prior for the parameters γjk and δ2jk be

π(γjk, δ
2
jk) and let the likelihood L(Zjk | γjk, δ2jk) =

∏
i ϕ(Zijk, γjk, δ

2
jk) where ϕ(Zijk, γjk, δ

2
jk)

is the probability density function (pdf) of a random variable distributed N(γjk, δ
2
jk) and

evaluated at Zijk. Equation 5.1 above can then be written

E[γjk] =
1

C(Zjk)

∫
γjkL(Zjk | γjk, δ2jk)π(γjk, δ

2
jk)d(γjk, δ

2
jk) (5.2)
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where C(Zjk) =
∫
L(Zjk | γjk, δ2jk)π(γjk, δ

2
jk)d(γjk, δ

2
jk). Johnson et al. [22] then estimated

both C(Zjk) and the integral in 5.2 using Monte Carlo integration using the empirically

estimated (γjk, δ
2
jk) pairs. These pairs are considered random selections from π(γjk, δ

2
jk).

Finally, if we let wjk′′ = L(Zjk | γ̂jk′′ , δ̂2jk′′) for j′′ = 1, . . . , p, then we can estimate C(Zjk) as

Ĉ(Zjk) = 1
n

∑
j′′ wjk′′ and equation 5.2 can be estimated by

γ∗jk = Ê[γjk] =

∑′′
j wjk′′ γ̂jk′′

nĈ(Zjk)

The same method is used to find the posterior expectation of δ2jk. The non-parametric EB

batch adjustments are then given by

γ∗jk =

∑
j′′ wjk′′ γ̂jk′′∑
j′′ wjk′′

and δ2∗jk =

∑
j′′ wjk′′ δ̂

2
jk′′∑

j′′ wjk′′
.

Step 3: Adjust the data for batch effects The data can now be adjusted using the EB

estimated batch effect parameters as

γ∗ijk =
σ̂j

δ̂∗jk
(Zijk − γ̂∗jk) + α̂j + Y β̂j .

Our test statistic δ can then be applied to the EB batch corrected data γ∗ijk to test whether

EB batch correction successfully corrected the data for batch effects or not.

5.2.5 Evaluation of Batch Effect Correction Methods

To determine if a correction method successfully removed batch effects from the data, our

test statistic δ can be applied where X in Y′X is replaced by the batch corrected matrix of

data. Of the many batch effect correction methods available, few provide a matrix of batch

73



effect corrected data. Although global normalization methods such as fRMA, quantile, and

loess do yield normalized data, they do not correct for probe-specific batch effects. Therefore,

herein, we assess BMC, DWD, and EB and test if they work by using our gPCA test statistic.

5.3 Application Data

5.3.1 Simulation Study

Most often investigators are interested in modeling their data in the presence of a known phe-

notype. Therefore, we simulated data to represent copy number data under three scenarios:

(1) feature data (here, feature denotes probe) with no phenotypic variable; (2) feature data

with a high variance phenotypic variable; and (3) feature data with a low variance phenotypic

variable. As described in Chapter 2, the feature data were generated independently from a

normal distribution with 1000 features and 90 observations. Data with two batches and two

phenotypes were simulated. The proportion of features affected by batch was 0.010 for the

no phenotype scenario, 0.03 for the high variance phenotype scenario, and 0.05 for the low

variance phenotype scenario. Batch means µb1 = 0 and µb2 = 1 and batch variance σb = 0.5

were used to simulate the data. For the scenarios with phenotypic effects, the proportion

of features affected by phenotype was pprop= 0.1 and phenotypic means were µp1 = 0 and

µp2 = 1. The phenotypic variance was σp = 2 for the high variance phenotype scenario

and σp = 0.2 for the low variance phenotype scenario. In all scenarios, batch effect was

simulated independently of phenotype effect. The gPCA test statistic was applied to these

three simulated data sets before and after batch correction using the four batch correction

methods discussed above to evaluate the presence of a batch effect.

An additional simulation was performed that simulated data with a phenotypic effect so

that batch effect and phenotype effect were not independent. These data were simulated
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such that each feature had either no effect, a batch effect, a phenotypic effect, or a batch and

phenotypic effect. We simulated the data so that 50 features had a batch effect, 50 features

had a phenotypic effect, and 100 features had both a batch and phenotypic effect, leaving

800 features with no effect. For feature j, we let

fj = βppjpheno + βbbjbatch + e

where p and b are length p vectors indicating whether each feature had a phenotypic or batch

effect, respectively, pheno and batch are length n vectors giving the phenotype and batch

effect for each sample, and e ∼ N(0, σb) is a random error term. The βp and βb parameters

determine the magnitude of the phenotypic and batch effects, respectively. If feature j has

both a phenotype effect and a batch effect then p = b = 1, if j has only a phenotype effect

then p = 1 and b = 0, if j has only a batch effect then p = 0 and b = 1, and finally if j has

neither effect then p = b = 0. The fj feature vectors for j = 1, . . . , p form our n× p feature

data X. For our simulation, βp = 0.5 and βb = 2, so the batch effect on the features was far

greater than the phenotypic effect. An assessment of the sensitivity to batch correction was

applied to these simulated data as well as the other three simulated data sets.

5.3.2 Case Studies

The four batch correction methods were also applied to two case studies. To adjust for

missing values, mean value imputation was performed on the centered data X prior to PCA.

Filtering For unsupervised learning problems, non-informative features contribute random

noise to distance calculations. The resulting effect is that non-informative features mask use-

ful information provided by informative features. Therefore, non-informative features should

be assigned a zero weight in the clustering algorithm [23]. The simplest implementation for
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assigning a non-zero weight in a cluster analysis is to exclude identified non-informative fea-

tures. This filtering step is applied to genomic data to remove sources of obscuring variation

prior to applying a clustering algorithm. In our simulation studies, we observed higher power

when the proportion of features affected by batch increased, therefore, we filtered our case

study data stringently to keep the most variable or informative features. A variance filter

was applied to the data to remove noise and reduce the number of features. The standard

deviation of each feature was calculated and the 1000 most variable features were retained

[7, 12, 19].

GENEMAM The GENetic Epidemiology of MAMmogr-aphic Density (GENEMAM) study

data included 614 samples from the Minnesota Breast Cancer family study [36]. These sam-

ples were genotyped using the Illumina Human 660 bead-chip array. Samples were processed

over three time periods on 8 plates. Forty-two samples failed quality-control checks from

plates 1-4 due to an Illumina reagent problem and these samples were replated on plate 5,

along with 6 other samples. Samples on plates 6-8 were genotyped at a later date. This

effectively yielded three batches corresponding to the three different runs. Data for all chro-

mosomes were used. Illumina’s GenomeStudio software was used to obtain the Log2 R ratio

(LRR) values. LRR is a measure of relative intensity where R is the sum of the normalized

allelic probe intensities produced by SNP assays and the ratio is of observed R divided by

the expected value [25].

GENOA The GENOA data included 1,418 of the non-Hispanic white adults enrolled in

the Genetic Epidemiology Network of Arteriopathy (GENOA) study of the Family Blood

Pressure Program (FBPP), a study designed to identify germline genetic determinants of

hypertension in multiple ethnic groups. These samples were genotyped on Affymetrix SNP

76



Array 6.0 chips and all samples had contrast QC values greater than 0.4. The PennCNV-Affy

Protocol1 was followed to obtain the LRR values. The analysis focused on chromosome 22

data using the first 10 plates consisting of 703 samples.

5.4 Results

Guided principal components analysis (gPCA) was performed on simulated data under three

scenarios, no phenotypic effect, dichotomous phenotypic effect, and continuous phenotypic

effect, and on the GENEMAM and GENOA case study data. The results of gPCA on the raw

data are shown in Table 5.1(a) and all data have a significant batch effect prior to batch effect

correction. Four batch correction methods, batch mean-centering (BMC), multiclass distance

weighted discrimination (mDWD), non-parametric empirical Bayes (EBn), and parametric

empirical Bayes (EBp), were applied to the raw data. gPCA was again performed on the

batch corrected data and the results are shown in Table 5.1(b-e). The ComBat software

that employs empirical Bayes requires a phenotypic variable which we did not have for

the GENOA case study data or, since it was simulated without one, for the no phenotype

simulation data. For all data sets, BMC and the two EB methods removed a sufficient

amount of batch variation to make it undetectable to our gPCA test statistic δ. The mDWD

method, however, did not remove sufficient batch variation to make it undetectable to δ in

all but the GENEMAM scenario with run time considered as batch.

An analysis of the amount of time each of these methods took to run on the different

data sets was also performed. Table 5.2 gives the run times for each of the analyses. On

the n = 90× p = 1000 simulated data with only 2 batches and 2 phenotypes, all correction

methods took less than 10 seconds to run in all cases. The filtered GENEMAM data (n =

1http://www.openbioinformatics.org/penncnv/penncnv tutorial affy gw6.html
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614× p = 1000 with b = 8 plates) and the filtered GENOA data (n = 703× p = 1000 with

b = 10 plates) with plate indicating batch took somewhat longer to run; however, mDWD

took a prohibitively long time to run on this data (11.7 hours for the GENEMAM data with

run time as batch, 144.4 hours for the GENEMAM data with plate as batch, and 495.6 hours

for the GENOA data with plate as batch).

Table 5.1: Comparison of Batch Correction Methods: test statistic δ and corresponding
p-values before and after batch correction for the three simulated data scenarios with no
phenotypic effect, high variance phenotypic effect, and low variance phenotypic effect, and the
two case study data sets, GENEMAM and GENOA. Batch correction methods used are (b)
batch mean centering, (c) multiclass distance weighted discrimination, (d) non-parametric
empirical Bayes, and (e) parametric empirical Bayes. Test results for the uncorrected data
are given in column (a). A ‘NA’ indicates that that batch correction method was not possible
for that data due to no phenotypic variable available.

(a) Raw (b) BMC (c) mDWD (d) EBn (e) EBp

δ̂ p δ̂ p δ̂ p δ̂ p δ̂ p
No Phenotype 0.901 <0.001 0.068 1.000 0.621 0.815 NA NA NA NA
High Variance Phenotype 0.794 <0.001 0.033 1.000 0.617 0.008 0.323 1.000 0.311 1.000
Low Variance Phenotype 0.687 <0.001 0.018 1.000 0.515 <0.001 0.223 1.000 0.245 0.962
GENEMAM (run time) 0.583 <0.001 0.044 1.000 0.450 0.056 0.227 1.000 0.226 1.000
GENEMAM (plate) 0.599 <0.001 0.050 1.000 0.536 0.012 0.415 1.000 0.395 0.884
GENOA (plate) 0.922 <0.001 0.017 1.000 0.893 <0.001 NA NA NA NA

5.4.1 Batch Correction Sensitivity Analysis

An analysis of the sensitivity to batch correction was performed to compare the features

found significant before and after batch correction. The simulated dataset as described

above with dependent batch and phenotype were used. In our simulated dataset, there were

50 features with a phenotypic effect, 50 features with a batch effect, and 100 features with

both a phenotypic and batch effect. The method of Benjamini and Hochberg [3] for adjusting

for multiple testing was used at a significance level of α = 0.1.
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Table 5.2: Run Time Analysis of Batch Correction Methods. Time is in seconds unless
otherwise noted. Batch correction methods used are (a) batch mean centering, (b) multiclass
distance weighted discrimination, (c) non-parametric empirical Bayes, and (d) parametric
empirical Bayes. A ‘NA’ indicates that that batch correction method was not possible for
that data due to no phenotypic variable available.

(a) BMC (b) mDWD (c) EBn (d) EBp
No Phenotype 0.016 3.790 NA NA
High Variance Phenotype 0.019 4.931 8.428 0.121
Low Variance Phenotype 0.016 3.795 7.364 0.123
GENEMAM (run time) 0.034 11.737a 19.445 0.335
GENEMAM (plate) 0.040 144.355a 32.885 0.555
GENOA (plate) 0.049 495.581a NA NA

aTime in hours.

After fitting a linear model using the lmFit() function with phenotype as the predictor,

the number of significant features in simulated data was assessed using the eBayes() function

in the limma package both prior to batch correction and after batch correction using the

empirical Bayes method of Johnson et al. [22] and the BMC method of Sims et al. [38].

For batch correction, the ComBat() function in the sva package was used and both non-

parametric and parametric empirical Bayes was implemented. BMC was also implemented

using the pamr.batchadjust() function in the pamr package.

Using simulated data, we assessed the effects of correcting for batch on the number of

significant features. Forty-eight of the 150 features had a significant phenotypic effect prior

to batch correction while 148 of the 150 features were significant post-batch correction using

BMC, 149 of the 150 features were significant post-batch correction using EBn, and 148 of

the 150 features were significant post-batch correction using EBp (Table 5.3). This shows

that batch correction allows features with a true phenotypic effect that is masked by batch

to be identified as significant after batch correction.
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Table 5.3: Contingency tables from simulated data with dependent batch and phenotypic
effects that show the number of features truly significant versus those found to be significant
using lmFit() and eBayes() on (a) raw data, (b) batch corrected data using batch mean-
centering (BMC), (c) batch corrected data using non-parametric empirical Bayes (EBn), and
(d) batch corrected data using parametric empirical Bayes (EBp). The rows of the tables
indicate truth and the columns indicate the test results.

Fail to reject Reject
No Phenotype Effect 850 0

True Phenotype Effect 102 48

(a) Raw

Fail to reject Reject
No Phenotype Effect 849 1

True Phenotype Effect 2 148

(b) BMC Corrected

Fail to reject Reject
No Phenotype Effect 848 2

True Phenotype Effect 1 149

(c) EBn Corrected

Fail to reject Reject
No Phenotype Effect 848 2

True Phenotype Effect 2 148

(d) EBp Corrected

5.5 Discussion

Our gPCA δ statistic indicates that BMC and EB batch correction methods successfully

remove the non-biological variation due to batch effects (all p-values > 0.05), but DWD does

not in all cases. Computational time may make the mDWD method additionally unattractive

given the performance of BMC and EB which mitigated the batch effects as desired in much

less time. We note, also, that all data sets had large sample sizes, which is not always possible

in microarray data. Lazar et al. [26] note that, of these four batch correction methods, only

empirical Bayes does not require more than 25 samples to work correctly and that it can

successfully remove batch effects with as few as 5 samples. Our sensitivity to batch correction

analysis additionally shows that data with significant batch effects should be adjusted using

a batch correction method prior to further analyses.
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6 The gPCA Package for Identifying Batch Effects

Batch effects are commonly observed systematic non-biological variation between groups of

samples due to experimental artifacts, such as processing date, lab, or technician. Combining

samples from multiple batches can cause the true biological variation in a high-throughput

experiment to be obscured by variation due to batch.

6.1 Guided Principal Components Analysis

Guided principal components analysis (gPCA) is an extension of principal components anal-

ysis (PCA) that replaces the data X matrix in the singular value decomposition (SVD) of

PCA with Y′X such that

Y′X = UDV′

where Y is an n × b indicator matrix where n denotes sample and b denotes batch. For

k = 1, . . . , b batches, each is comprised of nk observations such that
∑b

k=1 nk = n. The

indicator matrix consists of b blocks with nk rows for k = 1, . . . , b, and k columns where, for

each block,

Yk =

 1 if k = b

0 otherwise .

Performing SVD on Y′X results in a b × b batch loadings matrix U and a p × p probe

loadings matrix V. Large singular values (the diagonal elements of the q×q matrix D where

q = min(n, p)) imply that the batch is important for the corresponding principal component.

gPCA guides the SVD to look for batch effects in the data based on the batch indicator

matrix Y, which can be defined to indicate any type of potential batch effect, such as time

of hybridization, plate, or other experimental artifact.
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In Chapter 2, we proposed a test statistic δ that quantifies the proportion of variance

due to batch effects in experimental genomic data. The proportion of total variance due to

batch is taken to be the ratio of the variance of the first principal component from gPCA to

the variance of the first principal component from unguided PCA

δ =
var(XVg1)

var(XVu1)

where g indicates gPCA and u indicates unguided PCA. V is the matrix of probe loadings

resulting from gPCA or PCA, respectively. Large values of δ (values near 1) imply that the

batch effect is large.

To determine whether δ is significantly larger than would be expected by chance, a p-

value is estimated using a permutation distribution created by permuting the batch vector

M = 1000 times so that δpm is computed form = 1, . . . ,M where p indicates the permutation.

Here δpm is the proportion of the total variance due to the first principal component from the

mth permutation from gPCA to the total variance due to the first principal component from

the mth permutation from unguided PCA. A one-sided p-value (testing H0 : δpm = δ versus

H1 : δpm > δ) is estimated as the proportion of times the observed δ was in the extreme tail

of the permutation distribution

p-value =

∑M
m=1 (δpm > δ)

M
.

For more details on gPCA see Chapter 2.
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6.2 R Package

The gPCA package includes four example data sets, the gPCA.batchdetect() function that

produces the δ statistic and corresponding p-value, and additional visualization functions.

6.2.1 Data

Four data sets are included in the gPCA package, three simulated data sets and one case

study data set. The case study data (data(caseDat)) contains copy number variation data

with n = 500 observations and p = 1000 features that were retained after a variance filter

was applied.

The simulated data represents copy number data under three scenarios: (1) feature data

(here, feature denotes probe) with no phenotypic variable (data(nopheDat)); (2) feature

data with a high variance phenotypic variable (data(highpheDat)); and (3) feature data with

a low variance phenotypic variable (data(lowpheDat)). The feature data were generated

independently from a normal distribution with 1000 features and 90 observations. Data

with two batches and two phenotypes were simulated. Batch means µb1 = 0 and µb2 = 1 and

batch variance σb = 0.5 were used to simulate the data. The proportion of features affected

by batch was bprop = 0.01 for the no phenotype scenario and bprop = 0.05 for the high and

low variance phenotype scenarios.

For the scenarios with phenotypic effects, the proportion of features affected by phenotype

was pprop= 0.1. The phenotypic means were µp1 = 0 and µp2 = 1 and the phenotypic vari-

ance was σp = 2 for the high variance phenotype scenario and σp = 0.2 for the low variance

phenotype scenario. Chapter 3 provides an in depth description of the data simulations.

For all four data sets, the first column of the data frame containing the data contains

the batch vector which indicates batch for the n observations. The rest of the data frame
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contains the uncentered feature data.

6.2.2 Application

The δ statistic, corresponding p-value from the permutation test, and various other measures

are output by the gPCA.batchdetect() function. The syntax for this function is

> out<-gPCA.batchdetect(x=data,batch=batch,center=FALSE,

+ filt=NULL,nperm=1000,seed=13)

where x is the n×pmatrix of feature data X, batch is a length n vector indicating batch which

is used to calculate the Y matrix for gPCA. The option center is a logical indicating whether

or not data is centered where center=TRUE if the data x is already centered. nperm indicates

how many permutations will be used for calculating the permutation test statistic (defaults

to 1000), filt gives the number of features to retain when applying a variance-based filter

to the data (defaults to NULL indicating no filter applied), and seed sets set.seed(seed).

Note that x must be complete data (i.e. contain no missing values) and the class of x must

be "matrix". The function, when run actively, will ask if mean-value imputation should be

performed for any missing values, but when run passively will cause an error.

The gPCA.batchdetect() function outputs the value of the statistic δ, the associated

p-value, the batch vector batch, the M values of δp resulting from the permutation test, the

proportion of variance associated with the first principal component from unguided (PCu)

and guided (PCg) PCA, as well as the cumulative variance associated with all n principal

components resulting from unguided PCA (cumulative.var.x) and the cumulative variance

associated with all b principal components resulting from gPCA (cumulative.var.g).

The gPCA package also has three functions to visualize the data. The function gDist

produces a density plot of the δp values output by the gPCA.batchdetect function. The
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function PCplot produces principal component plots of either the unguided or guided princi-

pal components and allows for either directly comparing the first two principal components,

or comparing the first npcs principal components. Finally, the function CumulativeVarPlot

produces a plot of the cumulative variance from guided or unguided PCA.

> gDist(out)

> PCplot(out,ug="guided",type="1v2")

> PCplot(out,ug="guided",type="comp",npcs=3)

> CumulativeVarPlot(out,ug="unguided",col="blue")

6.3 Example

We will discuss a brief example using caseDat data from the gPCA package. We first load the

data caseDat and assign the first column to batch. The rest of the data frame is the feature

data, so we assign that to dat and re-classify it as a matrix. Since the caseDat feature

data is already centered, we set center=TRUE. The value of the test statistic δ and the

corresponding p-value are easily printed and the percent of total variation that is explained

by batch is calculated.

> data(caseDat)

> batch<-caseDat$batch

> dat<-as.matrix(caseDat[,-1])

> out<-gPCA.batchdetect(x=dat,batch=batch,center=TRUE)

> out$delta ; out$p.val

[1] 0.5529794

[1] "<0.001"

> ((out$varPCg1-out$varPCu1)/out$varPCg1)*100

[1] 96.2252
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> gDist(out)
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Figure 6.1: Distribution plot of δp values

We can also plot the distribution of the δp values from the permutation test and see where

our test statistic δ (represented by the red dashed line) falls in comparison (Figure 6.1).

Plots of the first versus the second principal components from gPCA can be plotted (Figure

6.2) as well as a sample of the first few principal comparisons (Figure 6.3).
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> par(mai=c(0.8,0.8,0.1,0.1),cex=0.8)

> PCplot(out,ug="guided",type="1v2")
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Figure 6.2: Principal components plot of first two principal components from gPCA

6.4 Conclusion

The gPCA package provides functionality to test for batch effects in high-throughput genomic

data using the function gPCA.batchdetect(). The ability to detect batch effects in genomic
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> par(mai=c(0.65,0.65,0.1,0.1),cex=0.8)

> PCplot(out,ug="guided",type="comp",npcs=3)
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Figure 6.3: Principal components plots of the first three principal components with density
plots of the principal components on the diagonal.

data allows further batch correction procedures such as batch mean-centering [38], distance

weighted discrimination (DWD) [2, 17, 18, 32], or empirical Bayes [22], to be employed to

attempt to remove the unwanted variation due to batch effects. However, correcting for
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batch when there is no significant batch effect may result in removing biological variation

instead of the systematic non-biological variation due to batch. This package provides the

ability to perform a test to detect batch effects.

6.5 Session Info

> sessionInfo()

R version 2.15.2 (2012-10-26)

Platform: x86_64-apple-darwin9.8.0/x86_64 (64-bit)

locale:

[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] gPCA_1.0

loaded via a namespace (and not attached):

[1] tools_2.15.2
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7 Discussion

Non-experimental variation due to the occurrence of batch effects in high-throughput ge-

nomic data is a common problem that can have a serious impact on statistical testing and

on conclusions made by high-throughput experiments. Guided principal components analysis

can be used to test for batch effects in large and messy data such as expression data, CNV

data, methylation data, etc., by computing the SVD while taking batch into account. Princi-

pal components plots are a standard method of looking for batch effects in high-throughput

data. A gPCA plot allows an investigator to specifically identify batch effects that are poten-

tially hidden in a PCA plot. For example a PCA plot might not show any difference between

batches if batch is not the largest source of variation, however, gPCA plots will. The PCA

and gPCA plots of the GENEMAM data both show the batch separation because batch is

the largest source of variation in this data. The PCA plot of the GENOA data does not

show any real separation in the data, however the gPCA plot shows that plate 4 separates

from the rest of the data indicating that there is a significant batch effect. In both instances,

further quantitative analyses are used to confirm that there is a significant batch effect.

The Y matrix in the gPCA analysis can be formed by considering any combination of

variables. We do note that with the Y matrix coding multiple variables, the variance ascribed

to the first principal component of the gPCA may incorporate multiple sources, which would

be difficult to disentangle. To estimate the variance attributed to multiple sources, gPCA

could be used to examine each one by defining Y in separate analyses. Note that gPCA is

dependent on knowing how to define potential batch effects. If this is not knownthen the

gPCA δ statistic can not be used. If batch is misspecified by the investigator, provided the
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misspecified batch effect indicator matrix has no relationship to the experimental design,

then the test will likely not reject the null hypothesis because Type I error was close at the

nominal 0.05 level.

From our simulation studies in Chapter 3, the Type I error of our statistic is close to

nominal 0.05 level and power is reasonably good when an adequate proportion of the features

are affected by batch. A simulation analysis when the proportion of features affected by batch

was high (between 50 and 90%) was also performed and we found that the estimated power

was 100% (Table 3.4). We also note that features were simulated as independent in our

simulation studies. Any correlation between features in case study data is likely due to

pathways and not probe design which affects batch.

In Chapter 4, we applied our statistic to two different sets of copy number variation data,

one with obvious and known batch effects (GENEMAM) and one with less obvious batch

effects (GENOA). In both we were able to use gPCA to determine plates with large variation

from the other plates. gPCA in the GENEMAM data allowed us to see that plate 3 had

potential quality issues which we investigated further by looking at heatmaps of PC1 and

PC2 (Figure 4.2). Based on these we saw that plate 3 did indeed have a quality problem that

was associated with sample well location on the plate. For the GENOA data, gPCA showed

that there was a significant batch effect that identified plate 4 as a batch that unguided PCA

did not recognize since batch effects did not dominate the variance. For both sets of data,

our δ statistic was highly significant indicating the presence of batch effects.

Scaling of data is a common statistical practice prior to data analysis; however, in the

case of microarray data, scaling of the batch identifier matrix Y by batch sample size nk

for each batch k is not in general useful for balanced experiments. However, when some
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batches have far more samples than others, scaling of Y is a useful tool to correct for the

imbalance. In the case of the GENEMAM data, while plates 5 and 8 had half as many or

fewer samples than the rest of the plates, the effect of scaling Y was minimal (δ = 0.5576;

p−value < 0.001), though it did have an effect on the δ statistic, but not on the significance

of the batch effects. Simulation analyses varying the sizes of the batches found no difference

between scaling Y by sample size or not (Table 3.6). For microarray data, we do not want to

scale the data matrix X since all the variables, probes in our case, are already on the same

scale and scaling X would only serve to adjust the variance. If the variances are smoothed

then we may miss an important difference between variables or batches.

gPCA can be used on other problems and types of data as well, including B-allele fre-

quency data, expression data, and RNA-Seq data. Since preprocessing of microarrays is time

consuming, expensive, and with abundant systematic errors, the ability to discover and ad-

just for these errors is important. Our test statistic δ that employs gPCA allows one to test

for significant sources of systematic errors, or batch effects, in all types of high-throughput

data.

After detecting a batch effect in high-throughput data, the non-experimental variation

due to batch effects must be adjusted for prior to further analysis. Table 1.1 lists various

methods for adjusting for batch effect in analysis and these methods were also discussed in

Chapter 1. However, they do not incorporate a procedure for identifying whether a batch

effect is truly present. The table also provides articles that have implemented these methods

and corresponding data types on which they have been implemented. Using both simulated

and real data (see Chapter 5), we further assessed the effects of correcting for batch on

the number of significant features. In our simulated dataset, there were 50 features with a

92



phenotypic effect, 50 features with a batch effect, and 100 features with both a phenotypic

and batch effect. After fitting a linear model using the lmFit() function with phenotype

as the predictor, the number of significant features in simulated data was assessed using

the eBayes() function in the limma package both prior to batch correction and after batch

correction using the batch mean-centering method of Sims et al. [38] and the empirical

Bayes method of Johnson et al. [22] and the method of Benjamini and Hochberg [3] for

adjusting for multiple testing letting α = 0.1. Forty-eight of the 150 features had a significant

phenotypic effect prior to batch correction while 148 of the 150 features were significant post-

batch correction (Table 5.3). This shows that batch correction allows features with a true

phenotypic effect that is masked by batch to be identified as significant after batch correction.

Luo et al. [31] looked at the impact of batch effect removal on cross-batch prediction

performance and Lazar et al. [26] and Chen et al. [8] provide surveys of some of the many

methods of batch effect removal. Our proposed test statistic is useful for identifying whether

any of the listed batch adjustment methods should be applied prior to statistical analysis

and, after batch correction by a given method, whether that method successfully adjusted

the data for batch effects. In Chapter 5 we applied four methods from Table 1.1, batch-mean

centering (BMC), distance weighted discrimination (DWD), and both non-parametric and

parametric versions of empirical Bayes (EBn and EBp), to three simulated data sets and

the variance filtered (to 1000 features) GENEMAM and GENOA data sets. All five data

sets had significant batch effects prior to batch correction, and we found that post-batch

correction, BMC and the empirical Bayes methods successfully adjusted the data for batch

effects, while DWD did not. How well each batch effect correction method works, in terms

of retaining the biological variation of the experiment, and the types of data for which each
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method is best suited, have been previously addressed by several articles [8, 26, 31] and is

not in the scope of this paper.

We have provided an R package (discussed in Chapter 6) that provides functions that

perform gPCA and plot various visualizations of the results, as well as example data sets.

This package should make testing for the existence of batch effects in high-throughput ge-

nomic data considerably easier since it provides publicly available, user-friendly functions to

test for batch effects using the gPCA δ statistic and to plot corresponding PCA plots and δ

density plots.

The research presented in this thesis brought up several additional lines of research.

Potential topics for future work include application of our statistic to other data types such

as RNA sequencing data, development of a new batch correction method based on gPCA, and

extension of gPCA into other types of analyses such as toxicological dose-response/exposure

data as X with mixture group indicated by Y instead of batch.

94



Bibliography

[1] Alter, O., Brown, P. O., and Botstein, D. Singular value decomposition for genome-wide
expression data processing and modeling. Proc Natl Acad Sci U S A, 97(18):10101–6,
Aug 2000.

[2] Benito, M., Parker, J., Du, Q., Wu, J., Xiang, D., P., C. M., and Marron, J. S. Adjust-
ment of systematic microarray data biases. Bioinformatics, 20(1):105–114, 2004.

[3] Benjamini, Y. and Hochberg, Y. Controlling the false discovery rate: A practical and
powerful approach to multiple testing. Journal of the Royal Statistical Society. Series
B (Methodological), 57(1):pp. 289–300, 1995.

[4] Bolstad, B. M., Irizarry, R. A., Astrand, M., and Speed, T. P. A comparison of normal-
ization methods for high density oligonucleotide array data based on variance and bias.
Bioinformatics, 19(2):185–93, Jan 2003.
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A Appendix

A.1 R Code

This appendix contains pertinent R code from the analyses in this dissertation.

A.1.1 Chapter 1: Introduction

The following syntax reproduces Figure 1.1

> ## Full GENEMAM data (mean-value imputed)

> ## Apply Pearson's Correlation as distance measure &

> ## perform hierarchical clustering

> rho.x<-cor(t(x2.imp))

> dist.mx.x<-as.dist(1-rho.x)

> out.hclust.x<-hclust(dist.mx.x,method="average")

> out.hclust.x$labels<-batch

> plot(out.hclust.x,main="",xlab=expression(1-rho))

A.1.2 Chapter 3: Simulation Study

Three functions were used to produce the no phenotype, high variance phenotype, and low

variance phenotype data and perform the permutation test, which was then repeated to

estimate Type I error and Power. The syntax of the function to perform the no phenotype

simulation is

> no.phe

function (n = 90, p = 1000, b = 2, s, bprop, beffect, scenario,

niter = 500, nperm = 1000, error = FALSE, plotout, plots = FALSE)

{

casename <- "nophe"

plotcase <- "No Phenotype"

set.seed(13)

batch <- rep(1:b, each = n/b)

batch <- sample(batch, replace = FALSE)
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permute <- matrix(NA, ncol = length(batch), nrow = 50000)

for (j in 1:50000) {

permute[j, ] <- sample(batch, replace = FALSE)

}

p.val <- numeric()

for (k in 1:niter) {

print(paste("k=", k, sep = ""))

samp <- sample(1:dim(permute)[1], nperm, replace = FALSE)

permute.samp <- permute[samp, ]

if (error == TRUE) {

x <- rmvnorm(n, mean = rep(0, p), sigma = diag(s,

nrow = p))

}

else {

bats <- array(dim = c(n/b, p, b))

bats[, , 1] <- rmvnorm(n/b, mean = rep(beffect[1],

p), sigma = diag(s, nrow = p))

for (i in 2:b) {

bats[, , i] <- rmvnorm(n/b, mean = c(rep(beffect[1],

p - (bprop * p)), rep(beffect[i], (bprop *

p))), sigma = diag(s, nrow = p))

}

bat <- data.frame(matrix(nrow = n, ncol = p))

for (i in 1:b) {

bat[which(batch == i), ] <- bats[, , i]

}

x <- bat

}

x2 <- scale(x, scale = F)

svd.out <- svd(x2)

var.x <- var(x2 %*% svd.out$v)

total.unguided.var <- sum(diag(var.x))

PC.u <- diag(var.x)[1]/sum(diag(var.x))

y.bat <- matrix(0, n, b)

for (j in 1:b) {

y.bat[, j] <- ifelse(batch == j, 1, 0)

}

y2.bat <- scale(y.bat, scale = F)

100



gsvd.out.bat <- svd(t(y2.bat) %*% x2)

var.x.bat <- var(x2 %*% gsvd.out.bat$v)

total.guided.batch <- sum(diag(var.x.bat))

PC.g <- diag(var.x.bat)[1]/sum(diag(var.x.bat))

delta <- diag(var.x.bat)[1]/diag(var.x)[1]

pc.plot <- function(pc1.x, pc2.x, pc1.bat, pc2.bat) {

outplot <- paste(plotout, "PCplots/", sep = "")

png(file = paste(outplot, casename, "/scenario",

scenario, "/PCplots_", k, ".png", sep = ""),

height = 500, width = 1000)

par(mfrow = c(1, 2))

plot(pc1.x, pc2.x, col = c("red", "blue")[batch],

main = "Unguided", xlab = "PC1", ylab = "PC2")

legend(x = "bottom", legend = c("b1", "b2"), col = c("red",

"blue")[unique(batch)], inset = 0.03)

plot(pc1.bat, pc2.bat, col = c("red", "blue")[batch],

main = "Y=batch", xlab = "PC1", ylab = "PC2")

legend(x = "bottom", legend = c("b1", "b2"), col = c("red",

"blue")[unique(batch)], inset = 0.03)

dev.off()

}

if (plots == TRUE)

pc.plot(x2 %*% svd.out$v[, 1], x2 %*% svd.out$v[,

2], x2 %*% gsvd.out.bat$v[, 1], x2 %*% gsvd.out.bat$v[,

2])

delta.p <- numeric()

for (i in 1:nperm) {

batch.p <- permute.samp[i, ]

y.bat.p <- matrix(0, n, b)

for (j in 1:b) {

y.bat.p[, j] <- ifelse(batch.p == j, 1, 0)

}

y2.bat.p <- scale(y.bat.p, scale = F)

gsvd.out.bat.p <- svd(t(y2.bat.p) %*% x2)

var.x.bat.p <- var(x2 %*% gsvd.out.bat.p$v)

total.guided.batch.p <- sum(diag(var.x.bat.p))

PC.g.p <- diag(var.x.bat.p)[1]/sum(diag(var.x.bat.p))

delta.p[i] <- diag(var.x.bat.p)[1]/diag(var.x)[1]
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}

p.val[k] <- sum(delta < delta.p)/length(delta.p)

dens.plot <- function(stat, stat.p) {

outplot2 <- paste(plotout, "DensityPlots/", sep = "")

png(file = paste(outplot2, casename, "/scenario",

scenario, "/DensityPlot_", k, ".png", sep = ""),

height = 500, width = 500)

plot(density(stat.p), main = paste("Distribution of Delta for a ",

plotcase, "\n(Scenario", scenario, "; delta=",

round(stat, 3), "; p-value=", round(p.val[k],

3), ")", sep = ""), xlim = c(min(stat.p, stat),

max(stat.p, stat)))

abline(v = stat, col = "red")

dev.off()

}

if (plots == TRUE) {

dens.plot(delta, delta.p)

}

}

prop <- sum(p.val < 0.05)/length(p.val)

if (error == FALSE) {

mat <- data.frame(s, bprop, prop)

rownames(mat) <- paste("Scenario", scenario)

list(mat = mat, sigma = s, bprop = bprop, beffect = beffect,

prop = prop, p.val = p.val, delta = delta, delta.p = delta.p,

batch = batch)

}

else {

mat <- data.frame(s, "-", prop)

rownames(mat) <- paste("Scenario", scenario)

list(mat = mat, sigma = s, prop = prop, p.val = p.val,

delta = delta, delta.p = delta.p, batch = batch)

}

}

The syntax of the function to perform simulations with a true phenotype is

> di.phe

function (n = 90, p = 1000, b = 2, nphe = 2, s, sp = 2, bprop,
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beffect, pprop = 0.1, peffect = c(0, 2), scenario, niter = 500,

nperm = 1000, error = FALSE, plots = FALSE, plotout)

{

casename <- "diphe"

plotcase <- "Dichotomous Phenotype"

set.seed(13)

batch <- rep(1:b, each = n/b)

batch <- sample(batch, replace = FALSE)

pheno <- rep(1:nphe, each = n/nphe)

permute <- matrix(NA, ncol = length(batch), nrow = 50000)

for (j in 1:50000) {

permute[j, ] <- sample(batch, replace = FALSE)

}

p.val <- numeric()

for (k in 1:niter) {

print(paste("k=", k, sep = ""))

samp <- sample(1:dim(permute)[1], nperm, replace = FALSE)

permute.samp <- permute[samp, ]

phes <- array(dim = c(n/nphe, p, nphe))

phes[, , 1] <- rmvnorm(n/nphe, mean = rep(peffect[1],

p), sigma = diag(sp, nrow = p))

for (i in 2:nphe) {

phes[, , i] <- rmvnorm(n/nphe, mean = c(rep(peffect[i],

pprop * p), rep(peffect[1], p - pprop * p)),

sigma = diag(sp, nrow = p))

}

phe <- data.frame(matrix(nrow = n, ncol = p))

for (i in 1:nphe) {

phe[which(pheno == i), ] <- phes[, , i]

}

if (error == TRUE) {

x <- phe

}

else {

bats <- array(dim = c(n/b, p, b))

bats[, , 1] <- rmvnorm(n/b, mean = rep(beffect[1],

p), sigma = diag(s, nrow = p))

for (i in 2:b) {
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bats[, , i] <- rmvnorm(n/b, mean = c(rep(beffect[1],

p - (bprop * p)), rep(beffect[i], (bprop *

p))), sigma = diag(s, nrow = p))

}

bat <- data.frame(matrix(nrow = n, ncol = p))

for (i in 1:b) {

bat[which(batch == i), ] <- bats[, , i]

}

x <- phe + bat

}

x2 <- scale(x, scale = F)

svd.out <- svd(x2)

var.x <- var(x2 %*% svd.out$v)

total.guided <- sum(diag(var.x))

PC.u <- diag(var.x)[1]/sum(diag(var.x))

y.bat <- matrix(0, n, b)

for (j in 1:b) {

y.bat[, j] <- ifelse(batch == j, 1, 0)

}

y2.bat <- scale(y.bat, scale = F)

gsvd.out.bat <- svd(t(y2.bat) %*% x2)

var.x.bat <- var(x2 %*% gsvd.out.bat$v)

total.guided.batch <- sum(diag(var.x.bat))

PC.g <- diag(var.x.bat)[1]/sum(diag(var.x.bat))

delta <- diag(var.x.bat)[1]/diag(var.x)[1]

pc.plot <- function(pc1.x, pc2.x, pc1.bat, pc2.bat) {

outplot <- paste(plotout, "PCplots/", sep = "")

png(file = paste(outplot, casename, "/scenario",

scenario, "/PCplots_", k, ".png", sep = ""),

height = 500, width = 1000)

par(mfrow = c(1, 2))

plot(pc1.x, pc2.x, col = c("red", "blue")[batch],

pch = pheno, main = "Unguided", xlab = "PC1",

ylab = "PC2")

legend(x = "bottom", legend = c("b1p1", "b2p1", "b1p2",

"b2p2"), col = c("red", "blue")[unique(batch)],

pch = rep(1:2, each = 2), inset = 0.03)

plot(pc1.bat, pc2.bat, col = c("red", "blue")[batch],
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pch = pheno, main = "Y=batch", xlab = "PC1",

ylab = "PC2")

legend(x = "bottom", legend = c("b1p1", "b2p1", "b1p2",

"b2p2"), col = c("red", "blue")[unique(batch)],

pch = rep(1:2, each = 2), inset = 0.03)

dev.off()

}

if (plots == TRUE)

pc.plot(x2 %*% svd.out$v[, 1], x2 %*% svd.out$v[,

2], x2 %*% gsvd.out.bat$v[, 1], x2 %*% gsvd.out.bat$v[,

2])

delta.p <- numeric()

for (i in 1:nperm) {

batch.p <- permute.samp[i, ]

y.bat.p <- matrix(0, n, b)

for (j in 1:b) {

y.bat.p[, j] <- ifelse(batch.p == j, 1, 0)

}

y2.bat.p <- scale(y.bat.p, scale = F)

gsvd.out.bat.p <- svd(t(y2.bat.p) %*% x2)

var.x.bat.p <- var(x2 %*% gsvd.out.bat.p$v)

total.guided.batch.p <- sum(diag(var.x.bat.p))

PC.g.p <- diag(var.x.bat.p)[1]/sum(diag(var.x.bat.p))

delta.p[i] <- diag(var.x.bat.p)[1]/diag(var.x)[1]

}

p.val[k] <- sum(delta < delta.p)/length(delta.p)

dens.plot <- function(stat, stat.p) {

outplot2 <- paste(plotout, "DensityPlots/", sep = "")

png(file = paste(outplot2, casename, "/scenario",

scenario, "/DensityPlot_", k, ".png", sep = ""),

height = 500, width = 500)

plot(density(stat.p), main = paste("Distribution of Delta for a ",

plotcase, "\n(Scenario", scenario, "; delta=",

round(stat, 3), "; p-value=", round(p.val[k],

3), ")", sep = ""), xlim = c(min(stat.p, stat),

max(stat.p, stat)))

abline(v = stat, col = "red")

dev.off()
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}

if (plots == TRUE) {

dens.plot(delta, delta.p)

}

}

prop <- sum(p.val < 0.05)/length(p.val)

if (error == FALSE) {

mat <- data.frame(s, sp, pprop, bprop, prop)

rownames(mat) <- paste("Scenario", scenario)

list(mat = mat, s = s, sp = sp, bprop = bprop, beffect = beffect,

peffect = peffect, pprop = pprop, prop = prop, p.val = p.val,

delta = delta, delta.p = delta.p, batch = batch,

pheno = pheno)

}

else {

mat <- data.frame(s, sp, pprop, "-", prop)

rownames(mat) <- paste("Scenario", scenario)

list(mat = mat, s = s, sp = sp, pprop = pprop, peffect = peffect,

pprop = pprop, prop = prop, p.val = p.val, delta = delta,

delta.p = delta.p, batch = batch, pheno = pheno)

}

}

Example calls of these functions is

> out.nopheno<-no.phe(n=90,p=1000,b=2,s=0.5,bprop=0.01,beffect=c(0,1),

+ scenario=1,niter=500,nperm=1000,error=FALSE,plots=FALSE)

> ##

> out.highpheno<-di.phe(n=90,p=1000,b=2,nphe=2,s=0.5,sp=2,bprop=0.01,

+ beffect=c(0,1),scenario=2,niter=500,nperm=1000,error=FALSE,plots=FALSE)

> ##

> out.lowpheno<-di.phe(n=90,p=1000,b=2,nphe=2,s=0.5,sp=0.2,bprop=0.01,

+ beffect=c(0,1),scenario=3,niter=500,nperm=1000,error=FALSE,plots=FALSE)

These calls would be repeated using the various parameters listed in Tables 3.1 and 3.2.

The following sim.data() function is used to simulate data for any of the three scenarios.

It produces a single data set that can be used in further analyses.
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> sim.data

function (grid, g, b = 2, s = 0.5, bprop, beffect = c(0, 1),

nphe = NULL, sp = NULL, pprop = NULL, peffect = NULL)

{

n = grid$n[g]

p = grid$p[g]

pheno.genes = NULL

if (length(beffect) != b) {

stop("Number of batch effect means does not equal the number of batches.")

}

batch <- rep(1:b, each = n/b)

batch <- sample(batch, replace = FALSE)

pheno <- rep(1:nphe, each = n/nphe)

print("Computing bat matrix.")

bats <- list()

bats[[1]] <- rmvnorm(n/b, mean = rep(beffect[1], p), sigma = diag(s,

nrow = p))

for (i in 2:b) {

bats[[i]] <- rmvnorm(n/b, mean = c(rep(beffect[1], p -

(bprop * p)), rep(beffect[i], (bprop * p))), sigma = diag(s,

nrow = p))

}

bat <- data.frame(matrix(nrow = n, ncol = p))

for (i in 1:b) {

bat[which(batch == i), ] <- bats[[i]]

}

x <- bat

print("Computing phe matrix.")

phes <- list()

phes[[1]] <- rmvnorm(n/nphe, mean = rep(peffect[1], p), sigma = diag(sp,

nrow = p))

for (i in 2:nphe) {

phes[[i]] <- rmvnorm(n/nphe, mean = c(rep(peffect[i],

pprop * p), rep(peffect[1], p - pprop * p)), sigma = diag(sp,

nrow = p))

}

phe <- data.frame(matrix(nrow = n, ncol = p))

for (i in 1:nphe) {
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phe[which(pheno == i), ] <- phes[[i]]

}

x <- x + phe

print("Scaling X matrix.")

x2 <- scale(x, scale = F)

list(batch = batch, x = x, x2 = x2, n = n, p = p, b = b,

s = s, bprop = bprop, beffect = beffect, nphe = nphe,

sp = sp, pprop = pprop, peffect = peffect, pheno = pheno,

phes = phes, pheno.genes = pheno.genes)

}

Example calls of this function to produce data with a high variance phenotypic effect is

> grid<-expand.grid(n=90,p=1000)

> data<-sim.data(grid=grid,g=1,b=2,s=0.5,bprop=0.05,beffect=c(0,1),

+ nphe=2,sp=2,pprop=0.1,peffect=c(0,1))

[1] "Computing bat matrix."

[1] "Computing phe matrix."

[1] "Scaling X matrix."

> names(data)

[1] "batch" "x" "x2" "n" "p"

[6] "b" "s" "bprop" "beffect" "nphe"

[11] "sp" "pprop" "peffect" "pheno" "phes"

[16] "pheno.genes"

> dim(data$x)

[1] 90 1000

This call can be repeated using the parameters listed in Tables 3.1 and 3.2 to produce

simulated data sets.

To perform gPCA and produce our statistic δ, the function gPCA.batchdetect() was

used. This function is also found in our R package that is discussed in Chapter 6.
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> gPCA.batchdetect

function (x, batch, filt = NULL, nperm = 1000, center = FALSE,

scaleY = FALSE, seed = 13)

{

set.seed(seed)

permute <- matrix(NA, ncol = length(batch), nrow = 50000)

for (j in 1:50000) {

permute[j, ] <- sample(batch, replace = FALSE)

}

samp <- sample(1:dim(permute)[1], nperm, replace = FALSE)

permute.samp <- permute[samp, ]

if (center == FALSE) {

x2 <- scale(x, center = T, scale = F)

}

else {

x2 <- x

}

if (sum(is.na(x)) > 0) {

missing <- readline(prompt = "Missing values detected. Continue

with mean value imputation? (Note this may take a very

long time, but it will automatically save in your working

dir so you don't have to ever run it again.) [y/n] ")

if (substr(missing, 1, 1) == "n") {

stop("The PC cannot be calculated with missing values.")

}

else {

x2.imp <- ifelse(is.na(x2), rowMeans(x2, na.rm = TRUE),

x2)

save(x2.imp, "x2.imputed.RData")

}

}

else {

x2.imp <- x2

}

if (is.null(filt)) {

data.imp <- x2.imp

}

else {
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sd <- apply(x2.imp, 2, sd)

rank <- rank(sd)

keep <- (1:length(sd))[rank %in% (length(rank) - filt +

1):length(rank)]

data.imp <- x2.imp[, keep]

}

n <- dim(data.imp)[1]

p <- dim(data.imp)[2]

b <- length(unique(batch))

n

p

b

if (length(batch) != n) {

stop("Matrices do not conform: length(batch)!=n")

}

y <- matrix(nrow = length(batch), ncol = length(unique(batch)))

for (j in 1:length(unique(batch))) {

y[, j] <- ifelse(batch == j, 1, 0)

}

if (scaleY == FALSE) {

y2 <- scale(y, center = T, scale = F)

}

else {

ys <- matrix(nrow = length(batch), ncol = length(unique(batch)))

nk <- apply(y, 2, sum)

for (j in 1:length(unique(batch))) {

ys[, j] <- ifelse(batch == j, 1/nk[j], 0)

}

y2 <- scale(ys, center = F, scale = F)

}

svd.x <- svd(data.imp)

PC.u <- data.imp %*% svd.x$v

var.x <- var(PC.u)

varPCu1 <- diag(var.x)[1]/sum(diag(var.x))

cumulative.var.u <- numeric()

for (i in 1:dim(var.x)[1]) {

cumulative.var.u[i] <- sum(diag(var.x)[1:i])/sum(diag(var.x))

}
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svd.bat <- svd(t(y2) %*% data.imp)

PC.g <- data.imp %*% svd.bat$v

var.bat <- var(PC.g)

varPCg1 <- diag(var.bat)[1]/sum(diag(var.bat))

cumulative.var.g <- numeric()

for (i in 1:dim(var.bat)[1]) {

cumulative.var.g[i] <- sum(diag(var.bat)[1:i])/sum(diag(var.bat))

}

delta <- diag(var.bat)[1]/diag(var.x)[1]

delta.p <- numeric()

for (i in 1:nperm) {

batch.p <- permute.samp[i, ]

y <- ys <- matrix(nrow = length(batch.p), ncol = length(unique(batch.p)))

for (j in 1:length(unique(batch.p))) {

y[, j] <- ifelse(batch.p == j, 1, 0)

}

if (scaleY == FALSE) {

y2 <- scale(y, center = T, scale = F)

}

else {

nk <- apply(y, 2, sum)

for (j in 1:length(unique(batch.p))) {

ys[, j] <- ifelse(batch.p == j, 1/nk[j], 0)

}

y2 <- scale(ys, center = F, scale = F)

}

svd.bat.p <- svd(t(y2) %*% data.imp)

var.bat.p <- var(data.imp %*% svd.bat.p$v)

PC.g.p <- diag(var.bat.p)[1]/sum(diag(var.bat.p))

delta.p[i] <- diag(var.bat.p)[1]/diag(var.x)[1]

}

p.val <- sum(delta < delta.p)/length(delta.p)

p.val

p.val <- ifelse(p.val == 0, "<0.001", round(p.val, 3))

out <- list(delta = delta, p.val = p.val, delta.p = delta.p,

batch = batch, filt = filt, n = n, p = p, b = b, PCg = PC.g,

PCu = PC.u, varPCu1 = varPCu1, varPCg1 = varPCg1, nperm = nperm,

cumulative.var.u = cumulative.var.u, cumulative.var.g = cumulative.var.g)
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}

If missing values are detected in the data matrix, R will print the prompt “Missing values
detected. Continue with mean value imputation? (Note this may take a very long time, but
it will automatically save in your working dir so you don’t have to ever run it again.) [y/n]”.
If R is being run interactively, then the user has the ability to input “y” or “’n” for ‘yes’ or
‘no’, otherwise, an error occurs. An example call to this function is

> out<-gPCA.batchdetect(x=data$x,batch=data$batch,center=FALSE)

> out$delta ; out$p.val

[1] 0.753347

[1] "<0.001"

where data is the high variance phenotype data simulated above.

The following code reproduces our sensitivity to filtering analysis for the low variance

phenotype data

> grid<-expand.grid(n=90,p=20000)

> filter<-c(10,100,1000,2000,5000,10000,15000)

> time.sim<-system.time(

+ SimDat<-sim.data(grid,g=1,b=2,s=0.5,bprop=0.03,beffect=c(0,1),

+ nphe=2,sp=0.2,pprop=0.1,peffect=c(0,1))

+ )

> sys.time<-pval<-deltav<-nfeat<-numeric()

> for (i in filter){

+ print(paste('filt=',i,sep=""))
+ times<-system.time(

+ out<-gPCA(x=SimDat$x2,batch=SimDat$batch,filt=i,center=TRUE)

+ )

+ save(out,times,file=paste(outfile,"lowpheSensData",i,".RData",sep=""))

+ sys.time<-c(sys.time,times[[3]])

+ pval<-c(pval,out$p.val)

+ deltav<-c(deltav,out$delta)

+ nfeat<-c(nfeat,out$p)

+ print(paste('sys.time=',times[[3]],sep=""))
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+ }

> times<-system.time(

+ out<-gPCA(x=SimDat$x2,batch=SimDat$batch,filt=NULL,nperm=1000,

+ center=TRUE)

+ )

> sys.time<-c(sys.time,times[[3]])

> pval<-c(pval,out$p.val)

> deltav<-c(deltav,out$delta)

> nfeat<-c(nfeat,out$p)

A.1.3 Chapter 4: Applications

The GENEMAM data set was mean-value imputed and all further analyses used the imputed

data. The syntax used to impute the GENEMAM data (or any data set) is

> data.imp<-ifelse(is.na(data),rowMeans(data,na.rm=TRUE),data)

gPCA was performed on the GENEMAM and GENOA data sets as described previously

using the gPCA.batchdetect() function. The following syntax reproduces the principal

component plot in Figure 4.2b where PC.bat and PC.x are the principal components matrices

resulting from guided and unguided PCA on the GENEMAM data. Similar syntax was used

to produce the PCA plots in Figures 4.2a and 4.4a and the gPCA plot in Figure 4.4b.

> colors<-c("blue1","firebrick","darkorchid","aquamarine4","coral1",

+ "deeppink","green4","gold")

> ## x and y axis limits

> PC1lim<-c(min(PC.x[,1],PC.bat[,1]),max(PC.x[,1],PC.bat[,1]))

> PC2lim<-c(min(PC.x[,2],PC.bat[,2]),max(PC.x[,2],PC.bat[,2]))

> par(mai=c(0.65,0.65,0.1,0.1),cex=0.8)

> plot(PC.bat[,1],PC.bat[,2],pch=c(1:8)[batch],col=colors[batch],

+ xlab=expression(PC[1]),ylab=expression(PC[2]),xlim=PC1lim,ylim=PC2lim)

> legend(x="bottom",legend=paste("Plate",1:8),ncol=4,col=colors,

+ pch=1:8,inset=0.03)

The syntax to produce the heatmaps in Figure 4.2 using the lattice package is
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> library(lattice)

> pc1.x<-PC.x[,1]

> pc2.x<-PC.x[,2]

> well.pos<-function(plate){

+ well<-as.character(demo$sample.well[demo$plate==plate])

+ wellspl<-unlist(strsplit(well,split=""))

+

+ let<-wellspl[seq(1,length(wellspl),by=3)]

+ num.mx<-matrix(wellspl[-seq(1,length(wellspl),by=3)],ncol=2,byrow=T)

+ num<-paste(num.mx[,1],num.mx[,2],sep="")

+

+ out<-data.frame(well,let,num=as.numeric(num),

+ pc1=pc1.x[demo$plate==plate],pc2=pc2.x[demo$plate==plate])

+ out

+ }

> plate1<-well.pos(1)

> plate2<-well.pos(2)

> plate3<-well.pos(3)

> plate4<-well.pos(4)

> plate5<-well.pos(5)

> plate6<-well.pos(6)

> plate7<-well.pos(7)

> plate8<-well.pos(8)

> plate<-rbind(cbind(plate1,plate=1),cbind(plate2,plate=2),

+ cbind(plate3,plate=3),cbind(plate4,plate=4),cbind(plate5,plate=5),

+ cbind(plate6,plate=6),cbind(plate7,plate=7),cbind(plate8,plate=8))

> pc1.all.col<-levelplot(pc1~num*let | factor(plate),as.table=TRUE,

+ data=plate,col.regions=topo.colors(100),xlab="",ylab="",

+ strip=strip.custom(bg="white"))

> pc2.all.col<-levelplot(pc2~num*let | factor(plate),as.table=TRUE,

+ data=plate,col.regions=topo.colors(100),xlab="",ylab="",

+ strip=strip.custom(bg="white"))

> jpeg(file=paste(outplot,"GENEMAM_heatmapPC1_color.jpg",sep=""))

> plot(pc1.all.col)

> dev.off()

> jpeg(file=paste(outplot,"GENEMAM_heatmapPC2_color.jpg",sep=""))

> plot(pc2.all.col)

> dev.off()
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The sensitivity to filtering analysis and the run time analysis were performed using syntax

similar to that used for the simulated data previously.

The syntax used to perform the ANOVA filtering analysis using the limma package is as

follows and reproduces Table 4.2.

> plate<-demo$plate

> batch<-ifelse(plate<5,1,ifelse(plate==5,2,3))

> dat<-t(x2.imp) ## t(x2.imp) is pxn

> design<-model.matrix(~as.factor(plate)-1)

> colnames(design)<-paste("plate",1:8,sep="")

> fit<-lmFit(object=dat,design=design)

> fit2<-eBayes(fit)

> ### Using Benjamini & Hochberg Adjustment:

> result<-topTable(fit2,number=dim(x2.imp)[2],

+ sort.by="none",adjust="BH")

> ## alpha = 0.05

> sum(result$adj.P.Val<0.05)

> res.05<-ifelse(result$adj.P.Val<0.05,1,0)

> length(res.05)

> dim(x2.imp)

> data.anova.05<-x2.imp[,res.05==1]

> ## alpha = 0.01

> sum(result$adj.P.Val<0.01)

> res.01<-ifelse(result$adj.P.Val<0.01,1,0)

> length(res.01)

> data.anova.01<-x2.imp[,res.01==1]

> ## Using Bonferroni Adjustment:

> result2<-topTable(fit2,number=dim(x2.imp)[2],

+ sort.by="none",adjust="bonferroni")

> ## alpha = 0.05

> sum(result2$adj.P.Val<0.05)

> res.bon<-ifelse(result2$adj.P.Val<0.05,1,0)

> length(res.bon)

> data.anova.bon<-x2.imp[,res.bon==1]

> ## alpha = 0.01

> sum(result2$adj.P.Val<0.01)

115



> res.bon.01<-ifelse(result2$adj.P.Val<0.01,1,0)

> length(res.bon.01)

> data.anova.bon.01<-x2.imp[,res.bon.01==1]

> ## Output Table

> adjust.method<-c(rep("BH",2),rep("Bon",2))

> alpha.lvl<-rep(c(0.05,0.01),2)

> retain<-c(sum(res.05),sum(res.01),sum(res.bon),sum(res.bon.01))

> tab<-data.frame(adjust.method,alpha.lvl,retain)

A.1.4 Chapter 5: Comparison of Batch Effect Adjustment Methods

In Chapter 5 we applied various batch effect correction methods to simulated and case

study data. The data were simulated using the following syntax and these data were used

throughout this chapter for all further analyses.

> n=90 ; p=1000

> grid<-expand.grid(n,p)

> names(grid)<-c('n','p')
> dim(grid)

> grid

> ## No Phenotype

> system.time(

+ simDat<-sim.data(grid=grid,g=1,b=2,s=0.5,bprop=0.01,beffect=c(0,1))

+ )

> save(simDat,file=paste(datafile,"NoPheData.RData",sep=""))

> ## High Variance Phenotype

> system.time(

+ simDat<-sim.data(grid=grid,g=1,b=2,s=0.5,bprop=0.03,beffect=c(0,1),

+ nphe=2,sp=2,pprop=0.1,peffect=c(0,1))

+ )

> save(simDat,file=paste(datafile,"HighPheData.RData",sep=""))

> ## Low Variance Phenotype

> system.time(

+ simDat<-sim.data(grid=grid,g=1,b=2,s=0.5,bprop=0.05,beffect=c(0,1),

+ nphe=2,sp=0.2,pprop=0.1,peffect=c(0,1))

+ )

> save(simDat,file=paste(datafile,"LowPheData.RData",sep=""))
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> ## True Phenotype with Dependent Batch and Phenotype

> system.time(

+ simDat<-NewCoPheSim(n=90,p=1000,b=2,nphe=2,s=0.5,pprop=0.1,

+ beta_b=2,beta_p=0.5,set=TRUE,

+ nphegenes=50,nbatgenes=50,nphebatgenes=100)

+ )

> save(simDat,file=paste(datafile,"NewCoPheData_set.RData",sep=""))

The batch correction methods we applied to the data sets were BMC using the pamr.batchadjust()

function in the pamr package, DWD using the kdwd() function in the DWD package, and

empirical Bayes using the ComBat() function in the sva package. Examples of calls to this

functions using the low variance phenotype data and including calls to gPCA.batchdetect()

before and after batch correction by each method are

> load(file=paste(datafile,"LowPheData.RData",sep=""))

> rawdata<-simDat$x

> batch<-simDat$batch

> pheno<-simDat$phes

> ## Apply gPCA to raw data

> out.raw<-gPCA.batchdetect(x=rawdata,batch=batch,center=FALSE)

> out.raw$delta ; out.raw$p.val

> # Batch Correction using BMC

> time.pamr<-system.time(

+ pamrout<-pamr.batchadjust(data=list(x=t(rawdata),batchlabels=batch))

+ )[[3]]

> pamradj<-t(pamrout$x)

> out.adj.pamr<-gPCA.batchdetect(x=pamradj,batch=batch,center=FALSE)

> out.adj.pamr$delta ; out.adj.pamr$p.val

> # Batch Correction using mDWD

> time.dwd<-system.time(

+ dwdout<-kdwd(x=as.factor(batch)~.,data=rawdata,scaled=FALSE,type="mdwd")

+ )[[3]]

> mdwd.adjust<-mdwd.batchadjust(dwdout=dwdout,batch=batch,

+ rawdata=as.matrix(rawdata))

> mdwdadj<-mdwd.adjust$data

> ## Apply gPCA to batch corrected data
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> out.adj.dwd<-gPCA.batchdetect(x=mdwdadj,batch=batch,center=FALSE)

> out.adj.dwd$delta ; out.adj.dwd$p.val

> # Batch Correction using Non-parametric ComBat

> time.ebn<-system.time(

+ ebout_n<-ComBat(dat=t(rawdata),batch=batch,mod=model.matrix(~pheno),

+ numCovs=2,par.prior=FALSE)

+ )[[3]]

> ebnadj<-t(ebout_n)

> ## Apply gPCA to batch corrected data

> out.adj.ebn<-gPCA.batchdetect(x=ebnadj,batch=batch,center=FALSE)

> out.adj.ebn$delta ; out.adj.ebn$p.val

> # Batch Correction using Parametric ComBat

> time.ebp<-system.time(

+ ebout_p<-ComBat(dat=t(rawdata),batch=batch,mod=model.matrix(~pheno),

+ numCovs=2,par.prior=TRUE)

+ )[[3]]

> ebpadj<-t(ebout_p)

> ## Apply gPCA to batch corrected data

> out.adj.ebp<-gPCA.batchdetect(x=ebpadj,batch=batch,center=FALSE)

> out.adj.ebp$delta ; out.adj.ebn$p.val

> deltas<-c(out.raw$delta,out.adj.pamr$delta,out.adj.dwd$delta,

+ out.adj.ebn$delta,out.adj.ebp$delta)

> pvals<-c(out.raw$p.val,out.adj.pamr$p.val,out.adj.dwd$p.val,

+ out.adj.ebn$p.val,out.adj.ebp$p.val)

> times<-c(NA,time.pamr,time.dwd,time.ebn,time.ebp)

> lowphe<-data.frame(deltas,pvals,times)

Similar code is used for all simulated and case study data. The mdwd.batchadjust()

function was created to perform the actual batch adjustment from the output of the kdwd()

function.

> mdwd.batchadjust

function (dwdout, batch, rawdata)

{

b <- length(unique(batch))

if (class(rawdata) != "matrix") {
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stop("Error: rawdata must have class 'matrix'.")
}

dirmx <- dwdout@w

vproj <- meanproj <- adj <- list()

adjdata <- matrix(nrow = dim(rawdata)[1], ncol = dim(rawdata)[2])

for (k in 1:b) {

vproj[[k]] <- rawdata[batch == k, ] %*% dirmx

meanproj[[k]] <- colMeans(vproj[[k]])

adj[[k]] <- matrix(rep(dirmx %*% meanproj[[k]], dim(vproj[[k]])[1]),

nrow = dim(vproj[[k]])[1], byrow = TRUE)

adjdata[batch == k, ] <- rawdata[batch == k] - adj[[k]]

}

list(data = adjdata)

}

To perform the batch correction analysis in Chapter 5, the limma package was used as

follows for the high variance phenotype simulated data. This code reproduces the contingency

tables in Figure 5.3

> load(file=paste(datafile,"HighPheData.RData",sep=""))

> rawdata<-simDat$x

> batch<-simDat$batch

> pheno<-simDat$pheno

> ## Pre-correction gPCA

> out.pre<-gPCA.batchdetect(x=as.matrix(rawdata),batch=batch,center=FALSE)

> out.pre$delta ; out.pre$p.val

> # Batch Correction using BMC

> time.pamr<-system.time(

+ pamrout<-pamr.batchadjust(data=list(x=t(rawdata),batchlabels=batch))

+ )[[3]]

> pamradj<-t(pamrout$x)

> out.adj.pamr<-gPCA.batchdetect(x=pamradj,batch=batch,center=FALSE)

> out.adj.pamr$delta ; out.adj.pamr$p.val

> ## lmFit and eBayes to find significant features pre- and post-correction

> ## Pre-Batch Correction

>

> data<-t(simDat$x2)
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> true.phe<-c(rep(TRUE,simDat$pprop*simDat$p),

+ rep(FALSE,simDat$p-simDat$pprop*simDat$p))

> design<-model.matrix(~as.factor(pheno)-1)

> colnames(design)<-paste("pheno",1:simDat$nphe,sep="")

> fit<-lmFit(data,design)

> names(fit)

> contr.matrix<-makeContrasts(compare=pheno1-pheno2,levels=design)

> fit2<-contrasts.fit(fit,contr.matrix)

> fit3<-eBayes(fit2)

> result<-topTable(fit3,number=dim(data)[1],sort.by="none",

+ adjust="BH")

> sum(result$adj.P.Val<0.10)

> which(result$adj.P.Val<0.10)

> sig.feat.raw<-ifelse(result$adj.P.Val<0.1,TRUE,FALSE)

> res<-ifelse(result$adj.P.Val<0.10,1,0)

> ## Post-Batch Correction: BMC

> fit_pamr<-lmFit(pamrout$x,design)

> fit2_pamr<-contrasts.fit(fit_pamr,contr.matrix)

> fit3_pamr<-eBayes(fit2_pamr)

> result_pamr<-topTable(fit3_pamr,number=dim(pamrout$x)[1],

+ sort.by="none",adjust="BH")

> sum(result_pamr$adj.P.Val<0.10)

> which(result_pamr$adj.P.Val<0.10)

> sig.feat.pamr<-ifelse(result_pamr$adj.P.Val<0.1,TRUE,FALSE)

> res_pamr<-ifelse(result_pamr$adj.P.Val<0.10,1,0)

> resmx_pamr<-cbind(res,res_pamr)

> # png(file=paste(outplot,"PAMR_Venn_DiPwr_p.png",sep=""))

> # vennDiagram(resmx_pamr,names=c("Raw Data","Corrected Data"))

> # dev.off()

> table(sig.feat.raw,sig.feat.pamr)

> table(true.phe,sig.feat.raw)

> table(true.phe,sig.feat.pamr)

> ## Batch Correction Using Empirical Bayes

> mod<-model.matrix(~as.factor(pheno))

> dim(mod)

> names(mod)<-paste("pheno",1:simDat$nphe)

> time.ebn<-system.time(

+ diComBat_n<-ComBat(dat=data,batch=batch,mod=mod,par.prior=FALSE)
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+ )[[3]]

> time.ebp<-system.time(

+ diComBat_p<-ComBat(dat=data,batch=batch,mod=mod,par.prior=TRUE)

+ )[[3]]

> out.adj.ebn<-gPCA.batchdetect(x=t(diComBat_n),batch=batch,center=FALSE)

> out.adj.ebn$delta ; out.adj.ebn$p.val

> out.adj.ebp<-gPCA.batchdetect(x=t(diComBat_p),batch=batch,center=FALSE)

> out.adj.ebp$delta ; out.adj.ebp$p.val

> ## Post-Batch Correction: Non-parametric EB

> fit_n<-lmFit(diComBat_n,design)

> contr.matrix<-makeContrasts(compare=pheno1-pheno2,levels=design)

> fit2_n<-contrasts.fit(fit_n,contr.matrix)

> fit3_n<-eBayes(fit2_n)

> result_n<-topTable(fit3_n,number=dim(diComBat_n)[1],sort.by="none",

+ adjust="BH")

> sum(result_n$adj.P.Val<0.10)

> which(result_n$adj.P.Val<0.10)

> sig.feat.n<-ifelse(result_n$adj.P.Val<0.1,TRUE,FALSE)

> res_n<-ifelse(result_n$adj.P.Val<0.10,1,0)

> resmx_n<-cbind(res,res_n)

> # png(file=paste(outplot,"ComBat_Venn_DiPwr_n.png",sep=""))

> # vennDiagram(resmx_n,names=c("Raw Data","EB Corrected Data"))

> # dev.off()

> table(sig.feat.raw,sig.feat.n)

> table(true.phe,sig.feat.raw)

> table(true.phe,sig.feat.n)

> ## Post-Batch Correction: Parametric EB

> fit_p<-lmFit(diComBat_p,design)

> fit2_p<-contrasts.fit(fit_p,contr.matrix)

> fit3_p<-eBayes(fit2_p)

> result_p<-topTable(fit3_p,number=dim(diComBat_p)[1],sort.by="none",

+ adjust="BH")

> sum(result_p$adj.P.Val<0.10)

> which(result_p$adj.P.Val<0.10)

> sig.feat.p<-ifelse(result_p$adj.P.Val<0.1,TRUE,FALSE)

> res_p<-ifelse(result_p$adj.P.Val<0.10,1,0)

> resmx_p<-cbind(res,res_p)

> # png(file=paste(outplot,"ComBat_Venn_HighPwr_p.png",sep=""))
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> # vennDiagram(resmx_p,names=c("Raw Data","EB Corrected Data"))

> # dev.off()

> table(sig.feat.raw,sig.feat.p)

> table(true.phe,sig.feat.raw)

> table(true.phe,sig.feat.pamr)

> table(true.phe,sig.feat.n)

> table(true.phe,sig.feat.p)

A.1.5 Chapter 6: The gPCA Package for Identifying Batch Effects

All code used in this chapter can be found in the gPCA package. The gPCA package consists

of the gPCA.batchdetect() function provided previously, three visualization functions that

plot the data in different ways, and four example data sets. Chapter 6 describes the functions

and syntax.
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