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 In vitro dissolution, release and permeation testing is a common practice during drug 

product research and development. These in vitro tests, if predictive, are referred to as biorelevant 

tests and can play diverse roles to facilitate and expedite product development in a cost effective 

manner. Oral transmucosal products (OTPs) are currently tested using compendial and modified 

in vitro tests which may or may not be good predictors of in vivo performance due to a lack of 

biorelevance. A critical need for a broadly applicable and  biorelevant in vitro system for OTPs 

has been expressed in the literature and the goal of this research was the development and 



 

 

 

 

validation of a biorelevant in vitro method that can facilitate accurate prediction of the in vivo 

behavior of OTPs. 

 A combined strategy of appropriate apparatus design and relevant physiological and in 

vitro variable adjustment was investigated to incorporate biorelevance into evaluation of OTPs. A 

novel in vitro device, the bidirectional transmucosal apparatus (BTA), was designed and fabricated 

which allowed simulation of the oral cavity and its physiological variables to evaluate OTPs in a 

more realistic fashion. The BTA was tested using snus (a type of smokeless tobacco) as the OTP 

product. A simple and selective high performance liquid chromatographic (HPLC) method with 

photodiode array (PDA) detection was developed and validated to assess in vitro nicotine release 

and permeation (Linearity: 0.5 – 32 μg/mL; calibration curve accuracy (%recovery, n=5 ): 97.98-

103.20%; calibration curve precision (%RSD, n=5): 0.15-3.14%).  The performance of BTA was 

compared with the modified USP IV flow through apparatus (USP IV) and a commercially 

available vertical diffusion cell (VDC). The observed in vitro in vivo relationship (IVIVR) slopes 

with the USP IV, VDC and BTA were 0.27, 2.01 and 2.11 respectively. The BTA was selected 

over the VDC and USP IV devices because of better simulation and adjustment of variables to 

incorporate biorelevance in the test of OTPs. Additionally, the BTA allows study of permeation 

and release simultaneously unlike VDC and USP IV apparatuses. Further, the different BTA 

parameters were sequentially screened for their impact on in vitro rate of nicotine permeation that 

can be employed for the optimization of IVIVR for snus. Based on the results, stimulated saliva 

swallowing rate (SSSR) and media temperature were considered as significant factors affecting in 

vitro permeation of nicotine and used to further optimize IVIVR for snus. A 32 multifactorial 

experimental design integrating SSSR (0.32, 1.66 and 3 mL/min) and media temperature (25, 37 

and 45 °C) was employed. Based on the response surface analysis, 0.55 mL/min SSSR and 43 °C 



 

 

 

 

media temperature were identified as optimal BTA conditions that would give perfect IVIVR (i.e. 

IVIVR slope close to one) for snus. The experimental value of IVIVR slope (0.92) at these optimal 

conditions indicated that the BTA is a valid in vitro system for evaluation of OTPs in a biorelevant 

manner. The applicability of BTA for predicting nicotine permeation from ‘Stonewall’, a 

dissolvable compressed tobacco was also evaluated. However, comparable in vitro nicotine 

permeation and in vivo nicotine absorption profiles were not obtained (ratio of in vitro permeation 

to in vivo absorption rate ranged from 0.04 to 0.14 at different in vitro conditions) either due to the 

unavailability of reliable clinical data or due to inherently different in vivo behavior of Stonewall 

compared to snus that would require further modification in the BTA. 

 In conclusion, this research demonstrated the potential of the novel in vitro device to be a 

valuable tool for the prediction of in vivo performance of snus. The application of the novel 

bidirectional transmucosal apparatus for other types of OTPs will be an interesting subject for 

further investigation. 

 

 

 

 

 

 

 



 

 

1 

 

 

 

 

CHAPTER 1 

 

BACKGROUND AND SIGNIFICANCE  

 

 

The oral cavity provides an alternative route for efficacious systemic drug delivery through 

its mucosal linings (Washington et al. 2001; Madhav et al. 2009; Patel et al. 2011). Drug enters 

the systemic circulation through the oral cavity mucosa mainly by the passive transport mechanism 

(Washington et al. 2001; Patel et al. 2011). A profuse network of blood vessels present in this 

mucosal lining makes it a preferred route when quicker onset of action is required. The oral 

transmucosal route is an attractive option for delivery of drugs with gastric incompatibility and 

hepatic first pass metabolism (Madhav et al. 2009; Patel et al. 2011). With the advent of protein 

and peptide therapeutics which are susceptible to the gastric environment, the oral transmucosal 

route can be a favored delivery method for such drug candidates. The oral transmucosal route 

offers additional advantages of easy application of the product and its removal when required 

(Nicolazzo et al. 2008). The oral transmucosal route has been successfully explored for nicotine 

replacement therapy and smoking cessation (Zhang et al. 2002; Stead et al. 2008). This route is 

one of the options for nicotine consumer products (e.g. smokeless tobacco products. Because of 

the above multiple benefits of oral transmucosal products (OTPs) over traditional dosage forms 

like tablets and capsules, this route has attained considerable attention for drug delivery. Therefore, 
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many OTPs are on the market (Table 1.1) and many more are in the pipeline (Rathbone et al. 1996; 

Pather et al. 2008).  

 Therapeutic and non-therapeutic OTPs are formulated into tablets, patches, films, sprays, 

lozenges and chewing gums for delivery of drugs through mucosal linings of the oral cavity (Pfister 

et al. 2005; Patel et al. 2011). Figure 1.1 displays preferred oral transmucosal routes (sublingual, 

buccal and gingival) for drug delivery (Washington et al. 2001; Madhav et al. 2009). Table 1.1 

lists a few of the sublingual, buccal and gingival OTPs commercially available for drug delivery. 

Each of these OTPs deliver drug by different release and permeation mechanisms (Dixit et al. 

2009; Darwish et al. 2010; Sohi et al. 2010). The oral cavity environment plays a determinative 

role in the release of drug from the OTP to the delivery site and permeation of the drug through 

the oral mucosa for systemic delivery by influencing its operational mechanism (Patel et al. 2011). 

For example, the layer formed by mucus in saliva contributes to the formation of interfacial bonds 

based on intermolecular force with polymer chains of a bioadhesive OTP which aids in the 

adhesion of tablet to the oral cavity mucosal surface and helps with drug release and the permeation 

process (Duchêne et al. 1997). The components of saliva may also have an effect on the 

disintegration behavior of OTPs. An attempt was made for measuring the disintegration behavior 

of rapidly disintegration OTPs in simulated saliva (Abdelbary et al. 2005). The simulated saliva 

along with oral cavity temperature (37 °C) provided a better correlation between in vitro and in 

vivo disintegration time of rapidly disintegrating OTP in comparison to distilled water at room 

temperature (Abdelbary et al. 2005). The saliva variables and mucosal barriers may aid or hinder 

the release and absorption of drugs from OTPs (Nicolazzo et al. 2008). Therefore, it is critical to 

thoroughly evaluate oral transmucosal drug candidates and products by an appropriate in vitro 

system. The in vitro evaluation of products based on dissolution/release/permeation properties is 
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a common practice for the selection of an appropriate drug product for clinical studies and quality 

control purposes (Dressman et al. 1998; Wang et al. 2009). 

 

 

 

 

 

Table 1.1: A few examples of commercially available OTPs for drug delivery through oral cavity 

mucosa 

  

Pharmaceutical OTPs 

Sublingual Buccal Gingival 

Nitroglycerin tablet 

(Nitrostat®) 

 

Buprenorphine hydrochloride 

tablet (Subutex®) 

 

Buprenorphine hydrochloride 

and Naloxone hydrochloride 

film (Suboxone®) 

Fentanyl Citrate tablet 

(Fentora®) 

 

Fentanyl Citrate dissolvable 

film (ONSOLIS®) 

 

Testosterone (Striant®) 

Lidocaine hydrochloride 

patch (Dentipatch®) 

Non pharmaceutical OTPs - Nicotine consumer products  

(Nicotine permeation through sublingual, buccal & gingival membrane) 

Nicotine chewing gum and lozenge (Nicorette®) 

Nicotine pouch (Zonnic®) 

Smokeless tobacco pouch (Marlboro) 

Smokeless tobacco dissolvable tablet (Stonewall) 
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Figure 1.1: A pictorial representation of the oral cavity mucosal linings for drug delivery 

(Washington et al. 2001) 

 

In vitro drug dissolution/release/permeation testing of dosage forms is a cost effective 

approach for pharmaceutical product quality and in vivo performance testing (Shah 2001). The in 

vitro test plays a vital role in the research and development phase for drug products and is an 

essential quality control tool (Wang et al. 2009). Specifically, with respect to research and 

development, in vitro testing should be able to predict the in vivo behavior of a drug product 

(Azarmi et al. 2007). The dissolution/release/permeation of drug from the product in vivo is one 

of the determinants of the systemic exposure of drug to the body in addition to its metabolism and 

excretion. The systemic exposure of drug to the body defined as the plasma drug concentration 

time profile or the amount of drug absorbed from the product is a measure of the in vivo 
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performance/behavior of the drug product and can be predicted by appropriate 

dissolution/release/permeation in vitro tests. The dissolution/release/permeation test can be a 

substitute for clinical studies; when the in vitro study can predict the in vivo performance of drug 

products (Dressman et al. 1998). When the in vitro test simulates relevant in vivo environment, it 

can accurately predict the in vivo behavior of drug products (Fotaki et al. 2010). Therefore, it 

would be of value to simulate physiological conditions like hydrodynamics, biological fluids and 

biological barriers in the in vitro system that affects the release and permeation properties of drugs 

from these products. The dissolution/release/permeation in vitro test that simulates relevant 

physiological conditions of the in vivo environment and successfully forecasts the in vivo 

performance of drug products is referred as a biorelevant test. Biorelevant tests can predict the in 

vivo behavior of a product through in vitro in vivo relationships (IVIVR) (Emami 2006; Wang et 

al. 2009; Fotaki et al. 2010). An IVIVR is defined as the predictive model that relates the in vitro 

drug dissolution/release/permeation time course and the in vivo response time course (Gillespie 

1997). Biorelevant in vitro methods through IVIVR can provide predictive estimates of in vivo 

data and may be a surrogate for in vivo behavior of a drug product (Azarmi et al. 2007).  

Biorelevant dissolution/release/permeation testing plays a versatile role at various stages 

of the drug product development process. Biorelevant in vitro testing is valuable in the selection 

of appropriate drug substance and optimal formulation for preclinical and clinical study, defining 

critical quality attributes and critical process parameters (Wang et al. 2009). The biorelevant 

approach also aids in gaining the approval of biowaivers after scale-up and post approval related 

changes in the drug products (SUPAC) (Emami 2006). A biowaiver is defined as the acceptance 

of in vitro testing as a surrogate for an in vivo bioequivalence study by the regulatory agency. 

Biorelevant drug release testing thus leads to fewer clinical studies, economizes and expedites the 
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drug development process by reducing the cost and time required for drug development and 

provides improved quality of the product (Emami 2006).  

 Significant advances have been made in the development of biorelevant in vitro systems 

for orally administered drug products (Dressman et al. 1998; Dressman et al. 2000; Vertzoni et al. 

2005; Jantratid et al. 2008; Klein et al. 2008; Fang et al. 2010; Guhmann et al. 2013). The 

biorelevant methods that have been developed for oral products cannot be employed for novel 

dosage forms like subcutaneous implants, drug eluting stents, ocular systems, oral transmucosal 

products, etc., because novel dosage forms are designed for drug delivery in unique physiological 

environments. These require appropriate modification or design of novel in vitro devices for their 

evaluation. The standard/compendial methods do not simulate the physiological environment to 

which novel products are exposed in vivo.  Therefore, efforts are underway to develop biorelevant 

in vitro systems to accurately characterize the dissolution/release/permeation of drugs from novel 

products (Crist 2009; Chidambaram et al. 1999; Kvist et al. 1999; Morjaria et al. 2004; Iyer et al. 

2007a; Brown et al. 2011; Marques et al. 2011; Seidlitz et al. 2013). 

Sublingual and buccal OTPs are traditionally evaluated by USP recommended methods 

employing a disintegration and dissolution apparatus. The USP monograph for ergoloid mesylate, 

ergotamine tartarate and nitroglycerine sublingual tablets suggests the use of the USP 

disintegration apparatus (an apparatus with a basket-rack assembly, a 1000 mL capacity glass 

beaker, a water bath and a device for up and down movement of the basket in the disintegration 

medium at a constant frequency); whereas, isosorbide dinitrate sublingual tablets are tested by 

USP II apparatus (an apparatus with paddle as a stirring element, a 1000 mL capacity glass vessel 

and a water bath) in 900 mL of water at 50 rpm (USP 2009a, b, c, d). Drug candidates for OTPs 

are currently evaluated by standard in vitro permeation devices such as a Franz cell, a Vertical 
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diffusion cell (VDC) or a Modified Ussing chamber (MUC) in the preclinical setting (Nicolazzo 

et al. 2008). The Franz cell and VDC both are vertical apparatuses and consists of a donor and 

receptor chamber separated by either an artificial or a mucosal membrane. The Franz cell has a 

static receptor compartment; whereas, the VDC provides a receptor chamber that can be 

maintained in a closed or open flow through condition (Nicolazzo et al. 2008). Unlike the Franz 

cell and VDC, the modified Ussing chamber is an apparatus that allows the flux of drug in a 

horizontal direction across the donor and receptor chamber of same volumes attributed to its 

design. The modified Ussing chamber is relatively a small volume apparatus (1.5 mL) in 

comparison to the Franz cell and VDC which are available in different volume capacity of the 

receptors compartments (Nicolazzo et al. 2008; Dezani et al. 2013). These standard/compendial 

and modified in vitro methods either utilize large volume of media or characterize products at 

conditions which do not reflect the in vivo physiological environment and hence may not be 

accurate predictors of in vivo performance of OTPs. A need to develop an appropriate in vitro 

model which simulates in vivo oral cavity conditions closely for the prediction of in vivo 

performance of OTPs has been documented (Patel et al. 2012). Several in vitro studies to simulate 

the low liquid surroundings of the oral cavity and other in vivo conditions to assess drug release 

and permeation from OTPs have been reported (Mumtaz et al. 1995; Luque-Pérez et al. 1999; 

Frenning et al. 2002; Hughes 2003; Nicolazzo et al. 2008; Lestari et al. 2009; Rachid et al. 2011).  

Mumtaz and Ch’ng in 1995 developed a dissolution apparatus (Figure 1.2(A)) for a drug 

release study from bioadhesive buccal tablets using chicken buccal membrane and utilized this 

system for formulation optimization of triamcinolone acetonide (TAA) bioadhesive buccal tablet 

(Mumtaz et al. 1995). The apparatus was a closed flow through system that contained a dissolution 

cell and an assembly to hold the chicken buccal membrane for release testing of drug from the 
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bioadhesive buccal tablet. An attempt was made by Mumtaz et al. to simulation of buccal 

conditions; however, the system allowed only assessment of drug release in spite of the use of 

buccal membrane. The lack of receptor compartment in the apparatus did not allow study of drug 

permeation through the buccal membrane. The potential for modification of the system with 

respect to simulation of salivary variables (e.g. composition, secretion, swallowing) and 

incorporation of a receiver compartment for drug permeation existed. A method for determining 

drug release from OTPs in low liquid surroundings based on alternating ionic current 

measurements was developed (Frenning et al. 2002). A low liquid surrounding system developed 

by Frenning et al. is presented in Figure 1.2(B). The study was performed in two phases, Liquid 

absorption and drug release, utilizing a placebo and drug containing tablet respectively. For liquid 

absorption and drug release measurements, tablets were placed in water containing a conducting 

substance (sodium chloride) and distilled water respectively. The change in current as a function 

of time was related to the amount of liquid absorbed or drug released from the tablets. Liquid 

absorption was measured to determine the volume of liquid uptake which was further employed 

for the drug release measurement. The conclusions of this study indicated that large volume 

dissolution methods would not differentiate OTPs that were designed for fast release. The method 

simulates a low liquid environment which can be useful when developing biorelevant conditions 

for oral transmucosal drug release testing. However, this method does not study the contributions 

of drug in the liquid uptake process since a placebo tablet was used in the liquid absorption phase. 

The method relies on the assumption that both the processes of liquid absorption and drug release 

are well separated. In spite of the effort made to simulate oral cavity conditions, the system would 

not be compatible if simulated saliva was used due to the ionic components present in saliva which 

would contribute to the background current. Luque-Perez et al. developed a supported liquid 
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membrane system for the characterization of nicotine release and permeation from snuff in small 

volumes (Figure 1.2(C)) (Luque-Pérez et al. 1999). The system consisted of a small donor 

compartment separated from receptor chamber by a hydrophobic polypropylene porous membrane 

(20 nm) impregnated with n-undecane. A syringe with the bottom removed was filled with snuff 

and was placed in the donor chamber. A volume of 100 μL of water was used as the donor media. 

A solution of sulfuric acid (pH 2.5) was employed as a receptor media which was maintained in 

an open flow through condition. Nicotine permeated into the receptor media was determined by 

inline spectrophotometric measurement saving time and resources. However, this may not be a 

selective analytical method because of the presence of the complex matrix in tobacco samples 

which could contribute to the spectrophotometric response of nicotine. Additionally, a study of the 

effect of saliva secretion and swallowing on the release and loss of drug, an important determinant 

of the bioavailability of drug, could not be studied due to limitations of the apparatus design. 

A small volume buccal dissolution system for drug release from mouth dissolving OTPs 

was designed as shown in Figure 1.3(A) (Hughes et al. 2002). The system consisted of a single 

filtration cell of 10 mL capacity under continuous stirring and flow through conditions. Simulated 

saliva and the dissolution media, was circulated at a flow rate of 6 mL/min. The design lacked a 

permeation component which is a relevant variable in the availability of drug from mouth 

dissolving OTPs. This is because drug release is usually not a rate limiting step and therefore the 

buccal dissolution system may not be a suitable design for IVIVR.  
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Figure 1.2: A pictorial representation of in vitro devices for OTPs; [A] Mumtaz et al. 1995; [B] 

Frenning et al. 2002; [C] Luque-Pérez et al. 1999. All pictures adopted from the respective 

references. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: A pictorial representation of in vitro devices for OTPs; [A] Hughes et al. 2002; [B] 

Lestari et al. 2009; [C] Rachid et al. 2011. All pictures adopted from the respective references.  
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A flow through diffusion cell for study of drug permeation using porcine buccal mucosa 

was developed and evaluated employing drug in a solution (Figure 1.3(B)) (Lestari et al. 2009). 

The flow through diffusion cell comprised of a donor and receptor chamber both maintained under 

open flow through conditions. The permeation study was performed at a donor and receptor media 

flow rate of 1.2 mL/h which was very low and clinically not relevant. The diffusion cell was a 

reasonable model for screening drug candidates for oral transmucosal delivery in preclinical 

settings; however, an attempt to explore the applicability of the system to evaluate OTPs using 

artificial membranes was not made. The use of animal mucosal membranes may not be a practical 

approach for quality control and research purposes for OTPs due to the need of maintenance of 

viability of the oral cavity tissues throughout the experiment. In addition, the use of animal 

mucosal membranes would be an expensive approach. Furthermore, permeation of drug into 

receptors was measured unidirectionally which may not be true unless an OTP has an impermeable 

membrane on one side. Rachid et al. in 2011 built an apparatus for orally disintegrating tablets as 

presented in Figure 1.3(C) (Rachid et al. 2011). The system consisted of a glass funnel with a 

fritted glass base and a Buchner flask. A nylon filter membrane (0.45 μm) was placed between the 

funnel and glass base to retain solid particles after dissolution of sublingual tablets. A volume of 

2 mL of distilled water was introduced into the glass funnel before the tablet was placed for 

dissolution studies. The flask was connected to vacuum with on and off switches for collecting 

fluid with dissolved drug. The filtrate was collected in a plastic tube below the filtration assembly 

for drug analysis. The system successfully simulated a small volume of oral cavity; however, other 

important saliva variables such as secretion and swallowing, which may be determining steps for 

drug release and permeation, could not be simulated.  
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The reported in vitro systems for OTPs simulated either small media volume or the 

membrane barrier or both; however, these systems did not simulate the physiological environment 

of the oral cavity completely and therefore these methods may be less predictive. Additionally, 

these systems provide fewer numbers of variables for simulation and adjustment and hence fewer 

options are available for optimization of IVIVR for OTPs. Some of these systems for OTPs utilized 

animal buccal mucosa for evaluation which may be tedious and present viability issues during the 

experiment which makes the use of animal mucosa impractical for quality control (QC) purposes. 

Furthermore, these systems were designed to suit specific types of products (bioadhesive or 

disintegrating OTPs or drug solution) and may not be universally applicable for all types of OTPs. 

Moreover, none of these devices have been validated by relating the in vitro with in vivo behavior. 

These methods, therefore, may or may not be able to predict the in vivo behavior of OTPs 

accurately. These limitations of the methods currently used for OTPs present a need of a 

biorelevant in vitro device that simulates oral cavity conditions completely and that facilitates the 

prediction of in vivo behavior of OTP product development in a cost effective manner which can 

also be employed as a quality control tool. An in vitro device which allows incorporating more 

number of physiological and in vitro variables would be beneficial as it will provide more options 

for adjustment and hence greater possibilities of establishing biorelevancy of the method. A need 

of a better in vitro device for OTPs was also recognized in the Federation Internationale 

Pharmaceutique/American Association of Pharmaceutical Scientists (FIP/AAPS) joint workshop 

report on Dissolution/In vitro Testing of Novel/Special Dosage Forms (Brown et al. 2011). 

The development of biorelevant tests requires consideration of the physiological conditions 

of the drug product application site and then designing and/or modification of the apparatus 

accordingly. In order to test any formulation in vitro, in a biorelevant fashion, important factors 
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are design of the apparatus, dissolution/release/permeation medium, hydrodynamics (agitation, 

media flow, media viscosity, media volume), drug substance properties  (solubility and 

permeability) and dosage form dissolution characteristics (Wang et al. 2009). Physiological factors 

of the oral cavity that may influence drug release and permeation from OTPs should be considered 

for biorelevant testing are presented in Table 1.2. 

It is evident from the attempts in the literature that a method for the assessment of drug 

release and permeation as a function of oral cavity conditions is needed and would be useful. This 

research was therefore undertaken in order to develop and evaluate a novel biorelevant in vitro 

system to predict in vivo behavior of OTPs in a more physiologically realistic manner. In order to 

achieve this goal, a novel system that allows simulation of oral cavity physiological variables was 

designed. The possibility for adjustment of these in vitro variables for accurate prediction was also 

considered while designing the device. The research therefore, was carried out to build an 

apparatus that allows adjustment of certain in vitro variables in addition to simulation of the 

physiological environment. This should allow incorporation of biorelevance for OTPs that will 

improve in vivo predictability, economize the OTP development process and aid in product 

regulation. 
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Table 1.2: Physiological conditions of oral cavity for OTPs 

 

Physiological 

variable 

Physiological 

variable subtype 
Effect Simulation strategy 

Low liquid 

surrounding of oral 

cavity 

- 
Drug release and sink 

condition 

- Adjusting volume of 

media 

Saliva 

Composition (Ions, 

mucus, enzymes, 

etc.) 

Drug release and 

stability 

- Simulate relevant 

variables  

pH 

Determinant of 

proportion of ionized 

and unionized form 

of drug 

- Adjusting buffer 

composition and 

concentration 

Secretion and 

swallowing rate 

Release and loss of 

drug 

- Adjusting flow rate 

- Maintenance of flow 

in open or closed flow 

through pattern 

Chewing - Drug release 

- Adjusting agitation 

rate 

- Designing apparatus 

that allows simulation 

of chewing 

Oral transmucosal 

barrier 

Thickness Drug permeability 
- Use of multiple 

membranes 

Pore size and pore 

density 
Drug permeability 

- Use of appropriate 

artificial membranes 

Lipophilicity and 

hydrophilicity 
Drug permeability 

- Use of appropriate 

artificial membrane 

Barrier type 

(sublingual, buccal, 

gingival) 

Drug permeability 
- Use of appropriate 

artificial membranes 

Disease status (e.g. 

Leukoplakia)* 
Drug permeability 

- Use of appropriate 

artificial membranes 

- Use of multiple 

membranes 

* Leukoplakia in the oral cavity is the oral mucosal lesion caused by the use of smokeless tobacco which is 

associated with epithelial changes (thickening of epithelia) which might be one of the important physiological 

factors determining oral transmucosal drug permeation (Martin et al. 1999). 
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Snus, a smokeless tobacco product, was selected as a model OTP for evaluation of the 

novel bidirectional transmucosal apparatus (BTA). Snus is put under the upper lip for nicotine 

permeation through the buccal-labial and gingival membranes (Lunell et al. 2005). In addition to 

the oral transmucosal permeation, nicotine can also be available through the enteral route due to 

the swallowing of nicotine containing saliva. However, nicotine absorption through the enteral 

route is low in comparison to the oral transmucosal route due to its low oral absolute bioavailability 

(30%) attributed to the hepatic first pass effect (Benowitz et al. 1987; Jenner et al. 1973; Svensson 

1987). The first pass effect leads to the metabolism of nicotine in liver and hence the low systemic 

availability. Primary metabolites of nicotine includes cotinine, nicotine N-oxide, N-

methylnicotinium, nicointe-N- β-glucuronide and nornicotine formed by the activity of 

cytochrome P450 2A6 (CYP 2A6), aldehyde oxidase, flavin containing monoxygenase 3 (FMO 

3), N-methyltransferase and uridine diphosphate-glucuronosyltransferase (UGT) enzymes 

(Hukkanen et al. 2005). 

Snus was selected for the evaluation of the novel system due to the availability of in vivo 

nicotine pharmacokinetic data for comparison. Once validated the novel device can find 

application in the development and regulation of tobacco oral transmucosal products in addition 

to pharmaceutical OTPs. The U.S. Food and Drug Administration (FDA) regulates tobacco 

products following enactment of The Family Smoking Prevention and Tobacco Control Act 

(FSPTC) in June 2009. The development of a biorelevant in vitro system may be useful for 

regulation of tobacco products and as a research tool for predicting behavior of oral transmucosal 

tobacco products. These products include smokeless tobacco, dissolvable tobacco and other 

tobacco oral transmucosal formulations intended as less harm products. The system, once 

developed, may be helpful for predicting exposure to harmful tobacco component substances in 
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addition to exposure to nicotine. For these reasons, snus was selected as a model product for the 

development and evaluation of the newly designed biorelevant in vitro device for OTPs. 

The first part of this research (Chapter 2) describes the development and validation of a 

high performance liquid chromatographic (HPLC) method for the analysis of nicotine in samples 

obtained from the in vitro experiments that employed the BTA, in vitro device.  

Dissolution/release/permeation testing is a quantitative measure which requires a quantitative 

analytical technique for the analyte of interest present in the product. Since the analytical method 

is a determinative step for the dissolution/release/permeation testing, it is important to validate the 

method. Therefore, the HPLC method for nicotine analysis in tobacco extract was validated for 

quantitative purpose and tested for its selectivity of nicotine analysis in the presence of tobacco 

components, the experimental environment and snus excipients.  

In the second part of this research (Chapter 3), a novel in vitro device for OTPs was 

designed and developed that allowed better simulation and adjustment of physiological and in vitro 

variables for optimization of IVIVR for snus. The novel bidirectional transmucosal device was 

appropriately validated and its performance was compared to that of a widely used vertical 

diffusion cell (VDC) and a modified USP IV flow through apparatus (USP IV) for its evaluation. 

 Chapter 4 presents a study of the effect of physiological and in vitro variables on the in 

vitro behavior of snus using the novel in vitro device (BTA). The study was carried out to screen 

oral cavity physiological and in vitro variables that may be incorporated in the novel BTA device 

to add biorelevance and optimize IVIVR for snus. 

 Chapter 5 demonstrates application of multifactroial experimental design concepts for 

optimization of the relevant physiological and in vitro variables for accurately predicting in vivo 
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performance. This design was employed in determining optimal biorelevant conditions for the 

novel BTA device for optimization of IVIVR for snus.  

 Chapter 6 describes an effort to extend application of the biorelevant BTA to predict the in 

vivo performance of a dissolvable compressed tobacco product (Stonewall).  

Chapter 7 summarizes the research findings and presents overall conclusion. This chapter 

also provides suggestions on potential modifications of the device that can be incorporated for 

broader application of the novel BTA device for OTPs. 
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CHAPTER 2 

 

SELECTIVITY INVESTIGATION AND LIQUID CHROMATOGRAPHIC METHOD 

FOR THE ANALYSIS OF NICOTINE IN TOBACCO EXTRACTS 

 Drawn from a manuscript published in J. Liq. Chromatogr. Relat. Technol. (2013) 36: 1849-

1868 

 

 

2.1 INTRODUCTION 

 

 Selectivity testing of an analytical method for an analyte of interest is a primary step for 

method development and validation. Various approaches have been recommended to establish 

selectivity of an analytical method to identify and quantify the analyte in the presence of the matrix 

present in real samples (US Food and Drug Administration 2001; Karnes 2004; ICH 2005; USP 

2009e). In addition, the standard addition approach and peak purity testing may be used to validate 

selectivity of the analytical method for an analyte when matrix cannot be replicated in standards 

or impurity and degradant standards are not available (Arce et al. 1998; Dunge et al. 2005; Sistla 

et al. 2005; Ribeiro et al. 2008).  

The standard addition method is recommended for the confirmation of the presence of 

matrix effect (proportional effect) by comparison of slopes between the external calibration and 

standard addition curve (Karnes et al. 1991; Arce et al. 1998). In addition, it can be applied as the 

calibration approach over an external calibration method when matrix effects are present (Harvey 
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2002; Stüber et al. 2004; Basilicata et al. 2005; Fu et al. 2011). An interference (constant error) 

due to a component in the matrix caused by coelution cannot be corrected by the standard addition 

method (Karnes 2004; Ellison et al. 2008). The coeluant can be evaluated by baseline analysis or 

testing whether or not the intercept of the external calibration curve is significantly different from 

zero when an appropriate blank containing real matrix is available (Karnes et al. 1991; Karnes 

2004). When an appropriate blank (real matrix or impurities and degradant standards) does not 

exist, peak purity testing can be a useful tool for the evaluation of coelution (ICH 2005). Peak 

purity testing with a photodiode array detector (PDA) is an approach that determines whether or 

not a matrix component coelutes and absorbs UV light similar to the analyte and thus contributing 

to the analyte response (Krull et al. 2001). Peak purity testing with the Waters 996 PDA detector 

and Waters Empower software analyzes absorbance spectra across the analyte peak and compares 

each spectrum of the peak with that of the apex spectrum of the same peak to determine if the 

spectra are similar (Waters 996 2002a, b, c). Similar spectra indicate a pure analyte peak; whereas 

a difference in the spectra indicates the presence of coeluting impurity. Elimination of the coeluant 

may not be possible when it is added into the sample during sample processing; however, the 

source of the coeluting compound can be determined by the analyte peak trapping followed by 

mass spectrometry (MS) which can help in avoiding the addition of the coeluting substance by 

appropriate steps. This approach can be a useful tool especially when the coeluant possess similar 

UV spectra to that of the analyte (Bryant et al. 1996). 

In the present research, the above selectivity studies were applied for the validation of an 

HPLC method for nicotine analysis in samples obtained from a biorelevant in vitro 

release/permeation testing device of nicotine from smokeless tobacco (snus) which is described in 

Chapter 3. Biorelevant drug release/permeation testing are performed under simulated in vivo 
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conditions that allow better prediction of the in vivo behavior of the product (Emami 2006; Azarmi 

et al. 2007; Wang et al. 2009). A novel biorelevant in vitro system was developed for oral 

transmucosal products using smokeless tobacco (snus) as a model product (Chapter 3) (Delvadia 

et al. 2012).  

A reported HPLC method for the analysis of nicotine in tablet dosage forms was 

appropriately modified for nicotine analysis in Hanks’ balanced salt solution (HBSS) (Tambwekar 

et al. 2003; Iyer et al. 2007b). The modified HPLC method was validated using nicotine standards 

in Hanks’ media as per the ICH guidance (ICH 2005). It was not possible to obtain blanks with 

matched matrix for the in vitro samples of smokeless tobacco (snus). Therefore, selectivity of the 

nicotine analysis was investigated as a part of validation using the standard addition method, peak 

purity testing and peak trapping with identification by MS and are described in detail in this 

Chapter.  

 

2.2 MATERIALS AND METHODS 

 

2.2.1 MATERIALS 

  

(-)-Nicotine hydrogen tartrate was purchased from Sigma (St. Louis, MO, USA). Glacial 

acetic acid was obtained from EMD (Gibbstown, NJ, USA). HPLC grade ammonium acetate and 

ammonium formate were purchased from Fisher Scientific (Fair Lawn, NJ, USA) and Sigma (St. 

Louis, MO, USA), respectively. HPLC grade methanol and acetonitrile were purchased from 

Honeywell Burdick and Jackson (Muskegon, MI, USA). Hanks’ Balanced Salt, N-(2-

hydroxyethyl)piperazine-N′-(2-ethanesulfonic acid) (HEPES, 1M) buffer, formic acid and sodium 

hydroxide solution (10 N) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Smokeless 
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tobacco (snus; non mentholated moist portion snus with natural flavor) was bought from Old 

Virginia Tobacco Co. (Richmond, VA, USA). SnakeSkin® regenerated cellulose membrane 

tubing for the permeation study was purchased from Thermo Scientific (Rockford, IL, USA). 

Fluorinated ethylene propylene (FEP) and Tygon® platinized silicon tubing were obtained from 

Cole-Parmer (Vernon Hills, IL, USA). Fittings (Delrin® Teflon unions, polypropylene luer fittings 

and ethylene tetrafluoroethylene adapt bodies) used for tubing connections were purchased from 

Upchurch Scientific (Oak Harbor, WA, USA). A 12-channel, 8-roller Masterflex® peristaltic 

pump was purchased from Cole-Parmer Instrument Company (Vernon Hills, IL, USA). Neoprene 

O rings for the apparatus to prevent leakage were purchased from Sutton Clark (Richmond, VA, 

USA). 

 

2.2.2 DESCRIPTION OF THE SNUS AND BIORELEVANCE  

 

 Snus [0.98 ± 0.03 g (n=6)] used for the development of a biorelevant in vitro permeation 

system for OTPs is a smokeless tobacco product containing moist tobacco and excipients packed 

in a porous bag (Chapter 3). Each snus bag contained 8.0 mg of nicotine. The snus is placed under 

the upper lip for nicotine permeation through the buccal and gingival mucosa. A modified Hanks’ 

Balanced Salt Solution (HBSS) was employed as both a biorelevant release (simulating saliva) and 

permeation medium (simulating plasma) for the study (Iyer et al. 2007b). The modified HBSS 

simulates the major inorganic components of saliva and plasma qualitatively (Krebs 1950; Rehak 

et al. 2000).   
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2.2.3 HIGH PERFORMANCE LIQUID CHROMATOGRAPHIC (HPLC) METHOD 

 

2.2.3.1 CHROMATOGRAPHY  

 

All experimental samples were analyzed using an HPLC method which was modified from 

a method reported for analysis of tablet dosage forms (Tambwekar et al. 2003). A Waters 600E 

multisolvent delivery system with a Waters 717 autosampler, a Shimadzu solvent degasser DGU-

14A and a 996 Waters PDA detector were used for analysis. The separation of nicotine from other 

components in the in vitro samples was achieved using a reverse phase chromatographic column, 

Luna C18(2) (100 Å, 250 mm X 4.6 mm, 5 µm, Phenomenex, Torrance, CA) maintained at 45 °C. 

The chromatographic separation was isocratic and utilized premixed 10 mM ammonium acetate 

in 0.005% acetic acid (pH 5.5) : methanol (42:58, v/v) as the mobile phase at the flow rate of 1 

mL/min. The sample injection volume was 20 µL. Detection was by absorption at 260 nm which 

was the wavelength maxima of nicotine using the PDA. Nicotine eluted at 4.3 min under the above 

chromatographic separation conditions. 

 

2.2.3.2 PREPARATIONS OF STANDARDS AND QUALITY CONTROL SAMPLES 

 

Nicotine hydrogen tartrate equivalent to nicotine (free base) was weighed and dissolved in 

methanol to obtain a 500 µg/ml nicotine stock solution. The above stock solution was used to 

prepare nicotine calibration standards in modified HBSS by appropriate dilutions ranging from 0.5 

to 32 µg/mL. Quality control (QC) samples were prepared in Hanks’ media at 1.5 (low quality 

control-LQC), 5 (middle quality control-MQC) and 28 (high quality control-HQC) µg/mL. A 

dilution quality control sample above the upper limit of quantification was prepared at a 



 

 

23 

 

concentration of 64 µg/mL. The above sample was diluted ten and twenty five times using Hanks’ 

media to yield nicotine concentrations of 6.4 and 2.56 µg/mL, respectively. Standards and quality 

control samples were stored at -20 ˚C until analysis.  The standards, quality control samples and 

in vitro samples were thawed at room temperature and directly injected for analysis. 

 

2.2.3.3 METHOD VALIDATION  

  

The modified HPLC method for nicotine analysis was validated for linearity, limit of 

quantification, repeatability and intermediate precision (precision), accuracy (inter and intra-day 

accuracy), system suitability, and selectivity (standard addition method and peak purity testing for 

the assessment of matrix and interference effect, respectively) (ICH 2005; USP 2009f). 

Linearity of the nicotine HPLC analytical method was evaluated using seven nicotine 

calibrations standards (0.5, 1, 2, 4, 8, 16, 32 µg/mL); each was injected in replicates of five. 

Nicotine concentration was determined by linear regression of peak area versus concentration with 

1/X weighting. The lower limit of quantification (LLOQ) was estimated based on a 10:1 signal to 

noise approach (ICH 2005). However, the lowest standard that provided acceptable accuracy and 

precision (n=5) was considered to be the established LLOQ. Intra-day accuracy and repeatability 

(n=6 during one day) were determined from the QC samples. Inter-day accuracy and intermediate 

precision (n=12 over 3 days) were similarly determined. Accuracy and precision (repeatability and 

intermediate precision) were represented by recovery (%) and percent relative standard deviation 

(%RSD), respectively. The system suitability parameters (resolution, tailing factor, and number of 

theoretical plates) were calculated for both the nicotine standard (4 µg/mL) and in vitro samples 

manually using appropriate equations recommended by the USP (USP 2009f). In vitro nicotine 
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samples were obtained from preliminary nicotine release and permeation studies reported in 

Chapter 3. 

 

2.2.3.4 STABILITY  

  

The stability of nicotine in Hanks’ media under different conditions was tested. Stability 

studies included storage stability, freeze thaw stability, and autosampler stability (Rosing et al. 

2000). Storage and freeze thaw stability of nicotine in Hanks’ salt solution was assessed at the low 

QC (1.5 µg/mL, n=6) and high QC (28 µg/mL, n=6) concentrations. Storage stability was carried 

out at -20 ˚C for 2 months. For the freeze thaw stability experiment, QC samples were stored at -

20 ̊ C for at least 24 hours in between two cycles. The nicotine concentrations in storage and freeze 

thaw stability samples were calculated from the calibration curve obtained from the analysis of 

freshly prepared standards with each run. Storage and freeze thaw stability were assessed by 

comparing the nicotine concentrations of stored and thawed samples with that of the concentration 

of same samples that were prepared and analyzed on day 0.  Autosampler stability was performed 

by comparing the calibration standard concentrations at the start and end of the analytical day (10 

hours). A paired t-test (α = 0.05) was performed to assess autosampler stability 

 

2.2.4 SELECTIVITY OF THE HPLC METHOD FOR NICOTINE ANALYSIS  

  

  In vitro nicotine samples for selectivity investigations were obtained from preliminary 

experiments using the novel in vitro bidirectional transmucosal device that will be described in 

Chapter 3 (Figure 3.2(C); Section 3.2.4.3; Section 3.2.5.1). In vitro samples were obtained from 

both donor and receptor chambers of the device. In vitro samples obtained from the 
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release/permeation study consisted of tobacco components and snus excipients in addition to 

nicotine. The apparatus-assembly components could also add leachables into the media during the 

experiment. These could cause errors in quantification which cannot be compensated for by the 

external calibration as it was not possible to produce standards with the matrix containing the 

above components. Various approaches for selectivity testing were therefore employed. 

 

2.2.4.1 STANDARD ADDITION METHOD  

  

The donor and one receptor chamber in vitro samples at 60 min were used for the standard 

addition experiment. The donor sample was diluted 25 fold before spiking with the standards to 

represent the real situation where the donor sample is diluted for quantification within the 

calibration range. Nine hundred fifty microliters of the above in vitro samples were transferred to 

HPLC vials and spiked with 50 µL of 20, 40, 80 and 160 µg/mL of nicotine in Hanks’ media and 

vortex mixed. The spiking was performed in replicates of five for both types of samples. Both the 

donor and receptor chamber samples were evaluated using standard addition. The external 

calibration curve was obtained from pure nicotine standards in Hanks’ media (calibration samples) 

run in replicates of five with the standard addition experiment samples. The spiked samples and 

nicotine standards were analyzed using a wavelength range of 258-262 nm with 260 nm as the 

output wavelength. The plot of peak area responses as a function of true nicotine concentrations 

was constructed for spiked (donor and receptor chamber spiked samples) and calibration samples. 

A Student t-test (α = 0.05) was carried out to determine if the slopes (absolute values of slope) of 

both curves were significantly different (Arce et al. 1998). A significant difference (p-value < 0.05) 

in the slope would indicate a proportional error or matrix effect. 
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2.2.4.2 PEAK PURITY TESTING  

  

Peak purity testing using the Waters 996 PDA detector and Empower software was 

performed on the donor and receptor chamber samples at 60 min. Donor samples were diluted 10 

fold for HPLC peak purity analysis. Each sample was injected in triplicate. The peak purity testing 

using Waters Empower software provides purity angle and threshold angle values for each 

injection. Purity and threshold angle at the nicotine retention time estimates spectral heterogeneity 

(spectral differences between analyte and impurity) and spectral noise (spectral differences 

between analyte and solvent that contributes to the baseline noise), respectively (Krull et al. 2001; 

Waters 996 2002a, b, c). The presence of an impurity that is spectrally different and resolved to 

some extent from the analyte will increase the purity angle. A purity angle less than the threshold 

angle demonstrates the absence of a coeluant and that the analyte peak is pure and spectrally 

homogeneous. Whereas, a purity angle larger than the threshold angle is evidence for an impure 

analyte peak or a spectrally heterogenous peak and indicates the presence of more than one 

compound in the chromatographic peak. Peak purity plots with the threshold angle line and purity 

angle line were also studied. The purity angle line above the threshold angle line indicates the 

presence of a coeluant. 

Peak purity testing was performed using the two methods available within the Empower 

software: Autothreshold and Noise+Solvent method. In the autothreshold method, the noise level 

was calculated automatically by the software from the run time window defined in the processing 

method. In the noise+solvent method, noise was defined as the maximum purity angle obtained 

from the peak purity analysis of replicate injections of the lowest standard. The noise+solvent 

method takes into account the solvent contribution for the threshold angle and is preferred over 

the autothreshold method. Peak purity testing with both methods for all samples was carried out 
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in the wavelength range of 200-300 and 250-270 nm with 260 nm representing the absorbance 

maxima of nicotine. 

 

2.2.4.3 PEAK TRAPPING AND IDENTIFICATION BY THE MASS SPECTROMETRIC 

METHOD  

  

 

The presence of a coeluting compound was further confirmed using a triple quadrupole 

mass spectrometer (Waters Quattro API Micro with Masslynx 4.1 software for data acquisition, 

Waters Corporation, Milford, MA). The system was interfaced with a Shimadzu pumping system 

(Controller, SCL-10A VP; Pumps, LC 10 AT VP; and Solvent Degasser, DGU-14A, Shimadzu 

Scientific Instruments, Columbia, MD).  Peak trapping was performed by collecting the nicotine 

peak at the elution time window of 4 to 4.8 min from the HPLC system waste outlet. The start and 

end time for peak collection was calculated based on the mobile phase flow rate and tubing 

dimensions of the PDA detector and waste line (length and diameter). Since, the HPLC-UV 

method utilized mobile phase with relatively high aqueous content and at high flow rate, the same 

solvent system could not be employed for identification of the coeluant in the peak trapped samples 

by mass spectrometry. Therefore, the coeluant in peak trapped samples was identified by use of a 

mass spectrometer compatible solvent system. The solvent system and mass spectrometer 

conditions optimized for nicotine analysis by the HPLC-MS-MS method reported in the literature 

was adopted and modified for coeluant identification (Cappendijk et al. 2010). The mass 

spectrometric method utilized premixed 10 mM ammonium formate in 0.05% formic acid (solvent 

system A): 0.05% formic acid in 1:1 methanol:acetonitrile (solvent system B) [5:95, v/v] at  a flow 

rate of 0.2 mL/min. The source temperature, desolvation temperature, desolvation gas flow and 

cone gas flow were maintained at 150 ˚C, 350 ˚C, 200 L/h and 100 L/h, respectively. Peak trapped 
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samples were infused at a rate of 10 µL/min and mixed with the above solvent system in a tee prior 

to infusion into the ionization chamber. A full scan study in the Q1 mode (m/z range 50-1300) was 

performed on the infusion of all peak trapped samples for the identification of coeluant.  

Any coelutant can be attributed either to a smokeless tobacco (snus) component or a 

leachable substance from the apparatus-assembly. In addition to the in vitro study samples with 

the apparatus, samples were obtained from a nicotine permeation experiment conducted in a glass 

beaker and these samples were also subjected to peak trapping and MS identification to confirm 

whether or not a component of smokeless tobacco (snus) was the coeluting compound (Figure 2.1). 

For the beaker experiment, regenerated cellulose membrane tubing was sealed appropriately using 

a tubing clip from one end to avoid leakage. A snus with 5 mL of Hanks’ media was placed in the 

tubing and the other side was sealed using another clip. The above was hung from a stand and 

immersed in a beaker containing 170 mL of Hanks’ media maintained at 37 ˚C. The media in the 

beaker was stirred continuously using a magnetic stir bar. The experiment was carried out for an 

hour and media was sampled from the beaker at 60 min for MS identification.  
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Figure 2.1: Beaker set-up for nicotine permeation studies from snus [Figure not to scale] 

 

The mass spectra of trapped peaks for the in vitro apparatus and beaker samples were 

compared with those of the blank and nicotine standards in Hanks’ media. The presence of any 

mass/charge (m/z) peak in the mass spectrum of the peak trapped the in vitro samples different 

from that of the blank and nicotine standards indicated the presence of a coeluting substance. The 

presence of the coeluting substance in the mass spectrum of the beaker sample would provide 

evidence that a smokeless tobacco (snus) component is the contributing factor whereas, its absence 

would suggest the apparatus-assembly. 

 

2.2.5 LEACHING STUDY  

  

For further confirmation of whether or not the apparatus-assembly was the source of the 

coeluting substance, a leaching study was carried out. In this study, Hanks’ media from three 

reservoirs maintained at 37 ˚C was re-circulated through the apparatus-assembly for 60 min 

without smokeless tobacco (snus) and regenerated cellulose membranes. The media re-circulation 
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sample from each reservoir was infused into the MS system for evaluation. In addition, in order to 

identify the source of the leachable substance, each component of the apparatus-assembly 

(Neoprene O ring, silicon tubing, FEP tubing, acetal resin unions, polypropylene male luer fittings 

and ethylene tetrafluoroethylene adapt body) was placed separately in beakers containing 10 mL 

of Hanks’ media at 37 ̊ C for 60 min. These samples were infused into the MS system and the mass 

spectra were compared to that of the blank. The mass spectrum of the component that provided 

the peak that was not present in the blank confirmed its contribution. 

 

2.2.6 PDA SPECTRUM AND CHROMATOGRAM OF THE LEACHED STUDY SAMPLE  

  

A PDA spectrum from the leaching study sample was studied to confirm whether or not 

the leachable substance demonstrated absorbance at the wavelength of interest. The PDA spectrum 

was also compared to that of the nicotine standard. A chromatogram of the same sample was also 

studied to confirm whether or not the leachable substance coeluted with nicotine. 
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2.3 RESULTS AND DISCUSSION 

 

2.3.1 METHOD VALIDATION 

 

2.3.1.1 LINEARITY AND LLOQ  

 

 

The peak area response of nicotine versus its concentration demonstrated a linear 

relationship over the range of 0.5-32 µg/mL [Peak area = (1.79⨯104 ± 83.47) ⨯ nicotine 

concentration – (1.56 ⨯103 ± 333.87), mean calibration curve equation for n=5, R2 > 0.99, 

weighting 1/X]. The calibration curve accuracy (%recovery) and precision (%RSD) for the mean 

back calculated values of the standards were 97.98-103.20% and 0.15-3.14%, respectively. Based 

on the 10:1 signal to noise approach, 0.4 µg/mL was estimated to be the LLOQ; however, this 

lacked sufficient accuracy and precision. The LLOQ for the HPLC method was therefore 0.5 

µg/mL that  showed acceptable accuracy and imprecision of 103.20% and 2.78% respectively. 

Figures 2.2(A), 2.2(B) and 2.2(C) represent chromatograms of the blank, lowest (0.5 µg/mL) and 

highest (32 µg/mL) nicotine standard respectively. The peak area and back calculated nicotine 

standard concentrations for individual injections are presented in Tables A1-A2 of Appendix A 

respectively. 
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Figure 2.2: Representative chromatograms of blank and nicotine external standards; [A] Hanks’ 

media blank; [B] Nicotine external standard in HBSS 0.5 μg/mL; [C] Nicotine external standard 

in HBSS 32 μg/mL. 

 

  



 

 

33 

 

2.3.1.2 ACCURACY AND PRECISION  

 

Table 2.1 summarizes data on precision and accuracy, determined at five levels: LQC, 

MQC, HQC and two dilutions QCs. The intra- and inter- day precision was less than 4 % at all 

nicotine concentrations studied. The individual nicotine concentration at all QC levels for intra- 

and inter-day accuracy and precision are presented in Tables A3-A4 of Appendix A. 

 

2.3.1.3 SYSTEM SUITABILITY PARAMETERS  

 

System suitability parameters calculated according to USP for both nicotine standards and 

in vitro samples are tabulated in Table 2.2 (USP 2009f). System suitability parameters obtained 

were acceptable (US Food and Drug Administration 1994 ; Horacio et al. 2008; USP 2009f). Table 

A5 of Appendix A presents the system suitability parameters obtained from each individual 

injection of nicotine external standards and in vitro samples. The difference in the resolution of 

the nicotine peak from the solvent peak between the nicotine standard and in vitro sample was due 

to elution of unretained tobacco components in the in vitro sample. However, the nicotine peak 

was very well resolved from unretained tobacco components as shown in Figure 2.3.  
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Table 2.1: Accuracy and precision data for nicotine QCs in Hanks’ media 

 

Nominal 

Concentration 

(µg/mL) 

Intra-day(n=6)  Inter-day(n=12, 3 days) 

Observed 

mean 

concentration 

(µg/mL) 

Recovery 

(%) 
RSD* 

(%) 
 

Observed mean 

concentration 

(µg/mL) 

Recovery 

(%) 
RSD* 

(%) 

1.5 1.53 101.80 3.26  1.53 102.13 3.18 

5 4.93 98.50 2.15  4.85 97.04 2.30 

28 27.94 99.80 0.29  28.43 101.54 2.40 

64 

(25 x dilution) 
63.78 99.66 2.39  63.77 99.64 2.23 

64 

(10 x dilution) 
63.50 99.21 1.59  63.32 98.94 1.47 

* Percent relative standard deviation (%RSD) 

 

Table 2.2: System suitability parameters for nicotine (n=5) 

 

Parameter 
Mean 

(Standard) 

Mean 

(In vitro sample) 
Acceptance Limit 

Resolution 11.3 4.9 > 2 

Tailing factor 1.7 1.5 ≤ 2 

Number of theoretical plates 5849 5466 >2000 

Retention time (min) 4.15 4.17 - 

 

 

 

 

 

 

 

Figure 2.3: Representative chromatogram of the in vitro nicotine sample. 
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2.3.2 STABILITY  

 

Nicotine calibration standards were stable in the autosampler based on statistically 

insignificant differences in the standard concentrations observed at the start and end of the 

analytical day (Paired t-test: t =1.84, df = 6, p-value > 0.05). LQC (1.5 µg/mL) and HQC (28 

µg/mL) samples were stable for 2 months stored at -20 ˚C with a maximum recovery of 94.13% 

and 100.63% and showed consistency with a RSD of 2.61% and 0.57% respectively. LQC and 

HQC samples were also stable after three freeze-thaw cycles based on the maximum recovery of 

95% and 104.34% and RSD of 4.12% and 0.97% respectively. The short term and freeze-thaw 

stability data are shown in detail in Tables A6 and A7 respectively (Appendix A). 

 

2.3.3 SELECTIVITY OF THE HPLC METHOD FOR NICOTINE ANALYSIS 

 

2.3.3.1 STANDARD ADDITION METHOD  

 

Figure 2.4 represents the mean standard addition curve obtained with the spiked donor and 

receptor chamber samples (n=5) along with the external calibration curve (n=5). The external 

calibration curve represents the calibration curve obtained with the external standards of nicotine 

prepared in Hanks’ media. The individual peak areas of the external standards and spiked donor 

and receptor chamber samples are presented in Tables A8-A9 of Appendix A. The fitted line for 

the external calibration curve shown in Figure 2.4(A) and 2.4(B) was represented by Y = 

[(1.75⨯104 ± 2.28⨯102) ⨯ X – (1.21⨯103 ± 2.93⨯102)]. Whereas, the best fit lines for the standard 

addition curve for both the spiked donor and receptor chamber samples were Y = [(1.70⨯104 ± 

1.00⨯102) ⨯ X – (1.11⨯105 ± 4.15⨯102)] and Y = [(1.73⨯104 ± 1.11⨯102) ⨯ X – (5.44⨯105 ± 
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4.71⨯102)], respectively. The slope of the peak area versus nominal nicotine concentration plot 

for the donor chamber spiked samples (Figure 2.4(A)) was statistically smaller than that of the 

respective external calibration curve (Figure 2.4(A)) (Equal variance t-test at α=0.05, donor in 

vitro sample: t = 4.86, df = 8, p-value = 0.0013); however, the difference in the slope was 

considered insignificant as both curves are parallel. The slope of the peak area versus nominal 

nicotine concentration plot for the receptor chamber in vitro spiked samples (Figure 2.4(B)) was 

not statistically different than that of the respective external calibration curve (Figure 2.4(B)) 

(Equal variance t-test at α=0.05, receptor in vitro sample: t = 1.93, df = 8, p-value = 0.0901) 

indicating the absence of a matrix effect in the receptor chamber samples. 

The concentrations of nicotine in the donor and receptor samples obtained by extrapolation 

of the standard addition curves (x-intercept) were 6.52 and 31.51 µg/mL respectively. The nicotine 

concentrations in the same donor and receptor in vitro samples from the external calibration curve 

were 6.38 and 31.22 µg/mL respectively. This provided a positive deviation of 2.08% for the donor 

and 0.94% for the receptor compartments relative to the concentration obtained from the external 

calibration curve. These deviations were considered to be within an acceptable range. It was 

concluded that a proportional error was not present in the analysis of receptor in vitro samples and 

the error in the analysis of donor in vitro samples employing the external calibration curve was 

acceptable. A correction factor that accounts for the error involved in nicotine quantification by 

the external calibration method shown in Equation 2.1 can be employed in order to quantify 

nicotine in donor compartment more accurately. Overall, the external calibration was appropriate 

for in vitro nicotine sample analysis.    

𝑁𝑖𝑐𝑜𝑡𝑖𝑛𝑒 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝐷𝑜𝑛𝑜𝑟 =  
(𝑁𝑖𝑐𝑜𝑡𝑖𝑛𝑒 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝐸𝐶 𝑋 2.08)

100
+ 𝑁𝑖𝑐𝑜𝑡𝑖𝑛𝑒 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝐸𝐶                  

                                                                                                                                              Eq. 2.1 

where, EC is external calibration..  
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Figure 2.4: Comparison of the standard addition and external calibration curves; [A] Spiked donor 

in vitro sample obtained at 60 min; [B] Spiked receptor in vitro sample obtained at 60 min. (Error 

bar represents one standard deviation; n=5)  
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2.3.3.2 PEAK PURITY TESTING  

 

Peak purity testing on the donor and receptor chamber in vitro samples was performed for 

confirmation of whether or not there was a component present in the sample that coeluted with 

nicotine and contributed to the measured response. Purity angles and threshold angles obtained by 

the autothreshold and noise+solvent peak purity testing at 200-300 and 250-270 nm wavelengths 

scan range for nicotine standards and in vitro samples are tabulated in Tables 2.3 and 2.4 

respectively. The replicate peak purity data for the donor and receptor samples for snus are shown 

in Tables A10-A13 of Appendix A. Nicotine peaks from standards at both wavelength scan ranges 

obtained by the autothreshold and noise+solvent peak purity method were pure as the purity angles 

were less than the threshold angles. These peak purity results for nicotine standards along with the 

absence of a peak in the blank chromatogram at the nicotine elution time window suggests that the 

Hanks’ media components were not contributing to any coelution and response.  

The purity angles with all in vitro samples were larger than the respective threshold angles 

obtained by the autothreshold method at the 200-300 nm wavelength range suggesting that the 

nicotine peaks were impure. The impure nicotine peaks could be attributed to the presence of the 

coeluant in all in vitro samples that absorbs in the wavelength range of 200-300 nm. However, 

when the peak purity testing was performed on the same in vitro samples by the autothreshold 

method at the 250-270 nm wavelength range, the purity angles were smaller than the respective 

threshold angles in spite of the presence of the coeluant. It was therefore concluded that the 

coeluant was present in the in vitro samples that absorbed UV light in the wavelength range of 

200-250 nm and did not absorb at the output wavelength of 260 nm. This indicated that the nicotine 

peaks were spectrally pure at 250-270 nm eventhough peaks were chromatographically impure. 

This conclusion supports the use of 250-270 nm wavelength range for nicotine analysis in vitro 
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samples without any need of chromatographic resolution of the coeluant which did not absorb at 

the selected wavelength range (250-270 nm) 

In contrast, the nicotine peaks with all in vitro samples were pure with the noise+solvent 

peak purity testing (purity angle < threshold angle) irrespective of the wavelength scan range. This 

indicated the absence of any coeluant. The conclusion from the noise+solvent peak purity testing 

was in contrast to that of the autothreshold method at the wavelength range of 200-300 nm. In 

addition, the purity angle line was above the threshold angle line on the purity plots of in vitro 

samples with the noise+solvent method at 200-300 nm indicating that peaks were impure. The 

noise+solvent peak purity results at 200-300 nm were not in agreement with their respective peak 

purity plots. Therefore, peak purity results by the autothreshold method were used for further 

interpretation and that of the noise+solvent method were considered invalid. 

Overall, it was concluded from the peak purity testing that the Hanks’ media did not 

contribute to the measured nicotine response. This was evident from the peak purity autothreshold 

testing results irrespective of the wavelength scan range with nicotine standards. It was confirmed 

that a substance was coeluting with nicotine that absorbed in the wavelength range of 200-250 nm. 

Therefore, peak trapping followed by the MS identification was performed to identify the coeluant 

as well as the experimental source of it. 
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Table 2.3: Peak purity testing on the nicotine standards and in vitro samples by autothreshold 

method* 

 

Samples 

200-300 nm  250-270 nm 

Purity 

Angle 
Threshold 

Angle 
Interpretation$ 

 Purity 

Angle 
Threshold 

Angle 
Interpretation$ 

Nicotine standard 

(0.5 µg/mL) 
3.934 4.825 Pure peak  

2.386 2.989 Pure peak 

Nicotine standard 

(32 µg/mL) 
0.119 0.290 Pure peak 

 
0.063 0.252 Pure peak 

Receptor 1 sample 

at 60 min# 
1.393 0.354 

Spectrally 

impure 
 

0.244 0.290 Spectrally pure 

Receptor 2 sample 

at 60 min# 
1.267 0.389 

Spectrally 

impure 
 

0.253 0.315 Spectrally pure 

Donor sample at 

60 min# 
1.120 0.393 

Spectrally 

impure 
 

0.303 0.315 Spectrally pure 

* Each purity angle and threshold angle value represents mean of n=3 
$ Pure peak = chromatographically and spectrally pure peak 
# All nicotine peaks with in vitro samples were chromatographically impure at both 200-300 and 250-270 nm irrespective 

of its spectrally purity. 

 

Table 2.4: Peak purity testing on the nicotine standards and in vitro samples by noise+solvent 

method* 

 

Samples$,# 

200-300 nm 250-270 nm 

Purity 

Angle 
Threshold 

Angle 
Interpretation 

Purity 

Angle 
Threshold 

Angle 
Interpretation 

Nicotine standard 

(0.5µg/mL) 
5.629 9.665 Pure peak 2.386 5.69 Pure peak 

Nicotine standard 

(32µg/mL) 
0.119 5.538 Pure peak 0.063 2.947 Pure peak 

Receptor 1 sample at 

60 min 
1.393 5.609 Pure peak 0.244 2.988 Pure peak 

Receptor 2 sample at 

60 min 
1.267 5.644 Pure peak 0.253 3.014 Pure peak 

Donor sample at 60 

min 
1.120 5.646 Pure peak 0.303 3.013 Pure peak 

* Each purity angle and threshold angle value represents mean of n=3 
$ Pure peak = chromatographically and spectrally pure peak 
# The peak purity testing by noise+solvent method indicated all nicotine peaks (standards and in vitro samples) to be 

chromatographically and spectrally pure. However, the results were not in agreement with the respective peak purity plots 

and hence the results were considered invalid. 
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2.3.3.3 PEAK TRAPPING AND IDENTIFICATION BY THE MASS SPECTROMETRIC 

METHOD  

 

 

Figures 2.5(A) and 2.5(B) represent mass spectra of the peak trapped samples from Hanks’ 

blank and the nicotine standard in HBSS buffer respectively. The mass spectra of the receptor 

chamber and beaker samples at 60 min are shown in Figure 2.6(A) and 2.6(B) respectively. The 

peak at 162.69 m/z corresponded to nicotine. The mass spectra of the receptor in vitro sample 

(Figure 2.6(A)) showed the presence of a peak at 353.8 m/z which was assigned to the coeluant 

present in the trapped nicotine peak. The coeluant with a m/z of 353.8 present in the apparatus in 

vitro sample might be either from the smokeless tobacco (snus) matrix or the apparatus-assembly. 

The mass spectra of beaker in vitro samples did not show the presence of the 353.8 m/z peak 

(Figure 2.6(B), which confirmed that the source of coeluant was the apparatus-assembly 

components and not the smokeless tobacco (snus). 
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Figure 2.5: Mass spectra of peak trapped HBSS blank and external nicotine standard; [A] Hanks’ 

blank; [B] External nicotine standard (28 μg/mL). 
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Figure 2.6: Mass spectra of peak trapped receptor and beaker in vitro sample at 60 min; [A] 

Receptor in vitro sample; [B] Beaker in vitro sample.  
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2.3.4 LEACHING STUDY  

 

The mass spectra of non-circulating Hanks’ media and apparatus-assembly recirculating 

media at 60 min displayed in Figures 2.7(A) and 2.7(B), respectively, were obtained by the direct 

infusion of samples into the MS without performing peak trapping.  The mass spectra of the 

apparatus-assembly recirculating media yielded m/z peaks of 358.8, 374.8, 476.7 and 498.6 in 

addition to 353.7 that were different from that of the non-circulating Hanks’ media. Of these, m/z 

peaks, 476.7 and 498.8 occurred with low intensity and were also present in the non-peak trapped 

blank. On studying the mass spectra of the leach study samples of individual apparatus-assembly 

components in Hanks’ media, it was observed that only the  neoprene O ring Hanks’ media sample 

showed the presence of m/z peaks 353.6, 358, 374.6 and 476.7 (Figure 2.8). The neoprene O ring 

sample was also infused into the MS without performing peak trapping. The peak at 476.7 m/z 

was present in non-circulating Hanks’ blank and hence was not considered a leachable from the 

neoprene O ring. The m/z peak at 353.6 in the mass spectra of the neoprene O ring sample (Figure 

2.8) which was also present in the peak trapped apparatus in vitro sample (Figure 2.6(A)) was 

considered to be representative of the coeluant. This peak could be due to the leaching of a 

plasticizer used in the manufacture of neoprene. The mass spectrum (molecular ion with m/z 353.6 

or 353.8 ≈ 354 produced due to protonation in the positive ion mode) for the coeluant was 

consistent with the molecular weight of one of the most commonly used ester plasticizers, alkyl 

alkylether diester adipate (molecular weight 353), for the manufacture of rubber (Flick 1993; Stone 

2001). Other peaks at 358 and 374.6 m/z were not present in the peak trapped apparatus in vitro 

samples and were not considered representative of the coeluant. It was concluded from the leaching 

study that the neoprene O ring leached some substance during the experiment and was the source 

of coeluting substance. 
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Figure 2.7: Mass spectra of non-peak trapped blank and apparatus-assembly components [A] 

Hanks’ media blank; [B] Apparatus-assembly recirculating Hanks’ media. 
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Figure 2.8: Mass spectra of non-peak trapped Neoprene O ring in Hanks’ media sample. 
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2.3.5 PDA SPECTRUM AND CHROMATOGRAM OF THE LEACH STUDY SAMPLES  

 

The neoprene O ring sample was injected onto the HPLC system for confirmation of 

whether or not the leachable from the O ring coelutes and absorbs with nicotine. Study of the PDA 

spectrum of the neoprene O ring in the Hanks’ media sample (Figure 2.9(A)) indicated absorbance 

of the leachable in the wavelength range of 200 to 242 nm; whereas, that of the nicotine standard 

(Figure 2.9(B)) showed absorbance by nicotine in the wavelength range of 230-278 nm with 260 

nm as the wavelength maxima. We observed that nicotine and the leachable from the neoprene O 

ring shows overlap in their absorbance wavelength (230-240 nm). The chromatogram of the 

neoprene O ring sample (Figure 2.10) showed a peak at the elution window of 3.8 to 4.5 min which 

is also the nicotine elution time. The leach study, MS identification, PDA spectrum and 

chromatogram of the neoprene O ring sample confirmed its role in the leaching and coelution 

process which resulted in an impure nicotine peak. The peak purity testing on in vitro samples 

demonstrated impure nicotine peaks in the wavelength range of 200-300 nm which could be 

explained by the overlapping absorbance wavelength of the neoprene O ring leachable and nicotine 

(230-240 nm). However, the same samples demonstrated an absence of any contribution from the 

neoprene O ring leachable to the nicotine response on performing the peak purity testing in the 

wavelength range of 250-270 nm eventhough the peak was chromatographically impure. This was 

attributed to the absence of the absorption of UV light by  theleachable in the wavelength range of 

250-270 nm. 
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Figure 2.9: PDA chromatograms; [A] Neoprene O ring in Hanks’ media sample; [B] Nicotine 

standard (32 μg/mL) in Hanks’ media. 

 

 

Figure 2.10: Chromatogram of neoprene O ring in Hanks’ media sample. 
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2.4 CONCLUSIONS 

 

A simple and selective HPLC method for the analysis of nicotine in a Hanks’ balanced 

salts extract of smokeless tobacco (snus) components was presented. The selectivity of the 

modified HPLC method for nicotine analysis of the in vitro samples obtained from a novel in vitro 

release/permeation device for OTPs was investigated. The in vitro sample was a matrix containing 

snus components, excipients and Hanks’ salts. The standard addition experiment indicated the 

absence of a matrix effect; whereas, the peak purity testing and peak trapping with MS suggested 

the presence of a coeluting substance in the analysis of in vitro samples. The contribution to the 

nicotine response by the coeluant was attributed to the neoprene O ring and was avoided at the 

wavelength of maximum absorption for nicotine by a change in the wavelength range for in vitro 

sample analysis. This eliminated the contribution to the nicotine response by the coeluant which 

did not show any absorbance at 260 nm, the wavelength maxima of nicotine. Selectivity was shown 

without chromatographic resolution of the coeluting substance by selection of an appropriate 

wavelength range where the coeluant did not absorb UV light.  The present validated HPLC 

method was employed for nicotine analysis in the in vitro samples obtained from preliminary, 

screening and optimization experiments to be reported in Chapters 3, 4 and 5 respectively. The 

investigation presented provides a strategy to study the selectivity of the analytical method for in 

vitro samples especially when matrix cannot be duplicated in the external standards.  
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CHAPTER 3 

 

A BIORELEVANT IN VITRO RELEASE/PERMEATION SYSTEM FOR ORAL 

TRANSMUCOSAL PRODUCTS  

Drawn from a manuscript published in Int. J. Pharm. (2012) 430: 104-113 

 

3.1 INTRODUCTION 

 

 The oral transmucosal route is a promising option to circumvent the disadvantages of oral 

administration, since it is suitable for delivery of drugs with gastric incompatibility and hepatic 

first pass metabolism (Sudhakar et al. 2006; Madhav et al. 2009; Patel et al. 2011). Oral 

transmucosal products deliver drug directly into the systemic circulation through the mucosal 

linings of the oral cavity and bypasses hepatic first pass elimination (Washington et al. 2001; 

Sudhakar et al. 2006; Madhav et al. 2009). Additionally, the oral transmucosal site is easily 

accessible and convenient for drug delivery. For these reasons, considerable efforts are in progress 

for the development of oral transmucosal products (OTPs) for drugs which face challenges for 

delivery by the oral route (Rathbone et al. 1996; Pfister et al. 2005; Pather et al. 2008).  

 Predictive drug dissolution/release testing is required as an evaluation tool for cost 

effective and expedited pharmaceutical product development (Emami 2006; Azarmi et al. 2007) 

The evidence in the research/review literature and white paper present the need of an improved in 

vitro methodology for characterizing drug dissolution/release/permeation from OTPs (Azarmi et 
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al. 2007; Brown et al. 2011). A predictive tool is required for the development and evaluation of 

OTPs that can lead to cost effective product development and shortening of the research phase. 

Biorelevant dissolution/release/permeation tests when performed under simulated in vivo 

conditions can predict the in vivo behavior (drug absorption and plasma concentration time profile) 

of the product through in vitro in vivo relationships (IVIVR) (Polli 2000; Emami 2006; Wang et 

al. 2009). These biorelevant in vitro tests can be used as a quality control and research tool.  

Standard/compendial in vitro dissolution methods for sublingual and buccal tablets 

suggests the use of conventional dissolution and disintegration tests with a large volume of media 

(USP 2009a, b, c, d). These compendial dissolution methods do not allow sufficient simulation of 

the unique physiological environment of the oral cavity to which OTPs are exposed and therefore 

may not be good predictors of in vivo behavior. However, efforts have been made to address the 

need for appropriate in vitro methods for OTPs either by incorporating small volume 

dissolution/release/permeation or modification of the apparatus to reflect in vivo conditions. These 

include a system for drug release from bioadhesive buccal tablets using chicken buccal membrane 

(Mumtaz et al. 1995), a supported liquid membrane system for nicotine release from snuff (Luque-

Pérez et al. 1999), a low liquid system for drug release based on ionic current measurement 

(Frenning et al. 2002), a system for drug release study of dissolve in mouth dosage forms (Hughes 

2003), a flow through diffusion cell for drug permeation study using buccal mucosa (Lestari et al. 

2009) and a system for sublingual tablets  (Rachid et al. 2011). Unfortunately, while these in vitro 

methods offer background for the development of biorelevant in vitro testing of OTPs, they do not 

provide a system that simulates the oral cavity physiological conditions completely and were not 

validated appropriately using IVIVR. An IVIVR with a slope of unity is sought in order to use in 
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vitro data as a surrogate for in vivo performance and to make critical research and regulatory 

decisions.  

This research was therefore initiated to design and develop a biorelevant in vitro system 

for characterization of drug release and permeation from OTPs in a more physiologically realistic 

manner. To fulfill this objective, a novel bidirectional transmucosal apparatus (BTA) was designed 

and evaluated that allows better simulation of in vivo oral cavity conditions (low liquid 

surroundings, salivary secretion and swallowing rate, agitation, barriers, blood flow rate) . The 

device also allows adjustment of in vitro variables to optimize an IVIVR for OTPs.  Snus, a 

smokeless tobacco product, was selected as a model oral transmucosal product because in vivo 

nicotine pharmacokinetic data were available for comparison. Snus is put between the cheek and 

gum for nicotine permeation through the buccal and gingival membranes. In the present research, 

the in vivo prediction by novel bidirectional transmucosal apparatus was compared with that of a 

modified USP IV flow-through apparatus; a widely used device for novel dosage forms; and a 

commercially available vertical diffusion cell (VDC); an in vitro system for semisolid and 

transdermal products; for its evaluation. The development of this novel system will find 

application as a quality control and research tool in the development and regulation of smokeless 

tobacco products in addition to that of the pharmaceutical oral transmucosal products. 
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3.2 MATERIALS AND METHODS 

 

3.2.1 MATERIALS 

  

Snus (a type of smokeless tobacco, non mentholated moist portion snus with natural flavor, 

Nicotine 8.0 mg, 1.0 g pouch) for in vitro studies was obtained from Old Virginia Tobacco Co., 

Richmond, VA, USA. Hanks’ Balanced Salt (H-1387) and N-(2-Hydroxyethyl)piperazine-N′-(2-

ethanesulfonic acid) (HEPES, 1M) buffer for the preparation of Hank’s balanced salt solution 

(HBSS; pH 7.4) were purchased from Sigma, St. Louis, MO, USA. Sodium hydroxide and 

hydrochloric acid solution (10 N) for pH adjustment was purchased from Sigma, St. Louis, MO, 

USA. (-)-Nicotine hydrogen tartrate (working standard) for the assay was also purchased from 

Sigma, St. Louis, MO, USA. HPLC grade ammonium acetate and glacial acetic acid for the mobile 

phase preparation were purchased from Fisher Scientific, Fair Lawn, NJ, USA and EMD, 

Gibbstown, NJ, USA respectively. HPLC grade methanol was purchased from Honeywell Burdick 

and Jackson, Muskegon, MI, USA. Water was prepared in-house (the Nanopure DiamondTM, 

Barnstead, IO, USA). Polyethersulfone, polypropylene and regenerated cellulose membranes for 

in vitro permeation study were obtained from Pall Life Sciences, Ann Arbor, MI, USA; Sterlitech 

Corporation, WA, USA; and Thermo Scientific, Rockford, IL, USA respectively. Fluorinated 

ethylene propylene (FEP) and Tygon® platinized silicon tubing for the in vitro set up were 

purchased from Cole-Parmer, Vernon Hills, IL, USA. Teflon unions and luer fittings for tubing 

connections were bought from Upchurch Scientific, Oak Harbor, WA, USA. Masterflex L/S 12-

channel 8-roller cartridge pump head (Model 7519-25) and variable-speed modular drive (Model 

7553-70; 6 to 600 rpm; flow rate range : 0.0006 to 41 mL/min) for circulating media through donor 
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and receptor chambers of the novel in vitro device was purchased from Cole-Parmer, Vernon Hills, 

IL, USA.  

 

3.2.2 DESCRIPTION OF THE SNUS 

 

 Snus is a type of moist snuff containing tobacco packed in a porous bag. The snus weighed 

0.98 ± 0.03 g (n=6). Each packet of snus contained 8.0 mg of nicotine. The snus was 3.2 cm ⨯ 1.7 

cm ⨯ 0.43 ± 0.03 cm (length ⨯ width ⨯ depth, n=6) in size. The other ingredients of snus were 

water, taste enhance (salt), humectant (propylene glycol), acidity regulators (sodium carbonate), 

natural and artificial smoke flavors. Figure 3.1 displays a picture of the snus used in this study. 

The snus is placed under the upper lip or between the cheek and gum for nicotine permeation 

through the buccal mucosa from one side and the gingival mucosa on the other.  

 

 

 

 

 

 

 

Figure 3.1: The smokeless tobacco: Snus 
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3.2.3 MEDIUM FOR RELEASE AND PERMEATION STUDY  

 

A Hanks’ Balanced Salt Solution (HBSS) modified by the addition of HEPES buffer was 

used as a biorelevant release/permeation medium for the present study. HEPES was added to 

simulate blood pH of 7.4 as it has a pKa of 7.5. The medium was prepared by dissolving 9.8 g of 

the Hanks’ salt mixture in 975 mL of deionized water followed by pH adjustment to 7.4 ± 0.1 with 

1 M of sodium hydroxide solution in water.  The HEPES solution (25 mL of 1 M) was added into 

the above medium, mixed well, and vacuum filtered through 0.45 µm nylon filter. The pH of the 

Hanks’ medium was adjusted to 7.4 ± 0.05, if required, using 1 M sodium hydroxide or 1 M 

hydrochloric acid solution. 

 

3.2.4 APPARATUSES 

 

Nicotine release and permeation studies from a commercially available smokeless tobacco 

buccal pouch (Snus, 1.0 g) were performed using a Vertical Diffusion Cell (VDC), a Modified 

USP IV Flow-Through Apparatus (USP IV), and a Novel Bidirectional Transmucosal Apparatus 

(BTA). Figure 3.2 presents diagrammatic representations of all three apparatuses. The vertical 

diffusion cell is commercially available from Hanson Research (Chatsworth, CA, USA) and is 

widely used for the transdermal and semisolid dosage form drug release testing (Hanson 2010). 

The USP IV flow-through cell is a compendial apparatus and has received wide acceptance for 

both conventional and novel dosage form testing. The USP IV flow-through apparatus was 

modified according to (Iyer et al. 2007a) except that the two polycarbonate cells were replaced 

with conical glass cells (Iyer et al. 2007a). The bidirectional transmucosal apparatus is a novel 

system designed to better simulate oral cavity conditions and study the effect of physiological 
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variables on drug release and permeation. The vertical diffusion cell can be used for drug 

permeation studies, whereas; the modified USP IV flow-through apparatus can be utilized for drug 

release only. The bidirectional transmucosal apparatus provides the capability of studying drug 

release and permeation simultaneously. Physiological variables that can be simulated using the 

bidirectional transmucosal apparatus include low liquid surroundings, saliva secretion and 

swallowing rate, agitation/chewing movement, bidirectional release and permeation through 

biorelevant barriers and blood flow rate. In the present study, only low liquid surroundings and 

bidirectional permeation were simulated to test the suitability of the system. 

 

3.2.4.1 MODIFIED USP IV FLOW THROUGH APPARATUS (USP IV) 

 

The modified USP IV flow through apparatus consisted of two conical glass cells clamped 

together at their wide ends (Figure. 3.2(A)). The wide ends were provided with O-rings to prevent 

leaks. Two modified USP IV flow through apparatuses were mounted on a brass stand using 

cylindrical Teflon fitting at both ends. The inlet and outlet tubing was connected to the bottom and 

upper Teflon fittings respectively through which the medium was circulated into the glass cell. 

The length of the modified USP IV flow through apparatus was 19 cm; whereas, the length of the 

glass cell was 8.5 cm. The lower and upper Teflon fitting was 4.5 and 1.5 cm long respectively. 

The inlet and outlet diameter of the Teflon fittings was 0.1 cm.  The volume of the two glass cells 

when clamped together along with the Teflon fittings was 7.5 mL, whereas, the bottom and upper 

connecting tubing had volumes of 3 mL and 0.5 mL respectively.  
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Figure 3.2: Experimental set-up with three apparatuses; [A] Modified USP IV flow-through 

apparatus; [B] vertical diffusion cell; [C] novel bidirectional transmucosal apparatus. Figure 

3.2[C] shown on the next page. [Figure not to scale] 
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Figure 3.2: Experimental set-up with three apparatuses; [A] Modified USP IV flow-through 

apparatus; [B] vertical diffusion cell; [C] novel bidirectional transmucosal apparatus. Figures 

3.2[A] and 3.2 [B] shown on the previous page. [Figure not to scale]  
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3.2.4.2 VERTICAL DIFFUSION CELL (VDC) 

 

The vertical diffusion cell consisted of a donor (2.5 mL) and receptor (7 mL) chamber 

(Figure 3.2(B)). The donor and receptor chambers were made of polyether ether ketone (PEEK) 

and glass respectively. The receptor chamber was enclosed in a water jacket to maintain the 

temperature of the receptor medium. The receptor chamber had an inlet and outlet port for the 

circulation of receptor medium from the medium reservoir. The donor chamber was separated from 

the receptor chamber with an artificial membrane. The membrane area exposed to the receptor 

media was 1.77 cm2. However, the membrane area exposed to the donor medium was 0.79 cm2, 

due to the design of the donor chamber. The media in the receptor chamber was stirred using a 

spiral helix and magnetic stirrer. 

 

3.2.4.3 NOVEL BIDIRECTIONAL TRANSMUCOSAL APPARATUS (BTA) 

 

In contrast to the vertical diffusion cell, the novel bidirectional transmucosal apparatus 

consisted of one donor and two receptor chambers. One receptor chamber was present on each 

side of the donor chamber (Figure 3.2(C)). The presence of two receptor chambers allows study 

of the bidirectional permeation of nicotine from snus that occurs in vivo. When the snus is placed 

under the upper lip, nicotine from the tobacco permeates through the buccal mucosa from one side 

and the gingival mucosa on the other. The chambers were separated by an artificial membrane and 

were stacked together and secured by screws. The artificial membranes represent the buccal and 

gingival mucosa in the in vitro system. The apparatus was made of polymethyl methacrylate 

(PMMA) and inlets and outlets of all chambers were made of PEEK. The receptor chamber 

volumes were 7.5 mL and that of the donor chamber was 10 mL based on the height and diameter 
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of the chamber needed to hold the snus in its proper orientation. The dimensions of the donor 

chamber were chosen such that it provides low liquid surrounding and simultaneously hold the 

snus appropriately even after it expands due to the media absorption. The experimentally 

determined volumes of the receptor and donor chambers were 7.73 and 10.5 mL respectively due 

to the presence of a thicker neoprene O-ring between the two chambers which adds to the total 

volume of the chamber. The receptor chambers were 4 cm in diameter and 0.6 cm in height, 

whereas; the donor chamber was 4 cm in diameter and 0.8 cm in height. The membrane area 

exposed to the media in each receptor chamber was 14.5 cm2. This was different from the 

theoretical exposure area of 12.6 cm2 due to the space added between the chamber and O-ring 

which was 0.3 cm in diameter. Figure 3.3 displays the picture of the BTA constructed with PMMA. 

The apparatus was fabricated by Custom Design & Fabrication South, LLC (Petersburg, VA). 

Saliva secretion/swallowing and blood flow rate can be simulated by adjusting media flow 

rate in the donor and receptor chambers by the use of appropriate pumps. The effect of chewing or 

mouth movement can be studied by fabricating flexible walls on the receptors and putting pressure 

towards the center to agitate the product. 
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Figure 3.3: The novel bidirectional transmucosal apparatus; [A] Donor and receptor chambers; 

[B] Side view of the apparatus; [C] Top view of the apparatus. 
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3.2.5 IN VITRO RELEASE/PERMEATION STUDY 

 

3.2.5.1 EXPERIMENTAL SET-UP/CONDITIONS 

 

A single weighed snus was placed in the donor chamber or glass cell of the apparatuses. 

With the vertical diffusion cell and bidirectional transmucosal apparatuses, the donor chamber was 

separated from the receptor chamber by an artificial membrane. The Hanks’ medium was re-

circulated from the reservoir into the apparatus in a closed loop flow pattern at a flow rate of 1 

mL/min using a peristaltic pump, fluorinated ethylene propylene (FEP) and Tygon® platinized 

silicon tubing. The donor chamber of the vertical diffusion cell contained non-circulating Hanks

’medium because it was not possible to circulate donor fluid with this device. The medium 

reservoirs were 20 mL capacity scintillation glass vials placed in a water bath to maintain 

temperature at 37 ˚C. The Hanks’ media in the reservoirs were stirred using a magnetic stir bar 

throughout the experiment. Three separate reservoirs were used for each chamber in the 

experiment with the bidirectional transmucosal apparatus. A schematic representation of the 

experimental set up for all apparatuses is shown in Figure. 3.2. 

The donor chamber of the vertical diffusion cell contained 1.5 mL of Hanks’ medium; 

whereas, the donor chamber reservoirs of the modified USP IV and bidirectional transmucosal 

apparatus contained 30 mL including the volumes of tubing and reservoir. The receptor chamber 

reservoirs of the vertical diffusion cell and bidirectional transmucosal apparatus contained 25 and 

20 mL of Hanks’ medium respectively which also included the volumes of the tubing and reservoir. 

Samples (1 mL) were collected from the reservoir at an interval of 2.5 minutes for the initial 10 

minutes, 5 minutes for the subsequent 20 minutes and 15 minutes for last 30 minutes (0, 2.5, 5, 

7.5, 10, 15, 20, 25, 30, 45 and 60 min) for all experiments and with all apparatuses. These time 
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points were similar to the plasma sampling time points for an in vivo human clinical study that was 

to be used for IVIVR purposes. In the experiment with the vertical diffusion cell and bidirectional 

transmucosal apparatus, sampling was performed from receptor chamber reservoirs at the above 

time intervals and at the last time point from the donor chamber reservoir. The samples were 

replaced by an equivalent volume of fresh HBSS. The samples were frozen at -20 ̊ C until analysis. 

The samples were analyzed for nicotine release and permeation using a validated HPLC method 

reported in Chapter 2. HPLC analysis was performed on a Waters 600E multi-solvent delivery 

system with a Waters 717 autosampler, Shimadzu solvent degasser DGU-14A and 996 Waters 

photodiode array detector. Each experiment was performed with replicates of three or five. 

Cumulative nicotine amounts permeated through both artificial membranes into the receptor 

chambers of the bidirectional apparatus were added to represent the total permeation achieved at 

each time point. The method for calculation of the cumulative amount of nicotine permeated and 

released is tabulated in Table B13 (Appendix B) 

 

3.2.5.2 BIORELEVANCE 

 

The presence of snus in the oral cavity stimulates the whole salivary secretion and 

swallowing rate. These changes will impact the rate and extent of nicotine release and ultimately 

affecting the overall extent of its permeation. Due to this effect, it was important to simulate the 

stimulated secretion rate in the donor chamber. The chewing stimulated salivary secretion rate 

studied in a population with an average age of 25.4 years, was 0.9 ± 0.094 mL/min (Navazesh et 

al. 1992). Based on this information, it was decided to use 1 mL/min flow rate in the donor chamber 

of the bidirectional transmucosal and modified USP IV flow-through apparatus. The flow rate in 

the receptor chambers of the vertical diffusion cell and bidirectional transmucosal apparatus were 
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both maintained at 1 mL/min. Plasma composition was simulated by  use of Hanks’ Balanced Salt 

Solution in the receptor chambers as a biorelevant permeation medium (Iyer et al. 2007b). The 

same solution was used as a release medium in the donor chamber of the apparatuses as the major 

inorganic components of saliva and plasma are qualitatively similar (Krebs 1950; Rehak et al. 

2000). In addition, employing the same media in the donor and receptor chambers allows the 

sample analysis of both chambers utilizing the same analytical method. 

 

3.2.5.3 BIDIRECTIONAL TRANSMUCOSASL APPARATUS ORIENTATION  

 

The orientation of the vertical diffusion cell and modified USP IV flow-through cell could 

only be vertical due to the apparatus design. However, the bidirectional transmucosal apparatus 

could be oriented horizontally and vertically. Therefore, it was necessary to select the orientation 

of the bidirectional transmucosal apparatus that provided consistent and equivalent permeation in 

both of the receptor chambers. The effect of horizontal and vertical apparatus orientation on the 

nicotine permeation was studied using a polyethersulfone membrane (30 KDa MWCO, 

approximately 3 nm pore size) at a flow rate of 1 mL/min. The samples from the top and bottom 

receptor chamber’s reservoir were collected at 0, 10, 20, 30, 45 and 60 min. The experiment was 

carried out in triplicate. It is important to mention here, that this set of experiments was performed 

using the bidirectional transmucosal apparatus made up of PEEK which did not allow for visual 

examination of air entrapped inside the apparatus during the experiment. Therefore, in order to 

determine if equivalent permeation occurred during the study, the average of mean ratios of the 

cumulative amount of nicotine permeated in the bottom and top receptor chambers as a function 

of time was calculated. Equivalent permeation was expected as both membrane barriers are similar. 
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The orientation that provided an average ratio of one which indicates equivalent permeation (i.e., 

the absence of air entrapment) was considered as the optimal orientation. 

 

3.2.5.4 MEMBRANE SELECTION  

 

Three types of membranes were studied for nicotine permeation from snus. Two of them 

were polymer based, polypropylene (100 nm pore size, 75-110 µm thickness) and polyethersulfone 

(30 and 300 KDa MWCO; 3 and 30 nm pore size respectively, 220 µm thickness) membranes, 

whereas; the third membrane was regenerated cellulose membrane (10 KDa MWCO, 

approximately 2.5 nm pore size, 23 µm thickness). The membranes were studied with both, the 

vertical diffusion cell and bidirectional transmucosal apparatus to confirm that the results obtained 

are a function of the membrane and not the apparatus. The polypropylene membrane was studied 

only with the bidirectional transmucosal apparatus. The effect of pore size on nicotine permeation 

was studied using the polyethersulfone membranes of 3 and 30 nm pore diameters using only the 

bidirectional transmucosal apparatus. The criteria for membrane selection were based on 

consistent nicotine permeation, negligible adsorption of nicotine on the membranes and relatively 

large extent of permeation. The later was studied by sonication of the membrane in 5 and 10 mL 

of modified HBSS for 10 min separately for each experiment performed with the vertical diffusion 

cell and bidirectional transmucosal apparatus respectively. The sonication technique is proved to 

be an effective method for cleaning membranes and hence the same was used for extracting 

nicotine adsorbed on membranes in the present study (Kyllonen et al. 2005). The sonicated 

solution was then analyzed for nicotine adsorption. The cumulative in vitro nicotine permeation 

from snus (1.0 g) obtained with the optimal membrane was compared to the in vivo nicotine 
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absorption from the same snus product. This was done in order to examine the capability of the 

apparatuses for prediction of in vivo performance of oral transmucosal products. 

 

3.2.5.5 NICOTINE ADSORPTION STUDY ON ACRYLIC BIDIRECTIONAL 

TRANSMUCOSAL APPARATUS  

 

 

The study on adsorption of nicotine on the acrylic bidirectional transmucosal apparatus and 

assembly components was necessary due to the reported adsorption of nicotine on different 

materials (Grubner et al. 1980; Caka et al. 1990; Zahlsen et al. 1996; Van Loy et al. 1997; Piade 

et al. 1999). For this study, a single snus was put in 500 mL of HBSS for 30 minutes under 

continuous stirring. The resulting nicotine solution was filtered and used for the adsorption study. 

Sixty eight milliliters of the above nicotine solution from a single glass reservoir at 37 ˚C 

temperature was re-circulated at 1 mL/min into the acrylic bidirectional transmucosal apparatus 

assembly without membranes in place. The nicotine solution in the reservoir was stirred using a 

magnetic stir bar throughout the experiment. The nicotine solution was sampled from the reservoir 

at 0, 10, 20, 30, 40, 50 and 60 min and replaced by an equivalent volume of fresh nicotine solution. 

The adsorption study was performed in triplicate. The samples were analyzed using the validated 

HPLC method. The percent deviation in the mean nicotine amount at 60 min was calculated 

relative to the mean nicotine amount at 0 min. 

 

3.2.6 IN VIVO STUDY  

 

The in vivo nicotine absorption from the snus used in this research was obtained from a 

human clinical study designed and carried out by the Center of Research and Technology, Altria, 

Richmond, VA, USA. The in vivo nicotine pharmacokinetic study was conducted on 18 adult 
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smokeless tobacco users and mean plasma nicotine concentration time profiles along with their 

standard deviations were investigated. Snus was put in the oral cavity for 30 minutes after which 

it was removed during the study (Personal communication). The nicotine level in plasma samples 

obtained at 0 (Predose), 2.5, 7, 7.5, 10, 15, 20, 25, 30, 45, 60, 90, 120, 180, 240, 300, 600 and 720 

min was analyzed by LC-MS/MS (LLOQ 2 ng/mL). The study was approved by an Institutional 

Review Board. 

 

3.2.7 DATA ANALYSIS/PHARMACOKINETIC ASSESSMENT 

 

All calculations for data analysis were performed in Microsoft® Excel 2010.  Nicotine 

concentrations (µg/mL) were utilized for calculating the cumulative amount of nicotine released 

and/or permeated at each time point. The in vitro nicotine permeation observed with the vertical 

diffusion cell, modified USP IV flow-through apparatus and novel bidirectional transmucosal 

apparatus employing the optimal membrane was related to the in vivo nicotine absorption for 

IVIVR purposes and the slope of the relationship was evaluated. An IVIVR with a slope of unity 

was targeted, which indicates superimposition of in vitro and in vivo profiles (Emami 2006).  

The observed mean in vivo plasma nicotine concentration time profile was deconvolved to 

its in vivo absorption time profile by Wagner-Nelson modeling, assuming an open body one 

compartment model (Wagner et al. 1964). The area under the curve, AUC0-t, was calculated by the 

trapezoidal rule. The elimination rate constant (ke) was estimated from the terminal slope of the 

logarithmic plasma nicotine concentration time profile, which was further used for calculating 

AUC0-∞. All of the above parameters were employed for the determination of the fraction of 

nicotine absorbed as a function of time by Wagner-Nelson modeling based on Equation 3.1. 
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𝐴𝑡

𝐴∞
=

[𝐶𝑡+(𝑘𝑒 ⨯𝐴𝑈𝐶0
𝑡)]

[𝑘𝑒⨯𝐴𝑈𝐶0
∞]

             ----------    Eq 3.1 

where, 

𝐴𝑡

𝐴∞
 = fraction amount of drug absorbed at time t 

𝐴𝑡 = cumulative amount of drug absorbed at time t 

𝐴∞ = cumulative amount of drug ultimately absorbed of absorbable dose 

𝐶𝑡 = plasma drug concentration at time t 

𝐴𝑈𝐶0
𝑡 = area under the curve of the plasma concentration time profile between t = 0 and t = t 

𝐴𝑈𝐶0
∞ = area under the curve of the plasma concentration time profile between t = 0 and t = ∞ 

𝑘𝑒 = Elimination rate constant of the drug obtained from the terminal phase of log plasma 

concentration time profile 

Further, the percent of nicotine (%) absorbed as a function of time (min) was calculated 

from the fraction of nicotine absorbed (
𝐴𝑡

𝐴∞
) obtained by the Wagner-Nelson modeling and absolute 

bioavailability (F) (considering 8 mg as the nominal dose, 8 mg is the nominal amount of nicotine 

present in snus) based on Equation 3.2: 

% 𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑁𝑖𝑐𝑜𝑡𝑛𝑒 𝐴𝑏𝑠𝑜𝑟𝑏𝑒𝑑 =  
𝐴𝑡

𝐴∞
⨯ 100 ⨯ 𝐹             ----------    Eq 3.2 

where,  
𝐴𝑡

𝐴∞
  is the fractional amount of nicotine absorbed at time t, and  F representing  the 

absolute bioavailability of nicotine from snus. The absolute bioavailability of nicotine from snus 

was 0.18 [𝐹 =  
(𝐴𝑈𝐶0

∞)𝑠𝑛𝑢𝑠

(𝐷𝑜𝑠𝑒)𝑠𝑛𝑢𝑠
 ⨯  

(𝐷𝑜𝑠𝑒)𝐼𝑉

(𝐴𝑈𝐶0
∞)𝐼𝑉

; The AUC0-∞, IV and Dose IV from an intravenous (IV) 

infusion pharmacokinetic study on 20 healthy adult subject of age 22-43 years was 1596 

ng*min/mL and 1.77 mg respectively (Molander et al. 2001); AUC0-∞, snus and Dose snus was 1283 

ng*min/mL and 8 mg respectively].  



 

 

69 

 

The cumulative percent nicotine (% of 8 mg dose) absorption time profile obtained was 

employed for the in vitro in vivo relationship (IVIVR). The percent cumulative in vitro nicotine 

released and/or permeated (% of 8 mg dose; 7.5 to 30 min) was related to the percent cumulative 

in vivo nicotine absorbed (% of 8 mg dose; 7.5 to 30 min) and the IVIVR slope obtained with each 

apparatus was interpreted.  

 

3.3 RESULTS AND DISCUSSION 

 

3.3.1 VALIDATION OF THE SYSTEM 

 

3.3.1.1 BIDIRECTIONAL TRANSMUCOSAL APPARATUS ORIENTATION  

 

Figures 3.4(A) and 3.4(B) represent the cumulative nicotine permeation in the top and 

bottom receptor chambers when the apparatus was oriented in horizontal and vertical positions 

respectively. Table 3.1 presents the ratio of the average amount of nicotine permeated in the bottom 

and top receptor chambers when the BTA was oriented horizontally and vertically. The amounts 

of nicotine permeated in the bottom and top receptor chambers obtained from replicate 

experiments at both orientations are displayed in Tables B1 and B2 of Appendix B. The average 

of the mean ratio of the nicotine permeated in the bottom and top receptor chambers at all-time 

points with the horizontal and vertical orientation were 2.19 and 1.09 respectively. The ratio of 

2.19 with the horizontal apparatus orientation indicates that the permeation was two times higher 

in the bottom receptor chamber when compared to the top receptor chamber. In the horizontal 

orientation, total permeation was higher in the bottom chamber due to the initial 10 minutes, where 

the nicotine permeation was approximately 2.25 times higher than in the top receptor chamber. 
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Nicotine permeation was comparable after the initial 10 minutes as evident from the parallel slopes 

of the cumulative nicotine permeation-time profile of the horizontal apparatus orientation in 

Figure. 3.4(A). This initial difference may be due to entrapment of air in the donor chamber below 

the top receptor membrane or a higher degree of contact of the lower receptor membrane with the 

snus in the horizontal orientation. The entrapment of air creates a void space between the 

membrane of the top receptor chamber and the donor chamber and negatively affects the 

permeation process. With the vertical orientation, the ratio of 1.09 suggests equivalent permeation 

in both the receptor chambers of the bidirectional apparatus and the absence of air. Since the extent 

of nicotine permeation was similar in both receptor chambers in the vertical apparatus orientation; 

it was decided to conduct future experiments positioning the apparatus vertically. Also, snus placed 

horizontally in the novel apparatus that is oriented vertically adds biorelevance to the novel system 

for the reason that the snus is placed horizontally under the upper lip. In addition, the nicotine 

available for permeation through the gingival and buccal membranes may be the same in vivo due 

to the absence of air at the interface between snus and mucosa. The vertical orientation mimics the 

availability of nicotine at both membrane-donor media interfaces as indicated by equivalent 

permeation in both receptors. With respect to the absence of void space and equal availability of 

nicotine for permeation at both membrane-donor media interfaces; the vertical orientation was 

considered optimal and is more physiologically relevant. 
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Figure 3.4: Effect of apparatus orientation on nicotine permeation in the receptor chambers; [A] 

Horizontal orientation; [B] Vertical orientation. (Error bars represents one standard deviation; n=3) 
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Table 3.1: Effect of apparatus orientation on nicotine permeation in receptor chambers (n=3) 

 

 Horizontal Vertical 

Time (min) Mean ratio of nicotine amount permeated (bottom/top receptor) 

10 2.25 0 

20 2.19 1.32 

30 2.14 1.46 

45 2.20 1.27 

60 2.19 1.38 

Average ratio 2.19 1.08 
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3.3.1.2 MEMBRANE SELECTION  

 

Membrane selection was affected by the tendency of nicotine to adsorb onto various 

materials (Grubner et al. 1980; Zahlsen et al. 1996; Van Loy et al. 1997; Piade et al. 1999). 

Polypropylene (100 nm pore size, 75-110 µm thickness) was first studied for nicotine permeation 

using the bidirectional transmucosal apparatus. It was found that the nicotine permeation did not 

occur with this membrane within the lower limit of quantification of the HPLC method. The 

absence of nicotine permeation can be attributed to the lack of wettability of the polypropylene 

due to its hydrophobicity. The membrane observed at the end of the experiment was completely 

dry. Therefore, it was concluded that the polypropylene membrane was not a suitable membrane 

choice and was not further investigated. 

Table 3.2 shows results of nicotine release, cumulative nicotine permeation and nicotine 

adsorption on membranes studied with the vertical diffusion cell (VDC) and bidirectional 

transmucosal apparatus (BTA) with both polyethersulfone and regenerated cellulose membranes. 

The replicate data for nicotine release/permeation obtained from experiments for membrane 

selection are presented in Table B3-B7 of Appendix B. Figure 3.5(A) and 3.5(B) shows a graphical 

representation of the effect of the membrane on nicotine permeation with both the VDC and BTA. 

The cumulative nicotine permeation with the polyethersulfone membrane (3 nm pore size) was 

highly variable with both the vertical diffusion cell (%RSD60 min = 63.88 %) and bidirectional 

transmucosal apparatus (%RSD60 min = 49.64 %). The overall nicotine permeated with the vertical 

diffusion cell and bidirectional transmucosal apparatus at 60 minutes using the polyethersulfone 

membrane was only 0.2 and 0.6 % of 8 mg nicotine in the snus respectively which is much less 

than the 18% nicotine absorbed in vivo. However, the bidirectional transmucosal apparatus 

provided approximately three times greater permeation than the vertical diffusion cell due to the 



 

 

74 

 

larger membrane surface area and bidirectional permeation. In addition, an unexpected plateau in 

the cumulative nicotine permeation with the vertical diffusion cell was observed which could be 

related to saturation of the small membrane surface. At the end of the permeation study, the 

membranes were completely brown in color. The analysis of Hanks’ media used for sonication of 

polyethersulfone (3 nm pore size) membranes used in both the apparatuses indicated significant 

adsorption of nicotine which might have been responsible for the observed low extent of 

permeation (two tailed t-test at α=0.05, vertical diffusion cell (0.114 mg/cm2): t = 13.30, df = 4, p-

value = 0.0002; bidirectional transmucosal apparatus (0.005 mg/cm2): t = 6.11, df = 2, p-value = 

0.0258). Nicotine assayed from the donor chamber accounted for more than 50 % of the nicotine 

content in the snus (8 mg) which supports the conclusion that the nicotine release is high enough 

for permeation to occur.  

Subsequent studies were conducted using polyethersulfone membranes with a pore size of 

30 nm (n=3) and the bidirectional apparatus to investigate whether or not the small pore size with 

the previous study might have been responsible for low permeation. This study demonstrated the 

complete absence of permeation. As observed previously, membranes were completely brown at 

the end of the study and the sonication experiment suggested adsorption of nicotine. It is possible 

that nicotine is adsorbed on the pigment present in tobacco. The pigment might have blocked 

membrane pores of both types of polyethersulfone membranes and thus provided low nicotine 

permeation. This study shows that the pore size was not limiting for nicotine permeation. We 

concluded that the polyethersulfone membrane was not a suitable membrane for nicotine 

permeation.  

Cumulative nicotine permeation with the regenerated cellulose membrane (2.5 nm) was 

less variable as compared to the polyethersulfone membrane with both the vertical diffusion cell 



 

 

75 

 

(%RSD60 min = 15.80 %) and the bidirectional transmucosal apparatus (%RSD60 min = 14.77). The 

overall nicotine permeated with the regenerated cellulose membrane was 12.23 and 12.30% of the 

nicotine content (8 mg) in snus which is close to the 18 % nicotine absorbed in vivo. The analysis 

of regenerated cellulose sonicate samples with both devices again indicated adsorption onto the 

membrane (two tailed t-test at α=0.05, vertical diffusion cell (0.005 mg/cm2): t = 4.42, df = 4, p-

value = 0.0115; bidirectional transmucosal apparatus (0.0002 mg/cm2): t = 3.76, df = 4, p-value = 

0.0198) although the regenerated cellulose provided significantly less nicotine adsorption  as 

compared to the polyethersulfone membranes (Equal variance t-test at α=0.05, vertical diffusion 

cell: t = -12.64, df = 8, p-value < 0.0001; bidirectional transmucosal apparatus: t = -5.86,  df = 

2.02, p-value = 0.0274). Also, the regenerated cellulose membranes observed at the end of the 

experiment were completely clear.  The regenerated cellulose membrane was selected for further 

study owing to consistent and large extent of nicotine permeation and less nicotine adsorption 

relative to the polyethersulfone membrane. Nicotine, being a lipophilic molecule, is highly 

permeable through the oral mucosa. Therefore, the oral mucosa may not be a major barrier to the 

availability of nicotine in the systemic circulation. Similar nicotine permeation behavior was 

obtained with the use of regenerated cellulose membrane; whereas, permeation through the 

polyethersulfone membrane was limited due to adsorption of nicotine. 
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Table 3.2: Nicotine release, cumulative nicotine permeation and nicotine adsorption with polyethersulfone (PES) and regenerated 

incellulose (RC) membranes 

  

Membrane 

(pore size) 
Apparatus N 

Nicotine release in 

donor chamber at 

60 min (mg) 

(%RSD)g 

Adsorption of 

nicotine on 

membrane 

(mg) (%RSD) 

Adsorption of 

nicotine per cm2 

of membrane 

(mg/cm2)  

(%RSD) 

Percent 

nicotine 

adsorption 

on 

membrane 

(%/cm2)f 

Total 

nicotine 

release in 

donor 

chamber at 

60 min (mg)a 

Percent 

nicotine 

release 

in donor 

chamber 

(%)f 

Cumulative 

nicotine 

permeation at 

60 min (mg) 

(%RSD) 

Percent 

nicotine 

permeation 

at 60 min 

(%)f 

PES 

(3 nm) 

VDC 5 
4.68 ± 0.29  

(6.21) 

0.09 ± 0.02d 

(16.82) 

0.11 ± 0.02  

(16.82) 
1.43 4.77 59.59 

0.02 ± 0.01 

(63.88) 
0.21 

BTA 3 
5.96 ± 0.71  

(11.95) 

0.16 ± 0.04b,c 

(28.35) 

0.005 ± 0.002  

(28.35) 
0.06 6.12 76.46 

0.05 ± 0.02e 

(49.64) 
0.58 

PES 

(30 nm) 
BTA 3 

5.52 ± 0.97  

(17.60) 

0.24 ± 0.15b,c 

(60.67) 

0.008 ± 0.005  

(60.67) 
0.10 5.76 72.00 not detected - 

RC 

(2.5 nm) 

VDC 5 
3.90 ± 0.53  

(13.48) 

0.004 ± 0.002d 

(50.58) 

0.005 ± 0.002  

(50.58) 
0.06 3.90 48.80 

0.98 ± 0.16 

(15.80) 
12.23 

BTA 5 
5.86 ± 0.24  

(4.02) 

0.006 ± 0.004b,c 

(59.47) 

0.0002 ± 0.0001 

(59.47)  
0.003 5.87 73.33 

0.98 ± 0.15e 

(14.77) 
12.30 

a The total nicotine release in donor chamber represents the sum of nicotine release in donor chamber at 60 min and nicotine adsorbed on the membranes 
b Values represents the sum of nicotine adsorbed on membranes of both receptors 
c The total of the surface area of both membranes exposed to donor media was 29 cm2 in the bidirectional transmucosal apparatus (14.5 cm2 per membrane) 
d The total surface area of membrane exposed to donor media was 0.79 cm2 in the vertical diffusion cell 
e The nicotine permeation represents the sum of nicotine permeated in both the receptors at 60 min 
f Values represents the percent of 8 mg 
g Percent relative standard deviation  



 

 

77 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Effect of membrane type on nicotine permeation with the vertical diffusion cell and 

bidirectional transmucosal apparatus; [A] Polyethersulfone membrane (3 nm); [B] Regenerated 

cellulose membrane (2.5 nm). (Error bars represents one standard deviation; n=5 in all cases except 

with polyethersulfone membrane and BTA where n=3) 
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3.3.1.3 ADSORPTION OF NICOTINE ON THE ACRYLIC BIDIRECTIONAL 

TRANSMUCOSAL APPARATUS AND ASSEMBLY COMPONENTS  

 

 

In addition to the study of nicotine adsorption onto membranes, it was also necessary to 

examine the adsorption of nicotine onto the acrylic bidirectional transmucosal apparatus and 

assembly components.  The study was not performed with the glass vertical diffusion cell as the 

glass had shown the least adsorption of nicotine among different materials tested (Grubner et al. 

1980). Besides, other assembly components used for these two set ups were similar. The nicotine 

adsorption study with the acrylic bidirectional transmucosal apparatus set up was conducted by re-

circulation of nicotine solution of a known concentration and the nicotine time profile obtained 

from the study is shown in Figure 3.6.  The amount of nicotine adsorbed as a function of time 

obtained from replicate experiments is displayed in Table B8 of Appendix B. The study indicated 

that approximately 4% of nicotine from the solution was adsorbed at 60 minutes. This deviation 

was not considered significant and it was concluded that the acrylic bidirectional transmucosal 

apparatus and assembly components were suitable for further work. 
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Figure 3.6: Nicotine amount time profile for the nicotine adsorption study with the acrylic 

bidirectional transmucosal apparatus and assembly components. (Error bars represents three 

standard deviation; n=3) 
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3.3.2 IN VITRO RELEASE/PERMEATION STUDY 

 

Figure 3.7 illustrates the mean cumulative nicotine release/permeation time profiles 

obtained with the modified USP IV flow-through apparatus, vertical diffusion cell and novel 

bidirectional transmucosal apparatus when the regenerated cellulose membrane was used. The 

amount of nicotine released/permeated, nicotine release/permeation rate and lag time obtained 

from all three apparatuses are tabulated in Tables B9-B11 of Appendix B. Nicotine release using 

the modified UPS IV flow-through apparatus demonstrated a first order release of nicotine 

[cumulative nicotine release USP IV (mg) = 1.7954 * Ln (time in minutes) – 2.0232, R2 = 0.957]; 

whereas, nicotine permeation with the vertical diffusion cell and bidirectional transmucosal 

apparatus showed zero order permeation of nicotine  [cumulative nicotine permeation VDC (mg) =  

0.0169 * (time in minutes) – 0.0377, R2 = 0.997 and cumulative nicotine permeation BTA (mg) = 

0.0207 * (time in minutes) – 0.2392, R2 = 0.998 respectively]. The first order release obtained with 

the modified USP IV apparatus might be due to depletion of nicotine in the snus as a function of 

time resulting in the decreased release rate. The cumulative nicotine amount released at 60 minutes 

accounted 71.21% (5.697 mg ± 0.341, % RSD = 5.99, n=5) of nicotine content in snus (8 mg). In 

contrast, with the vertical diffusion cell and bidirectional transmucosal apparatus, the donor 

nicotine concentrations were large relative to the nicotine that permeated in the receptor chambers 

as shown in Table 3.2; consequently linear permeation was obtained during the 60 minute period.  

Table B5 (Appendix B) represents the cumulative amount of nicotine released/permeated 

as a function of time obtained from replicate experiments with all apparatuses. 
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Figure 3.7: The mean cumulative nicotine permeation/release time profiles with all three 

apparatuses; USP IV : Y=0.1707*X-0.073, R2=0.99 (Linear fit : 2.5 to 20 min, No lag time); VDC 

: Y=0.018*X-0.0608, R2=0.99 (Linear fit : 5 to 30 min, Lag time of 2.5 min); BTA : Y=0.021*X-

0.2487, R2=0.99 (Linear fit : 15 to 30 min, Lag time of 11.8 min). (Error bars represent one 

standard deviation; n = 5) [ The line was fitted up to 20 min with the  USP IV due to non-linearity 

after 20 min; The line was fitted up to 30 min for the VDC and BTA as these will be compared to 

the in vivo rate obtained from a study where snus was removed after 30 min] [Slopes of the above 

fitted lines represent release/permeation rate and are used for comparison with the in vivo rates in 

Chapter 4] 
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3.3.3 IN VIVO STUDY 

 

The mean plasma nicotine concentration time profile obtained from a nicotine 

pharmacokinetic study carried out on 18 adult smokeless tobacco users by the Center of Research 

and Technology, Altria, is shown in Figure 3.8(A) and the mean pharmacokinetic parameters are 

summarized in Table 3.3. The in vivo percent nicotine absorption time profile (% of 8 mg – 

nominal amount of nicotine in snus) obtained after the deconvolution of the mean plasma nicotine 

concentration time profile and the application of a scaling approach based on absolute 

bioavailability (F = 0.18) is displayed in Figure 3.8(B). The application of the scaling approach 

was based on the absolute bioavailability F (Section 3.2.7; Equation 3.2) and provided 18%  as the 

maximum amount of nicotine absorbed as opposed to 100% (
𝐴𝑡

𝐴∞
⨯ 100) which is usually obtained 

after modeling of the plasma concentration by the Wagner Nelson approach. The plasma nicotine 

levels and the amount of nicotine absorbed are summarized in Table B12 (Appendix B). 

Table 3.3: Mean pharmacokinetic parameters (n=18) after administration of snus 1.0 g (8 mg 

nicotine) 

 

Pharmacokinetic parameters Snus 1.0 g 

Cmax (ng/mL) 7.8 

Tmax (min) 45 

AUC0-300min (ng*min/ml) 1203.5 

AUC0-∞ 1283.5 

ke (min-1) 0.009 

Absolute bioavailability (%) 18 

Absorption rate (mg/min)* 0.036 

* The rate was calculated from 7.5 to 30 min of the nicotine absorption 

time profile [Nicotine absorbed (mg) vs Time (min) plot] 
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Figure 3.8: Deconvolution of plasma nicotine concentration time profile of snus by Wagner-

Nelson modeling [A] The mean plasma nicotine concentration time profile of 18 smokeless 

tobacco users (Error bar represents one standard deviation; n=3); [B] The mean nicotine absorption 

time profile of 18 smokeless tobacco users. 

 

  

Deconvolution: Wagner-Nelson Modeling 

Correction based on the absolute bioavailability 
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3.3.4 IN VITRO IN VIVO RELATIONSHIP (IVIVR)  

 

 

The percent cumulative nicotine release/permeation obtained in the in vitro systems 

employing regenerated cellulose membranes when related to the cumulative amount absorbed in 

in vivo (Figure 3.8(B)); an in vitro in vivo relationship (IVIVR) model was generated and is 

presented in Figures 3.9 (A), 3.9(B) and 3.9(C). The IVIVR plot was constructed using in vitro 

and in vivo data from 7.5 to 30 min. The time frame of 7.5 to 30 min was considered because of 

the observed lag time of 7.5 min in vivo and the removal of snus after 30 min during the clinical 

study. The IVIVR model obtained for the modified USP IV flow-through apparatus and vertical 

diffusion cell was linear with R2 values of 0.99; whereas, the model for the bidirectional 

transmucosal apparatus showed a relatively poor linear fit R2 of 0.91. The poor linear fit of the 

IVIVR model with the bidirectional transmucosal apparatus might be due to relatively slow in 

vitro permeation when compared to rapid in vivo absorption during the  initial 15 min (IVIVR 

slope = 2.11) . This may be because of the lower concentration gradient that exists in the 

bidirectional transmucosal in vitro system due to the lower receptor to donor volume ratio of 1.33.  

In the case of the vertical diffusion cell, the in vitro permeation rate was slow relative to the in vivo 

absorption rate regardless of the larger concentration gradient (receptor to donor volume ratio of 

16.67). This slow in vitro permeation rate is justified by the slope (2.01) of the IVIVR model which 

is greater than 1 and might be due to the lower membrane surface area available for permeation. 

In spite of this, the linear model was appropriate to describe the IVIVR achieved with the vertical 

diffusion cell. The in vitro release rate with the modified USP IV apparatus is relatively faster than 

the in vivo absorption as evident from the slope (0.27) of the linear IVIVR model which was due 

to the absence of a membrane barrier. The details on the in vitro nicotine release/permeation rate 

and in vivo nicotine absorption rate are presented in Table B13 (Appendix B). 
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3.3.5 COMPARISON OF THE THREE APPARATUSES 

 

 

Overall, drug release/permeation testing apparatuses used in the present research provided 

IVIVR models with a slope either lower or greater than unity. This was evidence of the need of 

simulating or adjusting physiological oral cavity and in vitro variables to incorporate more 

biorelevance into the in vitro system and obtain in vitro profiles that represent the in vivo behavior 

of snus. There are limited options available for simulation or adjustment of variables with the USP 

IV and VDC apparatuses. The bidirectional transmucosal apparatus allows for better simulation 

oral cavity conditions in comparison to the VDC and USP IV systems. Simulation and adjustment 

of in vivo conditions is very important to achieve better IVIVR for the prediction of the in vivo 

behavior of the drug product because drug dissolution and release kinetics are influenced by these 

conditions (Dressman et al. 1998; Wang et al. 2009). As represented in Table 3.4, the bidirectional 

transmucosal apparatus allows adjustment of important oral cavity conditions that can affect drug 

release/permeation. These in vivo conditions include salivary secretion and swallowing rate in the 

donor chamber, blood flow rate in the receptor chambers and agitation in the donor chamber. In 

addition, it allows study of bidirectional permeation that occurs in vivo. The modified USP IV 

flow-through apparatus and vertical diffusion cell permits adjustment of only few physiological 

variables as listed in Table 3.4. The degree of biorelevance achievable with the apparatuses are in 

the order of modified bidirectional transmucosal apparatus > vertical diffusion cell > USP IV flow-

through apparatus. 
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Figure 3.9: In vitro in vivo relationships (IVIVR from 7.5 to 30 min) for snus with three 

apparatuses; [A] Modified USP IV flow through apparatus; [B] Vertical diffusion cell; [C] 

Bidirectional transmucosal apparatus. 
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Table 3.4: Simulation of oral cavity conditions by apparatuses 

 

Apparatus* 

Media 

composition 

and its 

physical 

properties 

Salivary 

secretion and 

swallowing 

rate 

Agitation 
Blood flow 

rate 

Bidirectional 

biorelevant 

barriers 
Permeation Release 

USP IV Yes Yes** No No No No Yes 

VDC Yes No No Yes No Yes No 

BTA Yes Yes Yes Yes Yes Yes Yes 

* USP IV (Modified USP IV flow through apparatus); VDC (Vertical Diffusion Cell); BTA (Bidirectional Transmucosal Apparatus) 
** The effect of saliva secretion rate on drug release from  the product can be studied with the USP IV; however, the effect of saliva swallowing 

rate on permeation cannot be studied due to the absence of a permeation  barrier 
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3.4 CONCLUSIONS 

 

A novel bidirectional transmucosal apparatus was designed and developed, and compared 

to two commercial devices for biorelevant in vitro release and permeation testing of oral 

transmucosal products. The bidirectional transmucosal system was validated in terms of the 

orientation of the device, membrane performance and nicotine adsorption on the components. Of 

the membranes studied, the regenerated cellulose membrane provided consistent permeation and 

negligible nicotine adsorption. The bidirectional transmucosal apparatus provided linear nicotine 

permeation profiles with the rate and extent of nicotine permeation similar to the vertical diffusion 

cell. The modified USP IV and the vertical diffusion cell provided linear relationship between the 

percent in vitro nicotine permeation and in vivo nicotine absorption; whereas, the bidirectional 

transmucosal apparatus demonstrated a poor linear relation. Among three apparatuses studied, the 

BTA was selected for further optimization of IVIVR for snus since it allowed adjustment of more 

biorelevant parameters that better simulate the oral cavity. In addition, the work presented here 

provides a general guide to important steps required for the development and validation of 

biorelevant systems. The bidirectional transmucosal apparatus is a promising candidate as an 

evaluation tool for oral transmucosal products. This work demonstrates the potential of the novel 

bidirectional transmucosal apparatus for predicting the in vivo behavior of oral transmucosal 

products and will be employed further to identify relevant physiological and in vitro variables for 

optimization of the IVIVR for snus. The findings related to screening and identification of 

biorelevant variables using the bidirectional device are presented in Chapter 4. 
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CHAPTER 4 

 

SCREENING AND SELECTION OF PHYSIOLOGICAL AND IN VITRO VARIABLES 

TO OPTIMIZE THE IN VITRO IN VIVO RELATIONSHIP (IVIVR) FOR SMOKELESS 

TOBACCO (SNUS) USING BIDIRECTIONAL TRANSMUCOSAL APPARATUS  

 

 

4.1 INTRODUCTION 

 

 The evaluation of drug products by dissolution/release/permeation testing during 

development is an established practice for both quality control and research purposes. Predictive 

dissolution testing as an evaluation tool through in vitro in vivo relationship (IVIVR) can save 

considerable resources and expedite the development of products (Emami 2006). Oral 

transmucosal products (OTPs) are currently evaluated using USP compendial and modified in vitro 

dissolution methods which may not be appropriate because these methods do not allow simulation 

of the unique physiological environment of the oral cavity to which the product is exposed, and 

hence may not be good predictors of the in vivo performance. There is therefore a need for 

biorelevant in vitro methods that facilitate the prediction of in vivo behavior of OTPs. This research 

was initiated to develop a biorelevant in vitro system that enables characterization of release and 

permeation of therapeutic and non-therapeutic substances from OTPs in a more realistic way. 
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In the previous Chapter (3), we developed a bidirectional transmucosal apparatus (BTA) 

that allowed simulation of the oral cavity and adjustment of in vitro variables for predicting the 

performance of OTPs. The BTA was tested for its suitability for the evaluation of OTPs using 

smokeless tobacco (snus) as a model product and by comparing its performance with that of the 

modified USP IV flow through apparatus and a vertical diffusion cell (VDC). The in vitro nicotine 

release rate obtained with the USP IV (0.171 mg/min) was faster than in vivo (0.036 mg/min); 

whereas, with the BTA (0.021 mg/min) and VDC (0.018 mg/min), in vitro nicotine permeation 

rates were slower. This suggested the need for adjustment of variables with the BTA and VDC to 

improve predictability of these devices for smokeless tobacco (snus). For this purpose, the BTA 

was selected because of the availability of more variables for adjustment and simulation in 

comparison to VDC. In the present research, we investigated the effect of physiological (stimulated 

saliva pH and stimulated salivary swallowing rate (SSSR)) and in vitro (receptor media flow rate, 

donor media flow rate, receptor media volume, receptor dead volume, media temperature, 

agitation) variables on nicotine release and permeation from snus using the BTA. It was speculated 

that a better understanding of the effect of variables on release/permeation characteristics can aid 

in the selection and application of these variables in optimization of the in vitro in vivo relationship 

(IVIVR) in order to improve predictability. The aim of the present study was to screen for relevant 

variables that might aid in improving the predictive performance of the BTA. It was important to  

screen variables to determine their relevance for further optimization experiments which otherwise 

would require substantial resources and time due to the large number of experiments requiredfor 

studying significant and insignificant factors. This type of screening strategy is widely followed 

to select relevant variables for dissolution method development (Qiu et al. 2003). 
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4.2 MATERIALS AND METHODS 

 

4.2.1 MATERIALS 

  

Snus (a type of smokeless tobacco, non mentholated moist portion snus with natural flavor, 

Nicotine 8.0 mg, 1.0 g pouch) for in vitro studies was obtained from Old Virginia Tobacco Co., 

Richmond, VA, USA. Hanks’ Balanced Salt (H-1387) and N-(2-Hydroxyethyl)piperazine-N′-(2-

ethanesulfonic acid) (HEPES, 1M) buffer for the preparation of Hank’s balanced salt solution (pH 

7.4) were purchased from Sigma, St. Louis, MO, USA. Potassium phosphate monobasic 

(anhydrous) and sodium phosphate dibasic (anhydrous) to formulate artificial saliva of pH 6.8, 7.2 

and 7.6 was obtained from Sigma, St. Louis, MO, USA. Sodium hydroxide and hydrochloric acid 

solution (10 N) for pH adjustment was purchased from Sigma, St. Louis, MO, USA. (-)-Nicotine 

hydrogen tartrate (working standard) for the assay was also purchased from Sigma, St. Louis, MO, 

USA. HPLC grade ammonium acetate and glacial acetic acid for the mobile phase preparation was 

purchased from Fisher Scientific, Fair Lawn, NJ, USA and EMD, Gibbstown, NJ, USA 

respectively. HPLC grade methanol was purchased from Honeywell Burdick and Jackson, 

Muskegon, MI, USA. Deionized water was obtained in-house (the Nanopure DiamondTM, 

Barnstead, IO, USA). Regenerated cellulose membranes (SnakeSkin Dialysis Tubing, 10K 

MWCO, 35mm dry diameter (ID) × 10.7m) for in vitro permeation studies was obtained from 

Thermo Scientific, Rockford, IL, USA. Fluorinated ethylene propylene (FEP) and Tygon® 

platinized silicon tubing for the in vitro apparatus were purchased from Cole-Parmer, Vernon Hills, 

IL, USA. Teflon unions and luer fittings for tubing connections were bought from Upchurch 

Scientific, Oak Harbor, WA, USA. Masterflex L/S 12-channel 8-roller cartridge pump head 

(Model 7519-25) and variable-speed modular drive (Model 7553-70; 6 to 600 rpm; flow rate range: 
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0.0006 to 41 mL/min) for circulating media through the donor chamber was purchased from Cole-

Parmer, Vernon Hills, IL, USA. Two variable medium flow mini pumps (Model 3386; flow rate 

range – 0.4 to 85 mL/min) for circulating media through receptors chambers were purchased from 

Control Company, Friendswood, TX, USA. 

 

4.2.2 SELECTION OF VARIABLES TO OPTIMIZE IVIVR FOR SMOKELESS TOBACCO 

 

 In results reported in Chapter 3, the in vitro nicotine permeation rate from snus obtained 

with the BTA after a lag time of 11.8 min was 0.021 mg/min which was slower than the in vivo 

nicotine absorption rate of 0.036 mg/min after a lag time of 7.5 min by approximately 42%. 

Similarly, the prediction error in the nicotine permeation rate with the vertical diffusion cell (VDC) 

was -50%. The in vitro nicotine permeation rate with the VDC was 0.018 mg/min after a lag time 

of 2.5 min. On the contrary, nicotine release with the USP IV flow through apparatus was five 

times faster than the in vivo absorption without any lag time at the rate of 0.171 mg/min. This 

observation with the USP IV can be attributed to the absence of a permeation barrier. This also 

indicates that the nicotine release rate cannot be used as a surrogate for the in vivo absorption rate 

and hence the USP IV device was not further evaluated. Of the permeation devices studied, the 

BTA provided more possibilities for the adjustment and simulation of variables to enhance the 

permeation rate when compared to the VDC as presented in Table 4.1.  The BTA was therefore 

chosen over VDC in order to improve prediction of the in vivo performance of smokeless tobacco. 

Table 4.1 lists the physiological oral cavity and in vitro variables that were considered with the 

BTA set up in the present study for screening and identifying variables that significantly impact 

nicotine permeation rate.  
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Table 4.1: Possibilities of the simulation and adjustment of oral cavity physiological and in vitro 

variables with the bidirectional transmucosal apparatus (BTA) and vertical diffusion cell (VDC) 

 

Variables BTA VDC 

 Physiological variables 

Stimulated saliva pH Yes Yes 

Stimulated saliva secretion and swallowing rate Yes No* 

 In vitro variables 

Receptor media flow rate Yes Yes 

Donor media flow rate Yes No* 

Receptor media volume Yes Yes 

Receptor dead volume Yes Yes 

Receptor and donor media temperature Yes No* 

Agitation Yes No* 

* The donor chamber of VDC was too small for proper placement of snus and circulation of 

media to simulate secretion and swallowing rate, donor media flow rate and media temperature. 

In addition, agitation cannot be employed with the VDC attributed to the design of the donor 

chamber (Refer Figure C1 and C2 of Appendix C) 
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4.2.2.1 ORAL CAVITY PHYSIOLOGICAL VARIABLES  

 

Table 4.2 demonstrates the anticipated effect of physiological oral cavity variables on the 

nicotine permeation rate when the bidirectional apparatus is employed. Saliva pH is an important 

determining factor for nicotine absorption from smokeless tobacco (snus). The proportion of the 

un-ionized form of nicotine present in smokeless tobacco increases with an increase in saliva 

pH.The un-ionized form of nicotine permeates through the oral mucosal membrane more readily 

than the ionized counterpart and leads to faster nicotine absorption (Tomar et al. 1997; Chen et al. 

1999). This effect of saliva pH on nicotine permeation cannot be observed in the bidirectional in 

vitro system unless an oral mucosal membrane was employed. However, it can be expected that 

an increase in saliva pH may enhance the release of nicotine from tobacco in the donor chamber 

by altering its miscibility/solubility (Nasr et al. 1998). This may result in an increase in the nicotine 

concentration gradient across donor and receptor chambers as a function of saliva pH and thus 

possibly increase the permeation rate. This increase in the permeation rate due to the gradient can 

be explained by Fick’s Law of Diffusion (Martin et al. 1983). In a diffusion cell system comprising 

of donor and receptor compartments of cross sectional area S, separated by a membrane of 

thickness h, the steady state permeation after a lag time (dM/dt) can be presented as below in 

Equation 4.1. 

                                   
dM

dt
= 

D S K (𝐶𝑑−𝐶𝑟)

h
                         -----------------  (Eq 4.1) 

where, M is the drug mass permeated (mg) at time t (min), D is the diffusion coefficient (cm2/min) 

of drug through the membrane of thickness h (cm), S is the surface area of the membrane (cm2), 

K is the partition coefficient of drug between membrane and donor medium, Cd and Cr are drug 
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concentrations in donor and receptor media (mg/mL) respectively. Equation 4.1 can be reduced to 

Equation 4.2, assuming the sink condition is maintained in the receptor compartment. 

                                             
dM

dt
= 

D S K 𝐶𝑑

h
                               -----------------  (Eq 4.2) 

On the basis of Equation 4.2, the mass of drug permeated in unit time (dM/dt; permeation rate) is 

directly proportional to the drug concentration in the donor compartment, membrane surface area, 

drug diffusion coefficient, drug partition coefficient and is inversely proportional to the membrane 

thickness. The permeation rate will therefore be altered by factors which affect the above 

parameters. Hence, it was speculated that saliva pH may increase the permeation rate by enhancing 

nicotine release and concentration in the donor chamber of the bidirectional apparatus. An increase 

in the permeation rate, with increasing donor drug concentration has been reported in several 

studies (Michaels et al. 1975; Lestari et al. 2009). 

Another important factor that can impact the bioavailability of drug from OTPs is 

swallowing the saliva. The product in the mouth stimulates saliva secretion and swallowing which 

may enhance drug release from the product and drug loss from the oral cavity, respectively 

(Navazesh et al. 1982; Kapila et al. 1984). The latter can reduce the bioavailability of drug due to 

pre-systemic metabolism of swallowed drug in vivo. A similar effect can be studied in the BTA by 

simulating stimulated saliva swallowing rate (SSSR) in the donor chamber in an open flow through 

pattern. The simulation of SSSR was expected to increase the release rate of nicotine from snus 

followed by the loss of nicotine from the donor chamber. In this set up, the latter may overcome 

the effect of an increase in release rate on permeation by a decrease in donor nicotine concentration 

and hence retarding the permeation rate (Equation 4.2). 
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4.2.2.2 IN VITRO VARIABLES 

 

Table 4.2 demonstrates the anticipated effect of in vitro variables on the nicotine 

permeation rate when the bidirectional apparatus is employed. Drug permeated in the receptor 

chambers through membrane from the donor chamber will appear faster in the reservoir with an 

increase in the receptor media flow rate; which may truly reflect the permeation process occurring 

in the receptors. In addition, a larger receptor media flow rate may be able to maintain a sink 

condition in the receptor compartments by removing permeated drug and resulting in improvement 

in the permeation rate based on Fick’s Law. However, the latter phenomenon may be observed 

when receptor flows are maintained under open flow through conditions.  

Donor media flow rate can also be explored as a potential variable to optimize IVIVR. 

Because the product is in contact with the donor media, any changes in the flow properties of donor 

fluid may affect the drug release characteristic from the product. An increase in the donor media 

flow rate may lead to the faster release of drug from the product due to media turbulence (Cammarn 

et al. 2000). The donor drug concentration may therefore rise with the donor media flow rate and 

consequently the permeation would be expected to be faster. 

Receptor media volume is another important factor that can alter the permeation rate by an 

effect on drug concentration gradient across the receptor and donor chambers. Receptor dead 

volume, defined as the volume of tubing that connects the outlet of the apparatus to the reservoir, 

may also vary the permeation rate. A decrease in the permeation rate may be observed with an 

increase in the receptor dead volume in both closed and open flow conditions since drug permeated 

in the receptor compartments will need a longer time to appear in the reservoir where sampling is 

performed.   
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The above in vitro variables can also be coupled with media temperature for altering the 

permeation rate. The temperature rise can reduce the viscosity of donor and receptor media which 

may result in an increase in the diffusion coefficient of drug. This has been observed in research 

reported in the literature (Othmer et al. 1953; Hubley et al. 1996). This process is explained by the 

Stokes-Einstein equation (Edward 1970) displayed in Equation 4.3  

                                         D = 
𝑘𝐵 T

6 π η r
                               -----------------  (Eq 4.3) 

where, D is the diffusion coefficient (cm2/s), kB is the Boltzmann constant (erg/°K), T is the 

absolute temperature (°K), η is the viscosity of the solvent (g/cm*s), and r is the radius of the 

spherical particle (cm). As a consequence, the permeation rate may become faster due to an 

increase in the diffusion process with elevation in temperature based on the Fick’s Law of 

Diffusion. In addition, the release rate may also increase based on the same reasoning. This can 

also result in increased donor drug concentration leading to a rise in permeation rate as per the 

Fick’s Law.  

Agitation/chewing of product in the mouth may enhance the release of drug which may 

contribute to the increase in availability of drug for absorption. In the bidirectional in vitro system, 

agitation can be incorporated to escalate the nicotine release rate and increase the concentration in 

the donor chamber, thus the permeation rate may be increased. 

Oral cavity physiological and in vitro variables discussed above may alter the in vitro 

permeation rate of nicotine from smokeless tobacco (snus) when the BTA is used; based on the 

mechanisms explained earlier. The in vitro nicotine permeation rate achieved with the bidirectional 

apparatus in preliminary studies reported in Chapter 3 was not close to that of the in vivo absorption 

rate. Therefore, the above variables were selected to optimize IVIVR using the BTA for smokeless 

tobacco (snus). In addition, in vitro variables may also possess physiological relevance as depicted 
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in Table 4.2. Details about the simulation and adjustment of physiological and in vitro variables in 

the bidirectional apparatus are mentioned in Section 4.2.3.  
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Table 4.2: Anticipated effect of the increase in levels of oral cavity physiological and in vitro 

variables on the permeation rate of nicotine from smokeless tobacco (snus) using BTA 

 

Oral Cavity Physiological 

Variables 

Effect on Permeation 

Rate 
Physiological Relevance 

Saliva pH ↑ 

Effect on the nicotine form 

(ionized vs unionized) and 

permeation 

Saliva secretion and swallowing 

rate 
↓ 

Effect on nicotine release and 

loss due to the secretion and 

swallowing 

In Vitro Variables 
Effect on Permeation 

Rate 
Physiological Relevance 

Receptor media flow rate ↑ 

Simulation of the effect of 

blood flow rate which may 

impact the systemic 

appearance of nicotine 

Donor media flow rate ↑ 

Simulation of the effect of 

saliva flow on nicotine 

release from snus 

Receptor media volume ↑ 

Simulation of the effect of 

gradient across oral mucosal 

membrane on nicotine 

permeation 

Receptor dead volume ↓ 

May simulate the effect of 

damaged and undamaged 

oral mucosal membrane on 

nicotine permeation rate and 

lag time 

Receptor and donor media 

temperature 
↑ 

Simulation of the effect of 

body temperature on nicotine 

release and permeation 

Agitation ↑ 
Simulation of the chewing 

effect on nicotine release 
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4.2.3 IN VITRO RELEASE AND PERMEATION TESTING 

 

The bidirectional transmucosal apparatus depicted in Figure 3.2(C) of Chapter 3 was used 

to assess nicotine release and permeation from smokeless tobacco (snus). Snus used in the study 

is described in Section 3.2.2. The in vitro set up employed similar assembly components (Silicon 

and FEP tubings, luer fitting and unions, reservoirs and regenerated cellulose membrane) and the 

set up as used previously in preliminary studies (Figure 3.2(C)). Artificial saliva and Hanks’ 

balanced salt solution (HBSS) maintained at required temperature was used as the donor and 

receptor media respectively. Artificial saliva was circulated through the donor chamber of the BTA 

by using a cartridge pump (Masterflex L/S). Two separate peristaltic pumps were employed to 

circulate HBSS through each receptor chamber. The use of three separate pumps was necessary in 

order to maintain the different flow rates in chambers which was not possible with the single pump 

used previously. The apparatus was modified as required for simulating variables. In all cases, the 

media was circulated through all chambers in a closed through pattern except in experiments 

studying the effect of swallowing rate; where the donor chamber was maintained in an open 

through arrangement. The required receptor dead volume was simulated by adjusting the lengths 

of silicon and FEP tubing that connects the outlet of receptor chambers to the media reservoir. The 

water bath and donor and receptor reservoir media temperatures were maintained at a higher level 

to achieve the required temperature in the chambers for the temperature study. Temperature studies 

were performed at large receptor media flow rates to maintain the required temperature in the 

chamber which provided less time for the media to loose heat during circulation. The chamber 

temperature was measured with an infra-red (IR) thermometer. The bidirectional in vitro system 

with the modified set up is pictorially represented in Figure 4.1. All experiments were performed 

in a single sequential pattern in which only one variable was changed at a time and all other 
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variables were kept constant (Walters 1991). Donor and receptor media were sampled from 

respective reservoirs to assess nicotine release and permeation. One ml of media was sampled at 

0, 2.5, 5, 7.5, 10, 15, 20, 25, 30, 45 and 60 min and was replaced with an equivalent volume of 

fresh media. The detailed experimental conditions with each of the physiological and in vitro 

variable studies is presented in Table 4.3 and 4.4 respectively. Each experiment was performed 

either three or five times for statistical analysis. Samples from donor and receptor reservoirs were 

analyzed for nicotine release and permeation by a validated reverse-phase HPLC method reported 

in Chapter 2. The HPLC method employed a Waters 600E multisolvent delivery system with a 

Waters 717 auto-sampler and 996 Waters PDA detector. Nicotine permeated into both receptor 

chambers of the BTA was added to represent the total permeation achieved at each time point. The 

method for calculation of the amount of nicotine permeated and released from snus in the BTA is 

shown in Table C4 of Appendix C 
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Figure 4.1: Bidirectional transmucosal apparatus assembly; donor chamber maintained in an open 

flow pattern for studying the effects of swallowing on permeation; three separate pumps were 

employed to maintain different flow rates in donor and receptor chambers. [Figure not to scale] 
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The effect of saliva pH was studied only on the nicotine release properties by circulating 

artificial saliva in the donor chamber of BTA; whereas, the HBSS was not circulated in the receptor 

chambers (the inlets and outlets of receptors were sealed by the use of parafilm). The effect of 

saliva pH on permeation was anticipated only if there was an effect of pH on nicotine release. 

Nicotine permeation as a function of saliva pH would be studied only if a significant effect of pH 

on nicotine release was obtained. Forty microliters of artificial saliva was sampled from the donor 

reservoir at 0, 2.5, 5, 7.5, 10, 15, 20, 25, 30, 45 and 60 min and was replaced with an equivalent 

volume of fresh artificial saliva. Artificial saliva samples (15 to 60 min) obtained from the pH 

studies were diluted twenty five times with the HBSS buffer to perform nicotine analysis within 

the validated HPLC calibration range as these samples contained high concentration of nicotine. 

The effect of donor media flow rate on nicotine release in addition to permeation from snus was 

studied in a separate experiment without circulating receptor media (the inlets and outlets of 

receptors were sealed by the use of parafilm). The method of sample collection and dilution in the 

donor media flow rate study was similar to that of the saliva pH release experiments. Artificial 

saliva (pH 7.2) samples from the donor flow rate study were diluted twenty five times with the 

HBSS buffer due to the same reason explained above.
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Table 4.3: Conditions for experiments employing oral cavity physiological variables in the bidirectional transmucosal apparatus* 

 

 

   

 

Experiment Levels N 

Donor 

media 

(Artificial 

Saliva) 

Receptor 

media 

(HBSS 

buffer) 

Donor 

media 

flow rate 

(mL/min) 

Receptor 

media 

flow rate 

(mL/min) 

Donor 

dead 

volume 

Receptor 

dead 

volume 

Donor 

flow 

through 

pattern 

Receptor 

flow 

through 

pattern 

Agitation 

Water 

bath 

Temp.  

(˚C) 

Reservoir 

media 

temp.  

(˚C) 

Chamber 

media 

temp.  

(˚C) 

Stimulated 
saliva pH 

(Buffer 

capacity, β 
mM/L*pH 

unit) 

6.8 (5.5) 3 
pH 6.8 

β = 5.5 
pH 7.4 1 1 2.67 2.67 Closed Closed No 40 37 NM 

7.2 (7.0) 3 
pH 7.2 

β = 7.0 
pH 7.4 1 1 2.67 2.67 Closed Closed No 40 37 NM 

7.6 (9.6) 3 
pH 7.6 

β = 9.6 
pH 7.4 1 1 2.67 2.67 Closed Closed No 40 37 NM 

Stimulated 

saliva 

swallowing 
rate (mL/min) 

0.32 5 
pH 7.2 
β = 7.0 

pH 7.4 0.32 6 2.67 2.67 Open Closed No 40 37 NM 

1.66 5 
pH 7.2 

β = 7.0 
pH 7.4 1.66 6 2.67 2.67 Open Closed No 40 37 NM 

3 5 
pH 7.2 
β = 7.0 

pH 7.4 3 6 2.67 2.67 Open Closed No 40 37 NM 

 
* The donor and receptor media volume in all experiments was 25 mL 

 
NM: Not measured 
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Table 4.4: Conditions for experiments employing in vitro variables in the bidirectional transmucosal apparatus* 

 

Experiment Levels N 

Donor 

media flow 

rate 

(mL/min) 

Receptor 

media flow 

rate 

(mL/min) 

Donor 

reservoir 

media 

volume 

Receptor 

reservoir 

media 

volume 

Donor 

dead 

volume 

Receptor 

dead 

volume 

Donor flow 

through 

pattern 

Receptor 

flow 

through 

pattern 

Agitation 

Water 

bath 

temp. 

(˚C) 

Reservoir 

media 

temp.  

(˚C) 

Chamber 

media 

temp. (˚C) 

Receptor 

media flow 
rate 

(mL/min) 

1 3 1 1 25 25 2.67 2.67 Closed Closed No 40 37 NM 

6 3 1 6 25 25 2.67 2.67 Closed Closed No 40 37 NM 

16 3 1 16 25 25 2.67 2.67 Closed Closed No 40 37 NM 

Donor media 
flow rate 

(mL/min) 

1.66 5 1.66 6 25 25 2.67 2.67 Closed Closed No 40 37 NM 

6 5 6 6 25 25 2.67 2.67 Closed Closed No 40 37 NM 

16 5 16 6 25 25 2.67 2.67 Closed Closed No 40 37 NM 

Receptor to 

donor media 
volume ratio 

2 3 1 1 25 25 2.67 2.67 Closed Closed No 40 37 NM 

4 3 1 1 25 50 2.67 2.67 Closed Closed No 40 37 NM 

8 3 1 1 25 100 2.67 2.67 Closed Closed No 40 37 NM 

Receptor 

dead volume 
(mL) 

2.67 5 1 1 25 25 2.67 2.67 Closed Closed No 40 37 NM 

5.15 5 1 1 25 25 2.67 5.15 Closed Closed No 40 37 NM 

10 5 1 1 25 25 2.67 10 Closed Closed No 40 37 NM 

Receptor and 

donor media 
temperature 

(°C) 

25 5 1.66 16 25 25 2.67 2.67 Closed Closed No RT RT RT 

37 5 1.66 16 25 25 2.67 2.67 Closed Closed No 45-46 40-42 33-37 

45 5 1.66 16 25 25 2.67 2.67 Closed Closed No 59-60 50-53 38-45 

Agitation 

No 5 1 1 25 25 2.67 2.67 Closed Closed No 40 37 NM 

Yes 5 1 1 25 25 2.67 2.67 Closed Closed 1/min 40 37 NM 

 

* Artificial saliva (pH 7.2, β 7.0) and HBSS buffer (pH 7.4) was employed as the donor and receptor media respectively 
 

NM: Not measured; RT: Room temperature  
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Table 4.3 and 4.4 displays the levels at which all variables were studied. Each variable was 

explored at three levels to determine the useful optimization range except in the case of agitation. 

In addition, three levels were studied to identify any non-linearity in release and permeation if 

existed as a function of the variable studied. The mid-level of stimulated saliva pH (7.2) and 

secretion rate (1.66 mL/min) were selected for the study because they have been observed as mean 

values in the normal adult population (Bardow et al. 2000). The lower (L) and upper (U) levels of 

stimulated pH (L = 6.8, U = 7.6) and secretion rate (L = 0.32 mL/min, U = 3 mL/min) were based 

on ± 2⨯standard deviations (SD) reported for each of the variables in the Bardow, Moe et al. 2000 

study.  The stimulated salivary secretion and swallowing rate were assumed to be equal based on 

findings that the swallowing rate is directly influenced by the secretion rate (Kapila et al. 1984). 

Artificial saliva employed for the study also simulated in vivo saliva buffer capacity (β), in addition 

to pH as this would be a deciding factor for the resultant pH after the exposure of the saliva to snus 

during the experiment, as well as in vivo use. The mean (7.0 mM/L/pH unit), -2⨯sd (5.5 mM/L/pH 

unit) and +2⨯sd (9.6 mM/L/pH unit) stimulated saliva buffer capacity reported graphically in the 

Bardow, Moe et al. 2000 study corresponded to the mean (7.2), -2⨯sd (6.8), and +2⨯sd (7.6) 

stimulated saliva pH. Three artificial saliva solutions with different pHs and buffer capacities were 

prepared using anhydrous monobasic potassium dihydrogen phosphate (KH2PO4) and anhydrous 

dibasic sodium hydrogen phosphate (Na2HPO4). The amount of KH2PO4 and Na2HPO4 required 

to formulate saliva of specific pH and buffer capacities were experimentally determined and are 

described below. The required amount of KH2PO4 and Na2HPO4 listed in Table 4.5 were dissolved 

in 1000 mL of deionized water to make artificial saliva of pH 6.8 (β = 5.5), 7.2 (β = 7.0) and 7.4 

(β = 9.6). The pH was adjusted using 1 M NaOH or 1 M HCl solution in deionized water when 

required. 
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 For the preparation of artificial saliva solutions, Van Slyke’s Buffer Equation presented in 

Equation 4.4 was used to calculate the required buffer concentration (represents the total 

concentration of both KH2PO4 and Na2HPO4) to obtain the required pH and buffer capacity.  

                              β = 
2.303 * C * Ka * [𝐻+]

[𝐾𝑎+[𝐻+]]2                          -----------------  (Eq 

4.4) 

where, β is the buffer capacity (mM/L*pH unit), C is the total buffer concentration (mM/L), Ka is 

the acid dissociation constant and [H+] is the hydrogen ion concentration. The total buffer 

concentration required for formulating artificial saliva of specific pH and buffer capacity is 

presented in Table 4.5. For the experimental determination of the amount of KH2PO4 and Na2HPO4 

required, a solution containing both salts of equal required total buffer concentrations were made 

and mixed in different volumes. The mass of each salt was recorded that provided the required pH. 

The amount of KH2PO4 and Na2HPO4 to prepare 1000 mL of artificial saliva of the required pH 

was calculated based on the volumes and concentration of the salt solution added. This was 

performed for each stimulated saliva pH and buffer capacity level.  

 

Table 4.5: Artificial saliva preparation 

 

pH 

Buffer Capacity 

(β) (mM/L/pH 

unit) 

Concentration Of 

Buffer (mM/L)* 

KH2PO4 for 

1000 mL (g) 

Na2HPO4 for 

1000 mL (g) 

6.8 5.5 11.73 1.0159 0.6055 

7.2 7.0 12.16 0.7355 0.9590 

7.6 9.6 20.45 0.5566 2.3225 

* Buffer concentration calculated using Van Slyke’s Equation; H+ was calculated from pH = - 

log [H+]; The acid dissociation constant of Ka of H2PO4- [KH2PO4] is 6.3 x 10-8 
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Receptor and donor media flow rate ranges incorporated in single sequential experiments 

for the study of effects on permeation were the usual flow rates employed with the compendial 

USP IV dissolution apparatus. There was no restriction in the selection of receptor and donor media 

volumes as nicotine is known to be water miscible in any proportion below 60 °C (Davies et al. 

2000). Therefore, the selection of media volume in any range was not expected to affect sink 

conditions during the study. For permeation studies, 25 mL of artificial saliva was employed in 

experiments to be performed using the closed flow through pattern, whereas, in experiments using 

the open flow pattern (i.e., swallowing rate experiments), the donor reservoir was filled with 

sufficient volume of artificial saliva that would last during the experiment, calculated based on the 

donor media flow rate. For investigation of the media volume as a variable, 25, 50 and 100 mL of 

the HBSS was employed in each receptor reservoir that provided a total of 50, 100 and 200 mL of 

receptor media. For ease of data analysis, these values were presented as the ratio of the total 

volume of receptor media to that of the donor media (Media volume ratio of 2, 4 and 8). The 

receptor dead volume levels and agitation frequency were selected based on the practicality of the 

experiments. Details on the dimensions and types of tubing for the simulation of dead volume is 

shown in Tables C1, C2 and C3 of Appendix C. Temperature studies were performed at room 

temperature (25 °C), body temperature (37 °C) and one level higher (45 °C). The highest 

temperature level that can be selected for nicotine permeation studies with the present bidirectional 

apparatus was 45 °C which required maintenance of of 55 °C in the reservoir. The temperature 55 

°C is close to the lower consolute temperature (60 °C, nicotine-water mixture system) of nicotine 

(Davies et al. 2000) above which, sink condition may not be maintained due to immiscibility of 

nicotine in water. The water bath and reservoir media were maintained at the temperatures 

summarized in Table 4.4 to obtain the required chamber temperature. 
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4.2.4 APPARATUS FOR AGITATION STUDY 

 

An apparatus with flexible walls for the receptor was built for the agitation study. It was 

built with the same design and dimensions as described in Chapter 3 with minor differences. The 

receptor chambers of the agitation apparatus were 0.8 cm in height instead of 0.6 cm in the previous 

design. The outer walls of receptors was a flexible plastic material (Silicone rubber, 0.031" thick, 

50 Duro, Translucent) instead of solid polymethyl methacrylate (PMMA). The flexible material 

was held between the hollow cylindrical receptors and a plate. The receptor, the plastic wall and 

the plate was stacked and immobilized with the help of screws. Figure 4.2 is the pictorial 

representation of the components of agitation apparatus (Refer Figure C3 for other views of the 

apparatus). Agitation can be manually performed by applying pressure on the walls with a beaker 

of diameter 3 cm smaller than that of flexible walls (4 cm). The effect of agitation was studied at 

two levels – with and without agitation. Agitation was performed manually at a frequency of 1 

agitation/min. 
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Figure 4.2: Components of the bidirectional transmucosal apparatus for agitation study 
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4.2.5 EFFECT OF SNUS ON SALIVA pH 

 

The effect of snus on saliva pH was studied in a beaker in order to mechanistically 

understand the results obtained from nicotine release experiments as a function of saliva pH.  It 

can be expected that the buffer components present in snus may change the pH of artificial saliva 

during an experiment; therefore, the results and interpretation from studies on nicotine release may 

not be attributed to saliva pH. In order to study the effect of snus on saliva pH, a single smokeless 

tobacco (snus) pouch was exposed to 2 (volume close to the stimulated saliva volume in oral 

cavity), 10 (volume of chamber) and 25 (media volume used for in vitro nicotine release study) 

mL of artificial saliva in a glass beaker and was sonicated for 2 min at the room temperature. The 

volume of 2 mL is very close to the reported 1 mL of the stimulated saliva volume (Lagerlof et al. 

1984). Two mL was employed for the study to completely wet the snus. The snus was removed 

after 2 min and pH was measured using a calibrated pH meter. This experiment was performed at 

all three levels of artificial saliva pH and buffer capacity in replicates of three. A change in artificial 

saliva pH was calculated with respect to the pH measured before exposure of saliva to the snus. 

  

4.2.6 DATA ANALYSIS 

 

The steady state nicotine release/permeation rate (rate after lag time) was obtained from 

the nicotine released/permeated (mg) versus time (min) plot. The nicotine release/permeation rate 

(mg/min) was obtained from the slope of the line equation fitted to the linear portion of the profile. 

The lag time (min) was calculated as the X-intercept from the linear fit equation. Nicotine 

release/permeation rate and lag time was plotted versus the levels of each variable. Statistical 

analysis of the effect of oral cavity physiological and in vitro variables on the nicotine 



 

 

112 

 

release/permeation rates and lag time was performed using a one-way analysis of variance 

(ANOVA) at alpha, α = 0.05. Equal variance ANOVA was performed when data showed a normal 

distribution and equal variances. In cases of unequal variances, Welch ANOVA was performed.  

Post hoc Tukey’s Honest Significant Difference (HSD) test was used to compare the effect among 

the individual levels of variables. A student t-test (α = 0.05) was performed to compare the nicotine 

permeation rate and lag time between experiments with and without agitation. The physiological 

and in vitro variables that show a statistically significant effect on the permeation rate will be 

selected for further optimization of IVIVR. All statistical analysis were performed in JMP 8. 

 

4.3 RESULTS AND DISCUSSION 

 

4.3.1 EFFECT OF ORAL CAVITY PHYSIOLOGICAL VARIABLES ON NICOTINE 

RELEASE/PERMEATION  

 

 

A comparison of the nicotine release profiles and release rates obtained at three saliva pHs 

is displayed in Figures 4.3(A) and 4.3(B) respectively. The amount of nicotine released over time 

and the release rates obtained at three saliva pH levels are shown in Table C5-C7 of Appendix C. 

A significant effect of saliva pH on nicotine release was not obtained (Table 4.6). A possible reason 

for the above observation can be attributed to the buffer components present in snus. The buffer 

components of snus may result in saliva-snus mixture of higher buffer capacity in comparison to 

the artificial saliva. The higher buffer capacity may be required to maintain the pH that allows a 

greater extent of nicotine permeation at faster rate when snus is placed in the oral cavity. The pH 

of snus therefore may dominate the saliva pH. A similar effect can be expected across all three 

levels of artificial saliva pH. Therefore, the resultant pH after exposure of snus to saliva may be 
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similar in all three cases. This may justify the similarity in the nicotine release profiles obtained at 

all pH levels. In order to confirm the above speculation, the effect of snus on saliva pH was studied 

in a beaker set up described in section 4.2.5. The change in pH observed at three levels of saliva 

pH and buffer capacity due to snus is presented in Table C8 of Appendix C and illustrated 

graphically in Figure 4.4. The change in pH at 10 and 25 mL was closer to zero when compared 

to 2 mL in all cases of artificial saliva pH 6.8 (β = 5.5), 7.2 (β = 7.0) and 7.6 (β = 9.6). This 

indicates that the buffer components present in snus are diluted at larger volumes which reduces 

the buffer capacity and the resultant pH is closer to the pH of saliva. During the use of smokeless 

tobacco as well as in an in vitro system, pH due to the buffer components present in snus dominates 

at smaller volumes of saliva. This observation agrees with that reported in the literature (Ciolino 

et al. 2001). Buffers are added to smokeless tobacco to maintain higher pH for transformation of 

nicotine to the unionized form for greater permeation. The pH of 8.1 obtained after exposure of 

snus to 10 mL of water and sonication for 2 min supports the above statement. In the BTA, the 

donor chamber volume is 10 mL and in this apparatus pH will be closer to saliva pH as confirmed 

from the beaker study. However, at 10 mL, the resultant pH range of saliva across three levels was 

too narrow to produce any substantial increase in the solubility/miscibility of nicotine in the donor 

chamber. Therefore, a significant effect of saliva pH on the nicotine release was not obtained. 

The amount of nicotine permeated (mg) versus time (min) data and a plot at the 

physiological range of stimulated saliva swallowing rate (SSSR) is shown in Tables C9-C11 of 

Appendix C and Figure 4.5(A) respectively. There was a significant effect of swallowing on the 

nicotine permeation rate (Table 4.6 and Figure 4.5(B)). The permeation rate at 0.32 mL/min was 

significantly faster than at 1.66 and 3 mL/min (Tukey’s post hoc test). There was a decrease in the 

nicotine permeation rate with an increase in swallowing. Because of swallowing, nicotine released 
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in the donor chamber was removed. The nicotine removal rate from the donor chamber was faster 

with the increase in swallowing which resulted in a reduction in donor nicotine concentration (Cd). 

As a consequence, there was a decrease in the nicotine permeation rate according to Fick’s Law 

(Section 4.2.2.1, Equation 4.2). The stimulated saliva swallowing rate is a potential variable that 

can be used to optimize IVIVR for smokeless tobacco (snus) due to its impact on the nicotine 

permeation rate. 
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Figure 4.3: The mean cumulative nicotine release at three saliva pH levels; [A] The mean 

cumulative nicotine release time profile at three saliva pH levels; the line was fitted to the linear 

portion of the profile; Y=0.1428*X-0.5483, R2=0.99 (Saliva pH 6.8); Y=0.1631*X-0.4547, 

R2=0.99 (Saliva pH 7.2); Y=0.1376-0.9906, R2=0.99 (Saliva pH 7.6); [B] The mean release rates 

at three saliva pH levels. (Error bars represent one standard deviation; n=3)   
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Table 4.6: Nicotine release/permeation rate from snus as a function of physiological variables 

 

 Level N 

Release/Permeation Rate 

(mg/min) Statistical 

Test 

Statistical 

Results 
Mean SD %RSD 

Artificial 

saliva 

pH 6.8 

(β 5.5) 
3 0.14 0.06 38.45 

Unequal 

variance 

ANOVA 

F(2,4)=1.15; 

p-value=0.409; 

Not significant 

pH 7.2 

(β 7.0) 
3 0.16 0.02 11.51 

pH 7.6 

(β 9.6) 
3 0.14 0.02 14.22 

Stimulated 

saliva 

swallowing 

rate 

(SSSR) 

(mL/min) 

0.32 5 0.03* 0.01 20.91 

Equal 

variance 

ANOVA 

F(2,12)=8.92; 

p-value=0.006; 

Significant 

1.66 5 0.017 0.004 21.06 

3 5 0.016 0.003 20.41 

* Nicotine permeation rate was significantly faster at 0.32 mL/min compared to 1.66 and 3 

mL/min 

 

Figure 4.4: Effect of snus on saliva pH at different volumes of saliva. 
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Figure 4.5: The mean cumulative nicotine permeation at three stimulated saliva swallowing rate; 

[A] The mean cumulative nicotine permeation time profile at three stimulated saliva swallowing 

rate levels; the line was fitted to the linear portion of the profile; Y=0.0271*X+0.0717, R2=0.99 

(Swallowing rate 0.32 mL/min); Y=0.0169*X+0.068, R2=0.99 (Swallowing rate 1.66 mL/min); 

Y=0.015-0.0117, R2=0.99 (Swallowing rate 3 mL/min); [B] The mean permeation rates at three 

stimulated saliva swallowing rate levels; * & ** the permeation rate at 0.32 mL/min was 

significantly faster than at 1.66 and 3 mL/min. (Error bars represent one standard deviation; n=5)   
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4.3.2 EFFECT OF IN VITRO VARIABLES ON NICOTINE RELEASE/PERMEATION  

 

The release/permeation rates obtained from experiments utilizing the in vitro variables are 

tabulated in Table 4.7. The mean in vitro nicotine permeation profiles obtained from experiments 

with receptor media flow rates are shown in Figure 4.6(A). The amount of nicotine permeated over 

time in replicate studies of receptor media flow rate at all levels is represented in Tables C12-C14 

of Appendix C. The receptor flow rate did not produce a significant effect on nicotine permeation 

rate (Table 4.7). However, there was a significant effect of the receptor media flow rate on nicotine 

permeation lag time (Figure 4.6(B)).  An increase in the receptor media flow rate led to the faster 

appearance of permeated nicotine from the receptors to media reservoirs and hence reduced the 

permeation lag time. However, the decrease in permeation lag time saturated at higher receptor 

media flow rates. This nonlinearity in the permeation lag time can be related to the larger effect of 

lower receptor media flow rate and smaller effect of higher receptor media flow rates on 

permeation lag time at the receptor dead volume of 2.67 mL.  

The in vitro permeation profiles, release profiles and release rates as a function of donor 

media flow rate are shown in Figures 4.7(A), 4.7(B) and 4.7(C) respectively. The amount of 

nicotine permeated and released over time as a function of the donor media flow rate are shown in 

Tables C15-C17 and C18-C20 of Appendix C respectively. The effect of donor media flow rate 

on nicotine release was studied separately without circulation of the receptor media. The nicotine 

release rate at the donor media flow rate of 1.66 mL/min was significantly slower than that 

obtained with 6 and 16 mL/min (Figure 4.7(C)). An increase in the donor media flow rate resulted 

in the faster release rate; however a similar effect on permeation (Table 4.7) was not obtained as 

anticipated. In spite of the increase in release rate, nicotine released in the donor chamber remained 

for a shorter time in the donor chamber with an increase in donor media flow rate, regardless of 
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the flow pattern (closed vs open). In addition, there might be a decrease in nicotine concentration 

in the donor chamber due to dilution with the increase in donor media flow rate. The former and 

latter explanations provide a rationale for the absence of an effect of donor media flow rate on 

nicotine permeation. 

The in vitro nicotine permeation profiles obtained as a function of receptor to donor media 

volume ratio are displayed in Figure 4.8. The amount of nicotine permeated in individual 

experiments at all levels of media volume are presented in Tables C21-C23 of Appendix C 

respectively. A significant effect of receptor media volume on permeation rate (Table 4.7) was not 

observed. This is likely because the media volume was altered by increasing the volume in the 

reservoir without any change in the volume of the chambers. The size of the chambers of the 

apparatus remained the same at all levels of media volume. Because of this, the nicotine 

concentration gradient across donor and receptor compartments remained the same and the effect 

of volume on permeation rate was not obtained as expected. This explains the absence of an effect 

of media volume on permeation. The effect of donor in place of receptor media volume on the 

concentration gradient across the chambers of BTA could be considered for the optimization of 

IVIVR.  
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Table 4.7: Nicotine release/permeation rate from snus as a function of in vitro variables 

 

 Level N 

Release/Permeation Rate 

(mg/min) Statistical 

Test 

Statistical 

Results 
Mean SD %RSD 

Receptor 

media flow 

rate 

(mL/min) 

1 3 0.022 0.001 3.38 
Equal 

variance 

ANOVA 

F(2,6)=0.70; 

p-value=0.533; 

Not significant 

6 3 0.021 0.002 11.98 

16 3 0.022 0.0002 0.78 

Donor 

media flow 

rate 

(mL/min)** 

1.66 5 0.024 0.001 4.25 
Equal 

variance 

ANOVA 

F(2,12)=3.21; 

p-value=0.077; 

Not significant 

6 5 0.027 0.002 8.18 

16 5 0.027 0.003 9.36 

Donor 

media flow 

rate 

(mL/min)* 

1.66 5 0.123 0.020 16.46 
Unequal 

variance 

ANOVA 

F(2,7)=90.91; 

p-value<0.05; 

Significant 

6 5 0.274 0.072 26.32 

16 5 0.334 0.027 8.13 

Receptor to 

donor 

media 

volume 

ratio 

2 3 0.026 0.001 5.51 

Equal 

variance 

ANOVA 

F(2,6)=2.66; 

p-value=0.149; 

Not significant 

4 3 0.022 0.002 8.48 

8 3 0.025 0.003 11.49 

Receptor 

dead 

volume 

(mL)# 

2.67 5 0.040 0.004 10.26 
Equal 

variance 

ANOVA 

F(2,12)=5.34; 

p-value<0.05; 

Significant 

5.15 5 0.030 0.007 24.45 

10 5 0.032 0.004 13.10 

Receptor 

and donor 

media 
temperature 

(°C)^ 

25 5 0.022 0.002 11.30 
Unequal 

variance 

ANOVA 

F(2,7)=75.07; 

p-value<0.05; 

Significant 

37 5 0.038 0.002 5.46 

45 5 0.045 0.005 11.08 

Agitation$ 
No 5 0.036 0.005 13.50 Equal 

variance t-

test 

t=2.62;df=8;p-

value<0.05; 

Significant Yes 5 0.027 0.006 22.94 

** Data represents nicotine permeation rate. 

*   Data represents nicotine release rate. Nicotine release rate was significantly slower at 1.66 mL/min donor media flow  

   rate compared to 6 and 16 mL/min 
#  Nicotine permeation rate was significantly faster at 2.67 mL compared to 5.15 mL 
^  Nicotine permeation rate was significantly different from one another 
$ Nicotine permeation rate was significantly faster “without agitation” compared to that “with agitation” 
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Figure 4.6: The mean cumulative nicotine permeation at three receptor media flow rates; [A] The 

mean cumulative nicotine permeation time profile at three receptor media flow rate levels; the line 

was fitted to the linear portion of the profile; Y=0.0219*X-0.083, R2=0.99 (Receptor media flow 

rate 1 mL/min); Y=0.0208*X-0.0159, R2=0.99 (Receptor media flow rate 6 mL/min); Y=0.0221-

0.0073, R2=0.99 (Receptor media flow rate 16 mL/min); [B] The mean permeation lag time at 

three receptor media flow rate levels; * & ** the permeation lag time at 1 mL/min was significantly 

longer than at 6 and 16 mL/min. (Error bars represent one standard deviation; n=3) 
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Figure 4.7: The mean cumulative nicotine permeation at three donor media flow rates; [A] The 

mean cumulative nicotine permeation time profile at three donor media flow rate levels; the line 

was fitted to the linear portion of the profile; Y=0.0242*X+0.0378, R2=0.99 (Donor media flow 

rate 1.66 mL/min); Y=0.0273*X-0.115, R2=0.99 (Donor media flow rate 6 mL/min); Y=0.0268-

0.0346, R2=0.99 (Donor media flow rate 16 mL/min); [B] The mean cumulative nicotine release 

time profile at three donor media flow rate levels; the line was fitted to the linear portion of the 

profile; Y=0.1231*X-0.075, R2=0.99 (Donor media flow rate 1.66 mL/min); 

Y=0.2737*X+0.0625, R2=0.99 (Donor media flow rate 6 mL/min); Y=0.3337+0.5612, R2=0.99 

(Donor media flow rate 16 mL/min); [C] The mean release rates at three donor media flow rate 

levels; * & ** the release lag time at 1.66 mL/min was significantly shorter than at 6 and 16 

mL/min. (Error bars represent one standard deviation; n=5) 
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Figure 4.8: The mean cumulative nicotine permeation time profile at three receptor to donor media 

volume ratios; the line was fitted to the linear portion of the profile; Y=0.0265*X-0.1012, R2=0.99 

(Media volume ratio 2); Y=0.0223*X-0.133, R2=0.99 (Media volume ratio 4); Y=0.0249-0.1414, 

R2=0.99 (Media volume ratio 8). (Error bars represent one standard deviation; n=3) 
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Table 4.7 summarizes the mean nicotine permeation rate data at receptor dead volumes of 

2.67, 5.15 and 10 mL. Figures 4.9(A), 4.9(B) and 4.9(C) illustrate the nicotine permeation time 

profiles, permeation rate and lag time plots obtained with these receptor dead volumes 

respectively. The nicotine permeation rate was significantly faster with a receptor dead volume of 

2.67 mL in comparison to that obtained with 5.15 mL. This can be attributed to the late appearance 

of permeated nicotine into the reservoir at large dead volumes. However, the permeation rate at 

2.67 and 5.15 mL was not significantly different from that obtained with 10 mL of dead volume 

which might be due to large variability in the permeation rate (Table 4.7). The variability in 

permeation increased with an increase in the dead volume (Table 4.7).  The apparent increase in 

nicotine permeation lag time with dead volume was not significant due to high variability. The 

apparent increase in permeation lag time was attributed to a longer time needed for permeated 

nicotine to reach the reservoir at large dead volumes. The nicotine permeation with each replicate 

at all levels of dead volume is presented in Tables C24-C26 of Appendix C. 

The amount of nicotine permeated, permeation rates and lag time observed as a function 

of media temperature is displayed in Tables C27-C29 of Appendix C.  The nicotine permeation 

time profile and permeation rate and lag time versus temperature is presented in Figures 4.10(A), 

4.10(B) and 4.10(C) respectively. The nicotine permeation rates (Table 4.7 and Figure 4.10(B)) 

were significantly different from one another. Also, the nicotine permeation lag time at 45 °C was 

significantly shorter than at 25 °C (Figure 4.10(C)). The temperature increase might have resulted 

in an increase in the diffusion coefficient of nicotine leading to its faster release from snus, 

increased donor nicotine concentration and consequently faster permeation. This can be explained 

by the Stokes-Einstein theory and Fick’s Law of Diffusion (Section 4.2.2.1 and 4.2.2.2) (Othmer 

et al. 1953; Edward 1970; Martin et al. 1983; Hubley et al. 1996).  
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The amount of nicotine permeated from snus over time as a function of agitation is 

summarized in Tables C30-C31 of Appendix C. Figures 4.11(A), 4.11(B) and 4.11(C) illustrate 

the nicotine permeation time profiles, nicotine permeation rate and lag time obtained with and 

without agitation. The nicotine permeation rate was significantly slower with agitation than 

without agitation. The nicotine permeation lag time, however, was significantly longer without 

agitation. The change in permeation rates was opposite to what was expected. The explanation of 

this result can be related to the manner in which the snus was agitated. The application of pressure 

towards the center of the apparatus with a beaker resulted in the movement of media in the top of 

the donor and receptor chambers towards their respective outlets; whereas the media in the bottom 

of the chambers moved toward the reservoirs through the inlet tubing. The latter effect is 

undesirable and results did not represent the true permeation rate and lag time. Because of the 

above unwanted effect, in the presence of agitation, nicotine released from snus was removed from 

the donor chamber through inlets and outlets reducing the concentration gradient across the 

chambers which decreased the permeation rate. The nicotine permeation rates and lag times 

obtained with agitation were not true representations, since media from the bottom of the chamber 

reached the reservoir before the media from the top of the chamber. This event cannot be avoided 

with the present BTA apparatus with flexible walls. An appropriate modification was required in 

the set up to avoid the above undesirable event and study the agitation effect suitably. An assembly 

that only agitates the product in the donor chamber without reducing the chamber volumes instead 

of agitation incorporated through the application of pressure on the receptor chambers should be 

sought. Automation can also be employed to agitate the product to avoid variability that may result 

from manual agitation. 
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Figure 4.9: The mean cumulative nicotine permeation at three receptor dead volumes; [A] The 

mean cumulative nicotine permeation time profile at three receptor dead volumes; the line was 

fitted to the linear portion of the profile; Y=0.04*X-0.4025, R2=0.99 (Receptor dead volume 2.67 

mL); Y=0.0298*X-0.3732, R2=0.99 (Receptor dead volume 5.15 mL); Y=0.0315-0.4955, R2=0.99 

(Receptor dead volume 10 mL/min); [B] The mean permeation rates at three receptor dead volume 

levels; * the permeation rate at 2.67 mL was significantly faster than at 5.15 mL of dead volume; 

[C] The mean permeation lag time at three receptor dead volumes. (Error bars represent one 

standard deviation; n=5) 
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Figure 4.10: The mean cumulative nicotine permeation at three media temperatures; [A] The mean 

cumulative nicotine permeation time profile at three media temperature levels; the line was fitted 

to the linear portion of the profile; Y=0.0217*X-0.0693, R2=0.99 (Media temperature 25 °C); 

Y=0.0379*X-0.0683, R2=0.99 (Media temperature 37 °C); Y=0.0453-0.0491, R2=0.99 (Media 

temperature 45 °C); [B] The mean permeation rates at three media temperatures; * indicates the 

permeation rates were significantly different from one another; [C] The mean permeation lag time 

at three media temperature levels; * the permeation lag time was significantly longer at 25 °C than 

at 45 °C temperature. (Error bars represent one standard deviation; n=5) 
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Figure 4.11: The mean cumulative nicotine permeation as a function of agitation; [A] The mean 

cumulative nicotine permeation time profile with and without agitation; the line was fitted to the 

linear portion of the profile; Y=0.0357*X-0.5592, R2=0.99 (Without Agitation); Y=0.0266*X-

0.0012, R2=0.99 (With Agitation); [B] The mean permeation rates with and without agitation; * 

the permeation rates significantly different from one another; [C] The mean permeation lag time 

with and without agitation; * the permeation lag time was significantly longer without agitation in 

comparison to with agitation. (Error bars represent one standard deviation; n=5) 
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Among the eight variables studied, the SSSR, media temperature, receptor dead volume 

and agitation showed significant effects on nicotine permeation rate. However, SSSR and media 

temperature was selected for further optimization of the BTA. The receptor dead volume of 2.67 

mL (minimum possible with the apparatus) was selected for further optimization using SSSR and 

temperature as variables. The receptor dead volume was not selected because the temperature 

effect can be studied only at large receptor media flow rate which is expected to overcome the 

effect of large dead volume. In addition, the receptor dead volume lacked physiological relevance. 

The receptor dead volume could be related to the degree of damage to oral mucosal membrane due 

to the use of smokeless tobacco products. Due to the lack of relevant literature on the degree of 

damage to the oral mucosal membrane caused by the use of smokeless tobacco products, the range 

of dead volume was selected in the present study keeping in view the practicality of performing 

experiments. This range of dead volume could not be considered physiologically relevant. 

Agitation was not selected because of the issues discussed above. The incorporation of agitation 

resulted in the decrease of permeation rate which was highly variable (Table 4.7). This will not 

only introduce significant variability but also lead in a direction opposite to the need of increasing 

permeation rate due to the removal of nicotine from the donor chamber.  However, agitation can 

be studied and incorporated on a case by case basis. In addition, information on chewing/agitation 

frequency was lacking in the literature. The agitation frequency of 1/min may not be 

physiologically relevant. Therefore, the SSSR and media temperature were selected for further 

work over the receptor dead volume and agitation. 
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4.4 CONCLUSIONS 

 

 

From this study it was concluded that the bidirectional transmucosal apparatus allows simulation 

and adjustment of oral cavity physiological and in vitro variables for the prediction of the in vivo 

performance of OTPs. A total of eight variables, two oral cavity physiological and six in vitro 

variables were investigated in an independent manner to study their effect on nicotine permeation 

using the BTA. Of all the variables studied, stimulated saliva swallowing rate (SSSR), media 

temperature, receptor dead volume and agitation showed a significant impact on nicotine 

permeation rate which provided evidence of the possibility for optimization of IVIVR in a realistic 

manner. Due to the lack of physiological relevance with receptor dead volume and issues related 

to agitation because of the apparatus design, SSSR and media temperature were chosen for further 

optimization of IVIVR for snus. The work presented in this chapter demonstrates the potential for 

optimization and adjustment of variables for improving the predictability of an in vitro system. 

Factorial experiments integrating the SSSR and media temperature as relevant variables using the 

BTA were performed for the optimization of the prediction of in vivo behavior of smokeless 

tobacco (snus). The results of this optimization study are reported in Chapter 5. 
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CHAPTER 5 

 

OPTIMIZATION OF THE IN VITRO IN VIVO RELATIONSHIP (IVIVR) FOR 

SMOKELESS TOBACCO (SNUS) EMPLOYING STIMULATED SALIVA 

SWALLOWING RATE (SSSR) AND MEDIA TEMPERATURE AS VARIABLES  

 

 

5.1 INTRODUCTION 

 

 Biorelevant dissolution/release/permeation testing can serve as an in vitro surrogate for the 

in vivo performance of a product. The in vitro system can be an accurate predictive tool when it 

simulates the relevant physiological environment closely (Fotaki et al. 2010) and can lead to 

selection of an appropriate drug candidate along with successful formulation development. (Wang 

et al. 2009). With the goal of the development of a tool that can accurately predict the in vivo 

behavior of oral transmucosal products (OTPs); an in vitro device, the bidirectional transmucosal 

apparatus (BTA), that simulates relevant oral cavity physiological variables and allows adjustment 

of in vitro variables, was designed and fabricated (Chapter 3). The BTA was selected over the USP 

IV and VDC because of its higher potential for simulation and adjustment of variables. The 

screening experiments reported in Chapter 4 indicated stimulated salivary swallowing rate (SSSR) 

and media temperature as the most relevant variables which showed a significant effect on the in 

vitro nicotine permeation rate (Chapter 4).  
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Multivariate optimization using an experimental design is a useful strategy to establish 

optimal conditions of multiple variables to achieve a desired response (i.e., a minimum, a 

maximum or a target). Various experimental designs utilized for the multivariate optimization 

include but are not limited to the multi factorial design, Plackett-Burman design, central composite 

design (CCD) and Box-Behnken (BB) design (Khuri et al. 2010). The multivariate optimization 

strategy is widely utilized for the formulation, dissolution and analytical method development 

(Lundstedt et al. 1998; Kincl et al. 2005; Ferreira et al. 2007; Gomez-Gaete et al. 2013; Zhou et 

al. 2013). Optimization helps in acquiring relevant useful information from a smaller number of 

experiments and assists in the development phase in a cost effective manner. In addition, a 

multivariate optimization method allows the development of models for a better understanding of 

the relationship between multiple factors and response mechanistically and statistically. 

Furthermore, the multivariate optimization design allows study of interaction between multiple 

variables and provides accurate information as compared to univariate studies which analyzes the 

effect of only a single variable. The information provided by univariate studies will not be as 

reliable due to a significant interaction between variables or factors under the study (Ferreira et al. 

2007). The present study was therefore aimed at the optimization of IVIVR for snus using the BTA 

by employing an experimental design (multi factorial design – 3 level 2 factor (32) design) 

involving SSSR and media temperature as relevant variables, each at three levels. The optimized 

IVIVR is defined as the relationship between the cumulative amount absorbed in vivo (mg) and 

the cumulative amount permeated in vitro (mg) at the same time with a slope of unity. An IVIVR 

with a slope of unity indicates closeness of the in vitro permeation and the in vivo absorption rate 

or time course. Response surface methodology was utilized to determine the best condition of 
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SSSR and media temperature that predicts the in vivo permeation rate of nicotine from snus 

accurately. 

 

5.2 MATERIALS AND METHODS 

 

5.2.1 MATERIALS  

  

Snus (a type of smokeless tobacco, Nicotine 8.0 mg, 1.0 g pouch) for in vitro studies was 

purchased from Old Virginia Tobacco Co., Richmond, VA, USA. Hanks’ Balanced Salt (H-1387) 

and N-(2-hydroxyethyl)piperazine-N′-(2-ethanesulfonic acid) (HEPES, 1M) buffer for the 

preparation of Hank’s balanced salt solution (HBSS, pH 7.4) were purchased from Sigma, St. 

Louis, MO, USA. Potassium phosphate monobasic (anhydrous) and sodium phosphate dibasic 

(anhydrous) to formulate artificial saliva of pH 7.2 was procured from Sigma, St. Louis, MO, USA. 

Sodium hydroxide and hydrochloric acid solution (10 N) for pH adjustment was obtained from 

Sigma, St. Louis, MO, USA. (-)-Nicotine hydrogen tartrate for the assay was also purchased from 

Sigma, St. Louis, MO, USA. HPLC grade ammonium acetate and glacial acetic acid for the mobile 

phase preparation was obtained from Fisher Scientific, Fair Lawn, NJ, USA and EMD, Gibbstown, 

NJ, USA respectively. HPLC grade methanol was purchased from Honeywell Burdick and 

Jackson, Muskegon, MI, USA. Water was obtained in-house (the Nanopure DiamondTM, 

Barnstead, IO, USA). Regenerated cellulose membranes for in vitro permeation studies was 

purchased from Thermo Scientific, Rockford, IL, USA. Fluorinated ethylene propylene (FEP) and 

Tygon® platinized silicon tubing for the in vitro apparatus were purchased from Cole-Parmer, 

Vernon Hills, IL, USA. Teflon unions and luer fittings for tubing connections were bought from 

Upchurch Scientific, Oak Harbor, WA, USA. Masterflex L/S 12-channel 8-roller cartridge pump 
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head (Model 7519-25) and variable-speed modular drive (Model 7553-70; 6 to 600 rpm; flow rate 

range : 0.0006 to 41 mL/min) for circulating media through the donor chamber was purchased 

from Cole-Parmer, Vernon Hills, IL, USA. Two variable medium flow mini pumps (Model 3386; 

flow rate range – 0.4 to 85 mL/min) for circulating media through the receptors chambers were 

purchased from Control Company, Friendswood, TX, USA. 

 

5.2.2 EXPERIMENTAL DESIGN  

 

Optimization of the IVIVR for snus was conducted by a multifactorial design experiment. 

A 32 design involving two factors (SSSR and media temperature) each at 3 levels (Table 5.1), was 

employed to estimate a second-order response surface of the in vitro nicotine permeation rate, ratio 

of in vitro to in vivo rates and in vitro nicotine release. Each experiment was performed four times. 

The factorial experiments will allow study of the effect of interaction between factors on the 

response and nonlinearity in the response as a function of the independent variables. Table 5.2 lists 

the nine experiments at the combinations of different levels of the two variables conducted with 

the multifactorial (32) design. 

   

5.2.3 IN VITRO RELEASE AND PERMEATION TESTING 

 

 

The bidirectional transmucosal apparatus represented schematically in Figure 4.1 (Chapter 

4) was employed to perform multifactorial experiments and study nicotine release and permeation 

from snus to optimize IVIVR. The assembly components, pumps and experimental method 

previously used (Chapter 3) were also employed in the present study. Snus used in the study is 

described in Section 3.2.2 (Chapter 3). Artificial saliva (pH 7.2, β 7.0 mM/L/pH unit) and Hanks’ 
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balanced salt solution (HBSS, pH 7.4, β 14.21 mM/L/pH unit) was maintained at the required 

temperature and were used as the donor and receptor media respectively. Artificial saliva was 

circulated through the donor chamber of the BTA in an open flow through pattern by using a 

cartridge pump. Two separate peristaltic pumps were employed to circulate HBSS through each 

receptor chamber which was maintained in a closed flow through arrangement. Table 5.2 presents 

the detailed experimental conditions for the factorial design. The required chamber temperature 

was obtained by maintaining the water bath and donor and receptor reservoir media at higher 

temperatures. One ml of HBSS was sampled at 0, 2.5, 5, 7.5, 10, 15, 20, 25 and 30 min from 

receptor reservoirs to assess nicotine permeation. Forty microliters of artificial saliva was sampled 

at similar time points from the reservoir collecting swallowed tobacco extract (Figure 4.1) and 

diluted twenty five times with HBSS buffer to measure the amount of nicotine swallowed. The 

sampled media was replaced with an equivalent volume of fresh media. Each experiment was 

performed in replicates of four. A validated reverse-phase HPLC method (Chapter 2) was 

employed to assess nicotine release and permeation in in vitro samples. Nicotine permeated into 

both receptor chambers of the BTA was added to represent the total permeation achieved at each 

time point. The total volume circulated through the donor chamber was measured by collecting 

media from the chamber and reservoir containing simulated swallowed tobacco extract. This 

volume was useful to calculate the amount of nicotine released in the donor chamber. The method 

for the calculation of the amount of nicotine permeated, released and swallowed are shown in 

Tables D0, D10 and D22 of Appendix D respectively.  
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Table 5.1: A 32 full multifactorial design for the optimization of IVIVR for snus using the 

bidirectional transmucosal apparatus  

 

Factors (X) Levels 

 1 2 3 

Stimulated saliva swallowing rate (mL/min) (X1) 0.32 1.66 3 

Media temperature (°C) (X2) 25 37 45 

Responses (Y)  Aim  

In vitro nicotine permeation rate (Y1) 

To study the effect of factors and their 

interaction on the permeation of nicotine 

and optimization of IVIVR 

Ratio of in vitro nicotine permeation to in vivo 

nicotine absorption rates (Y2) 

To study the effect of factors and their 

interaction on the ratio of rates and 

optimization of IVIVR 

In vitro nicotine release at 10 min (Y3) 

To study the effect of factors and their 

interaction on the release of nicotine from 

snus 
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Table 5.2: Experimental conditions for 32 factorial design 

 

  

Expt 

No. 

SSSR 

(mL/min) 

Temperature 
(°C) 

N 

Donor 

media 

(Artificial 

Saliva) 

Receptor 

media 

(HBSS) 

Receptor 

media 

flow rate 

(mL/min) 

Donor 

reservoir 

media 
volume 

Receptor 

reservoir 

media 

volume 

Donor and 

Receptor 

dead 

volume 

Donor 

flow 

through 

pattern 

Receptor 

flow 

through 

pattern 

Agitation 

Wate

r bath 

temp. 

(˚C) 

Reservoir 

media 

temp. 

(˚C) 

Chamber 

media 

temp. 

(˚C) 

1 0.32 25 4 
pH 7.2 

β = 7.0 
pH 7.4 16 50 25 2.67 Open Closed No RT RT RT 

2 0.32 37 4 
pH 7.2 

β = 7.0 
pH 7.4 16 50 25 2.67 Open Closed No 45-46 40-42 33-37 

3 0.32 45 4 
pH 7.2 

β = 7.0 
pH 7.4 16 50 25 2.67 Open Closed No 59-60 50-53 38-45 

4 1.66 25 4 
pH 7.2 

β = 7.0 
pH 7.4 16 120 25 2.67 Open Closed No RT RT RT 

5 1.66 37 4 
pH 7.2 
β = 7.0 

pH 7.4 16 120 25 2.67 Open Closed No 45-46 40-42 33-37 

6 1.66 45 4 
pH 7.2 

β = 7.0 
pH 7.4 16 120 25 2.67 Open Closed No 59-60 50-53 38-45 

7 3 25 4 
pH 7.2 
β = 7.0 

pH 7.4 16 150 25 2.67 Open Closed No RT RT RT 

8 3 37 4 
pH 7.2 

β = 7.0 
pH 7.4 16 150 25 2.67 Open Closed No 45-46 40-42 33-37 

9 3 45 4 
pH 7.2 

β = 7.0 
pH 7.4 16 150 25 2.67 Open Closed No 59-60 50-53 38-45 

RT: Room Temperature 
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5.2.4 DATA ANALYSIS 

 

Data analysis was performed on three responses; the in vitro nicotine permeation rate, the 

ratio of in vitro nicotine permeation to in vivo nicotine absorption rate and the amount of nicotine 

released at 10 min. The in vitro nicotine permeation rate and ratio of rates were analyzed to 

optimize the IVIVR for snus. The ratio of rates was utilized to aide in the interpretation. A ratio of 

rates of one would indicate comparable in vitro permeation and in vivo absorption profiles. The in 

vitro nicotine permeation rate (mg/min) was obtained from the slope of the nicotine permeation 

time profile from 7.5 to 30 min. This time frame was selected to obtain the permeation rate since 

a lag time of 7.5 min was observed in vivo for nicotine absorption. All experiments were performed 

for 30 min as the snus was removed after half an hour during the clinical study. Ratios also 

represented rates obtained between 7.5 and 30 min. The amount of nicotine released at 10 min was 

analyzed to study the effect of the chosen variables (SSSR and media temperature) on release 

properties of nicotine. The amount of nicotine released at 10 min was interpreted rather than the 

release rate because of the unexpected troughs observed in the release profile over time (Figure 

5.6). Nicotine release at 10 min was differentiable and the range observed can be explained as a 

function of swallowing rate and media temperature.   

A second-order statistical model comprised of interaction and quadratic terms obtained by 

multiple linear regression was used to define the relationship between the factors (SSSR and media 

temperature) and each response (permeation rate, ratio of rates and amount of nicotine release at 

10 min). Equation 5.1 represents the second-order model that was used to fit the response data 

obtained from the 32 factorial experiment (Table 5.1). 

𝑌 =  𝑏0 +  𝑏1𝑋1 + 𝑏2𝑋2 +  𝑏12(𝑋1 − �̅�1)(𝑋2 − �̅�2) +  𝑏11(𝑋1 − �̅�1)2 + 𝑏22(𝑋2 − �̅�2)2      (Eq 5.1) 
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where, 𝑌 was the observed response (in vitro nicotine permeation rate or the ratio of in vitro 

nicotine permeation to in vivo nicotine absorption rates or the amount of nicotine released at 10 

min); 𝑏0 was the 𝑌 intercept; 𝑏1and 𝑏2 were coefficients of the effects of variables 𝑋1 and 𝑋2 

respectively; 𝑏12 was the coefficient of the effect of interaction between 𝑋1and 𝑋2; 𝑏11 and 𝑏22 

were coefficients explaining the nonlinearity in 𝑌 as a function of 𝑋1 and 𝑋2 respectively. The 

terms (𝑋1 − �̅�1) and (𝑋2 − �̅�2) are mean-centered variables; where, (�̅�1) and (�̅�2) represented 

the mean of SSSR and media temperature respectively. Both the SSSR and media temperature 

were mean-centered because of the absence of zero point in their levels and to facilitate an 

appropriate interpretation of the intercept (Wainer 2000). Two-way analysis of variance (ANOVA) 

was performed to identify the statistically significant effects and interactions. A lack of fit test was 

also performed to test the adequacy of the model. The plot of residuals versus predicted value was 

also studied to confirm the absence of any trend and to test the suitability of the model. The 

statistical analysis was performed in JMP Pro 10 at α = 0.05.  

Analysis of the response surface explained by the second-order model was performed to 

choose the best combination of SSSR and media temperature to obtain the IVIVR and ratio of in 

vitro to in vivo rate for snus as close to 1 as possible. The model was validated by performing an 

experiment at the optimal conditions of SSSR and media temperature. 
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5.3 RESULTS AND DISCUSSION 

 

5.3.1 EFFECT OF SSSR AND MEDIA TEMPERATURE ON IN VITRO NICOTINE 

PERMEATION RATE 

   

 

The average in vitro nicotine permeation rates resulted from the combined effects of SSSR 

and media temperature are summarized in Table 5.3. The mean cumulative in vitro nicotine 

permeation time profiles obtained from the 32 factorial design experiments are displayed in Figure 

5.1. The amount of nicotine permeated as a function of time and the permeation rate obtained from 

each replicate experiment at all combinations of the SSSR and media temperature are presented in 

Tables D1-D9 of Appendix D. The mean in vitro nicotine permeation rate varied from 0.008 to 

0.044 mg/min indicating the possibility for optimization of IVIVR by varying the level of SSSR 

and media temperature. The slowest permeation was obtained at the low and high level of media 

temperature and SSSR respectively. Whereas, the fastest permeation was observed at the high and 

low level of media temperature and SSSR, respectively. This influence of variables on the 

permeation rate was defined by a second-order model (Equation 5.2) which was obtained by 

multiple regression analysis on the results presented in Table 5.3. The statistical validation of the 

estimated model for the in vitro nicotine permeation rate is shown in Table 5.4.  

 

𝑌1 =  0.0079 −  0.0086𝑋1 +  0.0006𝑋2 − 0.0004(𝑋1 − 1.66)(𝑋2 − 35.67) 

                              + 0.0025(𝑋1 − 1.66)2 +  0.00002(𝑋2 − 35.67)2           -----------------    (Eq 5.2) 
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Table 5.3: In vitro nicotine permeation rate and the ratio of in vitro nicotine permeation to the in 

vivo nicotine absorption rate obtained from the 32 factorial experiment  

 

SSSR 

(mL/min) 

Media 

Temperature 

(°C) 

N 

In Vitro Nicotine 

Permeation Rate (mg/min) 
 

Ratio of In Vitro 

Nicotine Permeation to 

In Vivo Absorption 

Rate* 

Mean SD %RSD  Mean SD %RSD 

0.32 25 4 0.022 0.005 23.104  0.60 0.14 23.10 

0.32 37 4 0.033 0.002 7.627  0.90 0.07 7.63 

0.32 45 4 0.044 0.003 6.323  1.22 0.08 6.32 

1.66 25 4 0.012 0.002 13.301  0.33 0.04 13.30 

1.66 37 4 0.016 0.001 7.763  0.44 0.03 7.76 

1.66 45 4 0.023 0.002 8.707  0.63 0.05 8.71 

3 25 4 0.008 0.001 14.565  0.22 0.03 14.56 

3 37 4 0.010 0.001 6.350  0.29 0.02 6.35 

3 45 4 0.011 0.001 6.079  0.31 0.02 6.08 

* In vivo nicotine absorption rate = 0.036 mg/min (Chapter 3) 

 

Table 5.4: Statistical validation of the second-order model for the in vitro nicotine permeation rate 

(ANOVA)  

Model 

term 
Coefficient Std error t-ratio p-value 

95% confidence 

interval 

Model 

significance and 

adequacy 

𝑏0 0.008 0.002 3.43 0.0018* (0.003, 0.013) R2  

0.96 

ANOVA 
F(5,30)=158.23 

p-value<0.0001*  

Lack of Fit 

F(3,27)=1.42 

p-value = 0.2575 

𝑏1 -0.0086 0.0004 -23.47 <.0001* (-0.0093, -0.0078) 

𝑏2 0.00060 0.00005 12.02 <.0001* (0.0005, 0.0007) 

𝑏12 -0.00040 0.00004 -7.85 <.0001* (-0.0004, -0.0003) 

𝑏11 0.0025 0.0005 5.28 <.0001* (0.0015, 0.0035) 

𝑏22 0.000020 0.000009 1.72 0.0965 (-0.000003, 0.00003) 

* p-value < 0.05; statistically significant 
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Figure 5.1: The mean cumulative nicotine permeation time profile as a function of SSSR 

(mL/min) and media temperature (°C). (Error bars represent one standard deviation; n=4) 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: The residual (predicted permeation rate – observed permeation rate) versus predicted 

in vitro nicotine permeation plot for the validation of the second-order model built to define the 

relationship between in vitro nicotine permeation rate (mg/min) and SSSR (mL/min) along with 

media temperature (°C).   
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The coefficients and p-values in Table 5.4 indicated a significant effect of both the SSSR 

and media temperature on the in vitro nicotine permeation rate. In addition, there was a significant 

interaction suggesting that the effect of SSSR on the permeation rate depended on the level of 

media temperature and vice versa. Also, a a significant quadratic effect of the SSSR on the 

permeation rate was observed. A low p-value [F(5,30)=158.23; p-value<0.0001] obtained on 

performing an F-test showed the statistical significance of the regression model for the in vitro 

permeation rate. The goodness of fit of the model was further confirmed by a high coefficient of 

determination [R2 = 0.96] and a lack of fit test [(F(3,27)=1.42; p-value>0.05] which was not significant. 

The residual (predicted – observed) versus predicted nicotine permeation rate plot obtained with 

the model is shown in Figure 5.2. The residual plot suggested the absence of any pattern and hence 

any heteroscedasticity and validated the use of the model for the prediction. All of the above 

goodness of fit tests established adequacy of the second-order regression model for the in vitro 

nicotine permeation rate obtained by employing the SSSR and media temperature in the 

bidirectional apparatus. The SSSR decreased the nicotine permeation rate indicating a negative 

effect. In contrast, the media temperature showed a positive effect on the nicotine permeation rate 

suggesting that the rate can be increased by an increase in the media temperature. The effect of 

SSSR on the in vitro permeation rate was greater than the media temperature.  

The response surface plot displayed in Figure 5.3 represents the in vitro nicotine 

permeation rate as a function of the SSSR and media temperature three dimensionally. It was 

concluded from the response surface that an increase in the media temperature resulted in an 

increase in the nicotine permeation rate. This observation was attributed to an increase in the 

diffusion coefficient of nicotine causing its faster release from snus and consequently enhanced 

the donor nicotine concentration which caused the permeation of nicotine into the receptors of the 

BTA to occur at a faster rate. This was a theoretical explanation based on the Stokes-Einstein 
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theory and Fick’s Law (Section 4.2.2.1 and 4.2.2.2) (Othmer et al. 1953; Edward 1970; Martin et 

al. 1983; Hubley et al. 1996).  

There was a significant decrease in the permeation rate as a function of SSSR and this 

decrease was significantly non-linear with an increase in the SSSR. An increase in the swallowing 

rate caused the removal of released nicotine from the donor chamber at a faster rate. As a 

consequence, the donor nicotine concentration reduced leading to a decrease in the nicotine 

gradient across the donor chamber and receptors. The resultant effect of the above phenomenon 

was a decrease in nicotine permeation rate. This explanation of the reduction in the nicotine 

permeation rate with an increase in the SSSR was based on Fick’s Law of Diffusion (Section 

4.2.2.1, Equation 4.2). However, there was significant non-linearity in the in vitro nicotine 

permeation rate as a function of SSSR. The above quadratic effect was because of saturation of 

the nicotine removal process from the donor chamber with the increase in SSSR. The removal rate 

was a function of the amount of nicotine present in snus over time in addition to the SSSR. The 

amount of nicotine in snus decreased with an increase in the removal rate. A large difference 

between the amount of nicotine in snus at the swallowing rate of 1.66 and 3 mL/min over time 

may not be present. Therefore, a smaller decrease in the nicotine gradient across the donor and 

receptor chambers, with an increase in SSSR from 1.66 to 3 mL/min, might have existed which 

would explain the observed nonlinearity in the permeation rate.  

There was a significant negative effect for the interaction between the SSSR and media 

temperature on the in vitro nicotine permeation rate. The effect of the decrease in nicotine gradient 

across the BTA chambers due to simulated swallowing was predominant over the increased 

gradient as a function of temperature. Therefore, the overall interaction effect was negative, 

indicating that the effect of swallowing on the permeation rate was predominant. 
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Figure 5.3: Three dimensional response surface plot for the in vitro nicotine permeation rate as a 

function of SSSR (mL/min) and media temperature (°C). [The color band representing the in vitro 

nicotine permeation rate of 0.038 mg/min constitutes the combination of SSSR and media 

temperature that will provide the in vitro nicotine permeation rate close to that of the in vivo 

nicotine absorption rate] 
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5.3.2 EFFECT OF SSSR AND MEDIA TEMPERATURE ON THE RATIO OF IN VITRO 

NICOTINE PERMEATION TO IN VIVO NICOTINE ABSORPTION RATE 

   

  

The average ratio of in vitro nicotine permeation to in vivo nicotine absorption rates that 

resulted as a function of the joint effects of SSSR and media temperature are tabulated in Table 

5.3. The individual ratio of rates obtained as a function of SSSR and media temperature are 

presented in Tables D1-D9 of Appendix D. The mean ratio of rates varied from 0.22 to 1.22. This 

observed range suggested the potential for obtaining the ratio of in vitro to in vivo rate (1/slope of 

IVIVR) close to one by altering the level of SSSR and media temperature. The ratio of one was 

desired to obtain comparable in vitro nicotine permeation and an in vivo nicotine absorption time 

course for the optimization of IVIVR for snus. The ratio of rates was chosen as a response for easy 

visualization of the response surface and optimization of the IVIVR. Multiple regression analysis 

was conducted to describe the effect of the variables SSSR and media temperature on the ratio of 

rates. A second-order quadratic model employed to fit the ratios is presented in Equation 5.3. 

Statistical validation of the estimated model for the ratio of rates is shown in Table 5.5.  

 

𝑌2 =  0.219 −  0.237𝑋1 +  0.017𝑋2 − 0.010(𝑋1 − 1.66)(𝑋2 − 35.67) 

                              + 0.068(𝑋1 − 1.66)2 +  0.0004(𝑋2 − 35.67)2                  -------------    (Eq 5.3) 
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Table 5.5: Statistical validation of the second-order model for the ratio of in vitro nicotine 

permeation to the in vivo nicotine absorption rate (ANOVA) 

  

Model 

term 
Coefficient Std error t-ratio p-value 

95% confidence 

interval 

Model 

significance and 

adequacy 

𝑏0 0.22 0.06 3.42 0.0018* (0.09, 0.35) R2  

0.96 

ANOVA 
F(5,30)=158.71 

p-value<0.0001*  

Lack of Fit 

F(3,27)=1.37 

p-value = 0.2739 

𝑏1 -0.24 0.01 -23.52 <.0001* (-0.26, -0.22) 

𝑏2 0.017 0.001 12.02 <.0001* (0.014, 0.020) 

𝑏12 -0.010 0.001 -7.85 <.0001* (-0.012, -0.007) 

𝑏11 0.068 0.013 5.29 <.0001* (0.042, 0.096) 

𝑏22 0.0004 0.0003 1.73 0.0947 (-0.00008, 0.00092) 

* p-value < 0.05; statistically significant 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: The residual (predicted ratio of rates – observed ratio of rates) versus predicted ratio 

of rates plot for the validation of the second-order model built to define the relationship between 

ratio of rates and SSSR (mL/min) and media temperature (°C). 
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The coefficients and p-values presented in Table 5.5 represent the effect of both SSSR and 

media temperature on the ratio of in vitro nicotine permeation to in vivo nicotine absorption rate. 

The estimated second-order model was significant [F(5,30)=158.71; p-value<0.0001; Table 5.5] and 

adequate for the prediction of the ratio of in vitro to in vivo rate (inverse of IVIVR slope) as evident 

from high coefficient of determination [R2 = 0.96], non-significant lack of fit [F(3,27)=1.37; p-

value>0.05] and the absence of any trend on the residual plot (Figure 5.4). There was a significant 

decrease in the ratio with an increase of SSSR as suggested by the negative sign for the coefficient of 

SSSR (Table 5.5). The media temperature positively affected the ratio, indicating an increase in the 

ratio with increasing temperature. Also, there was a significant influence of interaction between SSSR 

and media temperature on the ratio of rates. In addition, a significant quadratic influence of the SSSR 

on the ratio of rates was observed. A three dimensional response surface plot for the ratio of rates 

illustrated in Figure 5.5 is similar to the one obtained for the in vitro nicotine permeation rate (Figure 

5.3). The ratio of rates is the in vitro nicotine permeation rate obtained at each level of the SSSR and 

media temperature divided by the in vivo nicotine absorption rate of 0.036 mg/min. Therefore, the 

effect of SSSR and media temperature on both the ratio and permeation rate are qualitatively similar. 

Hence, the reasoning for the significant effect of SSSR and media temperature; and the quadratic term 

of SSSR on the permeation rate presented in Section 5.3.1 explains similar effects on the ratio 

mechanistically. 
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Figure 5.5: Three dimensional response surface plot for the ratio of in vitro nicotine permeation 

to in vivo nicotine absorption rate as a function of SSSR (mL/min) and media temperature (°C). 

[The color band representing the ratio of rates of 1 constitutes a combination of SSSR and media 

temperature that will provide IVIVR with a slope close to one. The IVIVR with a slope of unity 

indicates a comparable in vitro and in vivo nicotine time course] 

  



 

 

150 

 

5.3.3 EFFECT OF SSSR AND MEDIA TEMPERATURE ON NICOTINE RELEASE AT 10 

MIN FROM SNUS  

   

 

For the purpose of studying the effect of SSSR and media temperature on the release 

properties of nicotine from snus, the nicotine release at 10 min was considered as a response. On 

the basis of the mean cumulative nicotine release time profiles presented in Figure 5.6, the release 

at 10 min was chosen over the release rate because of the absence of a smooth release profile over 

time. The presence of troughs in the release profiles might be due to errors in sampling and dilution 

of samples and variability in the in vitro behavior of snus. It might also be possible that variability 

in the media flow rate and hence the media volume could introduce errors in the calculation of the 

amount of nicotine released and release rate. Nicotine release at 10 min was distinguishable across 

the range of SSSR and media temperature studied. In addition, the release of nicotine in 

experiments at the SSSR of 3 mL/min saturated within initial five minutes (which represents the 

first two sampling points) and therefore it was not possible to calculate release rates. Furthermore, 

the study of nicotine release at 10 min as a function of SSSR and media temperature should provide 

a fair approximation of the effect of these factors on the release properties of nicotine from snus. 

The mean in vitro nicotine released at 10 min as a function of the combined effects of SSSR 

and media temperature are displayed in Table 5.6. The method of calculation of nicotine release 

at 10 min is presented in detail in tabular form (Table D10 of Appendix D). The amount of nicotine 

released as a function of time obtained from replicate experiments at all combinations of the SSSR 

and media temperature are presented in Tables D11-D19 of Appendix D. The mean in vitro 

nicotine release at 10 min varied from 1.07 to 6.61 mg at low and high levels of SSSR and media 

temperature respectively. This indicated the influence of SSSR and media temperature on the 

release of nicotine from snus which could impact permeation by altering the nicotine concentration 
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gradient across the donor and receptor chambers of the BTA. The effect of SSSR and media 

temperature on nicotine release at 10 min was explained by second-order model presented in 

Equation 5.4.  

 

𝑌3 =  −1.22 + 1.55𝑋1 +  0.09𝑋2 − 0.008(𝑋1 − 1.66)(𝑋2 − 35.67) 

                             − 0.45(𝑋1 − 1.66)2 +  0.003(𝑋2 − 35.67)2                        -------------    (Eq 5.4) 

 

 

The validation of the estimated model is summarized in Table 5.7. The estimated model 

was significant and adequately described the influence of SSSR and media temperature on nicotine 

release at 10 min (Table 5.7). The residual plot illustrated in Figure 5.7 also indicated the validity 

of the model on the basis of the absence of heteroscedasticity. 

There was a significant positive influence of both the SSSR and media temperature on in 

vitro nicotine release at 10 min which suggested an increase in the release of nicotine from snus 

with increasing SSSR and media temperature (Table 5.7). In contrast to the in vitro permeation 

rate, there was not a significant influence of interaction between SSSR and media temperature 

which indicated that the release behavior of nicotine from snus was independent to that of the 

media temperature and vice versa. This is because the release of nicotine represented the process 

occurring in the donor chamber as opposed to the permeation process that occurred across the 

donor and receptor compartments. The nicotine concentration gradient across the donor and 

receptor chambers defined the permeation rate which was affected positively and negatively by 

the media temperature and SSSR, respectively (Table 5.4). In contrast, the increase in the release 

of nicotine as a function of SSSR at media temperatures of 25, 37 and 45 °C followed similar 

increasing trend (Figure 5.8) which justified the absence of interaction between SSSR and 
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temperature on the nicotine release. In addition, the nonlinearity in the in vitro release as a function 

of both SSSR and temperature was not significant. This could be attributed to the maintenance of 

sink condition for nicotine, i.e., the media volume was sufficient to solubilize the amount of 

nicotine released with increasing SSSR and temperature. The effect of SSSR on in vitro nicotine 

release was greater than that of media temperature (Table 5.7). The response surface plot in Figure 

5.9 represents the effect of SSSR and media temperature on in vitro nicotine release at 10 min. The 

increase in in vitro nicotine release from snus as a function of temperature could be attributed to 

the increase in the diffusion of nicotine from snus which might be due to the reduction in artificial 

saliva viscosity with the increase in temperature (Section 4.2.2.1 and 4.2.2.2). An increase in 

nicotine release with increasing saliva swallowing rate (which is also saliva secretion rate/flow 

rate) might be because of the faster release of nicotine from snus due to media turbulence. The 

degree of turbulence of the dissolution media was found to be associated with the media flow 

rate/velocity (Cammarn et al. 2000).   

The effect of SSSR and media temperature on the release of nicotine from snus 

demonstrates the range of the nicotine concentration gradient that could exist across the donor and 

receptor chambers of the BTA. The positive effect of media temperature on the release could also 

produce a similar effect on the permeation due to the simultaneous effect of an increase in diffusion 

as a function of temperature. However, the positive effect of simulated swallowing rate (saliva 

secretion/flow rate) on nicotine release did not result into a similar effect on permeation (Section 

5.3.1). This was attributed to the removal of nicotine from the donor chamber by the simulation of 

swallowing in an open flow through pattern which resulted in a decrease in nicotine concentration 

gradient with increasing swallowing rate. 
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Table 5.6: Cumulative in vitro nicotine release at 10 min obtained from the 32 factorial 

experiments  

 

SSSR 

(mL/min) 

Media 

Temperature 

(°C) 

N 

In Vitro Nicotine Release at 10 min (mg) 

Mean SD %RSD 

0.32 25 4 1.07 0.55 51.29 

0.32 37 4 1.43 0.49 34.13 

0.32 45 4 2.98 0.59 19.85 

1.66 25 4 3.99 2.02 50.64 

1.66 37 4 4.23 0.65 15.37 

1.66 45 4 5.90 1.01 17.15 

3 25 4 5.03 0.73 14.54 

3 37 4 6.61 1.95 29.43 

3 45 4 6.28 0.93 14.83 

 

Table 5.7: Statistical validation of the second-order model for in vitro nicotine release at 10 min 

(ANOVA)  

Model 

term 
Coefficient 

Std 

error 
t-ratio p-value 

95% confidence 

interval 

Model significance 

and adequacy 

𝑏0 -1.22 1.11 -1.10 0.2819 (-3.49, 1.05) R2 

0.76 

ANOVA 

F(5,30)=18.95 

p-value<0.0001* 

Lack of Fit 

F(3,27)=1.29 

p-value = 0.2963 

𝑏1 1.55 0.18 8.81 <.0001* (1.19, 1.91) 

𝑏2 0.09 0.03 3.56 0.0012* (0.04, 0.14) 

𝑏12 -0.01 0.02 -0.39 0.7013 (-0.05, 0.04) 

𝑏11 -0.45 0.23 -1.98 0.0568 (-0.91, 0.01) 

𝑏22 0.003 0.004 0.70 0.4903 (-0.006, 0.012) 

* p-value < 0.05; statistically significant 
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Figure 5.6: The mean cumulative in vitro nicotine release time profile as a function of SSSR 

(mL/min) and media temperature (°C). (Error bars represent one standard deviation; n=4) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7: Residual nicotine release (predicted nicotine release – observed nicotine release) 

versus predicted nicotine release at 10 min for the validation of the second-order model built to 

define the relationship between the release of nicotine at 10 min and SSSR (mL/min) and media 

temperature (°C).  
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Figure 5.8: Interaction plot for the effect of SSSR (mL/min) and media temperature (°C) on the 

release of nicotine at 10 min 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9: Three dimensional response surface plot for in vitro nicotine release at 10 min as a 

function of SSSR (mL/min) and media temperature (°C).   
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5.3.4 OPTIMIZATION OF IVIVR FOR SNUS 

  

 

The goal of the present optimization study was to determine the best levels of SSSR and 

media temperature that provide an in vitro nicotine permeation profile comparable to in vivo 

nicotine absorption profile. In other words, an IVIVR with a slope of unity was desired for 

smokeless tobacco (snus) to employ an in vitro nicotine permeation profile as the surrogate for the 

in vivo nicotine absorption profile. Figure 5.10 demonstrates the contour plot for the ratio of in 

vitro nicotine permeation to in vivo nicotine absorption rate at different levels of the SSSR and 

media temperature. The white zone in the contour plot represents the desirable area for various 

combinations of the SSSR and media temperature that provided ratio of rates in the range of 0.9 

to 1.1. The point at the intersection of black lines represent the SSSR of 0.55 mL/min and media 

temperature of 43 °C that was expected to provide the ratio of in vitro to in vivo rate of 1.01 or the 

IVIVR slope of 0.99. For the purpose of validation of the optimization model, an in vitro 

experiment was performed at the optimal condition of SSSR (0.55 mL/min) and media temperature 

(43 °C) and replicated, n=4. 

The mean cumulative nicotine permeated (mg), the in vitro nicotine permeation rate 

(mg/min) and the ratio of in vitro nicotine permeation to in vivo nicotine absorption rates were 

obtained at the optimal conditions of SSSR (0.55 mL/min) and media temperature (43 °C) using 

bidirectional apparatus and are tabulated in Table 5.8. The in vitro nicotine permeation results 

obtained with each replicate experiment are presented in Table D20 of Appendix D. Figure 5.11 

illustrates the in vitro nicotine permeation profile at the SSSR of 0.55 mL/min and media 

temperature of 43 °C. The mean in vitro nicotine permeation rate of 0.039 mg/min was obtained 

at the optimal levels which was very close to the in vivo rate of 0.036 mg/min, as indicated by the 

ratio of in vitro to in vivo rates of 1.09 (Table 5.8). The slope resulted from the IVIVR constructed 
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using the in vitro permeation profile obtained at optimal levels of SSSR (0.55 mL/min) and media 

temperature (43 °C) shown graphically in Figure 5.12 was 0.92. These results indicated that the 

bidirectional transmucosal apparatus at the optimal levels of SSSR and media temperature 

predicted the in vivo behavior of snus accurately.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10: Contour plot of the ratio of in vitro nicotine permeation to in vivo nicotine absorption 

rate as a function of SSSR (mL/min) and media temperature (°C). [White zone is the desirable area 

representing various combinations of the SSSR and temperature that provide a ratio in the range 

of 0.9 to 1.1. The point at the intersection of black lines represents the SSSR of 0.55 mL/min and 

media temperature of 43 °C that was expected to provide the ratio of in vitro to in vivo rate of 1.01 

or IVIVR slope of 0.99] 
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Table 5.8: Cumulative amount of nicotine permeated (mg), in vitro nicotine permeation rate 

(mg/min) and the ratio of in vitro nicotine permeation to in vivo nicotine absorption rates from 

snus at the optimal levels for SSSR 0.55 mL/min and media temperature 43 °C 

  

Time (min) Mean SD %RSD 

0 0 0 - 

2.5 0.25 0.06 24.32 

5 0.36 0.07 20.09 

7.5 0.50 0.09 17.15 

10 0.64 0.07 10.57 

15 0.85 0.11 13.37 

20 1.06 0.14 12.94 

25 1.23 0.13 10.96 

30 1.39 0.17 11.91 

Permeation rate (mg/min)* 0.039 0.005 12.33 

Ratio of rates** 1.09 0.13 12.33 

* Permeation rate was calculated from the  amount of nicotine permeated from 7.5 to 30 min  
** Ratio of rates is the ratio of in vitro nicotine permeation to the in vivo nicotine absorption rate 

(0.036 mg/min) 
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Figure 5.11: The mean cumulative in vitro nicotine permeation time profile at optimal levels of 

of SSSR (0.55 mL/min) and media temperature (43 °C). (Error bars represent one standard 

deviation; n=4) 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12: The in vitro in vivo relationship (IVIVR) plot for snus at optimal levels of SSSR 

(0.55 mL/min) and media temperature (43 °C) using the BTA.  
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5.4 CONCLUSIONS 

 

An accurate prediction of the in vivo performance of smokeless tobacco (snus) was 

successfully performed employing the bidirectional transmucosal apparatus and relevant 

physiological (SSSR) and in vitro (media temperature) variables. A 32 factorial experimental 

design and response surface analysis allowed determination of the optimal levels of SSSR and 

media temperature that resulted in an IVIVR for snus with a slope of unity and with comparable 

in vitro and in vivo time courses. The in vitro nicotine permeation profile obtained at the optimal 

in vitro levels for the BTA thus can be employed as a surrogate for the in vivo performance for 

snus. The findings from Chapter 4 and the present chapter demonstrated that the BTA facilitated 

accurate prediction of the in vivo behavior of smokeless tobacco, a type of OTP, by allowing 

simulation of the oral cavity and adjustment of in vitro variables. These findings and conclusions 

establish the biorelevancy of the bidirectional transmucosal apparatus which can be utilized as a 

quality control and research tool for oral transmucosal products. To further extend application of 

the BTA for a different type of OTP, a study was performed on a dissolvable tobacco product 

called “Stonewall”. Determinations obtained from this study are presented in Chapter 6. 
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CHAPTER 6 

 

APPLICATION OF THE BIORELEVANT BIDIRECTIONAL TRANSMUCOSAL 

APPARATUS FOR THE PREDICTION OF THE IN VIVO PERFORMANCE OF 

DISSOLVABLE COMPRESSED TOBACCO  

 

  

6.1 INTRODUCTION 

 

The biorelevant in vitro system plays a key role in the research and development phase of 

therapeutic and non-therapeutic products and can be valuable in accurately predicting the in vivo 

behavior of these products (Wang et al. 2009; Fotaki et al. 2010). Biorelevant testing, a predictive 

tool, can serve as a validated surrogate for human studies, leading to fewer clinical studies and a 

reduction in cost along with expediting the drug development process (Emami 2006). Oral 

transmucosal products (OTPs) due to benefits such as quick onset of drug action and avoidance of 

presystemic elimination, may be preferred for systemic drug delivery. Because of these 

advantages, many pharmaceutical and non-pharmaceutical oral transmucosal products are 

commercially available and many are under development (Pather et al. 2008). OTPs are available 

in tablets, patches, films, sprays, lozenges, and chewing gum formulations for sublingual, buccal, 

gingival, or local drug delivery in the oral cavity. Since this is becoming a common route for 

delivery, development of a biorelevant in vitro system for OTPs can more effectively support such 
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product development at minimal cost and time. To fulfill this need, a biorelevant bidirectional 

transmucosal apparatus (BTA) that enables characterization of drug release and permeation from 

OTPs in a more realistic way was developed and validated using smokeless tobacco (snus) as a 

model product (Chapter 3, 4 and 5). It would be beneficial if the BTA could be employed for all 

types of OTPs to predict the in vivo performance. A single biorelevant system for all types of OTPs 

will prevent unnecessary replication of in vitro systems. Therefore, the goal of the present research 

was to study the application of the biorelevant BTA for a different type of OTP. A dissolvable 

compressed tobacco tablet (Stonewall – A Star Scientific Product, Glen Allen, Virginia) was 

selected for the above purpose. Dissolvable tobacco, like snus, is also placed between the cheek 

and gum for nicotine permeation through buccal and gingival mucosal membranes. Unlike snus, 

disintegration might be the rate limiting step for nicotine release from compressed tobacco 

attributed to the hardness of the compact; consequently, permeation may be affected. The donor 

media flow rate through turbulence may enhance disintegration of the Stonewall tablet and thus 

increase the release of nicotine (Cammarn et al. 2000), whereas, the media temperature may 

increase the diffusion of nicotine across the donor and receptor compartments by reducing the 

viscosity of the media (Section 4.2.2.2) (Othmer et al. 1953; Edward 1970; Hubley et al. 1996). 

Therefore, the donor media flow rate and media temperature which may influence disintegration 

and diffusion respectively were employed in the BTA with a target to develop an in vitro in vivo 

relationship (IVIVR) with a slope of unity for compressed tobacco. 
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6.2 MATERIALS AND METHODS 

 

6.2.1 MATERIALS 

  

  

Stonewall (a type of compressed smokeless tobacco, Nicotine 4.0 mg, 0.48 g tablet) for in 

vitro studies was purchased online at www.rakuten.com. Hanks’ Balanced Salt (H-1387) and N-

(2-hydroxyethyl)piperazine-N′-(2-ethanesulfonic acid) (HEPES, 1M) buffer for the preparation of 

Hank’s balanced salt solution (pH 7.4) were purchased from Sigma, St. Louis, MO, USA. 

Potassium phosphate monobasic (anhydrous) and sodium phosphate dibasic (anhydrous) to 

formulate artificial saliva of pH 7.2 was obtained from Sigma, St. Louis, MO, USA. Sodium 

hydroxide and hydrochloric acid solution (10 N) for pH adjustment was purchased from Sigma, 

St. Louis, MO, USA. (-)-Nicotine hydrogen tartrate (working standard) for the assay was also 

purchased from Sigma, St. Louis, MO, USA. HPLC grade ammonium acetate and glacial acetic 

acid for the mobile phase preparation was purchased from Fisher Scientific, Fair Lawn, NJ, USA 

and EMD, Gibbstown, NJ, USA respectively. HPLC grade methanol was purchased from 

Honeywell Burdick and Jackson, Muskegon, MI, USA. High purity water was prepared in-house 

(the Nanopure DiamondTM, Barnstead, IO, USA). Regenerated cellulose membranes (SnakeSkin 

Dialysis Tubing, 10K MWCO, 35mm dry diameter (ID) × 10.7m) for in vitro permeation studies 

was obtained from Thermo Scientific, Rockford, IL, USA. Fluorinated ethylene propylene (FEP) 

and Tygon® platinized silicon tubing for the in vitro apparatus were purchased from Cole-Parmer, 

Vernon Hills, IL, USA. Teflon unions and luer fittings for tubing connections were bought from 

Upchurch Scientific, Oak Harbor, WA, USA. Masterflex L/S 12-channel 8-roller cartridge pump 

head (Model 7519-25) and variable-speed modular drive (Model 7553-70; 6 to 600 rpm; flow rate 

range – 0.0006 to 41 mL/min) for circulating media through the donor chamber was purchased 
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from Cole-Parmer, Vernon Hills, IL, USA. Two variable medium flow mini pumps (Model 3386; 

flow rate range – 0.4 to 85 mL/min) for circulating media through receptor chambers were 

purchased from Control Company, Friendswood, TX, USA. 

 

6.2.2 DESCRIPTION OF STONEWALL 

 

 

Stonewall is a type of commercial smokeless tobacco compressed into a tablet. The tablet 

weighed 0.47 ± 0.01 g (n=3). Each Stonewall tablet contained 3.40 mg of nicotine (Stepanov et al. 

2012). The tablet dimensions were 1.4 cm ⨯ 0.9 cm ⨯ 0.55 cm (length ⨯ width ⨯ depth). The 

Stonewall tablet also contained a binder/granulating agent, a sweetner, flavorants, coloring agents, 

a filler/diluent, a lubricant and buffers that facilitated the granulation and compression of 

powdered/extracted/cured tobacco (Williams 2004). Figure 6.1 represents a picture of Stonewall 

used for thise study. The Stonewall is placed between cheek and gum for nicotine permeation from 

tobacco which permeates through buccal and gingival membrane.  

 

 

 

 

 

 

 

Figure 6.1: Compressed dissolvable tobacco: Stonewall 
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6.2.3 SELECTION OF VARIABLES FOR OPTIMIZATION OF IVIVR FOR STONEWALL 

  

Nicotine release from Stonewall may be limited by disintegration of the tobacco compact. 

The compressed tobacco is relatively hard in comparison to the loose tobacco in snus. The hardness 

of the tablet may result in a decrease in nicotine release by increasing disintegration time (Jacob 

et al. 1968). A similar effect can be anticipated on the release of nicotine from Stonewall (tobacco 

compact) in the donor chamber of the BTA. As a consequence, the permeation of nicotine into the 

receptors of the BTA may also be limited by disintegration and slower nicotine release rate. 

Accordingly, in vitro variables that were anticipated to circumvent the effect of the hardness of 

Stonewall and hence nicotine release were considered for optimization. The donor media flow rate 

was considered because of its expected enhancement of disintegration of Stonewall and nicotine 

release by media turbulence (Cammarn et al. 2000). Media temperature was found to be a relevant 

variable that significantly increased nicotine permeation from snus in the BTA (Section 4.2.2.2 

and 4.3.2). Therefore, the donor media flow rate and media temperature were employed for better 

prediction of the in vivo performance of Stonewall using the BTA. Donor media flow rates, ranging 

from the physiological saliva secretion rate (1.66 mL/min; (Bardow et al. 2000)) to a large in vitro 

flow rate (16 mL/min) were considered for optimization. The large donor media flow rate may 

enhance the disintegration of compressed tobacco through turbulence and hence permeation of 

nicotine into the receptor chambers of BTA. Whereas, the media temperature, ranging from 37 °C 

(body temperature) to 45 °C (a level higher) was employed to accurately predict the in vivo 

behavior of Stonewall. The reason for the selection of 45 °C for nicotine permeation studies with 

the bidirectional apparatus was explained in detail in Section 4.2.3 of Chapter 4.    
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6.2.4 IN VITRO RELEASE AND PERMEATION TESTING 

 

The bidirectional transmucosal apparatus presented in Figure 3.2(C) of Chapter 3 was used 

to study nicotine release and permeation from compressed tobacco (Stonewall). The in vitro set up 

consisted of similar assembly components (Silicon and FEP tubings, luer fitting and unions, 

reservoirs and regenerated cellulose membrane) that were employed in the previous studies 

(Chapter 3, 4 and 5). A single tablet of Stonewall was placed in the donor chamber which was 

separated from the receptors using the regenerated cellulose membrane. Twenty five mL of 

artificial saliva (pH 7.2, β = 7.0) and Hanks’ balanced salt solution (HBSS, pH 7.4) maintained at 

the required temperature was circulated in a closed through pattern through the donor and receptor 

chambers respectively using three separate pumps. The donor and receptor dead volumes were 

both 2.67 mL. Forty microliters and one milliter of media was sampled from the donor and receptor 

reservoirs respectively at 0, 1, 5, 10, 15, 20, 25, 30, 45 and 60 min, to assess nicotine release and 

permeation. The sampled media was replaced with an equivalent volume of fresh media. Samples 

obtained from the donor reservoir were immediately subjected to centrifugation (Thomas® mini 

centrifuge; 6000 rpm) for 1 min in 1.5 mL capacity polypropylene micro centrifuge tubes (Biohit) 

to remove undissolved tobacco particles, the supernatant was used for analysis. The supernatant 

of donor media samples was diluted ten times with the HBBS buffer to perform nicotine analysis 

using the validated HPLC calibration range as these samples were expected to be concentrated 

with nicotine. The types of experiments performed are presented in Table 6.1. The cumulative 

amount of nicotine released and permeated was calculated. Nicotine concentrations that permeated 

into both receptor chambers of the BTA were added to represent the total cumulative permeation 

achieved at each time point. The method for calculation of the amount of nicotine permeated and 

released from Stonewall is presented in Table E0 and E9 of Appendix E respectively. 
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Table 6.1: Experiments to optimize IVIVR for Stonewall using the BTA 

Expt. N 

Donor 

media flow 

rate 

(mL/min) 

Receptor 

media flow 

rate 

(mL/min) 

Chamber 

Temp. 

Required 

(˚C) 

Water 

bath 

Temp. 

(˚C) 

Reservoir 

media 

temp. 

(˚C) 

Chamber 

media 

temp. 

(˚C) 

1 5 1.66 16 37 45-46 40-42 33-37 

2 3 16 16 37 45-46 40-42 33-37 

3 5 16 16 45 59-60 50-53 38-45 
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6.2.5 IN VIVO STUDY AND PHARMACOKINETIC ASSESSMENT OF STONEWALL 

  

 

The plasma nicotine concentration time profile for Stonewall was obtained from a human 

clinical study reported in the literature (Kotlyar et al. 2007). The study was approved by an 

Institutional Review Board. The in vivo study was conducted on 10 adult smokeless tobacco users. 

The product was removed from the mouth after 30 min and the mouth was rinsed with water. The 

nicotine levels for each subject were kindly provided by Michael Kotlyar, Ph.D., the author of the 

above research paper.  Of the 10 subjects enrolled in the study, 7 subjects showed nicotine levels 

below LLOQ or at the LLOQ (2 ng/mL) of the analytical method (Gas Chromatography with 

nitrogen phosphorous detection) in predose and postdose samples, whereas, the remaining three 

subjects showed nicotine levels above LLOQ in predose and postdose samples. Therefore, only 

the nicotine levels of three subjects who showed nicotine levels above LLOQ after baseline 

correction were considered for the IVIVR analysis. The baseline corrected mean plasma nicotine 

concentration time profile for the three subjects was deconvolved to the absorption time profile by 

Wagner-Nelson modeling assuming that nicotine followed one compartment kinetics (The method 

of deconvolution presented in detail in Section 3.2.7 of Chapter 3) (Wagner et al. 1964). All 

pharmacokinetic calculations were performed in Microsoft Excel 2013. Briefly, the area under the 

curve, AUC0-90 min [414.83 (ng/mL)*min], was calculated by the trapezoidal method. The 

elimination rate constant (ke; 0.004 min-1) from an intravenous (IV) infusion pharmacokinetic 

study on 20 healthy adults reported in the literature was used to calculate AUC0-∞ [1414.83 

(ng/mL)*min] for Stonewall (Molander et al. 2001). The cumulative amount of nicotine (mg) 

absorbed as a function of time (min) was calculated from the fraction of nicotine absorbed (
𝐴𝑡

𝐴∞
) 

obtained by the Wagner-Nelson modeling and absolute bioavailability (F) (considering 4 mg as 
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the nominal dose, 4 mg is the nominal amount of nicotine present in Stonewall) based on the 

Equation below: 

                     𝐴𝑡 =  
(𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 % 𝑛𝑖𝑐𝑜𝑡𝑖𝑛𝑒 𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑 𝑋 𝐹 𝑋 4)

100
            -----------    Eq. 6.1 

where, At is the cumulative amount of nicotine absorbed at time t (mg); F is the absolute 

bioavailability of nicotine from Stonewall; 4 mg refers to the nominal amount of nicotine present 

in Stonewall. The absolute bioavailability of nicotine from Stonewall was 0.39 [The AUC0-∞, IV 

and Dose IV was 1596 ng*min/mL and 1.77 mg respectively (Molander et al. 2001)). Figure 6.2 

displays the mean nicotine concentration and absorption time profile for Stonewall obtained from 

three subjects. The cumulative percent nicotine (% of 4 mg) absorption time profile can be related 

to the cumulative percent nicotine (% of 4 mg) permeation time profile obtained using the BTA 

for IVIVR. The nicotine absorption data shown in Figure 6.2(B) from 5 to 20 min was used to 

calculate in vivo absorption rate (0.083 mg/min) which was compared to the in vitro nicotine 

permeation rate. The time frame of 5 to 20 min was considered because of the lag time of 1 min 

and the unusual flat profile observed from 20 to 30 min. 
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Figure 6.2: Deconvolution of plasma nicotine concentration time profile for Stonewall by 

Wagner-Nelson modeling [A] The mean plasma nicotine concentration time profile for three 

subjects (Error bars represent one standard deviation; n=3); [B] The mean nicotine absorption time 

profile for three subjects. 

  

Deconvolution: Wagner-Nelson Modeling 

Correction based on the absolute bioavailability 
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6.2.6 SAMPLE ANALYSIS 

  

 The samples obtained from in vitro experiments on Stonewall using the BTA were 

analyzed for nicotine release and permeation using the validated HPLC method reported in Chapter 

2. HPLC analysis was performed using Waters 600E multisolvent delivery system with a Waters 

717 autosampler and 996 Waters photodiode array (PDA) detector. Like snus, in vitro nicotine 

samples of Stonewall also contained tobacco components and excipients in addition to nicotine. 

External standards of nicotine prepared in HBSS (pH 7.4) were used for the analysis as it was not 

possible to prepare standards with the matrix containing tobacco and excipients present in 

Stonewall. The HPLC method for nicotine analysis in samples obtained from in vitro studies of 

snus was appropriately validated qualitatively and quantitatively (Chapter 3). However, the matrix 

present in snus and Stonewall differed substantially, which required selectivity testing of the HPLC 

method for in vitro samples from Stonewall. Therefore, standard addition and peak purity 

experiments were performed to test the selectivity of the HPLC method in the presence of 

Stonewall matrix. 

The standard addition method described in Chapter 2 was employed for the assessment of 

matrix effect in the in vitro samples of Stonewall. Both the donor and receptor chamber in vitro 

samples at 60 min were tested for the selectivity of nicotine analysis. Briefly, nine hundred fifty 

microliters of the in vitro sample (Receptor sample – undiluted; donor sample – 25 times diluted 

before spiking) of Stonewall was spiked with 10, 20, 40, 80, 160, 320 and 640 µg/mL of nicotine 

in HBSS buffer separately. The spiking was performed in replicates of three. The spiked samples 

and external nicotine standards were analyzed at 250 – 270 nm wavelength range with 260 nm as 

the output wavelength. The peak area responses for spiked (donor and receptor chamber spiked 

samples) and external nicotine standards obtained, were plotted against true nicotine 



 

 

172 

 

concentrations. The slopes of standard addition and external calibration curves were statistically 

compared (Student t-test at α=0.05).  

Peak purity testing using the Waters 996 PDA detector and Empower software was 

performed on the donor and receptor chamber samples obtained at 60 min from the in vitro 

experiment for the assessment of interference. The donor sample was diluted twenty five fold with 

HBBS buffer before injection and peak purity analysis. The dilution of donor sample was 

performed to represent the real situation where the donor sample is diluted for quantification within 

the calibration range. The testing was performed using the autothreshold method in a similar 

manner as described in Chapter 2. Each donor and receptor sample was injected in triplicate for 

peak purity analysis along with lower (0.5 μg/mL) and higher (32 μg/mL) nicotine external 

standards. Purity and threshold angles (Refer Chapter 2) at the nicotine retention time for each 

sample were obtained and compared.  

Other selectivity tests reported in Chapter 2 were not studied for Stonewall, as the above 

methods were tested at 250 – 270 nm; a selective wavelength range for nicotine analysis with 260 

nm as its wavelength maxima. The use of 250 - 270 nm wavelength range avoided the contribution 

of a leachable substance from the neoprene O ring; which was also employed in the present BTA 

set up for preventing leaks; to the nicotine response that absorbed in the wavelength range of 200 

– 242 nm. 

   

6.2.7 DATA ANALYSIS 

 

 

The nicotine release/permeation rate (mg/min) (rate after lag time) was calculated from the 

slope of the linear portion of the nicotine release/permeation (mg)-time (min) profile. The lag time 

(min) for release and permeation was calculated from the X-intercept of the fitted line. The rates 
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obtained were compared to study the effect of donor media flow rate and media temperature on 

the release and permeation of nicotine from Stonewall when BTA is employed. Appropriate 

statistical analysis (Student t-test at α = 0.05) was performed to compare the release/permeation 

rates obtained as a function of donor media flow rate and media temperature. All statistical analysis 

was performed using JMP Pro 10. The in vitro nicotine permeation rate for Stonewall obtained at 

each of the experimental conditions was compared to the in vivo nicotine absorption rate and a 

ratio was calculated. A ratio of in vitro to in vivo rates( which is also the inverse of the  IVIVR 

slope; in vivo absorption; Y versus in vitro permeation; X); of one was desired in order to use the 

in vitro profile as a surrogate for the in vivo behavior of the product. 

 

6.3 RESULTS AND DISCUSSION 

 

 

6.3.1 SAMPLE ANALYSIS 

 

 

The comparisons of the mean standard addition curve with the external calibration curve 

obtained with the spiked donor and receptor samples are illustrated in Figures 6.3(A) and 6.3(B) 

respectively. The individual peak areas of the external standards and spiked donor and receptor 

samples obtained from replicate analysis are presented in Tables E1-E2 of Appendix E. The slopes 

of both; standard addition and external calibration curves; for the donor and receptor spiked 

samples were not significantly different (Equal variance t-test at α=0.05; donor in vitro spiked 

sample: t = -1.38, df = 4, p-value = 0.2384; receptor in vitro spiked sample: t = -1.82, df = 4, p-

value = 0.1429). This result suggested the absence of a matrix effect or proportional error in the 

analysis of nicotine in the in vitro samples of Stonewall. 
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Table 6.2 tabulates the purity and threshold angles obtained by the autothreshold peak 

purity testing method at 250-270 nm for nicotine external standards and the in vitro donor and 

receptor samples. The replicate peak purity data for the donor and receptor Stonewall samples are 

shown in Tables E3 and E4 of Appendix E respectively. The peak purity results in Table 6.2 

suggest that the nicotine peaks from standards were spectrally and chromatographically pure 

(purity angles < threshold angles). Whereas, the nicotine peaks from in vitro donor and receptor 

samples were considered only spectrally pure (purity angles < threshold angles) since the coelution 

of the leachable from the neoprene O ring was possible. The peak purity analysis confirmed the 

absence of interference during the analysis of nicotine in vitro samples of Stonewall based on the 

spectral purity of the peaks. 

It was concluded from the standard addition method and peak purity testing that the HPLC 

method reported in Chapter 2 is selective for the analysis of nicotine in the in vitro samples of 

Stonewall obtained from experiments performed in the bidirectional transmucosal apparatus. 
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Figure 6.3: Comparison of the standard addition and external calibration curves [A] Spiked donor 

in vitro sample; [B] Spiked receptor in vitro sample. (Error bars represent one standard deviation; 

n=3)  
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Table 6.2: Peak purity testing on the nicotine standards and in vitro samples using the 

autothreshold method* 

 

Donor In Vitro Sample**    

 Purity Angle Threshold Angle Interpretation*** 

Nicotine standard (0.5 µg/mL) 2.144 8.657 Pure peak 

Nicotine standard (32 µg/mL) 0.067 0.381 Pure peak 

Donor sample at 60 min 0.695 0.931 Spectrally pure 

Receptor In Vitro Sample**    

 Purity Angle Threshold Angle Interpretation*** 

Nicotine standard (0.5 µg/mL) 1.642 4.258 Pure peak 

Nicotine standard (32 µg/mL) 0.054 0.285 Pure peak 

Receptor sample at 60 min 0.408 0.487 Spectrally pure 

* Each purity angle and threshold angle value represents a mean of n=3 
** Peak purity analysis was performed at the wavelength range of 250-270 nm 
*** Pure peak = Chromatographically and spectrally pure peak 
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6.3.2 EFFECT OF DONOR MEDIA FLOW RATE AND MEDIA TEMPERATURE ON 

NICOTINE RELEASE/PERMEATION FROM STONEWALL 

 

 

 The mean nicotine permeation profiles, permeation rates and the  ratio of in vitro to in vivo 

rates obtained at different donor media flow rates (1.66 and 16 mL/min) and media temperatures 

(37 and 45 °C) are presented in Figure 6.4, Table 6.3 and Table 6.4 respectively.  The mean 

nicotine release profiles and release rates are shown in Figure 6.5 and Table 6.5 respectively. The 

amount of nicotine permeated/released as a function of time and the permeation/release rates 

obtained from each replicate experiment are shown in Tables E5-E13 of Appendix E. The nicotine 

permeation rate was significantly faster at 16 mL/min (37°C) than 1.66 mL/min (37°C) of donor 

media flow rate (Table 6.3). The increase in donor media flow rate may have resulted into an 

increase in media turbulence in the donor chamber of the BTA. The increase in media flow rate 

and turbulence has been found to accelerate the disintegration of tablets (Cammarn et al. 2000; 

Gao 2009). Therefore, the disintegration time of Stonewall possibly would decrease with the 

increase in donor media flow rate. In consequence, the release rate of nicotine from Stonewall 

significantly increased with an increase in the donor media flow rate (Table 6.5 and Figure 6.5) 

and thus enhancing the nicotine concentration in the donor chamber. The resultant effect of the 

above phenomenon would be increase in the gradient across the donor and receptor chambers of 

the BTA leading to significantly faster permeation based on the Fick’s Law (Section 4.2.2.1 of 

Chapter 4). The study of the donor media flow rate on the in vitro behavior of Stonewall also 

indicated that disintegration might be the rate limiting step in the release and permeation of 

nicotine. The in vitro permeation rates at both 1.66 and 16 mL/min when media temperature was 

maintained at 37°C were slower than the in vivo nicotine absorption rate (0.083 mg/min) indicated 

by the ratio of rates of less than one (0.04 and 0.10 respectively; Table 6.4). The above results 
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suggest a need for increasing the in vitro nicotine permeation rate for accurate prediction of the in 

vivo performance of Stonewall. Therefore, media temperature was employed for enhancing the 

permeation rate of nicotine as it was found to be an important variable in the optimization of IVIVR 

for snus (Chapter 4). 

 The permeation of nicotine significantly increased as a function of the media temperature 

(Table 6.3). The above result could be attributed to a reduction in media viscosity and increase in 

the diffusion coefficient of nicotine when the media temperature was increased based on Stokes-

Einstein theory (Section 4.2.2.2 of Chapter 4). The increasing diffusion coefficient resulted into 

an increase in the permeation rate of nicotine from the donor to receptor chambers of the BTA 

(Fick’s law of diffusion, Section 4.2.2.2 or Chapter 4). A similar effect involving media 

temperature was not observed on the nicotine release rate from Stonewall. The nicotine release 

rate at temperatures of 37 and 45°C were not significantly different (Table 6.5). This observation 

may be either due to the huge variability in the release rate at 37 and 45°C or the absence of an 

effect of temperature on disintegration of Stonewall which may have been the rate limiting step in 

the release of nicotine. The nicotine permeation rate (0.012 mg/min) obtained by increasing the 

media temperature to 45°C was not comparable to the in vivo nicotine absorption rate (0.083 

mg/min) as suggested by the ratio of in vitro to in vivo rates of less than one (0.14; Table 6.4). The 

results obtained from the above studies suggests the need for adjustment of other variables in order 

to better predict the in vivo behavior of Stonewall using the BTA. 
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Figure 6.4: The mean cumulative nicotine permeation time profile for Stonewall at different donor 

media flow rates (DFR; mL/min) and media temperatures (T; °C); the line was fitted to the  linear 

portion of the profile from 5 to 20 min; Y=0.003*X+0.0074, R2=0.99 (DFR_1.66 mL/min & 

T_37°C); Y=0.0094*X-0.014, R2=0.99 (DFR_16 mL/min & T_37°C); Y=0.0122*X+0.0069, 

R2=0.99 (DFR_16 mL/min & T_45°C); Y=0.0249*X+0.1389, R2=0.99 (Powdered 

Stonewall_DFR_16 mL/min & T_37°C). (Error bars represent one standard deviation) 
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Table 6.3: Nicotine permeation rate from Stonewall as a function of donor media flow rate and 

media temperature 

 

Donor 

media 

flow rate 

(mL/min) 

Media 

temperature 

(°C) 

N 

Permeation Rate** 

(mg/min) Statistical 

Test 
Statistical Results 

Mean SD %RSD 

1.66 37 5 0.003* 0.001 18.50 

Equal 

variance  

t-test at 

α=0.05 

*t(6) =7.51; 

p-value=0.0003; 

Significant 
$t(6)=3.59; 

p-value=0.0115; 

Significant 
#t(4)=16.85; 

p-value<0.0001 

Significant 

16 37 3 0.009*$# 0.002 18.50 

16 45 5 0.012$ 0.001 7.60 

16^ 37^ 3 0.025# 0.001 2.04 

** The rate was calculated from the linear portion of the permeation profile from 5 to 20 min 
^ Stonewall was crushed in a mortar and pestle to a uniform particle size for in vitro release and 

permeation studies 
 

Table 6.4: The ratio of in vitro nicotine permeation to the in vivo absorption rate* from Stonewall 

as a function of donor media flow rate and media temperature 

 

Donor media 

flow rate 

(mL/min) 

Media temperature 

(°C) 
N 

Ratio of In Vitro Nicotine Permeation to 

In Vivo Nicotine Absorption Rate* $ 

Mean SD %RSD 

1.66 37 5 0.04 0.01 18.5 

16 37 3 0.10 0.02 18.5 

16 45 5 0.14 0.01 7.6 

16^ 37^ 3 0.30 0.01 2.0 

* In vitro nicotine permeation and in vivo nicotine absorption rates were calculated from the permeation 

and absorption profiles from 5 to 20 min respectively 
$ In vivo nicotine absorption rate was 0.083 mg/min 
^ Stonewall was crushed in a mortar and pestle to a uniform particle size for in vitro release and 

permeation studies 
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It was concluded from the donor media flow rate and temperature studies, that 

disintegration could be the rate limiting step for the release and permeation of nicotine from 

Stonewall. A similar effect could also be anticipated in vivo for Stonewall. The rate limiting step 

of disintegration for Stonewall could justify the observation of nicotine levels being below LLOQ 

in seven subjects out of ten enrolled in the study. In these seven subjects, the nicotine release could 

be slower due to the rate limiting step of disintegration of stonewall. In addition, swallowing of 

the saliva containing released nicotine from Stonewall might have led to loss of nicotine that would 

have been available for oral transmucosal absorption. The above explanations possibly justify the 

nicotine levels observed to be below LLOQ in most of the subjects in the clinical study. Three 

subjects that showed measurable nicotine levels might have crushed or otherwise agitated the 

Stonewall tablet instead leaving it placed between the cheek and gum. This crushing of Stonewall 

could lead to faster release and permeation of nicotine in vivo due to the instant disintegration. In 

order to confirm this reasoning, an in vitro experiment was performed using crushed Stonewall in 

the biorelevant BTA. A single tablet of Stonewall was crushed using a mortar and pestle and the 

Stonewall powder was placed in the donor chamber of the BTA. The experiment was performed 

in triplicate at the conditions mentioned in Section 6.2.4 at 16 mL/min of donor media flow rate 

and 37°C temperature. The nicotine permeation and release profiles obtained from crushed 

Stonewall are illustrated in Figures 6.4 and 6.5 respectively. The permeation and release of nicotine 

from powdered Stonewall was significantly faster in comparison to compact Stonewall (Tables 6.3 

and 6.5). This significant effect on the nicotine permeation and release rate can be related to the 

absence of a disintegration step when powdered Stonewall was used. The faster release of nicotine 

with the powdered Stonewall led to a larger gradient across the BTA chambers and therefore 

resulted into faster permeation as per Fick’s Law (Section 4.2.2.2 of Chapter 4). However, the 



 

 

182 

 

release of nicotine from powdered Stonewall was not complete (1.88 and 2.60 mg at 10 and 60 

min respectively) which could be due to the entrapment of nicotine in granules that existed after 

crushing. In addition, the in vitro nicotine permeation rate obtained with powdered Stonewall was 

slower than the in vivo absorption rate of nicotine in the clinical study which suggests that perhaps 

another relevant variable should be incorporated into the BTA that might explain the measurable 

levels of nicotine observed for of the three subjects and predict the in vivo behavior of Stonewall. 

Agitation and a larger range of donor media flow rate along with high media temperature might 

be incorporated in the BTA system in an attempt to predict the in vivo performance of Stonewall 

in three subjects considered for IVIVR. Agitation would require modification of the BTA system 

as discussed in Section 4.3.2 of Chapter 4. In addition, a mesh type holder that can retain the 

Stonewall tablet in the center of the donor chamber of the BTA along with a stir bar for agitation 

could be incorporated. This would allow exposure of the disintegrated tablet uniformly to the 

artificial membranes. It was observed that Stonewall and disintegrated Stonewall tablet remained 

at the bottom of the donor chamber throughout the experiment which did not allow for uniform 

exposure of tablet particles to membranes. This could be one of the reasons for slower in vitro 

permeation of nicotine from Stonewall than in vivo absorption observed in three subjects. 

However, it is important to highlight that three subjects considered for IVIVR could be considered 

outliers as majority of the subjects showed immeasurable nicotine levels. Therefore, efforts for 

predicting the in vivo behavior of Stonewall in outliers may not be very useful. 
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Figure 6.5: The mean cumulative nicotine release time profile for Stonewall at different donor 

media flow rates (DFR; mL/min) and media temperatures (T; °C); the line was fitted to the linear 

portion of the profile from 1 to 60 min except in the case of powdered Stonewall where fitting was 

performed in the range of1 to 10 min; Y=0.0161*X+0.206, R2=0.97 (DFR_1.66 mL/min & 

T_37°C); Y=0.0325*X+0.332, R2=0.99 (DFR_16 mL/min & T_37°C); Y=0.0438*X+0.3442, 

R2=0.99 (DFR_16 mL/min & T_45°C); Y=0.0871*X+1.0755, R2=0.99 (Powdered 

Stonewall_DFR_16 mL/min & T_37°C). (Error bars represent one standard deviation; n=3) 
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Table 6.5: Nicotine release rate from Stonewall as a function of donor media flow rate and 

media temperature 

 

Donor 

media 

flow rate 

(mL/min) 

Media 

temperature 

(°C) 

N 

Release Rate** (mg/min) 

Statistical 

Test 
Statistical Results 

Mean SD %RSD 

1.66 37 3 0.016* 0.001 2.85 

Equal 

variance  

t-test at 

α=0.05 

*t(4) =3.68; 

p-value=0.0213; 

Significant 
$t(4)=1.87; 

p-value=0.1353; 

Not significant 
#t(4)=5.01; 

p-value=0.0074 

Significant 

16 37 3 0.032*$# 0.008 23.37 

16 45 3 0.044$ 0.007 16.91 

16^ 37^ 3 0.087# 0.017 19.88 

** The rate was calculated from the linear portion of the release profile from 1 to 60 min 
^ Stonewall was crushed in a mortar and pestle to a uniform particle size for in vitro release and 

permeation studies. The rate was calculated from the linear portion of the release profile from 1 to 10 

min 
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6.3.3 RELATIONSHIP BETWEEN NICOTINE RELEASE AND PERMEATION RATE 

 

 

 A significant increase in the permeation rate of nicotine from Stonewall in the BTA was 

obtained as a function of donor media flow rate (1.66 vs 6 mL/min) and media temperature (37 vs 

45 °C). A similar effect on the nicotine release rate was observed at the same levels of donor media 

flow rates (1.66 vs 6 mL/min) at media temperature of 37 °C. An increase in the permeation of 

nicotine with increasing donor media flow rate was attributed to an increase in the nicotine release 

rate under similar experimental conditions (Section 6.3.2). The increase in nicotine release rate 

might increase the nicotine gradient across the BTA chambers which could lead to a faster 

permeation rate. For the confirmation of this, the nicotine permeation rate (mg/min) was related to 

the nicotine release rate (mg/min) obtained at donor media flow rate and media temperature 

conditions as presented in Figure 6.6. The nicotine release and permeation rate for Stonewall in 

the BTA showed a significant linear relationship (F(1,10) = 115.41, p-value < 0.05, α=0.05, 

R2=0.92). The significant linear relationship between release and permeation rate confirmed that 

the nicotine gradient across the donor and receptor chambers of BTA increased with an increase 

in the release rate, leading to faster permeation of nicotine. In addition, it was concluded that the 

in vitro behavior of Stonewall in the BTA follows Fick’s Law of Diffusion.  
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Figure 6.6: The relationship between nicotine release rate and permeation rate from Stonewall in 

the bidirectional transmucosal apparatus; each point on the graph represents mean value; whereas, 

the line equation was obtained by fitting individual values. (Error bars represent one standard 

deviation)  
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6.4 CONCLUSIONS 

 

 

The present study was carried out in order to study application of the bidirectional transmucosal 

apparatus for predicting the in vivo behavior of Stonewall, a dissolvable compressed tobacco 

product. Stonewall has characteristics that are different from snus, the product that was employed 

for the development and evaluation of the BTA. The donor media flow rate and media temperature 

were selected for optimization of the IVIVR for Stonewall which were found to be relevant 

variables for snus. Both the donor media flow and media temperature showed a significant effect 

on the permeation of nicotine from Stonewall; however, the in vitro nicotine permeation was 

slower than the in vivo nicotine absorption at all conditions studied. Therefore, an optimal IVIVR 

for Stonewall was not obtained as opposed to snus for which reliable clinical data were available. 

Additionally, the in vivo data of Stonewall considered for IVIVR were obtained from outliers of 

the clinical study as only these subjects showed measurable nicotine.  Further, the disintegration 

of compressed tobacco might be considered to be a rate limiting step for nicotine permeation in 

the BTA system as well as absorption in vivo. The present research on Stonewall suggests the need 

for incorporation and adjustment of additional variables and appropriate modification of the BTA 

for better prediction of the in vivo performance in outliers. Variables such as agitation may enhance 

nicotine permeation and optimize prediction of the in vivo performance of Stonewall using the 

BTA. However, the applicability of the prediction of the in vivo behavior in outliers should be 

considered before efforts are made to modify BTA.  The research presented in this chapter 

establishes the potential for prediction of the in vivo behavior of compressed OTPs like Stonewall 

using a biorelevant BTA through IVIVR when reliable clinical data are available. 
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CHAPTER 7 

 

SUMMARY AND GENERAL CONCLUSIONS  

 

 

The role of dissolution/release/permeation in in vitro testing has been expanded from 

traditional quality control application to research and development of pharmaceutical and non-

pharmaceutical products. Biorelevant in vitro testing is needed as an inexpensive resource to 

address questions related to the in vivo performance of products.  Therapeutic and non-therapeutic 

oral transmucosal products (OTPs) are currently evaluated by standard/compendial in vitro 

methods which are not adequate predictors of the in vivo performance of these products.  

Therefore, the goal of the current investigation was to address the limitations of the standard in 

vitro methods employed for the testing of OTPs. This research involved the development and 

validation of a novel biorelevant in vitro system, the bidirectional transmucosal apparatus (BTA), 

for accurate prediction of the in vivo behavior of OTP. To reach this objective, a combination of 

apparatus design, relevant oral cavity physiological variables and in vitro variables were 

investigated. Validation of the in vitro device for its role as an accurate in vivo predictor of OTPs 

was performed using snus (a type of commercial smokeless tobacco) as a product. Snus was 

selected due to the availability of the in vivo data for nicotine to evaluate the predictability of the 

BTA. 
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An HPLC method was developed and validated for the analysis of in vitro samples obtained 

from the research investigation. Particular focus was on testing the selectivity of the HPLC method 

for the analysis of nicotine in the in vitro samples in the presence of tobacco components and snus 

excipients. The analysis was performed using external standards for nicotine and demonstrating 

the selectivity of the method for nicotine analysis by the standard addition method, peak purity 

testing and peak trapping and mass spectrometry identification.  A contribution to the nicotine 

response from a leachable component of the Neoprene O ring was avoided by choosing a more 

selective wavelength range for nicotine. This part of the research provided a strategy for testing 

the selectivity of an analytical method, a critical step for in vitro studies, especially when matched 

matrix is not available.  

 The designing of the in vitro system, the bidirectional transmucosal apparatus (BTA), a 

first approach for the incorporation of biorelevance for OTPs, has been described. The BTA 

allowed simulation of saliva secretion and swallowing rate, bidirectional permeation barriers, 

chewing effect and blood flow rate which may be significant physiological factors that affect drug 

release and permeation from OTPs. This design also allowed the adjustment of the in vitro 

variables (media flow rate, media volume, media temperature) for accurate prediction of the in 

vivo behavior of OTPs. The BTA was validated for apparatus orientation, membrane selection for 

permeation and lack of nicotine adsorption onto the apparatus. The commercially available 

modified USP IV flow through apparatus and the vertical diffusion cell commonly used for semi-

solid and transdermal products were employed to test the suitability of the BTA for OTPs by direct 

comparison. The BTA was selected for further testing of its biorelevancy for snus despite of a lack 

of optimal IVIVR (IVIVR slope of unity) on a first attempt with all three apparatuses. The selection 
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of the BTA was based on its greater number of possibilities for simulation and adjustment of 

variables for optimization of IVIVR which were not feasible with the USP IV and VDC. 

The novel BTA was further explored to study the effect of oral cavity physiological and in 

vitro variables on nicotine release and permeation. This was crucial to identify relevant parameter that 

would allow accurate prediction of the in vivo behavior of snus. Pre-screening of all possible variables 

indicated saliva secretion and swallowing rate (SSSR), media temperature, receptor dead volume and 

agitation as critical parameters that can be optimized to obtain in vitro nicotine profiles as a surrogate 

for the in vivo behavior of snus. However, only SSSR and media temperature was further employed 

because of the lack of physiological relevance with dead volume and experimental issues related to 

agitation because of the apparatus design. The effect of SSSR and media temperature on nicotine 

permeation could be explained mechanistically by diffusion theory.  The optimal in vitro levels of 

SSSR and media temperature determined by multifactorial experimental design were 0.55 mL/min and 

43 °C. These levels successfully provided comparable in vitro and in vivo profiles as indicated by an 

IVIVR slope of 0.92. The results of this part of the research provided good evidence for a biorelevant 

device through combining apparatus design with carefully selected variables. The BTA proved to be a 

valid predictor for snus. 

 In an attempt to test the broad applicability of the BTA device for other OTPs, Stonewall, 

a dissolvable compressed tobacco that behaved completely differently than snus in vivo, was 

tested. Though an optimized IVIVR for Stonewall was not obtained with the BTA device, results 

of this investigation indicated the possibility of having comparable in vitro and in vivo profiles of 

Stonewall by adjusting in vitro variables. The lack of a good IVIVR was attributed to the lack of 

reliable clinical data for Stonewall. The clinical data of Stonewall were not reliable since only 3 

out of 10 subjects showed measurable nicotine levels which may be either due to an inappropriate 

study or inconsistent in vivo behavior of Stonewall. However, if reliable clinical data were 
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available and optimal IVIVR is not obtained, an appropriate modification of the apparatus to 

incorporate agitation and include an assembly to hold the Stonewall tablet in order to provide the 

required hydrodynamics for accurate prediction could be considered.  

The novel BTA device offers a superior platform for the evaluation of OTPs. The 

incorporation of simulated chewing, mixing of the media within the chambers, an assembly to hold 

in place a tablet type of OTPs and water jackets for accurate temperature maintenance are some 

options that can be explored to broaden the applicability of the BTA. The BTA system provides a 

foundation for building an in vitro device capable of incorporating modifications for all types of 

OTPs. Automation of the BTA can be carried out to facilitate ease of operation and to provide 

more reproducible results. Application of the BTA for setting clinically relevant specifications and 

prediction of the in vivo performance of bioadhesive OTPs and orally disintegrating OTPs should 

be further explored.  The evaluation of BTA as a discriminatory tool for OTPs of different drug 

strengths or drug release mechanisms is also suggested. 

In conclusion, the current research shows the potential for use of the novel bidirectional 

transmucosal in vitro device for the development of OTPs. The device is also promising as an 

accurate in vivo predictor for quality control and research of OTPs.  It is the expectation that the 

novel BTA device will be investigated for further advancement and improvement in broadening 

its applicability for different OTPs. The bidirectional transmucosal apparatus is potentially 

applicable to the development and regulation of pharmaceutical OTPs as well as tobacco oral 

transmucosal products that have been studied here. 
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Table A1: Peak areas for nicotine in external standards prepared in HBSS (Method 

validation_Linearity and LOQ) 

 

Nominal Nicotine Conc. (μg/mL) 1 2 3 4 5 Mean 

0.5 7652 7783 7299 8007 7740 7696 

1 15910 16150 16139 16717 15189 16021 

2 34931 35443 34117 34217 34857 34713 

4 69541 69124 67668 68601 69918 68970 

8 142856 139237 142109 141045 140928 141235 

16 283954 281943 282226 285911 287112 284229 

32 576884 575243 574751 576241 576394 575903 

 

 

 

 

 

 

 

Table A2: Calculated concentrations for nicotine in external standards prepared in HBSS buffer 

(Method validation_Linearity and LOQ) 

 

Nominal 

Nicotine 

Conc. 

(μg/mL) 

1 2 3 4 5 Mean SD %RSD %DFN 
% 

Recovery 

0.5 0.51 0.52 0.49 0.53 0.52 0.52 0.01 2.78 3.20 103.20 

1 0.97 0.99 0.99 1.02 0.93 0.98 0.03 3.14 -2.02 97.98 

2 2.03 2.06 1.99 1.99 2.03 2.02 0.03 1.51 1.06 101.06 

4 3.96 3.94 3.86 3.91 3.98 3.93 0.05 1.24 -1.75 98.25 

8 8.05 7.84 8.00 7.95 7.94 7.96 0.08 0.96 -0.55 99.45 

16 15.91 15.80 15.81 16.02 16.08 15.92 0.13 0.79 -0.48 99.52 

32 32.23 32.14 32.11 32.19 32.20 32.17 0.05 0.15 0.54 100.54 
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Table A3: Nicotine concentration at all QC levels for HPLC method validation (Intraday accuracy 

and precision) 

 

Nominal 

Nicotine 

Conc. 

(μg/mL) 

1 2 3 4 5 6 Mean SD %RSD 
% 

Recovery 

1.5 1.44 1.55 1.52 1.59 1.54 1.53 1.53 0.05 3.26 101.80 

5 4.82 5.02 5.00 4.77 4.98 4.96 4.93 0.11 2.15 98.50 

28 28.11 27.92 27.93 27.89 27.92 27.89 27.94 0.08 0.29 99.80 

64 (25x 
dilution) 

62.33 65.38 62.76 64.69 62.18 65.36 63.78 1.52 2.39 99.66 

64 (10x 

dilution) 
63.98 64.58 61.96 64.39 63.26 62.82 63.50 1.01 1.59 99.21 
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Table A4: Nicotine concentration at all QC levels for HPLC method validation (Interday accuracy 

and precision) 

 

Nominal 

Nicotine 

Conc. 

(μg/mL) 

1.5 5 28 

64 

(25x 

dilution) 

64 

(10x dilution) 

Day1 

1 1.44 4.82 28.11 62.33 63.98 

2 1.55 5.02 27.92 65.38 64.58 

3 1.52 5.00 27.93 62.76 61.96 

4 1.59 4.77 27.89 64.69 64.39 

5 1.54 4.98 27.92 62.18 63.26 

6 1.53 4.96 27.89 65.36 62.82 

Day2 

1 1.52 4.71 29.38 64.80 62.58 

2 1.53 4.77 29.66 64.65 62.19 

3 1.50 4.834 29.53 62.18 62.32 

Day3 

1 1.51 4.86 28.32 65.67 63.58 

2 1.52 4.74 28.35 62.75 64.42 

3 1.64 4.76 28.27 62.51 63.75 

      

Mean 1.53 4.85 28.43 63.77 63.32 

SD 0.05 0.11 0.68 1.42 0.93 

%RSD 3.18 2.30 2.40 2.23 1.47 

% Recovery 102.13 97.04 101.54 99.64 98.94 
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Table A5: System suitability parameters for nicotine 

 

Parameter 1 2 3 4 5 Mean SD %RSD 

Nicotine Standard 

Resolution 11.7 11.8 11.7 11.7 9.8 11.3 0.9 7.8 

Tailing factor 1.8 1.8 2.3 1.2 1.5 1.7 0.4 25.1 

Theoretical plates 5849.0 5854.6 5849.0 5846.2 5846.2 5849.0 3.5 0.1 

Retention time (min) 4.15 4.15 4.15 4.15 4.15 4.15 0.001 0.030 

Nicotine in vitro sample 

Resolution 4.6 5.4 5.4 4.9 4.4 4.9 0.5 9.2 

Tailing factor 1.4 1.4 1.3 2.0 1.3 1.5 0.3 18.8 

Theoretical plates 4795.7 6509.6 6497.8 4765.1 4762.9 5466.2 947.2 17.3 

Retention time (min) 4.38 4.38 4.37 4.37 4.37 4.37 0.01 0.14 

 

 

Table A6: Short term stability data for nicotine in HBSS buffer 

 

Quality 

Control 
 

Conc

. at 

zero 

day 

Conc. 

after 2 

month

s 

Concentration at zero 

day 
Concentration after 2 months 

Mea

n 
SD %RSD 

Mea

n 
SD %RSD 

% 

Recover

y 

LQC  

(1.5 

μg/mL) 

1 1.61 1.55 

1.62 0.02 1.33 1.53 0.04 2.61 94.13 

2 1.65 1.51 

3 1.62 1.55 

4 1.59 1.50 

5 1.65 1.59 

6 1.62 1.48 

HQC  

(28 

μg/mL) 

1 27.99 27.92 

27.92 0.12 0.44 28.09 0.16 0.57 100.63 

2 27.76 27.86 

3 27.77 28.15 

4 27.93 28.19 

5 28.01 28.24 

6 28.03 28.19 
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Table A7: Freeze-thaw stability data for nicotine in HBSS buffer 

 

 Quality 

Control 
 

Conc. 

at 

zero 

day 

Conc. 

after 

3 

freeze 

thaw 

cycles 

Concentration at zero 

day 

Concentration after 3 freeze thaw 

cycles 

Mean SD %RSD Mean SD %RSD 
% 

Recovery 

LQC  

(1.5 

μg/mL) 

1 1.61 1.55 

1.62 0.02 1.33 1.54 0.06 4.12 95.00 

2 1.65 1.52 

3 1.62 1.66 

4 1.59 1.48 

5 1.65 1.51 

6 1.62 1.54 

HQC  

(28 

μg/mL) 

1 27.99 28.95 

27.92 0.12 0.44 29.13 0.28 0.97 104.34 

2 27.76 28.90 

3 27.77 28.82 

4 27.93 29.52 

5 28.01 29.38 

6 28.03 29.19 
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Table A8: Peak areas for nicotine analysis of the external standards and spiked in vitro donor 

samples of snus 

 

Nicotine external standards 

Nicotine 

concentration 

(μg/mL) 

1 2 3 4 5 Mean SD %RSD 

0.5 8505 8282 8598 8002 8354 8348 229.8 2.8 

1 15420 15342 14716 14286 15606 15074 553.2 3.7 

2 34230 34452 34410 34506 33386 34197 465.0 1.4 

4 68398 70403 68136 68566 68283 68757 933.6 1.4 

8 137863 140936 140110 137897 137050 138771 1660.8 1.2 

16 280444 278840 277126 279095 277488 278599 1333.4 0.5 

32 558558 558690 557697 556238 557485 557734 986.7 0.2 

Spiked donor in vitro sample 

Nicotine 

concentration 

(μg/mL) 

1 2 3 4 5 Mean SD %RSD 

0 110576 110359 110513 110634 110412 110499 113.5 0.1 

1 127216 127030 126655 127073 127079 127011 210.7 0.2 

2 146691 145339 145472 145409 146088 145800 580.9 0.4 

4 178421 177706 177386 176528 175032 177015 1300.1 0.7 

8 245327 247120 245987 247056 247017 246501 806.2 0.3 
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Table A9: Peak areas for nicotine analysis of the external standards and spiked in vitro receptor 

compartment samples for snus 

 

Nicotine external standards 

Nicotine 

concentration 

(μg/mL) 

1 2 3 4 5 Mean SD %RSD 

0.5 8505 8282 8598 8002 8354 8348 229.8 2.8 

1 15420 15342 14716 14286 15606 15074 553.2 3.7 

2 34230 34452 34410 34506 33386 34197 465.0 1.4 

4 68398 70403 68136 68566 68283 68757 933.6 1.4 

8 137863 140936 140110 137897 137050 138771 1660.8 1.2 

16 280444 278840 277126 279095 277488 278599 1333.4 0.5 

32 558558 558690 557697 556238 557485 557734 986.7 0.2 

Spiked receptor in vitro sample 

Nicotine 

concentration 

(μg/mL) 

1 2 3 4 5 Mean SD %RSD 

0 545652 544346 544863 544971 545013 544969 465.8 0.1 

1 562153 560715 561702 562671 560558 561560 911.6 0.2 

2 580736 581048 579745 579330 579601 580092 753.5 0.1 

4 611788 612098 609016 609862 612271 611007 1472.5 0.2 

8 683816 683496 684845 684474 681604 683647 1259.4 0.2 
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Table A10: Peak purity testing on the nicotine standards and in vitro donor and receptor 

compartment  samples for snus by the autothreshold method at 200-300 nm* 

 

 
  Purity Angle*$  Threshold Angle*$ 

  Mean SD %RSD  Mean SD %RSD 

Nicotine 

standard 

(0.5 

µg/mL) 

1 3.502 

3.934 0.599 15.217 

3.871 

4.825 0.942 19.528 2 3.682 4.849 

3 4.617 5.755 

Nicotine 

standard 

(32 

µg/mL) 

1 0.112 

0.119 0.006 5.112 

0.263 

0.290 0.028 9.699 2 0.122 0.287 

3 0.123 0.319 

Receptor 

1 sample 

at 60 min 

1 1.211 

1.393 0.523 37.566 

0.402 

0.354 0.043 12.094 2 1.983 0.342 

3 0.985 0.319 

Receptor 

2 sample 

at 60 min 

1 1.467 

1.267 0.243 19.161 

0.347 

0.389 0.054 13.842 2 0.997 0.450 

3 1.338 0.371 

Donor 

sample at 

60 min 

1 1.173 

1.120 0.062 5.516 

0.473 

0.393 0.079 19.964 2 1.052 0.391 

3 1.134 0.316 

* Peak purity analysis was performed at the wavelength range of 200-300 nm 
$ Purity angle if less than threshold angle indicates pure peak (i.e. absence of coeluant) 
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Table A11: Peak purity testing on the nicotine standards and in vitro donor and receptor samples 

for snus by the autothreshold method at 250-270 nm* 

 

 
  Purity Angle*$  Threshold Angle*$ 

  Mean SD %RSD  Mean SD %RSD 

Nicotine 

standard 

(0.5 

µg/mL) 

1 1.780 

2.386 0.655 27.461 

2.703 

2.989 0.256 8.571 2 2.296 3.197 

3 3.081 3.068 

Nicotine 

standard 

(32 

µg/mL) 

1 0.066 

0.063 0.003 4.824 

0.232 

0.252 0.022 8.888 2 0.064 0.247 

3 0.060 0.276 

Receptor 

1 sample 

at 60 min 

1 0.258 

0.244 0.013 5.131 

0.321 

0.290 0.028 9.766 2 0.235 0.282 

3 0.238 0.266 

Receptor 

2 sample 

at 60 min 

1 0.211 

0.253 0.041 16.220 

0.282 

0.315 0.038 11.905 2 0.293 0.356 

3 0.255 0.308 

Donor 

sample at 

60 min 

1 0.339 

0.303 0.044 14.479 

0.357 

0.315 0.045 14.198 2 0.315 0.321 

3 0.254 0.268 

* Peak purity analysis was performed at the wavelength range of 250-270nm 
$ Purity angle if less than threshold angle indicates pure peak (i.e. absence of coeluant) 
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Table A12: Peak purity testing on nicotine standards and in vitro donor and receptor samples for 

snus by the noise+solvent method at 200-300 nm*# 

 

 
  Purity Angle*$  Threshold Angle*$ 

  Mean SD %RSD  Mean SD %RSD 

Nicotine 

standard 

(0.5 

µg/mL) 

1 3.502 

5.629 3.529 62.693 

9.132 

9.665 0.495 5.121 2 3.682 10.11 

3 9.702 9.754 

Nicotine 

standard 

(32 

µg/mL) 

1 0.112 

0.119 0.006 5.112 

5.511 

5.538 0.028 0.507 2 0.122 5.535 

3 0.123 5.567 

Receptor 

1 sample 

at 60 min 

1 1.211 

1.393 0.523 37.566 

5.656 

5.609 0.042 0.754 2 1.983 5.597 

3 0.985 5.574 

Receptor 

2 sample 

at 60 min 

1 1.467 

1.267 0.243 19.161 

5.602 

5.644 0.054 0.955 2 0.997 5.705 

3 1.338 5.626 

Donor 

sample at 

60 min 

1 1.173 

1.120 0.062 5.516 

5.726 

5.646 0.079 1.391 2 1.052 5.644 

3 1.134 5.569 

* Peak purity analysis was performed at the wavelength range of 200-300 nm 
# Solvent angle for lowest nicotine standard (0.5 μg/mL) at 200-300 nm was 5.436 
$ Purity angle if less than threshold angle indicates pure peak (i.e. absence of coeluant) 
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Table A13: Peak purity testing on nicotine standards and in vitro donor and receptor samples for 

snus by the noise+solvent method at 250-270 nm*# 

 

 
  Purity Angle*$  Threshold Angle*$ 

  Mean SD %RSD  Mean SD %RSD 

Nicotine 

standard 

(0.5 

µg/mL) 

1 1.78 

2.386 0.655 27.461 

5.404 

5.690 0.256 4.503 2 2.296 5.898 

3 3.081 5.769 

Nicotine 

standard 

(32 

µg/mL) 

1 0.066 

0.063 0.003 4.824 

2.927 

2.947 0.022 0.756 2 0.064 2.943 

3 0.06 2.971 

Receptor 

1 sample 

at 60 min 

1 0.258 

0.244 0.013 5.131 

3.019 

2.988 0.028 0.947 2 0.235 2.98 

3 0.238 2.964 

Receptor 

2 sample 

at 60 min 

1 0.211 

0.253 0.041 16.220 

2.98 

3.014 0.038 1.264 2 0.293 3.055 

3 0.255 3.006 

Donor 

sample at 

60 min 

1 0.339 

0.303 0.044 14.479 

3.055 

3.013 0.045 1.503 2 0.315 3.019 

3 0.254 2.965 

* Peak purity analysis was performed at the wavelength range of 250-270 nm 
# Solvent angle for lowest nicotine standard (0.5 μg/mL) at 250-270 nm was 2.881 
$ Purity angle if less than threshold angle indicates pure peak (i.e. absence of coeluant) 
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DATA ON VALIDATION OF THE NOVEL BIDIRECTIONAL TRANSMUCOSAL 

APPARATUS DESIGNED FOR OTPs REPORTED IN CHAPTER 3  
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Table B1: Amount of nicotine permeated (mg) from snus in the bottom and top receptor chambers of the BTA in the horizontal 

orientation 

 

Time 

(min) 

Bottom Receptor Top Receptor Mean Ratio 

(Bottom/Top) 1 2 3 Mean SD %RSD 1 2 3 Mean SD %RSD 

0 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 - - 

10 0.04 0.02 0.08 0.05 0.03 60.71 0.02 0.02 0.03 0.02 0.00 23.13 2.25 

20 0.06 0.04 0.08 0.06 0.02 36.12 0.02 0.03 0.03 0.03 0.00 15.57 2.19 

30 0.06 0.05 0.08 0.06 0.02 26.63 0.02 0.03 0.03 0.03 0.01 18.44 2.14 

45 0.08 0.07 0.08 0.08 0.01 7.51 0.03 0.04 0.04 0.04 0.01 15.05 2.20 

60 0.09 0.10 0.09 0.09 0.01 7.65 0.03 0.05 0.04 0.04 0.01 22.47 2.19 

Average of the Mean Ratio 2.19 

 

 

Table B2: Amount of nicotine permeated (mg) from snus in the bottom and top receptor compartments of the BTA in the vertical 

orientation 

 

Time 

(min) 
Bottom Receptor Top Receptor 

Mean Ratio 

(Bottom/Top) 

 1 2 3 Mean SD %RSD 1 2 3 Mean SD %RSD  

0 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 - - 

10 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 173.21 0.00 

20 0.00 0.01 0.01 0.01 0.00 31.72 0.00 0.01 0.01 0.00 0.00 86.87 1.32 

30 0.01 0.01 0.01 0.01 0.01 46.88 0.00 0.01 0.01 0.01 0.01 86.73 1.46 

45 0.01 0.02 0.03 0.02 0.01 55.51 0.00 0.02 0.02 0.01 0.01 60.16 1.27 

60 0.01 0.03 0.04 0.03 0.01 43.89 0.01 0.03 0.03 0.02 0.01 58.62 1.38 

Average of the Mean Ratio 1.08 
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Table B3: Amount of nicotine permeated/released (mg) from snus [Polyethersulfone membrane 

(3 nm); Vertical diffusion cell] 

 

Time (min) 1 2 3 4 5 Mean SD %RSD 

0 0 0 0 0 0 0 0 - 

10 0 0 0 0 0 0 0 - 

20 0 0.016 0.016 0.000 0.017 0.010 0.009 91.357 

30 0.015 0.019 0.018 0.000 0.023 0.015 0.009 58.814 

45 0.018 0.020 0.014 0.000 0.027 0.016 0.010 63.713 

60 0.017 0.019 0.018 0.000 0.030 0.017 0.011 63.876 

Nicotine release 

at 60 min (mg) 
4.763 5.144 4.439 4.470 4.569 4.677 0.290 6.206 

Adsorption of 

nicotine on 

membrane (mg) 

0.081 0.115 0.077 0.083 0.096 0.090 0.015 16.817 

 

 

 

Table B4: Amount of nicotine permeated/released (mg) from snus [Polyethersulfone membrane 

(3 nm); Bidirectional transmucosal apparatus] 

 

Time (min) 1 2 3 Mean SD %RSD 

0 0 0 0 0 0 - 

10 0.000 0.004 0.000 0.001 0.002 173.205 

20 0.004 0.011 0.014 0.010 0.005 54.064 

30 0.005 0.024 0.026 0.018 0.011 62.518 

45 0.011 0.040 0.044 0.032 0.018 56.640 

60 0.020 0.058 0.062 0.046 0.023 49.641 

Nicotine release at 60 min (mg) 6.648 5.225 6.008 5.960 0.712 11.952 

Adsorption of nicotine on membrane 

of receptor 1 (mg) 
0.059 0.094 0.061 0.071 0.020 27.792 

Adsorption of nicotine on membrane 

of receptor 1 (mg) 
0.058 0.110 0.088 0.085 0.026 30.864 
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Table B5: Amount of nicotine permeated/released (mg) from snus [Polyethersulfone membrane 

(30 nm); Bidirectional transmucosal apparatus] 

 

Time (min) 1 2 3 Mean SD %RSD 

0       

10       

20       

30       

45       

60       

Nicotine release at 60 min (mg) 5.129 6.625 4.804 5.519 0.971 17.599 

Adsorption of nicotine on membrane 

of receptor 1 (mg) 
0.163 0.045 0.049 0.085 0.067 78.236 

Adsorption of nicotine on membrane 

of receptor 1 (mg) 
0.246 0.090 0.132 0.156 0.081 51.693 

 

Table B6: Amount of nicotine permeated/released (mg) from snus [Regenerated cellulose 

membrane (2.5 nm); Vertical diffusion cell] 

 

Time (min) 1 2 3 4 5 Mean SD %RSD 

0 0 0 0 0 0 0 0 - 

2.5 0.016 0.000 0.000 0.000 0.000 0.003 0.007 223.607 

5 0.058 0.023 0.033 0.013 0.015 0.028 0.018 64.426 

7.5 0.104 0.056 0.101 0.044 0.044 0.070 0.030 43.541 

10 0.169 0.105 0.152 0.080 0.079 0.117 0.041 35.358 

15 0.290 0.212 0.271 0.154 0.160 0.217 0.062 28.624 

20 0.376 0.313 0.366 0.234 0.244 0.307 0.066 21.628 

25 0.480 0.406 0.447 0.297 0.299 0.386 0.084 21.900 

30 0.578 0.506 0.544 0.372 0.381 0.476 0.094 19.840 

45 0.864 0.797 0.792 0.607 0.607 0.733 0.119 16.213 

60 1.155 1.071 1.030 0.803 0.830 0.978 0.155 15.803 

Nicotine release 

at 60 min (mg) 
4.550 4.050 4.152 3.226 3.522 3.900 0.526 13.476 

Adsorption of 

nicotine on 

membrane (mg) 

0.003 0.007 0.004 0.002 0.003 0.004 0.002 50.582 
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Table B7: Amount of nicotine permeated/released (mg) from snus [Regenerated cellulose 

membrane (2.5 nm); Bidirectional transmucosal apparatus] 

 

Time (min) 1 2 3 4 5 Mean SD %RSD 

0 0 0 0 0 0 0 0 - 

2.5 0.018 0.006 0.034 0.006 0.015 0.016 0.012 73.043 

5 0.030 0.017 0.040 0.017 0.029 0.026 0.010 37.204 

7.5 0.042 0.026 0.043 0.021 0.033 0.033 0.010 29.119 

10 0.053 0.038 0.050 0.027 0.042 0.042 0.010 24.771 

15 0.094 0.077 0.071 0.041 0.095 0.076 0.022 28.813 

20 0.180 0.178 0.112 0.076 0.260 0.161 0.071 43.846 

25 0.262 0.324 0.192 0.147 0.411 0.267 0.105 39.149 

30 0.369 0.440 0.319 0.270 0.553 0.390 0.111 28.352 

45 0.679 0.793 0.590 0.583 0.948 0.719 0.154 21.418 

60 0.912 1.087 0.858 0.877 1.188 0.984 0.145 14.767 

Nicotine release 

at 60 min (mg) 
5.524 5.870 5.784 5.952 6.168 5.860 0.235 4.016 

Adsorption of 

nicotine on 

membrane of 

receptor 1 (mg) 

0.000 0.004 0.004 0.005 0.000 0.003 0.002 92.196 

Adsorption of 

nicotine on 

membrane of 

receptor 3 (mg) 

0.006 0.004 0.004 0.004 0.000 0.004 0.002 59.603 
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Table B8: Amount of nicotine adsorbed (mg) on the bidirectional transmucosal apparatus  

 

Time 

(min) 
1 2 3 Mean SD %RSD %DFN* 

0 0.983 0.978 0.988 0.983 0.005 0.553 0.000 

10 0.956 0.959 0.970 0.962 0.007 0.735 -2.162 

20 0.954 0.956 0.964 0.958 0.005 0.536 -2.527 

30 0.951 0.951 0.961 0.954 0.006 0.645 -2.905 

45 0.945 0.960 0.954 0.953 0.007 0.770 -3.036 

50 0.944 0.947 0.957 0.949 0.007 0.704 -3.413 

60 0.940 0.946 0.957 0.948 0.009 0.910 -3.582 

* % Deviation from nominal (%DFN) was calculated from the mean nominal value of nicotine 

at zero min 

 

Table B9: Amount of nicotine released (mg) from snus in the modified USP IV flow through 

apparatus 

 

Time (min) 1 2 3 4 5 Mean SD %RSD 

0 0 0 0 0 0 0 0 - 

2.5 0.22 0.33 0.57 0.52 0.34 0.40 0.15 36.73 

5 0.92 0.86 0.59 0.83 0.47 0.73 0.20 26.69 

7.5 1.70 1.32 0.79 1.33 0.71 1.17 0.41 35.28 

10 2.47 1.82 1.17 1.83 1.01 1.66 0.59 35.34 

15 3.32 2.63 2.11 2.78 1.76 2.52 0.60 23.95 

20 3.92 3.22 3.24 3.92 2.32 3.32 0.66 19.88 

25 4.33 4.05 3.29 3.94 2.89 3.70 0.59 16.02 

30 4.85 4.30 3.78 4.25 3.38 4.11 0.56 13.60 

45 5.45 5.23 4.74 5.34 4.52 5.06 0.40 7.95 

60 5.97 5.86 5.30 6.00 5.36 5.70 0.34 5.99 

Release rate 

(mg/min)* 
0.213 0.166 0.159 0.196 0.119 0.171 0.036 21.316 

Lag time (min)** 0.18 0.00 1.11 0.49 0.75 0.51 0.44 87.44 

* Release rate was calculated from 2.5 to 20 min of the nicotine release-time profile because of 

non-linearity after 20 min 
** Lag time was calculated from 2.5 to 30 min of the nicotine permeation-time profile 
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Table B10: Amount of nicotine permeated (mg) from snus in the vertical diffusion cell 

 

Time (min) 1 2 3 4 5 Mean SD %RSD 

0 0 0 0 0 0 0 0 - 

2.5 0.02 0.00 0.00 0.00 0.00 0.00 0.01 223.61 

5 0.06 0.02 0.03 0.01 0.01 0.03 0.02 64.43 

7.5 0.10 0.06 0.10 0.04 0.04 0.07 0.03 43.54 

10 0.17 0.11 0.15 0.08 0.08 0.12 0.04 35.36 

15 0.29 0.21 0.27 0.15 0.16 0.22 0.06 28.62 

20 0.38 0.31 0.37 0.23 0.24 0.31 0.07 21.63 

25 0.48 0.41 0.45 0.30 0.30 0.39 0.08 21.90 

30 0.58 0.51 0.54 0.37 0.38 0.48 0.09 19.84 

45 0.86 0.80 0.79 0.61 0.61 0.73 0.12 16.21 

60 1.16 1.07 1.03 0.80 0.83 0.98 0.15 15.80 

Permeation rate 

(mg/min)* 
0.021 0.020 0.020 0.015 0.015 0.018 0.003 17.245 

Lag time (min)** 2.03 4.30 2.53 4.28 4.28 3.49 1.12 32.01 

* Permeation rate was calculated from 5 to 30 min of the nicotine permeation-time profile 

because of lag time of 3.5 min and the removal of snus after 30 min in vivo for comparison of 

in vitro and in vivo rates 
** Lag time was calculated from 5 to 30 min of the nicotine permeation-time profile 
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Table B11: Amount of nicotine permeated (mg) from snus in the bidirectional transmucosal 

apparatus 

 

Time (min) 1 2 3 4 5 Mean SD %RSD 

0 0 0 0 0 0 0 0 - 

2.5 0.02 0.01 0.03 0.01 0.02 0.02 0.01 73.04 

5 0.03 0.02 0.04 0.02 0.03 0.03 0.01 37.20 

7.5 0.04 0.03 0.04 0.02 0.03 0.03 0.01 29.12 

10 0.05 0.04 0.05 0.03 0.04 0.04 0.01 24.77 

15 0.09 0.08 0.07 0.04 0.10 0.08 0.02 28.81 

20 0.18 0.18 0.11 0.08 0.26 0.16 0.07 43.85 

25 0.26 0.32 0.19 0.15 0.41 0.27 0.10 39.15 

30 0.37 0.44 0.32 0.27 0.55 0.39 0.11 28.35 

45 0.68 0.79 0.59 0.58 0.95 0.72 0.15 21.42 

60 0.91 1.09 0.86 0.88 1.19 0.98 0.15 14.77 

Permeation rate 

(mg/min)* 
0.018 0.025 0.017 0.015 0.031 0.021 0.006 30.754 

Lag time (min)** 10.02 12.16 11.95 13.70 11.70 11.91 1.31 11.02 

* Permeation rate was calculated from 15 to 30 min of nicotine permeation-time profile because 

of the lag time of 11.9 min and the removal of snus after 30 min in vivo  

** Lag time was calculated from 15 to 30 min of the nicotine permeation-time profile 
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Table B12: Average plasma nicotine levels (ng/mL) for snus (Pouch 1.0g; Nicotine 8 mg) obtained from a clinical study on 18 smokeless 

tobacco users conducted by the Center of Research and Technology, Altria* 

Time 

(min) 
N 

Mean 

Plasma 

Conc. 

(ng/mL) 

SD 
CV 

(%) 
SEM Median Minimum Maximum 

Amount 

of 

nicotine 

absorbed 

(%)** 

Amount 

of 

nicotine 

absorbed 

(mg)** 

0 18 0 0 0 0 0 0 -   

2.5 18 0 0 . 0 0 0 0 0 0 

5 18 0.133 0.565 424.264 0.133 0 0 2.398 0 0 

7.5 18 1.667 1.646 98.748 0.388 2.139 0 4.942 2.54 0.20 

10 18 2.752 1.578 57.359 0.372 2.969 0 5.908 4.25 0.34 

15 18 4.148 1.746 42.086 0.411 4.11 0 7.560 6.59 0.53 

20 17 5.476 2.484 45.358 0.602 4.783 0 10.183 8.93 0.71 

25 18 6.447 2.542 39.427 0.599 5.756 2.340 11.703 10.81 0.86 

30 18 7.51 2.914 38.802 0.687 6.845 2.846 12.940 12.89 1.03 

45 18 7.775 2.37 30.479 0.559 7.137 3.740 12.758 14.90 1.19 

60 18 7.57 2.956 39.049 0.697 6.591 3.884 14.737 16.21 1.30 

90 18 6.445 2.888 44.809 0.681 5.873 2.924 13.499 17.46 1.40 

120 18 4.895 2.086 42.619 0.492 4.162 2.175 9.287 17.51 1.40 

180 18 3.303 1.879 56.88 0.443 2.913 0 6.649 18.57 1.49 

240 18 1.873 1.759 93.901 0.415 2.045 0 4.606 18.59 1.49 

300 18 0.746 1.44 192.871 0.339 0 0 3.629 18.00 1.44 

600 18 0 0 . 0 0 0 0   

720 18 0 0 . 0 0 0 0   

* Values below limit of quanitification of 2 ng/mL were reported as zero; ** Amount of nicotine absorbed by Wagner Nelson Modeling (Refer Table B15) 
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Table B13: Method for calculation of the amount of nicotine permeated and released from snus in the BTA**, VDC and USP IV 

respectively 

  

 

Time 

(min) 

(A) 

Dilution 

corrected 

concentratio

n (mcg/mL) 

(B)* 

Amount of 

nicotine  in the 

volume of 

receptor or 

donor media (V 

mL)*** 

(mcg) 

[BxV] 

(C) 

Amount of nicotine 

in the volume of 

receptor or donor 

media sampled (1 

mL) 

[Cx1/V] 

(mcg) 

(D) 

Amount of nicotine lost 

at each time point due 

to sampling  

(mcg) 

(E) 

Cumulative 

amount of 

nicotine 

permeated or 

released 

[C+E] 

(mcg) 

(F) 

Cumulative 

amount of 

nicotine 

permeated or 

released 

[H/1000] 

(mg) 

(G)$ 

1 0 0 0 0 0 0 0 

2 A2 B2 C2=B2xV D2=(C2x1)/V E2=0 F2=C2+E2 G2=F2/1000 

3 A3 B3 C3=B3xV D3=(C3x1)/V E3=Sum of D1 to D2 F3=C3+E3 G3=F3/1000 

4 A4 B4 C4=B4xV D4=(C4x1)/V E4=Sum of D1 to D3 F4=C4+E4 G4=F4/1000 

5 A5 B5 C5=B5xV D5=(C5x1)/V E5=Sum of D1 to D4 F5=C5+E5 G5=F5/1000 

6 A6 B6 C6=B6xV D6=(C6x1)/V E6=Sum of D1 to D5 F6=C6+E6 G6=F6/1000 

7 A7 B7 C7=B7xV D7=(C7x1)/V E7=Sum of D1 to D6 F7=C7+E7 G7=F7/1000 

8 A8 B8 C8=B8xV D8=(C8x1)/V E8=Sum of D1 to D7 F8=C8+E8 G8=F8/1000 

9 A9 B9 C9=B9xV D9=(C9x1)/V E9=Sum of D1 to D8 F9=C9+E9 G9=F9/1000 

10 A10 B10 C10=C10xV D10=(D10x1)/V E10=Sum of D1 to D9 F10=C10+E10 G10=G10/1000 
* Dilution corrected concentration = Concentration (mcg/mL) x Dilution factor 

** Amount permeated in both receptors calculated by the above method are added to obtain the total amount of nicotine permeated in case of BTA 

*** V = 25 mL for VDC; 20 mL for BTA (Receptor media volume) & V = 30 mL for USP IV (Donor media volume) 

$ Nicotine release was measured for USP IV and permeation was measured for VDC and BTA 
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Table B14: Wagner Nelson Modeling and deconvolution of plasma drug concentrations to drug absorption time profiles for snus 

  

Time 

(min) 

(A) 

Mean 

Plasma 

Conc. 

[Cpt] 

(ng/mL) 

(B) 

AUC0-t 

[(ng/mL)*min] 

(C) 

Cumulative 

AUC0-t 

[(ng/mL)*min] 

(D) 

[Ke ⨯ 

Cumulative 

AUC0-t] 

(ng/mL) 

(E)* 

[Cpt+(Ke ⨯ 

Cumulative AUC0-t)] 

(ng/mL) 

(F) 

% of total absorbed 

[Cpt+(Ke ⨯ Cumulative 

AUC0-t)]/[Ke ⨯ AUC0-∞] 

(G)** 

Amount of 

nicotine 

absorbed 

(%) 

G ⨯ f 

(H)*** 

A0 B0=Cp0 C0=0 D0=0 E0=0 F0=0 G0=0 H0=0 

A1 B1=Cp1 C1=(A1-A0)(B1+B0)/2 D1=D0+C1 E1=Ke⨯D1 F1=B1+E1 G1=F1/( Ke⨯Z) H1=G1⨯f 

A2 B2=Cp2 C2=(A2-A1)(B2+B1)/2 D2=D1+C2 E2=Ke⨯D2 F2=B2+E2 G2=F2/( Ke⨯Z) H2=G2⨯f 

A3 B3=Cp3 C3=(A3-A2)(B3+B2)/2 D3=D2+C3 E3=Ke⨯D3 F3=B3+E3 G3=F3/( Ke⨯Z) H3=G3⨯f 

A4 B4=Cp4 C4=(A4-A3)(B4+B3)/2 D4=D3+C4 E4=Ke⨯D4 F4=B4+E4 G4=F4/( Ke⨯Z) H4=G4⨯f 

A5 B5=Cp5 C5=(A5-A4)(B5+B4)/2 D5=D4+C5 E5=Ke⨯D5 F5=B5+E5 G5=F5/( Ke⨯Z) H5=G5⨯f 

A6 B6=Cp6 C6=(A6-A5)(B6+B5)/2 D6=D5+C6 E6=Ke⨯D6 F6=B6+E6 G6=F6/( Ke⨯Z) H6=G6⨯f 

A7 B7=Cp7 C7=(A7-A6)(B7+B6)/2 D7=D6+C7 E7=Ke⨯D7 F7=B7+E7 G7=F7/( Ke⨯Z) H7=G7⨯f 

A8 B8=Cp8 C8=(A8-A7)(B8+B7)/2 D8=D7+C8 E8=Ke⨯D8 F8=B8+E8 G8=F8/( Ke⨯Z) H8=G8⨯f 

A9 B9=Cp9 C9=(A9-A8)(B9+B8)/2 D9=D8+C9 E9=Ke⨯D9 F9=B9+E9 G9=F9/( Ke⨯Z) H9=G9⨯f 

A10 B10=Cp10 C10=(A10-A9)(B10+B9)/2 D10=D9+C10 E10=Ke⨯D10 F10=B10+E10 G10=F10/( Ke⨯Z) H10=G10⨯f 
* Ke = The elimination rate constant is obtained from the slope of terminal phase of log plasma concentration time profile for the drug product 
** AUC0-∞ = Z = (sum of C0 to C10) + (B10/Ke) 
*** “f” refers to the absolute availability of drug based on IV study 
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Table B15: Deconvolution of the plasma nicotine concentration to nicotine absorption time profiles using Wagner Nelson Modeling 

for snus (Pouch 1.0 g, Nicotine 8 mg) (Refer modeling method in Table B14) 

 

Time 

(min) 

(A) 

Mean Plasma 

Conc. 

[Cpt] 

(ng/mL) 

(B) 

AUC0-t 

[(ng/mL)*min] 

(C) 

Cumulative 

AUC0-t 

[(ng/mL)*min] 

(D) 

[Ke ⨯ Cumulative AUC0-t] 

(ng/mL) 

(E) 

[Cpt+(Ke ⨯ Cumulative 

AUC0-t)] 

(ng/mL) 

(F) 

% of total 

absorbed 

[Cpt+(Ke ⨯ 

Cumulative 

AUC0-t)]/[Ke 

⨯ AUC0-∞] 

(G) 

Amount 

of nicotine 

absorbed 

(%) 

G ⨯ f 

(H)* 

Amount 

of nicotine 

absorbed 

(mg) 

(H⨯8)/10

0 

(I)** 

0 0 0 0 0 0 0   

2.5 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 

7.5 1.667 2.08 2.08 0.02 1.69 14.10 2.54 0.20 

10 2.752 5.52 7.61 0.07 2.82 23.60 4.25 0.34 

15 4.148 17.25 24.86 0.23 4.38 36.61 6.59 0.53 

20 5.476 24.06 48.92 0.46 5.93 49.59 8.93 0.71 

25 6.447 29.81 78.73 0.73 7.18 60.03 10.81 0.86 

30 7.51 34.89 113.62 1.06 8.57 71.64 12.89 1.03 

45 7.775 114.64 228.26 2.13 9.90 82.78 14.90 1.19 

60 7.57 115.09 343.34 3.20 10.77 90.04 16.21 1.30 

90 6.445 210.23 553.57 5.16 11.60 97.01 17.46 1.40 

120 4.895 170.10 723.67 6.74 11.64 97.31 17.51 1.40 

180 3.303 245.94 969.61 9.04 12.34 103.16 18.57 1.49 

240 1.873 155.28 1124.89 10.48 12.36 103.30 18.59 1.49 

300 0.746 78.57 1203.46 11.22 11.96 100.00 18.00 1.44 

* f = 0.18 (Absolute bioavailability based on IV study; Refer Section 3.2.7 of Chapter 3); ** “8” refers to the amount of nicotine present in snus 
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APPENDIX C 

 

 

 

 

REPLICATE AND MEAN DATA ON SCREENING OF VARIABLES FOR THE 

OPTIMIZATION OF IVIVR FOR SNUS REPORTED IN CHAPTER 4  
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Figure C1: [A] Vertical Diffusion Cell (VDC) made of glass with a stainless steel clipper 

(http://www.hansonresearch.com/); [B] Donor chamber of the VDC make of PEEK; [C] Details 

on the VDC (http://www.hansonresearch.com/) 

 

 

 

 

 

 

 

Figure C2: [A] The donor chamber of VDC with snus; [B] Side view of the donor chamber of 

VDC; [C] Dimensions of snus; [D] Top view of the donor chamber of VDC 

  

http://www.hansonresearch.com/
http://www.hansonresearch.com/
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Figure C3: The bidirectional transmucosal apparatus for agitation study [A] Top view of the 

apparatus; [B] Side view of the apparatus. 
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Table C1: Dimensions and types of outlet tubing for the simulation of dead volume in receptor chambers of BTA 

Dead Volume of Receptor Chambers (2.67mL) 
Tubing 

type 

Tubing 

Diameter 

(inch) 

Tubing 

Diameter 

(inch) 

Tubing 

Diameter 

(cm) 

Tubing 

radius 

(cm) 

Length 

(cm) 

Volume 

(cm3) 

Tubing from BTA outlet  to peristaltic pump tubing FEP 1/16 0.063 0.159 0.079 30 0.59 

Peristaltic pump tubing Silicon 3/32 0.094 0.238 0.119 12 0.53 

Peristaltic pump tubing to connector tubing Silicon 1/8 0.125 0.318 0.159 12 0.95 

Connector tubing to reservoir FEP 1/16 0.063 0.159 0.079 30 0.59 

Total Dead Volume (cm3 or mL) 2.67 

Dead Volume of Receptor Chambers (5.15mL) 
Tubing 

type 

Tubing 

Diameter 

(inch) 

Tubing 

Diameter 

(inch) 

Tubing 

Diameter 

(cm) 

Tubing 

radius 

(cm) 

Length 

(cm) 

Volume 

(cm3) 

Tubing from BTA outlet  to peristaltic pump tubing FEP 1/16 0.063 0.159 0.079 79 1.56 

Peristaltic pump tubing Silicon 3/32 0.094 0.238 0.119 12 0.53 

Peristaltic pump tubing to connector tubing Silicon 1/8 0.125 0.318 0.159 19 1.50 

Connector tubing to reservoir FEP 1/16 0.063 0.159 0.079 79 1.56 

Total Dead Volume (cm3 or mL) 5.15 

Dead Volume of Receptor Chambers (10mL) 
Tubing 

type 

Tubing 

Diameter 

(inch) 

Tubing 

Diameter 

(inch) 

Tubing 

Diameter 

(cm) 

Tubing 

radius 

(cm) 

Length 

(cm) 

Volume 

(cm3) 

Tubing from BTA outlet  to peristaltic pump tubing FEP 1/16 0.063 0.159 0.079 93 1.84 

Peristaltic pump tubing Silicon 3/32 0.094 0.238 0.119 12 0.53 

Peristaltic pump tubing to connector tubing Silicon 1/8 0.125 0.318 0.159 73 5.78 

Connector tubing to reservoir FEP 1/16 0.063 0.159 0.079 93 1.84 

Total Dead Volume (cm3 or mL) 9.99 

Dead volume is defined as the volume of tubings that connects the outlet of apparatus to the reservoir 

Volume was calculated by V = π * r2 * L (cm3 or mL) (V is volume, r is tubing radius in cm, L is tubing length in cm) 
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Table C2: Dimensions and types of outlet tubing for the simulation of dead volume in donor chamber of BTA 

Dead Volume of Donor Chamber in all Cases 

(2.67mL) 

Tubing 

type 

Tubing 

Diameter 

(inch) 

Tubing 

Diameter 

(inch) 

Tubing 

Diameter 

(cm) 

Tubing 

radius 

(cm) 

Length 

(cm) 

Volume 

(cm3) 

Tubing from BTA outlet  to cartridge pump tubing FEP 1/16 0.063 0.159 0.079 30 0.59 

Cartridge pump tubing Silicon 1/8 0.125 0.318 0.159 19 1.50 

Cartridge pump tubing to reservoir FEP 1/16 0.063 0.159 0.079 30 0.59 

Total Dead Volume (cm3 or mL) 2.68 

Dead volume is defined as the volume of tubings that connects the outlet of apparatus to the reservoir 

Volume was calculated by V = π * r2 * L (cm3 or mL) (V is volume, r is tubing radius in cm, L is tubing length in cm) 

 

Table C3: Dimensions and type of inlet tubings in the donor and receptors chambers of BTA 

Volume of Inlet Tubing in all Cases 
Tubing 

type 

Tubing 

Diameter 

(inch) 

Tubing 

Diameter 

(inch) 

Tubing 

Diameter 

(cm) 

Tubing 

radius 

(cm) 

Length 

(cm) 

Volume 

(cm3) 

Tubing from the reservoir to BTA inlet FEP 1/16 0.063 0.159 0.079 30 0.59 

Volume was calculated by V = π * r2 * L (cm3 or mL) (V is volume, r is tubing radius in cm, L is tubing length in cm) 
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Table C4: Method for calculation of the amount of nicotine permeated and released from snus in the BTA 

 

Time 

(min) 

(A) 

Dilution 

corrected 

concentratio

n (mcg/mL) 

(B)* 

Amount of 

nicotine  in the 

volume of 

receptor or 

donor media (25 

mL) 

(mcg) 

[Bx25] 

(C) 

Amount of nicotine 

in the volume of 

receptor or donor 

media sampled (1 

mL) 

[Cx1/25] 

(mcg) 

(D) 

Amount of nicotine lost 

at each time point due 

to sampling  

(mcg) 

(E) 

Cumulative 

amount of 

nicotine 

permeated or 

released 

[C+E] 

(mcg) 

(F) 

Cumulative 

amount of 

nicotine 

permeated or 

released 

[H/1000] 

(mg) 

(G)#,$,^ 

1 0 0 0 0 0 0 0 

2 A2 B2 C2=B2x25 D2=(C2x1)/25 E2=0 F2=C2+E2 G2=F2/1000 

3 A3 B3 C3=B3x25 D3=(C3x1)/25 E3=Sum of D1 to D2 F3=C3+E3 G3=F3/1000 

4 A4 B4 C4=B4x25 D4=(C4x1)/25 E4=Sum of D1 to D3 F4=C4+E4 G4=F4/1000 

5 A5 B5 C5=B5x25 D5=(C5x1)/25 E5=Sum of D1 to D4 F5=C5+E5 G5=F5/1000 

6 A6 B6 C6=B6x25 D6=(C6x1)/25 E6=Sum of D1 to D5 F6=C6+E6 G6=F6/1000 

7 A7 B7 C7=B7x25 D7=(C7x1)/25 E7=Sum of D1 to D6 F7=C7+E7 G7=F7/1000 

8 A8 B8 C8=B8x25 D8=(C8x1)/25 E8=Sum of D1 to D7 F8=C8+E8 G8=F8/1000 

9 A9 B9 C9=B9x25 D9=(C9x1)/25 E9=Sum of D1 to D8 F9=C9+E9 G9=F9/1000 

10 A10 B10 C10=C10x25 D10=(D10x1)/25 E10=Sum of D1 to D9 F10=C10+E10 G10=G10/1000 
* Dilution corrected concentration = Concentration (mcg/mL) x Dilution factor 

# Amount permeated in both receptors calculated by the above method are added to obtain the total amount of nicotine permeated 

$ Nicotine release was measured as a function of saliva pH and donor media flow rate and permeation was measured as a function of all variables except saliva 

pH 

^ Nicotine release as a function of saliva pH and donor media flow rate was measured separately (i.e. without flowing media in the receptors of BTA) 
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Table C5: Amount of nicotine released (mg) from snus as a function of saliva pH 6.8(β = 5.5) 

 

Time (min) 1 2 3 Mean SD %RSD 

0 0 0 0 0 0 - 

2.5 0.15 0.05 0.08 0.09 0.05 55.47 

5 0.36 0.15 0.14 0.22 0.13 57.90 

7.5 0.90 0.37 0.30 0.52 0.33 63.16 

10 1.33 0.54 0.59 0.82 0.44 53.87 

15 2.50 1.01 1.27 1.59 0.80 50.02 

20 3.48 1.32 2.04 2.28 1.10 48.42 

25 4.26 2.01 2.90 3.06 1.13 37.07 

30 4.78 2.51 3.47 3.59 1.14 31.74 

45 5.69 3.98 5.08 4.91 0.87 17.65 

60 6.57 4.81 6.29 5.89 0.94 15.98 

Release rate (mg/min) 0.199 0.089 0.140 0.143 0.055 38.451 

Lag time (min) 2.99 3.66 5.16 3.94 1.11 28.16 

 

Table C6: Amount of nicotine released (mg) from snus as a function of saliva pH 7.2(β = 7.0) 

 

Time (min) 1 2 3 Mean SD %RSD 

0 0 0 0 0 0 - 

2.5 0.07 0.11 0.17 0.12 0.05 40.42 

5 0.13 0.42 0.33 0.30 0.15 50.75 

7.5 0.26 1.06 0.75 0.69 0.40 58.19 

10 0.56 1.74 1.23 1.17 0.59 50.62 

15 1.19 2.86 2.11 2.06 0.84 40.69 

20 1.90 3.66 3.03 2.86 0.89 31.18 

25 2.70 4.47 3.90 3.69 0.90 24.43 

30 3.42 5.04 4.54 4.33 0.83 19.10 

45 5.19 6.54 5.61 5.78 0.69 11.99 

60 6.26 7.04 6.18 6.49 0.47 7.30 

Release rate (mg/min) 0.142 0.172 0.176 0.163 0.019 11.507 

Lag time (min) 6.10 2.81 0.11 3.00 3.00 99.94 
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Table C7: Amount of nicotine released (mg) from snus as a function of saliva pH 7.6(β = 9.6) 

 

Time (min) 1 2 3 Mean SD %RSD 

0 0 0 0 0 0 - 

2.5 0.06 0.05 0.09 0.07 0.02 31.88 

5 0.12 0.10 0.16 0.13 0.03 23.39 

7.5 0.16 0.20 0.27 0.21 0.05 25.23 

10 0.25 0.42 0.44 0.37 0.10 27.75 

15 0.72 1.26 1.15 1.04 0.29 27.43 

20 1.29 2.33 1.83 1.82 0.52 28.53 

25 1.96 2.78 2.70 2.48 0.45 18.33 

30 2.51 3.44 3.33 3.09 0.51 16.35 

45 3.81 4.75 4.58 4.38 0.50 11.39 

60 4.57 5.50 5.49 5.19 0.54 10.34 

Release rate (mg/min) 0.151 0.115 0.146 0.138 0.020 14.215 

Lag time (min) 6.47 8.30 7.09 7.29 0.93 12.77 

 

Table C8: Effect of snus on saliva pH 

 

Saliva 

pH (β) 

Saliva 

Volume 

(mL) 

Sonication 

Time 

(min) 

Initial 

pH 

Change in pH (Observed – Initial) 

1 2 3 Mean SD 

6.8 

(5.5) 

2 2 

6.88 

-0.16 -0.4 -0.35 -0.30 0.13 

10 2 -0.08 -0.08 0.02 -0.05 0.06 

25 2 0 -0.01 0.04 0.01 0.03 

7.2 

(7.0) 

2 2 

7.2 

-0.18 -0.1 -0.14 -0.14 0.04 

10 2 0.08 0.06 0.11 0.08 0.03 

25 2 0.06 0.07 0.08 0.07 0.01 

7.6 

(9.6) 

2 2 

7.58 

0.58 0.44 0.5 0.47 0.07 

10 2 0.34 0.37 0.38 0.36 0.02 

25 2 0.04 0.08 0.09 0.07 0.03 
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Table C9: Amount of nicotine permeated (mg) from snus as a function of SSSR (0.32mL/min) 

 

Time (min) 1 2 3 4 5 Mean SD %RSD 

0 0 0 0 0 0 0 0 0 

2.5 0.08 0.18 0.09 0.18 0.12 0.13 0.05 37.06 

5 0.13 0.24 0.24 0.25 0.19 0.21 0.05 24.72 

7.5 0.17 0.32 0.34 0.30 0.25 0.27 0.07 24.97 

10 0.23 0.40 0.42 0.34 0.34 0.34 0.08 21.85 

15 0.37 0.53 0.61 0.43 0.49 0.48 0.09 19.21 

20 0.49 0.65 0.82 0.53 0.64 0.63 0.13 20.47 

25 0.58 0.77 0.93 0.65 0.79 0.75 0.14 18.26 

30 0.73 0.88 1.04 0.76 0.98 0.88 0.14 15.56 

45 0.97 1.16 1.34 1.04 1.33 1.17 0.17 14.30 

60 1.20 1.41 1.63 1.27 1.58 1.42 0.19 13.42 

Permeation rate (mg/min) 0.024 0.026 0.035 0.021 0.031 0.027 0.006 20.911 

Lag time (min) 0 0 0 0 0 0 0 - 

 

Table C10: Amount of nicotine permeated (mg) from snus as a function of SSSR (1.66mL/min) 

 

Time (min) 1 2 3 4 Mean SD %RSD 

0 0 0 0 0 0 0 0 

2.5 0.15 0.06 0.14 0.06 0.10 0.05 48.57 

5 0.21 0.10 0.18 0.11 0.15 0.05 34.43 

7.5 0.26 0.16 0.20 0.15 0.19 0.05 25.78 

10 0.33 0.21 0.27 0.19 0.25 0.07 26.16 

15 0.43 0.25 0.34 0.28 0.33 0.08 24.41 

20 0.53 0.30 0.42 0.37 0.41 0.10 23.76 

25 0.62 0.36 0.49 0.47 0.48 0.11 22.77 

30 0.68 0.41 0.54 0.53 0.54 0.11 20.86 

45 0.77 0.54 0.65 0.67 0.66 0.09 13.98 

60 0.79 0.60 0.69 0.73 0.70 0.08 11.41 

Permeation rate (mg/min) 0.021 0.013 0.016 0.018 0.017 0.004 21.063 

Lag time (min) 0 0 0 0 0 0 - 
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Table C11: Amount of nicotine permeated (mg) from snus as a function of SSSR (3mL/min) 

 

Time (min) 1 2 3 4 Mean SD %RSD 

0 0 0 0 0 0 0 0 

2.5 0.06 0.03 0.01 0.02 0.03 0.02 61.77 

5 0.11 0.06 0.03 0.03 0.06 0.04 61.65 

7.5 0.17 0.09 0.06 0.06 0.09 0.05 56.22 

10 0.23 0.14 0.11 0.09 0.14 0.06 42.18 

15 0.31 0.22 0.19 0.17 0.22 0.06 28.75 

20 0.36 0.29 0.26 0.22 0.28 0.06 20.73 

25 0.40 0.35 0.29 0.27 0.33 0.06 18.14 

30 0.42 0.38 0.32 0.30 0.36 0.06 16.12 

45 0.47 0.44 0.35 0.33 0.40 0.07 17.00 

60 0.48 0.45 0.35 0.34 0.41 0.07 17.11 

Permeation rate (mg/min) 0.021 0.015 0.016 0.013 0.016 0.003 20.408 

Lag time (min) 0 0.74 3.15 2.62 1.63 1.50 92.08 

 

Table C12: Amount of nicotine permeated (mg) from snus as a function of receptor media flow 

rate (1 mL/min) 

 

Time (min) 1 2 3 Mean SD %RSD 

0 0 0 0 0 0 - 

2.5 0.01 0.01 0.01 0.01 0.00 16.77 

5 0.03 0.04 0.03 0.03 0.00 15.48 

7.5 0.06 0.09 0.06 0.07 0.02 27.97 

10 0.10 0.15 0.10 0.12 0.03 23.84 

15 0.22 0.30 0.23 0.25 0.05 18.69 

20 0.32 0.38 0.37 0.36 0.03 9.63 

25 0.43 0.54 0.51 0.49 0.06 12.01 

30 0.54 0.60 0.58 0.57 0.03 5.42 

45 0.87 0.93 0.92 0.91 0.03 3.66 

60 1.15 1.27 1.23 1.21 0.06 5.18 

Permeation rate (mg/min) 0.021 0.022 0.022 0.022 0.001 3.376 

Lag time (min) 4.72 2.45 4.27 3.81 1.20 31.58 
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Table C13: Amount of nicotine permeated (mg) from snus as a function of receptor media flow 

rate (6 mL/min) 

 

Time (min) 1 2 3 Mean SD %RSD 

0 0 0 0 0 0 - 

2.5 0.02 0.03 0.03 0.03 0.01 24.27 

5 0.06 0.07 0.05 0.06 0.01 12.00 

7.5 0.12 0.11 0.10 0.11 0.01 5.92 

10 0.19 0.17 0.16 0.17 0.02 9.44 

15 0.37 0.27 0.29 0.31 0.05 16.91 

20 0.50 0.34 0.39 0.41 0.08 19.51 

25 0.61 0.44 0.51 0.52 0.09 16.60 

30 0.74 0.54 0.58 0.62 0.10 16.73 

45 1.09 0.87 0.86 0.94 0.13 13.90 

60 1.36 1.12 1.12 1.20 0.14 11.36 

Permeation rate (mg/min) 0.024 0.019 0.019 0.021 0.002 11.984 

Lag time (min) 0.25 1.69 0.46 0.80 0.78 97.02 

 

Table C14: Amount of nicotine permeated (mg) from snus as a function of receptor media flow 

rate (16 mL/min) 

 

Time (min) 1 2 3 Mean SD %RSD 

0 0 0 0 0 0 - 

2.5 0.07 0.04 0.03 0.04 0.02 43.64 

5 0.12 0.06 0.07 0.08 0.03 33.49 

7.5 0.18 0.10 0.13 0.14 0.04 26.92 

10 0.24 0.18 0.19 0.20 0.03 16.81 

15 0.36 0.29 0.32 0.32 0.04 11.39 

20 0.48 0.38 0.45 0.44 0.05 11.63 

25 0.62 0.51 0.57 0.57 0.05 9.53 

30 0.74 0.61 0.68 0.68 0.07 9.84 

45 1.05 0.96 1.03 1.01 0.05 4.71 

60 1.34 1.25 1.27 1.29 0.04 3.32 

Permeation rate (mg/min) 0.022 0.022 0.022 0.022 0.000 0.784 

Lag time (min) 0.00 2.14 0.44 0.86 1.13 131.66 
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Table C15: Amount of nicotine permeated (mg) from snus as a function of donor media flow rate 

(1.66 mL/min) 

 

Time (min) 1 2 3 4 5 Mean SD %RSD 

0 0 0 0 0 0 0 0 - 

2.5 0.02 0.04 0.03 0.06 0.07 0.04 0.02 43.61 

5 0.05 0.09 0.08 0.10 0.15 0.09 0.03 37.22 

7.5 0.08 0.19 0.17 0.18 0.24 0.17 0.06 35.13 

10 0.11 0.24 0.24 0.25 0.34 0.24 0.08 34.28 

15 0.18 0.46 0.37 0.55 0.47 0.41 0.14 34.68 

20 0.35 0.59 0.54 0.69 0.63 0.56 0.13 23.08 

25 0.51 0.70 0.65 0.85 0.72 0.69 0.12 17.94 

30 0.63 0.83 0.79 0.95 0.80 0.80 0.11 14.18 

45 1.01 1.21 1.14 1.24 1.18 1.16 0.09 7.70 

60 1.31 1.52 1.42 1.49 1.44 1.44 0.08 5.80 

Permeation rate (mg/min) 0.025 0.025 0.024 0.025 0.023 0.024 0.001 4.253 

Lag time (min) 5.22 0.00 0.00 0.00 0.00 1.04 2.34 223.61 

 

Table C16: Amount of nicotine permeated (mg) from snus as a function of donor media flow rate 

(6 mL/min) 

 

Time (min) 1 2 3 4 5 Mean SD %RSD 

0 0 0 0 0 0 0 0 - 

2.5 0.01 0.02 0.02 0.02 0.02 0.02 0.00 22.22 

5 0.03 0.04 0.06 0.04 0.05 0.04 0.01 25.92 

7.5 0.07 0.08 0.12 0.08 0.09 0.09 0.02 21.36 

10 0.13 0.14 0.17 0.13 0.13 0.14 0.02 13.34 

15 0.24 0.28 0.31 0.26 0.30 0.28 0.03 10.57 

20 0.39 0.40 0.48 0.44 0.43 0.43 0.04 8.53 

25 0.49 0.54 0.65 0.58 0.59 0.57 0.06 10.32 

30 0.62 0.68 0.76 0.74 0.72 0.70 0.05 7.72 

45 1.06 1.02 1.26 1.17 1.18 1.14 0.10 8.52 

60 1.31 1.44 1.63 1.59 1.57 1.51 0.13 8.78 

Permeation rate (mg/min) 0.024 0.026 0.029 0.029 0.028 0.027 0.002 8.181 

Lag time (min) 4.39 4.03 3.63 4.78 4.28 4.22 0.43 10.12 
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Table C17: Amount of nicotine permeated (mg) from snus as a function of donor media flow rate 

(16 mL/min) 

 

Time (min) 1 2 3 4 5 Mean SD %RSD 

0 0 0 0 0 0 0 0 - 

2.5 0.02 0.03 0.03 0.02 0.05 0.03 0.01 42.70 

5 0.04 0.09 0.09 0.06 0.11 0.08 0.03 32.33 

7.5 0.09 0.20 0.14 0.11 0.15 0.14 0.04 29.24 

10 0.14 0.29 0.22 0.17 0.23 0.21 0.06 28.58 

15 0.26 0.47 0.44 0.32 0.36 0.37 0.09 23.52 

20 0.39 0.64 0.58 0.52 0.49 0.52 0.10 18.35 

25 0.53 0.84 0.73 0.64 0.65 0.68 0.12 17.10 

30 0.64 0.93 0.87 0.77 0.82 0.81 0.11 13.95 

45 1.00 1.25 1.33 1.17 1.23 1.19 0.12 10.26 

60 1.28 1.62 1.73 1.45 1.53 1.52 0.17 11.06 

Permeation rate (mg/min) 0.023 0.027 0.030 0.026 0.027 0.027 0.003 9.359 

Lag time (min) 3.34 0.00 1.66 2.11 1.15 1.65 1.23 74.48 

 

Table C18: Amount of nicotine released (mg) from snus as a function of donor media flow rate 

(1.66 mL/min) 

 

Time (min) 1 2 3 4 5 Mean SD %RSD 

0 0 0 0 0 0 0 0 - 

2.5 0.45 0.10 0.13 0.10 0.21 0.20 0.15 75.06 

5 0.94 0.27 0.32 0.44 0.52 0.50 0.27 53.35 

7.5 1.30 0.53 0.52 0.72 0.89 0.79 0.32 41.03 

10 2.04 0.83 0.77 0.85 1.21 1.14 0.53 46.71 

15 2.80 1.52 1.29 1.53 2.06 1.84 0.61 33.06 

20 3.49 2.30 1.85 2.41 2.59 2.53 0.60 23.88 

25 3.97 2.81 2.44 2.68 3.05 2.99 0.59 19.72 

30 4.63 3.44 2.77 3.22 3.56 3.52 0.69 19.48 

45 5.49 4.36 4.21 4.33 4.94 4.67 0.54 11.50 

60 6.32 5.43 4.68 5.03 5.86 5.47 0.65 11.90 

Release rate (mg/min) 0.155 0.123 0.099 0.115 0.124 0.123 0.020 16.459 

Lag time (min) 0 2.17 1.51 1.27 1.51 1.29 0.80 61.61 
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Table C19: Amount of nicotine released (mg) from snus as a function of donor media flow rate 

(6 mL/min) 

 

Time (min) 1 2 3 4 5 Mean SD %RSD 

0 0 0 0 0 0 0 0 - 

2.5 0.68 0.83 0.74 0.35 0.88 0.70 0.21 29.60 

5 1.23 1.57 1.74 0.85 1.59 1.40 0.36 25.55 

7.5 1.78 2.62 2.83 1.49 2.44 2.23 0.57 25.55 

10 2.25 3.36 3.81 2.16 3.19 2.96 0.72 24.33 

15 2.96 5.19 4.91 3.07 4.00 4.03 1.02 25.41 

20 3.48 5.84 5.53 3.70 4.78 4.66 1.06 22.71 

25 4.04 6.26 6.27 4.08 5.58 5.25 1.12 21.34 

30 4.35 6.61 6.29 4.39 5.84 5.50 1.07 19.38 

45 5.42 7.26 6.60 4.93 6.25 6.09 0.93 15.23 

60 5.73 7.22 6.89 5.11 6.53 6.30 0.87 13.75 

Release rate (mg/min) 0.194 0.349 0.347 0.217 0.261 0.274 0.072 26.323 

Lag time (min) 0 0.21 0 0.64 0 0.17 0.28 163.35 

 

Table C20: Amount of nicotine released (mg) from snus as a function of donor media flow rate 

(16 mL/min) 

 

Time (min) 1 2 3 4 5 Mean SD %RSD 

0 0 0 0 0 0 0 0 - 

2.5 1.46 0.89 1.34 1.53 2.20 1.48 0.47 31.74 

5 2.35 1.79 2.10 2.41 2.95 2.32 0.43 18.54 

7.5 2.96 2.31 2.72 3.02 3.92 2.99 0.59 19.81 

10 3.72 2.56 3.26 3.39 3.99 3.38 0.54 16.06 

15 3.87 3.16 3.91 4.28 4.58 3.96 0.53 13.44 

20 4.38 3.37 4.37 4.67 5.01 4.36 0.61 14.04 

25 4.68 3.62 4.64 5.01 5.44 4.68 0.67 14.41 

30 4.83 3.74 5.17 5.50 5.68 4.98 0.77 15.44 

45 5.23 4.03 5.52 5.91 6.21 5.38 0.84 15.67 

60 5.54 4.33 5.88 6.18 6.37 5.66 0.81 14.28 

Release rate (mg/min) 0.331 0.304 0.313 0.352 0.369 0.334 0.027 8.131 

Lag time (min) 0 0 0 0 0 0 0 - 
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Table C21: Amount of nicotine permeated (mg) from snus as a function of receptor to donor media 

volume ratio (2) 

 

Time (min) 1 2 3 Mean SD %RSD 

0 0 0 0 0 0 - 

2.5 0.03 0.01 0.01 0.02 0.01 65.37 

5 0.06 0.03 0.04 0.04 0.02 38.15 

7.5 0.11 0.06 0.08 0.08 0.02 24.62 

10 0.14 0.11 0.12 0.12 0.02 15.55 

15 0.29 0.27 0.24 0.27 0.02 8.76 

20 0.48 0.44 0.41 0.44 0.04 8.37 

25 0.64 0.56 0.60 0.60 0.04 6.50 

30 0.80 0.68 0.77 0.75 0.06 7.80 

45 1.18 1.03 1.11 1.11 0.07 6.58 

60 1.51 1.35 1.46 1.44 0.08 5.66 

Permeation rate (mg/min) 0.028 0.025 0.027 0.026 0.001 5.506 

Lag time (min) 3.23 3.79 4.46 3.83 0.62 16.12 

 

Table C22: Amount of nicotine permeated (mg) from snus as a function of receptor to donor media 

volume ratio (4) 

 

Time (min) 1 2 3 Mean SD %RSD 

0 0 0 0 0 0 - 

2.5 0.02 0.02 0.03 0.03 0.01 27.73 

5 0.04 0.02 0.05 0.04 0.01 32.63 

7.5 0.06 0.04 0.08 0.06 0.02 36.57 

10 0.09 0.07 0.14 0.10 0.03 34.11 

15 0.19 0.14 0.24 0.19 0.05 26.29 

20 0.28 0.24 0.37 0.29 0.07 22.73 

25 0.39 0.36 0.51 0.42 0.08 19.48 

30 0.49 0.43 0.65 0.53 0.11 21.76 

45 0.86 0.77 0.99 0.87 0.11 12.74 

60 1.17 1.13 1.36 1.22 0.12 9.77 

Permeation rate (mg/min) 0.022 0.021 0.025 0.022 0.002 8.476 

Lag time (min) 6.11 7.59 4.42 6.04 1.59 26.26 
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Table C23: Amount of nicotine permeated (mg) from snus as a function of receptor to donor media 

volume ratio (8) 

 

Time (min) 1 2 3 Mean SD %RSD 

0 0 0 0 0 0 - 

2.5 0.00 0.00 0.00 0.00 0.00 - 

5 0.04 0.04 0.04 0.04 0.00 4.55 

7.5 0.07 0.07 0.05 0.06 0.01 14.34 

10 0.11 0.12 0.11 0.11 0.00 3.73 

15 0.24 0.29 0.18 0.23 0.05 22.27 

20 0.37 0.37 0.29 0.35 0.05 13.31 

25 0.50 0.47 0.41 0.46 0.05 10.42 

30 0.65 0.63 0.50 0.59 0.08 13.65 

45 1.03 1.05 0.87 0.99 0.10 9.73 

60 1.48 1.44 1.17 1.36 0.17 12.30 

Permeation rate (mg/min) 0.027 0.026 0.022 0.025 0.003 11.490 

Lag time (min) 5.94 5.36 5.78 5.69 0.30 5.30 

 

Table C24: Amount of nicotine permeated (mg) from snus as a function of receptor dead volume 

(2.67 mL) 

 

Time (min) 1 2 3 4 5 Mean SD %RSD 

0 0 0 0 0 0 0 0 - 

2.5 0.01 0.03 0.04 0.02 0.02 0.02 0.01 37.93 

5 0.02 0.04 0.05 0.05 0.03 0.04 0.01 32.42 

7.5 0.03 0.05 0.07 0.07 0.04 0.05 0.02 33.34 

10 0.05 0.06 0.09 0.12 0.05 0.07 0.03 41.25 

15 0.12 0.14 0.18 0.34 0.14 0.18 0.09 48.83 

20 0.28 0.33 0.43 0.62 0.31 0.39 0.14 35.51 

25 0.53 0.58 0.61 0.79 0.51 0.60 0.11 18.07 

30 0.73 0.81 0.82 0.99 0.81 0.83 0.09 11.35 

45 1.29 1.43 1.32 1.41 1.45 1.38 0.07 5.14 

60 1.67 1.87 1.65 1.71 1.95 1.77 0.13 7.61 

Permeation rate (mg/min) 0.035 0.045 0.038 0.040 0.044 0.040 0.004 10.256 

Lag Time (min) 3.20 12.55 9.16 12.10 11.89 9.78 3.91 40.01 
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Table C25: Amount of nicotine permeated (mg) from snus as a function of receptor dead volume 

(5.15 mL) 

 

Time (min) 1 2 3 4 5 Mean SD %RSD 

0 0 0 0 0 0 0 0 - 

2.5 0.01 0.02 0.03 0.04 0.02 0.02 0.01 42.47 

5 0.03 0.03 0.04 0.04 0.03 0.03 0.01 23.41 

7.5 0.05 0.04 0.06 0.05 0.04 0.05 0.01 13.26 

10 0.06 0.06 0.08 0.05 0.07 0.06 0.01 16.92 

15 0.10 0.10 0.15 0.07 0.14 0.11 0.03 29.42 

20 0.20 0.19 0.29 0.11 0.31 0.22 0.08 36.86 

25 0.32 0.32 0.43 0.22 0.56 0.37 0.13 34.90 

30 0.46 0.40 0.60 0.39 0.77 0.52 0.16 31.05 

45 0.94 0.71 1.01 0.82 1.35 0.97 0.24 25.25 

60 1.24 1.00 1.26 1.14 1.76 1.28 0.28 22.21 

Permeation rate (mg/min) 0.020 0.029 0.030 0.029 0.041 0.030 0.007 24.447 

Lag Time (min) 11.66 9.86 13.97 16.59 10.10 12.43 2.84 22.85 

 

Table C26: Amount of nicotine permeated (mg) from snus as a function of receptor dead volume 

(10 mL) 

 

Time (min) 1 2 3 4 5 Mean SD %RSD 

0 0 0 0 0 0 0 0 - 

2.5 0.00 0.02 0.02 0.02 0.02 0.01 0.01 56.37 

5 0.02 0.02 0.02 0.02 0.02 0.02 0.00 14.21 

7.5 0.02 0.03 0.03 0.03 0.03 0.03 0.00 18.02 

10 0.02 0.04 0.03 0.05 0.04 0.04 0.01 28.78 

15 0.04 0.07 0.05 0.16 0.12 0.09 0.05 59.73 

20 0.06 0.14 0.07 0.37 0.34 0.20 0.15 75.38 

25 0.10 0.23 0.11 0.52 0.56 0.30 0.22 73.50 

30 0.21 0.38 0.16 0.70 0.73 0.44 0.27 61.78 

45 0.77 0.81 0.61 1.16 1.28 0.93 0.28 30.68 

60 0.90 1.17 1.02 1.47 1.60 1.23 0.29 23.89 

Permeation rate (mg/min) 0.035 0.029 0.026 0.032 0.036 0.032 0.004 13.095 

Lag Time (min) 22.93 16.83 22.27 8.36 9.75 16.03 6.81 42.49 
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Table C27: Amount of nicotine permeated (mg) from snus as a function of media temperature 

(25°C) 

 

Time (min) 1 2 3 4 5 Mean SD %RSD 

0 0 0 0 0 0 0 0 - 

2.5 0.03 0.02 0.03 0.02 0.01 0.02 0.01 36.43 

5 0.05 0.04 0.08 0.04 0.03 0.05 0.02 36.66 

7.5 0.10 0.08 0.12 0.07 0.07 0.09 0.02 23.46 

10 0.15 0.12 0.16 0.12 0.13 0.14 0.02 12.68 

15 0.24 0.24 0.26 0.24 0.25 0.25 0.01 4.68 

20 0.35 0.33 0.38 0.40 0.40 0.37 0.03 8.94 

25 0.44 0.43 0.49 0.51 0.49 0.47 0.03 7.15 

30 0.54 0.54 0.61 0.64 0.67 0.60 0.06 9.49 

45 0.85 0.78 0.92 1.07 0.95 0.91 0.11 11.83 

60 1.12 1.10 1.26 1.38 1.25 1.22 0.11 9.27 

Permeation rate (mg/min) 0.020 0.019 0.022 0.025 0.023 0.022 0.002 11.302 

Lag Time (min) 2.31 3.08 2.28 4.48 3.49 3.13 0.92 29.31 

 

Table C28: Amount of nicotine permeated (mg) from snus as a function of media temperature 

(37°C) 

 

Time (min) 1 2 3 4 5 Mean SD %RSD 

0 0 0 0 0 0 0 0 - 

2.5 0.05 0.04 0.07 0.04 0.02 0.05 0.02 35.84 

5 0.13 0.13 0.13 0.11 0.06 0.11 0.03 26.30 

7.5 0.22 0.20 0.24 0.20 0.13 0.20 0.04 21.02 

10 0.32 0.32 0.34 0.28 0.20 0.29 0.05 18.18 

15 0.52 0.52 0.57 0.49 0.39 0.50 0.07 13.60 

20 0.72 0.73 0.75 0.66 0.60 0.69 0.06 9.01 

25 0.92 1.00 0.96 0.86 0.82 0.91 0.07 8.16 

30 1.14 1.18 1.15 1.04 0.99 1.10 0.08 7.24 

45 1.67 1.77 1.74 1.56 1.57 1.66 0.10 5.98 

60 2.15 2.29 2.28 1.99 2.09 2.16 0.13 5.90 

Permeation rate (mg/min) 0.037 0.040 0.039 0.035 0.038 0.038 0.002 5.459 

Lag Time (min) 0.99 1.73 1.08 1.28 3.97 1.81 1.24 68.50 
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Table C29: Amount of nicotine permeated (mg) from snus as a function of media temperature 

(45°C) 

 

Time (min) 1 2 3 4 5 Mean SD %RSD 

0 0 0 0 0 0 0 0 - 

2.5 0.06 0.14 0.05 0.04 0.06 0.07 0.04 59.18 

5 0.16 0.27 0.13 0.09 0.13 0.16 0.07 43.06 

7.5 0.28 0.43 0.22 0.19 0.24 0.27 0.09 34.30 

10 0.41 0.57 0.35 0.29 0.34 0.39 0.11 27.11 

15 0.68 0.85 0.64 0.50 0.58 0.65 0.13 20.49 

20 0.90 1.13 0.86 0.73 0.79 0.88 0.16 17.65 

25 1.19 1.36 1.11 0.90 0.99 1.11 0.18 16.18 

30 1.36 1.58 1.31 1.12 1.21 1.32 0.17 13.08 

45 2.21 2.22 1.95 1.65 1.77 1.96 0.26 13.04 

60 2.57 2.53 2.52 2.12 2.19 2.39 0.21 8.83 

Permeation rate (mg/min) 0.051 0.050 0.046 0.039 0.041 0.045 0.005 11.083 

Lag Time (min) 1.83 0.00 1.81 2.15 1.27 1.41 0.85 60.18 

 

Table C30: Amount of nicotine permeated (mg) from snus without agitation 

 

Time (min) 1 2 3 4 5 Mean SD %RSD 

0 0 0 0 0 0 0 0 - 

2.5 0.03 0.02 0.07 0.03 0.01 0.03 0.02 69.50 

5 0.05 0.03 0.08 0.04 0.02 0.04 0.03 61.49 

7.5 0.05 0.03 0.11 0.06 0.02 0.05 0.03 62.63 

10 0.06 0.04 0.12 0.07 0.03 0.06 0.04 59.05 

15 0.08 0.06 0.17 0.09 0.04 0.09 0.05 54.37 

20 0.20 0.11 0.28 0.19 0.08 0.17 0.08 46.70 

25 0.36 0.20 0.48 0.36 0.16 0.31 0.13 41.85 

30 0.58 0.36 0.66 0.59 0.27 0.49 0.17 33.51 

45 1.17 0.92 1.34 1.27 0.74 1.09 0.25 22.85 

60 1.56 1.35 1.93 1.72 1.25 1.56 0.27 17.51 

Permeation rate (mg/min) 0.042 0.039 0.030 0.035 0.032 0.036 0.005 13.502 

Lag Time (min) 13.57 15.06 19.25 13.87 17.76 15.90 2.50 15.72 
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Table C31: Amount of nicotine permeated (mg) from snus with agitation (1 agitation/min) 

 

Time (min) 1 2 3 4 5 Mean SD %RSD 

0 0 0 0 0 0 0 0 - 

2.5 0.05 0.08 0.03 0.06 0.08 0.06 0.02 38.41 

5 0.08 0.11 0.04 0.14 0.16 0.11 0.05 45.78 

7.5 0.14 0.18 0.11 0.19 0.27 0.18 0.06 34.29 

10 0.22 0.24 0.14 0.35 0.36 0.26 0.09 34.77 

15 0.38 0.40 0.23 0.51 0.53 0.41 0.12 29.23 

20 0.51 0.52 0.33 0.70 0.69 0.55 0.15 27.87 

25 0.64 0.64 0.45 0.88 0.82 0.69 0.17 24.93 

30 0.74 0.76 0.53 1.06 0.99 0.82 0.21 26.15 

45 1.18 1.01 0.78 1.57 1.42 1.19 0.31 26.22 

60 1.58 1.48 1.04 1.95 1.82 1.57 0.35 22.54 

Permeation rate (mg/min) 0.034 0.030 0.027 0.024 0.018 0.027 0.006 22.944 

Lag Time (min) 0.04 0.00 1.29 0.00 1.39 0.54 0.73 133.62 
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APPENDIX D 

 

 

 

 

REPLICATE AND MEAN DATA ON OPTIMIZATION OF THE IVIVR FOR SNUS 

REPORTED IN CHAPTER 5  
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Table D0: Method for calculation of the amount of nicotine permeated** as a function of SSSR (mL/min) and temperature (°C) over 

time  

 

Time 

(min) 

(A) 

Dilution 

corrected 

concentration 

(mcg/mL) 

(B)* 

Amount of 

nicotine  in the 

volume of 

receptor media 

(25 mL) 

(mcg) 

[Bx25] 

(C) 

Amount of nicotine 

in the volume of 

receptor media 

sampled (1 mL) 

[Cx1/25] 

(mcg) 

(D) 

Amount of nicotine lost at 

each time point due to 

sampling  

(mcg) 

(E) 

Cumulative 

amount of 

nicotine 

permeated 

[C+E] 

(mcg) 

(F) 

Cumulative 

amount of 

nicotine 

swallowed 

[H/1000] 

(mg) 

(G) 

1 0 0 0 0 0 0 0 

2 2.5 B2 C2=B2x25 D2=(C2x1)/25 E2=0 F2=C2+E2 G2=F2/1000 

3 5 B3 C3=B3x25 D3=(C3x1)/25 E3=Sum of D1 to D2 F3=C3+E3 G3=F3/1000 

4 7.5 B4 C4=B4x25 D4=(C4x1)/25 E4=Sum of D1 to D3 F4=C4+E4 G4=F4/1000 

5 10 B5 C5=B5x25 D5=(C5x1)/25 E5=Sum of D1 to D4 F5=C5+E5 G5=F5/1000 

6 15 B6 C6=B6x25 D6=(C6x1)/25 E6=Sum of D1 to D5 F6=C6+E6 G6=F6/1000 

7 20 B7 C7=B7x25 D7=(C7x1)/25 E7=Sum of D1 to D6 F7=C7+E7 G7=F7/1000 

8 25 B8 C8=B8x25 D8=(C8x1)/25 E8=Sum of D1 to D7 F8=C8+E8 G8=F8/1000 

9 30 B9 C9=B9x25 D9=(C9x1)/25 E9=Sum of D1 to D8 F9=C9+E9 G9=F9/1000 
* Dilution corrected concentration = Concentration (mcg/mL) x Dilution factor 

** Amount permeated in both receptors calculated by the above method are added to obtain the total amount of nicotine permeated  
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Table D1: Amount of nicotine permeated (mg) from snus as a function of SSSR 0.32 mL/min and 

media temperature 25 °C 

 

Time (min) 1 2 3 4 Mean SD %RSD 

0 0 0 0 0 0 0 - 

2.5 0.15 0.06 0.17 0.11 0.12 0.05 38.96 

5 0.20 0.10 0.21 0.17 0.17 0.05 27.39 

7.5 0.26 0.16 0.26 0.23 0.23 0.05 20.11 

10 0.33 0.23 0.30 0.31 0.29 0.05 15.99 

15 0.47 0.35 0.38 0.44 0.41 0.06 13.36 

20 0.60 0.46 0.49 0.58 0.53 0.07 12.97 

25 0.66 0.58 0.55 0.72 0.63 0.08 12.57 

30 0.77 0.64 0.59 0.86 0.72 0.12 16.75 

Permeation rate (mg/min)* 0.022 0.022 0.015 0.028 0.022 0.005 23.104 

Ratio of rates** 0.61 0.60 0.43 0.77 0.60 0.14 23.10 
* Permeation rate was calculated from the amount of nicotine permeated from 7.5 to 30 min  
** Ratio of rates is the ratio of in vitro nicotine permeation to the in vivo nicotine absorption rate (0.036 mg/min) 

 

Table D2: Amount of nicotine permeated (mg) from snus as a function of SSSR 0.32 mL/min and 

media temperature 37 °C 

 

Time (min) 1 2 3 4 Mean SD %RSD 

0 0 0 0 0 0 0 - 

2.5 0.11 0.08 0.12 0.14 0.12 0.02 21.66 

5 0.19 0.15 0.19 0.22 0.19 0.03 15.12 

7.5 0.29 0.26 0.29 0.32 0.29 0.02 8.24 

10 0.42 0.35 0.37 0.40 0.38 0.03 7.86 

15 0.62 0.55 0.57 0.54 0.57 0.04 6.66 

20 0.82 0.71 0.73 0.75 0.75 0.05 6.16 

25 0.94 0.87 0.87 0.88 0.89 0.04 3.95 

30 1.11 0.99 0.98 0.97 1.01 0.06 6.30 

Permeation rate (mg/min)* 0.036 0.033 0.031 0.030 0.033 0.002 7.627 

Ratio of rates** 0.99 0.92 0.86 0.84 0.90 0.07 7.63 
* Permeation rate was calculated from the amount of nicotine permeated from 7.5 to 30 min  
** Ratio of rates is the ratio of in vitro nicotine permeation to the in vivo nicotine absorption rate (0.036 mg/min) 
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Table D3: Amount of nicotine permeated (mg) from snus as a function of SSSR 0.32 mL/min and 

media temperature 45 °C 

 

Time (min) 1 2 3 4 Mean SD %RSD 

0 0 0 0 0 0 0 - 

2.5 0.19 0.32 0.25 0.14 0.23 0.08 35.14 

5 0.36 0.52 0.37 0.29 0.39 0.10 25.05 

7.5 0.48 0.66 0.53 0.43 0.53 0.10 19.08 

10 0.64 0.82 0.68 0.56 0.67 0.11 16.45 

15 0.89 1.05 0.93 0.77 0.91 0.11 12.47 

20 1.13 1.31 1.17 1.00 1.15 0.13 11.22 

25 1.32 1.48 1.38 1.17 1.34 0.13 9.78 

30 1.49 1.65 1.58 1.33 1.51 0.14 9.33 

Permeation rate (mg/min)* 0.045 0.044 0.047 0.040 0.044 0.003 6.323 

Ratio of rates** 1.24 1.22 1.29 1.11 1.22 0.08 6.32 
* Permeation rate was calculated from the amount of nicotine permeated from 7.5 to 30 min 
** Ratio of rates is the ratio of in vitro nicotine permeation to the in vivo nicotine absorption rate (0.036 mg/min) 

 

Table D4: Amount of nicotine permeated (mg) from snus as a function of SSSR 1.66 mL/min and 

media temperature 25 °C 

 

Time (min) 1 2 3 4 Mean SD %RSD 

0 0 0 0 0 0 0 - 

2.5 0.09 0.12 0.05 0.08 0.08 0.03 33.69 

5 0.14 0.19 0.08 0.13 0.14 0.04 32.20 

7.5 0.18 0.24 0.12 0.19 0.18 0.05 27.31 

10 0.22 0.28 0.15 0.22 0.22 0.05 24.35 

15 0.28 0.36 0.22 0.28 0.29 0.06 20.10 

20 0.35 0.44 0.27 0.35 0.35 0.07 18.85 

25 0.39 0.50 0.32 0.40 0.40 0.07 18.16 

30 0.43 0.56 0.36 0.44 0.45 0.08 18.10 

Permeation rate (mg/min)* 0.011 0.014 0.011 0.011 0.012 0.002 13.301 

Ratio of rates** 0.31 0.40 0.30 0.31 0.33 0.04 13.30 
* Permeation rate was calculated from the amount of nicotine permeated from 7.5 to 30 min 
** Ratio of rates is the ratio of in vitro nicotine permeation to the in vivo nicotine absorption rate (0.036 mg/min) 

 



 

 

252 

 

Table D5: Amount of nicotine permeated (mg) from snus as a function of SSSR 1.66 mL/min and 

media temperature 37 °C 

 

Time (min) 1 2 3 4 Mean SD %RSD 

0 0 0 0 0 0 0 - 

2.5 0.10 0.09 0.09 0.08 0.09 0.01 9.22 

5 0.18 0.16 0.15 0.14 0.16 0.02 10.62 

7.5 0.27 0.24 0.21 0.19 0.23 0.03 15.34 

10 0.33 0.30 0.25 0.26 0.29 0.04 13.11 

15 0.44 0.41 0.35 0.34 0.39 0.05 12.02 

20 0.54 0.48 0.43 0.41 0.46 0.06 13.00 

25 0.61 0.53 0.49 0.49 0.53 0.06 10.65 

30 0.66 0.57 0.56 0.54 0.58 0.05 8.95 

Permeation rate (mg/min)* 0.018 0.015 0.016 0.015 0.016 0.001 7.763 

Ratio of rates** 0.49 0.41 0.43 0.42 0.44 0.03 7.76 
* Permeation rate was calculated from the amount of nicotine permeated from 7.5 to 30 min 
** Ratio of rates is the ratio of in vitro nicotine permeation to the in vivo nicotine absorption rate (0.036 mg/min) 

 

Table D6: Amount of nicotine permeated (mg) from snus as a function of SSSR 1.66 mL/min and 

media temperature 45 °C 

 

Time (min) 1 2 3 4 Mean SD %RSD 

0 0 0 0 0 0 0 - 

2.5 0.16 0.30 0.24 0.27 0.24 0.06 25.64 

5 0.27 0.46 0.36 0.38 0.37 0.08 21.43 

7.5 0.36 0.61 0.50 0.52 0.50 0.10 21.02 

10 0.46 0.70 0.62 0.61 0.60 0.10 17.03 

15 0.58 0.85 0.79 0.78 0.75 0.12 15.48 

20 0.71 0.96 0.95 0.87 0.87 0.12 13.38 

25 0.78 1.03 1.01 0.94 0.94 0.11 12.04 

30 0.84 1.12 1.08 1.02 1.01 0.12 12.30 

Permeation rate (mg/min)* 0.021 0.022 0.026 0.022 0.023 0.002 8.707 

Ratio of rates** 0.59 0.61 0.71 0.60 0.63 0.05 8.71 
* Permeation rate was calculated from the amount of nicotine permeated from 7.5 to 30 min 
** Ratio of rates is the ratio of in vitro nicotine permeation to the in vivo nicotine absorption rate (0.036 mg/min) 
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Table D7: Amount of nicotine permeated (mg) from snus as a function of SSSR 3 mL/min and 

media temperature 25 °C 

 

Time (min) 1 2 3 4 Mean SD %RSD 

0 0 0 0 0 0 0 - 

2.5 0.09 0.04 0.06 0.05 0.06 0.02 31.75 

5 0.13 0.08 0.09 0.10 0.10 0.02 22.91 

7.5 0.17 0.12 0.13 0.11 0.13 0.03 20.17 

10 0.21 0.15 0.16 0.15 0.17 0.03 17.83 

15 0.26 0.20 0.23 0.21 0.23 0.03 11.90 

20 0.31 0.25 0.28 0.24 0.27 0.03 11.98 

25 0.33 0.27 0.32 0.26 0.30 0.03 10.79 

30 0.34 0.29 0.34 0.28 0.31 0.03 10.68 

Permeation rate (mg/min)* 0.007 0.008 0.010 0.007 0.008 0.001 14.565 

Ratio of rates** 0.20 0.21 0.27 0.20 0.22 0.03 14.56 
* Permeation rate was calculated from the amount of nicotine permeated from 7.5 to 30 min 
** Ratio of rates is the ratio of in vitro nicotine permeation to the in vivo nicotine absorption rate (0.036 mg/min) 

 

Table D8: Amount of nicotine permeated (mg) from snus as a function of SSSR 3 mL/min and 

media temperature 37 °C 

 

Time (min) 1 2 3 4 Mean SD %RSD 

0 0 0 0 0 0 0 - 

2.5 0.13 0.13 0.12 0.06 0.11 0.03 31.62 

5 0.24 0.21 0.20 0.13 0.19 0.05 24.54 

7.5 0.29 0.30 0.26 0.19 0.26 0.05 18.47 

10 0.34 0.36 0.33 0.25 0.32 0.05 15.00 

15 0.43 0.44 0.41 0.34 0.40 0.04 10.81 

20 0.47 0.49 0.47 0.40 0.46 0.04 9.02 

25 0.50 0.51 0.49 0.43 0.48 0.04 7.38 

30 0.51 0.53 0.51 0.44 0.50 0.04 7.79 

Permeation rate (mg/min)* 0.010 0.010 0.011 0.011 0.010 0.001 6.350 

Ratio of rates** 0.27 0.27 0.30 0.31 0.29 0.02 6.35 
* Permeation rate was calculated from the amount of nicotine permeated from 7.5 to 30 min 
** Ratio of rates is the ratio of in vitro nicotine permeation to the in vivo nicotine absorption rate (0.036 mg/min) 
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Table D9: Amount of nicotine permeated (mg) from snus as a function of SSSR 3 mL/min and 

media temperature 45 °C 

 

Time (min) 1 2 3 4 Mean SD %RSD 

0 0 0 0 0 0 0 - 

2.5 0.18 0.19 0.14 0.13 0.16 0.03 18.31 

5 0.28 0.27 0.24 0.22 0.25 0.03 10.17 

7.5 0.35 0.36 0.35 0.29 0.34 0.03 9.38 

10 0.42 0.42 0.41 0.36 0.40 0.03 7.03 

15 0.51 0.50 0.51 0.45 0.49 0.03 5.58 

20 0.56 0.55 0.55 0.51 0.54 0.02 4.51 

25 0.60 0.59 0.58 0.53 0.57 0.03 4.97 

30 0.61 0.59 0.59 0.55 0.59 0.02 4.17 

Permeation rate (mg/min)* 0.012 0.011 0.010 0.012 0.011 0.001 6.079 

Ratio of rates** 0.32 0.29 0.29 0.32 0.31 0.02 6.08 

* Permeation rate was calculated from the amount of nicotine permeated from 7.5 to 30 min 
** Ratio of rates is the ratio of in vitro nicotine permeation to the in vivo nicotine absorption rate (0.036 mg/min) 
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Table D10:  Method for calculation of the amount of nicotine released as a function of SSSR (mL/min) and temperature (°C) over time

 

Time 

(min) 

(A) 

Amount 

of nicotine 

swallowed 

(mg) 

(B)* 

Δ Amount 

Amount of 

nicotine 

swallowed 

between 

two time 

intervals 

(mg) 

(C) 

Δ Time 

Time 

interval 

between 

two 

sampling 

points 

(min) 

(D) 

 

Δ Volume 

Volume of 

media 

swallowed at  
Δ time 

[D x SSSR]** 

(mL) 

(E) 

Concentration 

of nicotine in 

the volume of 

media 

swallowed at  
Δ Time 

[C/E] 

(mg/mL) 

(F) 

Amount of 

nicotine 

released in the 

donor chamber 

of BTA 

[F x V]*** 

(mg) 

(G) 

Amount of 

nicotine 

swallowed 

from the donor 

chamber of 

BTA 

(mcg) 

(H) 

Amount of 

nicotine 

permeated 

into the 

receptor 

chamber of 

BTA 

(mg) 

(I)**** 

Total amount 

of nicotine 

released in the 

donor chamber 

of BTA 

(G+H+I) 

(mg) 

1 0 0 0 0 0 0 0 0 0 0 

2 2.5 B2 C2=B2-B1 D2=A2-A1 E2=D2xSSSR F2=C2/E2 G2=F2xV H2=B2 I2 G2+H2+I2 

3 5 B3 C3=B3-B2 D3=A3-A2 E3=D3xSSSR F3=C3/E3 G3=F3xV H3=B3 I3 G3+H3+I3 

4 7.5 B4 C4=B4-B3 D4=A4-A3 E4=D4xSSSR F4=C4/E4 G4=F4xV H4=B4 I4 G4+H4+I4 

5 10 B5 C5=B5-B4 D5=A5-A4 E5=D5xSSSR F5=C5/E5 G5=F5xV H5=B5 I5 G5+H5+I5 

6 15 B6 C6=B6-B5 D6=A6-A5 E6=D6xSSSR F6=C6/E6 G6=F6xV H6=B6 I6 G6+H6+I6 

7 20 B7 C7=B7-B6 D7=A7-A6 E7=D7xSSSR F7=C7/E7 G7=F7xV H7=B7 I7 G7+H7+I7 

8 25 B8 C8=B8-B7 D8=A8-A7 E8=D8xSSSR F8=C8/E8 G8=F8xV H8=B8 I8 G8+H8+I8 

9 30 B9 C9=B9-B8 D9=A9-A8 E9=D9xSSSR F9=C9/E9 G9=F9xV H9=B9 I9 G9+H9+I9 

* Refer Table D22 

** SSSR = stimulated saliva swallowing rate = 0.32 or 1.66 or 3 mL/min 

*** V = Experimental volume of media available for release in the donor chamber = [Volume of swallowed media + Volume of donor chamber + Volume of 

tubing from the outlet of BTA to the reservoir collecting tobacco extract] – [Theoretical volume of swallowed media + Volume of donor chamber + Volume 

of tubing from the outlet of BTA to the reservoir collecting tobacco extract] + [Volume of donor chamber + Volume of tubing from the outlet of BTA to the 

reservoir collecting tobacco extract] 

Volume of swallowed media = observed volume collected in the reservoir of tobacco extract at the end of experiment; 

Theoretical volume of swallowed media = SSSR (mL/min) ⨯ 30 min 

Volume of donor chamber = 10 mL 

Volume of tubing from the outlet of BTA to the reservoir collecting tobacco extract = 2.67 mL 

**** Refer Table D0 
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Table D11: Amount of nicotine released* (mg) from snus as a function of SSSR 0.32 mL/min and 

media temperature 25 °C 

 

Time (min) 1 2 3 4 Mean SD %RSD 

0 0 0 0 0 0 0 - 

2.5 0.40 0.97 0.33 0.26 0.49 0.33 66.70 

5 0.59 0.80 0.39 0.37 0.54 0.20 37.07 

7.5 0.69 1.41 0.46 0.49 0.77 0.44 57.96 

10 1.08 1.85 0.69 0.68 1.07 0.55 51.29 

15 2.05 3.14 1.17 1.10 1.86 0.96 51.32 

20 3.92 4.52 2.71 2.36 3.38 1.01 29.91 

25 3.32 6.39 3.73 3.44 4.22 1.46 34.52 

30 4.17 5.87 3.96 3.01 4.25 1.19 28.02 
* Total nicotine released = nicotine permeated in receptor chambers (Table D1) + nicotine released in donor 

chamber + nicotine swallowed from donor chamber (Table D24) 

 

Table D12: Amount of nicotine released* (mg) from snus as a function of SSSR 0.32 mL/min and 

media temperature 37 °C 

 

Time (min) 1 2 3 4 Mean SD %RSD 

0 0 0 0 0 0 0 - 

2.5 0.52 0.45 0.49 0.70 0.54 0.11 20.43 

5 0.75 1.05 0.78 1.02 0.90 0.16 17.30 

7.5 1.22 1.26 1.22 1.06 1.19 0.09 7.28 

10 1.17 1.72 0.89 1.95 1.43 0.49 34.13 

15 2.36 3.19 2.34 3.00 2.72 0.44 16.07 

20 3.50 3.70 3.80 4.34 3.83 0.36 9.34 

25 4.43 4.24 4.08 5.31 4.51 0.55 12.21 

30 5.50 4.67 5.15 4.11 4.86 0.61 12.46 
* Total nicotine released = nicotine permeated in receptor chambers (Table D2) + nicotine released in donor 

chamber + nicotine swallowed from donor chamber (Table D25) 
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Table D13: Amount of nicotine released* (mg) from snus as a function of SSSR 0.32 mL/min and 

media temperature 45 °C 

 

Time (min) 1 2 3 4 Mean SD %RSD 

0 0 0 0 0 0 0 - 

2.5 1.57 1.05 1.06 1.67 1.34 0.33 24.47 

5 1.68 2.08 1.27 2.46 1.87 0.52 27.60 

7.5 2.37 1.82 1.48 2.71 2.09 0.55 26.31 

10 3.23 3.04 2.14 3.50 2.98 0.59 19.85 

15 4.91 3.74 2.74 4.35 3.94 0.93 23.63 

20 6.54 5.36 4.59 3.92 5.10 1.12 22.02 

25 7.39 5.59 5.08 5.65 5.93 1.01 16.99 

30 6.95 6.62 5.43 6.35 6.34 0.66 10.35 
* Total nicotine released = nicotine permeated in receptor chambers (Table D3) + nicotine released in donor 

chamber + nicotine swallowed from donor chamber (Table D26) 

 

Table D14: Amount of nicotine released* (mg) from snus as a function of SSSR 1.66 mL/min and 

media temperature 25 °C 

 

Time (min) 1 2 3 4 Mean SD %RSD 

0 0 0 0 0 0 0 - 

2.5 1.37 0.36 0.90 0.29 0.73 0.51 69.91 

5 3.11 1.22 2.24 0.93 1.88 1.00 53.26 

7.5 5.54 2.98 3.69 2.55 3.69 1.32 35.75 

10 6.14 1.62 5.10 3.10 3.99 2.02 50.64 

15 4.93 6.25 5.62 4.76 5.39 0.68 12.70 

20 6.34 5.67 3.49 4.76 5.06 1.23 24.33 

25 8.18 6.07 7.40 5.44 6.78 1.24 18.35 

30 5.74 6.13 2.21 4.73 4.71 1.76 37.43 
* Total nicotine released = nicotine permeated in receptor chambers (Table D4) + nicotine released in donor 

chamber + nicotine swallowed from donor chamber (Table D27) 
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Table D15: Amount of nicotine released* (mg) from snus as a function of SSSR 1.66 mL/min and 

media temperature 37 °C 

 

Time (min) 1 2 3 4 Mean SD %RSD 

0 0 0 0 0 0 0 - 

2.5 0.98 0.76 1.63 1.01 1.10 0.38 34.29 

5 1.70 1.80 2.15 1.83 1.87 0.20 10.55 

7.5 3.34 3.60 4.15 3.28 3.59 0.40 11.06 

10 5.04 4.32 4.10 3.47 4.23 0.65 15.37 

15 5.34 5.05 4.79 5.73 5.23 0.41 7.77 

20 6.50 5.26 5.75 4.51 5.50 0.84 15.24 

25 5.27 5.17 5.01 5.49 5.23 0.20 3.80 

30 6.29 6.42 5.97 4.55 5.81 0.86 14.77 
* Total nicotine released = nicotine permeated in receptor chambers (Table D5) + nicotine released in donor 

chamber + nicotine swallowed from donor chamber (Table D28) 

 

Table D16: Amount of nicotine released* (mg) from snus as a function of SSSR 1.66 mL/min and 

media temperature 45 °C 

 

Time (min) 1 2 3 4 Mean SD %RSD 

0 0 0 0 0 0 0 - 

2.5 1.91 2.71 1.20 3.38 2.30 0.95 41.32 

5 3.02 4.91 2.18 4.80 3.73 1.35 36.22 

7.5 4.36 6.16 3.71 3.95 4.54 1.11 24.42 

10 5.31 7.13 4.87 6.29 5.90 1.01 17.15 

15 5.54 6.67 6.12 3.97 5.57 1.16 20.90 

20 5.29 6.87 6.61 5.81 6.14 0.73 11.84 

25 6.10 7.99 6.58 8.59 7.31 1.17 15.96 

30 6.70 7.01 6.73 7.05 6.87 0.18 2.64 
* Total nicotine released = nicotine permeated in receptor chambers (Table D6) + nicotine released in donor 

chamber + nicotine swallowed from donor chamber (Table D29) 
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Table D17: Amount of nicotine released* (mg) from snus as a function of SSSR 3 mL/min and 

media temperature 25 °C 

 

Time (min) 1 2 3 4 Mean SD %RSD 

0 0 0 0 0 0 0 - 

2.5 1.92 1.07 0.55 0.68 1.06 0.61 58.14 

5 5.44 4.76 2.15 3.54 3.97 1.45 36.46 

7.5 5.77 5.28 4.32 3.66 4.76 0.95 19.94 

10 6.07 5.02 4.51 4.52 5.03 0.73 14.54 

15 6.71 5.50 6.17 5.12 5.88 0.71 12.04 

20 6.53 5.55 5.98 6.08 6.04 0.40 6.64 

25 6.56 5.80 6.81 6.24 6.35 0.44 6.86 

30 5.89 6.65 7.77 5.09 6.35 1.14 17.99 
* Total nicotine released = nicotine permeated in receptor chambers (Table D7) + nicotine released in donor 

chamber + nicotine swallowed from donor chamber (Table D30) 

 

Table D18: Amount of nicotine released* (mg) from snus as a function of SSSR 3 mL/min and 

media temperature 37 °C 

 

Time (min) 1 2 3 4 Mean SD %RSD 

0 0 0 0 0 0 0 - 

2.5 2.48 2.46 1.97 2.06 2.24 0.26 11.79 

5 5.31 5.92 5.33 4.65 5.30 0.52 9.77 

7.5 1.55 6.51 6.11 6.13 5.08 2.36 46.47 

10 9.44 5.04 5.77 6.19 6.61 1.95 29.43 

15 8.17 6.97 7.35 6.40 7.22 0.74 10.24 

20 5.51 5.00 6.50 6.23 5.81 0.68 11.73 

25 8.23 8.31 6.52 6.71 7.44 0.96 12.89 

30 6.23 7.29 6.06 6.95 6.63 0.58 8.81 
* Total nicotine released = nicotine permeated in receptor chambers (Table D8) + nicotine released in donor 

chamber + nicotine swallowed from donor chamber (Table D31) 
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Table D19: Amount of nicotine released* (mg) from snus as a function of SSSR 3 mL/min and 

media temperature 45 °C 

 

Time (min) 1 2 3 4 Mean SD %RSD 

0 0 0 0 0 0 0 - 

2.5 3.42 2.52 2.40 3.88 3.05 0.72 23.44 

5 6.08 5.79 6.27 4.73 5.72 0.69 11.98 

7.5 6.03 6.55 7.12 6.65 6.59 0.45 6.77 

10 6.41 6.64 7.12 4.96 6.28 0.93 14.83 

15 6.87 6.53 7.07 5.82 6.57 0.55 8.37 

20 6.32 7.02 7.09 5.49 6.48 0.75 11.51 

25 7.64 6.69 7.83 6.87 7.26 0.56 7.77 

30 7.91 5.55 8.56 4.94 6.74 1.76 26.16 
* Total nicotine released = nicotine permeated in receptor chambers (Table D9) + nicotine released in donor 

chamber + nicotine swallowed from donor chamber (Table D32) 
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Table D20: Amount of nicotine permeated (mg) from snus at optimal conditions of SSSR 0.55 

mL/min and media temperature 43 °C 

 

Time (min) 1 2 3 4 Mean SD %RSD 

0 0 0 0 0 0 0 - 

2.5 0.28 0.30 0.24 0.17 0.25 0.06 24.32 

5 0.43 0.38 0.37 0.26 0.36 0.07 20.09 

7.5 0.59 0.52 0.50 0.39 0.50 0.09 17.15 

10 0.70 0.68 0.64 0.55 0.64 0.07 10.57 

15 0.94 0.89 0.89 0.68 0.85 0.11 13.37 

20 1.13 1.14 1.10 0.85 1.06 0.14 12.94 

25 1.30 1.37 1.19 1.06 1.23 0.13 10.96 

30 1.43 1.56 1.42 1.16 1.39 0.17 11.91 

Permeation rate (mg/min)* 0.038 0.046 0.039 0.034 0.039 0.005 12.329 

Ratio of rates** 1.05 1.27 1.09 0.94 1.09 0.13 12.33 

* Permeation rate was calculated from the amount of nicotine permeated from 7.5 to 30 min 
** Ratio of rates is the ratio of in vitro nicotine permeation to the in vivo nicotine absorption rate (0.036 mg/min) 

 

Table D21: Amount of nicotine released* (mg) from snus at optimal conditions of SSSR 0.55 

mL/min and media temperature 43 °C 

 

Time (min) 1 2 3 4 Mean SD %RSD 

0 0 0 0 0 0 0 - 

2.5 1.65 1.39 2.18 1.20 1.60 0.42 26.40 

5 2.26 1.50 3.65 2.37 2.45 0.89 36.32 

7.5 3.28 1.31 4.43 4.64 3.42 1.52 44.62 

10 5.77 3.61 7.20 3.49 5.02 1.79 35.73 

15 4.21 4.03 6.85 2.69 4.44 1.74 39.24 

20 5.42 5.68 6.55 4.76 5.60 0.74 13.21 

25 5.92 7.95 8.84 5.47 7.05 1.61 22.84 

30 5.96 10.30 7.99 5.72 7.49 2.13 28.44 
* Total nicotine released = nicotine permeated in receptor chambers (Table D20) + nicotine released in donor 

chamber + nicotine swallowed from donor chamber (Table D23) 
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Table D22: Method for calculation of the amount of nicotine swallowed as a function of SSSR (mL/min) and temperature (°C) over 

time 

 

Time 

(min) 

(A) 

Dilution 

corrected 

concentration 

(mcg/mL) 

(B)* 

SSSR 

(mL/min) 

(C)** 

Total 

volume of 

media 

swallowed 

(mL) 

[AxC] 

(D) 

 

Amount of 

nicotine  in 

the volume 

of media 

swallowed 

(mcg) 

[BxD] 

(E) 

Amount of 

nicotine in the 

volume of 

media sampled  

(0.04 mL) 

[Bx0.04/1] 

(mcg) 

(F) 

Amount of 

nicotine lost at 

each time point 

due to sampling 

(mcg) 

(G) 

Cumulative 

amount of 

nicotine 

swallowed 

[E+G] 

(mcg) 

(H) 

Cumulative 

amount of 

nicotine 

swallowed 

[H/1000] 

(mg) 

(I) 

1 0 0 0 0 0 0 0 0 0 

2 2.5 B2 C D2=A2xC E2=B2xD2 F2=B2x0.04 G2=0 H2=E2+G2 
I2=H2/100

0 

3 5 B3 C D3=A3xC E3=B3xD3 F3=B2x0.04 
G3=Sum of F1 to 

F2 
H3=E3+G3 

I3=H3/100

0 

4 7.5 B4 C D4=A4xC E4=B4xD4 F4=B2x0.04 
G4=Sum of F1 to 

F3 
H4=E4+G4 

I4=H4/100

0 

5 10 B5 C D5=A5xC E5=B5xD5 F5=B2x0.04 
G5=Sum of F1 to 

F4 
H5=E5+G5 

I5=H5/100

0 

6 15 B6 C D6=A6xC E6=B6xD6 F6=B2x0.04 
G6=Sum of F1 to 

F5 
H6=E6+G6 

I6=H6/100

0 

7 20 B7 C D7=A7xC E7=B7xD7 F7=B2x0.04 
G7=Sum of F1 to 

F6 
H7=E7+G7 

I7=H7/100

0 

8 25 B8 C D8=A8xC E8=B8xD8 F8=B2x0.04 
G8=Sum of F1 to 

F7 
H8=E8+G8 

I8=H8/100

0 

9 30 B9 C D9=A9xC E9=B9xD9 F9=B2x0.04 
G9=Sum of F1 to 

F8 
H9=E9+G9 

I9=H9/100

0 
* Dilution corrected concentration = Concentration (mcg/mL) x Dilution factor 

** SSSR = stimulated saliva swallowing rate = 0.32 or 1.66 or 3 mL/min 
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Table D23: Amount of nicotine swallowed (mg) from snus at optimal conditions of SSSR 0.55 

mL/min and media temperature 43 °C 

 

Time (min) 1 2 3 4 Mean SD %RSD 

0 0 0 0 0 0 0 - 

2.5 0.09 0.08 0.13 0.08 0.10 0.03 28.02 

5 0.21 0.16 0.35 0.22 0.24 0.08 34.99 

7.5 0.39 0.20 0.60 0.52 0.43 0.17 40.74 

10 0.71 0.40 1.01 0.69 0.70 0.25 35.45 

15 1.04 0.77 1.65 0.87 1.08 0.39 36.40 

20 1.46 1.28 2.14 1.28 1.54 0.41 26.53 

25 1.87 2.00 2.86 1.71 2.11 0.51 24.27 

30 2.22 2.92 3.34 2.10 2.64 0.59 22.26 

 

 

 

Table D24: Amount of nicotine swallowed (mg) from snus as a function of SSSR 0.32 mL/min 

and media temperature 25 °C 

 

Time (min) 1 2 3 4 Mean SD %RSD 

0 0 0 0 0 0 0 - 

2.5 0.01 0.03 0.01 0.01 0.01 0.01 99.16 

5 0.02 0.05 0.01 0.01 0.02 0.02 80.96 

7.5 0.03 0.10 0.02 0.02 0.04 0.04 85.11 

10 0.06 0.15 0.03 0.03 0.07 0.05 81.26 

15 0.16 0.32 0.08 0.07 0.16 0.12 72.58 

20 0.36 0.57 0.23 0.19 0.34 0.17 51.04 

25 0.51 0.92 0.44 0.36 0.56 0.25 45.35 

30 0.69 1.21 0.64 0.48 0.75 0.32 41.99 
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Table D25: Amount of nicotine swallowed (mg) from snus as a function of SSSR 0.32 mL/min 

and media temperature 37 °C 

 

Time (min) 1 2 3 4 Mean SD %RSD 

0 0 0 0 0 0 0 - 

2.5 0.02 0.01 0.01 0.02 0.02 0.00 20.95 

5 0.04 0.05 0.04 0.05 0.04 0.01 17.50 

7.5 0.07 0.08 0.07 0.08 0.07 0.01 8.33 

10 0.10 0.13 0.09 0.13 0.11 0.02 21.34 

15 0.21 0.31 0.21 0.30 0.26 0.06 21.36 

20 0.39 0.51 0.42 0.54 0.46 0.07 15.16 

25 0.62 0.72 0.62 0.82 0.69 0.10 13.99 

30 0.89 0.93 0.88 0.99 0.92 0.05 5.44 

 

 

 

Table D26: Amount of nicotine swallowed (mg) from snus as a function of SSSR 0.32 mL/min 

and media temperature 45 °C 

 

Time (min) 1 2 3 4 Mean SD %RSD 

0 0 0 0 0 0 0 - 

2.5 0.04 0.03 0.03 0.06 0.04 0.01 36.91 

5 0.08 0.08 0.06 0.13 0.09 0.03 35.26 

7.5 0.14 0.12 0.09 0.21 0.14 0.05 37.22 

10 0.22 0.19 0.14 0.31 0.21 0.07 33.83 

15 0.45 0.36 0.25 0.54 0.40 0.12 31.26 

20 0.76 0.60 0.46 0.70 0.63 0.13 20.81 

25 1.09 0.84 0.68 0.96 0.89 0.18 19.77 

30 1.36 1.11 0.89 1.25 1.15 0.20 17.57 
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Table D27: Amount of nicotine swallowed (mg) from snus as a function of SSSR 1.66 mL/min 

and media temperature 25 °C 

 

Time (min) 1 2 3 4 Mean SD %RSD 

0 0 0 0 0 0 0 - 

2.5 0.18 0.04 0.14 0.04 0.10 0.07 73.52 

5 0.58 0.21 0.47 0.16 0.36 0.20 56.36 

7.5 1.25 0.64 0.98 0.54 0.85 0.33 38.30 

10 1.91 0.76 1.63 0.94 1.31 0.55 41.97 

15 2.59 2.26 2.69 1.97 2.38 0.33 13.85 

20 3.43 3.12 2.84 2.68 3.02 0.33 10.97 

25 4.51 3.83 4.03 3.37 3.94 0.47 12.02 

30 4.71 4.34 3.42 3.64 4.03 0.60 14.94 

 

 

 

Table D28: Amount of nicotine swallowed (mg) from snus as a function of SSSR 1.66 mL/min 

and media temperature 37 °C 

 

Time (min) 1 2 3 4 Mean SD %RSD 

0 0 0 0 0 0 0 - 

2.5 0.16 0.14 0.27 0.16 0.18 0.06 34.99 

5 0.40 0.44 0.58 0.42 0.46 0.08 18.17 

7.5 0.87 1.04 1.18 0.87 0.99 0.15 14.92 

10 1.55 1.64 1.65 1.27 1.53 0.18 11.67 

15 2.57 2.66 2.49 2.47 2.55 0.08 3.32 

20 3.59 3.38 3.35 2.95 3.32 0.27 8.11 

25 3.91 3.80 3.70 3.54 3.74 0.16 4.19 

30 4.43 4.50 4.22 3.68 4.21 0.37 8.80 
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Table D29: Amount of nicotine swallowed (mg) from snus as a function of SSSR 1.66 mL/min 

and media temperature 45 °C 

 

Time (min) 1 2 3 4 Mean SD %RSD 

0 0 0 0 0 0 0 - 

2.5 0.31 0.47 0.23 0.74 0.44 0.23 51.73 

5 0.75 1.24 0.61 1.62 1.06 0.47 44.29 

7.5 1.32 2.08 1.23 2.06 1.67 0.46 27.40 

10 1.95 2.93 1.95 2.92 2.44 0.56 23.04 

15 2.86 3.87 3.25 3.02 3.25 0.44 13.58 

20 3.38 4.53 4.18 3.76 3.96 0.50 12.64 

25 3.96 5.32 4.72 5.26 4.82 0.63 13.07 

30 4.54 5.50 5.08 5.56 5.17 0.47 9.15 

 

 

 

Table D30: Amount of nicotine swallowed (mg) from snus as a function of SSSR 3 mL/min and 

media temperature 25 °C 

 

Time (min) 1 2 3 4 Mean SD %RSD 

0 0 0 0 0 0 0 - 

2.5 0.39 0.24 0.15 0.17 0.24 0.11 45.32 

5 1.43 1.30 0.71 1.06 1.12 0.32 28.05 

7.5 2.31 2.22 1.73 1.74 2.00 0.31 15.29 

10 3.06 2.85 2.50 2.46 2.72 0.29 10.54 

15 4.24 3.79 4.07 3.51 3.90 0.32 8.23 

20 4.93 4.37 4.81 4.51 4.66 0.26 5.57 

25 5.38 4.82 5.57 5.14 5.23 0.33 6.26 

30 5.44 5.41 6.42 5.00 5.57 0.60 10.83 
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Table D31: Amount of nicotine swallowed (mg) from snus as a function of SSSR 3 mL/min and 

media temperature 37 °C 

 

Time (min) 1 2 3 4 Mean SD %RSD 

0 0 0 0 0 0 0 - 

2.5 0.54 0.54 0.43 0.46 0.49 0.06 11.49 

5 1.59 1.73 1.51 1.40 1.56 0.14 8.87 

7.5 1.51 2.76 2.52 2.45 2.31 0.55 23.74 

10 3.26 3.21 3.19 3.25 3.23 0.04 1.11 

15 4.94 4.45 4.60 4.31 4.57 0.27 5.96 

20 4.98 4.48 5.14 4.88 4.87 0.28 5.78 

25 6.01 5.72 5.47 5.40 5.65 0.28 4.89 

30 5.90 6.11 5.50 5.82 5.83 0.25 4.37 

 

 

 

Table D32: Amount of nicotine swallowed (mg) from snus as a function of SSSR 3 mL/min and 

media temperature 45 °C 

 

Time (min) 1 2 3 4 Mean SD %RSD 

0 0 0 0 0 0 0 - 

2.5 0.75 0.54 0.52 0.87 0.67 0.17 25.03 

5 1.92 1.69 1.79 1.71 1.78 0.10 5.88 

7.5 2.79 2.73 2.94 2.78 2.81 0.09 3.25 

10 3.53 3.53 3.81 3.20 3.52 0.25 7.06 

15 4.59 4.47 4.84 4.01 4.48 0.35 7.73 

20 5.03 5.22 5.47 4.38 5.02 0.47 9.34 

25 5.78 5.55 6.14 5.11 5.65 0.43 7.66 

30 6.35 5.33 6.83 4.84 5.84 0.91 15.64 
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APPENDIX E 

 

 

 

 

REPLICATE AND MEAN DATA FOR NICOTINE RELEASE/PERMEATION, RATES 

AND LAG TIME OBTAINED WITH EXPERIMENTS REPORTED IN CHAPTER 6  
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Table E0: Method for calculation of the amount of nicotine permeated** from stonewall as a function of donor media flow rate (mL/min) 

and media temperature (°C) over time 

 

  

 

Time 

(min) 

(A) 

Dilution 

corrected 

concentratio

n (mcg/mL) 

(B)* 

Amount of 

nicotine  in the 

volume of 

receptor media 

(25 mL) 

(mcg) 

[Bx25] 

(C) 

Amount of nicotine 

in the volume of 

receptor media 

sampled (1 mL) 

[Cx1/25] 

(mcg) 

(D) 

Amount of nicotine lost 

at each time point due 

to sampling  

(mcg) 

(E) 

Cumulative 

amount of 

nicotine 

permeated 

[C+E] 

(mcg) 

(F) 

Cumulative 

amount of 

nicotine 

permeated 

[H/1000] 

(mg) 

(G) 

1 0 0 0 0 0 0 0 

2 A2 B2 C2=B2x25 D2=(C2x1)/25 E2=0 F2=C2+E2 G2=F2/1000 

3 A3 B3 C3=B3x25 D3=(C3x1)/25 E3=Sum of D1 to D2 F3=C3+E3 G3=F3/1000 

4 A4 B4 C4=B4x25 D4=(C4x1)/25 E4=Sum of D1 to D3 F4=C4+E4 G4=F4/1000 

5 A5 B5 C5=B5x25 D5=(C5x1)/25 E5=Sum of D1 to D4 F5=C5+E5 G5=F5/1000 

6 A6 B6 C6=B6x25 D6=(C6x1)/25 E6=Sum of D1 to D5 F6=C6+E6 G6=F6/1000 

7 A7 B7 C7=B7x25 D7=(C7x1)/25 E7=Sum of D1 to D6 F7=C7+E7 G7=F7/1000 

8 A8 B8 C8=B8x25 D8=(C8x1)/25 E8=Sum of D1 to D7 F8=C8+E8 G8=F8/1000 

9 A9 B9 C9=B9x25 D9=(C9x1)/25 E9=Sum of D1 to D8 F9=C9+E9 G9=F9/1000 

10 A10 B10 C10=C10X25 D10=(D10X1)/25 E10=Sum of D1 to D9 F10=C10+E10 G10=G10/1000 

* Dilution corrected concentration = Concentration (mcg/mL) x Dilution factor 

** Amount permeated in both receptors calculated by the above method are added to obtain the total amount of nicotine permeated  
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Table E1: Peak areas for nicotine analysis for the external standards and spiked in vitro donor 

samples for stonewall 

 

Nicotine external standards 

Nicotine concentration (μg/mL) 1 2 3 Mean SD %RSD 

0.5 7370 8507 7105 7661 744.83 9.72 

1 19411 16673 15629 17238 1953.21 11.33 

2 36222 35678 32805 34902 1836.03 5.26 

4 69442 65280 69581 68101 2444.05 3.59 

8 147358 142462 146844 145555 2690.63 1.85 

16 284743 282572 285954 284423 1713.56 0.60 

32 575295 564007 610972 583425 24515.23 4.20 

Spiked donor in vitro sample 

Nicotine concentration (μg/mL) 1 2 3 Mean SD %RSD 

0 97314 1317.7 1.35 97314 1317.7 1.35 

0.5 105279 2463 2.34 105279 2463 2.34 

1 117081 3132.9 2.68 117081 3132.9 2.68 

2 138096 6615.8 4.79 138096 6615.8 4.79 

4 164350 3513.9 2.14 164350 3513.9 2.14 

8 237607 6885.5 2.90 237607 6885.5 2.90 

16 385262 5334 1.38 385262 5334 1.38 

32 650831 30923 4.75 650831 30923 4.75 
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Table E2: Peak areas for nicotine analysis for the external standards and spiked in vitro receptor 

samples for stonewall 

 

Nicotine external standards 

Nicotine concentration (μg/mL) 1 2 3 Mean SD %RSD 

0.5 7950 8177 7468 7865 362.06 4.60 

1 16424 15837 16112 16124 293.69 1.82 

2 33967 35183 33002 34051 1092.90 3.21 

4 70672 69744 71528 70648 892.24 1.26 

8 142075 139360 148622 143352 4761.29 3.32 

16 280222 276443 288881 281849 6376.56 2.26 

32 562462 562444 569165 564690 3875.19 0.69 

Spiked receptor in vitro sample 

Nicotine concentration (μg/mL) 1 2 3 Mean SD %RSD 

0 127117 127804 125265 126729 1313.3 1.04 

0.5 134747 138090 136104 136314 1681.3 1.23 

1 149875 147519 147446 148280 1381.8 0.93 

2 170767 161327 166368 166154 4723.6 2.84 

4 183983 183074 191951 186336 4883.9 2.62 

8 240126 253030 263309 252155 11616 4.61 

16 409831 405036 405467 406778 2652.7 0.65 

32 623146 639680 696851 653226 38675 5.92 
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Table E3: Peak purity testing on the nicotine standards and in vitro donor sample for stonewall 

using the autothreshold method* 

 

 
  Purity Angle*  Threshold Angle* 

  Mean SD %RSD  Mean SD %RSD 

Nicotine 

standard 

(0.5 

µg/mL) 

1 2.487 

2.144 0.541 25.216 

14.333 

8.657 5.320 61.452 2 1.521 7.855 

3 2.425 3.784 

Nicotine 

standard 

(32 

µg/mL) 

1 0.067 

0.067 0.018 26.866 

0.467 

0.381 0.125 32.937 2 0.085 0.439 

3 0.049 0.237 

Donor 

sample at 

60 min 

1 0.768 

0.695 0.072 10.295 

0.613 

0.931 0.335 35.981 2 0.692 0.900 

3 0.625 1.281 

* Peak purity analysis was performed at the wavelength range of 250-270 nm 

 

Table E4: Peak purity testing on the nicotine standards and in vitro receptor samples for stonewall 

using the autothreshold method* 

 

 
  Purity Angle*  Threshold Angle* 

  Mean SD %RSD  Mean SD %RSD 

Nicotine 

standard 

(0.5 

µg/mL) 

1 1.474 

1.642 0.492 29.964 

5.670 

4.258 1.298 30.489 2 1.256 3.988 

3 2.196 3.116 

Nicotine 

standard 

(32 

µg/mL) 

1 0.051 

0.054 0.004 7.055 

0.237 

0.285 0.067 23.532 2 0.058 0.257 

3 0.052 0.362 

Donor 

sample at 

60 min 

1 0.433 

0.408 0.021 5.254 

0.480 

0.487 0.063 12.999 2 0.394 0.553 

3 0.398 0.427 

* Peak purity analysis was performed at the wavelength range of 250-270 nm 
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Table E5: Amount of nicotine permeated (mg) from stonewall as a function of the donor media 

flow rate (1.66 mL/min) and media temperature (37 °C) 

 

Time (min) 1 2 3 4 5 Mean SD %RSD 

0 0 0 0 0 0 0 0 - 

1 0.01 0.02 0.01 0.01 0.01 0.01 0.00 12.43 

5 0.02 0.03 0.03 0.02 0.02 0.02 0.01 21.42 

10 0.03 0.05 0.04 0.03 0.03 0.04 0.01 24.90 

15 0.05 0.06 0.06 0.04 0.04 0.05 0.01 18.72 

20 0.06 0.08 0.08 0.06 0.06 0.07 0.01 19.33 

25 0.08 0.11 0.10 0.08 0.07 0.09 0.02 18.24 

30 0.10 0.12 0.12 0.09 0.09 0.10 0.02 15.53 

45 0.16 0.19 0.19 0.15 0.15 0.17 0.02 11.71 

60 0.22 0.28 0.26 0.21 0.21 0.23 0.03 13.51 

Permeation rate (mg/min)* 0.003 0.004 0.004 0.003 0.003 0.003 0.001 18.496 

Lag time (min) 0 0 0 0 0 0 0 - 

Ratio of rates** 0.03 0.04 0.04 0.03 0.03 0.04 0.01 18.50 
* Permeation rate was calculated from amount of nicotine permeated from 5 to 20 min 
** Ratio of rates is the ratio of in vitro nicotine permeation to in vivo nicotine absorption rate (0.083 mg/min) 
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Table E6: Amount of nicotine permeated (mg) from stonewall as a function of the donor media 

flow rate (16 mL/min) and media temperature (37 °C) 

 

Time (min) 1 2 3 Mean SD %RSD 

0 0 0 0 0 0 - 

1 0.01 0.02 0.01 0.01 0.01 58.61 

5 0.03 0.05 0.02 0.04 0.01 39.55 

10 0.07 0.08 0.07 0.08 0.00 6.10 

15 0.11 0.13 0.15 0.13 0.02 13.44 

20 0.18 0.15 0.19 0.17 0.02 12.51 

25 0.21 0.23 0.25 0.23 0.02 9.23 

30 0.28 0.30 0.32 0.30 0.02 6.34 

45 0.43 0.49 0.55 0.49 0.06 12.24 

60 0.62 0.77 0.81 0.73 0.10 13.75 

Permeation rate (mg/min)* 0.009 0.007 0.010 0.009 0.002 18.498 

Lag time (min) 1.12 0.00 1.57 0.90 0.81 90.08 

Ratio of rates** 0.11 0.08 0.12 0.10 0.02 18.50 
* Permeation rate was calculated from amount of nicotine permeated from 5 to 20 min 
** Ratio of rates is the ratio of in vitro nicotine permeation to in vivo nicotine absorption rate (0.083 mg/min) 
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Table E7: Amount of nicotine permeated (mg) from stonewall as a function of the donor media 

flow rate (16 mL/min) and media temperature (45 °C) 

 

Time (min) 1 2 3 4 5 
Mea

n 
SD %RSD 

0 0 0 0 0 0 0 0 - 

1 0.02 0.03 0.03 0.04 0.04 0.03 0.01 30.17 

5 0.06 0.07 0.06 0.09 0.07 0.07 0.01 18.03 

10 0.11 0.14 0.11 0.15 0.13 0.13 0.02 14.69 

15 0.21 0.19 0.17 0.21 0.20 0.19 0.02 9.23 

20 0.23 0.25 0.23 0.29 0.25 0.25 0.03 10.19 

25 0.29 0.33 0.29 0.35 0.33 0.32 0.03 8.66 

30 0.34 0.39 0.38 0.41 0.38 0.38 0.03 6.89 

45 0.57 0.66 0.55 0.67 0.60 0.61 0.05 8.99 

60 0.76 0.95 0.77 0.95 0.80 0.85 0.10 11.22 

Permeation rate 

(mg/min)* 
0.012 0.012 0.011 0.013 0.012 0.012 

0.00

1 
7.604 

Lag time (min) 0.10 1.28 1.07 1.78 1.62 1.17 0.66 56.44 

Ratio of rates** 0.14 0.14 0.13 0.16 0.14 0.14 0.01 7.60 
* Permeation rate was calculated from amount of nicotine permeated from 5 to 20 min 
** Ratio of rates is the ratio of in vitro nicotine permeation to in vivo nicotine absorption rate (0.083 mg/min) 
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Table E8: Amount of nicotine permeated (mg) from powdered stonewall as a function of the donor 

media flow rate (16 mL/min) and media temperature (37 °C) 

 

Time (min) 1 2 3 Mean SD %RSD 

0 0 0 0 0 0 - 

1 0.15 0.13 0.10 0.13 0.02 19.57 

5 0.27 0.27 0.25 0.26 0.01 5.14 

10 0.38 0.40 0.39 0.39 0.01 1.84 

15 0.52 0.53 0.50 0.52 0.01 2.90 

20 0.63 0.65 0.62 0.63 0.02 2.76 

25 0.67 0.73 0.70 0.70 0.03 4.79 

30 0.75 0.79 0.76 0.76 0.02 2.83 

45 0.87 0.99 1.03 0.96 0.08 8.69 

60 1.09 1.14 1.19 1.14 0.05 4.55 

Permeation rate (mg/min)* 0.025 0.026 0.025 0.025 0.001 2.042 

Lag time (min) 0 0 0 0 0 - 

Ratio of rates** 0.30 0.31 0.30 0.30 0.01 2.04 
* Permeation rate was calculated from amount of nicotine permeated from 5 to 20 min 
** Ratio of rates is the ratio of in vitro nicotine permeation to in vivo nicotine absorption rate (0.083 mg/min) 
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Table E9: Method for calculation of the amount of nicotine released from stonewall as a function of donor media flow rate (mL/min) 

and media temperature (°C) over time  

 

  

 

Time 

(min) 

(A) 

Dilution 

corrected 

concentration 

(mcg/mL) 

(B)* 

Amount of 

nicotine  in 

the volume 

of donor 

media (25 

mL) 

(mcg) 

[Bx25] 

(C) 

Amount of nicotine 

in the volume of 

donor media 

sampled (0.04 mL) 

[Cx0.04/25] 

(mcg) 

(D) 

Amount of nicotine 

lost at each time point 

due to sampling 

(mcg) 

(E) 

Cumulative 

amount of 

nicotine 

released in the 

donor 

reservoir of 

BTA 

[C+E] 

(mcg) 

(F) 

Cumulative 

amount of 

nicotine 

released in the 

donor reservoir 

of BTA 

[H/1000] 

(mg) 

(G) 

Amount of 

nicotine 

permeated 

into the 

receptor 

chamber of 

BTA 

(mg) 

(H)** 

Total 

amount of 

nicotine 

released in 

the donor 

chamber of 

BTA 

(G+H) 

(mg) 

1 0 0 0 0 0 0 0 0 0 

2 A2 B2 C2=B2x25 D2=(C2x0.04)/25 E2=0 F2=C2+E2 G2=F2/1000 I2 G2+H2 

3 A3 B3 C3=B3x25 D3=(C3x0.04)/25 E3=Sum of D1 to D2 F3=C3+E3 G3=F3/1000 I3 G3+H3 

4 A4 B4 C4=B4x25 D4=(C4x0.04)/25 E4=Sum of D1 to D3 F4=C4+E4 G4=F4/1000 I4 G4+H4 

5 A5 B5 C5=B5x25 D5=(C5x0.04)/25 E5=Sum of D1 to D4 F5=C5+E5 G5=F5/1000 I5 G5+H5 

6 A6 B6 C6=B6x25 D6=(C6x0.04)/25 E6=Sum of D1 to D5 F6=C6+E6 G6=F6/1000 I6 G6+H6 

7 A7 B7 C7=B7x25 D7=(C7x0.04)/25 E7=Sum of D1 to D6 F7=C7+E7 G7=F7/1000 I7 G7+H7 

8 A8 B8 C8=B8x25 D8=(C8x0.04)/25 E8=Sum of D1 to D7 F8=C8+E8 G8=F8/1000 I8 G8+H8 

9 A9 B9 C9=B9x25 D9=(C9x0.04)/25 E9=Sum of D1 to D8 F9=C9+E9 G9=F9/1000 I9 G9+H9 

10 A10 B10 C10=B10x25 D10=(C10x0.04)/25 E10=Sum of D1 to D9 F10=C10+E10 G10=F10/1000 I10 G10+H10 

* Dilution corrected concentration = Concentration (mcg/mL) x Dilution factor 

** Refer Table E0 
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Table E10: Amount of nicotine released (mg) from stonewall as a function of the donor media 

flow rate (1.66 mL/min) and media temperature (37 °C) 

 

Time (min) 1 2 3 Mean SD %RSD 

0 0 0 0 0 0 - 

1 0.22 0.07 0.06 0.12 0.09 77.95 

5 0.37 0.40 0.19 0.32 0.11 34.90 

10 0.48 0.34 0.29 0.37 0.09 25.56 

15 0.51 0.45 0.39 0.45 0.06 13.25 

20 0.61 0.53 0.52 0.55 0.05 9.40 

25 0.68 0.72 0.59 0.66 0.07 10.54 

30 0.73 0.71 0.66 0.70 0.04 5.03 

45 1.12 0.91 0.86 0.96 0.14 14.21 

60 1.13 1.12 1.07 1.11 0.03 2.66 

Release rate (mg/min)* 0.0157 0.016 0.0166 0.016 0.0005 2.846 

Lag time (min) 0 0 0 0 0 - 

* Release rate was calculated from amount of nicotine released from 1 to 60 min 

 

Table E11: Amount of nicotine released (mg) from stonewall as a function of the donor media 

flow rate (16 mL/min) and media temperature (37 °C) 

 

Time (min) 1 2 3 Mean SD %RSD 

0 0 0 0 0 0 - 

1 0.23 0.35 0.19 0.26 0.08 32.11 

5 0.44 0.53 0.41 0.46 0.06 13.59 

10 0.60 0.71 0.71 0.67 0.07 9.79 

15 0.79 0.89 0.95 0.88 0.08 8.92 

20 0.91 1.06 1.10 1.03 0.10 9.92 

25 0.93 1.23 1.35 1.17 0.22 18.37 

30 1.11 1.42 1.65 1.39 0.27 19.54 

45 1.38 1.87 1.99 1.75 0.33 18.62 

60 1.76 2.42 2.53 2.23 0.42 18.71 

Release rate (mg/min)* 0.024 0.034 0.039 0.032 0.008 23.369 

Lag time (min) 0 0 0 0 0 - 

* Release rate was calculated from amount of nicotine released from 1 to 60 min 



 

 

279 

 

Table E12: Amount of nicotine released (mg) from stonewall as a function of the donor media 

flow rate (16 mL/min) and media temperature (45 °C) 

 

Time (min) 1 2 3 Mean SD %RSD 

0 0 0 0 0 0 - 

1 0.36 0.32 0.26 0.31 0.05 16.41 

5 0.66 0.59 0.56 0.60 0.05 8.51 

10 0.97 0.78 0.74 0.83 0.12 15.08 

15 1.13 0.98 0.94 1.02 0.10 9.62 

20 1.39 1.15 1.15 1.23 0.14 11.33 

25 1.68 1.32 1.29 1.43 0.21 15.03 

30 1.93 1.50 1.45 1.63 0.26 16.25 

45 2.72 2.14 2.08 2.31 0.35 15.32 

60 3.48 2.91 2.53 2.97 0.48 15.99 

Release rate (mg/min)* 0.052 0.042 0.038 0.044 0.007 16.907 

Lag time (min) 0 0 0 0 0 - 

* Release rate was calculated from amount of nicotine released from 1 to 60 min 

Table E13: Amount of nicotine released (mg) from powdered stonewall as a function of the donor 

media flow rate (16 mL/min) and media temperature (37 °C) 

 

Time (min) 1 2 3 Mean SD %RSD 

0 0 0 0 0 0 - 

1 1.15 1.03 1.07 1.08 0.06 5.67 

5 1.55 1.72 1.70 1.65 0.09 5.52 

10 1.77 1.96 1.93 1.88 0.10 5.35 

15 2.19 1.99 2.14 2.11 0.10 4.96 

20 2.03 2.29 2.26 2.19 0.14 6.47 

25 2.40 2.46 2.38 2.41 0.04 1.69 

30 2.42 2.52 2.41 2.45 0.06 2.62 

45 2.11 2.67 2.67 2.48 0.32 12.95 

60 2.42 2.83 2.55 2.60 0.21 7.95 

Release rate (mg/min)* 0.068 0.100 0.094 0.087 0.017 19.875 

Lag time (min) 0 0 0 0 0 - 

* Release rate was calculated from amount of nicotine released from 1 to 10 min 
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