
Virginia Commonwealth University
VCU Scholars Compass

Theses and Dissertations Graduate School

2013

Performance and Reliability Study and Exploration
of NAND Flash-based Solid State Drives
Guanying Wu
Virginia Commonwealth University

Follow this and additional works at: http://scholarscompass.vcu.edu/etd

Part of the Engineering Commons

© The Author

This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in
Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.

Downloaded from
http://scholarscompass.vcu.edu/etd/3159

http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fetd%2F3159&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fetd%2F3159&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu?utm_source=scholarscompass.vcu.edu%2Fetd%2F3159&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F3159&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/gradschool?utm_source=scholarscompass.vcu.edu%2Fetd%2F3159&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F3159&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=scholarscompass.vcu.edu%2Fetd%2F3159&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd/3159?utm_source=scholarscompass.vcu.edu%2Fetd%2F3159&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu

c© by Guanying Wu, 2013

All Rights Reserved.

i

Performance and Reliability Study and
Exploration of NAND Flash-based Solid State

Drives

A dissertation submitted in partial fulfillment of the requirements for the
degree of Doctor of Philosophy at Virginia Commonwealth University.

by

Guanying Wu
B. S., Zhejiang University, Hangzhou, China. July, 2007.

M. S., Tennessee Technological University, Cookeville, TN, USA.
December, 2009.

Director: Dr. Xubin He, Associate Professor
Department of Electrical and Computer Engineering

Virginia Commonwealth University
Richmond, Virginia

August 2013

Acknowledgements

I would like to express the deepest appreciation to my committee chair Dr. Xubin He,

for his constant support and guidance at VCU as well as TTU in these years. Thanks to

him, I was able to develop my knowledge and skills in my field of study. In particular, I

am grateful I had his support to pursue the research in Solid State Technologies, which is

interesting, promising, as well as challenging. I also would like to thank Dr. Preetam

Ghosh, Dr. Robert H. Klenke, Dr. Weijun Xiao, and Dr. Meng Yu for serving on

my advisory committee. They were very much kind and thoughtful to me. Meanwhile,

our research group, The Storage Technology and Architecture Research (STAR) Lab, has

provided a joyful and incentive environment, from which I have benefited significantly in

both my study and life.

I would like to say thank you to my parents. I had to sacrifice the time to be around

them in the past five years and I am wishing to make it up as soon as I can. I am especially

grateful to my wife, who had been patient with me in my most miserable days. You could

not be more wonderful.

iii

Contents

List of Tables viii

List of Figures ix

Abstract xii

1 Introduction 1

1.1 Background . 1

1.1.1 NAND Flash Memory . 2

1.1.2 NAND Flash Program/Erase Algorithm 3

1.1.3 NAND Flash-based SSDs . 5

1.2 Related Work: SSD Performance and Reliability 8

1.3 Problem Statement . 10

1.4 Research Approaches . 10

2 Exploiting Workload Dynamics to Improve SSD Read Latency via Differenti-

ated Error Correction Codes 11

2.1 Introduction . 11

2.2 Background . 13

iv

2.2.1 NAND Flash Error Rate . 13

2.2.2 Error Correction Code Schemes 16

2.3 Analysis and Modeling . 17

2.3.1 Write Speed vs. Raw Reliability Trade-off 17

2.3.2 Read Access Latency . 18

2.3.3 Server Workload Analysis . 20

2.4 Architecture and Design of DiffECC . 24

2.4.1 System Overview . 24

2.4.2 Differentiated ECC Schemes: Trading-off between Write Speed

and Read Latency . 26

2.4.3 Buffer Queue Scheduling Policy 28

2.5 Evaluation . 31

2.5.1 Simulation Methodology . 31

2.5.2 The Optimistic Case of DiffECC 32

2.5.3 The Controlled Mode-switching of DiffECC 33

2.6 Summary . 37

3 Reducing SSD Access Latency via NAND Flash Program and Erase Suspen-

sion 38

3.1 Introduction . 38

3.2 Motivation . 39

3.2.1 A Simple Demonstration of Contention Effect 39

3.2.2 Configurations and Workloads . 40

3.2.3 Experimental Results . 41

v

3.3 Design . 43

3.3.1 Erase Suspension and Resumption 43

3.3.2 Program Suspension and Resumption 45

3.4 Further Discussions . 49

3.4.1 Scheduling Policy . 49

3.4.2 Implementation Issues . 51

3.4.3 The Overhead on Power Consumption 52

3.5 Evaluation . 52

3.5.1 Read Performance Gain . 52

3.5.2 Write Performance . 55

3.6 Summary . 60

4 Delta-FTL: Improving SSD Lifetime via Exploiting Content Locality 61

4.1 Introduction . 61

4.2 Related Work Exploiting the Content Locality 62

4.3 Delta-FTL Design . 64

4.3.1 Dispatching Policy: Delta Encode? 65

4.3.2 Write Buffer and Delta-encoding 66

4.3.3 Flash Allocation . 71

4.3.4 Mapping Table . 72

4.3.5 Garbage Collection . 74

4.4 Discussion: SSD Lifetime Extension of ∆FTL 75

4.4.1 Foreground Page Writes . 76

4.4.2 GC Caused P/E Operations . 76

vi

4.4.3 Summary . 79

4.5 Performance Evaluation . 79

4.5.1 Simulation Tool and SSD Configurations 80

4.5.2 Workloads . 80

4.5.3 Emulating the Content Locality 81

4.5.4 Experimental Results . 82

4.6 Summary . 89

5 Conclusions 91

List of Publications 94

Bibliography 96

Vita 106

vii

List of Tables

1.1 Values from [3] for a Samsung 4 GB Flash Module. 3

1.2 Overhead difference among full merge, partial merge and switch merge. N

stands for the number of pages per block; Nc means the number of clean

pages in the data block. 7

2.1 Disk Traces Information . 21

2.2 BCH Parameters for Each Mode . 26

2.3 Latency results for different modes . 27

2.4 The Baseline Results under 32 MB Buffer (in ms) 32

3.1 Flash Parameters . 41

3.2 Disk Traces Information . 41

3.3 Numerical Latency Values of FIFO (in ms) 42

4.1 Delta-encoding Latency . 68

4.2 List of Symbols . 69

4.3 Flash Access Latency . 69

4.4 Disk Traces Information . 81

viii

List of Figures

1.1 NAND flash memory structure. 2

1.2 Control-gate voltage pulses in program-and-verify operation. 4

1.3 Control Logic Block [10] . 4

1.4 Typical SSD Architecture [60]. 5

2.1 Threshold voltage distribution model NAND flash memory (except the

erase state). 14

2.2 Simulation of SER under two different program step voltage ∆Vpp and

hence different NAND flash memory write speed. 18

2.3 Data and ECC storage in the flash page: single segment and single ECC vs.

multiple segments and multiple ECC. 20

2.4 Read latency reduction: pipelining bus transfer and ECC decoding via page

segmentation. 20

2.5 The CDF of idle slot time of six traces. 23
2.6 Proposed system structure. 24
2.7 SER for two different modes. 27
2.8 Overview of the I/O queuing system. 28
2.9 The read and write performance of the optimistic case: 100% N(vc) = 8

writes. 33

2.10 The read and write performance of DiffECC with controlled mode-switching. 35

ix

2.11 Percentage of writes in each mode. 36

2.12 Percentage of reads in each mode. 36

3.1 Timing diagram illustrating the read latency under the effect of chip

contention. 40

3.2 Read Latency Performance Comparison: FIFO, RPS, PER, and PE0.

Results normalized to FIFO. 42

3.3 Read Latency Performance Comparison: RPS, PER, PE0, and PES IPC (P/E

Suspension using IPC). Normalized to RPS. 53

3.4 Read Latency Performance Comparison: PE0 and PES IPC (P/E Suspen-

sion using IPC). Normalized to PE0. 54

3.5 Read Latency Performance Comparison: PES IPC vs. PES IPS. Normal-

ized to PES IPC. 55

3.6 Write Latency Performance Comparison: FIFO, RPS, PES IPC, and

PES IPS. Normalized to FIFO. 56

3.7 Compare the original write latency with the effective write latency resulted

from P/E Suspension. Y axis represents the percentage of increased latency

caused by P/E suspension. 57

3.8 The percentage of writes that have ever been suspended. 58

3.9 The write latency performance of RPS and PES IPC while the maximum

write queue size varies. Normalized to FIFO. 59

3.10 Write Latency Performance Comparison: FIFO and PES IPC with Write-

Suspend-Erase enabled. Normalized to FIFO. 59

4.1 ∆FTL Overview . 64

x

4.2 ∆FTL Temp Buffer . 67

4.3 ∆FTL Delta-encoding Timeline . 70

4.4 ∆FTL Mapping Entry . 72

4.5 ∆FTL Buffered Mapping Entry . 74

4.6 Normalized GC #: comparing baseline and ∆FTL; smaller # implies longer

SSD lifetime. 83

4.7 Normalized foreground write #: comparing baseline and ∆FTL; smaller #

implies: a) larger Pc and b) lower consumption speed of clean flash space. . 84

4.8 Ratio of DLA writes (Pc). 84

4.9 Average GC gain (number of invalid pages reclaimed): comparing baseline

and ∆FTL; smaller # implies lower GC efficiency on reclaiming flash space. 85

4.10 Normalized average GC gain (number of invalid pages reclaimed): com-

paring baseline and ∆FTL. 86

4.11 Ratio of GC executed in DLA. 87

4.12 Normalized write latency performance: comparing baseline and ∆FTL. . . 87

4.13 Normalized average GC overhead. 88

4.14 Normalized read latency performance: comparing baseline and ∆FTL. . . . 89

xi

Abstract

PERFORMANCE AND RELIABILITY STUDY AND EXPLORATION OF NAND

FLASH-BASED SOLID STATE DRIVES

By Guanying Wu

A Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor

of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2013

Major Director: Dr. Xubin He, Associate Professor, Department of Electrical and

Computer Engineering

The research that stems from my doctoral dissertation focuses on addressing essential

challenges in developing techniques that utilize solid-state memory technologies (with em-

phasis on NAND flash memory) from device, circuit, architecture, and system perspectives

in order to exploit their true potential for improving I/O performance in high-performance

computing systems. These challenges include not only the performance quirks arising from

the physical nature of NAND flash memory, e.g., the inability to modify data in-place,

xii

read/write performance asymmetry, and slow and constrained erase functionality, but also

the reliability drawbacks that limits solid state drives (SSDs) from widely deployed.

To address these challenges, I have proposed, analyzed, and evaluated the I/O schedul-

ing schemes, strategies for storage space virtualization, and data protection methods, to

boost the performance and reliability of SSDs.

Key Words: Solid state devices; NAND flash memory; Data Storage; Performance;

Reliability.

xiii

Chapter 1

Introduction

Solid State Drives (SSD’s) have shown promise to be a candidate to replace traditional

hard disk drives. The benefits of SSD’s over HDD’s include better durability, higher

performance, and lower power consumption, but due to certain physical characteristics

of NAND flash, which comprise SSDs, there are some challenging areas of improvement

and further research. In this section, I will begin with an introduction to the subject of my

research, i.e., NAND flash memory and SSDs, followed by a statement of key problems to

address as well as a summary of proposed approaches.

1.1 Background

In this section, I will briefly overview the related background of my research, i.e., state-of-

the-art techniques adopted in NAND flash memory and SSD architecture.

1

1.1.1 NAND Flash Memory

In general, the data retention of NAND flash memory is done by the charge trapped in

the floating gate of the flash cell, and the amount of charge determines the logical level

of a certain cell. According to the maximum number of levels defined when the data are

retrieved, there are two primary types of NAND flash memory: Single-level cell (SLC)

and Multi-level cell (MLC). As one would expect, single-level cell flash stores one bit per

transistor, while multi-level cell flash stores multiple bits per transistor. MLC is one of the

efforts made for increasing the storage density of the flash.

Bit-line Bit-line

Source line

Word-line

Word-line

Word-line

Select gate line

Select gate line

Bit-line

Cell String

Page buffer

One or more
pages

Figure 1.1: NAND flash memory structure.

To further push the storage density envelope, NAND flash memory cells are organized

in an array→page→block hierarchy (Figure 1.1), where a NAND flash memory array is

partitioned into blocks, and each block contains a number of pages. Within each block,

each memory cell string typically contains 64 to 256 memory cells, and all the memory

cells driven by the same word-line are programmed and sensed at the same time. All the

memory cells within the same block must be erased at the same time. Data are programmed

2

and fetched in the unit of page. The read operation consists of sensing and loading the data

from cells to the page buffer and transmitting the data from page buffer to a flash controller.

The write operation consists of receiving the data page to be written from the flash

controller, loading the page buffer with the data, and then writing on the flash page using

ISPP (Incremental Step Pulse Program [10]). The erase operation simply takes a long erase

pulse (in micro seconds) to reset the cells in the target flash block. Typical access latency

values of these operations are listed in Table 1.1.

Table 1.1: Values from [3] for a Samsung 4 GB Flash Module.

Page Read to Register 25 µs

Page Program from Register 200 µs

Block Erase 1.5 ms

1.1.2 NAND Flash Program/Erase Algorithm

Compared to the read operation which simply applies the predefined voltage bias on the cell

and detects whether the cell is turned on or not, the P/E operations are more complex in that

the charging/discharging process should be precisely controlled to achieve a pre-defined

amount of charges in the cells [8]. One state-of-the-art technique known as “Incremental

Step Pulse Program”(ISPP) is used for the flash programming [10]. It consists of a series

of program and verify iterations. For each iteration, the program pulse voltage, Vpp, is

increased by ∆Vpp, which is normally a few tenth of a volt [77]. ISPP is illustrated in

Fig. 1.2. For the erase operation, the duration of the discharge/erase voltage applied on the

flash cells is ensured to remove the charges in all cells of one flash block. Therefore, the

P/E latency of NAND flash is much higher than the read latency. The execution of ISPP and

the erase process is implemented in the flash chip with an analog block and a control logic

3

pppp

Figure 1.2: Control-gate voltage pulses in program-and-verify operation.

block. The analog block is responsible for regulating and pumping the voltage for program

or erase operations. The control logic block is responsible for interpreting the interface

commands, generating the control signals for the flash cell array and the analog block,

and executing the program and erase algorithms. As shown in Figure 1.3, the write state

machine consists of three components: an algorithm controller to execute the algorithms

for the two types of operations, several counters to keep track of the number of ISPP

iterations, and a status register to record the results from the verify operation. Both

Algorithm

Controller

Counters

Status

Register

Command

Interface

Write State Machine

Requests

To Analog Block

and Flash Array

From Flash

Array

Figure 1.3: Control Logic Block [10]

program and erase operations require a precise timing control, i.e., the program or erase

voltage pulse that applies on the cell must be maintained for the predefined time period,

which is determined by the physical feature of the flash.

4

1.1.3 NAND Flash-based SSDs

Figure 1.4: Typical SSD Architecture [60].

The NAND flash by itself exhibits relatively poor performance [78, 75]. The high

performance of an SSD comes from leveraging a hierarchy of parallelism. At the lowest

level is the page, which is the basic unit of I/O read and write requests in SSDs. Erase

operations operate at the block level, which are sequential groups of pages. A typical

value for the size of a block is 64 to 256 pages. Further up the hierarchy is the plane,

and on a single die there could be several planes. Planes operate semi-independently,

offering potential speed-ups if data is striped across several planes. Additionally, certain

copy operations can operate between planes without crossing the I/O pins. An upper

level of abstraction, the chip interfaces, free the SSD controller from the analog processes

of the basic operations, i.e., read, program, and erase, with a set of defined commands.

NAND interface standards includes ONFI [56], BA-NAND [56], OneNAND [62], LBA-

NAND [71], etc. Each chip is connected via the data buses to the central control unit of

an SSD, which is typically implemented in one micro-processor coupled with RAMs. The

RAM space is often utilized to cache the write requests and mapping table entries.

5

SSDs hides the underlying details of the chip interfaces and exports the storage space

as a standard block-level disk via a software layer called Flash Translation Layer (FTL),

running on the in-drive micro-processor. The typical SSD architecture is illustrated in

Figure 1.4 [60]. FTL is a key component of an SSD in that it not only is responsible for

managing the “logical to physical” address mapping but also works as a flash memory

allocator, wear-leveler, and garbage collection engine.

Mapping Schemes

The mapping schemes of FTL’s can be classified into two types: page-level mapping, with

which a logical page can be placed onto any physical page; or block-level mapping, with

which the logical page LBA is translated to a physical block address and the offset of

that page in the block. Since with block-level mapping, one logical block corresponds

to one physical block, we refer a logical block on a physical block as a data block. As

the most commonly used mapping scheme, Log-block FTL’s [61] reserve a number of

physical blocks that are not externally visible for logging pages of updated data. In log-

block FTL’s, block-level mapping is used for the data blocks, while page-level mapping

is for the log blocks. According to the block association policy (how many data blocks

can share a log block), there are mainly three schemes, block-associative sector translation

(BAST) [38], fully-associative sector translation (FAST) [41], and set-associative sector

translation (SAST) [32]. In BAST, a log block is assigned exclusively to one data block;

in FAST, a log block can be shared among several data blocks; SAST assigns a set of data

blocks to a set of log blocks.

6

Garbage Collection Process

In the context of log-block FTL’s, when free log blocks are not sufficient, the garbage

collection process is executed, which merges clean pages on both the log block and data

block together to form a data block full of clean pages. Normally this process involves the

following routine: read clean pages from the log block and the corresponding data block(s)

and form a data block in the buffer; erase the data block(s) and log block; program the data

on a clean physical block (block that contains no data at all). Sometimes the process can be

quite simplified: if we consider a log block that contains all the clean pages of an old data

block, the log block can just replace the old data block; the old data block can be erased,

making one clean physical block. We refer to the normal process as full merge and the

simplified one as switch merge. A Partial merge happens when the log block contains only

(but not all) clean pages of one data block, and the garbage collection process only requires

that the rest of the clean pages get copied from the data block to the log block. Afterwards,

the log block is then marked as the new data block and the old data block gets erased.

To make a quantitative view of the overhead of different merge routines, Table 1.2

compares the numbers of clean page reading, page programming, and block erase, which

are involved in garbage collection routine of the BAST FTL. The former two are in the

order of number of pages, and the last one is in number of blocks.

Table 1.2: Overhead difference among full merge, partial merge and switch merge. N
stands for the number of pages per block; Nc means the number of clean pages in the data

block.

Full merge Partial merge Switch merge
Clean page reading N Nc 0
Page programming N Nc 0

Block erase 2 1 1

7

1.2 Related Work: SSD Performance and Reliability

To improve the performance and reliability of flash-based SSDs, many designs have been

proposed in the literature working with the file system, FTL, cache scheme, etc.

File systems: Early flash file systems such as YAFFS [52] and JFFS2 [25] are designed

for embedded systems and work on the raw flash. On the contrary, DFS [30] is implemented

over the virtualized flash interface offered by Fusion-IO driver. By leveraging this interface,

it avoids the complexity of physical block management of traditional file systems.

FTLs: For block-level mapping, several FTL schemes have been proposed to use a

number of physical blocks to log the updates. Examples include FAST [41], BAST [38],

SAST [32], and LAST [43]. The garbage collection of these schemes involves three

types of merge operations, full, partial, and switch merge. The block-level mapping FTL

schemes leverage the spacial or temporal locality in write workloads to reduce the overhead

introduced in the merge operations. For page level mapping, DFTL [23] is proposed

to cache the frequently used mapping table in the in-disk SRAM so as to improve the

address translation performance as well as reduce the mapping table updates in the flash; µ-

FTL [44] adopts the µ-tree on the mapping table to reduce the memory footprint. Two-level

FTL [73] is proposed to dynamically switch between page-level and block-level mapping.

Content-aware FTLs (CAFTL) [15][22] implement the deduplication technique as FTL in

SSDs. ∆FTL [74] exploits another dimension of locality, the content locality, to improve

the lifetime of SSDs.

Cache schemes: A few in-disk cache schemes like BPLRU [37], FAB [29], and

BPAC [76] are proposed to improve the sequentiality of the write workload sent to the

FTL, so as to reduce the merge operation overhead on the FTLs. CFLRU [59] which works

8

as an OS level scheduling policy, chooses to prioritize the clean cache elements when doing

replacements so that the write commitments can be reduced or avoided. Taking advantage

of fast sequential performance of HDDs, Griffin [66] and I-CASH [79] are proposed to

extend the SSD lifetime by caching SSDs with HDDs. FlashTier [63] describes a system

architecture built upon flash-based cache geared with dedicated interface for caching.

Heterogeneous material: Utilizing advantages of PCRAM, such as the in-place update

ability and faster access, Sun et al. [69] describe a hybrid architecture to log the updates on

PCRAM for flash. FlexFS [42], on the other hand, combines MLC and SLC as trading off

the capacity and erase cycle.

Wear-leveling Techniques: Dynamic wear-leveling techniques, such as [65], try to

recycle blocks of small erase counts. To address the problem of blocks containing cold

data, static wear-leveling techniques [14] try to evenly distribute the wear over the entire

SSD.

Read/Write Speed vs. Reliability Trade-offs: NAND flash memory manufacturers must

reserve enough redundant bits in the flash pages to ensure the worst case reliability at the

end of their lifetime. Y. Pan et al. proposed to trade the such reliability over-provisioning

(at the early age of the flash memory) for faster write speed by increasing ∆Vpp [58]. S.

Lee et al. proposed to exploit the self-recovery mechanics of NAND flash memory to

dynamically throttle the write performance so as to prolong the SSD lifetime [40]. In [47]

R. Liu et al. proposed to trade the retention time of NAND flash for faster write or shorter

ECCs.

9

1.3 Problem Statement

SSD Read Performance Issues: The read access latency is a critical metric of SSDs’

performance, attributed to 1) raw access time including on-chip NAND flash memory

sensing latency, flash-to-controller data transfer latency, and ECC decoding latency; 2)

the queuing delay.

SSD Reliability Issues: The limited lifetime of SSDs is a major drawback that

hinders their deployment in reliability sensitive environments. Pointed out in the literature,

“endurance and retention of SSDs is not yet proven in the field” and “integrating SSDs into

commercial systems is painfully slow”. The reliability problem of SSDs mainly comes

from the following facts. Flash memory must be erased before it can be written and it may

only be programmed/erased for a limited times (5K to 100K) [21]. In addition, the out-

of-place writes result in invalid pages to be discarded by garbage collection (GC). Extra

writes are introduced in GC operations to move valid pages to a clean block [3] which

further aggravates the lifetime problem of SSDs.

1.4 Research Approaches

On the SSD read performance issues, two approaches (DiffECC discussed in Chapter 2 and

Program/Erase Suspension discussed in Chapter 3) are proposed to reduce the latency from

two perspectives, i.e., the raw read latency and queuing delay, respectively. To enhance

SSD reliability, my work (Delta-FTL discussed in Chapter 4 falls into the area of FTL

design. Delta-FTL leverages the content locality to prolong SSD lifetime via the idea of

delta-encoding.

10

Chapter 2

Exploiting Workload Dynamics to

Improve SSD Read Latency via

Differentiated Error Correction Codes

2.1 Introduction

As pointed out in [39], the read access latency is another critical metric of SSDs. SSD

read access latency mainly consists of on-chip NAND flash memory sensing latency, flash-

to-controller data transfer latency, and ECC (Error Correction Code) decoding latency.

There is an inherent trade-off between storage density and read access latency. The storage

density can be improved by using a larger NAND flash page size. Moreover, if each entire

page is protected by a single ECC, the coding redundancy can be minimized, leading to

a higher effective storage density; however, the use of larger page size and a longer ECC

11

codeword inevitably increases the read access latency, in particular the flash-to-controller

data transfer latency and ECC decoding latency.

This work presents a cross-layer design strategy that can reduce the average SSD read

access latency when large NAND flash memory page size is used. This design strategy

is motivated by an inherent NAND flash memory device write speed vs. raw storage

reliability trade-off: if we can intentionally slow down NAND flash memory internal write

operation, which can enable a finer-grained control of memory cell programming states,

the raw NAND flash memory storage reliability will accordingly improve. Therefore,

by leveraging run-time workload variability, if the SSD controller can opportunistically

slow down the NAND flash memory write operation through appropriate use of data

buffering, it can opportunistically use different ECC coding schemes to reduce the read

access latency. In particular, if NAND flash memory is allowed to write one page of data

with a slower-than-normal speed and hence better-than-normal raw storage reliability, this

page can be partitioned into several segments and each segment is protected by a shorter

and weaker ECC. As a result, when this page is being read, since each small segment

can be decoded independently, the flash-to-controller data transfer and ECC decoding can

be largely overlapped, leading to a dramatically reduced flash read latency. The data

access workload variation naturally allows us to take advantage of the bandwidth at the

idle time to slow down the write speed of the SSDs in order to opportunistically improve

SSD read response speed, as discussed above. In this work, we propose a disk level

scheduling method to smooth the write workload and opportunistically slow down certain

write operations.

It should be pointed out that this proposed design approach does not sacrifice the SSD

write speed performance. The objective is to opportunistically slow down the NAND

12

flash memory device write operations when the device is idle, because of the data access

workload variation in the run time. Moreover, for writes, the OS page cache works on

scheduling the actual commitment on the disks and hiding the write latency. With the

aid of on-disk write buffer, the disk can adopt the write-back scheme which reports write

completion as soon as the data are buffered. These factors can be naturally leveraged to

improve the probability of opportunistic write slow down.

In the rest of this chapter, DiffECC, a novel cross-layer co-design to improve SSD read

performance using differentiated ECC schemes, is proposed, discussed, and evaluated in

detail.

2.2 Background

In this section, a model of bit error rate of NAND flash memory is introduced, followed by

a brief discussion about the error correction coding schemes (with emphasis on BCH code)

used to protect NAND flash from bit errors.

2.2.1 NAND Flash Error Rate

Ideally, threshold voltage distributions of different storage states should be sufficiently far

away from each other to ensure a high raw storage reliability. In practice, due to various

affects such as background pattern dependency, noises, and cell-to-cell interference [18],

the threshold voltage distributions may be very close to each other or even overlap, leading

to non-negligible raw bit error rates. In the following, we present an MLC cell threshold

voltage distribution model that will be used for quantitative performance evaluation and

comparison in this work. The erase state tends to have a wide Gaussian-like distribution

13

[70], i.e., the probability density function (PDF) of the threshold voltage distribution can

be approximated as

p0(x) =
1

σ0
√

2π
· e
− (x−µ)2

2σ2
0

where σ0 is the standard deviation and µ is the mean threshold voltage of the erase state.

All the other states tend to have the same threshold voltage distribution, as illustrated

in Fig. 2.1. The model consists of two parts, an uniform distribution in the middle and

Gaussian distribution tail on both sides [70]. The width of the uniform distribution equals

Vpp

Figure 2.1: Threshold voltage distribution model NAND flash memory (except the erase
state).

to the program step voltage ∆Vpp, and the standard deviation of the Gaussian distribution

is denoted as σ. The Gaussian distribution on both sides models the overall effect of

background pattern dependency, noises, and cell-to-cell interference. Let P0 and P1 denote

the probabilities of the uniform distribution and the Gaussian distribution, respectively. We

14

have the overall PDF fpr(x) as

fpr(x) =

c
σ
√
2π
, b− 0.5∆Vpp ≤ x ≤ b+ 0.5∆Vpp

c
σ
√
2π
e−

(x−b−0.5∆Vpp)2

2σ2 , x > b+ 0.5∆Vpp

c
σ
√
2π
e−

(x−b+0.5∆Vpp)2

2σ2 , x < b− 0.5∆Vpp

where b is the mean of the threshold voltage (i.e., the center of the distribution as shown

in Fig. 2.1), and the constant c can be solved based on P0 + P1 =
∫ +∞
−∞ fpr(x)dx = 1. It

is clear that, as we reduce the program step voltage ∆Vpp, adjacent states will have less

probability to overlap. Hence the raw storage reliability will improve, while the memory

write latency will accordingly increase. This suggests that there is an inherent trade-off

between NAND flash memory write latency and raw storage reliability.

The use of a larger page size can increase the effective NAND flash memory storage

density from two perspectives: (i) A larger page size enables more memory cells share the

same word-line, leading to a more compact memory cell array layout and hence higher

storage density; (ii) Given the same raw bit error rate, ECC with a longer codeword tends

to use less coding redundancy (i.e., higher code rate). A larger page size enables the use

of ECC with longer codeword length, leading to less coding redundancy and hence higher

effective storage density. However, a large page size apparently will result in a longer time

to transmit the data from the flash die to the controller. Meanwhile, the ECC decoding

latency may increase as the codeword length increases. As a result, the read response time

of SSD will inevitably increase.

15

2.2.2 Error Correction Code Schemes

As the storage density continues to grow, NAND flash memory uses increasingly powerful

ECC on each individual page to ensure storage reliability [8]. A more powerful ECC

with stronger error correction capabilities, tends to demand more redundant bits, which

causes an increase in requirements for storage space. Therefore, designers always select

an ECC that provides just enough error correction capability to satisfy the given reliability

specifications. Moreover, with the same code rate, the longer the codeword is, the better

the coding efficiency is. Hence, as pointed out earlier, ECC with a longer codeword length

requires less coding redundancy and thus leads to a higher storage density. In current design

practice, binary BCH code is being widely used in NAND flash memories [20][17][68].

Binary BCH code construction and encoding/decoding are based on binary Galois

Fields [46]. A binary Galois Filed with degree of m is represented as GF(2m). For any

m ≥ 3 and and t < 2m−1, there exists a primitive binary BCH code over GF(2m), which

has the codeword length n = 2m − 1 and information bit length k ≥ 2m − m · t and

can correct up to (or slightly more than) t errors. A primitive t-error-correcting (n, k, t)

BCH code can be shortened (i.e., eliminate a certain number, say s, of information bits)

to construct a t-error-correcting (n − s, k − s, t) BCH code with less information bits and

code length but the same redundancy. Given the raw bit error rate praw, an (n, k, t) binary

BCH code can achieve a codeword error rate of

Pe =
n∑

i=t+1

(
n

m

)
piraw(1− piraw)n−i

Binary BCH encoding can be realized efficiently using linear shift registers, while binary

BCH decoding is much more complex and the computational complexity is proportional

16

to t2. Readers can refer to [9] and [46] for a more detailed discussion of various BCH

decoding algorithms.

2.3 Analysis and Modeling

In this section, we first demonstrate how write speed would affect the raw reliability by

an example; then we discuss about reducing the read latency via page segmentation and

weaker/shorter ECC; finally, we explore the potential of applying the differentiated ECC

scheme through an analysis of read-world disk I/O workloads.

2.3.1 Write Speed vs. Raw Reliability Trade-off

A slowing down write speed which is reflected by a smaller program step voltage ∆Vpp can

improve the raw NAND flash memory reliability due to the narrowed Vth distribution. Let

us consider 2bits/cell NAND flash memory as an example. We set the program step voltage

∆Vpp to 0.4 as a baseline configuration and normalize the distance between the mean of two

adjacent threshold voltage windows as 1. Given the value of program step voltage ∆Vpp,

the BCH code decoding failure rate (i.e., the page error rate) will depend on the standard

deviations of the erased state (i.e., σ0) and the other three programmed states (i.e., σ). We

fix the normalized value of σ0 as 0.1 and carry out simulations to evaluate the sector error

rate vs. normalized σ, as shown in Fig. 2.2. The results clearly show that only 5% reduction

of the ∆Vpp can achieve a noticeable performance improvement under the same BCH code.

17

0.108 0.11 0.112 0.114 0.116 0.118 0.12
10

−15

10
−10

10
−5

10
0

σ

S
ec

to
r

E
rr

or
 R

at
e

(S
E

R
)

BCH(34528, 32800, 108), ΔV
pp

=0.400(100%)

BCH(34528, 32800, 108), ΔV
pp

=0.380(95%)

Figure 2.2: Simulation of SER under two different program step voltage ∆Vpp and hence
different NAND flash memory write speed.

2.3.2 Read Access Latency

Read access latency includes the on-chip NAND flash sensing latency, flash-to-controller

data transfer latency, and ECC decoding latency. The on-chip NAND flash sensing latency

is typically a few tens of µs. Assuming the NAND flash chip connects with the SSD

controller through a 100MHz 8-bit I/O bus, it takes at least 40.96µs and 20.48µs to transfer

one page from NAND flash chip to controller when the page size is 4 KB and 2 KB,

respectively. Typically, ECC decoding delay is linearly proportional to its codeword length.

Hence, the use of large page size will inevitably result in a longer ECC decoding delay. For

example, assuming the use of parallel BCH code decoder architecture presented in [68],

we estimate that the overall BCH decoding latency is 41.2µs and 22.3µs when using one

BCH code to protect 4 KB and 2 KB user data, respectively. Therefore, if we assume

the on-chip NAND flash page sensing latency is 25µs, the overall read access latency is

107.16µs and 67.78µs when the page size is 4 KB and 2 KB, respectively. It suggests that

the overall read latency may increase 58% when we increase the page size from 2 KB to

18

4 KB. As pointed out earlier, the use of large page size is beneficial from storage density

perspective. To improve the read response time while increasing page size, straightforward

solutions include the use of higher speed I/O bus and/or higher throughput BCH decoder.

However, increasing the bus speed and/or decoder throughput will greatly increase the

power consumption and silicon cost.

NAND flash memory has an inherent write speed vs. raw storage reliability trade-off.

Therefore, if we could exploit the run-time workload variability and use the on-chip buffer

in SSD controller to opportunistically slow down the NAND flash write operations, we can

opportunistically increase the NAND flash raw storage reliability and hence use shorter and

weaker ECC, which can directly reduce overall read access latency. This intuition leads to

the basic idea of this work, i.e., by opportunistically slowing down NAND flash memory

write operations, we can use different ECC coding schemes in order to reduce average

overall SSD read access latency.

In particular, given better NAND flash memory raw storage reliability from slow

programming speed, we can partition one large page into a few smaller segments, each

one is protected with one shorter (thus weaker) ECC. Figure 2.3(a) illustrates the baseline

mode of data and ECC storage in the flash page where the entire data area is encoded with

ECC as a whole; Figure 2.3(b) shows an example of the proposed page segmentation: the

data is split into 4 segments and each segment is encoded with ECC individually.

With segmentation, the flash-to-controller data transfer and ECC decoding can be

largely overlapped, i.e., once the controller receives the first segment, it starts to decode

while the following segments are being transferred. This can largely reduce the overall

read access time of a flash page. We illustrate this idea in Figure 2.4: after the flash

sensing latency (Tread raw), the baseline mode would take a long bus transfer period (Tbus)

19

Data ECC
Other OOB

Info

(a) Single segment, single ECC

(b) Multiple segments, multiple ECCs

Data Seg 1 ECC 1 Data Seg 2 ECC 2 Data Seg 3 ECC 3 Data Seg 4 ECC 4
Other OOB

Info

Figure 2.3: Data and ECC storage in the flash page: single segment and single ECC vs.
multiple segments and multiple ECC.

and ECC decoding period (Tecc decode) without being able to overlap these two periods.

However, with segmentation, because Tbus of current segment transfer and Tecc decode of

previous segment decoding are independent of each other and thus can be overlapped, we

may achieve reduced read latency compared to the baseline mode.

(a) Single segment, single ECC

(b) Multiple segments, multiple ECCs

Tecc_decodeTread_raw Tbus

Tbus Tecc_decode

Tbus Tecc_decode

Tbus Tecc_decode

Tread_raw Tecc_decodeTbus

Figure 2.4: Read latency reduction: pipelining bus transfer and ECC decoding via page
segmentation.

2.3.3 Server Workload Analysis

The workloads of the servers are often time-varying, while to build a server, the

hardware/software configurations are determined by the needs of the peak performance,

which is often affected by the request burstness. For example, Kavalanekar et al. [35]

characterized the block I/O workloads of the Production Windows Servers, and marked

20

Table 2.1: Disk Traces Information

Parameter F1 F2 C3 C8 DAP MSN
Reads(106) 1.23 3.04 0.75 0.56 0.61 0.40

Read % 23.1 82.3 35.3 27.4 56.2 75.0
Compression Ratio X10 X30 X3 X3 X8 X50

ARR 1240 3223 576 666 135 1245
Idle % 52.2 51.6 57.4 56.0 63.9 66.2

WRmax % 93.8 73.0 91.5 97.3 99.2 45.6

that most of them show a high level of burstiness, which is measured in self-similarity.

Self-similarity means bursts occur at a wide range of time scales, e.g., the diurnal pattern

is a day-scale factor; the Internet traffic, which incurs congestions, is a minute-scale factor;

the operating system, which periodically flush the dirty data, is a millisecond to second

scale factor. In addition, the I/O behavior of the application contributes to the variations

at various time scales. Meeting the peak performance needs makes the bandwidth of

the hardwares under fully-exploited, especially for the self-similar workloads which have

concentrated bursts.

To learn about the workload stress on the SSDs, we have conducted trace-driven

simulation experiments with an SSD simulator based on the Microsoft Research SSD

extension [3] for Disksim 4.0. The simulated SSD is configured realistically to match a

typical SSD: there are 16 flash chips, each of which owns a dedicated channel to the flash

controller. Each chip has four planes that are organized in a RAID-0 fashion; the size of one

plane is 1 GB assuming the flash is used as 2-bit MLC (page size is 4 KB). To maximize the

concurrency, each individual plane has its own allocation pool [3]. The garbage collection

processes are executed in the background so as to minimizing the interference upon the

foreground requests. In addition, the percentage of flash space overprovisioning is set as

30%, which doubles the value suggested in [3]. Considering the limited working-set size

of the workloads used in this work, 30% over-provisioning is believed to be sufficient to

21

avoid garbage collection processes to be executed too frequently. The garbage collection

threshold is set as 10%, which means if the clean space goes below 10% of the exported

space, the garbage collection processes are triggered. Here we only report the results with

buffer size of 64 MB. The SSD is connected to the host via PCI-E of 2.0 GB/s.

We played back a few real-world disk I/O traces in our simulation experiments.

Financial 1 and Financial 2(F1, F2) [67] were obtained from OLTP applications running

at two large financial institutions; the Display Ads Platform and payload servers(DAP)

and MSN storage metadata(MSN) traces were from the Production Windows Servers and

described in [35](note that we only extracted the trace entries of the first disk of MSN-

CFS); the Cello99 [27] trace pool is collected from the “Cello” server that runs HP-UX

10.20. Because the entire Cello99 is huge, we randomly use one day traces (07/17/99) of

two disks (C3 and C8). These disk I/O traces are originally collected on HDD systems.

To produce more stressful workloads for SSDs, we deliberately compressed the simulated

time of these traces so that the system idle time is reduced from originally 98% to about

50∼60%. Some basic information of these traces can be found in Table 2.1, where “ARR”

stands for average request rate(requests per second); “compression ratio” means the ratio

of simulation time compression done for each traces.

There are a few applications that take advantage of the idle slots, such as disk

scrubbing [57], system checkpointing, data backup/mining, etc., which normally run

between the midnight to daybreak. Our design differs from these applications in that it

works on a smaller time scale, in particular we buffer the writes and dispatch them over

the idle slots between foreground requests. With the original traces, we collected the idle

slot time CDF in Figure 2.5. Except for DAP, the rest traces all have over 40% of idle slots

longer than 5 ms. In comparison to HDDs, which can service a random access latency of a

22

< 5 < 10 < 15 < 20 < 25 < 30 < 40 < 50 < 60 60+
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Idle Time (ms)

C
D

F

F1
F2
C3
C8
DAP
MSN

Figure 2.5: The CDF of idle slot time of six traces.

few milliseconds, SSDs can do dozens of page writes or hundreds of pages reads with the

bandwidth of a single flash chip. Or we can buffer writes and slowly program them with

weak ECC in the idle slots, then while read accesses occur on those pages, we may have a

reduced read latency.

So, what is the chance of reading a weak ECC coded page? Ideally, assuming all

page writes could be programmed slowly and coded with weak ECC, the chance is then

determined by the overlap of the working-sets of reads and writes. We simulated this case

with the above six traces, assuming the data are initially programmed in strong ECC. The

percentage of weak ECC reads is denoted as WRmax in Table 2.1. For the listed six traces,

WRmax ranges from 45.6% to 99.2%, suggesting a promising potential gain on read latency

performance with our approach.

23

2.4 Architecture and Design of DiffECC

In this section, we first outline the architecture of our proposed design and then depict

its major components including the differentiated ECC schemes and the write request

scheduling policy in detail.

2.4.1 System Overview

Write Buffer
Adaptive BCH

encoder Flash die
Adaptive BCH

decoder

Write Speed

Write Latency
Controller

Figure 2.6: Proposed system structure.

Fig. 2.6 shows the system structure of the proposed design approach. In order to smooth

the workload, an on-disk write buffer with capacity m is managed by our I/O scheduling

policy. We dynamically adjust the code length of BCH encode/decoder and the write speed,

according to the scheduling policy. The adaptive BCH encoder will accordingly partition

the page of length L into N(vc) segments and encode each segment with BCH codes at

length of L/N(vc). N(vc) = 1 represents no partition is performed and the system writes

at full speed. We further make the following assumptions: the data on the SSD programmed

at the speed of vc are read with the probability of α(vc); the decoding latency of the BCH

decoder at length of L/N(vc) is Tdec(vc); the bus transfer time is slightly less than ECC

decoding time (as illustrated in Figure 2.4); and the average number of requested segments

on the target page is n(vc) (n(vc) <= N(vc)). We can estimate the average read latency as:

Tread raw +
∑
vc

α(vc)(
Tbus
N(vc)

+ Tdec(vc) ∗ n(vc)) (2.1)

24

where Tbus is the bus delay when the whole page is transmitted through the bus from the

NAND flash chip to the controller, and Tread raw is the delay when the data are sensed from

the cells and transferred to the page buffer. We also note that, since this design strategy is

applied to each page independently, it is completely transparent to the operating systems

and users. Pointed out in Section 2.4 that ECC decoding delay is linearly proportional to

its codeword length. Thus, Tdec(vc) in Expression 2.1 is approximately the value of ECC

decoding time of the baseline mode (no segmentation and strong ECC) devided by N(vc).

The analytical modeling for the expected read performance discussed above is straight-

forward. However, the actual performance under real-world workloads is difficult to

estimate, due to a few reasons. First, as we discussed in Section 2.3, the α(vc) is workload

specific. Second, although doing 100% slow writes does not involve in much overhead

with the HDD traces, in practice, heavier workload may be expected. So we can not

always assume a 100% slow write. Third, bursts come in the term of high request rate

or batched requests, which are often queued. With a queuing system, Equation 2.1 only

outlines the physical access latency improvement of the reads. For example, if there are

many writes ahead of a read, the long queuing time would trivialize the latency reduction

resulted from weak ECC, especially, for the “Read After Write” access pattern, the read has

to be arranged after the write if no cache exists. The slow writes may additionally increase

the queuing time.

25

2.4.2 Differentiated ECC Schemes: Trading-off between Write Speed

and Read Latency

In order to achieve the best possible performance, N(vc) should be able to vary within a

large range and accordingly ECCs with many different code lengths should be supported

by the controller. However, such an ideal case may incur prohibitive amount of

implementation complexity and hence may not be practicable. In this work, to minimize

the implementation overhead, we set that the system can only switch between four modes,

a normal mode (also used as the baseline mode) and three slow write modes. For the

baseline normal mode, we set N(vc) = 1 and use a (34528, 32800, 108) BCH code in

order to minimize the coding redundancy. For the slow write modes, we set N(vc) as 2, 4,

and 8, considering the trade-off between required write speed slow down and read response

latency improvement. The BCH coding parameters of each modes are listed in Table 2.2.

Table 2.2: BCH Parameters for Each Mode
N(vc) Segment Size BCH(n,k,t)

1 4KB (34528, 32800, 108)
2 2KB (17264, 16400, 57)
4 1KB (8632, 8200, 30)
8 512B (4316, 4100, 16)

We assume the use of 2 bits/cell NAND flash memory. We set the program step voltage

∆Vpp to 0.4 and normalize the distance between the mean of two adjacent threshold voltage

windows as 1. Given the value of program step voltage ∆Vpp, the sector error rate (SER)

will depend on the standard deviations of the erased state (i.e., σ0) and the other three

programmed states (i.e., σ). In the following simulation, we fix the normalized value of

σ0 as 0.1 and evaluate the SER vs. normalized σ. For the slow write modes, under the

same σ0, we run the exhaustive simulation to choose a just slow enough ∆Vpp to ensure the

performance is not degraded at SER of 10−15. Based on the configuration mentioned above,

26

we demonstrate the derivation of ∆Vpp of mode N(vc) = 8 as an example in Fig. 2.7. We

can observe that ∆Vpp =0.265 (66.25% of the baseline, corresponding to a write latency

overhead of 50.9%) is just able to compensate the performance loss caused by the using of

short BCH code (4316, 4100, 16) instead of the (34528, 32800, 108) BCH code.

0.108 0.11 0.112 0.114 0.116 0.118 0.12

10
−15

10
−10

10
−5

10
0

σ

S
ec

to
r

E
rr

or
 R

at
e

(S
E

R
)

BCH(34528, 32800, 108), ΔV
pp

=0.400(100%)

BCH(4316, 4100, 16), ΔV
pp

=0.265(66.25%)

Figure 2.7: SER for two different modes.

Targeting at the throughput of 3.2Gbps and based on the hardware structure of [68],

we further carry out the ASIC design of BCH decoders for the above BCH codes. TSMC

65nm standard CMOS cell and SRAM libraries are used in the estimation. We summarize

the BCH decoding latency values of the four modes (as well as the write latency, bus

transfer latency, etc.) in Table 2.3. This work assumes 25µs of cell to buffer read latency

(Tread raw) and 100 MB/s bus bandwidth.

Table 2.3: Latency results for different modes

N(vc) Write Latency(µs)
Read Latency (µs)

BCH Bus Cell to buffer Total
1 500 41.20 40.96 25 107.16
2 538 21.71 20.48 25 67.19
4 606 11.25 10.24 25 46.49
8 754 5.78 5.12 25 35.9

27

I/O
 Q

ueue

Host Interface Logic

FTL

SRAM
Buffer

Flash Memory

Host System

SSD

File System

Buffer Cache

I/O Driver

Out

Base Queue

Priority Queue

Differentiated Writes

Writes
Reads

Evictions

Reads

Figure 2.8: Overview of the I/O queuing system.

2.4.3 Buffer Queue Scheduling Policy

The goal of our scheduling policy is to take advantage of the idle time bandwidth of SSDs

so as to slow down the write speed. Intuitively, we choose to utilize the on-disk SRAM

cache to buffer the write requests, and synchronize them on the flash with high or low write

speed according to the on-line load of the SSD.

Typical SSDs are equipped with an SRAM buffer, which is responsible for buffering/re-

scheduling the write pages and temporally hold the read data which are to be passed on to

the OS. The size of the buffer normally ranges from 32 MB to 128 MB according to the

class of the product. Because of the fast random read speed of flash memory and the

relatively small size of the SRAM, the cache is dedicated to writes exclusively. The write

scheme of the buffer is set as “write-back”, which means completions are reported as soon

as the data are buffered. While accommodating the new data and buffer is out of space, the

replacements take place. The victim (dirty) pages are inserted into an I/O queue in which

they wait to be programmed on the flash. After the actual synchronization on the flash, the

28

buffer space of the victims is freed and can accept new data. In this way, the maximum

number of write pages holding in the queue is determined by the size of the buffer, e.g.,

with a 32 MB buffer, the number is 65536 assuming the sector size is 512B.

Given a workload, of what portion the writes can be done in slow modes? Ideally, taking

out the bandwidth the SSD spends on the reads, the slow and fast writes can share the rest.

For simplicity, let us assume there are two write modes in the following discussion, one

slow mode (N(vc) > 1) and one normal mode (N(vc) = 1). The maximum throughput of

slow write is denoted as Θs requests/s and Θn for the normal write, and we have Θs < Θn.

According to different average write request rates(ARRw), there are two scenarios.

• Case 1: If ARRw < Θs, ideally, the workload can be perfectly smoothed so that the

slow write percentage is 100%.

• Case 2: Θs < ARRw < Θn, a portion of the writes could be done in slow mode. For

example, assuming Θs = 100,Θn = 200, ARRw = 150, the maximum percentage

of slow writes can be 1/2.

• Case 3: If ARRw = Θn, the system can only accept normal writes.

However, slow writes may involve a few overheads. First, from the host’s point of view,

the write throughput, which can be represented by the write requests holding on its side,

could be compromised. Second, within the SSD, the slow writes occupy the flash chip

for a longer time than fast writes do, so the probability of reads getting held is higher. To

minimize these overheads, we consider the immediate load of the SSD regarding to the

available resources.

The I/O driver of the host system and the on-disk buffer consist a queuing system as

shown in Figure 2.8. The host system issues reads/writes through the I/O driver, which

29

queues the outstanding(in-service or to-be-serviced) requests; the SSD caches writes in

its SRAM and queues the buffer evictions and the reads in its own queues. In order to

minimize the queuing time resulted from writes, we put reads in the priority-queue while

putting the buffer evictions in the base-queue.

The immediate load of an SSD can be estimated by the size of its pending-request

queues and the idle slot time. Assuming at a time point there are Nr pages waiting to be

read (the priority queue) and Nw pages to write (the base queue). The time to fulfil the read

requests is Tr = Nr ∗ Lr, where Lr is the page read latency (since it is difficult to estimate

or predict the read latency reduction resulted from slow write modes, we assume the worst

case where the reads occur in the baseline mode). The time for doing the writes at slow

speed is Ts = Nw ∗ Lws, where Lws means the time of writing a page at slow speed, and

the time of fast writes is Tf = Nw ∗Lwf . We note that, the queued requests are to share the

bandwidth of the SSD with the foreground requests in the near future. So how much time

we can expect to have for dealing with these postponed requests without interfere with the

foreground request? By the recent history information, i.e., recently the average length of

the idle slots is Tidle avg, then if Ts < (Tidle avg − Tr), we can expect that there is a low

probability that slowing down the programming of all the buffered writes will increase the

length of the host side queue. Furthermore, similar to the discussion about the ideal cases,

if Tf < (Tidle avg − Tr) < Ts, we can try to output a part of queued writes at slow speed

and the rest at fast speed.

30

2.5 Evaluation

We have implemented and evaluated our design (denoted as DiffECC) based on a series

of comprehensive trace-driven simulation experiments. In this section, we present the

experimental results of comparing DiffECC with the baseline. In addition, we evaluate

the overhead DiffECC may potentially introduce on the write performance. Particularly,

the read and write performance is measured in terms of response time and throughput,

respectively.

2.5.1 Simulation Methodology

We modified the the Microsoft Research SSD extension [3] simulator to support our design,

where the access latency numbers of the raw flash are taken from the above subsection and

the average idle time is sampled every 5 seconds of simulated time. The initial state of each

flash page is still assumed to be strong ECC coded (N(vc) = 1). We use the six disk traces

analyzed in Section 2.3, i.e., F1, F2, C3, C8, DAP, and MSN, which are considered covering

a wide spectrum of workload dynamics. Our design is compared with the baseline, which

uses the same buffer size (as well as the same allocation policy and write scheme) and

adopts 100% fast/strong ECC write mode (N(vc) = 1). In addition, we tune the cache size

from 32 MB to 128 MB. We collected the experimental results of a few metrics, i.e., the

average read/write latency, the average number of write requests held in I/O driver queue

(Qw avg), and the average idle time (Tidle avg). For reference, we listed the results of the

baseline under 32 MB buffer in Table 2.4.

31

Table 2.4: The Baseline Results under 32 MB Buffer (in ms)
Metric F1 F2 C3 C8 DAP MSN

Read Latency 0.44 0.27 0.52 6.30 5.74 8.47
Write Latency 1.58 1.03 0.56 4.54 11.74 25.21

Qw avg 1.59 0.98 19.88 9.91 69.23 8.43
Tidle avg 1.99 0.71 10.8 5.51 65.19 4.41

2.5.2 The Optimistic Case of DiffECC

DiffECC may achieve the optimistic performance gain on the read latency if we are allowed

to carry out all write requests in the slowest mode, i.e., N(vc) = 8. Here we examine this

performance gain upper-bound by forcing 100% N(vc) = 8 mode writes in the simulation

experiments. As the metric of read performance improvement, the read latency reduction

percentage against the baseline, which adopts 100% N(vc) = 1 mode writes, is presented

in Fig. 2.9(a). The results comply with the preliminary discussion about the upper-bound

of weak-ECC read percentage in Sec. 2.3.3 (WRmax in Tab. 2.1) and the model of average

read latency outlined in Sec. 3.4.1 (Expression 2.1). For example, DAP and MSN traces,

having the most and least WRmax, achieve the maximum and minimum read latency

reduction percentage (66.8% and 30.7%), respectively. As the in-drive cache is dedicated

to writes and thus the cache size makes little difference for the read performance, we only

demonstrate the results under 32 MB cache size here.

However, forcing 100% slowest write mode definitely results in overhead on the write

performance. For example, the write latency ofN(vc) = 8 mode exceeds that ofN(vc) = 1

by 50.9%, which could be further amplified by the queuing effect. In our experiments,

DiffECC doubles the average write latency at most cases. However, our concern is the

write throughput, which should avoid being compromised by slow writes. We choose to

use one metric to evaluate the overhead of slow writes on the write throughput: the average

number of writes held in I/O driver queue (Qw avg). The normalized Qw avg against the

32

baseline is presented in Fig. 2.9(b). Under F1, F2, DAP, and MSN, the uncontrolled slow

writes result in a Qw avg of about 5 times of the baseline; it is even worse as 10 and 15

times under C3 and C8, respectively, due to the batched write access pattern in these two

traces. Therefore, the uncontrolled slow writes compromise the write throughput and we

must avoid such overhead by selectively switching among different write modes via the

scheduling policy described in Sec. 2.4.3.

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

R
e

a
d

 L
a

te
n

cy
 R

e
d

u
ct

io
n

 %

0.00%

10.00%

20.00%

F1 F2 C3 C8 DAP MSN

R
e

a
d

 L
a

te
n

cy
 R

e
d

u
ct

io
n

 %

(a) The percentage of read latency reduction.

10

15

20

N
o

rm
a

li
ze

d
 Q

w
_

a
v

g
0

5

F1 F2 C3 C8 DAP MSN

N
o

rm
a

li
ze

d
 Q

(b) The average run-time write queue length. Nor-
malized to the baseline.

Figure 2.9: The read and write performance of the optimistic case: 100% N(vc) = 8
writes.

2.5.3 The Controlled Mode-switching of DiffECC

DiffECC switches among the proposed four write modes automatically regarding to the

immediate load of the drive. As discussed in Sec. 2.4.3, we estimate the immediate load by

the number of pending requests and the expected idle slot time. In order to avoid interfering

with the future foreground requests (especially for the reads), we are required to service the

pending requests in the idle slots. At the mean time, we try to adopt slow write modes as

much as possible to boost the read performance. To achieve this goal, we first estimate

the time to fulfill the pending writes in each mode. For example, with Nw page writes, the

mode “N(vc) = 1” would take the time of Tm1 = Lm1 ∗Nw, the mode “N(vc) = 2” would

33

take Tm2 = Lm2 ∗ Nw, and so on. Lm1 and Lm2 represent the write latency values of the

two modes, respectively. If the expected time for servicing the writes (Tidle avg − Tr, i.e.,

excluding the time to service the reads from the expected idle slot time) falls in between

two adjacent modes, for example, Tm2 and Tm4, we would write Nm2 pages in the mode

“N(vc) = 2” and Nm4 pages in the mode “N(vc) = 4”, where Nm2 + Nm4 = Nw and

Nm2 ∗ Lm2 +Nm4 ∗ Lm4 = Tidle avg − Tr.

With the above mode-switching policy, DiffECC successfully eliminates the overhead

on write throughput. As shown in Fig. 2.10(a), Qw avg of DiffECC (normalized to that

of the baseline) is increased by mostly less than 20% (except for C8 under 32MB cache,

that is because of the caching effect, i.e., more write hits, resulting longer idle slot time,

which helps smoothing the write workload further). As illustrated in Table 2.4, the highest

Qw avg we observed in the baseline results is about 70. Given a flash page size of 4KB, the

overhead of less than 20% on Qw avg means the I/O driver needs an extra amount of 56KB

(70 ∗ 20% ∗ 4KB) memory to temporally hold the content of queued writes. Allocating

and managing such a small piece of memory like 56KB is trivial compared to hundreds of

MB of buffer cache in the host side. Again, DiffECC causes higher overhead on C3 and C8

traces due to the same reason mentioned in the previous subsection. It is worth noting that

as the cache size increases from 32 MB to 128 MB, we observe less overhead.

However, comparing to the optimistic situation where we adopt 100% slowest writes,

the controlled mode-switching of DiffECC achieves less read latency performance gain.

As shown in Fig. 2.10(b), F1, C3, C8, and MSN approach the performance gain upper-

bound (Fig. 2.9) as the cache size increases from 32 MB to 128 MB, while under F2 and

DAP traces, DiffECC achieves relatively poorer gain. Particularly, DiffECC achieves the

maximum read latency reduction of 59.4% under C8 with 128 MB cache; the average

34

60.00%

80.00%

100.00%

120.00%

140.00%

N
o

rm
a

li
ze

d
 Q

w
_

a
v

g

32MB 64MB 128MB

0.00%

20.00%

40.00%

F1 F2 C3 C8 DAP MSN

N
o

rm
a

li
ze

d
 Q

(a) The average run-time write queue length. Nor-
malized to the baseline.

30.00%

40.00%

50.00%

60.00%

70.00%

R
e

a
d

 L
a

te
n

cy
 R

e
d

u
ct

io
n

 %

32MB 64MB 128MB

0.00%

10.00%

20.00%

F1 F2 C3 C8 DAP MSNR
e

a
d

 L
a

te
n

cy
 R

e
d

u
ct

io
n

 %

(b) The percentage of read latency reduction.

Figure 2.10: The read and write performance of DiffECC with controlled mode-switching.

reduction percentage under 32 MB, 64 MB, and 128 MB is 18.1%, 32.8%, and 42.2%,

respectively. Generally speaking, the read latency performance of DiffECC is determined

by the available idle slots and the number of pending requests, which would determine the

ratio of each write modes used (thus the ratio of reads in each mode).

To have more insight about the observed read performance gain, we collect the

percentage of writes and reads in each mode and tune the cache size from 32 MB to 128

MB in Fig. 2.11 and Fig. 2.12, respectively. First of all, comparing the results of writes

and reads, we observe apparent resemblance between them in most traces except for MSN.

This is because of the extent of overlap between the working-set of writes and reads. We

have examined the extent of overlap in Table 2.1 using WRmax as the metric: MSN has the

lowest WRmax while the others are much more closer to 1. Second, looking at Fig. 2.11,

as the cache size increases from 32 MB to 128 MB, we have more and more percentage of

slow write modes. That is due to the increased idle time resulted from less write workload

stress, which is in-turn caused by more write cache hits. F1 has more dramatic changes

(from baseline-mode dominated at 32 MB to slowest-mode dominated at 128 MB) than the

others due to a higher temporal locality existing in the writes. Third, with more slow mode

writes, we observe more number of corresponding reads in these modes, which explains the

35

read latency reduction performance in Fig. 2.10(b). For example, under F2 the dominate

read mode is constantlyN(vc) = 1 with all three cache sizes and under MSN theN(vc) = 1

and N(vc) = 2 modes outnumber the rests. Thus, DiffECC achieves less performance gain

under such two traces than the others.

20

30

40

50

60

70

80

90

100

%
 o

f
W

r
it

e
s
 i

n
 E

a
c
h

 M
o

d
e

N(vc)=1 N(vc)=2 N(vc)=4 N(vc)=8

0

10

F1 F2 C3 C8 DAP MSN F1 F2 C3 C8 DAP MSN F1 F2 C3 C8 DAP MSN

%
 o

f
W

r
it

e
s
 i

n
 E

a
c
h

 M
o

d
e

Cache size 32MB 64MB 128MB

Figure 2.11: Percentage of writes in each mode.

20

30

40

50

60

70

80

90

100

%
 o

f
R

e
a

d
s
 i

n
 E

a
c
h

 M
o

d
e

N(vc)=1 N(vc)=2 N(vc)=4 N(vc)=8

0

10

F1 F2 C3 C8 DAP MSN F1 F2 C3 C8 DAP MSN F1 F2 C3 C8 DAP MSN

%
 o

f
R

e
a

d
s
 i

n
 E

a
c
h

 M
o

d
e

Cache size 32MB 64MB 128MB

Figure 2.12: Percentage of reads in each mode.

To conclude the evaluation of DiffECC, we learned that un-controlled slow writes have

negative affects on the write throughput performance; using an workload adaptive method

of switching between slow and fast write modes, DiffECC successfully achieves a balance

among the slow write ratio, write throughput, and read latency.

36

2.6 Summary

In this work, motivated by the NAND flash memory device write speed vs. raw storage

reliability trade-off and run-time data access workload dynamics, we propose a cross-layer

co-design approach that can jointly exploit these features to opportunistically reduce SSD

read response latency. The key is to apply opportunistic memory write slowdown to enable

the use of shorter and weaker ECCs, leading to largely reduced SSD read latency. A disk-

level scheduling scheme has been developed to smooth the write workload to effectively

enable opportunistic memory write slowdown. To demonstrate its effectiveness, we use 2

bits/cell NAND flash memory with BCH-based error correction codes as a test vehicle. We

choose four different BCH coding systems. Extensive simulations over various workloads

show that this cross-layer co-design solution can reduce the average SSD read latency by

up to 59.4% at a cost of trivial overhead on the write throughput performance.

37

Chapter 3

Reducing SSD Access Latency via

NAND Flash Program and Erase

Suspension

3.1 Introduction

In NAND flash memory, once a page program or block erase (P/E) command is issued to a

NAND flash chip, the subsequent read requests have to wait until the time-consuming P/E

operation to complete. Preliminary results show that the lengthy P/E operations increase the

read latency by 2x on average. This increased read latency caused by the contention may

significantly degrade the overall system performance. Inspired by the internal mechanism

of NAND flash P/E algorithms, we propose a low-overhead P/E suspension scheme,

which suspends the on-going P/E to service pending reads and resumes the suspended

P/E afterwards. Having reads enjoy the highest priority, we further extend our approach by

38

making writes be able to preempt the erase operations in order to improve the write latency

performance.

3.2 Motivation

In this section, we demonstrate how the read vs. P/E contention increases the read latency

under various workloads. We have modified MS-add-on simulator [3] based on Disksim

4.0. Specifically, under the workloads of a variety of popular disk traces, we compare

the read latency of two scheduling policies, FIFO and read priority scheduling (RPS), to

show the limitation of RPS. Furthermore, with RPS, we set the latency of program and

erase operation to be equal to that of read and zero to justify the impact of P/E on the read

latency.

3.2.1 A Simple Demonstration of Contention Effect

First of all, we illustrate the contention effect between reads and writes with an simple

example. Figure 3.1 shows the timing diagram of one flash chip servicing three read

requests (RD) and one write request (WT), of which the arrival time is marked on the

top timeline. The raw latency of read and write is assumed to be one and five time units,

respectively. Three scheduling policies, FIFO, RPS, and RPS+Suspension, are analyzed

under this workload. With FIFO, both RD2 and RD3 are scheduled for service after the

completion of WT1, resulting service latency of 6 and 4 units. RPS schedules RD2 ahead

of WT1. However, RD3 has to wait until WT1 is serviced because suspension of write

is not allowed. RPS+Suspension is our desired solution for this problem where WT1 is

suspended for RD3.

39

RD1 WT1 RD3

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

TIME

Latency

RD2

RD1 RD3RD2(1) FIFO WT1 (5 Time Units)
RD2: 6 units

RD3: 4 units

RD1 RD3RD2
(3) RPS +

Suspension
WT1 (Suspended)

RD2: 1 unit

RD3: 1 unit

RD1 WT1 (5 Time Units) RD3RD2
(2) Read Priority

Scheduling

WT1 (Resumed)

RD2: 1 unit

RD3: 4 units

Figure 3.1: Timing diagram illustrating the read latency under the effect of chip
contention.

3.2.2 Configurations and Workloads

The simulated SSD is configured as follows: there are 16 flash chips, each of which owns

a dedicated channel to the flash controller. Each chip has four planes that are organized

in a RAID-0 fashion; the size of one plane is 512 MB or 1 GB assuming the flash is

used as SLC or 2-bit MLC, respectively (the page size is 2 KB for SLC or 4 KB for

MLC). To maximize the concurrency, each individual plane has its own allocation pool [3].

The garbage collection processes are executed in the background so as to minimize the

interference with the foreground requests. In addition, the percentage of flash space over-

provisioning is set as 30%, which doubles the value suggested in [3]. Considering the

limited working-set size of the workloads used in this work, 30% over-provisioning is

believed to be sufficient to avoid frequent execution of garbage collection processes. The

write buffer size is 64 MB. The SSD is connected to the host via a PCI-E of 2.0 GB/s. The

physical operating parameters of the flash memory is summarized in Table 3.1.

We choose 4 disk I/O traces for our experiments: Financial 1 and 2 (F1, F2) [67];

Display Ads Platform and payload servers (DAP) and MSN storage metadata (MSN)

traces [35]. Those traces were originally collected on HDDs, to produce more stressful

40

Table 3.1: Flash Parameters

Symbols Description Value
SLC MLC

Tbus
The bus latency of transferring 20 µs 40 µs
one page from/to the chip

Tr phy
The latency of sensing/reading 10 µs 25 µs
data from the flash

Tw total
The total latency of ISPP 140 µs 660 µs
in flash page program

Nw cycle The number of ISPP iterations 5 15

Tw cycle
The time of one ISPP iteration 28 µs 44 µs
(Tw total/Nw cycle)

Tw program
The duration of program phase 20 µs 20 µs
of one ISPP iteration

Tverify The duration of the verify phase 8 µs 24 µs
Terase The duration of erase pulse 1.5 ms 3.3 ms

Tvoltage reset
The time to reset operating 4 µs
voltages of on-going operations

Tbuffer
The time taken to load the page 3 µs
buffer with data

workloads for SSDs, we compress all these traces so that the system idle time is reduced

from 98% to around 70% for each workload. Some basic information of selected traces is

summarized in Table 3.2

Table 3.2: Disk Traces Information
Parameter Reads(106) Read % Length(h) Compression Ratio Idle %

F1 1.23 23.2 12 X9 65.5
F2 3.04 82.3 12 X25 69.1

DAP 0.61 56.2 24 X8 63.9
MSN 0.40 75.0 6 X50 66.2

3.2.3 Experimental Results

In this subsection, we compare the read latency performance under four scenarios: FIFO;

RPS; PER (the latency of program and erase is set equal to that of read); and PE0 (the

latency of program and erase is set to zero). Note that both PER and PE0 are applied

upon RPS in order to study the chip contention and the limitation of RPS. Due to the

large range of the numerical values of the experimental results, we normalize them to the

41

Table 3.3: Numerical Latency Values of FIFO (in ms)

Trace SLC MLC
Read Write Read Write

F1 0.37 0.87 0.44 1.58
F2 0.24 0.57 0.27 1.03

DAP 1.92 6.85 5.74 11.74
MSN 4.13 4.58 8.47 25.21

corresponding results of FIFO, which are listed in Table 3.3 for reference. The normalized

results are plotted in Fig. 3.2, where the left part shows the results of SLC and the right

part is for MLC. Compared to FIFO, RPS achieves impressive performance gain, e.g., the

gain maximizes at an effective read latency (“effective” refers to the actual latency taking

the queuing delay into account) reduction of 38.8% (SLC) and 45.7% (MLC) on average.

However, if the latency of P/E is the same as read latency or zero, i.e., in the case of PER

and PE0, the effective read latency can be further reduced. For example, with PE0, the

read latency reduction is 64.2% (SLC) and 71.0% (MLC) on average. Thus, even with RPS

policy, the chip contention still increases the read latency by about 2x on average.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F1 F2 DAP MSN F1 F2 DAP MSN

N
o

rm
a

li
ze

d
 R

e
a

d
 L

a
te

n
cy

FIFO RPS PER PE0

SLC MLC

Figure 3.2: Read Latency Performance Comparison: FIFO, RPS, PER, and PE0. Results
normalized to FIFO.

42

3.3 Design

In this section, the design of the implementation of P/E suspension is proposed in details.

To realize the P/E suspension function, we seek for a low-cost solution, with which

the user of NAND chip (the on-disk flash controller) only need to exploit this new

flexibility by supporting the commands of P/E suspension and resumption while the actual

implementation is done inside the chip.

3.3.1 Erase Suspension and Resumption

In NAND flash, the erase process consists of two phases: first, an erase pulse lasting

for Terase is applied on the target block; second, a verify operation that takes Tverify is

performed to check if the preceding erase pulse has successfully erased all bits in the block.

Otherwise, the above process is repeated until success, or if the number of iterations reaches

the predefined limit, an operation failure is reported. Typically, for NAND flash, since the

over-erasure is not a concern [10], the erase operation can be done with a single erase

pulse.

How to suspend an erase operation: suspending either the erase pulse or verify

operation requires resetting the status of the corresponding wires that connect the flash cells

with the analog block. Specifically, due to the fact that the flash memory works at different

voltage bias for different operations, the current voltage bias applied on the wires (and thus

on the cell) needs to be reset for the pending read request. This process (Opvoltage reset for

short) takes a period of Tvoltage reset. Noting that either the erase pulse or verify operation

always has to conduct Opvoltage reset at the end (as shown in the following diagram of erase

operation timeline).

43

Erase Pulse Verify

Tvoltage_reset Tvoltage_resetImmediate Suspension Range Immediate Suspension Range

Terase Tverify

Thus, if the suspension command arrives during Opvoltage reset, the suspension will

succeed once Opvoltage reset is finished (as illustrated in the following diagram of erase

suspension timeline).

Erase Pulse

Tvoltage_resetImmediate Suspension Range

Read/Write Arrival Suspension Point

Read/Write

Otherwise, an Opvoltage reset is executed immediately and then the read/write request is

serviced by the chip (as illustrated in the following diagram).

Erase Pulse

Tvoltage_reset

Read/Write Arrival

Opvoltage_switch Read/Write

Suspension Point

How to resume an erase operation: the resumption means the control logic of NAND

flash resumes the suspended erase operation. Therefore, the control logic should keep track

of the progress, i.e., whether the suspension happens during the verify phase or the erase

pulse. For the first scenario, the verify operation has to be re-done all over again. For

the second scenario, the erase pulse time left (Terase minus the progress), for example,

1 ms will be done in the resumption if no more suspension happens. Actually, the task

of progress tracking can be easily supported by the existing facilities in the control logic

of NAND flash: the pulse width generator is implemented using a counter-like logic [10],

which keeps track of the progress of the current pulse.

44

The overhead on the effective erase latency: resuming the erase pulse requires extra

time to set the wires to the corresponding voltage bias, which takes approximately the same

amount of time as Tvoltage reset. Suspending during the verify phase causes a re-do in the

resumption, and thus the overhead is the time of the suspended/cancelled verify operation.

In addition, the read service time is included in the effective erase latency.

3.3.2 Program Suspension and Resumption

The process of servicing a program request is: first, the data to be written is transferred

through the controller-chip bus and loaded in the page buffer; then the ISPP is executed,

in which a total number of Nw cycle iterations consisting of a program phase followed by

a verify phase are conducted on the target flash page. In each ISPP iteration, the program

phase is responsible for applying the required program voltage bias on the cells so as to

charge them. In the verify phase, the content of the cells is read to verify if the desired

amount of charge is stored in each cell: if so, the cell is considered program-completion;

otherwise, one more ISPP iteration will be conducted on the cell. Due to the fact that

all cells in the target flash page are programmed simultaneously, the overall time taken to

program the page is actually determined by the cell that needs the most number of ISPP

iterations. A major factor that determines the number of ISPP iterations needed is the

amount of charge to be stored in the cell, which is in turn determined by the data to be

written. For example, for the 2-bit MLC flash, programming a “0” in a cell needs the most

number of ISPP iterations, while for “3” (the erased state), no ISPP iteration is needed.

Since all flash cells in the page are programmed simultaneously, Nw cycle is determined

by the smallest data (2-bit) to be written; nonetheless, we make a rational assumption in

45

our simulation experiments that Nw cycle is constant and equal to the maximum value. The

program process is illustrated in the following diagram.

Program Verify

Tw_cycle

Program Verify

Tw_program Tverify

Program Verify

Nw_cycle

Bus

How to retain the page buffer content: before we move on to suspension, this

critical problem has to be solved. For program, the page buffer contains the data to be

written. For read, it contains the retrieved data to be transferred to the flash controller.

If a write is preempted by a read, the content of the page buffer is certainly replaced.

Thus, the resumption of the write demands the page buffer re-stored. Intuitively, the flash

controller that is responsible for issuing the suspension and resumption commands may

keep a copy of the write page data until the program is finished and upon resumption,

the controller re-sends the data to the chip through the controller-chip bus. However, the

page transfer consumes a significant amount of time: unlike the NOR flash which does

byte programming, NAND flash does page programming, and the page size is of a few

kilobytes. For instance, assuming a 100 MHz bus and 4 KB page size, the bus time Tbus is

about 40 µs.

To overcome this overhead, we propose a Shadow Buffer in the flash. The shadow buffer

serves like a replica of the page buffer and it automatically loads itself with the content of

the page buffer upon the arrival of the write request and re-stores the page buffer while

resumption. The load and store operation takes the time Tbuffer. The shadow buffer has

parallel connection with the page buffer, and thus the data transfer between them can be

done on the fly. Tbuffer is normally smaller than Tbus by one order of magnitude.

46

How to suspend a program operation: compared to the long width of the erase

pulse (Terase), the program and verify phase of the program process is normally two orders

of magnitude shorter. Intuitively, the program process can be suspended at the end of the

program phase of any ISPP iteration as well as the end of the verify phase. We refer to this

strategy as “Inter Phase Suspension” (IPS). IPS has in totalNw cycle∗2 potential suspension

points as illustrated in the following diagram.

Program Verify Program Verify Program VerifyBus

Read Arrival Suspension Point

Read Arrival

Suspension Point

Due to the fact that at the end of the program or verify phase, the status of the

wires has already reset (Opvoltage reset), IPS does not introduce any extra overhead, except

for the service time of the read or reads that preempt the program. However, the

effective read latency should include the time from the arrival of read to the end of the

corresponding phase. For simplicity, assuming the arrival time of reads follows the uniform

distribution, the probability of encountering the program phase and the verify phase is

Tw program/(Tverify + Tw program) and Tverify/(Tverify + Tw program), respectively. Thus,

the average extra latency for the read can be calculated as:

Tread extra = Tw program

(Tverify+Tw program)
∗ Tw program

2

+
Tverify

(Tverify+Tw program)
∗ Tverify

2

(3.1)

Substituting the numerical values in Table 3.1, we get 8.29 µs (SLC) and 11.09 µs (MLC)

for Tread extra, which is comparable to the physical access time of the read (Tr phy). To

further improve the effective read latency, we propose “Intra Phase Cancelation” (IPC).

Similar to canceling the verify phase for the erase suspension, IPC cancels an on-going

47

program or verify phase upon suspension. The reason of canceling instead of pausing the

program phase is that the duration of the program phase, Tw program, is short and normally

considered atomic (cancelable but not pause-able).

Again, for IPC, if the read arrives when the program or verify phase is conducting

Opvoltage reset, the suspension happens actually at the end of the phase, which is the same

as IPS; otherwise, Opvoltage reset is started immediately and the read is then serviced. Thus,

IPC achieves a Tread extra no larger than Tvoltage reset.

How to resume from IPS: first of all, the page buffer is re-loaded with the content of

the shadow buffer. Then, the control logic examines the last ISPP iteration number and

the previous phase. If IPS happens at the end of the verify phase, which implies that the

information of the status of cells has already been obtained, we may continue with the next

ISPP if needed; on the other hand, if the last phase is the program phase, naturally we need

to finish the verify operation before moving on to the next ISPP iteration. The resumption

process is illustrated in the following diagram.

Read Buffer

Tbuffer

Program/Verify Verify/Program

Resumption Point

How to resume from IPC: compared to IPS, the resumption from IPC is more

complex. Different from the verify operation, which does not change the charge status

of the cell, the program operation puts charge in the cell and thus changes the threshold

voltage (Vth) of the cell. Therefore, we need to determine whether the canceled program

phase has already achieved the desired Vth (i.e., whether the data could be considered

written in the cell), by a verify operation. If so, no more ISPP iteration is needed on

48

this cell; otherwise, the previous program operation is executed on the cell again. The later

case is illustrated in the following diagram.

Read BufferProgram Verify

Resumption Point

Re-do PROG Verify

Re-doing the program operation would have some affect on the tightness of Vth, but

with the aid of ECC and a fine-grained ISPP, i.e., small incremental voltage ∆Vpp, the IPC

has little impact on the data reliability of the NAND flash. The relationship between ∆Vpp

and the tightness of Vth is modeled in [77].

The overhead on the effective write latency: IPS requires re-loading the page buffer,

which takes Tbuffer. For IPC, if the verify phase is canceled, the overhead is the time

elapsed of the canceled verify phase plus the read service time and Tbuffer. In case of

program phase, there are two scenarios: if the verify operation reports that the desired Vth

is achieved, the overhead is the read service time plus Tbuffer; otherwise, the overhead is

the time elapsed of the canceled program phase plus an extra verify phase, in addition to

the overhead of the above scenario. Clearly, IPS achieves smaller overhead on the write

than IPC but relatively lower read performance.

3.4 Further Discussions

3.4.1 Scheduling Policy

We schedule the requests and suspension/resumption operations according to a priority-

based policy. The highest priority is rendered to read requests, which are always scheduled

ahead of writes and can preempt the on-going program and erase operations. The write

49

requests can preempt only the erase operations, giving that there is no read requests pending

for service. We allow nested suspension operations, i.e., a read request may preempt a

program operation, which has preempted an erase earlier. There are at most 2 operations in

the suspension state.

The flash controller determines when to suspend and resume an on-going P/E according

to the run-time request list. Intuitively, when a read request is received while P/E is

currently being serviced by the chip (i.e., the chip has not yet reported “completion” to

the flash controller), the controller issues a suspension command. Then after the response

from the chip, the read/write request is committed to the chip. Upon completion of

the read/write, the controller issues a resume command if there is no pending request.

Otherwise, according to RPS, the pending reads should get serviced before the resumption,

followed by the writes assuming an erase operation is in suspension state.

The above policy is a greedy one since the reads always preempt the on-going P/E.

However, as discussed earlier in this section, the overhead of suspension and resumption

as well as the service time of the reads increase the write latency, which in turn increases

the chance of data corruption resulted from system halt. Thus, the controller must limit the

overhead by stoping giving the reads with the high priority (both RPS and P/E suspension)

when the overhead exceeds a predefined threshold. Noting that, although the effective

write latency could be prolonged by RPS, the overall throughput is barely compromised

since that the total chip bandwidth consumed by the requests remains constant with either

FIFO or RPS. In addition, suspending erase operations for writes may delay the garbage

collection processes, which would risk the adequacy of available flash space. Therefore,

we allow write-suspend-erase only when the ratio of clean space is above the pre-defined

watermark.

50

3.4.2 Implementation Issues

The proposed P/E suspension requires the support of the flash controller as well as the on-

chip control logic. The flash controller needs to support the new commands in order to

interface the scheduling algorithms (as mentioned in the previous subsection) and the chip.

The control logic, where our design is deployed, involves a few modifications/add-on’s

summarized as following:

• The decision-making for the suspension point is needed.

• Extra logic is needed to keep track of the progress of erase pulse and ISPP upon

suspension.

• The algorithm of P/E should be modified to support the resumption process,

especially for the program.

• The added shadow buffer consumes a portion of chip area and needs support from

the P/E algorithm.

• About data integrity: In case of read after write on the same page and the

program/write is being suspended, a recent copy of the data for the suspended write

request is kept in the write buffer, which ensures the subsequent reads always get the

fresh copy. At any time, there is at most one write suspended in a flash plane, which

demands minimum resources to ensure the read/write order. In case that the write

buffer failed to render the fresh data, the read operation returns the shadow buffer

content.

• The completion of suspension should be reported through the chip pins.

51

3.4.3 The Overhead on Power Consumption

The overhead of the P/E suspension scheme on power consumption in the flash chip

comes from two sources. First, in the scenario of resuming one erase operation, the

wires (connecting the flash cells and P/E circuits) are recharged to the voltage for erase

operations. The power consumed here is trivial compared to that consumed by the large

current to erase the blocks. Second, in the IPC technique, the verify phase or program

pulse is occasionally repeated upon resumption for writes. The power overhead in this case

depends on the number of write suspension operations (as shown in Figure 3.8, where the

maximum percentage of suspended writes is about 13% in the case of MLC). As we have

barely observed multiple suspensions occurred to a single write process in the experiments,

the related power overhead is upper-bounded by a percentage of 9% ∗ (1/5) = 1.8%, for

SLC; or 13% ∗ (1/15) = 0.9%, for MLC.

3.5 Evaluation

In this section, the proposed P/E suspension design is simulated with the same configuration

and parameters as in Section 3.2. Under the workloads of the four traces used in Section 3.2,

we evaluate the read/write latency performance gain and the overhead of P/E suspension.

We demonstrate that the proposed design achieves a near-optimal read performance gain

and the write performance is significantly improved as well.

3.5.1 Read Performance Gain

First, we compare the average read latency of P/E suspension with RPS, PER and PE0 in

Fig. 3.3, where the results are normalized to that of RPS. For P/E suspension, the IPC (Intra

52

Phase Cancelation), denoted as “PES IPC”, is adopted in Fig. 3.3. PE0, with which

the physical latency values of program and erase are set to zero, serves as an optimistic

situation where the contention between reads and P/E’s is completely eliminated. Fig. 3.3

demonstrates that, compared to RPS, the proposed P/E suspension achieves a significant

read performance gain, which is almost equivalent to the optimal case, PE0 (with less than

1% difference). Specifically, on the average of the 6 traces, PES IPC reduces the read

latency by 44.8% for SLC and 46.5% for MLC compared to RPS, and 64.1% for SLC and

70.7% for MLC compared to FIFO. For conciseness, the results of SLC and (then) MLC

are listed without explicit specification in the following text.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F1 F2 DAP MSN F1 F2 DAP MSN

N
o

rm
a

li
ze

d
 R

e
a

d
 L

a
te

n
cy

RPS PER PE0 PES_IPC

SLC MLC

Figure 3.3: Read Latency Performance Comparison: RPS, PER, PE0, and PES IPC (P/E
Suspension using IPC). Normalized to RPS.

We take a closer look at the difference between PE0 and PES IPC in Fig. 3.4, where

PES IPC is normalized to PE0. With IPC scheme, P/E suspension requires extra time to

suspend the on-going write or erase, e.g., theOpvoltage reset. Thus, there is 1.05% and 0.83%

on average and at-most 2.64% and 2.04% read latency increase of PES IPC, compared to

PE0. Comparing the results of SLC to that of MLC, SLC has a slightly larger difference

from PE0. This is due to the fact that SLC’s physical read latency is smaller, and thus more

prone to the overhead introduced by Opvoltage reset. In both cases, differences under DAP

53

and MSN are almost zero because that these two traces are dominated by large-sized read

requests.

0.985

0.99

0.995

1

1.005

1.01

1.015

1.02

1.025

1.03

F1 F2 DAP MSN F1 F2 DAP MSN

N
o

rm
a

li
ze

d
 R

e
a

d
 L

a
te

n
cy

PE0 PES_IPC
SLC MLC

Figure 3.4: Read Latency Performance Comparison: PE0 and PES IPC (P/E Suspension
using IPC). Normalized to PE0.

As stated in Section 3.3, IPC can achieve better read performance but higher write

overhead compared to IPS. We evaluate the read performance of IPC and IPS in Fig. 3.5,

where the results are normalized to IPC. The read latency of IPS is 8.12% and 3.18% on

average and at-most 13.24% and 6.74% (under F1) higher than that of IPC. The difference

is resulted from the fact that IPS has extra read latency, which is mostly the time between

read request arrivals and the suspension points located at the end of the program or verify

phase. The latency difference between IPC and IPS of each trace is roughly proportional

to the occurrence rate of suspension operations that happen on the program (noting that for

suspension of erase operations, IPC and IPS share the same scheme). We can observe that

the latency performance of IPS using SLC is poorer than the MLC case, under all traces,

and this is because of the higher sensitivity of SLC’s read latency to the overhead caused

by the extra latency.

54

0.9

0.95

1

1.05

1.1

1.15

F1 F2 DAP MSN F1 F2 DAP MSN

N
o

rm
a

li
ze

d
 R

e
a

d
 L

a
te

n
cy

PES_IPC PES_IPS
SLC MLC

Figure 3.5: Read Latency Performance Comparison: PES IPC vs. PES IPS. Normalized
to PES IPC.

3.5.2 Write Performance

In this subsection, we begin with the analysis about the overhead on write latency caused by

P/E suspension of read requests. Afterwards, we enable Write-Suspend-Erase to eliminate

the overhead and boost the write performance.

Without Write-Suspend-Erase: The Overhead on Write Latency

Under the fore-mentioned workloads, either RPS or P/E suspension introduces significant

extra chip bandwidth usage and thus the write throughput is barely compromised. Here we

use the latency as a metric for the overhead evaluation. First, we compare the average write

latency of FIFO, RPS, PES IPS, and PES IPC in Fig. 3.6, where the results are normalized

to that of FIFO.

As illustrated in Fig. 3.6, write overhead in terms of latency is trivial compared to

the read performance gain we achieved with P/E suspension; nontheless, P/E suspension

schemes, especially the IPC, has a higher overhead than RPS. Specifically, RPS increases

the write latency by 3.96% and 2.81% on average and at-most 6.65% (SLC, MSN) and

55

3.80% (MLC, DAP), compared to FIFO. PES IPS increases write latency by 4.49% and

3.14% on average and at-most 6.91% (SLC, MSN) and 4.29%(MLC, DAP), respectively.

0.8

0.85

0.9

0.95

1

1.05

1.1

F1 F2 DAP MSN F1 F2 DAP MSN

N
o

rm
a

li
z
e

d
 W

ri
te

 L
a

te
n

c
y

FIFO RPS PES_IPS PES_IPC

SLC MLC

Figure 3.6: Write Latency Performance Comparison: FIFO, RPS, PES IPC, and PES IPS.
Normalized to FIFO.

Compared to RPS, the overhead of P/E suspension is mostly contributed by the service

time of the reads that preempted the on-going write or erase. Thus, although IPC added

overhead by extra Opvoltage reset in addition to the page buffer re-loading, which is the only

overhead introduced by IPS, the write latency difference between IPS and IPC is relatively

smaller than the difference between IPS and RPS. This point is observed clearly in Fig. 3.6

under all traces.

Furthermore, we observe that the overhead of the two P/E suspension schemes roughly

approximates that of RPS under F1, DAP, and MSN, while the deviation is larger under

F2. We examine the access pattern of the traces and found that in F2, read requests arrive

in larger batches than those in F1, DAP, and MSN. The scheduling policy of proposed P/E

suspension actually boost the probability of RPS, i.e., when the read that preempted the P/E

has been serviced, the controller will keep on prioritize reads pending in the queue before

resuming P/E. This implies under F2, once a read preempts an on-going P/E, the following

reads that come in batches with it would be serviced before P/E gets resumed. Thus, the

56

write overhead in this scenario is larger (in addition to overhead caused by RPS), and this

complies with our observation. We further justify this point by comparing the original P/E

latency reported by the device with latency after suspension in Fig. 3.7, where the results on

the y axis represents the increased percentage of write latency. As we can see, F2 obtains

larger overhead on suspended writes than the other three.

0

2

4

6

8

10

12

14

16

F1 F2 DAP MSN F1 F2 DAP MSN

L
a

te
n

cy
 O

v
e

rh
e

a
d

 o
n

 S
u

sp
e

n
d

e
d

W
ri

te
s

SLC MLC

Figure 3.7: Compare the original write latency with the effective write latency resulted
from P/E Suspension. Y axis represents the percentage of increased latency caused by P/E

suspension.

In addition to the read service time resulted from the boosted RPS, the other factor

that affects the write overhead is the percentage of P/E that had been suspended, which is

presented in Fig. 3.8. There is 4.87% and 7.39% on average and at-most 8.92% (SLC, F2)

and 12.65% (MLC, MSN) of the P/E that had been suspended. Referring to Table 3.2, we

can observe that the percentage numbers here are roughly proportional to the percentage of

read requests in each trace, e.g., F2 and MSN have the largest percentage of read requests

as well as that of the suspended P/E.

57

0

2

4

6

8

10

12

14

F1 F2 DAP MSN F1 F2 DAP MSN

P
e

rc
e

n
ta

tg
e

 o
f

P
/

E
 S

u
sp

e
n

si
o

n

SLC MLC

Figure 3.8: The percentage of writes that have ever been suspended.

Without Write-Suspend-Erase: the Sensitivity of Write Latency to the Write Queue

Size

In this subsection, we learn the sensitivity of write overhead to the maximum write queue

size. In order to obtain an amplified write overhead, we select F2, which has the highest

percentage of read requests, and compress the simulation time of F2 by 7 times to intensify

the workload. In Figure 3.9 we present the write latency results of RPS and PES IPC

(normalized to that of FIFO) varying the maximum write queue size from 16 to 512.

Clearly, the write overhead of both RPS and PES IPC is sensitive to the maximum write

queue size, which suggests that the flash controller should limit the write queue size to

control the write overhead. Noting that, relative to RPS, the PES IPC has a near-constant

increase on the write latency, which implies that the major contributor of overhead is RPS

when the queue size is varied.

Enable Write-Suspend-Erase: The Write Performance Gain

In order to eliminate the overhead on write latency, we enable the feature of Write-Suspend-

Erase. The effectiveness of this feature is illustrated in Figure 3.10, where the write latency

of PES IPC with Write-Suspend-Erase is normalized to that of FIFO. Compared to FIFO,

58

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

N
o

rm
a

li
ze

d
 W

ri
te

 L
a

te
n

cy

RPS PES_IPC

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

16 32 64 128 256 512

N
o

rm
a

li
ze

d
 W

ri
te

 L
a

te
n

cy

Maximum Write Queue Size

RPS PES_IPC

Figure 3.9: The write latency performance of RPS and PES IPC while the maximum write
queue size varies. Normalized to FIFO.

our approach reduces the write latency by 13.6% and 11.2% on average, i.e., the write

overhead caused by reads is balanced and we may even outperform FIFO.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F1 F2 DAP MSN F1 F2 DAP MSN

N
o

rm
a

li
z
e

d
 W

ri
te

 L
a

te
n

c
y

FIFO PES_IPC with Write-Suspend-Erase

SLC MLC

Figure 3.10: Write Latency Performance Comparison: FIFO and PES IPC with
Write-Suspend-Erase enabled. Normalized to FIFO.

59

3.6 Summary

One performance problem of NAND flash is that its program and erase latency is much

higher than the read latency. This problem causes the chip contention between reads and

P/Es due to the fact that with current NAND flash interface, the on-going P/E cannot

be suspended and resumed. To alleviate the impact of the chip contention on the read

performance, in this chapter we propose a light-overhead P/E suspension scheme by

exploiting the internal mechanism of P/E algorithm in NAND flash. We further apply this

idea to enable writes to preempt erase operations in order to reduce the write latency. The

design is simulated/evaluated with precise timing and realistic SSD modeling of multi-

chip/channel. Experimental results show that the proposed P/E suspension significantly

reduces the read and write latency.

60

Chapter 4

Delta-FTL: Improving SSD Lifetime via

Exploiting Content Locality

4.1 Introduction

The limited lifetime of SSD is a major drawback that hinders its deployment in reliability

sensitive environments [4, 7]. As pointed out in [7], “endurance and retention (of SSDs)

is not yet proven in the field” and integrating SSDs into commercial systems is “painfully

slow”. The reliability problem of SSDs mainly comes from the following facts. Flash

memory must be erased before it can be written and it may only be programmed/erased for

a limited times (5K to 100K) [21]. In addition, the out-of-place writes result in invalid pages

to be discarded by garbage collection (GC). Extra writes are introduced in GC operations

to move valid pages to a clean block [3] which further aggravates the lifetime problem of

SSDs.

Existing approaches for this problem mainly focus on two perspectives: 1) to prevent

early defects of flash blocks by wear-leaving [65, 14]; 2) to reduce the number of write

61

operations on the flash. For the later, various techniques are proposed including in-drive

buffer management schemes [37, 29, 33, 76] to exploit the temporal or spatial locality;

FTLs (Flash Translation Layer) [38, 41, 32, 23] to optimize the mapping policies or garbage

collection schemes to reduce the write-amplification factor; or data deduplication [15, 22]

to eliminate writes of existing content in the drive.

This work aims to efficiently solve this lifetime issue from a different aspect. We

propose a new FTL scheme, ∆FTL, to reduce the write count via exploiting the content

locality. The content locality has been observed and exploited in memory systems [24], file

systems [16], and block devices [54, 79, 80]. Content locality means data blocks, either

blocks at distinct locations or created at different time, share similar contents. We exploit

the content locality that exists between the new (the content of update write) and the old

version of page data mapped to the same logical address. This content locality implies the

new version resembles the old to some extend, so that the difference (delta) between them

can be compressed compactly. Instead of storing new data in its original form in the flash,

∆FTL stores the compressed deltas to reduce the number of writes.

4.2 Related Work Exploiting the Content Locality

The content locality implies that the data in the system share similarity with each other.

Such similarity can be exploited to reduce the memory or storage usage by delta-encoding

the difference between the selected data and its reference. Content locality has been

leveraged in various level of the system. In virtual machine environments, VMs share

a significant number of identical pages in the memory, which can be deduplicated to

reduce the memory system pressure. Difference engine [24] improves the performance

62

over deduplication by detecting the nearly identical pages and coalesce them via in-core

compression [50] into much smaller memory footprint. Difference engine detects similar

pages based on hashes of several chucks of each page: hash collisions are considered as a

sign of similarity. Different from difference engine, GLIMPSE [51] and DERD system [16]

work on the file system to leverage similarity across files; the similarity detection method

adopted in these techniques is based on Rabin fingerprints over chunks at multiple offsets in

a file. In the block device level, Peabody [54] and TRAP-Array [80] are proposed to reduce

the space overhead of storage system backup, recovery, and rollback via exploiting the

content locality between the previous (old) version of data and the current (new) version.

Peabody mainly focuses on eliminating duplicated writes, i.e., the update write contains

the same data as the corresponding old version (silent write) or sectors at different location

(coalesced sectors). On the other hand, TRAP-Array reduces the storage usage of data

backup by logging the compressed XORs (delta) of successive writes to each data block.

The intensive content locality in the block I/O workloads produces a small compression

ratio on such deltas and TRAP-Array is significantly space-efficient compared to traditional

approaches. I-CASH [79] takes the advantage of content locality existing across the entire

drive to reduce the number of writes in the SSDs. I-CASH stores only the reference blocks

on the SSDs while logs the delta in the HDDs.

Our approach ∆FTL is mostly similar to the idea of TRAP-Array [80] , which exploits

the content locality between new and old version. The major differences are: 1) ∆FTL

aims at reducing the number of program/erase (P/E) operations committed to the flash

memory so as to extend SSD’s lifetime, instead of reducing storage space usage involved

in data backup or recovery. Technically, the history data are backed up in TRAP-Array

while they are considered “invalid” and discarded in ∆FTL; 2) ∆FTL is an embedded

63

software in the SSD to manage the allocation and de-allocation of flash space, which

requires relative complex data structures and algorithms that are “flash-aware”. It also

requires that the computation complexity should be kept minimum due to limited micro-

processor capability.

4.3 Delta-FTL Design

Flash Array

Page Mapping Area

Delta Log Area

Original Data

On-disk Write Buffer

Delta-Encoding Engine

Delta

Old XOR New

Compression

Buffer Evictions

(new version) Fetch the old version

Mapping Tables

PMT DMT

Block I/O Interface

Write Requests

Delta

Encode?

Yes

No

Compressed Delta

Figure 4.1: ∆FTL Overview

∆FTL is designed as a flash management scheme that can store the write data in form

of compressed deltas on the flash. Instead of devising from scratch, ∆FTL is rather

an enhancement to the framework of the popular page-mapping FTL like DFTL [23].

Figure 4.1 gives an overview of ∆FTL and unveils its major differences from a regular

page-mapping FTL:

64

• First, ∆FTL has a dedicated area, Delta Log Area (DLA), for logging the compressed

deltas.

• Second, the compressed deltas must be associated with their corresponding old

versions to retrieve the data. An extra mapping table, Delta Mapping Table (DMT),

collaborates with Page Mapping Table (PMT) to achieve this functionality.

• Third, ∆FTL has a Delta-encoding Engine to derive and then compress the delta

between the write buffer evictions and their old version on the flash. We have a

set of dispatching rules determining whether a write request is stored in its original

form or in its “delta-XOR-old” form. For the first case, the data is written to a flash

page in page mapping area in its original form. For the later case, the delta-encoding

engine derives and then compresses the delta between old and new. The compressed

deltas are buffered in a flash-page-sized Temp Buffer until the buffer is full. Then,

the content of the temp buffer is committed to a flash page in delta log area.

4.3.1 Dispatching Policy: Delta Encode?

The content locality between the new and old data allows us to compress the delta, which

has rich information redundancy, to a compact form. Writing the compressed deltas rather

than the original data, would indeed reduce the number of flash writes. However, delta-

encoding all data indiscriminately would cause overheads.

First, if a page is stored in “delta-XOR-old” form, this page actually requires storage

space for both delta and the old page, compared to only one flash page if in the original

form. The extra space is provided by the overprovisioning area of the drive [3]. To make a

trade-off between the overprovisioning resource and the number of writes, ∆FTL favors the

65

data that are overwritten frequently. This policy can be interpreted intuitively with a simple

example: in a workload, page data A is only overwritten once while B is overwritten 4

times. Assuming the compression ratio is 0.25, delta-encoding A would reduce the number

of write by 3/4 page (compared to the baseline which would take one page write) at a cost

of 1/4 page in the overprovision space. Delta-encoding B, on the other hand, reduces

the number of write by 4 ∗ (3/4) = 3 pages at the same cost of space. Clearly, we

would achieve better performance/cost ratio with such write “hot” data rather than the cold

ones. The approach taken by ∆FTL to differentiate hot data from cold ones is discussed in

Section 4.3.4.

Second, fulfilling a read request targeting a page in “delta-XOR-old” form requires

two flash page reads. This may have reverse impact on the read latency. To alleviate this

overhead, ∆FTL avoids delta-encoding pages that are read intensive. If a page in “delta-

XOR-old” form is found read intensive, ∆FTL will merge it to the original form to avoid

the reading overhead.

Third, the delta-encoding process involves operations to fetch the old, derive delta, and

compress delta. This extra time may potentially add overhead to the write performance

(discussed in Section 4.3.2). ∆FTL must cease delta-encoding if it would degrade the

write performance.

To summarize, ∆FTL delta-encodes data that are write-hot but read-cold while

ensuring the write performance is not degraded.

4.3.2 Write Buffer and Delta-encoding

The in-drive write buffer resides in the volatile memory (SRAM or DRAM) managed by

an SSD’s internal controller and shares a significant portion of it [37, 29, 33]. The write

66

Temp Buffer (Flash page sized)

Meta data:

Offsets,

LPA

Delta OOBDelta Delta Delta Delta

Figure 4.2: ∆FTL Temp Buffer

buffer absorbs repeated writes and improves the spatial locality of the output workload

from it. We concentrate our effort on FTL design, which services write buffer’s outputs,

and adopt simple buffer management schemes like FIFO or SLRU [34] that are usual in disk

drives. When buffer eviction occurs, the evicted write pages are dispatched according to

our dispatching policy discussed above to either ∆FTL’s Delta-encoding Engine or directly

to the page mapping area.

Delta-encoding engine takes the new version of the page data (i.e., the evicted page)

and the corresponding old version in page mapping area, as its inputs. It derives the delta

by XOR the new and old version and then compress the delta. The compressed delta are

buffered in Temp Buffer. Temp Buffer is of the same size as a flash page. Its content will be

committed to delta log area once it is full or there is no space for the next compressed

delta. Splitting a compressed delta on two flash pages would involve in unnecessary

complications for our design. Storing multiple deltas in one flash page requires meta-data,

like LPA (logical page address) and the offset of each delta (as shown in Figure 4.2) in the

page, to associate them with their old versions and locate the exact positions. The meta-

data is stored at the MSB part of a page instead of attached after the deltas, for the purpose

of fast retrieval. This is because the flash read operation always buses out the content of a

page from its beginning [56]. The content of temp buffer described here is essentially what

we have in flash pages of delta log area.

Delta-encoding engine demands the computation power of SSD’s internal micro-

processor and would introduce overhead for write requests. We discuss the delta-encoding

67

latency in Section 4.3.2 and the approach adopted by ∆FTL to control the overhead in

Section 4.3.2.

Delta-encoding Latency: Delta-encoding involves two steps: to derive delta (XOR the

new and old versions) and to compress it. Among many data compression algorithms,

the lightweight ones are favorable for ∆FTL due to the limited computation power of

the SSD’s internal micro-processor. We investigate the latency of a few candidates,

including Bzip2 [64], LZO [55], LZF [45], Snappy [19], and Xdelta [50], by emulating

the execution of them on the ARM platform: the source codes are cross-compiled and run

on the SimpleScalar-ARM simulator [49]. The simulator is an extension to SimpleScalar

supporting ARM7 [5] architecture and we configured a processor similar to ARM R©Cortex

R4 [1], which inherits ARM7 architecture. For each algorithm, the number of CPU cycles

is reported and the latency is then estimated by dividing the cycle number by the CPU

frequency. We select LZF (LZF1X-1) from the candidates because it makes a good trade-

off between speed and compression performance, plus a compact executable size. The

average number of CPU cycles for LZF to compress and decompress a 4KB page is about

27212 and 6737, respectively. According to Cortex R4’s write paper, it can run at a

frequency from 304MHz to 934MHz. The latency values in µs are listed in Table 4.1. An

intermediate frequency value (619MHz) is included along with the other two to represent

three classes of micro-processors in SSDs.

Table 4.1: Delta-encoding Latency
Frequency(MHz) 304 619 934
Compression(µs) 89.5 44.0 29.1

Decompression(µs) 22.2 10.9 7.2

Discussion: Write Performance Overhead: ∆FTL’s delta-encoding is a two-step

procedure. First, delta-encoding engine fetches the old version from the page mapping

68

area. Second, the delta between the old and new data are derived and compressed. The first

step consists of raw flash access and bus transmission, which exclusively occupy the flash

chip and the bus to the micro-processor, respectively. The second step occupies exclusively

the micro-processor to perform the computations. Naturally, these three elements, the flash

chip, the bus, and micro-processor, forms a simple pipeline, where the delta-encoding

procedures of a serial of write requests could be overlapped. An example of four writes

is demonstrated in Figure 4.3, where Tdelta encode is the longest phase. This is true for a

micro-processor of 304MHz or 619MHz assuming Tread raw and Tbus take 25µs and 40µs

(Table 4.3), respectively. A list of symbols used in this section is summarized in Table 4.2.

Table 4.2: List of Symbols
Symbols Description

n Number of pending write pages
Pc Probability of compressible writes
Rc Average compression ratio

Twrite Time for page write
Tread raw Time for raw flash read access
Tbus Time for transferring a page via bus
Terase Time to erase a block

Tdelta encode Time for delta-encoding a page
Bs Block size (pages/block)
N Total Number of page writes in the workload
T Data blocks containing invalid pages (baseline)
t Data blocks containing invalid pages (∆FTL’s PMA)

PEgc The number of P/E operations done in GC
Fgc GC frequency
OHgc Average GC overhead
Ggc Average GC gain (number of invalid pages reclaimed)
Scons Consumption speed of available clean blocks

Table 4.3: Flash Access Latency
Parameter Value

Flash Read/Write/Erase 25µs/200µs/1.5ms
Bus Transfer Time 40µs

For an analytical view of the write overhead, we assume there is a total number of n

write requests pending for a chip. Among these requests, the percentage that is considered

69

Tbus Tdelta_encodeTread_raw

Tbus Tdelta_encodeTread_raw

Tbus Tdelta_encodeTread_raw

Tbus Tdelta_encodeTread_rawW1

W2

W3

W4

Figure 4.3: ∆FTL Delta-encoding Timeline

compressible according to our dispatching policy is Pc and the average compression ratio

is Rc. The delta-encoding procedure for these n requests takes a total time of:

MAX(Tread raw, Tbus, Tdelta encode) ∗ n ∗ Pc

The number of page writes committed to the flash is the sum of original data writes and

compressed delta writes: (1−Pc)∗n+Pc ∗n∗Rc. For the baseline, which always outputs

the data in their original form, the page write total is n. We define that the write overhead

exists if ∆FTL’s write routine takes more time than the baseline. Thus, there is no overhead

if the following expression is true:

MAX(Tread raw, Tbus, Tdelta encode) ∗ n ∗ Pc+

((1− Pc) ∗ n+ Pc ∗ n ∗Rc) ∗ Twrite < n ∗ Twrite
(4.1)

Expression 4.1 can be simplified to:

1−Rc > MAX(Tread raw, Tbus, Tdelta encode)

Twrite
(4.2)

Substituting the numerical values in Table 4.1 and Table 4.3, the right side of Expression 4.2

is 0.45, 0.22, and 0.20, for micro-processor running at 304, 619, and 934MHz, respectively.

Therefore, the viable range of Rc should be smaller than 0.55, 0.78, and 0.80. Clearly, high

performance micro-processor would impose a less restricted constraint on Rc. If Rc is

70

out of the viable range due to weak content locality in the workload, in order to eliminate

the write overhead, ∆FTL must switch to the baseline mode where the delta-encoding

procedure is bypassed.

4.3.3 Flash Allocation

∆FTL’s flash allocation scheme is an enhancement to the regular page mapping FTL

scheme with a number of flash blocks dedicated to store the compressed deltas. These

blocks are referred to as Delta Log Area (DLA). Similar to page mapping area (PMA), we

allocate a clean block for DLA so long as the previous active block is full [3]. The garbage

collection policy will be discussed in Section 4.3.5.

DLA cooperates with PMA to render the latest version of one data page if it is stored

as delta-XOR-old form. Obviously, read requests for such data page would suffer from the

overhead of fetching two flash pages. To alleviate this problem, we keep the track of the

read access popularity of each delta. If one delta is found read-popular, it is merged with

the corresponding old version and the result (data in its original form) is stored in PMA.

Furthermore, as discussed in Section 4.3.1, write-cold data should not be delta-encoded

in order to save the overprovisioning space. Considering the temporal locality of a page

may last for only a period in the workload, if a page previously considered write-hot is no

longer demonstrating its temporal locality, this page should be transformed to its original

form from its delta-XOR-old form. ∆FTL periodically scans the write-cold pages and

merges them to PMA from DLA if needed.

71

4.3.4 Mapping Table

The flash management scheme discussed above requires ∆FTL to associate each valid delta

in DLA with its old version in PMA. ∆FTL adopts two mapping tables for this purpose:

Page Mapping Table (PMT) and Delta Mapping Table (DMT).

Page mapping table is the primary table indexed by logical page address (LPA) of

32bits. For each LPA, PMT maps it to a physical page address (PPA) in page mapping

area, either the corresponding data page is stored as its original form or in delta-XOR-old

form. For the later case, the PPA points to the old version. PMT differentiates this two cases

by prefixing a flag bit to the 31bits PPA (which can address 8TB storage space assuming

a 4KB page size). As demonstrated in Figure 4.4: if the flag bit is “1”, which means this

page is stored in delta-XOR-old form, we use the PPA (of the old version) to consult the

delta mapping table and find out on which physical page the corresponding delta resides.

Otherwise, the PPA in this page mapping table entry points to the original form of the page.

DMT does not maintain the offset information of each delta in the flash page; we locate the

exact position with the metadata prefixed in the page (Figure 4.2).

LPA

32 bits 31 bits1 bit

PPA

PMA Mapping

DLA Mapping

PPA (addr of old version)

31 bits 31 bits

PPA (addr of delta)

0: data is stored in PMA as origin

1: data is stored as old version in PMA XOR

delta in DLA

If “1”
Figure 4.4: ∆FTL Mapping Entry

72

Store Mapping Tables On the Flash: ∆FTL stores both mapping tables on the flash

and keeps an journal of update records for each table. The updates are first buffered in

the in-drive RAM and when they grow up to a full page, these records are flushed to the

journal on the flash. In case of power failure, a built-in capacitor or battery in the SSD (e.g.,

a SuperCap [72]) may provide the power to flush the un-synchronized records to the flash.

The journals are merged with the tables periodically.

Cache Mapping Table In the RAM: ∆FTL adopts the same idea of caching popular

table entries in the RAM as DFTL [23], as shown in Figure 4.5(a). The cache is managed

using segment LRU scheme (SLRU) [34]. Different from two separate tables on the

flash, the mapping entries for data either in the original form or delta-XOR-old form are

included in one SLRU list. For look-up efficiency, we have all entries indexed by the LPA.

Particularly, entries for data in delta-XOR-old form associate the LPA with PPA of old

version and PPA of delta, as demonstrated in Figure 4.5(b). When we have an address

look-up miss in the mapping table cache and the target page is in delta-XOR-old form,

both on-flash tables are consulted and we merge the information together to an entry as

shown in Figure 4.5(b).

As discussed in Section 4.3.3, the capability of differentiating write-hot and read-hot

data is critical to ∆FTL. We have to avoid delta-encoding the write-cold or read-hot data

and merge the delta and old version of one page if it is found read-hot or found no longer

write-hot. To keep the track of read/write access frequency, we associate each mapping

entry in the cache with an access count. If the mapping entry of a page is found having a

read-access (or write-access) count larger or equal to a predefined threshold, we consider

this page read-hot (or write-hot) and vice versa. In our prototyping implementation, we set

this threshold as 2 and it captures the temporal locality for both read and writes successfully

73

in our experiments. This information is forwarded to the dispatching policy module to

guide the destination of a write request. In addition, merge operations take place if needed.

Protected Segment Probationary Segment

(a)

Access Count

LPA

PPA

Access Count

LPA

PPA(Old)

PPA(Delta)

OR

(b)

Figure 4.5: ∆FTL Buffered Mapping Entry

4.3.5 Garbage Collection

Overwrite operations causes invalidation of old data, which the garbage collection engine

is required to discard when clean flash blocks are short. GC engine copies the valid data on

the victim block to a clean one and erase the victim thereafter. ∆FTL selects victim blocks

based on a simple “greedy” policy, i.e., blocks having the most number of invalid data result

in the least number of valid data copy operations and the most clean space reclaimed [36].

∆FTL’s GC victim selection policy does not differentiate blocks from page mapping area

or delta log area. In delta log area, the deltas becomes invalid in the following scenarios:

• If there is a new write considered not compressible (the latest version will be

dispatched to PMA), according to the dispatching policy, the corresponding delta

of this request and the old version in PMA become invalid.

• If the new write is compressible and thus a new delta for the same LPA is to be logged

in DLA, the old delta becomes invalid.

74

• If this delta is merged with the old version in PMA, either due to read-hot or write-

cold, it is invalidated.

• If there is a TRIM command indicating that a page is no longer in use, the

corresponding delta and the old version in PMA are invalidated.

For any case, ∆FTL maintains the information about the invalidation of the deltas for GC

engine to select the victims. In order to facilitate the merging operations, when a block is

selected as GC victim, the GC engine will consult the mapping table for information about

the access frequency of the valid pages in the block. The GC engine will conduct necessary

merging operations while it is moving the valid pages to the new position. For example, for

a victim block in PMA, GC engine finds out a valid page is associated with a delta which

is read-hot, then this page will be merged with the delta and mark the delta as invalidated.

4.4 Discussion: SSD Lifetime Extension of ∆FTL

Analytical discussion about ∆FTL’s performance on SSD lifetime extension is given in this

section. In this chapter, we use the number of program and erase operations executed to

service the write requests as the metric to evaluate the lifetime of SSDs. This is a common

practice in most existing related work targeting SSD lifetime improvement [15, 23, 66, 79].

This is because the estimation of SSDs’ lifetime is very challenging due to many

complicated factors that would affect the actual number of write requests an SSD could

handle before failure, including implementation details the device manufacturers would

not unveil. On the other hand, comparing the P/E counts resulted from our approach to

the baseline is relatively a more practical metric for the purpose of performance evaluation.

Write amplification is a well-known problem for SSDs: due to the out-of-place-update

75

feature of NAND flash, the SSDs have to take multiple flash write operations (and even

erase operations) in order to fulfill one write request. There are a few factors that would

affect the write amplification, e.g., the write buffer, garbage collection, wear leveling,

etc [28]. We focus on garbage collection for our discussion, providing that the other

factors are the same for ∆FTL and the regular page mapping FTLs. We breakdown the

total number of P/E operations into two parts: the foreground writes issued from the write

buffer (for the baseline) or ∆FTL’s dispatcher and delta-encoding engine; the background

page writes and block erase operations involved in GC processes. Symbols introduced in

this section are listed in Table 4.2.

4.4.1 Foreground Page Writes

Assuming for one workload, there is a total number of N page writes issued from the write

buffer. The baseline hasN foreground page writes while ∆FTL has (1−Pc)∗N+Pc ∗N ∗

Rc (as discussed in Section 4.3.2). ∆FTL would resemble the baseline if Pc (percentage

of compressible writes) approaches 0 or Rc (average compression ratio of compressible

writes) approaches 1, which means the temporal locality or content locality is weak in the

workload.

4.4.2 GC Caused P/E Operations

The P/E operations caused by GC processes is essentially determined by the frequency of

GC and the average overhead of each GC, which can be expressed as:

PEgc ∝ Fgc ∗OHgc (4.3)

76

GC process is triggered when clean flash blocks are short in the drive. Thus, the

GC frequency is proportional to the consumption speed of clean space and inversely

proportional to the average number of clean space reclaimed of each GC (GC gain):

Fgc ∝
Scons
Ggc

(4.4)

Consumption Speed is actually determined by the number of foreground page writes (N

for the baseline). GC Gain is determined by the average number of invalid pages on each

GC victim block.

GC P/E of The Baseline

First, let’s consider the baseline. Assuming for the given workload, all write requests

are overwrites to existing data in the drive, then N page writes invalidate a total number

of N existing pages. If these N invalid pages spread over T data blocks, the average

number of invalid pages (thus GC Gain) on GC victim blocks is N/T . Substituting into

Expression 4.4, we have the following expression for the baseline:

Fgc ∝
N

N/T
= T (4.5)

For each GC, we have to copy the valid pages (assuming there are Bs pages/block, we

have Bs − N/T valid pages on each victim block on average) and erase the victim block.

Substituting into Expression 4.3, we have:

PEgc ∝ T ∗ (Erase+ Program ∗ (Bs −N/T)) (4.6)

77

GC P/E of ∆FTL

Now let’s consider ∆FTL’s performance. Among N page writes issued from the write

buffer, (1 − Pc) ∗ N pages are committed in PMA causing the same number of flash

pages in PMA to be invalidated. Assuming there are t blocks containing invalid pages

caused by those writes in PMA, we apparently have t ≤ T . The average number of invalid

pages in PMA is then (1 − Pc) ∗ N/t. On the other hand, Pc ∗ N ∗ Rc pages containing

compressed deltas are committed to DLA. Recall that there are three scenarios where the

deltas in DLA get invalidated (Section 4.3.5). Omitting the last scenario which is rare

compared to the first two, the number of deltas invalidated is determined by the overwrite

rate (Pow) of deltas committed to DLA: while we assume in the workload all writes are

overwrites to existing data in the drive, this overwrite rate here defines the percentage of

deltas that are overwritten by the subsequent writes in the workload. For example, no

matter the subsequent writes are incompressible and committed to PMA or otherwise, the

corresponding delta gets invalidated. The average invalid space (in the term of pages) of

victim block in DLA is thus Pow ∗Bs. Substituting these numbers to Expression 4.4: If the

average GC gain in PMA outnumbers that in DLA, we have:

Fgc ∝
(1− Pc + PcRc)N

(1− Pc)N/t
= t(1 +

PcRc

1− Pc
) (4.7)

Otherwise, we have:

Fgc ∝
(1− Pc + PcRc)N

PowBs

(4.8)

78

Substituting Expression 4.7 and 4.8 to Expression 4.3, we have for GC introduced P/E:

PEgc ∝ t(1 + PcRc
1−Pc)∗

(Erase+ Program ∗ (Bs − (1− Pc)N/t))
(4.9)

or:

PEgc ∝ (1−Pc+PcRc)N
PowBs

∗

(Terase + Twrite ∗Bs(1− Pow))

(4.10)

4.4.3 Summary

From above discussions, we observe that ∆FTL favors the disk I/O workloads that

demonstrate: (i) High content locality that results in small Rc; (ii) High temporal locality

for writes that results in large Pc and Pow. Such workload characteristics are widely present

in various OLTP applications such as TPC-C, TPC-W, etc [80, 79, 67, 35].

4.5 Performance Evaluation

We have implemented and evaluated our design of ∆FTL based on a series of compre-

hensive trace-driven simulation experiments. In this section, we present the experimental

results comparing ∆FTL with the page mapping FTL as the baseline. Essentially, the

number of foreground writes and the efficiency of GC are reflected by the number of GC

operations. Thus, in this section we use the number of GC operations as the major metric

to evaluate ∆FTL’s performance on extending SSD’s lifetime. In addition, we evaluate

the overheads ∆FTL may potentially introduce, including read and write performance.

Particularly, read/write performance is measured in terms of response time.

79

4.5.1 Simulation Tool and SSD Configurations

∆FTL is a device-level software in the SSD controller. We have implemented it (as

well as the baseline page mapping FTL) in an SSD simulator based on the Microsoft

Research SSD extension [3] for DiskSim 4.0. The simulated SSD is configured as follows:

there are 16 flash chips, each of which owns a dedicated channel to the flash controller.

Each chip has four planes that are organized in a RAID-0 fashion; the size of one plane

is 1GB assuming the flash is used as 2-bit MLC (page size is 4KB). To maximize the

concurrency, each individual plane has its own allocation pool [3]. The garbage collection

processes are executed in the background so as to minimizing the interference upon the

foreground requests. In addition, the percentage of flash space over-provisioning is set as

30%, which doubles the value suggested in [3]. Considering the limited working-set size

of the workloads used in this work, 30% over-provisioning is believed to be sufficient to

avoid garbage collection processes to be executed too frequently. The garbage collection

threshold is set as 10%, which means if the clean space goes below 10% of the exported

space, the garbage collection processes are triggered. Due to negligible impact that the

write buffer size has on ∆FTL’s performance compared to the baseline, we only report the

results with buffer size of 64MB. The SSD is connected to the host via a PCI-E bus of 2.0

GB/s. In addition, the physical operating parameters of the flash memory are summarized

in Table 4.3.

4.5.2 Workloads

We choose 6 popular disk I/O traces for the simulation experiments. Financial 1 and

Financial 2 (F1, F2) [67] were obtained from OLTP applications running at two large

80

financial institutions; the Display Ads Platform and payload servers (DAP-PS) and MSN

storage metadata (MSN-CFS) traces were from the Production Windows Servers and

described in [35] (MSN-CFS trace contains I/O requests on multiple disks and we only

use one of them); the Cello99 [27] trace pool is collected from the “Cello” server that

runs HP-UX 10.20. Because the entire Cello99 is huge, we randomly use one day traces

(07/17/99) of two disks (Disk 3 and Disk 8). Table 4.4 summarizes the traces we use in our

simulation.

Table 4.4: Disk Traces Information
Reads(106) Read % Writes Write % Duration(h)

F1 1.23 23.2 4.07 76.8 12
F2 3.04 82.3 0.65 17.7 12
C3 0.75 35.3 1.37 64.7 24
C8 0.56 27.4 1.48 72.6 24

DAP 0.61 56.2 0.47 43.8 24
MSN 0.40 75.0 0.13 25.0 6

4.5.3 Emulating the Content Locality

As pointed out in [54, 16, 80, 15], the content locality of a workload is application specific

and different applications may result in distinctive extent of content locality. In this

chapter, instead of focusing on only the workloads possessing intensive content locality,

we aim at exploring the performance of ∆FTL under diverse situations. The content

locality as well as temporal locality are leading factors that have significant impact on

∆FTL’s performance. In our trace-driven simulation, we explore various temporal locality

characteristics via 6 disk I/O traces; on the other hand, we emulate the content locality

by assigning randomized compression ratio values to the write requests in the traces. The

compression ratio values follows Gaussian distribution, of which the average equals Rc.

Referring to the values of Rc reported in [80] (0.05 to 0.25) and in [54] (0.17 to 0.6),

81

we evaluate three levels of content locality in our experiments, having Rc = 0.50, 0.35,

and 0.20 to represent low, medium, and high content locality, respectively. In the rest of

this section, we present the experimental results under 6 traces and three levels of content

locality, comparing ∆FTL with the baseline.

4.5.4 Experimental Results

To verify the performance of ∆FTL, we measure the number of garbage collection

operations and foreground writes, the write latency, and overhead on read latency.

Number of Garbage Collection Operations and Foreground Writes

First, we evaluate the number of garbage collection operations as the metric for ∆FTL’s

performance on extending SSD lifetime. Due to the large range of the numerical values

of the experimental results, we normalize them to the corresponding results of the baseline

as shown in Figure 4.6. Clearly, ∆FTL significantly reduces the GC count compared to

the baseline: ∆FTL results in only 58%, 46%, and 33% of the baseline GC count on

average, for Rc = 0.50, 0.35, 0.20 respectively. ∆FTL’s maximum performance gain (22%

of baseline) is achieved with C3 trace when Rc = 0.20; the minimum (82%) is with F1,

Rc = 0.50. We may observe from the results that the performance gain is proportional

to the content locality, which is represented by the average compression ratio Rc; in

addition, ∆FTL performs relatively poorer with two traces F1 and F2, compared to the

rests. In order to interpret our findings, we examine two factors that determine the GC

count: the consumption speed of clean space (Scons, Expression 4.4) and the speed of clean

space reclaiming, i.e., the average GC gain (Ggc). Consumption Speed: As discussed in

Section 4.4, the consumption speed is determined by the number of foreground flash page

82

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

r
m

a
li

z
e

d
 G

C
 #

Baseline Rc=0.5 Rc=0.35 Rc=0.2

0

0.1

0.2

0.3

0.4

F1 F2 C3 C8 DAP MSN

N
o

r
m

a
li

z
e

d
 G

C
 #

Figure 4.6: Normalized GC #: comparing baseline and ∆FTL; smaller # implies longer
SSD lifetime.

writes. We plot the normalized number of foreground writes in Figure 4.7. As seen in

the figure, the results are proportional to Rc as well; F1 and F2 produce more foreground

writes than the others, which result in larger GC counts as shown in Figure 4.6. If there are

N writes in the baseline, ∆FTL would have (1− Pc + Pc ∗Rc) ∗N . The foreground write

counts are reversely proportional to Rc (self-explained in Figure 4.7) as well as Pc. So,

what does Pc look like? Recall in Section 4.3.1 that Pc is determined by the dispatching

rules, which favor write-hot and read-cold data. The access frequency characteristics, i.e.,

the temporal locality, is workload-specific, which means the Pc values should be different

among traces but not affected by Rc. This point is justified clearly in Figure 4.8, which

plots the ratio of DLA writes (Pc) out of the total foreground writes. We may also verify

that the foreground write counts (Figure 4.7) are reversely proportional to Pc: F1 and F2

have the least Pc values among all traces and they produce the most number of foreground

writes; this trend can be also observed with other traces. Garbage collection gain is

another factor that determines GC count. Figure 4.9 plots the average GC gain in terms

83

0.6

0.8

1

1.2

N
o

rm
a

li
ze

d
 F

o
re

g
ro

u
n

d
 W

ri
te

 #

Baseline Rc=0.5 Rc=0.35 Rc=0.2

0

0.2

0.4

F1 F2 C3 C8 DAP MSN

N
o

rm
a

li
ze

d
 F

o
re

g
ro

u
n

d
 W

ri
te

 #

Figure 4.7: Normalized foreground write #: comparing baseline and ∆FTL; smaller #
implies: a) larger Pc and b) lower consumption speed of clean flash space.

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

F1	 F2	 C3	 C8	 DAP	 MSN	

Ra
#o

	 o
f	 D

LA
	 W

rit
es
	

Rc=0.5	 Rc=0.35	 Rc=0.2	

Figure 4.8: Ratio of DLA writes (Pc).

84

of the number of invalid pages reclaimed. GC gain ranges from 14 (C8, baseline) to 54

(F2, Rc = 0.20). F1 and F2 outperform the other traces on the average GC gain. However,

comparing to the baseline performance, ∆FTL actually does not improve much with F1 and

F2: we normalize each trace’s results with its individual baseline in Figure 4.10. ∆FTL

even degrades average GC gain with F1 and F2 when Rc = 0.50. This also complies with

the GC count results shown in Figure 4.6, where ∆FTL achieves poorer performance gain

with F1 and F2 compared to the others. The reason why ∆FTL does not improve GC

30

40

50

60

A
v

e
ra

g
e

 G
C

 G
a

in

Baseline Rc=0.5 Rc=0.35 Rc=0.2

0

10

20

F1 F2 C3 C8 DAP MSN

A
v

e
ra

g
e

 G
C

 G
a

in

Figure 4.9: Average GC gain (number of invalid pages reclaimed): comparing baseline
and ∆FTL; smaller # implies lower GC efficiency on reclaiming flash space.

gain significantly over the baseline with F1 and F2 is: compared to the other traces, F1 and

F2 result in larger invalid page counts in blocks of PMA, which makes ∆FTL’s GC engine

to choose more PMA blocks as GC victims than DLA blocks. Thus, the average GC gain

performance of ∆FTL resembles the baseline. To the contrary, ∆FTL benefits from the

relative higher temporal locality of write requests in the DLA than in the PMA, under the

other 4 traces. This is the reason why ∆FTL outperforms the baseline with these traces. In

order to verify this point, we collect the number of GC executed in DLA and plot the ratio

85

0.8

1

1.2

1.4

1.6

N
o

r
m

a
li

z
e

d

G

C
 G

a
in

Baseline Rc=0.5 Rc=0.35 Rc=0.2

0

0.2

0.4

0.6

F1 F2 C3 C8 DAP MSN

N
o

r
m

a
li

z
e

d

G

C
 G

a
in

Figure 4.10: Normalized average GC gain (number of invalid pages reclaimed):
comparing baseline and ∆FTL.

over the total in Figure 4.11: the majority of the total GC operations lies in PMA for F1

and F2 and in DLA for the rest.

Write Performance

In ∆FTL, the delta-encoding procedure in servicing a write request may cause overhead

on write latency if Rc is out of the viable range (Section 4.3.2). Rc values adopted in our

simulation experiments ensures there is no write overhead. ∆FTL significantly reduces

the foreground write counts, and the write latency performance also benefits from this. As

shown in Figure 4.12, ∆FTL reduces the average write latency by 36%, 47%, and 51%

when Rc = 0.50, 0.35, 0.20, respectively.

Garbage Collection Overhead

The GC operation involves copying the valid data from the victim block to a clean block

and erasing the victim block. The GC overhead, i.e., the time for a GC operation, may

86

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

F1	 F2	 C3	 C8	 DAP	 MSN	

Ra
#o

	 o
f	 G

C	
on

	 D
LA

	

Rc=0.5	 Rc=0.35	 Rc=0.2	

Figure 4.11: Ratio of GC executed in DLA.

0.6

0.8

1

1.2

N
o

rm
a

li
ze

d
 W

ri
te

 L
a

te
n

cy

Baseline Rc=0.5 Rc=0.35 Rc=0.2

0

0.2

0.4

F1 F2 C3 C8 DAP MSN

N
o

rm
a

li
ze

d
 W

ri
te

 L
a

te
n

cy

Figure 4.12: Normalized write latency performance: comparing baseline and ∆FTL.

87

potentially hinder the foreground requests to be serviced. We evaluate the average GC

overhead of ∆FTL and compare the results to the baseline in Figure 4.13. We observe that

∆FTL does not significantly increase the GC overhead under most cases.

0.6

0.8

1

1.2
N

o
rm

a
li

ze
d

 A
v

g
 G

C
 O

v
e

rh
e

a
d

Baseline Rc=0.5 Rc=0.35 Rc=0.2

0

0.2

0.4

F1 F2 C3 C8 DAP MSN

N
o

rm
a

li
ze

d
 A

v
g

 G
C

 O
v

e
rh

e
a

d

Figure 4.13: Normalized average GC overhead.

Overhead on Read Performance

∆FTL reduces the write latency significantly and therefore alleviates the chip contention

between the read and write requests, resulting less queuing delay for the reads. Under

intensive workloads, the effective read latency (considering queuing delay on the device

side) is reduced in Delta-FTL. However, ∆FTL inevitably introduces overhead on the raw

read latency (despite queuing delay) when the target page is delta-encoded. Fulfilling such

a read request requires two flash read operations. To overcome this potential overhead,

∆FTL delta-encodes only the write-hot and read-cold data and merges DLA pages to their

original form if they are found read-hot. To evaluate the effectiveness of our approach, we

collect the raw read latency values reported by the simulator and demonstrate the results

in Figure 4.14. Compared to the baseline (normalized to 1), ∆FTL’s impact on the read

88

performance is trivial: the read latency is increased by 5.3%, 5.4%, and 5.6% on average∗

when Rc = 0.50, 0.35, 0.20, respectively. The maximum (F2, Rc = 0.50) is 10.7%. To

0.8

0.9

1

1.1

N
o

rm
a

li
ze

d
 R

e
a

d
 L

a
te

n
cy

Baseline Rc=0.5 Rc=0.35 Rc=0.2

0.5

0.6

0.7

0.8

F1 F2 C3 C8 DAP MSN

N
o

rm
a

li
ze

d
 R

e
a

d
 L

a
te

n
cy

Figure 4.14: Normalized read latency performance: comparing baseline and ∆FTL.

summarize, our experimental results verify that ∆FTL significantly reduces the GC count

and thus extends SSDs’ lifetime at a cost of trivial overhead on read performance.

4.6 Summary

The limited lifetime impedes NAND flash-based SSDs from wide deployment in reliability-

sensitive environments. In this chapter, we have proposed a solution, ∆FTL, to alleviate

this problem. ∆FTL extends SSDs’ lifetime by reducing the number of program/erase

operations for servicing the disk I/O requests. By leveraging the content locality existing

between the new data and its old version, ∆FTL stores the new data in the flash in the

form of compressed delta. We have presented the design of ∆FTL in detail including

the data structures, algorithms, and overhead control approaches in this chapter. ∆FTL is
∗x% read latency overhead implies that x% of the requested pages are delta-encoded, which would double

the raw latency compared to non-delta-encoded pages.

89

prototyped and evaluated via simulation. Our trace-driven experiments demonstrate that

∆FTL significantly extends SSD’s lifetime by reducing the number of garbage collection

operations at a cost of trivial overhead on read latency performance. Specifically, ∆FTL

results in 33% to 58% of the baseline garbage collection operations, while the read latency

is only increased by approximately 5%.

90

Chapter 5

Conclusions

In this dissertation, we make the following contributions to improve the performance and

reliability of NAND flash-based SSDs:

• In the research work presented in Chapter 2 (DiffECC): 1) At the level of raw flash

page organization, we propose to use finer-grained page segmentation along with

shorter and weaker ECCs when NAND flash pages are programmed in a slower-than-

normal speed. For the baseline mode (no segmentation, longer and stronger ECC, and

normal program speed), we have to fetch and decode the entire page even if only a

few sectors are requested. Compared to the baseline, our approach can reduce the

read latency by fetching/decoding only the requested sectors due to segmentation,

which can result in less bus transfer time and ECC decoding time. In addition, if the

entire page is requested, our approach may also parallelize the fetching and decoding

of each segment in the page. 2) At the level of disk access scheduling, we propose

to buffer the writes and utilize the bandwidth of the idle time to opportunistically

slow down the writes. 3) Based on simulations of real-world disk traces and using

91

2 bits/cell NAND flash memory, we demonstrate that this proposed cross-layer co-

design can reduce the SSD read latency by up to 59.4% without compromising the

write throughput.

• In the research work presented in Chapter 3 (NAND flash Program/Erase Sus-

pension): 1) We analyze the impact of the long P/E latency on read performance,

showing that even with the read prioritization scheduling, the read latency is

still severely compromised. 2) By exploiting the internal mechanism of the P/E

algorithms in NAND flash memory, we propose a low-overhead P/E suspension

scheme which suspends the on-going P/E operations for servicing the pending read

requests. In particular, two strategies for suspending the program operation, Inter

Phase Suspension (IPS) and Intra Phase Cancelation(IPC) are proposed. In addition,

we render the second priority to writes, which may preempt the erase operations. 3)

Based on simulation experiments under various workloads, we demonstrate that the

proposed design can significantly reduce the SSD read and write latency for both

SLC and MLC NAND flash.

• In the research work presented in Chapter 4 (Delta-FTL): 1) We propose a novel

FTL scheme, ∆FTL to extend SSD lifetime via exploiting the content locality. We

describe how ∆FTL functionality can be achieved from the data structures and

algorithms that enhance the regular page-mapping FTL. 2) We propose techniques

to alleviate the potential performance overheads of ∆FTL. 3) We model ∆FTL’s

performance on extending SSD’s lifetime via analytical discussions and outline the

workload characteristics favored by ∆FTL. 4) We evaluate the performance of ∆FTL

under real-world workloads via simulation experiments. Results show that ∆FTL

92

significantly extends SSD’s lifetime by reducing the number of garbage collection

operations at a cost of trivial overhead on read latency performance. Specifically,

∆FTL results in 33% to 58% of the baseline garbage collection operations; and the

read latency is only increased by approximately 5%.

93

A List Of Publications

This dissertation is mainly based on the following papers.

I Guanying Wu, Xubin He, Ningde Xie, and Tong Zhang. Exploiting Workload

Dynamics to Improve SSD Read Latency via Differentiated Error Correction Codes.

ACM Transactions on Design Automation of Electronic Systems. 2013. Accepted.

II Guanying Wu, Xubin He, and Ben Eckart. An Adaptive Write Buffer Management

Scheme for Flash-Based SSDs. ACM Transactions on Storage, Vol. 8, No. 1, February,

2012.

III Guanying Wu and Xubin He. Delta-FTL: Improving SSD Lifetime via Exploiting

Content Locality. In: Proceedings of the European Conference on Computer Systems

(Eurosys’2012, acceptance rate: 27/178=15%), April 10-13, 2012 Bern, Switzerland.

IV Guanying Wu and Xubin He. Reducing SSD Read Latency via NAND Flash Program

and Erase Suspension. In: Proceedings of the 10th USENIX Conference on File and

Storage Technologies (FAST’2012, acceptance rate: 26/137=19%), February 14-17,

2012, San Jose, USA.

V Guanying Wu, Xubin He, Ningde Xie, and Tong Zhang. DiffECC: Improving SSD

Read Performance Using Differentiated ECC Schemes. In: Proceedings of The 18th

94

Annual Meeting of the IEEE International Symposium on Modeling, Analysis and

Simulation of Computer and Telecommunication Systems (MASCOTS’2010), Best

Paper Award Candidate. August 17-19, 2010, Miami, USA.

VI Guanying Wu, Ben Eckart, and Xubin He. BPAC: An adaptive write buffer

management scheme for flash-based Solid State Drives. In: Proceedings of The IEEE

26th Symposium on Mass Storage Systems and Technologies (MSST’2010), May 6-7,

2010, Reno, USA.

95

Bibliography

[1] ARM Cortex R4. www.arm.com/files/pdf/Cortex-R4-white-paper.

pdf. 68

[2] R. Agarwal and M. Marrow. A closed-form expression for write amplification in nand

flash. In GLOBECOM Workshops (GC Wkshps), 2010 IEEE, pages 1846–1850, dec.

2010.

[3] Nitin Agrawal, Vijayan Prabhakaran, and et al. Design Tradeoffs for SSD

Performance. In USENIX ATC, Boston, Massachusetts, USA, 2008. viii, 3, 10, 21,

31, 39, 40, 61, 65, 71, 80

[4] D.G. Andersen and S. Swanson. Rethinking flash in the data center. IEEE Micro,

30(4):52–54, 2010. 61

[5] ARM R©. Arm7. http://www.arm.com/products/processors/

classic/arm7/index.php. 68

[6] JEDEC Solid State Technology Association. Stress-test-driven qualification of

integrated circuits, jesd47g.01., 2010. http://www.jedec.org/.

[7] L. A. Barroso. Warehouse-scale Computing. In Keynote in the SIGMOD?0

conference, 2010. 61

96

www.arm.com/files/pdf/Cortex-R4-white-paper.pdf
www.arm.com/files/pdf/Cortex-R4-white-paper.pdf
http://www.arm.com/products/processors/classic/arm7/index.php
http://www.arm.com/products/processors/classic/arm7/index.php
http://www.jedec.org/

[8] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti. Introduction to Flash memory.

Proceedings of the IEEE, 91:489–502, April 2003. 3, 16

[9] R.E. Blahut. Algebraic codes for data transmission. Cambridge University Press,

2003. 17

[10] J.E. Brewer and M. Gill. Nonvolatile Memory Technologies with Emphasis on Flash.

IEEE Whiley-Interscience, Berlin, 2007. ix, 3, 4, 43, 44

[11] Y. Cai, E.F. Haratsch, O. Mutlu, and K. Mai. Error patterns in mlc nand flash memory:

Measurement, characterization, and analysis. In Design, Automation & Test in Europe

Conference & Exhibition (DATE), 2012, pages 521–526. IEEE, 2012.

[12] Y. Cai, G. Yalcin, O. Mutlu, E.F. Haratsch, A. Cristal, O.S. Unsal, and K. Mai.

Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash

Memory Lifetime. In Proceedings of ICCD, 2012.

[13] L.P. Chang. On efficient wear leveling for large-scale flash-memory storage systems.

In Proceedings of the 2007 ACM symposium on Applied computing, pages 1126–

1130. ACM, 2007.

[14] Yuan-Hao Chang, Jen-Wei Hsieh, and Tei-Wei Kuo. Endurance enhancement of flash-

memory storage systems: An efficient static wear leveling design. In DAC, San Diego,

CA, USA, June 2007. 9, 61

[15] F. Chen, T. Luo, and X. Zhang. CAFTL: A content-aware flash translation layer

enhancing the lifespan of flash memory based solid state drives. In FAST’2011, 2011.

8, 62, 75, 81

97

[16] F. Douglis and A. Iyengar. Application-specific delta-encoding via resemblance

detection. In Proceedings of the USENIX ATC, pages 1–23, 2003. 62, 63, 81

[17] N. Duann. Error Correcting Techniques for Future NAND Flash Memory in SSD

Applications. In Flash Memory Summit, 2009. 16

[18] K.-T. Park et al. A Zeroing Cell-to-Cell Interference Page Architecture With

Temporary LSB Storing and Parallel MSB Program Scheme for MLC NAND Flash

Memories. IEEE Journal of Solid-State Circuits, 43:919–928, April 2008. 13

[19] Google. Snappy. http://code.google.com/p/snappy/. 68

[20] S. Gregori, A. Cabrini, O. Khouri, and G. Torelli. On-chip error correcting techniques

for new-generation flash memories. Proceedings of the IEEE, 91(4):602–616, 2003.

16

[21] L.M. Grupp, A.M. Caulfield, J. Coburn, S. Swanson, E. Yaakobi, P.H. Siegel,

and J.K. Wolf. Characterizing flash memory: anomalies, observations, and

applications. In Proceedings of the 42nd Annual IEEE/ACM International Symposium

on Microarchitecture, pages 24–33. ACM, 2009. 10, 61

[22] A. Gupta, R. Pisolkar, B. Urgaonkar, and A. Sivasubramaniam. Leveraging value

locality in optimizing NAND flash-based SSDs. In FAST’2011, 2011. 8, 62

[23] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar. DFTL: a flash translation

layer employing demand-based selective caching of page-level address mappings. In

ASPLOS ’09, pages 229–240, 2009. 8, 62, 64, 73, 75

98

http://code.google.com/p/snappy/

[24] D. Gupta, S. Lee, M. Vrable, S. Savage, A.C. Snoeren, G. Varghese, G.M. Voelker,

and A. Vahdat. Difference engine: Harnessing memory redundancy in virtual

machines. Communications of the ACM, 53(10):85–93, 2010. 62

[25] Red Hat. The journalling flash file system, version 2, 2010. 8

[26] Steven R. Hetzler. System Impacts of Storage Trends Hard Errors and Testability.

;login:, 36(3), 2011.

[27] HP Lab. Cello99 Traces, 2008. http://tesla.hpl.hp.com/opensource/.

22, 81

[28] X.Y. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and R. Pletka. Write amplification analysis

in flash-based solid state drives. In Proceedings of SYSTOR09, page 10. ACM, 2009.

76

[29] Heeseung Jo, JeongUk Kang, SeonYeong Park, JinSoo Kim, and Joonwon Lee. FAB:

flash-aware buffer management policy for portable media players. IEEE Transactions

on Consumer Electronics, 52(2):485–493, 2006. 8, 62, 66

[30] William K. Josephson, Lars A. Bongo, David Flynn, and Kai Li. DFS: a file system

for virtualized flash storage. In FAST’10. USENIX, Feb 2010. 8

[31] D. Jung, Y.H. Chae, H. Jo, J.S. Kim, and J. Lee. A group-based wear-leveling

algorithm for large-capacity flash memory storage systems. In Proceedings of

the 2007 international conference on Compilers, architecture, and synthesis for

embedded systems, pages 160–164. ACM, 2007.

99

http://tesla.hpl.hp.com/opensource/

[32] J. U. Kang, H. Jo, J. S. Kim, and J. Lee. A superblock-based flash translation layer

for nand flash memory. In International Conference on Embedded Software, 2006. 6,

8, 62

[33] Sooyong Kang, Sungmin Park, Hoyoung Jung, Hyoki Shim, and Jaehyuk Cha.

Performance Trade-Offs in Using NVRAM Write Buffer for Flash Memory-Based

Storage Devices. IEEE Transactions on Computers, 58(6):744–758, 2009. 62, 66

[34] Ramakrishna Karedla, J. Spencer Love, and Bradley G. Wherry. Caching strategies

to improve disk system performance. IEEE Computer, 27(3):38–46, March 1994. 67,

73

[35] Swaroop Kavalanekar, Bruce Worthington, Qi Zhang, and Vishal Sharda.

Characterization of Storage Workload Traces from Production Windows Servers. In

IISWC’08, 2008. 20, 22, 40, 79, 81

[36] A. Kawaguchi, S. Nishioka, and H. Motoda. A flash-memory based file system.

In Proceedings of the USENIX 1995 Technical Conference, pages 13–13. USENIX

Association, 1995. 74

[37] Hyojun Kim and Seongjun Ahn. BPLRU: A Buffer Management Scheme for

Improving Random Writes in Flash Storage Abstract. In Proceedings of FAST, 2008.

8, 62, 66

[38] Jesung Kim, Jong Min Kim, Sam H. Noh, Sang Lyul Min, and Yookun Cho. A space-

efficient flash translation layer for Compact Flash Systems. IEEE Transactions on

Consumer Electronics, 48(2):366–375, 2002. 6, 8, 62

100

[39] M.H. Kryder and C.S. Kim. After Hard DrivesłWhat Comes Next? IEEE

Transactions on Magnetics, 45(10), 2009. 11

[40] S. Lee, T. Kim, K. Kim, and J. Kim. Lifetime Management of Flash-Based SSDs

Using Recovery-Aware Dynamic Throttling. In FAST’2012. USENIX, 2012. 9

[41] Sang-Won Lee, Won-Kyoung Choi, and Dong-Joo Park. FAST: An FTL Scheme with

Fully Associative Sector Translations. In UKC 2005, August 2005. 6, 8, 62

[42] Sungjin Lee, Keonsoo Ha, Kangwon Zhang, Jihong Kim, and Junghwan Kim.

FlexFS: A Flexible Flash File System for MLC NAND Flash Memory. In USENIX

ATC. USENIX, June 2009. 9

[43] Sungjin Lee, Dongkun Shin, Young-Jin Kim, and Jihong Kim. LAST: locality-

aware sector translation for NAND flash memory-based storage systems. SIGOPS,

42(6):36–42, 2008. 8

[44] Yong-Goo Lee, Dawoon Jung, Dongwon Kang, and Jin-Soo Kim. uftl: a memory-

efficient flash translation layer supporting multiple mapping granularities. In

EMSOFT ’08, pages 21–30, New York, NY, USA, 2008. ACM. 8

[45] Marc Lehmann. Lzf. http://oldhome.schmorp.de/marc/liblzf.html.

68

[46] S. Lin and D. J. Costello. Error Control Coding: Fundamentals and Applications.

Prentice Hall, 1983. 16, 17

[47] R.S. Liu, C.L. Yang, and W. Wu. Optimizing NAND Flash-Based SSDs via Retention

Relaxation. In FAST’2012. USENIX, 2012. 9

101

http://oldhome.schmorp.de/marc/liblzf.html

[48] R.S. Liu, C.L. Yang, and W. Wu. Optimizing NAND Flash-Based SSDs via Retention

Relaxation. In FAST’2012. USENIX, 2012.

[49] SimpleScalar LLC. Simplescalar/arm. http://www.simplescalar.com/

v4test.html. 68

[50] JP MacDonald. xdelta. http://xdelta.org. 63, 68

[51] U. Manber and S. Wu. Glimpse: A tool to search through entire file systems. In

Usenix Winter 1994 Technical Conference, pages 23–32, 1994. 63

[52] Charles Manning. Yet another flash file system, 2010. 8

[53] N. Mielke, T. Marquart, N. Wu, J. Kessenich, H. Belgal, E. Schares, F. Trivedi,

E. Goodness, and L.R. Nevill. Bit error rate in nand flash memories. In Reliability

Physics Symposium, 2008. IRPS 2008. IEEE International, pages 9–19. IEEE, 2008.

[54] C.B. Morrey III and D. Grunwald. Peabody: The time travelling disk. In Proceedings

of MSST 2003, pages 241–253. IEEE. 62, 63, 81

[55] MF Oberhumer. Lzo. http://www.oberhumer.com/opensource/lzo. 68

[56] ONFI Working Group. The Open NAND Flash Interface, 2010. http://onfi.

org/. 5, 67

[57] Alina Oprea and Ari Juels. A clean-slate look at disk scrubbing. In FAST’10: the 8th

USENIX Conference on File and Storage Technologies. USENIX, Feb 2010. 22

[58] Yangyang Pan, Guiqiang Dong, and Tong Zhang. Exploiting memory device wear-

out dynamics to improve NAND flash memory system performance. In FAST’2011.

USENIX, 2011. 9

102

http://www.simplescalar.com/v4test.html
http://www.simplescalar.com/v4test.html
http://xdelta.org
http://www. oberhumer. com/opensource/lzo
http://onfi.org/
http://onfi.org/

[59] S. Park, D. Jung, J. Kang, J. Kim, and J. Lee. CFLRU: a replacement algorithm for

flash memory. In Proceedings of CASES’2006, pages 234–241, 2006. 8

[60] Abhishek Rajimwale, Vijayan Prabhakaran, and John D. Davis. Block management

in solid-state devices. In Proceedings of the 2009 conference on USENIX Annual

technical conference, USENIX’09, pages 21–21, Berkeley, CA, USA, 2009. USENIX

Association. ix, 5, 6

[61] Mendel Rosenblum and John K. Ousterhout. The design and implementation of a

log-structured file system. ACM Trans. Comput. Syst., 10(1):26–52, 1992. 6

[62] Samsung, 2010. http://www.samsung.com/global/business/

semiconductor/products/fusionmemory/Products-OneNAND.

html. 5

[63] Mohit Saxena, Michael M. Swift, and Yiying Zhang. Flashtier: a lightweight,

consistent and durable storage cache. In EuroSys’2012. ACM, 2012. 9

[64] J. Seward. The bzip2 and libbzip2 official home page. 2002. http://sources.

redhat.com/bzip2. 68

[65] SiliconSystems. Increasing flash solid state disk reliability. Technical report, 2005.

9, 61

[66] Gokul Soundararajan, Vijayan Prabhakaran, Mahesh Balakrishnan, and Ted Wobber.

Extending SSD Lifetimes with Disk-Based Write Caches. In FAST’10. USENIX, Feb

2010. 9, 75

103

http://www.samsung.com/global/business/semiconductor/products/fusionmemory/Products-OneNAND.html
http://www.samsung.com/global/business/semiconductor/products/fusionmemory/Products-OneNAND.html
http://www.samsung.com/global/business/semiconductor/products/fusionmemory/Products-OneNAND.html
http://sources. redhat. com/bzip2
http://sources. redhat. com/bzip2

[67] Storage Performance Council. SPC trace file format specification, 2010. http://

traces.cs.umass.edu/index.php/Storage/Storage. 22, 40, 79, 80

[68] F. Sun, K. Rose, and T. Zhang. On the use of strong bch codes for improving

multilevel nand flash memory storage capacity. In IEEE Workshop on Signal

Processing Systems (SiPS), 2006. 16, 18, 27

[69] Guangyu Sun, Yongsoo Joo, Yibo Chen, Dimin Niu, Yuan Xie, Yiran Chen, and

Hai Li. A Hybrid Solid-State Storage Architecture for the Performance, Energy

Consumption, and Lifetime Improvement. In HPCA, pages 141–153. IEEE, Jan 2010.

9

[70] K. Takeuchi, T. Tanaka, and H. Nakamura. A double-level-Vth select gate array

architecture for multilevel NAND flash memories. IEEE Journal of Solid-State

Circuits, 31:602–609, April 1996. 14

[71] Toshiba, 2010. http://www.toshiba.com/taec/news/

press-releases/2006/memy-06-337.jsp. 5

[72] wikipedia. Battery or super cap, 2010. http://en.wikipedia.org/wiki/

Solid-state-drive#Battery_or_SuperCap. 73

[73] Chin-Hsien Wu and Tei-Wei Kuo. An adaptive two-level management for the flash

translation layer in embedded systems. In ICCAD ’06, pages 601–606, New York,

NY, USA, 2006. ACM. 8

[74] Guanying Wu and Xubin He. Delta-FTL: improving SSD lifetime via exploiting

content locality. In EuroSys’2012. ACM, 2012. 8

104

http://traces.cs.umass.edu/index.php/Storage/Storage
http://traces.cs.umass.edu/index.php/Storage/Storage
http://www.toshiba.com/taec/news/press-releases/2006/memy-06-337.jsp
http://www.toshiba.com/taec/news/press-releases/2006/memy-06-337.jsp
http://en.wikipedia.org/wiki/Solid-state-drive#Battery_or_SuperCap
http://en.wikipedia.org/wiki/Solid-state-drive#Battery_or_SuperCap

[75] Guanying Wu and Xubin He. Reducing SSD Read Latency via NAND Flash Program

and Erase Suspension. In Proceedings of FAST’2012, 2012. 5

[76] Guanying Wu, Xubin He, and Ben Eckart. An Adaptive Write Buffer Management

Scheme for Flash-Based SSDs. ACM Transactions on Storage, 8(1):1–24, 2012. 8,

62

[77] Guanying Wu, Xubin He, Ningde Xie, and Tong Zhang. DiffECC: Improving

SSD Read Performance Using Differentiated Error Correction Coding Schemes.

MASCOTS, pages 57–66, 2010. 3, 49

[78] Guanying Wu, Xubin He, Ningde Xie, and Tong Zhang. DiffECC: Improving

SSD Read Performance Using Differentiated Error Correction Coding Schemes. In

MASCOTS, pages 57–66, 2010. 5

[79] Q. Yang and J. Ren. I-CASH: Intelligently Coupled Array of SSD and HDD. In

Proceedings of HPCA’2011, pages 278–289. IEEE, 2011. 9, 62, 63, 75, 79

[80] Q. Yang, W. Xiao, and J. Ren. TRAP-Array: A disk array architecture providing

timely recovery to any point-in-time. ACM SIGARCH Computer Architecture News,

34(2):289–301, 2006. 62, 63, 79, 81

105

Vita

Guanying Wu was born on Nov. 22nd, 1985, in Feicheng, Shandong, China, and is a

Chinese citizen. He graduated from Jinan Foreign Language School, Jinan, Shandong in

2003. He received his B.S. in Electrical Engineering from Zhejiang University, Hangzhou,

China in 2007. He received his M.S. degree in Computer Engineering from Tennessee

Technological University, Cookeville TN, USA in 2009.

106

	Virginia Commonwealth University
	VCU Scholars Compass
	2013

	Performance and Reliability Study and Exploration of NAND Flash-based Solid State Drives
	Guanying Wu
	Downloaded from

	Front Matter
	Title
	Acknowledgements

	Table of Contents
	List of Tables
	List of Figures
	Abstract
	1 Introduction
	1.1 Background
	1.1.1 NAND Flash Memory
	1.1.2 NAND Flash Program/Erase Algorithm
	1.1.3 NAND Flash-based SSDs

	1.2 Related Work: SSD Performance and Reliability
	1.3 Problem Statement
	1.4 Research Approaches

	2 Exploiting Workload Dynamics to Improve SSD Read Latency via Differentiated Error Correction Codes
	2.1 Introduction
	2.2 Background
	2.2.1 NAND Flash Error Rate
	2.2.2 Error Correction Code Schemes

	2.3 Analysis and Modeling
	2.3.1 Write Speed vs. Raw Reliability Trade-off
	2.3.2 Read Access Latency
	2.3.3 Server Workload Analysis

	2.4 Architecture and Design of DiffECC
	2.4.1 System Overview
	2.4.2 Differentiated ECC Schemes: Trading-off between Write Speed and Read Latency
	2.4.3 Buffer Queue Scheduling Policy

	2.5 Evaluation
	2.5.1 Simulation Methodology
	2.5.2 The Optimistic Case of DiffECC
	2.5.3 The Controlled Mode-switching of DiffECC

	2.6 Summary

	3 Reducing SSD Access Latency via NAND Flash Program and Erase Suspension
	3.1 Introduction
	3.2 Motivation
	3.2.1 A Simple Demonstration of Contention Effect
	3.2.2 Configurations and Workloads
	3.2.3 Experimental Results

	3.3 Design
	3.3.1 Erase Suspension and Resumption
	3.3.2 Program Suspension and Resumption

	3.4 Further Discussions
	3.4.1 Scheduling Policy
	3.4.2 Implementation Issues
	3.4.3 The Overhead on Power Consumption

	3.5 Evaluation
	3.5.1 Read Performance Gain
	3.5.2 Write Performance

	3.6 Summary

	4 Delta-FTL: Improving SSD Lifetime via Exploiting Content Locality
	4.1 Introduction
	4.2 Related Work Exploiting the Content Locality
	4.3 Delta-FTL Design
	4.3.1 Dispatching Policy: Delta Encode?
	4.3.2 Write Buffer and Delta-encoding
	4.3.3 Flash Allocation
	4.3.4 Mapping Table
	4.3.5 Garbage Collection

	4.4 Discussion: SSD Lifetime Extension of FTL
	4.4.1 Foreground Page Writes
	4.4.2 GC Caused P/E Operations
	4.4.3 Summary

	4.5 Performance Evaluation
	4.5.1 Simulation Tool and SSD Configurations
	4.5.2 Workloads
	4.5.3 Emulating the Content Locality
	4.5.4 Experimental Results

	4.6 Summary

	5 Conclusions
	List of Publications
	Bibliography
	Vita

