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      Abstract 

 

ANALYSIS OF DEFECTS IN GaN USING HYBRID DENSITY FUNCTIONAL THEORY 

By Ibrahima Castillo Diallo 

 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science 

at Virginia Commonwealth University. 

 

Virginia Commonwealth University, 2013 

Major Director: Denis O. Demchenko, Ph.D., Assistant Professor, Department of Physics 

In this thesis, we first present a brief overview of various theoretical approaches used to examine 

the electronic structure of defects in GaN. Using the recently developed hybrid density functional 

theory (HSE06) along with the experimental measurements, we propose a new explanation of the 

nature of the yellow luminescence band in carbon-doped GaN. We conduct a systematic study of 

electronic and optical properties of defects (Carbon, Oxygen, Silicon related) that are candidates 

for the origin of yellow luminescence. We show that the CN-ON complex is significantly more 

likely to form compared to isolated carbon configurations. In contrast to the properties of the 

isolated carbon acceptor, calculated defect levels and optical transitions involving deep level of 

the CN-ON complex agree quite well with our thermal luminescence quenching data as well as 

with the experimentally measured C-doped GaN luminescence spectra. Hence, the CN-ON 

complex, rather than isolated C impurity, is more likely to resolve a long-standing problem of the 

yellow luminescence in GaN.
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     0. Introduction 

 

  

 

 

 

The intentional incorporation of impurities in small concentrations and formation of native 

defects, such as recombination centers or compensation defects
1
, are essential to controlling the 

electrical and optical properties of wide-gap semiconductors
2
. However, achieving such control 

is far from being trivial and a comprehensive knowledge of the fundamental techniques that 

control doping and formation of defects and impurities are hence required. Due to recent 

breakthroughs in algorithmic developments as well as the unceasing improvement of large-scale 

computational tools, first principles calculations are now reaching good levels of precision
3
 in 

describing the properties of impurities and native defects in semiconductors.  

One of the first theoretical method used to describe localized defects in semiconductors involved 

Green’s functions
4,5,6

.These calculations depict the Hamiltonian of the perfect crystal and the 

Hamiltonian of the localized defect within the bulk
7
. Due to the extremely large number of 

particles in the system, the computation of such Hamiltonians becomes impossible. Another 

early theoretical method that describes the electronic structure of defects in solids is the effective 

mass theory (EMT). The EMT is an analytical theory that uses experimental effective masses as 

input parameters for the calculation of simple band structure. The defect is inserted in the 

calculation as a perturbing spherically symmetric potential. However, the results of EMT remain 

semi-quantitative since it only provides an approximate description of the defect levels and does 

not address the formation energy of the defect.  

Kohn Sham Density Functional Theory (DFT)
8
 has proven to be a prevailing tool for analyzing 

and understanding defect energetics and electronic structure in semiconductors. Good progress 

for approximating the crucial exchange-correlation (xc) energy from the Kohn-Sham approach 

has been made in the last decades. One of the most relevant formalisms for the analysis of the 

electronic structure of spin systems is the Local Spin Density Approximation (LSDA)
9
. In solids, 

for regions where the charge density is assumed to be slowly varying, the xc-energy is defined as 

the integral over all space with the xc-energy at each point being considered the same as in a 

uniform electron gas of the same charge density
10

. The LSDA has provided acceptable results in 

crystal structure, bond lengths and vibrational frequencies
10,11

 in both homogenous and 

inhomogeneous systems. However, the LSDA leads to major drawbacks such as the inability to 

describe the magnetic configuration of transition metals, the lack of cancelation of self-

interaction which is crucial for strongly localized states and the severe underestimation of the 

band gap in semiconductors and insulators. Such shortcomings have stimulated ideas for the 
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creation of improved functionals such as non-empirical Gradient Approximations
12

 (GGA). 

Several sophisticated adaptations of GGA have been developed in the last decades
13,14,15,16

, but 

the most commonly used version is the Perdew-Burke-Ernzerhof (PBE)
17

 approximation that 

employs both the density and its gradient at each point in space. Both GGA and LDA were 

derived in the limits of the homogeneous electron gas theory and are therefore expected to be 

useful for systems with slowly varying charge densities
18

. These complex formalisms have 

provided satisfactory results for the computation of molecular binding energies, atomic 

ionization energies and geometrical structure of molecules and solids
19,20

. The partial error 

cancellation in the exchange and correlation energy parts integrated in both first-principles 

calculations methods provided the accuracy required for DFT to be used in Solid States physics 

as well as in chemistry
10,21

. Nevertheless, the underestimation of the band gap in solids remain 

one of the major drawbacks of both LDA and GGA formalisms.
22,23

  

To remedy the band gap problem and several other unphysical results of LDA and GGA, much 

effort has been put into the improvement of the xc parameter
24,25,26

. One of the most fruitful 

approximations in the computation of band gap is described by a combination of Green Function 

and screened Coulomb interaction, often referred to as the GW method
27

. However, the GW 

method happens to be computationally expensive for complex systems. Alternative approach that 

rectified the band gap problem was the construction of a hybrid functional theory (HFT) that 

contains a mixture of a certain amount of non-local Fock exchange to a part of local/semilocal 

LDA/PBE exchange
28,29,30

. Due to the periodicity of the lattice that generates a long range 

Hartree-Fock (HF) exchange interactions, the use of hybrid functional in Solid States Physics has 

been inadequate
18,31

. Significant progress into reducing the computational effort of calculating 

long range Fock exchange has been achieved by the creation of the HSE03 (Heyd-Scuseria-

Ernzherof) functional
32

. This newly derived formalism separates the Fock exchange into short-

range and long range components. The short range exchange energy is made of 25% of HF and 

75% of PBE, while the long range part is entirely represented by the PBE exchange energy.
32

24 

Such modifications would cause major corrections to the electronic properties of the system and 

can therefore be used to compute precise band gaps, bulk moduli and atomization energies of 

solids including semiconductors and metals
32,11 ,33,34,35

. An in-depth study of electronic structure 

of solids has not yet reached its peak with the development of HSE03 formalism. More detailed 

analysis of energetics of defects in semiconductors
36,37

, vibrational frequencies of lattice
38,39

, 

phonons –dispersion relations of the group IV elemental solids
18

 and optical properties of 

semiconductors
40

 have been recently achieved with the creation of the HSE06
41

 approximation. 

Nearly perfect agreement of HSE06 electronic structure of semiconductors and insulators with 

experiment can be obtained by tuning the fraction of Fock exchange. With such precise method, 

direct comparison of calculated defect properties with experiment is finally possible.  

In this thesis, these new methods of calculation will be applied to the analysis of properties of 

defects in GaN. Technological advancements in GaN doping have made it a suitable material for 

applications in recently developed blue and green light-emitting diodes
42

, the blue-emitting GaN-

based lasers
43,44

 and solar cells.
45

 Understanding the optical and electronic properties of defects 

in GaN is of great importance for evaluating the degree to which they affect the devices’ 

performance. The most notoriously controversial defect-induced optical transition in GaN is 

centered around 2.2-2.3 eV and is often referred to as the yellow luminescence (YL).
46,47,48

 This 

YL band is usually observed in n-type GaN,
46,49

 both for undoped samples
50

 and samples 

containing carbon impurities.
51,52,53

 Nevertheless, the microscopic origin of the YL band has 

been debated for almost 30 years, and the exact attribution of the YL band to specific defects in 
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GaN has been unclear.  Early works attributed the YL band to the formation of the VGa-CGa 

complex.
47

 With the development of DFT, it has been suggested that Ga vacancies, VGa, both 

isolated and bound into a complex with oxygen donors, ON, (and possibly silicon donors, SiGa) 

are responsible for the observed YL.
54,55

 These theoretical results have found some experimental 

support where positron annihilation experiments showed apparent correlation of the YL intensity 

with the concentration of Ga vacancies.
56

 On the other hand, experimental findings have also 

indicated that lattice defects alone do not cause YL, rather H, C, and O, possibly bound into 

complexes, produce the observed YL band.
53

 Most recently it has been suggested that carbon 

substituting for nitrogen CN creates a deep acceptor in GaN, which may be responsible for the 

YL band.
57

 

The goal of the first part of this thesis is to provide an overview of the methodology used to 

perform first-principles calculations for defects and impurities in the bulk. Subsequently, in 

Section II, we intend to use this formalism to investigate Photoluminescence (PL) in GaN and we 

finally demonstrate that the deep donor complex (CN-ON)
0
 explains the microscopic mechanism 

of the YL in GaN.  

1. Doping in Semiconductors 

 The introduction of defects in a host crystal modifies the characteristics of the material in 

various ways. Because of the multiplicity of imperfections that can occur within the lattice, we 

will first describe ways of classifying them and later discuss the main differences between 

shallow and deep impurities.  

 

1.1 Creation of Native Point Defects  

 In this section, the brief analysis on some characteristics of defects in semiconductors is 

based on the detailed review written by S. T. Pantelides (1979)
58

.  Native defects are inherent 

imperfections that are formed within the “pure” lattice and can be point defects, which 

correspond to the improper location of atoms, planar defects, which describe misplaced planes of 

atoms and line defects which correspond to misplaced line of atoms. Since we only investigated 

point defects as lattice-type defects in GaN, the characteristics of either planar or line defects 

shall not be discussed in this thesis. Native point defects usually occur in vacant and interstitial 

sites. In case of vacancies, atoms are missing from their regular atomic site. 

Interstitial point defects describe extra-atoms that occupy interstitial sites in the crystal. In 

addition to native point defects, foreign impurities may occur inside the crystal and can be 

classified in terms of their physical crystal sites.  

 

1.2 Incorporation of impurities in the crystal lattice 

 Foreign impurities may occur in interstitial locations and substitutional sites in which 

case the impurity replaces the host atom. Substitutional atoms that generally have more valence 

electrons than the host atoms are called donors since they must donate electrons to the host atoms 

in order to fulfill local bonding requirements. While on the other hand, substitutional atoms that 

possess less valence electrons are called acceptors since they must accept electrons from the host 

atoms in order to bond with their nearest neighbors. In the case of compound semi-conductors, 

the same foreign impurity could be characterized as a donor or acceptor depending on which host 

atom it substitutes. Impurities may be called shallow when their respective energy levels are very 
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close to the conduction or valence band. On the contrary impurities are called deep when their 

respective energy levels are far from the band edges. Shallow and deep impurities play an 

important role in the properties of a given material and will be discussed in the following section. 
In addition to isolated defects and impurities, one must also notice that it is sometimes possible 

for neighboring defects and impurities to interact and form complexes. The simplest situation is a 

complex pair consisting of two isolated impurities occupying neighboring sites, a vacancy defect 

and the nearest neighbor impurity, and two vacancies defects in neighboring sites. More details 

in swirl defect complexes in Si and dark-like defect complexes in GaAs-GaAlAs can be found in 

reviews written by De Kock (1973)
59

 and Petrov and Hartmann (1973)
60

, respectively.  

 

1.3 Shallow and deep impurities in semiconductors 

 In this thesis, we use first-principles electronic structure calculations of defects in GaN 

bulk. In other words, we are solving the Schrodinger equation in GaN lattice containing a defect, 

using periodic boundary conditions. The use of periodically repeated supercells
61

 provides a 

physically appealing description of the defect and its closest neighbors. These supercells are 

composed of numerous primitive unit cells which contain a single defect. Even though the 

supercell technique precisely describes the local arrangements of bonding between atoms and the 

defect crystal structure, it unfortunately introduces some drawbacks that need to be corrected 

such as the divergence of the Coulomb energy for charged defects
61

, the band-filling error
62

 and 

the potential alignment
62

 for charged impurities.  

The role that most impurities and defects play in a given semiconductor often depends on the 

concentration in which it can be incorporated in the material and the kind of localized states they 

create in the band gap. Materials can be grown as either p-type, where there are more acceptors 

than donors or as n-type in which the number of donors exceeds the number of acceptors. By 

setting up the concentrations of shallow donors and acceptors as non-uniform within a given 

semiconductor, one can create a p-n junction which consists of a region doped with acceptors (p-

type) adjacent to a region doped with donors (n-type). As one approaches the junction, electrons 

from the conduction band (CBM) jump down to the neutral acceptor states of the p-type sample 

and thus become negatively charged. On the other hand, neutral donors from the n-type sample 

donate electrons to the valence band (VBM) and become positively charged. An electric field is 

created across the junction due to this charge distribution. A device created by such arrangement 

of defects has led to the creation of modern electronics.  

There are fundamental differences in defects’ properties depending on the proximity of the 

defects to the band edges. Shallow levels are characterized by their extreme closeness to the band 

edges at room temperature. At such shallow levels, impurities have ionization energies 

comparable to Bk T  and therefore will play a crucial role in controlling conductivity. The case of 

neutral shallow donor impurities in semiconductors requires careful investigation because of its 

weakly localized characteristic. Based on the effective mass theory, the wave functions of 

shallow defects are Hydrogen-like and thus relatively spread out in real space. However within 

the supercell formalism, our supercell is not large enough to completely encompass such 

widespread wave function. Supercells that could contain a weakly localized wavefunction of a 

shallow impurity contain tens of thousands atoms and are therefore computationally prohibitive. 

When a shallow defect is computed in relatively small supercell, the conduction band level shifts 

down and becomes the perturbed host state (PHS) while the impurity band level moves up into 

the conduction band. The electron located at the impurity level will drop to the perturbed host 
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state and such unphysical occurrence gives rise to completely delocalized charge densities.  Our 

neutral system will therefore be composed of a positive ion surrounded by completely 

delocalized electrons. Such situation is quite similar to a positive ion sitting in uniform 

negatively charged compensating background. In order to correct the total energy of the finite 

supercell due to such unphysical interactions, one must include a special correction which will be 

later discussed in Section 5.3.2.2.  

On the other hand, deep impurities have localized wave functions and therefore provide levels 

inside the band gap that could increase the probability of recombination between the electrons 

and holes. In addition to emitting phonons during the recombination process in the case of deep 

impurities, photons may also be produced and photoluminescence could therefore be measured.  

 

2. Density Functional Theory (DFT) 

2.1 Foundation and Importance 

 The understanding of the electronic structure of defects in semiconductors is based upon 

theoretical methods of statistical and quantum mechanics. If one wishes to discuss the properties 

of interacting defects within the bulk, it is natural to consider the time independent Schrödinger 

equation for N electrons with M ions, 

ˆ
Tot Tot Tot TotH E   ,           (2.1.1) 

where ETot represents the total energy of the system and the many-body 

wavefunction 1 1 1 1( ,..., , ,..., ; ,..., , ,..., )Tot N N M Mr r s s R R S S  gives all the necessary information 

about the system. The position and spin of the kth electron are respectively denoted by ,k kr s  and 

the position and spin components of the Kth nuclei are represented by ,K KR S . The Hamiltonian 

of our previous equation describes the correlated motion of the electrons and nuclei in our 

system and is represented by:  
2 22 2 2 ,

2 2

1 1 1 1 1
1

ˆ
2 2

N MN M N N M M
K K L

Tot k K

k K k l k k K L Ke K k l k K K L
K

Z e Z Z ee
H

m M r r r R R R      


       
  

        (2.1.2)     

               

Where electrons with charge –e and mass me are represented by the lower case subscripts and 

nuclei with charge KZ e and mass MK, are denoted by upper case subscripts. In our molecular 

Hamiltonian, we suppose that the motion of both the electrons and the nuclei are treated strictly 

non-relativistically. Although the relativistic corrections of the kinetic energy are completely 

neglected, one must not forget that for heavy atoms, relativistic properties modify the structure 

of the Hamiltonian to an extent which is even noticeable in molecular bonds.
63

  Furthermore, the 

description of ˆ
TotH will be restricted to a zero temperature formalism. 

The terms of this quite complex molecular Hamiltonian describe 

 The kinetic energy operators for the electrons and ions, ˆ
kT and ˆ

KT : 

 
2

2

1

ˆ
2

N

k k

ke

T
m 

             (2.1.3) 
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2

2

1

ˆ
2

M

K K

K K

T
M

                 (2.1.4) 

 The potential due the electron-electron interaction and the potential acting on the 

electrons due to the nuclei, ˆ
eeV and ˆ

ieV respectively: 

 
2

1

ˆ
N N

ee

k l k k l

e
V

r r 




           (2.1.5) 

 
2,

1
1

ˆ
N M

K
ie

k k K
K

Z e
V

r R





           (2.1.6) 

 And the ion-ion interaction potential, ˆ
iiV : 

 
2

1

ˆ
M M

K L
ii

K L K K L

Z Z e
V

R R 




           (2.1.7) 

A rather rough estimate of the computational complexity of such Schrodinger equation is to 

visualize the fairly vast scale of our resulting Hamiltonian operator. For a typical system, the 

number of electrons is approximately ten times greater than the number of ions and the total 

amount of M ions is quite close to Avogadro’s number, where 23 16.02 10AM N mol   .
64

 

Hence the total number of variables is to the order of 10
24

. For N electrons and M ions, the many-

body wavefunction reaches the degree of freedom of 4N+4M and therefore the computation of 

the full many-body wavefunction remains impossible for real systems with more than few 

electrons. Even though analytical solutions of the Schrödinger equations can be solved for a few 

very simple systems
65

,
 
our cases of interest involve optical properties of systems that contain 

tremendous amount of electrons and also thermodynamic transition levels associated with deep 

and shallow defects. A complete description of such systems with quantum mechanics is quite 

complex and thus one requires the use of an approximate, more simplified representation of our 

initial system. 

A convenient way to reduce the scale of our Hamitonian is to make use of the Born-

Oppenheimer approximation
66

, where the nuclear motion can be separated from the electronic 

motion. Basically in our system, since the nuclei are much heavier than the 

electrons ( )K kM m , the inverse mass of the Kth nuclei
1

KM
 becomes extremely small and 

hence the kinetic energy operator for ions
2

2

1

ˆ
2

M

K K

K K

T
M

    becomes the only negligible term 

in our many-body Hamiltonian. From such approximation, the electrons will configure 

themselves as if the ions were static and those fixed ions will not affect the states of the electrons 

except as a potential ˆ
ieV .

64
 Consequently, the interaction potential between “fixed” Kth and Lth 

ions will become a constant classical electrostatic potential KLE . Hence, by neglecting the kinetic 

energy of ions and setting their potential as a constant electrostatic potential, the many-body 

Hamiltonian becomes the electronic Hamiltonian ˆ
elecH , in which the position of the nuclei are 

only parameters
10

 where: 

ˆ ˆ ˆ ˆ
elec k ee ie KLH T V V E    ,          (2.1.8)  
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By a parametric dependence, we imply that the electronic wavefunction elec of the new obtained 

Schrödinger equation ˆ
elec elec elec elecH E   , is a different function of the electronic coordinates 

for different locations of the nuclei.
67

 In order to avoid the messiness of the units of ˆ
elecH , we 

adopt Hartree atomic units 04 1ee m     , then the kinetic energy operator for electrons 

becomes: 

2

1

1ˆ
2

N

ee k

k

T


                           (2.1.9) 

The electron-electron interaction potential ˆ
eeV  and the potential acting on the electrons due to 

nuclei ˆ
ieV , 

1

1ˆ
N N

ee

k l k k l

V
r r 




                              (2.1.10) 

 
,

1
1

ˆ
N M

K
ie

k k K
K

Z
V

r R





                                (2.1.11) 

Even though we have marginally reduced the number of variables in the general Hamiltonian, 

the obtained electronic Hamiltonian still achieves frightening proportions. 

One of the earliest and traditional formalisms that approximates the many-body 

wavefunction Tot  was derived by Hartree
68

 in 1928 who rewrote Tot as a product of single 

particle functions, i.e,  

1 2 1 2( , ,..., ) ( ) ( ).... ( )Tot N Nr r r r r r     

Each one of the obtained wavefunctions ( )k kr satisfies a one electron Schrodinger equation, and 

the Hartree Hamiltonian yields: 

ˆ ˆ ˆ ˆHar Har

k ee ieH T V V                                 (2.1.12) 

 which can be rewritten as 

2 2
,

2 3 3

1 1 1
1

( ) ( )1ˆ
2

N MN N N
k k l lHar K

k k l

k k l k kk l k K
K

r r Z
H d r d r

r r r R
   



 
    

 
                

                      (2.1.13) 

where 

2 2

3 3

1

( ) ( )ˆ
N N

k k l lHar

ee k l

k l k k l

r r
V d r d r

r r 

 



                 (2.1.14) 

is the newly derived potential term and arises solely from the electrostatic energy (Coulomb’s 

integral). In 1930, Fermi statistics
69,70

 became incorporated into the Hartree formalism by Fock 

and Slater
71

, where the total wave function of the N-electron system can be approximated by an 

anti-symmetrized product of N orthonormal spin orbitals ( )kr
72

. The newly derived formalism 

became known as the HF method and the spin orbitals ( )kr represent one-electron 

wavefunctions that result from the product of a spatial orbital ( )a kr
 with a spin part sm of the 

spin orbital  . Further analysis of the HF formalism is postponed until it can be thoroughly 

discussed in Chapter II. Since the HF model describes a given system as the combination of anti-

symmetric one-electron wave functions, the number of variables from the wave functions 

remains quite bothersome.  
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In the sixties, a fantastic breakthrough finally made it possible to explain an N-electrons system 

with the introduction of a three-dimensional electron density ( )n r . Contrary to the electronic 

wavefunction, the electron density does not increase spatially as three times the number of 

electrons but rather remains invariant regardless the size of the system
73

.  The very first approach 

based on the density of the electrons in the system ( )n r , was done by Thomas
74

 and Fermi
75

 in 

the late twenties. In this new scheme, the motion of electrons is completely uncorrelated and 

their corresponding kinetic energies can be described as a “functional” of a local density based 

on free electrons density 5 3( )n r  in a homogeneous gas.
65

 However, in the original Thomas-Fermi 

(TF) method, the exchange and correlation energies among electrons were completely neglected. 

In 1930, the local exchange effects
76

 were proposed by Dirac and became incorporated into the 

TF original formalism. In the mid-fifties, Slater
77

 proposed a simplification of the HF potential in 

the  scheme by setting up an average potential in which all the electrons are in motion and 

argues that this potential in a system of varying densities could be approximated with a local 

dependence proportional to 1 3( )n r .
65

 Countless improvements of the HF method have been made 

in the last decades and have been essential to the development to modern density functional 

theory. In fact, those traditional HF wavefunctions can be used to compute fairly precise results 

for smaller systems, providing benchmarks for further developing density functional, which can 

hence be applied to larger systems.
78

 One must wait until the mid-sixties to finally obtain a 

formalism that does not start with too crude approximations
79

, and yet provides a certain balance 

between accuracy and computational cost. The first thorough and complete proof of the existence 

of Density Functional Theory (DFT) was given by Hohenberg and Kohn in 1964.
80

 These 

authors demonstrated that the ground state electron density of a system implicitly contains all the 

information included within its quite complex ground state many-electrons wavefunction.
73,80

 In 

other words, all characteristics of the systems can be considered as functionals of the ground 

state density.
10

 Furthermore, they argue that, for any given external potential ˆ
extV (which 

corresponds to the potential acting on the electrons due to nuclei ˆ
ieV ) if a “universal functional” 

for the total energy [ ( )]HKE n r  of our system is known, then by minimizing the total energy of the 

system, with respect to the ground state density 0 ( )n r , one would determine the exact ground 

state energy.
10

 Such electron density based method simplifies the calculations of defects’ 

electronic properties in the bulk. DFT allows much larger systems to be solved by ab-initio 

methods, while retaining much of their precision. Nonetheless, precision is a quite relative term. 

Even though, theoretically, DFT is an exact functional, its actual performance relies on the 

quality of the approximate density functionals employed. DFT is not just another method of 

parametrizing empirical results, but is rather a meticulous way of analyzing any interacting 

system, by mapping exactly to a much easier-to-solve non-interacting system.
78

  To appreciate 

the full extent of HK theorems, and the beauty of the DFT method, one must understand the 

meaning of functionals, and a brief analysis of functionals is given in the following Section 2.2. 

  

2.2 Functional and Functional derivatives 

 The mathematical and physical explanations of functional and functional derivatives are 

crucial if one needs to understand the quantum mechanics of interacting electrons in terms of 

DFT and Hybrid Functional Theory (HFT). In this chapter, we briefly discuss the central role of 
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functionals and functional derivatives in the formalisms we will be describing in the following 

chapters.  

A functional is closely related to the more familiar concept of a function and one recalls that a 

function f is defined to be a mapping of a variable y to a number f(y). From a mathematical 

perspective, one can define a functional as a function of a function. In other words, a 

functional [ ( )]F f y assigns a unique number to an entire function and is therefore a mapping of a 

function f onto a value or number.
72

 A fairly simple example of a functional can be 

conceptualized by looking at the total charge enclosed Q  in a closed surface S bounded by a 

given volume  often used in classical electromagnetism, 
3( ) [ ( )]Q n r d r Q n r



            (2.2.1) 

where ( )n r is the total charge density of the system. From this functional, we notice that [ ( )]Q n r  

is a rule for going from a function ( )n r to a number Q . The square bracket 

notation [ ( )]Q n r indicates thatQ depends on ( )n r everywhere in the volume . Moreover, 

[ ( )]Q n r is also called local-functional since the functional does not depend on its gradient, 

Laplacian or other higher-order derivatives. More detailed analysis of functionals are given by 

Volterra
81

 (1959), and Parr and Yang
72

 (1989). 

Differentiation of functionals is an extension of the concept of partial differentiation for multi-

variable functions
82

. Functional derivatives basically allow us to study how a functional changes 

with respect to variation of a function f at the point y. Let a function f(y) be defined over a 

specific interval min max[ , ]y y , and be a subject to an arbitrary small perturbation ( )f y that 

is f f f  . Then the perturbation ( )f y is also defined over the same interval min max[ , ]y y . 

For some functional [ ( )]F f y , the value of [ ]F f f can be therefore approximated by using a 

Taylor’s
83

 expansion in powers of the perturbation ( )f y ,  

max max

min min

1 2 1 1 1 2

1
[ ] [ ] ( ) ( ) ( , ) ( ) ( ) ...

2!

y y

y y

F f f F f y f y dy y y f y f y dy dy             

             (2.2.2) 

Hence
max max

min min

1 2 1 1 1 2

1
[ ] [ ] ( ) ( ) ( , ) ( ) ( ) ...

2!

y y

y y

F f f F f y f y dy y y f y f y dy dy               

                        (2.2.3) 

Where 1

[ ]
( )

( )

F f
y

f y




  is the first Taylor’s expansion coefficient and describes the rate of change 

of the functional or the functional slope for a small variation of f at y. Correspondingly, 
2

2 1

1

[ ]
( , )

( ) ( )

F f
y y

f y f y



 
  is the second Taylor’s expansion coefficient and described the rate of 

change of the functional when f is simultaneously subject to small perturbations at y and y1. 

Since the functional derivative only measures the first order change in a functional, the second 

integral of Eq. (2.2.3) is neglected; hence the quantity
[ ]

( )

F f

f y




becomes the functional derivative 

of F with respect to f at the point y.
72
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Now that we have briefly described what is a functional and how to differentiate functionals, we 

can further analyze HK theorems that stipulate that the ground-state energy ,0[ ( )]HKE n r  of any 

system of interacting particles is a functional of the particle’s density ( )n r and minimizing that 

energy will determine the exact ground-state density 0 ( )n r .
80

 

 

2.3 Hohenberg-Kohn (HK) theorems 

 One may argue that the very core of the entire field of DFT rests on the two HK 

theorems. In the original HK paper, they proved that any characteristics of the many-electron 

system can be regarded as a functional of the ground state density.
10

  

By definition, in a given electronic system, the total number of electrons per unit volume in a 

given state
72

 is defined as the electron density for that state where 
3( )N n r d r              (2.3.1) 

Thus the probability of finding one electron within volume element 3 3...i Nd r d r  with arbitrary 

spin, while the other N-1 electrons have arbitrary and spatial coordinates is given by: 
2

3 3

1 1 2 1( ) ... ( , ,..., ...N i Nn r N x x x ds d r d r           (2.3.2) 

Now let’s consider N interacting electrons subjected to an external potential ˆ
extV , where the 

corresponding Hamiltonian can be regarded as: 

 

ˆ ˆ ˆ ˆHK

ee ee extH T V V              (2.3.3) 

Since ˆ
extV completely determines the Hamiltonian and the total number of electrons is represented 

by N, we can therefore conclude that ˆ
extV and N establish all properties for the ground-state of the 

system. The first theorem established by Hohenberg and Kohn substitutes ˆ
extV and N for the use of 

the electronic density ( )n r as basic variable. The correlation between the external potential and 

the electronic density can be regarded as follow: 

For any system of N interacting particles subjected to an external potential, the external potential 

is determined uniquely, within a trivial additive constant, by the ground state electronic 

density 0 ( )n r .
10,72,80

 In other words, the ground state density determines all properties of the 

ground state. However, even though the first HK theorem rigorously proves the existence of a 

functional of the electron density that can be used to solve the many-electron system, the 

theorem says nothing about the actual functional.  

Hence, we are still left with the initial problem of many interacting electrons subjected to an 

external potential.          

Fortunately, the second HK theorem describes a crucial property of the functional. It states that 

by deriving the true or exact functional form, one can fluctuate the electron density until the 

energy of the functional is minimized, hence giving a prescription for obtaining the relevant 

electron density.
84

 To put it differently, for any change in the external potential, the particles in a 

given system will react, so that their energy is minimized and this response would be unique. 

One can exemplify the corollary of the second HK theorem by looking at how specifically the 

orbitals contract if the nuclear charge is increased in a given atom. Another example would be 

the explicit positional shift of the wavefunction and density as atoms in a given molecule 
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separate or get closer to one another. By explicit positional shift, we are not referring to a mere 

additive constant but we are just noticing a direct correlation between the electronic density and 

the atom structure. For readers who are interested by the explicit proofs of such two 

groundbreaking theorems, they can refer to Parr and Yang (1989) and Engel and Dreizler 

(2009)
63

. A more intuitive approach to functional would be the introduction of a two-step 

minimization procedure described by Levy
85,86

 and Lieb
87,88

 and their approach is thoroughly 

explained by R. M. Martin (2004)
10

. In the following chapters, we will discuss various 

functionals that allows one to replace the quite complex N-electrons wavefunction by the simpler 

electron density. 

  

Figure 1: Schematic illustration of the first Hohenberg-Kohn (HK) Theorem by R. M. Martin 

(2004)
10

.The double arrow labeled “HK” denotes the first HK theorem which states that for any 

system of interacting particles subjected to an external potential, the external potential is 

determined uniquely, within a trivial additive constant, by the ground state particle density 

0 ( )n r . 

 

 

2.4 Thomas-Fermi-Dirac approximation 

 Even though the Thomas-Fermi-Dirac (TFD)
74,75,76

 approximation historically precedes 

the HK theorems, we decided to introduce the TFD approximation right after the brief 

description of the HK theorems. Such odd structured plan can be justified in view of the fact that 

even though one of the earliest calculation schemes that introduced the electron density instead 

of the many-electron wavefunction was given by Thomas and Fermi, one requires the HK 

theorems to justify the use of electron density functional. 

In this section, the brief discussion of the initial TF
74,75

 equations is heavily based on an excellent 

article written by Jones and Gunnarsson (1989)
65

. In the original TF equations, the electron-

electron interaction potential is described by the electrostatic Coulomb integral where the 

electrons are treated as completely independent particles
65

, 

Ground state density 0 ( )n r  External Potential ˆ ( )extV r  

Solve the Schrödinger equation 

  ˆ
k k kH E    

Obtain all states of the system 

           ( )k r  

Compute Ground-state wave 

function  0 ( )r  

HK 
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3 3 1
1

1

( ) ( )1ˆ [ ]
2

TF

ee

n r n r
V n d rd r

r r


           (2.4.1) 

Moreover, the total kinetic energy is approximated as an explicit functional of the 

density [ ]TF

eeT n for non-interacting electrons in a uniform gas, 

5

33ˆ [ ] ( )TF

ee lT n C n r d r  , where

2

2 2 33 (3 )

10
lC

m


        (2.4.2) 

Such approximation is quite decent for slow variation of the electron density in an idealized 

homogeneous medium. However, one may argue that one of the most severe deficiencies in this 

model is the neglect of the exchange and correlation energies among the electrons. In 1930, 

Dirac
76

 formulated a local approximation to the Hartree exchange energy where, 

4
33ˆ [ ] ( )D

mK n C n r d r


   with 

1
33 3

4
mC



 
  

 
        (2.4.3) 

 By inserting the previously derived expressions for the electron-electron potential, kinetic 

energy and exchange energy in the original TF equation, one obtains a new energy functional for 

electrons subjected to an external potential,  
5 4

3 3 3 3 3 13 3
1

1

( ) ( )1
[ ] ( ) ( ) ( )

2

TFD

l m ext

n r n r
E n C n r d r C n r d r n r V d r d rd r

r r  
   

                  (2.4.4) 

The ground state energy and density can be found by minimizing the functional [ ]TFDE n  

under the condition that the total number of electrons is given by 3( )N n r d r  . 

By incorporating this constraint by the method of Lagrange multipliers
10,22

, the ground state 

density must therefore satisfy the variational principle 

  3[ ] ( ) 0TFD TFDE n n r d r N 


            (2.4.5) 

The corresponding Euler-Lagrange equation is the generalization of the Thomas-Fermi-Dirac 

equation: 

2 1
3 3

5 4
( ) ( ) ( )

3 3

TFD
TFD

l m

E
C n r C n r r

n





           (2.4.6) 

Where 3 3 3 1
1

1

( ) ( )1
( ) ( )

2

n r n r
r n r d r d rd r

n r r



 

  
   

  
        (2.4.7) 

And 3 1
1

1

( )
( )

n rZ
r d r

r r r
  

  is the classical electrostatic potential at r .  

Even though the introduction of a density functional theory would simplify the complexity of the 

full many-electron wave functions, the TFD approximation holds severe deficiencies. Such crude 

approximation lacks the precision to describe shell structure of atoms and binding of 

molecules.
89,90,91

 Furthermore, one notices that as we get further from the nucleus, the charge 

density does not decay exponentially but rather in form of a power function and as we 

infinitesimally approach the nucleus, the charge density blows up to infinity.
65

 In order to 

overcome those deficiencies, future works on improvements and modifications of the original 

TFD approximation have mainly been conveyed by Weisacker (1935)
92

, Gross and Dreizler 

(1981)
93

 and Perdew(1985a)
94

. Countless implementations into DFT have continued for many 

years but it should be realized that Density Functional Theory itself does not truly provide a way 
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to fully understand the properties of a material by simply analyzing the form of the electronic 

density.
10

 Extracting directly from the electronic density any general characteristics of a system 

is not quite intuitive. One can conceptualize such difficulty by thinking on how to construct an 

accurate kinetic energy functional of N- non interacting particles subjected to an external 

potential from a given electronic density. This therefore leads us to the Kohn-Sham approach, in 

which an accurate kinetic energy functional is computed in terms of orbitals for corresponding 

non interacting electrons. 

 

2.5 The Kohn-Sham (KS) approach 

 The basic idea behind the KS approach was to collect particles that were not interacting 

with each other, then to solve each electron individually subjected to the initial effective 

fictitious potential formed by the non-interacting particles.
64

 After solving the Schrodinger 

equation for individual electrons, a new effective potential is obtained and then the electron 

density is recomputed which in turn give another effective potential. This loop is repeated until 

the minimum energy of the system is reached. A schematic representation of the self-consistent-

field KS loop is represented by Figure 2 which is based on the non-interacting-V-representability 

assumption. This assumption relies on the fact that the ground-state density of our collection of 

non-local particles can represent the exact ground state density of the system. By constructing 

non-interacting electrons with the same density as the physical system, the solution of the KS 

equations would produce the exact non-interacting kinetic energy, which includes almost all the 

true kinetic energy.
78

 The residual difference between the independent-particle kinetic energy ˆ
ST  

and the true kinetic energy is related to the famous exchange-correlation parameter Exc which 

will shortly be discussed. Before explicitly explaining the KS ansatz, we should recall the 

definition of the total energy functional used in the first HK theorem where 
3 ˆ[ ] [ ] ( )HK HK

ext KLE n F n d rV n r E


                        (2.5.1) 

Here EKL represents the classical Coulomb interaction between fixed Kth and Lth ions described 

in Section 1.1 and F
HK 

[n] is a functional independent of the external potential that describes all 

internal energies of the interacting electrons system: 

  

ˆ ˆ ˆ[ ] [ ] [ ]HK HK

eeF n T n V n             (2.5.2) 

where the potential between electrons ˆ [ ]HK

eeV n  is defined as: 

3 3 1
1

1

( ) ( )1ˆ [ ]
2

HK

ee

n r n r
V n d rd r

r r
 

  “nonclassical terms”        (2.5.3) 

The first component of the previous equation is described in Section 2.1 and is denoted as the 

Hartree energy. The second component which is identified as the “non classical terms” is 

described by Parr and Wang as the most important part of the exchange-correlation energy. 

Based on the first HK theorem, Kohn and Sham introduce the concept of an auxiliary non 

interacting Hamiltonian in a non spin polarized system where: 

2

1

1ˆ ˆ ( )
2

N
KS KS

s

k

H V r


 
    

 
            (2.5.4)  
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For a system of N independent electrons obeying this auxiliary Hamiltonian, the ground state has 

one electron in each of the N orbitals i with the lowest eigenvalue i of the Hamiltonian.
10

 

Hence the one electron Hamiltonian can be written as: 

21 ˆ ( )
2

KS

s k k kV r 
 
      
 

          (2.5.5) 

Which yield to the density of the auxiliary KS Hamiltonian,  

2

1

( ) ( )
N

k

k

n r r


              (2.5.6) 

In terms of KS orbitals, the HK expression for the ground state energy functional is given by: 
3ˆ ˆ[ ] [ ] [ ] ( )KS

s xc ext KLE n T n E n d rV n r E


             (2.5.7) 

where the independent-particle kinetic energy ˆ
ST is 

2

1

1ˆ [ ]
2

N

S k k

k

T n


      

Even though the kinetic energy ˆ
ST is unique by the HK theorem, it is still not the “exact” kinetic 

energy of the system. In order to create an exact kinetic energy component, Kohn and Sham 

defined a universal function ˆ [ ]KSF n  that includes all internal energies as: 

3 3 1
1

1

( ) ( )1ˆ ˆ[ ] [ ]
2

KS

s xc

n r n r
F n T n d rd r E

r r
  

          (2.5.8) 

And equated this universal function ˆ [ ]KSF n  to the HK universal function ˆ [ ]HKF n described in Eq. 

(2.5.1): 

3 3 1
1

1

( ) ( )1ˆ ˆ ˆ[ ] [ ] [ ]
2

HK

ee s xc

n r n r
T n V n T n d rd r E

r r
   

        (2.5.9) 

Which yields: 

  3 3 1
1

1

( ) ( )1ˆ ˆ ˆ[ ] [ ] [ ]
2

HK

xc s ee

n r n r
E T n T n V n d rd r

r r

 
      

  

Or  ˆ ˆ[ ] [ ]xc sE T n T n nonclassical   terms                                       (2.5.10) 

Here, the exchange-correlation parameter is small in magnitude and represents the difference 

between the true kinetic energy and the independent-particle kinetic energy, and the non classical 

terms from the potential between electrons. Even though the magnitude of the independent-

particle kinetic energy ˆ [ ]sT n  is slightly different from the true kinetic energy ˆ[ ]T n  of the system, 

ˆ [ ]sT n is treated exactly in this approach. The exact computation of ˆ [ ]sT n circumvents many of the 

deficiencies of the TF approximation, that we have previously discussed in Section 2.4, such as 

the absence of chemical bondings in molecules and the lack of shell structure for atoms.
89,90,91

  

The Kohn-Sham equations represent a major breakthrough into solving the many-body problem 

because it offers an exact and unique ground state energy and density of the many-body electron 

problem, provided that the exchange and correlation parameter is explicitly defined.  
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Figure 2: Schematic representation of the self-consistent loop where the charge density ( )n r and 

wave function ( )k r are spin-dependent. The first (1) and second (2) loop must be iterated 

simultaneously for the two spins where the potential for each spin is calculated as a functional of 

the density of both spins. 
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2.5.1 Kohn-Sham variational equations 

 The Euler equation that is equivalent to the auxiliary single KS electron equation is given 

by: 

[ ]ˆ
( )

KS
KS

s

F n
V

n r





   where  is the Lagrange multiplier associated with the constraint 

3( )N n r d r  . By varying the KS wave functions and applying the chain rule to Eq. (2.5.7), we 

obtain: 

3 3 3 1
1

1

( ) ( )1ˆ ˆ ( ) ( )
( ) ( ) 2 ( )

KS xc
s ext

En r n r
V d rV r n r d rd r

n r n r r r n r

 

  

 
       
                      (2.5.1.1) 

Hence 3 1
1

1

( )ˆ ˆ ˆKS

s ext xc

n r
V V d r V

r r
  

                             (2.5.1.2) 

where ˆ
( )

xc
xc

E
V

n r




                    (2.5.1.3)  

Here, ˆ
xcV  is the obtained exchange correlation potential. By fully incorporating the exchange 

correlation effect of electrons, the KS theory supersedes the HF theory, in providing an exact 

and unique molecular orbital theory.
78

 Unfortunately, an exact computation of the exchange and 

correlation potential remains complex and the physical interpretation of the exchange and 

correlation parameters are given in the following section. 

 

2.5.2 Exchange and Correlation 

 The exchange and correlation parameter can be physically interpreted via an adiabatic 

approximation
19,95,96

 or mathematically analyzed through a wave-vector
72

 analysis. However the 

derivation of exchange and correlation energy in both methods requires an incredible amount of 

algebra. Roughly speaking, one can think of the exchange energy as the energy difference 

between different particles due to their spin characters while the correlation energy would be the 

difference between the total internal energy of the system minus the independent KS particle 

kinetic energy, the Coulomb energy and the exchange energy. Unfortunately, the relationship 

between the exchange and correlation is quite intimate and it is fairly complicated to “exactly” 

separate exchange from correlation.  

Even though the KS equations exactly determine the previously unknown kinetic energy 

functionals by writing the electron density into N orbital components, the derivation of the 

exchange and correlation parameter is unclear. By explicitly separating out the long-range 

Hartree components and the noninteracting particles kinetic energy
10

, the remaining exchange-

correlation parameter can be approximated by using the uniform-electron gas formula. Hence, by 

treating the exchange-correlation functional locally or nearly local, it can be expressed as: 
3 ( , ) ( )LDA

xc xcE d r n r n r                    (2.5.2.1) 

Where ( )xc n designates the exchange-correlation energy per electron at point r in a uniform 

electron gas of density n. According to Eq. (2.5.1.3), the corresponding exchange-correlation 

potential is thus given by: 
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ˆ ( , ) ( )
( ) ( )

LDA
LDA xc xc

xc xc

E
V n r n r

n r n r

 


 
                   (2.5.2.2) 

In order to make the previous equation more suitable for numerical calculations, the first 

term ( , )xc n r can be divided into exchange and correlation components, 

( , ) ( , ) ( , )xc x cn r n r n r                      (2.5.2.3) 

Hence Eq. (2.5.2.1) becomes: 
3 3( , ) ( ) ( , ) ( )LDA LDA LDA

xc x c x cE E E d r n r n r d r n r n r                      (2.5.2.4) 

Where 3 ( , ) ( )LDA

x xE d r n r n r                   (2.5.2.5) 

and 3 ( , ) ( )LDA

c cE d r n r n r                              (2.5.2.6) 

The exchange energy LDA

xE can be easily computed since the Kohn-Sham wave functions are 

simply Slater determinants of plane waves.
78

 Based on the Dirac exchange energy derived in Eq. 

(2.4.3), the exchange energy functional for a uniform gas is defined as: 

4
33( )LDA

x mE C n r d r    with 

1
33 3

4
mC



 
  

 
                          (2.5.2.5)   

By comparing the previous equation with Eq. (2.5.2.5), the exchange component becomes: 

1
3( )x mC n r    where 

1
33 3

4
mC



 
  

 
                (2.5.2.6) 

 Unfortunately, the second term of Eq. (2.5.2.3) or the so-called correlation parameter is far more 

complicated since it depends explicitly on the physical ground-state wavefunction of the uniform 

gas. The correlation energy can be vaguely conceptualized as the energy that is created from the 

correlated motion of the electrons due to electrostatic repulsion and attraction to the compensated 

positively charged background. Over the years, various approximations of the correlation energy 

have been made and one of the most accurate calculations was the Quantum Monte Carlo 

computations for uniform gas.
97

 

By looking back at the derivation of the exchange and correlation potential described in Eq. 

(2.5.2.2), we define the second term ( )
( )

xcn r
n r




as the “response function”. This “response 

function” or “response potential”is explicitly defined by Gritsenko et al. (1994)
98

 as the response 

function of the exchange correlation hole subjected to density variations. The response potential 

can be physically interpreted as a discontinuity in the functional derivatives of xc for finite 

systems
99

 and bulk insulators
100

. In an excellent review written by Perdew and Levy (1982)
101

, 

they argued that the band structure computed from the Kohn Sham ansatz underestimates the 

actual gap width by an amount equal to the derivative discontinuity. Hence, the difference 

between the highest occupied and lowest unoccupied one-electron levels
101

 does not quite 

represent the actual band gap of a given system.  

After locally approximating the exchange-correlation potential, the KS orbital equations derived 

in Eq. (2.5.5) can be rewritten as: 

2 3 1
1

1

( )1 ˆ ˆ
2

LDA

ext xc k k k

n r
V d r V

r r


 
        

 
                (1.5.2.7) 
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and the self consistent solutions of these local KS orbital equations represent the LDA formalism 

which is further investigated in the next section.  

 

2.6 Functionals for Exchange and Correlation 

 Before introducing any approximation of the exchange-correlation parameter, we notice 

that the Kohn-Sham Density Functional Theory as it has been discussed up to this point is 

restricted to only unpolarized systems. By adding a magnetic field to the usual scalar external 

potential acting on the many-electrons systems, we are building more physical insight into the 

approximation of the exchange correlation functional. The next two sections are devoted into 

describing relevant functionals that approximate the spin dependent exchange correlation 

parameter. 

 

2.6.1 Local Spin Density Functional (LSDA) 

 In addition to the local approximation of the exchange-correlation energy described in 

Section 2.5.2 by Kohn and Sham, we decide to insert spin dependence into the homogenous 

exchange correlation parameter, which yields: 
3, , ( )LSDA LDA

xc xc xcE E n n d r n n n r       
                   (2.6.1.1) 

This integral can be simplified or rather approximated by explicitly separating the exchange and 

correlation components: 
3 3, , ( ) , ( )LDA

xc x cE n n d r n n n r d r n n n r            
                   (2.6.1.2) 

The LSDA can be described in terms of the up and down spin densities, but it is usually 

expressed in terms of the total charge density ( ) ( )n r n r  and the local relative spin 

polarization: 

( ) ( )
( )

( ) ( )

n r n r
r

n r n r


 

 





                  (2.6.1.3) 

For the far more sophisticated case of spin dependent correlation energy, there have been some 

serious attempts to parameterize the uniform gas correlation energy as a function of spin 

polarization, ( , )c n  .
102,103

  Even though the LSDA principles were funded on the basis of a 

homogenous gas approximation, its success for very inhomogeneous cases are not to be 

overlooked. One reason for such success might be the cancellation of errors between exchange 

and correlation. In 1966, Tong and Sham
104

 noticed that in LSDA calculations, the total 

exchange energy is typically underestimated by about 10% while the correlation energy is 

overestimated by a factor of 2 or more. Since for many physical systems, the exchange energy is 

about 4 times greater than correlation,
78

 the overestimation of the correlation energy greatly 

cancels the underestimation of the exchange energy. Due to the partial cancellation of errors, the 

LDSA gives excellent approximations of bond lengths, ionization and binding and dissociation 

energies. Unfortunately, LSDA tends to fail into describing weak bondings, systems with slowly 

varying densities, correct band gaps and magnetism of transition metals. To improve upon the 

local spin density formalism, one should take into account the problem of the unphysical self-

interaction term in the approximation of the exchange and correlation parameter. In order to 

remove those spurious self interaction tems, Perdew and Zunger (1981)
105

 suggested a Self 
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Interaction Correction (SIC) to LSDA. In such corrections, the newly obtained Kohn Sham 

orbitals vary for different potentials hence causing non-orthogonality of the orbitals. Further 

physical insight into the non orthogonality of the orbitals is given in the original review.
105

  

Even after improving the LSDA, one observes that the exchange correlation potential has a quite 

short range and it only depends on the local density. Consequently the LSDA potential has the 

wrong asymptotic dependence as r tends to infinity and one might consider a functional of the 

magnitude of the gradient of the density as well as the value of the density at each point.
10

  

 

2.6.2 Generalized Gradient Approximations (GGA) 

 The idea of constructing a functional that is not as computationally demanding as fully 

non local functionals and yet possesses a potential that does not diverge for exponentially 

decaying densities would be groundbreaking. One of the first suggestions into expanding the 

exchange correlation parameter in function of the magnitude of the gradient of the density was 

given in the original paper of Kohn and Sham
8
 and it was referred to as a gradient expansion 

approximation (GEA). The insertion of gradient-dependent functionals into the local density 

approximation of the exchange correlation parameter was first thought to be very attractive for 

applications but unfortunately most gradient expansion approximations did not lead to consistent 

improvements over the LSDA. Such failure could be explained by the fact that the gradient in 

real materials is so large that a given gradient expansion would break down. Indeed, the major 

drawbacks of the GEA were that its corresponding exchange correlation hole was not physical, 

nor did it satisfy the normalization conditions of the exchange and correlation holes and the 

negativity state of the exchange hole.
12,106

 By eliminating the spurious long-range term of the 

second order expansion of the GEA exchange-correlation hole, generalized gradient 

approximations
107,108,109

 (GGAs) were created and their corresponding exchange correlation 

energy were approximated by: 

 3, ( ) , , , ...GGA

xc xcE n n d rn r n n n n         
                  (2.6.2.1) 

GGA functionals have recently become quite popular in condensed matter physics. As a general 

trend, GGAs yield more accurate atomization energies
94,110,111

, total energies
112

 and barriers to 

chemical reactions
113

 than LSDA. Furthermore GGAs can also correct the underestimation of 

bulk constant previously computed by LSDA. One of the arguably most crucial improvements of 

the GGAs over LSDA is the prediction of the correct ferromagnetism configuration of bcc 

ground state metallic iron.
114

 However, except for the case of Hydrogen,
115,116

 GGA bond lengths 

computations are not better to corresponding LSDA calculations for arbitrarily chosen 

molecules. Even though some GGAs provide some improvements over the LSDA, one should 

keep a realistic perspective of the predictive power of the GGAs and further understanding on 

the properties of each GGA functional is therefore required. One of the first serious attempts into 

writing a gradient functional that would be subjected to further improvements in the near future 

was performed by Perdew and Wang in 1986 (PW86).
107

 New physical insight
117

 was brought 

upon the exchange and correlation parameter when ,GGA

xcE n n  
 

was rewritten as: 

   3, ( ), ( )GGA unpol unpol

xc x xc sE n n d r n F s r r r   
                (2.6.2.2) 
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here  
1

33 3
( )

4

unpol

x n n r


 
   

 
is the exchange energy in an unpolarized system previously 

computed from the LDA formalism and Fxc
unpol

 is the dimensionless enhancement factor over 

local exchange.
117

 A thorough investigation of the physical meaning of every single component 

from Eq. (1.6.2.2) is given in the original review.
117

 In order to distinguish a GGA that would 

offer a consistent improvement over the previous LSDA, several authors
117,118 

decided to plot the 

GGA dimensionless enhancement factor Fx
GGA

 in function of reduced density gradient 

 
( )

( )
2 ( )F

n r
s r

k n r


 ,                    (2.6.2.3) 

for various values of Wigner-Seitz radius

1
33

( )
4 ( )

sr r
n r

 
  
 

             (2.6.2.4)   

Here,  
1

2 33 ( )Fk n r is the local Fermi wavevector              (2.6.2.5) 

 

A non monotonic behavior
118

 from various famous functionals such as Becke (B88)
108

, Perdew 

and Wang (PW91)
112

 and the famous Perdew-Burke-Enzherof (PBE)
119

is observed after plotting 

the exchange part of the enhancement factor Fx  in function of the reduced density gradient ( )s r . 

Huge discrepancies among the functionals appear for large regions of ( )s r and such differences 

might be explained by the inaptitude of well describing regions that contain large gradient by the 

density gradient expansion.
10

 Although some widely used gradient formalism such as the PBE-

GGA and PW91 predict several correct physical properties, one cannot guarantee their absolute 

superiority in the entire condensed matter field. 

As one would have expected, even though the correlation energy is a lot smaller than the 

exchange energy, rewriting the correlation parameter as a functional is quite complex. In 

generalized gradient approximations, some interesting works have been done on estimating the 

correlation parameter
112,119,120

 but further improvements are still required in this area. 

Unfortunately, regardless of how precise these gradient functionals are constructed, DFT 

calculations are still not exact solutions of the full Schrodinger equation. Even though the true 

ground state energy of a given system can be well approximated by pure DFT, one can still not 

compute excited state energies. In addition to the non-time dependence of DFT, there exist 

important situations for which DFT computations yield unphysical results. The underestimation 

of bandgaps in semiconductors and insulators and the inaccurate weak Van der Waals attractions 

are one of the main disadvantages in the density functional formalism. Hence, instead of 

attacking the many-body problem from a pure electron density perspective, one might reconsider 

computing wave functions that would converge to an exact solution of the Schrodinger equation. 

 

3. The Hartree-Fock (HF) method 

 The wavefunctions-based method provides a different approach to the treatment of the 

exchange-correlation interactions. One of the very first approaches to the many-particle problem 

was proposed by Hartree (1928)
68

, where he assumed that the many-electron wave function can 

be expressed as a simple product of one-electron orbitals. Even though this approach is not quite 

realistic enough for general electronic systems, it is included in this section to illustrate the basic 

features of one-electron approaches. In the original review, Hartree proposed the self-consistent 
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field (SCF) approach in which electrostatic field felt by an electron was due to the potential 

created by the nucleus together with the field produced by other electrons.
121

  
 

3.1 The Hartree approximation 

 For simplifications purposes, we will first assume that electrons are completely 

independent of each other and the electronic Hamiltonian can be described by:  

1

ˆ
N

elec k

k

H h


                          (3.1.1) 

Where N is the total number of electrons and hk describes the kinetic and potential energy for the 

kth electron. By solving the Schrodinger equation for a single electron, we obtain: 

k kh                            (3.1.2) 

The eigenfunctions   of the previous one-particle Schrodinger equation represent the  th spin 

orbital of the kth electron and can be rewritten as: 

( ) ( )k a k sr r m
                       (3.1.3) 

where ( )a kr
 and sm respectively represent the spatial orbital and spin part of the spin 

orbital  . Since the total electronic Hamiltonian ˆ
elecH  is a sum of one electron operators kh , the 

corresponding eigenfunctions of ˆ
elecH will therefore be products of the one-electron spin orbitals: 

1 2 1 1 2 2( , ,..., ) ( ) ( )... ( )k N Nr r r r r r                       (3.1.4) 

Initially, Hartree thought about using the variational principle for the ground state wavefunction 

by adopting this simple product trial function that we have derived in Eq. (3.1.4). However, 

electrons are indistinguishable spin particles or fermions, and by exchanging two electrons, the 

wavefunction must correspondingly switch sign according to the antisymmetry principle. By 

incorporating a Slater determinant
71,122

 into the Hartree approximation, Fock proposed an 

antisymmetric N-electron wavefunction which can be described as: 

1 1 2 1 1

21 2 2 2

1 2

1 2

( ) ( ) ( )

( )( ) ( )1
( , ,..., )

!

( ) ( ) ( )

HF

k N

N N N

r r r

rr r
r r r

N

r r r







  

 

  

                     (3.1.5) 

The coefficient in front of the matrix represents a normalization factor and within the matrix, we 

notice that N electrons can occupy orbitals without specifying which electron is in which 

orbital. By investigating the nature of the rows and columns of this newly obtained determinantal 

expression, we notice that the conditions of the Pauli Exclusion Principle are completely 

satisfied. By obtaining an antisymmetric Hartree product, we consequently obtain exchange 

components since the exchange effects arise from the requirements of the invariance of 
2

 to 

interchange space and spin coordinates of any two electrons.
67

 More details on the nature of the 

exchange energy and the antisymmetry principle can be qualitatively described by Slater 

(1960)
123

 and Szabo and Ostlund (1996).
67

 Although we have obtained a wavefunction that 

satisfies the antisymmetry principle, we are still not yet at the level of exactly solving the full 

interacting Hamiltonian. 
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3.2 The Hartree-Fock equations 

 By using the antisymmetric wave function that we have derived in Eq. (3.1.5), we can 

approximate the ground state of an N electron system by: 

0 1 1 2 2( ) ( )... ( )Nr r r              (3.2.1) 

By applying the variational principle to the electronic Hamiltonian, we obtain the lowest energy 

which is described by: 

0 0 0
ˆ

elecE H              (3.2.2) 

By minimizing E0 with respect to the choice of spin orbitals, we obtain the so-called Hartree-

Fock equation:  

21
( ) ( ) ( )

2
eff k k kV r r r   

 
    
 

                    (3.2.3) 

For electrons respectively located at 1r and 2r , the effective potential ˆ ( )effV r  is described as: 

2 2
3 3 * *

1 2 1 2

, 1 2

1ˆ ˆ( ) ( ) ( ) ( )eff extV r V r d r d r r r
r r

 
 

 
 

   
 

       

                     3 3 * *

1 2 1 1 2 2

, 1 2

1
( ) ( ) ( ) ( )d r d r r r r r m m

r r
     

 

     
 

  
 

   (3.2.4) 

The second term in the left hand-side is the purely classical Coulomb repulsion between 

electrons that we derived in Eq. (2.1.14) and the third component is the famous exchange energy. 

The negativity of the exchange terms corresponds to an odd permutation in the Slater 

determinant. Basically, the exchange components prevent spin-like electrons from being too 

close to each other or to occupy the same state which hence reduces the electrostatic Coulomb 

repulsion. Furthermore, the Kronecker Delta terms from the exchange operator are required since 

the potential does not flip the spins of the electrons, and hence in case of different spin orbitals, 

the exchange term should completely vanish. In order to complete our brief analysis of the HF 

approximation, we must define how the spin orbitals are computed and how should it be 

combined to obtain a quite precise many-body wavefunction. A good approximation of spin 

orbitals   can be obtained by linear combinations of basis functions ( )j r : 

,

1

( )
J

j j

j

a r 


             (3.2.5) 

where , ja are the expansion coefficients. From such combination, one can hence conclude that 

the accuracy of the HF formalism relies solely on the specification of the expansion coefficients. 

Like the previously discussed KS equations, we notice an iterative process from the HF 

formalism since  

 One must first approximate the spin orbitals based on the size of the basis set. 

 Then define the probability density
2

*

1( )r


  or electron density 1( )n r from the previous 

estimate of the spin orbitals. 

 From the obtained electron density, one must again solve the single electron HF equation 

for the spin orbitals. 
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 Finally we can compare the obtained spin orbitals with the ones we initially estimated. In 

case that the obtained spin orbitals correspond to our initial guess, the total energy and 

other characteristics of the system can therefore be calculated. On the other hand, if the 

obtained spin orbitals are inconsistent with the initial ones, the trial spin orbitals must be 

updated by using the same iterative process.  

The HF approximation has been for a quite long time the most renowned formalism to calculate 

the electronic structure of molecular systems. Unfortunately, even though the exact exchange 

was treated exactly from the HF wavefunction, the many-body correlation effects were 

completely absent.  In molecular calculations, improving the HF method can be obtained by 

expensive post-HF methods such as the configuration interaction (CI), coupled cluster (CC), 

Moller-Plesset perturbation theory (MP) and the quadratic configuration interaction (QCI) 

formalism.   

Unfortunately, several of these post HF methods are only possible for relatively small number of 

atoms due to the exponential increase of computational expense associated with the size of the 

system and the number of basis functions. A circumvention of the computational expense of such 

calculations can be found in the previously discussed DFT that uses periodic and spatially 

localized functions. Nevertheless, density functional formalism carries major drawbacks that are 

explicitly described by Jones and Gunnarsson (1989).
65

 A way forward into finally obtaining an 

excellent approximation of the solution of the many-body Schrodinger equation might be a 

density functional theory in which there would be a combination of the exact exchange 

functional based on wave-function-based methods and approximations of the correlation 

component. In the next section, we will focus on giving a brief overview of this new class of 

mixed functionals called “hybrid functionals”. 

 

4. Hybrid Functionals 

4.1 Importance and definition 

 In the last decade, wave-functions-based methods and DFT have proven to be very 

powerful tools in describing various properties in a wide range of materials. Nevertheless, the 

explicit derivation of the exchange correlation parameter in DFT and the computational cost of 

post-HF methods are still methodological barriers that have not been overcome. First-principles 

method based on DFT such as LSDA has been quite successful, especially for those where the 

electronic density is quite uniform. In order to address the main limitations of LSDA, an 

expansion of the density in terms of the gradient and higher order derivatives has been carried 

out. Unfortunately, the improvement of GGAs over LSDA are not yet substantial since GGAs 

still do not completely correct the band gap in many systems and do not satisfy known 

asymptotic behaviors for isolated atoms. The main reasons of such limitations is probably due to 

the fact that self-interaction are still present in the Hartree term, the non-locality of the exchange 

component is not fully taken into account and the complexity of computing the correlation term. 

The next step beyond first-principles methods based on DFT and post-HF formalisms might be 

the introduction of so-called hybrid functionals which are obtained by an admixture of a non-

local fixed amount of Fock exchange to GGA-type functionals. Recently developed hybrid 

functionals such as Perdew-Burke-Ernzherof-zero-parameter (PBE0)
124,125

 and Becke-three 

parameter-Lee-Yang-Parr (B3LYP)
109,126,127 

have correctly predicted band gaps, bulk moduli and 

lattice constants and substantially improved the thermochemical
28

 properties of many systems. 
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Nevertheless, the computational cost of calculating the exact Fock exchange under periodic 

boundary conditions made the use of these hybrid formalisms almost unattainable. In order to 

make the Fock exchange parameter tractable in periodic systems, Heyd (2006)
31

 argues that the 

spatial decay of the exchange interactions must be accelerated or one might artificially cut off or 

truncate part of the exchange interactions.  The first alternative, which is the acceleration of 

spatial decay, might well predict the total energy of the system but would still neglect long range 

exchange-correlation. The second approach, truncating the exchange interactions are known to 

work quite well in localized systems. Nevertheless, in case of delocalized charge distribution 

where the HF exchange does not rapidly decay over distance, such truncation methods appear 

completely unphysical and create some severe convergence problems in the self-consistent-field 

process. Hence, in order to accelerate the HF decay without neglecting long range interactions, 

the 1/r part of the exchange interaction can be replaced with a Coulomb screened potential. In 

addition to the intractability of the Fock exchange parameter, one should notice in metallic 

systems the logarithmic divergence
63

 of the partial derivative

Fk kk








of the single particle 

Hartree-Fock  k , with respect to the crystal momentum k at the Fermi level kF, where 

Aschcroft and Mermin (1976, Chap. 17)
128

 defined the single particle HF energy  k  as: 

 
2 2 2

2
2

F

F

k e k
k k F

m k




 
   

 
          (4.1.1) 

where
2 21

ln
2 4

F F

F F F

k k k kk
F

k kk k k

   
  

 
        (4.1.2) 

Such logarithmic divergence can be explained by the divergence of the Fourier transform 
2

2

4 e

k


of the Coulomb interaction

2e

r
 at 0k  .

128
 By screening the 1/r part of the exchange 

interaction, we obtain a potential that has a shorter range than 1/r and we can therefore eliminate 

the unphysical singularity of the anomalous divergence of the derivative of the one-electron HF 

energy. 

 

4.2 Screened Coulomb potential hybrid functionals (HSE03 and HSE06) 

 The starting point of this new class of hybrid screened functionals or the so-called Heyd-

Scusseria-Ernzherof (HSE03)
32

 screened hybrid functionals is the partitioning of the Coulomb 

interaction operator into short-range (SR) and long-range (LR) components
129

, respectively: 

1 ( ) ( )

Short Range Long Range

erfc wr erf wr

r r r
 

           (4.2.1) 

where w is an adjustable parameter that describes the range of short-range interactions.  

Choosing the error function erf(wr) and its complement   1 ( )erfc wr erf wr  to achieve the 

Coulomb partition ensures that the short-range component
( )erfc wr

r
 is singular and rapidly 
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decays as a Gaussian, while the long-range part
( )erf wr

r
 is nonsingular and smoothly decays as r 

tends to infinity. Figure 3 illustrates the behavior of 1/r as r increases, the fast decay of 
( )erfc wr

r
 

and the smooth decay of 
( )erf wr

r
for w=1.  

The construction of HSE screened hybrid functionals is based on the admixture of both HF and 

PBE-GGA exchange in the short range parts. The exact exchange mixing in the short range for 

short-range interactions allows the PBE exchange hole to be delocalized only among the closest 

neighbors of a reference point. The long range component is represented by the PBE-GGA 

functional.
11

 

Before further describing the HSE hybrid functional, we initially start by writing the exchange 

correlation parameter from the free-parameter-Perdew-Burke-Ernzherof (PBE0)
124,125

 hybrid 

functional: 
0 (1 )PBE HF PBE PBE

xc x x cE bE b E E            (4.2.2) 

Where b = 1/4 is the exchange coefficient that is determined by an adiabatic expansion 

calculated by Perdew et al. (2006).
29

 In order to make the previous equation more suitable for 

numerical calculations, the exchange-correlation energy is divided into exchange and correlation 

components, where the exchange part is described as: 
0 (1 )PBE HF PBE

x x xE bE b E            (4.2.3) 

By splitting all terms of the PBE0 exchange energy into short range and long-range components 

and assuming that HF and PBE long range contributions tend to cancel each other, the HSE 

exchange-correlation parameter is expressed by: 
, , ,( ) (1 ) ( ) ( )HSE HF SR PBE SR PBE LR PBE

xc x x x cE bE w b E w E w E         (4.2.4) 

From a quantitative perspective, the HSE exchange-correlation energy can be rewritten as: 

, , ,1 3
( ) ( ) ( )

4 4

HSE HF SR PBE SR PBE LR PBE

xc x x x cE E w E w E w E         (4.2.5) 

Where the screening parameters for the HF and PBE are respectively given 

by
0.15

2

HFw  and 1/30.15 2PBEw   . The screened approximation of the exchange correlation 

energy becomes the original hybrid PBE0 exchange-correlation as the adjustable parameter w 

goes to 0 and is asymptotically equivalent to pure PBE as w approaches infinity. In real space, 

the HSE03 is less computationally demanding than any hybrid functionals and can therefore be 

applied to solids and large molecules. The elimination of the long-range component of the Fock 

exchange drastically reduces the range over which the real space integrals are computed.
11

 In 

addition to being less untractable in real space formalism, in reciprocal space, from a band 

structure perspective, one notices an increased locality of the HSE03 Fock exchange which 

permits a computation of the Fock exchange interaction in a much coarser mesh of points in the 

Brillouin zone (BZ).
11

 The precision of the HSE03 method is illustrated in Figure 4 where the 

theoretical band gaps of various materials are compared with their respective experimental band 

gaps. The band gaps obtained by the PBE formalism (blue circles) are largely underestimated 

due to the approximation of the exchange and correlation energy. The hybrid functional PBE0 

(green squares) yields better results than the PBE but it still tends to overestimate the band gaps 

of some materials because of the exact treatment of the Fock exchange in their formalism. The 
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HSE03 functional computed with the standard amount of Fock exchange (25 %) provides almost 

perfect agreement with the experimental results. Even though HSE03 functional allows some 

improvements in the correct prediction of thermochemical energies, band-gaps and atomization 

energies, its precision is yet to be desired. Paier et al (2006)
11

 argue that HSE03 functional is not 

mature enough to fully replace well-known semi-local functionals because of the severe 

underestimation of the cohesive energy in several systems, the overestimation of the magnetic 

moment of transition metals and incorrect prediction of large gaps materials. Such inaccuracy 

might be traced back to the use of the standard amount Fock exchange (25 %) or imprecise 

computed screening parameter. In order to eliminate the drawbacks of the HSE03 formalism, one 

can think about further tuning the amount of Fock exchange and reexamining the choice of the 

adjustable parameter w for HF and PBE exchange.  

The construction of a new screened hybrid functional (HSE06)
41

 is based on the modification of 

the adjustable parameter w  in both HF and PBE. With such adjustment, the previous defaults of 

the HSE03 are eliminated and certain equilibrium between computational cost and accurate 

physical results is finally reached. The HSE06 equations can be rewritten as: 

2 061 ˆ ˆ ˆ
2

Har HSE

ext ee xc k k kV V V 
 
        
 

        (4.2.6)  

The accuracy of the HSE06 formalism in the computation of band structure of wide-gap 

semiconductor material such as Gallium Nitride (GaN) is illustrated in Figure 5. The electronic 

band structure (red color) described by the GGA formalism, provides an adequate description for 

ground state properties determined by local ground state charge density that is derived from 

filled bands. However, if one is interested to properties related to the band gap or empty bands, 

GGA falls short of providing accurate results. The calculated HSE06 band gap (3.49 eV) is in 

excellent agreement with experimental band gap (3.50 eV).
130

 

Now that we have provided a brief overview of the state-of-the-art methodology for performing 

first-principles calculations in perfect crystal structures, we will introduce in the next section 

various methods that help investigating the electronics of defects and impurities in 

semiconductors. 
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Figure 3: Graphs of Inverse function
1

r
, 

( )erf wr

r
 and 

( )erfc wr

r
from Eq. (4.2.1) for 1w  . 

Here
1

r
is represented by the dashed line, 

( )erfc r

r
 is rapidly decaying (red color) while 

( )erf r

r
 is 

smoothly decreasing (blue color). 

 

 

 

 

Figure 4: Illustrative comparison of band gaps done by Marsman et al.
150

 where the theoretical 

band gaps obtained from PBE, PBE0 and HSE03 calculations are plotted against the 

experimental band gaps. 
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Figure 5: Electronic band structure of primitive unit cell of GaN obtained by the GGA (red 

color) and the HSE06 (black color) method. Energy is measured relative to the top of the valence 

band (0 eV). The Greek letters  -A represent high-symmetry points in the first Brillouin zone of 

hexagonal lattice.  

 

 

 

5. Techniques for estimating supercell defects calculations 

 In the preceding KS chapter, it was discussed that several observables of the many-body 

system can be mapped into corresponding observables in a single-particle problem subjected to 

an effective potential. Nevertheless, the heavy task of computing the wave function of each of 

the vast number of electrons in a system that undergoes periodically repeated boundaries 

conditions still remains. Such problems can be overcome by applying Bloch’s theorem to the 

HSE06 formalism which will give rise to a basis set consisting of plane waves. Plane waves are 

aesthetically appealing for periodic crystals since they possess the advantage of completely 

spanning the Hilbert space and they also provide mathematical simplicity for practical 

calculations. The following section is organized first to describe the derivation of plane wave 

basis by incorporating Bloch’s theorem into the HSE06 method. The remaining sections are 

devoted to explaining relevant concepts that enter in the computation of formation energies of 

defects in semiconductors.  

 

5.1 Plane waves basis sets in HSE06 formalism 

 According to Ashcroft and Mermin (1976, Chap. 8)
128

, Bloch’s theorem states that within 

a perfectly periodic potential, each electronic wave function can be rewritten as a product of a 

wavelike part and a cell-periodic part where: 

, ,
( ) ( )ik r

n k n k
r e u r              (5.1.1) 
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Here
,

( )
n k

u r possesses the periodicity of the potential and verifies the 

relation
, ,

( ) ( )
n k n k

u r u r R  for all R in a Bravais lattice. In Eq. (5.1.1), k  represents the wave 

vector confined within the first Brillouin zone (BZ) and n describes the band index. Since 

,
( )

n k
u r is a periodic function, it can be expanded using a basis set of plane waves whose wave 

vectors are reciprocal lattice vectors of the crystal,  

, ,
( ) iG r

n k n k
G

u C G e           (5.1.2)  

Here, G are the reciprocal lattice vectors defined by 2G R m  for all R , m is any integer and 

,
( )

n k
C G  are the plane wave coefficients. By inserting Eq. (4.1.2) into Eq. (4.1.1), each electronic 

wave function in a cell of volume can be described by: 

( )

, ,
0

1
( ) ( ) i k G r

n k n k
G

r C G e






 

          (5.1.3) 

where the plane waves basis functions are defined by 

1
( ) iG r

G
r e 


           (5.1.4) 

which satisfy the orthonormality conditions: 

 ( ') 3

' , ' , '

1 1i G G r

G G G G G G
e d r   


   
         (5.1.5) 

Now Eq. 4.1.3 can be rewritten as: 

, ,
0

( ) ( ) ( )ik r

Gn k n k
G

r C G e r




           (5.1.6) 

From the previous equation, one remarks that except for 0G  , the reciprocal lattice vectors G  

that describe the plane wave expansion always lie outside the BZ, while the wavelike part 
ik re involves a wave vector k in the first BZ.

121
 Unfortunately, in our HSE06 formalism, the 

electronic density is expressed as a BZ average and thus one must incorporate the wavelike part 

into our previous plane wave basis functions which gives rise to: 

( )

,

1 i k G r

k G
e 


           (5.1.7) 

Now the electronic wave function can be expressed as: 

, , ,
0

( ) ( ) ( )
n k n k k G

G

r C G r




  , anywhere in the BZ.       (5.1.8) 

In principle, provided that each electron occupies a state corresponding to a specific k, one 

requires an infinite number of reciprocal lattice vectors G  to represent the wave functions with 

tremendous accuracy. Nevertheless, in practice, the Fourier coefficients 
,

( )
n k

C G  of the plane 

wave function decrease with increasing k G and the plane wave expansion can hence be 

efficiently shortened at a finite number of terms.
121

 Such truncation seems less complicated in  

case of the kinetic energy in reciprocal space. The expansion of the kinetic energy term from the 

HSE06 approximation in reciprocal formalism gives rise to a diagonal kinetic energy operator 

which is given by: 
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2
2

, ' , ', , '

1 1ˆ
2 2G G G Gk G k G

T k G                          (4.1.9) 

 Since the amount of Fourier coefficients is inversely proportional to k G , the coefficients for 

plane waves with small kinetic energy are typically more important than those with high kinetic 

energy and one may thus introduce a kinetic energy cut-off in order to achieve a finite basis set. 

However, the truncation of the basis set at finite cut-off energy will lead to an error in the 

calculated physical quantities but fortunately this error can be reduced by increasing the value of 

the cut-off energy. In addition to the kinetic energy, the potential energies can also be computed 

in reciprocal space where they are expressed in terms of their Fourier transforms: 

 ( ') 3

, ' , , '

1ˆ ˆ ˆ( ) 'i G G r

G G k G k G
V V e V r d r V G G   


   


                 (4.1.10) 

Now, the expansion of the electronic wave functions in terms of plane waves allows the HSE06 

equations to take on the secular form: 

     
2

06

, , ,
'

1 ˆ ˆ ˆ' ' ' ( ') ( )
2

Har HSE

ext ee xc n k n k n k
G

k G V G G V G G V G G C G C G
 

        
 

   

                      (4.1.11) 

Unfortunately, for a system containing valence and core electrons, the size of the previous 

Hamiltonian matrix will be gigantic and therefore intractable. In fact, at the center of the atom 

and at the valence region, the spatial variation of wave functions is quite fast and one must 

require an infinitely large number of plane waves. To overcome these difficulties, the bare 

nuclear potential
121

 is substituted by a smooth pseudopotential. Basically, by using a 

pseudopotential, the core states will no longer exist and the valence pseudopotential wave 

functions become extremely smooth near the nuclei. Furthermore, the energy cut-off can directly 

be approximated from the atomic pseudopotentials but it usually needs to be adjusted by trials 

for a given system. For the purpose of our research, we will be using Projected- Augmented-

Wave (PAW) method to compute our soft pseudopotentials and more details on their 

characteristics can be found in a review written by C. Roostgard
131

 in 2009.Although technically 

appealing, the application of Bloch’s theorem is not valid in crystals containing impurities since 

calculations using plane waves basis sets can only be performed on systems subjected to periodic 

boundary conditions. By incorporating impurities inside a bulk solid, the perfect periodicity 

becomes broken and one might require creating an artificial cell (supercell) that would be 

periodically reproduced throughout space.   

 

5.2 Relaxation of supercell using HSE 

 Before creating an artificial supercell, one might be interested into calculating the 

theoretical lattice constant of the host crystal which is obtained by relaxing atoms in the 

primitive unit cell. A relaxation is obtained by voluntarily displacing atoms in such way that 

energy, forces, stresses and any other output quantities of the HSE self-consistent loop (Figure 2) 

are minimized. Once we obtain a converged lattice constant, we create an artificial supercell 

geometry in which the defect is surrounded by a region of bulk crystal that is subjected to 

periodic boundary conditions. Such method allows the calculation of the energy per unit cell of a 

crystal enclosing an array of defects instead of the computation of the energy of an entire crystal 

containing a single defect.
132

 The artificial supercell method is quite convenient since it allows 
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the use of Bloch’s theorem which requires translational periodicity of the system. However, it is 

crucial to include enough bulk solid in the supercell such that the defects are sufficiently 

separated and the properties of the isolated defects can thus be computed. More details on the 

characteristics of the periodicity of the surface of the supercell are given by M. C. Payne et al. 

(1992)
132

. In case of a charged system, the supercell approximation introduces the concept of 

uniform, neutralizing jellium background charge that usually circumvents the divergence of the 

Coulomb energy between the periodic charged defect images. Even though the supercell 

approximation provides a good description of the crystal structure and local stable 

rearrangement of bonding between atoms
133

 in a given system, it suffers from major problems 

that will be discussed in Section 5.5. Although imperfect, the supercell method is still quite 

accurate and can be used within the HSE06 formalism to investigate the total energy of a system 

containing defects and impurities. 

 

 

5.3 Defect Formation Energy 

 The probalibity of realizing a particular defect configuration D in a host lattice containing 

 type atoms in the charge state q within the supercell formalism is given by: 

[ ] [ ] [ ] ( ) [ ]q q q

f tot tot v F bf MP PAE D E D E bulk q E E n E D E E 


            

              (5.3.1) 

Where [ ]q

totE D and [ ]totE bulk are the total energies of the bulk+defect and bulk-only supercell, 

respectively. The third term ( )v F Fq E E qE   is the amount of energy it cost to charge the 

neutral impurity assuming that the exchange of electrons occurs at the Fermi level EF. The 

number of atoms of type (bulk atoms or defect atoms) that have been removed from or added 

to the host lattice are represented by the parameter n  and  indicates the corresponding 

chemical potential of the atoms. 

 

5.3.1 Chemical potentials 

 The chemical potentials depend on the source of the impurities and growth conditions 

and can be approximated from the HSE06 calculations. For instance, in case of “pure” GaN bulk, 

the Gallium(Ga)-rich conditions are present when Ga chemical potential equals that of  metal Ga, 

where [ ]Ga Ga metal  . Similarly, extreme N-rich conditions occur when the chemical potential of 

N equals that of gas N2, where
2[ ]N N N  . According to Van de Walle et al. (2004)

3
, these 

extreme environmental growths correspond to placing upper bonds on the chemical potentials of 

Ga and N, respectively. Subsequently, we can also impose lower bounds by calculating the 

equilibrium constraint for the atomic chemical potential of the GaN bulk: 
Bulk

GaN Ga NE                       (5.3.1.1) 

where Bulk

GaNE  is the total energy of a two-atom unit of bulk GaN. By imposing the lower limit 

on Ga , we obtain: 

2

min

[ ]

Bulk

Ga GaN N NE   .                             (5.3.1.2) 
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Analogically, the upper limit on
Ga results in a lower limit on

N  which yields to: 

min

[ ]

Bulk

N GaN Ga metalE   .                  (5.3.1.3) 

The chemical potential of GaN can therefore be expressed as  

2[ ] [ ] [ ]Bulk

GaN Ga metal N N fE H GaN    ,                (5.3.1.4) 

where [ ]fH GaN is the enthalpy of formation or the energy gain in forming the crystal bulk 

GaN. After imposing the lower and upper bounds in the chemical potentials of both Nitrogen and 

Gallium, one can thus say that the Ga-rich environment is achieved by putting [ ]Ga Ga metal  and 

2[ ] [ ]N N N fH GaN    

Similarly, N-rich condition is also obtained by putting
2[ ]N N N  and  

[ ] [ ]Ga Ga metal fH GaN   . Nevertheless, breaking down GaN bulk into two different 

components and computing their accurate corresponding chemical potentials is far from being 

trivial and every single computation that we have provided so far are HSE06 approximations. In 

fact, one must not forget that chemical potentials highly depend on temperature and pressure and 

an exact computation of such ambiguously defined physical quantities is impossible. 

The values of the chemical potential have a tremendous affect on the defect formation energies 

and should therefore be considered as variables in our formalism.  

 

5.3.2 Adjustment of finite-size effects in supercell calculations 

 Describing defects and impurities in a supercell method from a band structure perspective 

seems quite intuitive. Interactions between defects in neighboring supercells usually lead to a 

dispersed impurity band instead of a single localized eigenstate. In case of an infinitely large 

supercell in which the impurity would be close to being totally isolated, the defect—induced 

band would be completely flat. According to Van der Walle et al. (2004)
3
, using special k-points 

to plot the band structure provides a way of averaging over the defect band. This would 

essentially compute the band’s center of mass whose band level is quite similar to the completely 

isolated defect level. Consequently, one might avoid choosing the point as one of the sampling 

points since at such high symmetry point, defect-defect interactions reaches its maximum which 

would thus lead to a very mediocre description of the band structure of a given system. One may 

counter argue that in case that the supercell is large enough (more than 100 atoms), interactions 

between neighboring defects is almost negligible and including the  point for Brillouin-zone 

integration results to fine accuracy and further numerical simplicity for the first-principles 

computations. Furthermore, provided that the electrons from the defect level interact with the 

valence or conduction band electrons, averaging over the defect band might not be the most 

appropriate method to approximate the total energy of the supercell. The valence band-defect 

band interactions might be so strong that the actual level of the defect would be shifted and 

would never correspond to the approximated center of mass that is computed from the special k-

points method.  

The use of the supercell method within the HSE06 self-consistent calculations includes several 

physical errors that need to be corrected. While various approaches for such corrections have 

been suggested in previous literature
62,134,135

, we will be briefly discussing three different sets of 

corrections methods used in our GaN research. 
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5.3.2.1 Band-filling correction energy 

 One of the most ambiguously defined drawbacks of the supercell approximation is the 

possible hybridization of the impurity band with the host conduction (or valence) band. Such 

hybridization usually occurs in case that the impurity band is energetically close to the host band 

which would therefore create an overpopulation of the host band energy levels. In case of 

shallow donor impurities, if we plot its corresponding band structure, we would immediately 

notice an excess of electrons in the conduction band for different k-points. In order to eliminate 

those Moss-Burnstein-type filling effects
136

, we apply a band filling correction [ ]qE D  for 

shallow donors where: 

,0

,

[ ] ( )q

CBMk ik ik
i CBM k

E D w   


                 (5.3.2.1.1)  

here
ik
 are the single-particle eigenstates of the ith donor electron, ,0CBM is the lowest occupied 

eigenstate of the CBM, usually located at the  point,
k

w is the k-point weight derived from the 

k-mesh, and 
ik

 are the corresponding weights of the ith electron located at the kth point which is 

obtained from the tetrahedron k-space integration
137

. Corrections related to shallow donor 

impurities are actually a lot more complex than it appears to be and some physical insight was 

given in Section 1.3. In addition to band-filling correction, one must take into account the 

unphysical presence of the jellium compensating background for charged defects in a host crystal 

within the supercell formalism.  

 

5.3.2.2 Image-charge correction 

 Computations of formation energies of a periodically repeated charged system requires 

careful investigation since neutrality of the system is crucial to avoid divergence of long-range 

Coulomb terms. In fact, the treatment of the 0G  terms from Eq. (5.1.10) leads to a divergence 

of the external, Hartree and exchange-correlation potentials. Since neutrality of the supercell is a 

necessary requirement, all computations should be rearranged in such way that the total number 

of electrons exactly matches the number of positive charges in the unit cell. Such neutrality 

condition is met by the incorporation of a uniform compensating (jellium) background within the 

supercell method. Even though this artificial background takes care of maintaining the charge 

neutrality for the calculation of the 0G  terms, interactions between the jellium background and 

the charged crystal (Madelung-type interactions) still occur and hence needs to be corrected.  

The integration of image-charge corrections in the treatment of charged supercell has been quite 

a debatable issue in the last decade.
134,138,139 

One of the most serious approach into correcting 

these unwanted interactions was proposed by Makov and Payne (1995).
140

 In their review, they 

first analyzed the charge density of a localized point defect in a solid and later derived the 

multipole correction of the total energy of a finite supercell with respect to the total energy of an 

ideally infinite cell of a non periodic charged system as
140

:  

 
 

2
5

3
1

3

2

32
MP SC

SC
SC

q qQ
E O V

VV

 




                 (5.3.2.2.1) 

Here the correction is expanded in powers of the reciprocal linear supercell dimension
1

3
SCV  

where the first order (monopole) and third order (quadrupole) components dominate. The first 

component describes an array of specific point charges and a jellium background in a uniform 
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dielectric media . In this case, is the crystal structure-dependent Madelung constant and SCV is 

the volume of the supercell. The second term is generated from the shape-dependent charge 

distribution within the artificial supercell with the uniform compensating background
141

. Here, Q 

is the second radial moment of the defect charge density which can be derived from the electron 

density difference between the host with defect (h+d) and pure-crystal (h) lattice: 

 2 ( ) ( )h d hQ r r r   .               (5.3.2.2.2) 

 Even though the last component  
5

3
SCO V


of the multipole correction described in   

Eq. (5.3.2.2.1) is much smaller than the monopole and quadrupole terms and therefore negligible 

in most calculations, it was argued by Persson et al. (2005)
62 

that correction of the 5
th

 order are 

required for calculations of very shallow charged defect states. Another issue regarding 

calculations for charged states is the downshifting of the electronic single-particle energies from 

the 0G   terms.  

 

4.2.2.3 Potential alignment correction for neutral and charged supercells 

 The true values of the Valence band maximum (VBM) or Conduction Band maximum 

(CBM) for the pure crystal lattice cannot be directly applied to the supercell with defect because 

of the energy contribution due to the interaction between the additional charge and the jellium 

background in the 0G  terms. Consequently, the spectrum of HSE06 eigenvalues is defined up 

to an unknown constant which depends on the average potential of the cell and the choice of the 

pseudopotentials.
62

 In order to obtain consistency in the potentials, we decide to examine the 

potential in the supercell far from the impurity and align it with the average electrostatic 

potential of the pure host crystal. Such alignment gives rise to a shift or potential alignment PAE  

which is expressed as: 

( ) (0)q

PA R
E q V D V      

Here ( ) (0)q

R
V D V   is the difference of potentials between the host + defect and pure-crystal 

lattice at a specific reference point.  

 

5.4 Defects Transition Levels 

5.4.1 Thermodynamic and Optical Levels 

 The incorporation of neutral and charged impurities in a given semiconductor introduces 

levels in the band gap or near the band edges. The Fermi-level position in which two different 

charge states 1q and 2q  have equal formation energy, describes the thermodynamic transition 

energy level  1 2/The q q . In the thermodynamic transition energy calculations, the atomic 

structure of each charge state must correspond to its relaxed equilibrium configuration. In fact, 

the relaxed atomic configuration for different charge states might not necessary be alike and this 

dissimilarity in atomic structure gives rise to the difference between the thermodynamic 

transition levels and the optical levels.
3
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The optical transition levels  1 2/Opt q q are defined in the same basis of the thermodynamic 

transition levels, apart from the fact that atomic positions of the initial state are kept during the 

vertical (optical) excitation according to Franck-Condon principle. In case of a deep donor , the 

optical absorption energy  1 1/Opt q q ne  
 

due to the excitation 1n   of an electron from the 

defect level into the CBM is calculated as: 

  1 1

1 1

1

1 1/ q qf f

Opt gq q
q q ne E E E               

              (5.4.1.1) 

where 1

1

1qf

q
E    is the formation energy of the deep defect  in the q1+1 state from the q1 

state atomic configuration and 1

1

qf

q
E    is the formation energy of the  defect in the q1 state 

from the q1 relaxed atomic structure. Eg is the amount of energy it costs to add one electron to the 

CBM during the transition which should correspond to the band gap of the system where the 

transition occurs. However, the atomic configuration of the newly obtained charged 

defect 1

1

1q

q

    is not the most stable structure and loses the excess energy through phonons 

scattering and therefore ends up in the relaxed structure of the q1+1 state. The optical transition 

that occurs due to the recombination of the electron from the CBM (or shallow donor states in 

some cases) with the valence band hole of the q1+1 state is the emission energy and its 

corresponding energy  1 1/Opt q ne q  
 

 is given by: 

  1 1

1 1

1

1 1 1 1
/ q qf f

Opt gq q
q ne q E E E 

 
              

              (5.4.1.2) 

where 1

1 1

qf

q
E


   is the formation energy of the  defect in the q1 state from the q1+1 relaxed 

atomic structure and 1

1

1

1

qf

q
E 


   is the formation energy of the defect  in the q1+1 state from 

the q1+1 state atomic configuration. The atomic configuration of the initial state are always kept 

during the vertical transition because optical transition occurs at a very fast rate due to the huge 

difference of mass between nuclei and electrons.    

Now that we have briefly discussed the methodology used to describe defects in semiconductors, 

we propose a solution to a long-standing problem of the GaN yellow luminescence. 

 

 

6. Yellow luminescence of GaN generated by Carbon defect complexes  

  

In the last chapter of the thesis, we demonstrate that the CN-ON complex is responsible for the 

observed carbon related YL in GaN. Using hybrid density functional theory and experimental 

photoluminescence (PL) measurements, we show that the calculated emission, absorption, zero 

phonon line, and thermodynamic transition level for the CN-ON complex are all in excellent 

agreement with the PL data. Furthermore, the formation energy of the carbon bound into the CN-

ON complex is significantly lower than that of any other carbon defect. A systematic study has 

been performed in order to eliminate possible alternative explanations, including isolated defects 

and complexes, thus offering a solution to the YL problem. 
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6.1 Experimental methods 

 One of the first thorough experimental analyses on the mechanism of the YL in GaN was 

performed by T. Ogino and M. Aoki (1980).
47

 The effects of intentional doping of foreign 

impurities possibly related to YL in bulk GaN were investigated, and it was found that Carbon-

doped GaN has a drastic influence on the YL characteristic excitation band. Figure 6 and 7 show 

the PL intensity of “pure” GaN and C-Doped GaN at 4.2 
o
K, respectively. Based on the 

configurate coordinate model and the band model, the source of the yellow band was first 

thought to be a complex impurity consisting of a substitutional carbon replacing a nearest 

neighbor gallium atom and gallium vacancy. The unceasingly development of first-principles 

calculations and a better understanding of properties of impurities in semiconductors in the last 

decades has lead us to believe that the CGa-VGa complex might not truly explain the microscopic 

origin of YL in GaN. Figure 8 shows the spectral dependence (inset) and the temperature 

dependence of the PL intensity for the YL band in GaN. The YL band has an abrupt onset at 2.6 

eV (which can be identified as the zero-phonon energy), a maximum at 2.20 eV and the full-

width at half maximum of 410 meV at 15 K. From the fit of the temperature dependence of the 

YL intensity (Fig. 8) we have determined the activation energy (thermodynamic transition level) 

of EA = 850 meV for the defect responsible for the YL band. The hole-capture coefficient, CpA, 

obtained from this fit (6×10
-7

 cm
3
/s) is close to the values reported in the literature,

46
 and other 

parameters are very similar to the parameters of the YL band in C-doped GaN.
47

 We observed a 

moderate shift to higher energies by only 8±2 meV with increasing excitation power density 

from 10
-6

 to 0.1 W/cm
2
. This shift is commonly explained by the donor-acceptor-pair (DAP) type 

transition, where an electron bound to a shallow donor recombines with a hole bound to a deep 

acceptor. Due to the DAP interpretation, most defects suggested in the literature as sources of 

YL in GaN have been deep acceptors. However, as we show below, this is not necessarily the 

case. The sample used to obtain these results was grown by metalorganic chemical vapor 

deposition, and contained Si, C, and O atoms with concentrations of 3×10
16

, 4×10
16

, and 5×10
16

 

cm
-3

, respectively.
142

 However, the concentration of the defects responsible for the YL band in 

this sample has been estimated to be 3.3×10
15

 cm
-3

.
143

 Therefore the concentration of defects 

responsible for the YL band is much lower than the concentrations of elemental point defects, 

suggesting that defect complexes, which have concentrations lower than that of the elemental 

defects, can explain this discrepancy. 
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Figure 6: Photoluminescence spectrum of pure GaN at 4.7
o
K by Ogino and Aoki (1980)

47
. The 

dominant emission line located at 3.4719 eV is attributed to excitation recombination at neutral 

donor sites.  

 

 

 

Figure 7: Photoluminescence spectrum of C-doped GaN at at 4.7
o
K by Ogino and Aoki 

(1980)
47

. The intensity of the characteristic excitation band is much larger than that of pure 

samples.  
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Figure 8: Temperature dependence of the YL band intensity. Excitation power density is 0.3 

mW/cm
2
. The line is a fit with Eq. (6) from Ref.46 with the following parameters: R = 3.7×10

-4
 

s (determined from the time-resolved PL), EA = 850 meV, CpA = 6×10
-7

 cm
3
/s. The inset shows 

the PL spectrum at 15 K.   
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6.2 Computational details 

 Our theoretical approach is based on the hybrid functional method which in recent years 

has become a preferred approach for the analysis of defects and their properties in 

semiconductors.
144

 It offers a practical compromise between the semi/local approximations to 

DFT
3
 and the computationally demanding many-body methods (GW).

145,146
 Our calculations are 

based on the Heyd-Scuseria-Ernzerhof (HSE) hybrid functional
32

 as implemented in the VASP 

program,
147

 with the projector augmented wave method (PAW).
148,149

 In an exchange tuned 

hybrid functional calculation of defects in semiconductors, the semi/local density exchange-

correlation part of the density functional is mixed with a Fock-type exchange part in a ratio 

adjusted to match the band gap of the host material. Compared to semi/local functionals, this also 

improves the host lattice properties,
150

 which is important to capture the defect relaxation 

properties. We use the HSE hybrid functional with the fraction of exact exchange of 0.31, and 

the screening parameter of 0.2 Å
-1

. These parameters accurately reproduce both the band gap and 

the lattice properties of bulk GaN.
151

 The resulting band gap of 3.49 eV is in good agreement 

with the low-temperature experimental value of 3.50 eV.
152

 We used the value of the band gap 

renormalized by zero-point motion
153

 to incorporate these effects into the gap fitting. Wurtzite 

GaN is illustrated in Figure 9 where the computed relaxed lattice parameters of the bulk 

(a=3.210 Å, c=5.198 Å, and u=0.377) have good agreements with experimental values (a=3.189 

Å, c=5.185 Å).
154

 The 128 atom supercells were used with atomic structures relaxed using HSE 

hybrid functional calculations to yield forces of 0.05 eV/Å or less. Figure 10 describes a 128 

atoms bulk GaN supercell that contains 4 GaN primitive unit cells in the a and b directions and 2 

primitive unit cells in the c direction. The plane-wave basis sets with 400 eV cut-off at the –

point were used in all electronic structure calculations. Spin polarized calculations were 

performed in all cases. Systematic tests were performed in order to identify and evaluate the 

sources of error, and the influence of any of these parameters on the defect thermodynamic and 

optical transition levels.   

 

Figure 9: Crystal Structure of wurtzite GaN. The theoretical relaxed lattice parameters are 

computed to be a=3.210 Å, c=5.198 Å, and u=0.377. 
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Figure 10: Relaxed atomic configuration of bulk GaN containing 128 atoms. 

6.2.1 Formation Energy  

 The defect formation energy Ef determines the probability of a particular defect 

configuration to be realized. It is defined
3

 

E
f
 E

tot

def  E
tot

bulk  n
i


i
 qE

F
 V  E

MP
i

 , as the 

total energy difference of the supercell with the defect and the bulk supercell, minus their 

difference in the chemical potentials i for the number of atoms difference ni in the two cells, 

adding the energy cost of charging the defect qEF, assuming the exchange of electrons with the 

Fermi level EF. The two remaining terms correct for the electrostatic errors of two different 

origins. The potential alignment V arises from dropping the diverging 0G  term in the Fourier 

energy expansion in a charged supercell.
155

 This term is usually small (0.05 to 0.15 eV) and 

proportional to the defect formal charge q. The last term is the spurious electrostatic interaction 

correction for charged defects, following Makov and Payne.
140,156 

Here the Madelung energy was 

used along with the 3
rd

 order corrections analyzed in detail by Lany et al.
1
 Both terms scale as q

2
 

and depend on the supercell geometry. The Madelung energy for 128 atom GaN 1e charged cell 

is ~0.20 eV, while the 3
rd

 order term is ~ -0.073 eV. Following Ref. 157, we also applied 

Madelung corrections to neutral impurities where electrons (holes) occupy the conduction 

(valence) band, i.e. forming a charged ion in delocalized compensating charge density. 

 

For the 128 atom cells used in this work, the use of the –point only rather than a k-point mesh 

was found to cause negligible errors. The total energy errors between the –point and the 222 k-

point either Monkhorst-Pack or –centered mesh did not exceed 0.05 eV. A more significant 

source of error was found to be the plane-wave energy cutoff. In the literature for the typical 

HSE calculations of the defects in supercells, it is often set to 300 eV.
57,151

 However, formation 

energies computed with a 400 eV energy cutoff were found to differ by about 0.1-0.2 eV from 

those of 300 eV. This error is not the same for different charge states of a given defect 

configuration, and therefore does not cancel out in optical transition calculations.  

 

The remaining error related to the size of the cell includes several different error sources, i.e. 

elastic interactions and errors related to the supercell band structure. For example, between the 
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72 and 128 atom cells, the error in formation energy reaches 0.2 eV for isolated defects and up to 

0.55 eV for some of the complexes. We tested hybrid functional calculations for supercells 

containing up to 300 atoms, and found that this error is reduced to about 0.15-0.2 eV for 

complexes and about 0.05 eV for isolated defects when using 128 atom cells. In some cases, this 

error can be estimated as the energy difference between the impurity band center of mass and the 

–point eigenvalue.
157

 We estimated these errors using GGA approximation for supercell sizes 

ranging from 128 to 572 atoms, and found them to be 0.1 to 0.2 eV. These values are very 

similar for different charge states of the same defect, leading to error cancellation in the 

computed transition energies.  

 

Figure 11: (Color online) Defect formation energies as a function of the Fermi energy in Ga-rich 

and Ga-poor growth conditions. Defect thermodynamic transition levels in the GaN band gap 

correspond to the intersections of different slopes (charge states) of each line. 

 

 

 

 



 

 

41 

Figure 9: (Color online) Defect formation energies as a function of the Fermi energy in both Ga-

rich and N-rich environments. The zero of Fermi level corresponds to the top of the valence band 

and only segments of the lowest-energy charge states are being displayed. The charge states or 

slopes of each segment correspond to the thermodynamic transition levels between different 

charge states.   

 

 

 Figure 10: Thermodynamic Transition levels 1 2( , )q q of defects in GaN in the energy bandgap 

between the VBM and CBM, where (q1/q2) describes the position at which charge states of the 

defects have equal energy. 

 

6.2.2 Formation energies of defect complexes  

 The formation energies of different carbon defect configurations are presented in Figure 

11, where in Ga-rich and Ga-poor growth conditions, Ga and N chemical potentials are separated 

by the GaN formation enthalpy, computed to be HGaN = -1.25 eV. The only carbon-related 

defect complex that is found to be energetically favorable is the CN-ON complex. For n-type 

GaN, its formation energy is more than 2.5 eV lower than that of the isolated CN. The binding 

energy of this complex is 0.32 eV in both Ga-rich and Ga-poor conditions. However, in Ga-poor 

conditions the isolated oxygen donor has formation energy 1.4 eV lower than that of the 

complex, implying that in these conditions, complex concentrations will be low compared to 

those of the isolated impurities. In Ga-rich conditions, the complex formation energy is almost 

the same as that of ON and ~2.6 eV lower than that of the CN, thus the complex concentrations 

are expected to be large. The CN-ON complex is a deep donor, with a 0/1+ thermodynamic 

transition level at 0.75 eV above the VBM, and a deeper 1+/2+ level at 0.14 eV above the VBM.  

It has been suggested that Ga vacancy complexes could be responsible for the YL.
47,54,55 

However, the PL band produced by the VGa-ON complex is computed here to be infrared, with a 

maximum at 1.42 eV. The VGa-CGa complex is unlikely to form, due to a high formation energy 

(~9.2 eV in n-type GaN), leading to a negative binding energy. The donor-acceptor complex CN-

CGa is also found here have a of high formation energy, 5.32 eV for n-type GaN, regardless of 

the growth conditions and is unlikely to form.  

In close agreement with previously published results,
57

 we also find that the isolated CN is a deep 

acceptor with a transition energy of 1.09 eV. We also find a deep 1+/0 transition level at 0.43 eV 
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above the valence band maximum (VBM). A substitutional CGa donor was also found to have a 

relatively high formation energy, in both Ga-rich and Ga-poor conditions, with the shallow donor 

level at 0.18 eV below the conduction band minimum (CBM).  

In addition to Carbon-related defects, we also investigated the electronic structure of isolated and 

complex Si impurities. Figure 12 presents the formation energies of Si defect configurations in 

both Ga-rich and N-rich environments using the HSE06 formalism. For each geometrical 

impurity, only the most energetically favorable charge states are being displayed. The Fermi 

energies at which the slopes change correspond to the thermodynamic transition levels that are 

illustrated in Figure 13. Amongst the isolated Si defects, the donor impurity SiGa shows the 

lowest formation energy in both growing environments and exhibits a particularly shallow 

transition level 0/+1 at 3.42 eV above the VBM, confirming previously found experimental 

results. The stable configuration of the substitutional impurity SiGa can be explained by the fact 

that Si atom can easily fit in the Ga site due to their similar atomic radii. Furthermore, Van de 

Walle et al.
3
 also noticed that substitutional SiN and interstitial Si usually cause large strain in the 

host crystal and are therefore energetically unfavorable. In Ga-rich conditions, the deep complex 

CN-SiGa appears to be quite stable. The possession of the 0/+2 transition level extremely near the 

VBM (0.046 eV) indicates that CN-SiGa is a very deep donor in the HSE06 band gap and cannot 

be a potential candidate to explain YL in GaN. Various discussions on Ga vacancy complexes 

have been previously suggested
3,46

 and it was noted that VGa would diffuse pretty fast and would 

agglomerate with neighboring isolated defects to form complexes. A positively charged donor 

isolated impurity is usually more likely to form with the negatively charged donor Ga vacancy. A 

previous investigation on the electronic structure of the complex defect VGa-SiGa shows that such 

configuration exhibits a pretty low binding energy
3
 (0.23 eV) and is therefore less probable to 

form. Hence, in our calculations, instead of analyzing the electronic structure of VGa with its 

single second nearest neighbors SiGa, we decided to attach two instersitial SiGa atoms with a Ga 

vacancy. With such structure, we expect a higher binding energy of the obtained complex and 

therefore a more energetically stable configuration. In fact, in N-rich environment, we notice that 

the complex VGa-2SiGa exhibits the most favorable configuration amongst complexes in both p-

type and n-type samples. As shown in Figure 12, the stable charge states of the VGa-2SiGa 

complex are 0 and -1, and the transition level occurs at 1.96 eV above the VBM, meaning that 

VGa-2SiGa acts as a deep acceptor. The low formation energy of -1 charge state is accompanied 

by a significant outward relaxation of the nearest N ions from the vacant Ga site by 

approximately 15%, in contrast to an inward relaxation of the nearest N ions to the 2 

substitutional Si sites by roughly 10%. In the n-type sample, the formation energy of the 

complex VGa-2SiGa in Ga-poor condition is -3.25 eV, which turns out to be much smaller than the 

formation energy of any other isolated or complex defects in GaN bulk. Such low formation 

energy shows that the complex VGa-2SiGa may be the dominant compensation acceptor in n-type 

GaN. Even though extremely stable in the N-rich environment, the complex VGa-2SiGa does not 

theoretically yield any interesting optical transition.  

The shallow donor ON is found to have a thermodynamic transition level 0.14 eV below the 

CBM. This defect has negative formation energy, implying that all available oxygen atoms will 

readily form the substitutional donors. The negative formation energy originates from the fact 

that all gallium oxides have a much larger magnitude of the formation enthalpy compared to that 

of GaN.
158

 For example, the computed enthalpy of formation for common Ga2O3 is -10.5 eV, 

compared to -1.25 eV for GaN.  
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Figure 14: (Color online) Band structure of the (CN-ON)
0
 defect complex ground state. The three 

localized defect states are plotted in red. The configuration coordinate diagram illustrates the 

absorption and emission energies. The charge densities of the three localized defect states are 

plotted at 15% of its maximum. Brown, red, green, and grey atoms are C, O, Ga, and N, 

respectively.  

 

6.2.3 Optical transitions of complexes versus isolated defects 

 The calculated optical transitions using configuration coordinate diagrams are presented 

in Figure 14. Initially, the ground state of the CN-ON complex in the n-type GaN is neutral. As a 

result of the optical excitation producing an electron-hole pair, the CN-ON complex captures the 

hole which transfers the complex into a (CN-ON)
1+

 charge state. The excitation energy for this 

transition is calculated to be 3.30 eV, which agrees with the experimental values of 3.19 eV
47

 

and 3.32 eV.
159

 Loosing the excess energy through the lattice relaxation, the (CN-ON)
1+

 complex 

relaxes into the minimum energy structure of the excited state. Figure 14 also shows the 

computed electronic band structure in the –M direction, with the localized defect electronic 

levels (shown in red) slightly broadened by the spurious interactions due to the use of periodic 

boundary conditions. The crystal structure used in these band structure calculations is fixed at the 

relaxed (CN-ON)
1+

 charged state, to represent the electronic structure related to the optical 

emission. The highest defect state will be occupied by the captured hole, allowing the subsequent 

radiative recombination of an electron in the CBM and the hole localized on the CN-ON complex 

(the localized charge density of the hole is also shown in Fig. 14 (a)). This emission energy for 

the maximum of the YL band is computed to be 2.25 eV. The subsequent (CN-ON)
0 

lattice 

relaxation energy (Franck-Condon shift) is computed to be 0.48 eV, yielding the zero-phonon 

transition at 2.7 eV. As a result, the complex returns to its ground state (CN-ON)
0
. The difference 

between the absorption and emission peaks (Stokes shift) is found to be 1.05 eV. These results 

are in excellent agreement with the calculated results and our measurements, where the PL 

emission peak is found at 2.20 eV (Figure 8), supporting our proposed YL source as the CN-ON 

complex. They also agree very well with configuration diagrams deduced from early 

experiments in Ref. 47.  
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Recently, Lyons et al.
57

 have suggested that the YL band can be explained by the transitions to 

the CN deep acceptor, obtaining 2.14 eV for the optical transition from the conduction band to 

the CN
0/1-

 level. Using the 300 eV energy cutoff in our hybrid functional calculations, we 

reproduce these results. However, increasing the cutoff to 400 eV results in a deeper 

thermodynamic transition energy of 1.09 eV (0.9 eV in Ref. 57), which does not agree well with 

a measured ionization energy of 0.85 eV for the YL-related acceptor obtained here and in early 

works on the subject.
47

 This shift changes the calculated optical transition energy to a red optical 

transition with a maximum at 1.88 eV. The absorption band maximum also lowers and is found 

to be at 2.76 eV. Therefore, the calculated properties of the isolated CN acceptor do not agree 

well with the experimental data for the carbon-related YL in GaN. On the other hand, the more 

energetically favorable CN-ON complex yields optical transitions in agreement with the measured 

PL spectrum (Figure 8).  

The proposed explanation of the YL band by the CN-ON complex is also consistent with 

previously published experimental data. In particular, a blue shift of a PL band with increasing 

excitation intensity is commonly attributed to the DAP-type optical transitions involving a 

shallow donor and a deep acceptor.
46

 However, the blue shift for a PL band can also be caused 

by transitions from shallow donors to a deep donor. For example, the presence of several types of 

shallow donors with different ionization energies would cause the same effect as the DAP with 

random distribution of pair separations. Moreover, the broadening of a shallow donor level due 

to the interaction of impurities is identical to the presence of several types of shallow donors. 

Hitherto, the attribution of the YL-related defect to a deep acceptor rather than a deep donor 

historically always appeared more reasonable, because the capture of holes by negatively 

charged acceptors is more efficient than the capture by a neutral donor. Nevertheless, our 

estimates for deep-level defects in GaN indicate that the hole-capture efficiency for a neutral 

donor is only an order of magnitude lower than that for a negatively charged acceptor,
160

 which 

is sufficient to cause the observed YL.  

 

6.3 Conclusion  

 In conclusion, we have demonstrated that the deep donor complex (CN-ON)
0
 explains the 

microscopic mechanism of the YL in GaN. This complex has a low formation energy and 

therefore should be present in sufficient concentrations to cause the observed PL. Calculated 

optical transitions via the localized defect states of this complex are in excellent agreement with 

the measured PL data (experimental values are given in brackets): thermodynamic transition 

level of 0.75 eV (0.85 eV), absorption energy 3.30 eV (3.32 eV), emission energy 2.25 eV (2.20 

eV), and zero phonon transition 2.70 eV (2.60 eV). This complex has not been proposed as a 

source of the yellow band in GaN, while all other defects previously suggested being sources of 

this band, exhibit high formation energies and would produce red or infrared PL. Thus, we 

resolve a 30 year-old problem of microscopic origin of yellow luminescence in GaN.  

 

This work used the computational facilities of the VCU Center for High Performance 

Computing. 
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