
Virginia Commonwealth University
VCU Scholars Compass

Theses and Dissertations Graduate School

2013

Geometric Approach to Support Vector Machines
Learning for Large Datasets
Robert Strack
Virginia Commonwealth University

Follow this and additional works at: http://scholarscompass.vcu.edu/etd

Part of the Computer Sciences Commons

© The Author

This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in
Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.

Downloaded from
http://scholarscompass.vcu.edu/etd/3124

http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fetd%2F3124&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fetd%2F3124&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu?utm_source=scholarscompass.vcu.edu%2Fetd%2F3124&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F3124&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/gradschool?utm_source=scholarscompass.vcu.edu%2Fetd%2F3124&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F3124&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarscompass.vcu.edu%2Fetd%2F3124&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd/3124?utm_source=scholarscompass.vcu.edu%2Fetd%2F3124&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu

c© Robert Strack 2013

All Rights Reserved

G A  S VM
L  L D

A Dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy at Virginia Commonwealth University

by

R S
M.Sc. Eng., AGH University of Science and Technology (Poland), 2007

D: VOJISLAV KECMAN
ASSOCIATE PROFESSOR, DEPARTMENT OF COMPUTER SCIENCE

Virginia Commonwealth University
Richmond, Virginia,

May, 2013

Abstract

The dissertation introduces Sphere Support Vector Machines (SphereSVM) and Minimal
Norm Support Vector Machines (MNSVM) as the new fast classification algorithms that
use geometrical properties of the underlying classification problems to efficiently obtain
models describing training data. SphereSVM is based on combining minimal enclosing
ball approach, state of the art nearest point problem solvers and probabilistic techniques.
The blending of the three speeds up the training phase of SVMs significantly and reaches
similar (i.e., practically the same) accuracy as the other classification models over sev-
eral big and large real data sets within the strict validation frame of a double (nested)
cross-validation (CV). MNSVM is further simplification of SphereSVM algorithm. Here,
relatively complex classification task was converted into one of the simplest geometri-
cal problems – minimal norm problem. This resulted in additional speedup compared to
SphereSVM. The results shown are promoting both SphereSVM and MNSVM as outstand-
ing alternatives for handling large and ultra-large datasets in a reasonable time without
switching to various parallelization schemes for SVMs algorithms proposed recently.

The variants of both algorithms, which work without explicit bias term, are also pre-
sented. In addition, other techniques aiming to improve the time efficiency are discussed
(such as over-relaxation and improved support vector selection scheme). Finally, the
accuracy and performance of all these modifications are carefully analyzed and results
based on nested cross-validation procedure are shown.

Contents

1 Introduction 2
1.1 Contributions of the Dissertation . 5

2 Background 6
2.1 Large Margin Classifiers . 6

2.1.1 L1 Support Vector Machines . 9
2.1.2 L2 Support Vector Machines . 12
2.1.3 Kernel SVM . 14

2.2 Fundamental Problems of the Computational Geometry 16
2.2.1 Minimal Norm Problem . 16

2.2.1.1 Generalization to Kernel MNP 18
2.2.2 Nearest Point Problem . 19
2.2.3 Minimal Enclosing Ball Problem . 20

2.2.3.1 Generalization to Kernel MEB 23
2.3 Geometric L2 Support Vector Machines . 24

2.3.1 Nonlinear Geometric SVM . 28
2.3.2 L2 SVM as a Geometric Problem . 29

2.3.2.1 L2 SVM and Minimal Norm Problem 30
2.3.2.2 L2 SVM and Minimal Enclosing Ball Problem 30

2.3.3 Solving L2 SVM based on Minimal Enclosing Ball Approach 31
2.3.3.1 Core Vector Machines . 33
2.3.3.2 Ball Vector Machines . 36

2.4 Geometric L1 Support Vector Machines . 38
2.4.1 Soft Minimal Enclosing Ball Problem 38

3 Sphere Support Vector Machines 40
3.1 Relation to Ball Vector Machines . 40
3.2 Steps of the Algorithm . 41

3.2.1 Initialization . 41
3.2.2 Selection of Violating Vectors . 42
3.2.3 Update Procedure . 43

3.3 Convergence and Computational Complexity 44

CONTENTS ii

4 Minimal Norm Support Vector Machines 48
4.1 Relation to MEB-based algorithms . 48
4.2 Steps of the Algorithm . 49

4.2.1 Initialization . 49
4.2.2 Selection of the Violating Vectors . 50
4.2.3 Update Procedure . 51
4.2.4 Stopping Criterion . 52

4.3 Properties of the Solution and the Feature Space 53

5 Implementation Techniques 56
5.1 Draw Scheme for Geometric SVM Solvers . 56

5.1.1 Impact on the Model Accuracy . 57
5.1.2 Impact on the Computational Complexity 59

5.2 Multi-scale Approximation . 59
5.3 Over-relaxation . 60

5.3.1 Cycles in MDM Algorithm . 61
5.3.2 Successive Over-relaxation . 62

5.4 Alternative Approach to Multi-class Problems 63
5.4.1 All-at-once SVM Training . 63
5.4.2 Nonlinear Multi-class Training . 65
5.4.3 Label Vector Selection . 66

5.5 Bias Evaluation . 66
5.5.1 Bias Evaluation in All-at-once Multi-class Training 68

5.6 Other Minimal Norm Solvers in MNSVM . 68
5.6.1 Improved MDM . 69
5.6.2 Generalized IMDM . 70
5.6.3 MNSVM with different Minimal Norm Problem Solvers 71

5.7 Model Selection based on Pattern Search . 71
5.7.1 Grid Search Method . 72
5.7.2 Pattern Search Method . 72

6 Role of the Bias in the Geometric Approach to SVM 76
6.1 Geometric Approach without Bias Term . 77
6.2 Properties of the Feature Space . 79

7 Experiments and Results 81
7.1 Geometric Support Vector Machines . 81

7.1.1 Datasets and Experimental Environment 81
7.1.1.1 Visualization of Statistical Properties 83

7.1.2 Performance of the Sphere Support Vector Machines 84
7.1.2.1 Medium Datasets . 85
7.1.2.2 Large Datasets . 88
7.1.2.3 Draw Scheme for SphereSVM 91

7.1.3 Performance of the Minimal Norm SVM 95
7.1.4 Comparison of SphereSVM and Minimal Norm SVM 99

CONTENTS iii

7.2 Geometric SVM without Bias . 103
7.2.1 SphereSVM without Bias . 103
7.2.2 Minimal Norm SVM without Bias . 106

7.3 Over-relaxation . 108
7.3.1 Over-relaxation in SphereSVM . 108
7.3.2 Over-relaxation in Minimal Norm SVM 111

7.4 All-at-once Approach for Multi-class Problems 112
7.5 Bias Evaluation Technique . 116
7.6 MNSVM with Improved MDM Solver . 117

7.6.1 Generalized IMDM . 120
7.7 Sparse Grid Model Selection Technique . 121
7.8 GSVM toolkit . 123

8 Conclusions and future work 128

A GSVM - Command Line Tool for Geometric SVM Training 130

List of Tables

2.1 Common kernel types . 15

5.1 Estimation of the percent of violators by Agresti-Coull estimator 58

7.1 Datasets used in experiments . 84

List of Figures

1.1 Reduced Convex Hulls . 4

2.1 Minimal Norm Problem. 17
2.2 Nearest Point Problem. 20
2.3 Minimal Enclosing Ball. 21
2.4 Hierarchy of the SVM training algorithms presented in the dissertation. . . 32
2.5 The Core Vector Machines algorithm . 35
2.6 The Ball Vectorm Machines algorithm . 38

3.1 Single iteration of the SphereSVM algorithm 43
3.2 Step of the SphereSVM algorithm (convergence proof) 46

4.1 Update step of the MNSVM algorithm. 50
4.2 Dependency between ρ and training parameters. 55

5.1 Estimation of the percent of violators by Agresti-Coull estimator 58
5.2 Update cycle in BVM algorithm . 62
5.3 Pattern Search . 75

6.1 Support vectors in feature spaces Φ̃ and Φ̈ 80

7.1 Medium datasets – accuracy obtained during nested cross-validation 86
7.2 Medium datasets – total nested cross-validation time 87
7.3 Medium datasets – training time for optimal parameters 87
7.4 Medium datasets – average percent of support vectors 88
7.5 Large datasets – accuracy obtained during nested cross-validation 89
7.6 Large datasets – total nested cross-validation time 90
7.7 Large datasets – training time for optimal parameters 91
7.8 Large datasets – average percent of support vectors 92
7.9 The training time and the number of support vectors for SphereSVM 92
7.10 Classification accuracy for different draw schemes 94
7.11 Cross-validation time for different draw schemes 94
7.12 Percent of support vectors for different draw schemes 95
7.13 MNSVM – total nested cross validation time 96
7.14 MNSVM – Training time for optimal parameters 97
7.15 MNSVM – accuracy obtained during nested CV 98

LIST OF FIGURES vi

7.16 MNSVM – average percent of support vectors 99
7.17 MNSVM training time for “checkers” data set 100
7.18 Accuracy obtained by SphereSVM and MNSVM 101
7.19 Cross-validation time obtained by SphereSVM and MNSVM 102
7.20 Training time for optimal parameters obtained by SphereSVM and MNSVM 102
7.21 Size of the models obtained by SphereSVM and MNSVM 103
7.22 Accuracy of SphereSVM without bias . 104
7.23 Cross-validation time for SphereSVM without bias 104
7.24 Training time for SphereSVM without bias 105
7.25 Percent of support vectors for SphereSVM without bias 106
7.26 MNSVM without bias – accuracy . 107
7.27 MNSVM without bias – training time . 108
7.28 Accuracy of SphereSVM with over-relaxation 109
7.29 Nested CV time of SphereSVM with over-relaxation 110
7.30 Nested CV time of SphereSVM with over-relaxation for η ≈ 2 110
7.31 Training time for optimal parameters for SphereSVM with OR 111
7.32 Percent of support vectors for SphereSVM with over-relaxation 112
7.33 Over-relaxation with MNSVM algorithm . 113
7.34 Total cross-validation time for all-at-once multi-class training 114
7.35 Accuracy for all-at-once multi-class training 115
7.36 Training time for optimal parameters for all-at-once multi-class training . . 115
7.37 Percent of support vectors for all-at-once multi-class training 116
7.38 Bias evaluation – reuters . 117
7.39 Bias evaluation – satimage . 118
7.40 Training time for IMDM algorithm . 119
7.41 Accuracy for IMDM algorithm . 119
7.42 Percent of support vectors for IMDM algorithm 120
7.43 MNSVM with Generalized IMDM update scheme 121
7.44 Training time for Pattern Search and Grid Search methods 122
7.45 Accuracy for Pattern Search and Grid Search methods 122
7.46 Training time of the Pattern and Grid search methods 123
7.47 Accuracy obtained by different SVM implementations 125
7.48 Cross-validation time obtained by different SVM implementations 125
7.49 Optimal parameters training time obtained by different SVMs 126
7.50 Percent of support vectors obtained by different SVM implementations . . . 127

List of Algorithms

1 Core Vector Machines Algorithm . 34
2 Ball Vector Machines Algorithm . 36
3 SphereSVM Algorithm . 41
4 Minimum Norm Vector Machines Algorithm 49
5 Multi-scale Approximation Method . 60
6 Pattern Search . 74

Chapter 1

Introduction

Support Vector Machines are known as one of the best classification tools available today.

Many experimental results on variety of classification (and regression) tasks complement

the highly appreciated theoretical properties of SVMs. However, there is one property

of SVM’s learning algorithm which required, and it is still requiring, special attention.

This is the fact that the learning phase of SVMs scales poorly with the number of training

datapoints. Hence, with an increase of datasets’ sizes, the learning can be a quite slow

process. The first successful attempts in resolving the issue were the chunking method

described by Boser et al. [1] and the decomposition approaches introduced by Osuna et

al. [2] which led to several efficient software packages the most popular being SVMlight

[3] and LIBSVM [4]. However, the ever increasing size of datasets has driven the SVMs

training time beyond the acceptable limits. The two remedy avenues for overcoming the

issues of large datasets proposed and used in the last decade were various parallelization

attempts (including the newest GPU embedded implementations [5, 6]) and the use of

geometric approaches. The later includes solving SVMs’ learning problem by both convex

hulls and the enclosing ball approach [7, 8]. The most recent and advanced method

known as the Ball Vector Machines [9] has demonstrated high capability for handling

large datasests.

3

The Sphere Support Vector Machine (SphereSVM) and Minimal Norm Support Vector

Machines (MNSVM) proposed here combine the two techniques (namely, convex hull and

enclosing balls approaches). While keeping the level of accuracy they achieve a significant

speedup with respect to all three L1 and L2 LIBSVM and BVMs.

Although the most popular SVM solvers (such as Platt’s SMO [10]) are very efficient in

searching for the solution in the dual space, there is a lot of research conducted towards

finding efficient algorithms that work directly in the feature space. These algorithms are

mostly based on the geometric interpretation of the maximum margin classifiers.

The geometric properties of the hard margin SVM classifiers have been known for a

long time [11]. Recently, Keerthi et al. [12] and Franc [13] proposed algorithms based on

geometric interpretation of the SVM algorithm for solving cases with separable classes.

Their approach treats the problem of finding the maximum margin between two classes

as a problem of finding two closest points belonging to convex polytopes covering the

classes. Crisp et al. analyzed geometric properties of ν-SVM algorithm [14] and based on

this work, Mavroforakis introduced the Reduced Convex Hulls (RCH) [15] (see Figure

1.1). The idea allowed using geometric approach in solving SVM problems for overlapping

classes. Reduced convex hulls enabled a shrink of overlapping convex polytopes covering

each class. This reduction creates the margin between two overlapping classes and allows

to separate them (which was previously unfeasible with Keerthi’s and Franc’s algorithms).

Another field of research involves algorithms based on Minimal Enclosing Ball (MEB)

problem. Tsang et al. [7, 16] formulated SVM problem as MEB problem and proposed Core

Vector Machines (CVM) algorithm as an approach suitable for very large SVM training.

Their algorithm is an application of Badoiu and Clarkson’s work [17] that investigates the

use of coresets in finding approximation of MEB. This work is further generalized in [18]

by allowing the use of any kernel function (and not only the normalized ones as it was

previously required). Furthermore, Tsang et al. in [9] improve the idea of Core Vector

4

Figure 1.1: Decision boundary for a problem with two overlapping classes that was solved
with reduced convex hulls. Dark blue and yellow polygons represent reduced convex
hulls obtained for both classes, the black solid line is the decision boundary and the black
dashed lines represent the decision margin.

Machines by introducing new algorithm not requiring QP solver – Ball Vector Machines

(BVM). Additional speedup was obtained by using “probabilistic speedup” approach

proposed by Smola and Schölkopf [19]. Moreover, Asharaf et al. [20] proposed another

extension of CVM that is capable of handling multi-class problems.

In this dissertation we propose new algorithms that improve the BVM by applying

ideas previously used in SVM learning based on RCH. SVM solver involving finding two

closest points on non-overlapping RCH was introduced by Mavroforakis and Theodor-

idis [15]. It was further improved by López et al. [21] by replacing SK algorithm (Kozinec

[22]), that was used in searching for the closest points, with faster MDM algorithm intro-

duced by Michell et al. in [23]. Our work, similarly to López’s, introduces an algorithm

originated within an MDM solver as the technique for finding minimal enclosing ball.

This novel MEB algorithm (SphereSVM) is successfully applied in solving MEB problem

corresponding to the L2 SVM learning task. This approach is further simplified by uti-

lizing connection between MEB and minimal norm problems and a new more efficient

algorithm is introduced (Minimal Norm SVM).

1.1 Contributions of the Dissertation 5

1.1 Contributions of the Dissertation

The major contributions of the dissertation are:

• introduction of SphereSVM and MNSVM algorithms aiming to solve large classifi-

cation problems

• proof of convergence and estimation of the computational complexity of the SphereSVM

algorithm

• implementation of the over-relaxation technique in solving the Minimal Enclosing

Ball and Minimal Norm problems

• study of the role of the bias in SphereSVM and MNSVM training and introduction

of the novel version of the algorithms without bias

• application of Improved MDM solver into solving L2 SVM classification tasks based

on MNSVM algorithm

• generalization of binary (two-class) SphereSVM and MNSVM algorithms into multi-

class SVM solvers

• proposition of a new model selection approach (sparse grid search) that is capable

of finding model parameters in approximately linear time preserving the accuracy

of the grid search method

• development of an efficient open-source framework called “gsvm” suitable for solv-

ing large nonlinear classification tasks

Chapter 2

Background

2.1 Large Margin Classifiers

The Generalized Portrait algorithm introduced by Vapnik [24] in mid 60’s gave a founda-

tion to modern maximum margin classifiers. A theoretical basis of a principle of structural

risk minimization which is the basis for developing maximal margin classifier is given

in [25]. Based on the work of Aizerman [26], Boser, Guyon and Vapnik [1] generalized

the original linear algorithm and applied it to a nonlinear case. Finally, the soft margin

Support Vector Machines were introduced by Cortes and Vapnik [27]. This modifica-

tion not only allowed to use maximum margin classifiers for non-separable datasets but

also introduced the regularization parameter that can be used to prevent over-fitting the

dataset.

The supervised learning is the process of determining an input-output relationship f (x)

by using a training datasetX = {xi}, containing m inputs xi from d-dimensional input space

xi ∈ Rd, and the labels yi assigned to each of these input vectors. In case of the simplest

classification problem, being called the binary classification, there are two possible output

values yi ∈ {−1, 1}. From now on, we assume that the dataset X is given as a matrix X of

size (m, d) consisting of m input vectors xi arranged in row order and Y is a column vector

2.1 Large Margin Classifiers 7

of length m containing vector labels yi.

The goal of binary SVM classifier is to find a classification function

f (x) = sgn d(x), (2.1)

that assigns value 1 or -1 to a given vector x depending what is the predicted class of that

vector. The function d(x) is a linear decision function defined as

d(x) = x ·w + b. (2.2)

In the case of hard margin classifiers, that do not permit classification error on the training

samples, both w and bias term b must satisfy the following conditions

yi(xi ·w + b) > 1, i = 1, . . . ,m. (2.3)

In addition, weight vector w must be of the minimal norm in order to maximize the margin

between two classes. This way we minimize the chance of misclassification performed

on previously unseen data samples. The width of the margin is equal to 2
‖w‖ . Therefore,

the optimization criterion for linear hard margin SVM problem can be defined as the

following quadratic optimization problem

arg min
w

‖w‖2, (2.4)

subject to

yi(xi ·w + b) > 1, i = 1, . . . ,m. (2.5)

Unfortunately, this idea is not applicable to all classification problems because it does

not tolerate misclassified training samples and therefore cannot be used for overlapping

classes. In order to overcome this problem Cortes and Vapnik introduced soft margin

2.1 Large Margin Classifiers 8

SVM [27]. The slack variables ζi represent the algebraic distance of a training data point

xi from the margin. This way they made it possible to solve the SVM training problem

for overlapping classes which finally allowed to apply SVM to the broader range of

classification problems.

The hard margin constrains (2.3) have been relaxed by allowing some missclassification

in the following way

yi(xi ·w + b) > 1 − ζi, i = 1, . . . ,m, (2.6)

and the optimization criterion (2.4) has been changed in such way that it not only maxi-

mizes the classification margin but also minimizes the sum of distances ζi of overlapped

data points from their margins

E =

m∑
i=1

e (ζi) , (2.7)

where e (ζi) is an error function.

Finally, the soft margin SVM can be defined as follows

arg min
w,ζ

‖w‖2 + C
m∑

i=1

e (ζi) , (2.8)

subject to

yi(xi ·w + b) > 1 − ζi, i = 1, . . . ,m. (2.9)

The parameter C is a predefined constant called penalty parameter. One may try to resolve

bias-variance dilemma by proper adjustment of the value of C. For instance, a large value

of C forces a maximization of the margin and in the case of non-linear classifier may

eventually lead to over-fitting and reduction of generalization capabilities of the model.

However soft margin linear SVM defined in (2.8) is still helpless when dealing with

data having very complex topological structure. This problem will be addressed in further

sections. Namely, nonlinear SVM will be derived by using the so-called “kernel trick”.

2.1 Large Margin Classifiers 9

2.1.1 L1 Support Vector Machines

L1 SVM is a special type of soft margin SVM that has linear error function e (ζi) = ζi. The

optimization problem is defined as

arg min
w,ζ

‖w‖2 + C
m∑

i=1

ζi, (2.10)

subject to

yi(xi ·w + b) > 1 − ζi, i = 1, . . . ,m, (2.11a)

ζi > 0, i = 1, . . . ,m. (2.11b)

Equation (2.10) minimizes the sum of distances ζi i.e., the classification error, and maxi-

mizes the margin between the classes. The penalty parameter C is used to find the trade

off between these two tasks.

The constrained optimization problem (2.20) can be solved using the Lagrange multi-

pliers method. The primal Lagrangian is

Lp(w, b, ζ,α,β) =
1
2
‖w‖2 + C

m∑
i=1

ζi −

m∑
i=1

αi
(
yi(xi ·w + b) − 1 + ζi

)
−

m∑
i=1

βiζi, (2.12)

where

αi > 0, i = 1, . . . ,m, (2.13a)

βi > 0, i = 1, . . . ,m, (2.13b)

are the Lagrange multipliers. The Karush-Kuhn-Tucker condition are as follows

αi
(
yi(xi ·w + b) − ρ + ζi

)
= 0, i = 1, . . . ,m, (2.14a)

βiζi = (C − αi)ζi = 0, i = 1, . . . ,m, (2.14b)

2.1 Large Margin Classifiers 10

By equaling derivatives of Lp(w, b, ζ,α,β) with respect of w, b and ζi to 0 the following

holds
∂Lp

∂w
= w −

m∑
i=1

αiyixi = 0, (2.15)

∂Lp

∂b
=

m∑
i=1

αiyi = 0, (2.16)

∂Lp

∂ζi
= C − αi − βi = 0. (2.17)

Equations (2.15) and (2.17) can be further simplified to

w =

m∑
i=1

αiyixi, (2.18)

αi + βi = C, i = 1, . . . ,m. (2.19)

Finally, the dual form of (2.10) is as follows

arg min
α

1
2

m∑
i=1

αiα jyiy j

(
xi · x j

)
−

m∑
i=1

αi, (2.20)

subject to

0 6 αi 6 C, i = 1, . . . ,m, (2.21a)
m∑

i=1

αiyi = 0. (2.21b)

In the matrix notation, (2.20) is equivalent to

arg min
α

1
2
αᵀ (YYᵀ ◦ XXᵀ)α − 1ᵀα, (2.22)

2.1 Large Margin Classifiers 11

where operator ◦ is Hadamard product (element-wise matrix multiplication).

From the KKT condition (2.14a) one can derive that

b =
1
|U|

∑
i: xi∈U

yi −

∑
j: x j∈S

α jy j

(
xi · x j

) , (2.23)

where S is the set of all support vectors and U ⊂ S is the set of unbounded (i.e. free)

support vectors (xi satisfying 0 < αi < C and ζi = 0). Finally, this leads us to the following

decision function

d(x) =

m∑
i=1

αiyi (xi · x) + b. (2.24)

By replacing the scalar product from (2.20), (2.23) and (2.24) by a kernel function, being

scalar product in a feature space Φ,

k(xi, x j) = ϕ(xi) · ϕ(xi), (2.25)

where ϕ(x) : X → Φ represents the mapping of vector xi into the feature space Φ, we

obtain nonlinear soft margin L1 SVM. Namely, the optimization criterion (2.20) becomes

arg min
α

1
2

m∑
i=1

αiα jyiy jk(xi, x j) −
m∑

i=1

αi, (2.26)

subject to

0 6 αi 6 C, i = 1, . . . ,m. (2.27)

In matrix notation (2.26) can be expressed as

arg min
α

1
2
αᵀHα − 1ᵀα, (2.28)

where H =
[
yiy jk(xi, x j)

]
i j

is the kernel matrix.

2.1 Large Margin Classifiers 12

Finally, the decision function for the L1 SVM problem becomes

d(x) =

m∑
i=1

αiyik(xi, x) + b, (2.29)

where bias b is equal to

b =
1
|U|

∑
i: xi∈U

yi −

∑
j: x j∈S

α jy jk(xi, x j)

 . (2.30)

If the mappingϕ(x), that defines the kernel function k(xi, x j) = ϕ(xi)·ϕ(x j), is nonlinear then

the decision function (2.29) is also nonlinear. If ϕ(x) is linear then the decision function

(2.29) is equivalent to (2.24).

2.1.2 L2 Support Vector Machines

If we use error function e (ζi) = ζ2
i in the definition of soft margin SVM (2.8) we obtain the

optimization problem of L2 SVM

arg min
w,ζ

‖w‖2 + C
m∑

i=1

ζ2
i , (2.31)

subject to

yi(xi ·w + b) > 1 − ζi, i = 1, . . . ,m. (2.32)

Here, the meaning of the penalty parameter C is the same as in previously defined L1 SVM

– it controls the trade off between the size of the margin and sum of square distances of

the training data points from their corresponding margin.

The dual form of (2.31) is as follows

arg min
α

1
2

m∑
i=1

αiα jyiy j

(
xi · x j +

δi j

C

)
−

m∑
i=1

αi, (2.33)

2.1 Large Margin Classifiers 13

subject to

m∑
i=1

αiyi = 0, (2.34a)

αi > 0, i = 1, . . . ,m, (2.34b)

where δi j is a Kronecker delta. Furthermore, the criterion (2.33) can be expressed in the

matrix notation as

arg min
α

1
2
αᵀ

(
YYᵀ ◦ XXᵀ +

1
C

I
)
α − 1ᵀα, (2.35)

where I is the identity matrix and ◦ is Hadamard product (element-wise matrix product).

The decision function for L2 SVM is given in (2.2). By substituting w with

w =

m∑
i=1

αiyixi, (2.36)

we obtain that

d(x) =

m∑
i=1

αiyi (xi · x) + b, (2.37)

where

b =
1
|S|

m∑
i=1

yi −

m∑
j=1

α jy j

((
xi · x j

)
+
δi j

C

) , (2.38)

and S is the set of all support vectors.

It is possible to replace the scalar products from (2.33), (2.38) and (2.37) by a kernel

function representing a scalar product in some feature space Φ

k
(
xi, x j

)
= ϕ(xi) · ϕ(xi), (2.39)

where ϕ(x) : X → Φ is the function mapping vector xi into feature space Φ. This change

2.1 Large Margin Classifiers 14

leads to nonlinear L2 SVM where the optimization criterion (2.33) becomes

arg min
α

1
2

m∑
i=1

αiα jyiy j

(
k
(
xi, x j

)
+
δi j

C

)
−

m∑
i=1

αi, (2.40)

subject to

m∑
i=1

αiyi = 0, (2.41a)

αi > 0, i = 1, . . . ,m. (2.41b)

In matrix notation (2.40) can be written as

arg min
α

1
2
αᵀ

(
H +

1
C

I
)
α − 1ᵀα, (2.42)

where H =
[
yiy jk

(
xi, x j

)]
is the kernel matrix. The decision function for the problem (2.40)

has the same structure as in L1 SVM, namely

d(x) =

m∑
i=1

αiyik(xi, x) + b, (2.43)

where bias b is again equal to

b =
1
|S|

m∑
i=1

yi −

m∑
j=1

α jy j

(
k
(
xi, x j

)
+
δi j

C

) , (2.44)

The detailed description and extensive comparison of L1 and L2 SVM was performed

by Abe in [28].

2.1.3 Kernel SVM

Two types of nonlinear SVM classifiers are presented in Sections 2.1.1 and 2.1.2. The

nonlinearity was introduced by application of the so called “kernel trick”. Namely, all

2.1 Large Margin Classifiers 15

Name Kernel function Properties

k
(
xi, x j

)
=

(
xᵀi x j

)
Linear, dot product CPD1

k
(
xi, x j

)
=

(
xᵀi x j + 1

)d
Complete polynomial of degree d PD2

k
(
xi, x j

)
= e−γ‖xi−x j‖

2 Gaussian RBF PD2

k
(
xi, x j

)
= tanh

((
xᵀi x j

)
+ b

)
Multilayer perceptron CPD1

k
(
xi, x j

)
= 1√

‖xi−x j‖2+β
Inverse multiquadric function PD2

Table 2.1: Most frequently used kernel types.

scalar products were replaced by a function representing dot product in a feature spaceΦ

k
(
xi, x j

)
= ϕ(xi) · ϕ(xi), (2.45)

where ϕ(x) : X → Φ is a function mapping data points from spaceX into the feature space

Φ.

The most popular kernel functions are presented in Table 2.1. Beside these very

frequently used kernels there are more sophisticated ones e.g. kernels designed to work

with graphs or images. More examples of kernel functions with explanation how to create

them can be found in [29].

This dissertation exploits properties of normalized kernels i.e., kernels that fulfill the

following condition

k (x, x) = τ. (2.46)

The common property of such kernels is that they map all data points onto multidimen-

sional sphere with center in the origin and radius
√
τ. An example of such kernel is the

Gaussian kernel. Even if a kernel is not normal, it can be normalized by the following

1conditionally positive definite
2positive definite

2.2 Fundamental Problems of the Computational Geometry 16

operation

k′
(
xi, x j

)
=

k
(
xi, x j

)
√

k (xi, xi) k
(
x j, x j

) . (2.47)

It is obvious that kernel k′
(
xi, x j

)
is normalized since it fulfills condition (2.46)

k′ (x, x) = 1. (2.48)

2.2 Fundamental Problems of the Computational Geome-

try

There are several Computational Geometry problems that are especially important for

the SVM algorithms. The following sections describe details of Minimal Norm Problem

(MNP), Nearest Point Problem (NPP) and Minimal Enclosing Ball (MEB) problem. Their

relations to Support Vector Machines are shown in Section 2.3.

2.2.1 Minimal Norm Problem

The Minimal Norm Problem is a problem of finding a point c closest to the origin that

belongs to the convex hull H(X) spanned by points xi ∈ X. It can be mathematically

described as

arg min
c∈H(X)

‖c‖2, (2.49)

where c is a point belonging to the convex hull H(X) (see Figure 2.1).

Definition The convex hull spanned by the points xi ∈ X is a set of all convex combinations

of points xi ∈ X

H(X) =

 m∑
i=1

αixi

 , (2.50)

such that
∑m

i=1 αi = 1 and αi > 0, for all i = 1, . . . ,m.

2.2 Fundamental Problems of the Computational Geometry 17

Figure 2.1: Minimal Norm Problem.

In other words, the solution of the problem c, which is a point that is closest to the origin

and is enclosed by the convex hull H(X), can be expressed as a linear combination of

points defining the convex hull

c =

m∑
i=1

αixi, (2.51)

where αi are the mixing coefficients that fulfill the following conditions

αi > 0, i = 1, . . . ,m, (2.52)

and
m∑

i=1

αi = 1. (2.53)

This allows us to reformulate the minimization criterion (2.49) as

arg min
α

m∑
i=1

m∑
i= j

αiα j

(
xi · x j

)
, (2.54)

2.2 Fundamental Problems of the Computational Geometry 18

subject to

m∑
i=1

αi = 1, (2.55a)

αi > 0, i = 1, . . . ,m. (2.55b)

Therefore, the solution of the MNP problem c =
∑m

i=1 αixi can be obtained by finding

mixing coefficients αi that minimize (2.54) and satisfy (2.52) and (2.53).

The optimization task (2.54) can be expressed in the matrix notation as

arg min
α

αᵀXXᵀα, (2.56)

subject to

1ᵀα = 1, (2.57a)

αi > 0, i = 1, . . . ,m. (2.57b)

2.2.1.1 Generalization to Kernel MNP

The generalization of MNP problem to the kernel-MNP is straightforward. Simply, the

scalar product xi ·x j from (2.54) should be replaced by a scalar product in the feature space

Φ, defined by mapping ϕ(x) : X → Φ. Then, after defining an appropriate kernel function

k
(
xi, x j

)
= ϕ(xi) · ϕ(x j), (2.54) can be rewritten as

arg min
α

m∑
i=1

m∑
j=1

αiα jk
(
xi, x j

)
, (2.58)

2.2 Fundamental Problems of the Computational Geometry 19

subject to

m∑
i=1

αi = 1, i = 1, . . . ,m, (2.59a)

αi > 0, i = 1, . . . ,m. (2.59b)

In a matrix notation (2.58) is as follows

arg min
α

αᵀKα, (2.60)

subject to

1ᵀα = 1, (2.61a)

αi > 0, i = 1, . . . ,m, (2.61b)

where K =
[
k
(
xi, x j

)]
i, j

is the kernel matrix.

2.2.2 Nearest Point Problem

The nearest Point Problem can be seen as a generalization of the Minimal Norm Problem.

Here, instead of searching for a point of the convex hull closest to the origin, we are

searching for two closest points c′ and c′′ belonging to two non-overlapping convex hulls

H(X′) and H(X′′)

arg min
c′∈H(X′),c′′∈H(X′′)

‖c′ − c′′‖2, (2.62)

as can be visualized in Figure 2.2. Note that for X′′ = {0}, c′′ = 0 and (2.62) simplifies to

(2.49). Moreover, the NPP problem can be transformed to the MNP problem by using the

Minkowski difference, as shown below.

2.2 Fundamental Problems of the Computational Geometry 20

Figure 2.2: Nearest Point Problem.

Definition The Minkowski difference is defined as

A 	 B =
{
ai − b j | a ∈ A ∧ b ∈ B

}
. (2.63)

Finally, (2.62) can be rewritten as

arg min
c∈H(X′)	H(X′′)

‖c‖2, (2.64)

where

c = c′ − c′′. (2.65)

Since the region H(X′) 	H(X′′) is convex, the criterion (2.64) is equivalent to the criterion

of the minimal norm problem (2.49). Note that if H(X′) and H(X′′) are overlapping then

the NPP problem does not have a unique solution.

2.2.3 Minimal Enclosing Ball Problem

The Minimal Enclosing Ball problem is a problem of finding a smallest sphere with a

center c and a radius R that encloses all points xi ∈ X (see Figure 2.3). It can be expressed

2.2 Fundamental Problems of the Computational Geometry 21

Figure 2.3: Minimal Enclosing Ball.

mathematically as the following minimization problem

arg min
R,c

R2, (2.66)

subject to

‖c − xi‖
2 6 R2, i = 1, . . . ,m. (2.67)

The optimization problem defined by (2.66) and (2.67) is a standard quadratic program-

ming problem which can be solved by the Lagrange method. The primal Lagrangian is

defined as

Lp(c,R,α) = R2
−

m∑
i=1

αi

(
R2
− ‖c − xi‖

2
)

(2.68)

= R2
−

m∑
i=1

αi

(
R2
− ‖c‖2 + 2 (xi · c) − ‖xi‖

2
)
, (2.69)

where αi are the Lagrange multipliers satisfying the following non-negativity condition:

αi > 0, i = 1, . . . ,m. (2.70)

2.2 Fundamental Problems of the Computational Geometry 22

The complementary Karush–Kuhn–Tucker conditions are defined as

αi

(
R2
− ‖c − xi‖

2
)

= 0, i = 1, . . . ,m. (2.71)

By equaling the partial derivatives of LP with respect to the primal variables c and R, one

can obtain
∂Lp

∂R
= 2R − 2R

m∑
i=1

αi = 0, (2.72)

and
∂Lp

∂c
= 2

m∑
i=1

αic − 2
m∑

i=1

αixi = 0. (2.73)

We can assume that the enclosing ball has a non-zero radius R > 0, so we can further

simplify (2.72) to
m∑

i=1

αi = 1, (2.74)

and using (2.74) it is possible to write (2.73) as

c =

m∑
i=1

αixi. (2.75)

Moreover, from (2.71) and (2.74) it follows that the radius of the enclosing ball is equal to

R2 =

m∑
i=1

αi‖c − xi‖
2. (2.76)

Substituting (2.74) and (2.75) into (2.69) we obtain the dual Lagrangian Ld

Ld(α) = −

m∑
i=1

m∑
j=1

αiα j

(
xi · x j

)
+

m∑
i=1

αi‖xi‖
2. (2.77)

Consequently, we can write the MEB problem as

arg min
α

m∑
i=1

m∑
j=1

αiα j

(
xi · x j

)
−

m∑
i=1

αi‖xi‖
2, (2.78)

2.2 Fundamental Problems of the Computational Geometry 23

subject to

m∑
i=1

αi = 1, (2.79a)

αi > 0, i = 1, . . . ,m. (2.79b)

That can be expressed in matrix notation as

arg min
α

αᵀXXᵀα − αᵀ diag (XXᵀ) , (2.80)

subject to

1ᵀα = 1, (2.81a)

αi > 0, i = 1, . . . ,m, (2.81b)

where diag (XXᵀ) =
[
‖xi‖

2]
i is a vector of Euclidean norms of samples xi.

2.2.3.1 Generalization to Kernel MEB

In order to generalize the MEB problem into the kernel-MEB problem it is necessary to

replace the scalar product xi · x j by a scalar product in the feature space Φ induced by

mapping ϕ(x) : X → Φ. Let k
(
xi, x j

)
= ϕ(xi) · ϕ(x j) be the kernel representing the scalar

product in the feature space Φ(X). Now, (2.78) can be written as

arg min
α

m∑
i=1

m∑
j=1

αiα jk
(
xi, x j

)
−

m∑
i=1

αik (xi, xi) , (2.82)

2.3 Geometric L2 Support Vector Machines 24

subject to

m∑
i=1

αi = 1, (2.83a)

αi > 0, i = 1, . . . ,m, (2.83b)

and the radius of the enclosing ball can be evaluated as

R2 = −

m∑
i=1

m∑
j=1

αiα jk
(
xi, x j

)
+

m∑
i=1

αik (xi, xi) . (2.84)

In the matrix notation, the criterion (2.82) is given as

arg min
α

αᵀKα − diag(K)ᵀα, (2.85)

where K =
[
k
(
xi, x j

)]
i, j

is the kernel matrix and diag(K) = [k (xi, xi)]i is the diagonal of the

matrix K.

Assuming that the kernel k is normalized and k
(
xi, x j

)
= τ is constant, the (2.82) can be

further simplified to

arg min
α

m∑
i=1

m∑
j=1

αiα jk
(
xi, x j

)
, (2.86)

since the term
∑m

i=1 αik
(
xi, x j

)
= τ is also constant and does not affect the optimization

criterion. This leads to the conclusion that for normalized kernels the MEB problem is

identical to the MNP problem (see the (2.58)).

2.3 Geometric L2 Support Vector Machines

In order to approach the SVM learning problem using geometric methods, Tsang et al. [7]

modified the original optimization criterion for L2 SVM classifier (Section 2.3) and defined

2.3 Geometric L2 Support Vector Machines 25

it as a minimization of the following cost function

arg min
w,b,ζ,ρ

1
2
‖w‖2 +

b2

2
− ρ +

C
2

m∑
i=1

ζ2
i , (2.87)

subject to

yi(xi ·w + b) > ρ − ζi, i = 1, . . . ,m. (2.88)

Compared with the original problem (2.31), the optimized function is extended with the

term b2

2 including bias and an additional variable ρ. For the L2 SVM optimization criterion,

adding term b2

2 is like adding a feature having all values equal to 1 to the feature space

ϕ′(x) =

 ϕ(x)

1

 . (2.89)

Adding ρ to the cost function replaces the constraint
∑m

i=1 αiyi = 0 in the original L2 SVM

problem (2.33) with
∑m

i=1 αi = 1. Then, the term −
∑m

i=1 αi from the optimization criterion

(2.33) can be discarded since it is constant. Very similar modification, which adds a new

variable ν into the optimization criterion, was performed by Schölkopf and Smola in

their ν-SVM algorithm [30] in order to limit the number of support vectors. Here, an

additional variable ρ is used just to facilitate a transformation of L2 SVM into MEB and

MNP problems.

Since (2.87) is a constrained optimization problem it can be solved using the Lagrange

multipliers method. We form the primal Lagrangian as

Lp(w, b, ρ, ζ,α) =
1
2
‖w‖2 +

1
2

b2
− ρ +

C
2

m∑
i=1

ζ2
i −

m∑
i=1

αi
(
yi(xi ·w + b) − ρ + ζi

)
, (2.90)

where

αi > 0, i = 1, . . . ,m, (2.91)

2.3 Geometric L2 Support Vector Machines 26

and the KKT condition are as follows

αi
(
yi(xi ·w + b) − ρ + ζi

)
= 0, i = 1, . . . ,m. (2.92)

Equating derivatives of Lp(w, b, ρ, ζ) with respect of w, b, ρ and ζi to 0 we obtain

∂Lp

∂w
= w −

m∑
i=1

αiyixi = 0, (2.93)

∂Lp

∂b
= b −

m∑
i=1

αiyi = 0, (2.94)

∂Lp

∂ρ
= 1 −

m∑
i=1

αi = 0, (2.95)

and
∂Lp

∂ζi
= Cζi − αi = 0. (2.96)

Equations (2.93), (2.94), (2.95) and (2.96) can be further simplified to

w =

m∑
i=1

αiyixi, (2.97)

b =

m∑
i=1

αiyi, (2.98)

m∑
i=1

αi = 1, (2.99)

and

ζi =
αi

C
. (2.100)

2.3 Geometric L2 Support Vector Machines 27

Moreover, from (2.92) we can conclude that:

m∑
i=1

αi
(
yi(xi ·w + b) − ρ + ζi

)
= 0, (2.101)

which using (2.97), (2.98), (2.99) and (2.100) can be further simplified to

ρ = ‖w‖2 + b2 + C
m∑

i=1

ζ2
i . (2.102)

or alternatively, it can be expressed as a function in a dual-space:

ρ =

m∑
i=1

m∑
j=1

αiα jyiy j

(
xi · x j

)
+

m∑
i=1

m∑
j=1

αiα jyiy j +
1
C

m∑
i=1

α2
i . (2.103)

Using Equations (2.97), (2.98) and (2.99) we rewrite Lagrange criterion (2.90) as

Ld(α) = −
1
2

 m∑
i=1

m∑
j=1

αiα jyiy j

(
xi · x j

)
+

m∑
i=1

m∑
j=1

αiα jyiy j +
1
C

m∑
i=1

α2
i

 . (2.104)

This allows to rewrite the original optimization problem from (2.87) as

arg min
α

m∑
i=1

m∑
j=1

αiα jyiy j

(
xi · x j

)
+

m∑
i=1

m∑
j=1

αiα jyiy j +
1
C

m∑
i=1

α2
i (2.105)

subject to

m∑
i=1

αi = 1, (2.106a)

αi > 0, i = 1, . . . ,m. (2.106b)

Equation (2.105), dubbed here a modified L2 SVM, can be written in a matrix notation as

arg min
α

αᵀ (YYᵀ ◦ XXᵀ)α + αᵀYYᵀα +
1
C
αᵀα. (2.107)

2.3 Geometric L2 Support Vector Machines 28

The decision function of the modified L2 SVM problem, defined in (2.87), is not changed

d(x) = x ·w + b. (2.108)

After substituting w from (2.97) and b from (2.98), it can be rewritten as

d(x) =

m∑
i=1

αiyi (xi · x) +

m∑
i=1

αiyi. (2.109)

The decision functions of the original and the modified L2 SVM differ in expression of the

bias term b (please compare (2.2) and (2.108)). The vector w is the same for both methods.

2.3.1 Nonlinear Geometric SVM

The “kernel trick” [26] allows us to replace the scalar product xi ·x j by the kernel k
(
xi, x j

)
=

ϕ(xi) · ϕ(x j) representing the scalar product in the feature space Φ defined by mapping

ϕ(x) : X → Φ. The modified L2 SVM problem (2.105) takes the form

arg min
α

m∑
i=1

m∑
j=1

αiα jyiy jk
(
xi, x j

)
+

m∑
i=1

m∑
j=1

αiα jyiy j +
1
C

m∑
i=1

α2
i (2.110)

subject to

m∑
i=1

αi = 1, (2.111a)

αi > 0, i = 1, . . . ,m. (2.111b)

Equation (2.110) in the matrix notation is given as

arg min
α

αᵀHα + αᵀYYᵀα +
1
C
αᵀα, (2.112)

2.3 Geometric L2 Support Vector Machines 29

where H =
[
yiy jk

(
xi, x j

)]
i, j

. The decision function (2.109) becomes

d(x) =

m∑
i=1

αiyik (xi, x) +

m∑
i=1

αiyi. (2.113)

2.3.2 L2 SVM as a Geometric Problem

First, we want to introduce a new kernel k̃
(
xi, x j

)
and to show that this particular kernel is

a Mercer kernel. Then by using k̃
(
xi, x j

)
we show the equivalence of the modified L2 SVM

problem (2.110) and two geometric tasks introduced earlier – a minimal enclosing ball

problem and a minimal norm problem. In order to do that let us introduce feature space

Φ̃ and the kernel function k̃
(
xi, x j

)
: X → Φ̃ that defines dot product between samples xi

in this space

k̃
(
xi, x j

)
= yiy jk

(
xi, x j

)
+ yiy j +

δi j

C
, (2.114)

where k
(
xi, x j

)
is the original kernel used in SVM problem and δi j is Kronecker delta. This

kernel function seamlessly encodes data labels and the original kernel k
(
xi, x j

)
in such

way that no information about samples xi is lost.

If k
(
xi, x j

)
satisfies Mercer’s condition

m∑
i=1

m∑
j=1

αiα jk
(
xi, x j

)
> 0, (2.115)

than since
m∑

i=1

m∑
j=1

αiα jyiy jk
(
xi, x j

)
> 0, (2.116)

m∑
i=1

m∑
j=1

αiα jyiy j > 0, (2.117)

and
m∑

i=1

m∑
j=1

αiα j
δi j

C
=

m∑
i=1

α2
i

C
> 0, (2.118)

2.3 Geometric L2 Support Vector Machines 30

it is true that k̃
(
xi, x j

)
also satisfies Mercer’s condition

m∑
i=1

m∑
j=1

αiα jk̃
(
xi, x j

)
> 0. (2.119)

2.3.2.1 L2 SVM and Minimal Norm Problem

Equation (2.114) allows to rewrite the problem (2.110) as

arg min
α

m∑
i=1

m∑
j=1

αiα jk̃
(
xi, x j

)
, (2.120)

subject to

m∑
i=1

αi = 1, (2.121a)

αi > 0, i = 1, . . . ,m. (2.121b)

It is clear that the problem stated by the optimization criterion (2.120) is identical to the

MNP problem (2.58). In other words, solutions of (2.120) which is basically a minimal

norm problem in the feature Φ̃ and the extended L2 SVM problem are the same and in

order to find the decision function (2.113) of the modified L2 SVM (2.110) one can resolve

the optimization problem (2.120).

2.3.2.2 L2 SVM and Minimal Enclosing Ball Problem

Minimization problem (2.105) can be also treated as a MEB problem if k̃ (xi, xi) is constant

for i = 1, . . . ,m. If this condition is fulfilled, then from (2.99) it follows that
∑m

i=1 αik̃ (xi, xi)

is constant as well. In such case, it is possible to subtract
∑m

i=1 αik̃ (xi, xi) from the criterion

(2.105) without affecting the solution. The resulting minimization task is the same as in

2.3 Geometric L2 Support Vector Machines 31

(2.82) which is the optimization problem for the minimal enclosing ball, namely

arg min
α

m∑
i=1

m∑
j=1

αiα jk̃
(
xi, x j

)
−

m∑
i=1

αik̃ (xi, xi) , (2.122)

subject to

m∑
i=1

αi = 1, (2.123a)

αi > 0, i = 1, . . . ,m. (2.123b)

It is easy to prove that, when k (xi, xi) = τ is constant for all i = 1, . . . ,m, then k̃ (xi, xi) is

also constant

k̃ (xi, xi) = τ + 1 +
1
C
. (2.124)

This means that for all normalized kernels, such as Gaussian kernel, it is possible to

treat the L2 SVM problem from (2.87) as a minimal enclosing ball problem. Finally, the

solution obtained by solving MEB problem in the feature space Φ̃ and the solution of the

modified L2 SVM problem are equal. This means that the decision function (2.113) of the

modified L2 SVM (2.110) can be found by finding the minimal enclosing ball (via solving

minimization task (2.122)).

2.3.3 Solving L2 SVM based on Minimal Enclosing Ball Approach

This section shortly introduces two popular algorithms proposed by Tsang et al. and

designed to solve L2 SVM as a MEB problem. These algorithms are called Core Vector

Machines and Ball Vector Machines.

Figure 2.4 shows the hierarchy of the SVM algorithms presented in the following

sections. Geometric algorithms designed by Tsang (CVM and BVM) are marked in red

while methods introduced in this dissertation (SphereSVM and MNSVM) are marked in

2.3 Geometric L2 Support Vector Machines 32

Figure 2.4: Hierarchy of the SVM training algorithms presented in the dissertation.

green.

We use the following notation to represent vectors xi in the extended feature space Φ̃

defined by the kernel k̃
(
xi, x j

)
x̃i = ϕ̃(xi), (2.125)

where ϕ̃ is an unknown mapping function that satisfies

k̃
(
xi, x j

)
= ϕ̃(xi) · ϕ̃(x j). (2.126)

This way we can represent kernel evaluations k̃
(
xi, x j

)
as dot products x̃i ·x̃ j without loosing

generality. Moreover, this notation conceals the complexity of the extended feature space

Φ̃ and eventually allows us to introduce CVM and BVM as strictly geometric methods.

2.3 Geometric L2 Support Vector Machines 33

2.3.3.1 Core Vector Machines

Tsang et al. [7] introduced an approach to SVM training called Core Vector Machines.

There are two key concepts behind this algorithm. First, authors transformed the original

L2-SVM problem into Minimal Enclosing Ball Problem described in section 2.2.3. Second,

they applied the coreset approach [17, 31, 32, 33] in order to speedup enclosing ball

calculation.

The Coreset approach The common feature of the coreset algorithms is avoidance of

processing entire dataset X and focus on a smaller subset of this dataset S ⊂ X called the

coreset.

Definition The coreset S(X) is a subset of the original dataset X having the following

property – the solution of some problem obtained using a coreset S ⊂ X is identical to the

solution1 that would be obtained using the entire dataset X.

To illustrate the definition above, the set of support vectors is a coreset of the original

dataset X, since the solution obtained by using this set would be identical to the solution

found for any other superset of X.

The main advantage of the coreset approach is its time performance. Since |S(X)| < |X|,

the algorithm being executed for the data belonging to the coreset will yield the result faster

than the algorithm using entire training dataset. Usually, in the real world applications the

coreset is just a small portion of the original dataset |S(X)| � |X| so the speed improvement

may be significant, especially when the computational complexity of the algorithm is

large. The coreset approach was showed to be applicable for SVM training on large

datasets [7, 16].

Algorithm outline The Algorithm 1 contains pseudo code of the CVM algorithm. Note

that the CVM algorithm solves the modified L2 SVM problem presented in section 2.3.

1or approximates the true solution accurately enough

2.3 Geometric L2 Support Vector Machines 34

Algorithm 1 Core Vector Machines Algorithm
Require: ε ∈ [0, 1) {the parameter of the stopping criterion}
Ensure: c =

∑m
i=1 αix̃i {the approximation of the MEB center}

1: S← {x̃0}

2: c← x̃0

3: R← 0
4: while ∃i : ‖c − x̃i‖ > (1 + ε)R do
5: v← arg maxi ‖c − x̃i‖

6: S← S ∪ {x̃v}

7: c,R←MEB(S)
8: end while

As it was shown earlier, the optimization problem stated in (2.87) can be transformed

into corresponding MEB problem. Therefore CVM algorithm finds the L2 SVM model for

(2.87) as a solution to the equivalent minimal enclosing ball problem.

The procedure starts from a small coreset S that is extended in each iteration by

adding samples violating some predefined conditions. After each coreset modification

new enclosing ball is calculated. A third-party QP solver can be used to solve the MEB

problem – in the original CVM implementation the SMO algorithm from LIBSVM package

[4] was used.

The steps of the Core Vectorm Machine algorithm are visualized on Figure 2.5.

Initialization The coreset may be initialized with a random sample S = {x̃0} as in Badoiu

and Clarkson work [34]. However, the original algorithm uses more complex initialization

procedure introduced by Kumar [31] – first, a random vector xr is selected, then two vectors

are chosen

x̃a = arg max
x̃i

‖x̃r − x̃i‖, (2.127)

and

x̃b = arg max
x̃i

‖x̃a − x̃i‖. (2.128)

Finally, the initial coreset is initialized to S = {x̃a, x̃b} and the radius R is set to R = ‖x̃a−x̃b‖

2 .

2.3 Geometric L2 Support Vector Machines 35

Figure 2.5: A single step of the Core Vector Machines algorithm – red points represent
samples x̃i belonging to the coreset S, solid line represents solution (minimal enclosing
ball having center c and radius R) obtained for the current core set, dashed line shows the
solution that will be obtained after adding violating vector to the core set (new enclosing
ball with center c′ and radius R′).

Finding a Violator At the beginning of each iteration a vector x̃v being the worst violator

of the stopping criterion is found. Briefly speaking, it is selected by finding a vector that

lays farthermost from the current center c

xv = arg max
x̃i∈X̃

‖c − x̃i‖. (2.129)

The algorithm continues until there are no vectors being farther than (1 + ε)R from

the center of the minimal enclosing ball surrounding core vectors. ε is a parameter of the

algorithm. The smaller ε is, the more accurate the solution is (but the time required for

finding MEB increases as well). After the algorithm stops, all data points are within the

ball with center c and radius (1 + ε)R – this ball is called ε-approximation of the minimal

enclosing ball.

Update step In each iteration, after the violator x̃v is found, the entire weight vector α

is recalculated and the new center c′ of the minimal enclosing ball, surrounding vectors

x̃i ∈ S, is found. An external QP solver is used in order to find the enclosing sphere.

2.3 Geometric L2 Support Vector Machines 36

Properties of the Coreset An important property of this algorithm is that the enclosing

ball is spanned only by the elements from the coreset and all the vectors belonging to the

coreset become the support vectors. Moreover, the following condition holds – if αi > 0

then x̃i ∈ S. It is possible that S contains a vector x̃i corresponding to αi = 0. Such vector

could have been inserted into the coreset at some point of the procedure execution but it

does not participate in forming of the minimal enclosing ball. This is actually one of the

drawbacks of the CVM algorithm because the coreset is not optimal. Namely, it is possible

that there exists a smaller set S′ ⊂ S that corresponds to the same solution.

Convergence It was shown in [7] that CVM algorithm converges after at most 2
ε iterations

and that its computational complexity to O
(

m
ε2 + 1

ε4

)
. If the probabilistic speedup technique

[34] is used then the time complexity is equal to O
(

1
ε8

)
and it is not dependent upon the

size of the dataset m.

2.3.3.2 Ball Vector Machines

Tsang et al. [9] improved Core Vector Machines by replacing the complex QP solver,

used in minimal enclosing ball calculation, by much simpler iterative algorithm. In each

iteration, instead of launching QP solver, only one update to the ball center is performed.

Algorithm 2 Ball Vector Machines Algorithm
Require: ε ∈ [0, 1) {the parameter of the stopping criterion}
Ensure: c =

∑m
i=1 αix̃i {the approximation of the MEB center}

1: α← 0, α0 ← 1

2: R̂←
√
τ + 1 + 1

C

3: while ∃i : ‖c − x̃i‖ > (1 + ε)R̂ do
4: v← arg maxi ‖c − x̃i‖

5: β← 1 − R
‖c−xv‖

6: α← (1 − β)α
7: αv ← αv + β
8: end while

2.3 Geometric L2 Support Vector Machines 37

Algorithm outline A simplified pseudo code of the algorithm is presented in Algorithm

2 (this listing does not contain probabilistic speedup [34] and multi-scale enclosing ball

approximation techniques [9]).

Initialization First, the vector α representing the center of the ball from (2.75) is initial-

ized such that all αi coefficients are equal to 0 except for a randomly chosen one, whose

value is set to 1 (see the initialization procedure for the CVM algorithm). For simplicity,

in Algorithm 2, vector x̃0 was chosen to initialize the coreset and its weight α0 was set to 1.

The radius R̂ of the enclosing ball is estimated as

R̂ =

√
τ + 1 +

1
C
, (2.130)

where τ = k (xi, xi) is the square norm in the original feature spaceΦ. The estimated radius

R̂ is in fact an upper bound of the true radius. Fortunately, this estimation is very accurate

when either the number of data is large or the feature space is highly dimensional.

Finding a Violator In each iteration, a point x̃v, called violating vector and being located

outside of the enclosing ball, is selected. The algorithm continues until requirements of

the stopping criterion are met (i.e. it is not possible to find a vector located outside of the

ball).

Update step The center c is shifted towards the violator x̃v in such a way that the violating

point is laying on the surface of the new ball and the following equation holds

‖c′ − x̃v‖ = R. (2.131)

The update of the center of the ball is performed along the line connecting the center c

and the violator x̃v

c′ = (1 − β)c + βx̃v, (2.132)

2.4 Geometric L1 Support Vector Machines 38

Figure 2.6: A single step of the Ball Vector Machines algorithm – red points represent
samples x̃i belonging to the core set S, solid line represents current solution (the minimal
enclosing ball), dashed line shows the solution that will be obtained after shifting the
current solution towards the violator.

where β is equal to

β = 1 −
R

‖c − x̃v‖
. (2.133)

The visualization of the algorithm’s steps is shown in Figure 2.6.

Convergence It was proved in [9] that the BVM algorithm terminates in at most 1
ε2

iterations and its computational complexity is O
(

1
ε4

)
. Similarly as in the case of CVM

algorithm, probabilistic speedup technique made the complexity independent of the size

of the dataset m.

2.4 Geometric L1 Support Vector Machines

2.4.1 Soft Minimal Enclosing Ball Problem

Let us define the soft-MEB problem as a minimization of

arg min
R,c,d

R2 +
1

mν

m∑
i=1

d2
i , (2.134)

2.4 Geometric L1 Support Vector Machines 39

subject to

‖c − xi‖
2 6 R2 + d2

i , (2.135)

for all i = 1, . . . ,m. Namely, we try to minimize the radius of the enclosing ball simultane-

ously allowing some violators.

It can be proved that the solution of the above problem is equivalent to the solution of

the following modified ν-SVM problem

arg min
w,b,ζ,ρ

1
2
‖w‖2 +

b2

2
−
ρ

mν
+

C
2

m∑
i=1

ζi, (2.136)

subject to

yi(xi ·w + b) > ρ − ζi, (2.137)

for all i = 1, . . . ,m. Unfortunately, no efficient algorithm capable of solving the soft-MEB

problem is known at this point.

Chapter 3

Sphere Support Vector Machines

3.1 Relation to Ball Vector Machines

The SphereSVM algorithm, proposed in this work, is a novel reforumlation of the BVM

approach. Therefore, some parts of both algorithms are similar. For instance, the ini-

tialization procedure, the way the violating vectors are found and the stopping criterion

are the same. However, there are important differences, the main one being the way

how the updates of the center are performed. Unlike in BVM, the focus of SphereSVM is

directed towards elimination of support vectors being inside of the enclosing ball rather

than finding outlying data samples. This approach leads to fulfillment of the KKT condi-

tions and therefore is a correct approach in obtaining correct solution. It applies the ideas

introduced in the MDM algorithm, by Michel et al. [23], as a solution to Nearest Point

Problem (NPP). Here, we adopted the MDM approach into solving the MEB problem.

The simplified pseudo code of the SphereSVM algorithm is presented in the Algorithm

3. There are two main differences between the pseudo code we present and the actual

implementation that was used in our experiments. First, we used kernel cache in order

not to repeat unnecessary kernel computations. Second, our implementation contains

additional step tuning the values of α vector (in each iteration another update to the

3.2 Steps of the Algorithm 41

Algorithm 3 SphereSVM Algorithm
Require: ε ∈ [0, 1) {the parameter of the stopping criterion}
Ensure: c =

∑m
i=1 αix̃i {the approximation of the MEB center}

1: α← 0, α0 ← 1

2: R̂←
√
τ + 1 + 1

C

3: while ∃i : ‖c − x̃i‖ > (1 + ε)R̂ do
4: v← arg maxi ‖c − x̃i‖

5: u← arg mini:αi>0 ‖c − x̃i‖

6: ρ = (x̃v−x̃u)·(x̃v−c)
‖x̃v−x̃u‖2

7: β̂← ρ −
√
ρ2 −

‖x̃v−c‖2−R̂2

‖x̃v−x̃u‖2

8: β← min
{
β̂, αu

}
9: αv ← αv + β

10: αu ← αu − β
11: end while

vector α is performed with such difference that the violator x̃v is searched among support

vectors only).

3.2 Steps of the Algorithm

3.2.1 Initialization

During the initialization part of the algorithm (lines 1 to 2) a random support vector is

chosen (here, the support vector with index 0) and its weight is initialized to 1. Then, the

radius of the enclosing ball is estimated as

R̂ =

√
τ + 1 +

1
C
, (3.1)

where τ = k (xi, xi) is the square norm of the vectors xi in the feature space Φ inducted by

kernel k
(
xi, x j

)
. The algorithm requires that the kernel k

(
xi, x j

)
is normalized and maps all

data points xi onto a sphere (having radius
√
τ).

It was shown in [9] that R̂ > R and that when the size of the dataset and the dimen-

3.2 Steps of the Algorithm 42

sionality of the feature space are large then the difference between R and R̂ is negligible.

3.2.2 Selection of Violating Vectors

In the case of the BVM algorithm all weights αi corresponding to vectors x̃i belonging to

the coreset are modified in each updating step. SphereSVM algorithm, proposed here,

updates only two weights αv and αu. The first weight αv corresponds to the vector that is

farthermost from the ball center while the other weight αu belongs to the support vector

closest to the center. According to the following KKT conditions of the MEB problem

αi

(
‖c − x̃i‖

2
− R2

)
= 0, (3.2)

if the condition αi , 0 holds then x̃i lies on the boundary of the minimal enclosing ball.

In other words, the vectors inside the ball are not support vectors and do not affect the

solution. This observation leads to the conclusion that there are two types of violators

– the vectors laying outside of the enclosing ball and the vectors with nonzero weights

inside the ball. The SphereSVM algorithm aims at eliminating support vectors from inside

the ball.

Similarly as in MDM algorithm, in each iteration two violating vectors are selected.

First, a vector x̃v, whose distance from the center of the ball c is greater than (1 + ε)R̂, is

chosen. If no outlier satisfying condition ‖c − x̃i‖ > (1 + ε)R̂ is found, then the algorithm

stops. Finally, after violator x̃v is selected, searching for another violator begins. The

algorithm finds a support vector x̃u that violates the KKT conditions (3.2) the most. In

other words, the algorithm is searching for a vector x̃u that satisfies αu > 0 and lies closest

to the center of the ball.

3.2 Steps of the Algorithm 43

Figure 3.1: One step of the SphereSVM algorithm. The center c is being shifted parallel to
the vector x̃v − x̃u to the new position c′. After that, vector x̃v becomes the support vector.
Previously estimated radius R̂ of the enclosing ball does not change.

3.2.3 Update Procedure

After the two violating vectors are selected, an update to the center of the ball is performed.

Briefly speaking, the center of the ball is shifted parallel to the line connecting the two

violating vectors

c′ = c + β(x̃v − x̃u), (3.3)

as shown in Figure 3.1.

The coefficient β is selected in such a way that the new sphere centered at c′ is touching

the violator x̃v (x̃v must be laying on the boundary of the new enclosing ball). Specifically,

the following condition is to be satisfied

‖c′ − x̃v‖ = R̂. (3.4)

Substituting (3.3) into (3.4) we obtain that

‖c + β(x̃v − x̃u) − x̃v‖
2 = R̂2, (3.5)

3.3 Convergence and Computational Complexity 44

which can be reduced to the following

β̂ = ρ −

√
ρ2 −

‖x̃v − c‖2 − R̂2

‖x̃v − x̃u‖
2 , (3.6)

where ρ is

ρ =
(x̃v − x̃u) · (x̃v − c)
‖x̃v − x̃u‖

2 . (3.7)

In the dual space, (3.3) is equivalent to the increase of αv by β and the decrease of αu

also by β (lines 9 and 10 of Algorithm 3). It is important to keep all the conditions arising

from the Lagrange multiplier method satisfied. In particular, the non-negativity condition

of the αi weights must be fulfilled. Therefore, β 6 1 − αv and β 6 αu must hold. The first

of these requirements is always fulfilled. However, one must assure non-negativity of all

αi. For this reason β coefficient must be limited from above by the weight αu

β = min
{
β̂, αu

}
. (3.8)

Having the value β, it is possible to update the center of the ball and resume the algorithm

by checking the stopping criterion and by searching for other violators.

3.3 Convergence and Computational Complexity

The goal of SphereSVM is to obtain a ε-approximation of the MEB that satisfies ‖c − x̃i‖ 6

(1 + ε)R̂ for all vectors x̃i.

From the KKT conditions (3.2), we know that for α, being the solution of the problem

stated in (2.66) and (2.67), the following inequality holds

m∑
i=1

αi‖c − x̃i‖
2 = R2 6 R̂2. (3.9)

3.3 Convergence and Computational Complexity 45

Moreover, this property holds for all possible vectors α having αi > 0 and
∑m

i=1 αi = 1

m∑
i=1

αi‖c − x̃i‖
2 = R̂2

− ‖c‖2 6 R̂2. (3.10)

The initialization procedure of the algorithm ensures that
∑m

i=1 αi‖c − x̃i‖
2 = 0. In each

iteration, the center update expressed in (3.3) changes the value of
∑m

i=1 αi‖c − x̃i‖
2 by

m∑
i=1

α′i‖c
′
− x̃i‖

2
−

m∑
i=1

αi‖c − x̃i‖
2 = −2β(x̃v − x̃u) · c − β2

‖x̃v − x̃u‖
2. (3.11)

Now, in order to prove the convergence of the algorithm, it is sufficient to show that this

change increases the sum
∑m

i=1 αi‖c − x̃i‖
2 by a value greater than some positive constant.

Let us assume that the ratio of the number of updates where β̂ > αu (clipped updates)

to the number of updates having β = min
{
β̂, αu

}
= β̂ (full updates) is limited by a constant.

In other words, we postulate that the number of clipped updates (updates limited by

the value of weight αu) is not significantly larger than the number of full updates. This

hypothesis is more than feasible. The results presented in figures 7.4 and 7.8 reveal that

the numbers of support vectors for BVM algorithm, which is not capable of removing

support vectors from the coreset, and SphereSVM method, which can discard support

vectors from the coreset (by performing clipped update), are similar. This allows us to

conclude that the vectors once selected to become support vectors are very unlikely to be

eliminated from the final coreset. Therefore, the number of clipped updates is expected

to be much smaller than the number of full updates (the experiments revealed that the

number of clipped updates is usually much less than 1% of all updates). For this reason,

we can analyze only the updates for which β = β̂ and assume that all other updates do

not increase the value of
∑m

i=1 αi‖c − x̃i‖
2 at all.

Figure 3.2 visualizes the update step performed by the SphereSVM algorithm. It

contains the projection of the feature space Φ̃ onto the plane determined by the violators

x̃v, x̃u and the current center of the ball c. The current solution was drawn as the black circle

3.3 Convergence and Computational Complexity 46

Figure 3.2: Visualization of the update step (projection on the plane determined by points
x̃v, x̃u and the ball center c) – black circle is the current solution, which is a ball with center
c and radius R; blue (dashed) circle represents the locations of points x̃i in the feature
space Φ̃ (since k̃ (xi, xi) = τ̃ is constant, all points are mapped on the sphere).

of radius R̂ and center c. The blue dashed circle represents the locations of datapoints x̃i.

Since we are using normalized kernel and k̃ (xi, xi) =
√
τ + 1 + 1

C is constant, all data points

are mapped on a sphere with radius R̂ =
√
τ + 1 + 1

C and center located in the origin 0.

It is true that x̃u · c > ‖c‖2. Otherwise, either c would not be laying inside the convex

hull formed by the support vectors or there would be another support vector closer to

the center c. Moreover, ‖c‖ > εR̂, because otherwise all datapoints would be enclosed

within ε-approximation of the enclosing ball, which would form the acceptable solution.

Therefore, we can conclude that

‖c − x̃u‖ 6

√
R̂2 − ‖c‖2 6

√

1 − ε2R̂. (3.12)

From (3.4), (3.12) and the fact that ‖c′′ − x̃v‖ = ‖c − x̃u‖, it follows

‖c′ − c′′‖ > (1 −
√

1 − ε2)R̂. (3.13)

3.3 Convergence and Computational Complexity 47

Also,

‖β(x̃v − x̃u)‖ = ‖c − c′‖ > εR̂, (3.14)

because if not, then ‖c′ − x̃v‖ > R and the new enclosing ball with center c′ and radius R

would not include the datapoint x̃v and (3.4) would not be satisfied.

From Figure 3.2 follows that

2 (c − c′) · c = (c − c′′) · (c − c′) , (3.15)

which leads to

2 (c − c′) · c = (‖c − c′‖ + ‖c′ − c′′‖) ‖c − c′‖. (3.16)

Now, the consequence of (3.13), (3.14) and (3.16) is the following lower bound of (3.11)

−2β(x̃v − x̃u) · c − ‖β (x̃v − x̃u) ‖2 > ε
(
1 −
√

1 − ε2
)

R̂2. (3.17)

Hence, in each iteration the value of
∑m

i=1 αi‖c − x̃i‖
2 is increased by at least ηR̂2, where

η = ε
(
1 −
√

1 − ε2
)
. Now, it is clear that the maximal number of iterations after which∑m

i=1 αi‖c− x̃i‖
2 = R2 holds true is equal to 1

η . Moreover, 1
η constitutes the maximal number

of support vectors (there cannot be more support vectors than the number of iterations,

since in each iteration at most one support vector is added). In each iteration the algorithm

must evaluate m
η kernels in order to find the violator x̃v and at most 1

η kernels in order to

find the violator x̃u. Therefore, the complexity of this algorithm is equal to O
(

m
η2

)
. Note

however, that in real applications both the bound for number of iterations and number of

support vectors will rarely be reached and the training usually finishes in much shorter

time.

Chapter 4

Minimal Norm Support Vector Machines

4.1 Relation to MEB-based algorithms

It was proved in the Section 2.3 that the modified L2 SVM criterion (2.87) can be trans-

formed into MNP problem (2.122). That makes it is possible to solve the SVM problem

by applying one of the existing MNP solvers. In this section, we propose a novel Min-

imal Norm Support Vector Machines (MNSVM) algorithm that uses well known MDM

approach [23, 35] in finding an SVM model.

Here, instead of searching for an ε-approximation of the minimum enclosing ball, as

it was done in BVM and SphereSVM algorithms, we search for the point that is closest to

the origin and that belongs to the convex hull spanned by the data points x̃i in the feature

space Φ̃. Because of the fact that BVM, SphereSVM and MNSVM all originate from the

same optimization problem (2.87), they yield the same solution. In other words, the center

of the minimum enclosing ball found by both MEB-based methods and the point on the

convex hull being closest to the origin obtained by MNSVM algorithm are equal.

4.2 Steps of the Algorithm 49

4.2 Steps of the Algorithm

The Algorithm 4 contains the pseudo code of the MNSVM method. It is divided into

Algorithm 4 Minimum Norm Vector Machines Algorithm
Require: ε ∈ (0, 1) {used in stopping criterion}
Ensure: c =

∑m
i=1 αix̃i {the ε-approximation of the point closest to the origin}

1: α← 0, α0 ← 1
2: while ∃i : x̃i · c < (1 − ε)‖c‖2 do
3: v← arg mini x̃i · c
4: u← arg maxi:αi>0 x̃i · c
5: β̂← c·(xv−xu)

‖xv−xu‖2

6: β← min
{
β̂, αu

}
7: αv ← αv + β
8: αu ← αu − β
9: end while

several stages. First the vector α is initialized. Then selection of the violating vectors

followed by an update to the current solution is performed within a loop. The loop ends

when condition of the stopping criterion are satisfied. As a result of the algorithm we

obtain the shortest vector c =
∑m

i=1 αix̃i belonging to the convex hull spanned by the data

points x̃i.

As we mentioned earlier, there is a large similarity between MNSVM and SphereSVM

algorithms. This alikeness is mostly manifested by the way the update to the vector c,

constituting the solution of the minimal norm problem, is performed.

4.2.1 Initialization

The initialization of the MNSVM algorithm is almost the same as in BVM and SphereSVM

methods. The random vector x̃i is chosen (for example, the one with index 0 as it is shown

in line 1 of the Algorithm 4) and its weight is set to 1.

In contrast to MEB-based methods, our approach does not require an initial estimation

of the enclosing ball radius. This is very important improvement that eliminates the

4.2 Steps of the Algorithm 50

Figure 4.1: Update step of the MNSVM algorithm.

possibility of inaccurate radius estimation, which is very likely to occur when the number

of data samples m is small or the dimensionality of the feature space Φ̃ is low.

4.2.2 Selection of the Violating Vectors

Both SphereSVM and MNSVM algorithms update current solution by shifting it parallel

to the vector x̃v − x̃u formed by two violating vectors x̃v and x̃u. In the case of SphereSVM

the violators correspond to the vector being outside of the enclosing ball (violator x̃v)

and support vector x̃u being inside of the ball (and therefore not supporting it). Note

that in MNSVM algorithm the violators x̃v and x̃u are the vectors laying respectively “in

front” and “behind” the current solution c i.e. xv · c < ‖c‖2 < xu · c (see Figure 4.1). It is

worth mentioning that for the minimal norm problem all support vectors constituting the

solution of this problem must fulfill x̃i · c = ‖c‖2. In other words the support vectors must

be lying neither “in front” nor “behind” the solution c.

Although the interpretation of the violating vectors is not the same for both algorithms,

it shows out that in these two approaches the vectors x̃v and x̃u are literally the same vectors.

4.2 Steps of the Algorithm 51

One of the assumptions of the SphereSVM method is that kernel is normalized and all

vectors are mapped onto sphere. Therefore, we can write that

‖c − x̃i‖
2 = ‖c‖2 − 2x̃i · c + ‖x̃i‖

2. (4.1)

It means that relative distance of the vector x̃i from the center c is dependent only on the

scalar product x̃i · c since ‖c‖2 and ‖x̃i‖
2 = k̃ (xi, xi) are constant for all vectors. Hence, the

criteria

x̃v = arg min
i:x̃i∈Xr

x̃i · c, (4.2)

and

x̃v = arg max
i:x̃i∈Xr

‖c − x̃i‖, (4.3)

used in selecting violator x̃v in MNSVM and SphereSVM algorithms, are equivalent.

Analogously, the criteria

x̃u = arg max
i:αi>0

x̃i · c, (4.4)

and

x̃u = arg min
i:αi>0

‖c − x̃i‖, (4.5)

used in selecting violator x̃u, are also equivalent.

4.2.3 Update Procedure

The crucial difference between the MNSVM and the SphereSVM is the way of the current

solution update. In each iteration MNSVM algorithm is trying to minimize the norm ‖c‖

of the current solution. Knowing that the shift of the vector c is performed along the

vector x̃v − x̃u

c′ = c + β(x̃v − x̃u), (4.6)

4.2 Steps of the Algorithm 52

it is possible to find the optimal value of β by finding minimum of

‖c′‖2 = ‖c + β(x̃v − x̃u)‖2. (4.7)

Finally, the value of β that minimizes the above norm is equal to

β̂ =
(x̃v − x̃u) · c
‖x̃v − x̃u‖

2 . (4.8)

Similarly, as in the case of SphereSVM algorithm, in order to satisfy the nonnegativity

conditions for weights αi, the value of β must be limited from above by αu

β = min
{
β̂, αu

}
. (4.9)

4.2.4 Stopping Criterion

In MNSVM, instead of using stopping criterion based on the radius of the enclosing ball, it

is possible to apply one of the criteria suggested by López [36]. Our algorithm stops when

further progress is not profitable and the current solution c approximates the true solution

well enough – namely, when it is not possible to find a vector x̃i satisfying condition

V(x̃i) > ε, where V(x̃) is defined as

V(x̃) =
‖c‖2 − x̃ · c
‖c‖2

, (4.10)

and the ε variable is the parameter of the stopping criterion. The function V(x̃) indicates

to what extent a given vector x̃i violates the current solution c. If the solution is optimal,

then V(x̃i) 6 0 for all x̃i. Although the algorithm finds just an approximate solution, one

can control the accuracy of this approximation using parameter ε (the smaller the value

of ε, the more accurate the solution). Unfortunately, decreasing the value of ε increases

the time required to find the solution.

4.3 Properties of the Solution and the Feature Space 53

It is also possible to use the same stopping criterion as in BVM algorithm – this would

be a valid approach if the two algorithms are to be compared.

Moreover, the fact that the algorithm does not require the estimation of the radius of

the enclosing ball R̂ (that is used in the stopping criterion of the SphereSVM method) is

very important improvement as compared to algorithms based on minimal enclosing ball

approach.

4.3 Properties of the Solution and the Feature Space

The points mapped into feature space Φ̃ are mapped on the sphere with radius

R = ‖x̃i‖ =

√
τ + 1 +

1
C
, (4.11)

where τ = k (xi, xi). Moreover it is possible to prove that the points occupy only half of

this sphere. Namely, since

m∑
i=1

m∑
j=1

αiα jk̃ (xi, xi) = ‖w‖2 + b2 +
1
C

m∑
i=1

α2
i >

1
mC

, (4.12)

the lower bound of ‖c‖2 is equal to 1
mC which is greater than 0. If the datapoints in the

feature space Φ̃ were spread across an area that is larger than one hemisphere, then

obviously, the vector c = 0 would be the solution of the minimal norm problem and that

would be contradictory to the fact that ‖c‖2 > 0.

Let γ be the angle between vectors c (representing the current solution) and c′ (being

the “updated” solution). Using definition of the scalar product we can write that

cosγ =
c · c′

‖c‖‖c′‖
. (4.13)

4.3 Properties of the Solution and the Feature Space 54

It is true that the maximal value of γ is less than

γ 6 arccos
1

mC

τ + 1 + 1
C

< arccos
1

mC (τ + 1)
. (4.14)

The inequality (4.14) indicates that the parameter C may affect the stability of the solution.

The higher the value C is, the higher the upper bound for the angle γ is. It means that

for large values of this parameter one can expect large rotations of the vector c during

consecutive iterations. This conclusion is consistent with our observations regarding

MNSVM algorithm. Increasing the “span” of the dataset (upper bound for the angle γ)

usually resulted in increase of the computation time. Moreover, we observed instability

in accuracy when large values of C were used during training.

We performed some additional tests in order to investigate how ρ = ‖c‖2 depends

upon the training parameters C and γ. Two versions of the checkers dataset were used

– one having 100 samples and one having 1000 samples. The dependency between the

value of minimal norm ‖c‖ obtained by MNSVM algorithm and the training parameters is

presented in Figure 4.2. The value of ρ increases when the penalty parameter C decreases

or the “width” of the Gaussian functions decreases (for large values of γ). Moreover, it is

interesting how the dataset affects the value of ρ – we observed that 10-fold increase of the

training set size resulted in 10-fold decrease of ‖c‖2. This observation is consistent with

the conclusions derived from (4.12) – namely, that the minimal value of ‖c‖2 is inversely

proportional to the number of samples m. This observation is consistent with results

obtained by Tsang. He discovered that the accuracy of BVM algorithm, yielding the same

solution as MNSVM algorithm, increases when the size of the data increases. That can be

explained by the fact that the precision of the stopping condition of the BVM algorithm is

dependent upon the accuracy of the enclosing ball radius estimation which is dependent

upon the value of ‖c‖

R̂2 = R2 + ‖c‖2, (4.15)

4.3 Properties of the Solution and the Feature Space 55

Figure 4.2: Dependency between the minimal norm ‖c‖ obtained by MNSVM algorithm
and the training parameters C and γ. Plot on the left side depicts results obtained for
checkers dataset having 100 samples. The right hand side picture shows results obtained
for ten times larger training set.

where R̂ is the estimated radius and R2 is the real radius. The smaller the value ‖c‖ is

the more accurate the radius estimation and the stopping criterion are. As we shown in

Figure 4.2, this value decreases when the number of samples increases (which leads to

accuracy improvement in BVM and SphereSVM algorithms).

Chapter 5

Implementation Techniques

5.1 Draw Scheme for Geometric SVM Solvers

All of the geometric algorithms presented in this dissertation are iterative. They converge

to the final solution by repeating steps consisting of finding a vectors violating the stopping

condition and performing an update to the current solution using these violators. A simple

“brute force” algorithm for obtaining violators can be implemented as an iteration over

all data samples combined with calculation of a mismatch function describing whether a

given vector violates the stopping condition. This way, the worst violator can be found.

Finally, based on this vector, the algorithm can update the current solution in order to

minimize the mismatch of the violating sample.

Since such a naive search for the worst violators may be very expensive, other methods

should be used. In the original BVM algorithm the probabilistic speedup heuristic [19]

is applied. Instead of finding violating vector among entire dataset, a violator from a

random subset of the dataset is picked. The size of the random subset is equal to Nr = 59

so the search for a vector that violates KKT condition the most is performed among 59

randomly chosen vectors. This strategy ensures that with probability 95% at least one

of these randomly selected vectors will be among 5% vectors that are the worst violators

5.1 Draw Scheme for Geometric SVM Solvers 57

[7, 37, 19]. In case of LibCVM toolkit, this procedure is repeated up to Na = 10 times. If

after examining Nd = NaNr = 590 vectors no violator is found then the algorithm stops.

Although this method was proved to be quite effective, there seems to be a better

approach for choosing the values of the parameters Nr and Na. During our experiments,

it turned out that the algorithm limiting the size of the random set to Nr = 1 (but us-

ing larger number of repetitions Na) often outperforms other configurations in terms of

speed and accuracy. In other words, selecting the first encountered vector that violates ε-

approximation of the final solution results in significantly faster convergence. Moreover,

the total number of random draws Nd = 590 can be decreased without affecting the accu-

racy in considerable way. Decreasing the number of random draws Nd can dramatically

shorten the time required to find the model (see figures 7.10 and 7.11). This is especially

important when the number of model training runs is large (e.g. when using grid search

for model selection). That is why we suggest to reduce the size of the random subset to 1.

5.1.1 Impact on the Model Accuracy

In order to understand the impact of the parameter Nd = NaNr on the accuracy of the

solution estimation, we use Agresti-Coull confidence interval estimator [38] to find the

upper bound for the percentage of the vectors violating KKT conditions. This boundary

p is expressed by

p = p̃ + zα/2

√
p̃(1 − p̃)

ñ
, (5.1)

where ñ = Nd + z2
α/2, p̃ =

z2
α/2

2
(
Nd+z2

α/2

) and zα/2 is 1 − α
2 percentile of a normal distribution.

Estimations are shown in Figure 5.1. Moreover, some numeric values for parameters used

in our experiments are presented in Table 5.1.

Let us, for example, apply this estimation to SphereSVM-100 algorithm, presented

in Section 7.1.1. The property of this method is that it has maximal number of draws

Nd = 100. According to Table 5.1 one can with confidence of 90% say that there will be

5.1 Draw Scheme for Geometric SVM Solvers 58

Nd

Upper bound of the percentage of
outliers with a confidence level of:

90% 95% 99%

100 3.1% 4.4% 7.5%
590 0.55% 0.78% 1.3%

Table 5.1: The upper bound of the percent of datapoints violating KKT conditions after
obtaining ε-approximation of the solution.

less than 3.1% datapoints left outside of the enclosing hyper-sphere with radius (1 + ε)R̂

and center c.

These statistics can give us insight into what portion of the data is neglected by the

algorithms during the training process. Even if all this ignored samples should become

support vectors this would not affect the training error significantly. The reason is that the

percent of support vector constitutes the upper bound of the training error (called also the

empirical risk). Assuming that the testing error (called the expected risk) is proportional

to the training error, one may suppose that the neglected data will not affect the final

Figure 5.1: The upper bound of the percent of datapoints violating KKT conditions after
obtaining ε-approximation of the solution – plots show confidence levels (from top to
bottom): 99%, 95% and 90%). Dependency upon the number of draws (for different
confidence levels) was calculated with Agresti-Coull estimator.

5.2 Multi-scale Approximation 59

classification accuracy in significant way.

5.1.2 Impact on the Computational Complexity

In Section 3.3 we proved that the computational complexity of the SphereSVM algorithm

is equal to O
(

m
η2

)
where η = ε

(
1 −
√

1 − ε2
)

and m is the size of the dataset. Now, let

us assume that the probabilistic speedup technique is used and Nd = NrNa < m. This

modification changes the deterministic character of the algorithm into a probabilistic one.

Now, the procedure stops when it is unable to find a violator within Nd attempts. In other

words the algorithm stops when probability of finding a violator that lies farther than

(1 + ε)R̂ from the center is estimated to be less than 1
Nd

.

In SphereSVM, the number of support vectors is limited by 1
η . Therefore, the prob-

abilistic SphereSVM requires not more than Nd
η kernel computations in each iteration in

order to find violator x̃v, being a vector located outside of the enclosing ball, and at most

1
η kernel computations in order to find violator x̃u, being a support vector located inside

the enclosing ball. Knowing that the method is guaranteed to find ε-approximation of the

enclosing ball withing 1
η iterations we may conclude that the complexity of the probabilis-

tic SphereSVM is O
(

Nd
η2

)
. That is equivalent to O

(
1
η2

)
since Nd is a constant independent of

the number of the data points. This proves that the probabilistic speedup method makes

the complexity of the algorithm independent upon the size of the data.

Similar deduction may be performed for MNSVM algorithm. Here the complexity

also becomes independent upon the number of data samples.

5.2 Multi-scale Approximation

All our geometric SVM algorithms use the multi-scale approximation method proposed

in [9]. Simply, the final ε-approximation of the solution is obtained in series of regu-

lation steps. First the new variable ε̂ = 1
2 is introduced and a rough ε̂-approximation

5.3 Over-relaxation 60

of the solution is obtained. Then iteratively, ε̂ is halved ε̂ ← ε̂/2 and a more accurate

ε̂-approximations are calculated. This procedure is repeated until ε̂ < ε. In other words,

whenever the algorithm is not able to make progress we gradually decrease ε̂ towards

ε until an accurate enough solution is obtained. The pseudo-code of this method is

presented in Algorithm 5

Algorithm 5 Multi-scale Approximation Method
Require: ε ∈ [0, 1) {used in stopping criterion}

1: ε̂← 1
2

2: repeat
3: find ε̂-approximation of the SVM model
4: ε̂← ε̂

2
5: until ε̂ < ε

The justification for the multi-scale approach is an increase in the accuracy of the

obtained models together with small improvement in time performance.

5.3 Over-relaxation

Successive over-relaxation (SOR) technique was originally designed by Young [39] in

order to improve Gauss-Seidel method for solving a linear system of equations. The basic

idea of this method is to increase the update performed during each iteration of some

iterative algorithm

xn+1 = f (xn) . (5.2)

After applying SOR, the iterative scheme (5.2) becomes

xn+1 =
(
1 − η

)
xn + η f (xn) , (5.3)

where η > 1 is an over-relaxation factor regulating the update step (when η = 1 the

Equations (5.2) and (5.3) are identical). It is evident that with successive over-relaxation

5.3 Over-relaxation 61

the update applied to xn

‖xn+1 − xn‖ = ‖
(
1 − η

)
xn + η f (xn) − xn‖ = η‖ f (xn) − xn‖, (5.4)

is η times larger compared to the original shift length that is equal to ‖xn+1 − xn‖ =

‖ f (xn) − xn‖.

This approach turned out to be a very useful in other iterative algorithms. Here we

promote the use of this method in acceleration of the proposed iterative geometric SVM

solvers, namely SphereSVM and MNSVM.

5.3.1 Cycles in MDM Algorithm

Being vulnerable to the cycles in the update directions [36] is well known drawback of

MDM algorithm. An example of such cycles is presented in Figure 5.2. Green lines

forming zigzag c, c′, c′′, etc. represent the update steps of the BVM algorithm. The

convergence to the optimal solution c∗ is slow due to the update cycle – the algorithm

alternates violating vectors and performs steps almost parallel to the optimal update

direction (please note that after applying successive over-relaxation, marked with the red

line, the algorithm converges faster). Such cyclings significantly decrease the efficiency

of the method. Therefore, Barbero and López [35, 40] performed series of experiments

aiming at detecting and removing the cycles from MDM method.

The loop detection algorithm used by Barbero and López [40] does not seem to be an

appropriate approach in case of probabilistic algorithms such as SphereSVM or MNSVM.

Their approach keeps track of previous update vectors xv − xu and it is signaling a cycle

whenever the same update vector is chosen. Since in proposed geometric algorithms the

violators are chosen randomly then the probability of picking the same update vector is

very small and the cycle detection is very unlikely. Moreover, this probability decreases

even further when the size of the dataset is large.

5.3 Over-relaxation 62

Figure 5.2: Update cycle in BVM algorithm. Green lines forming zigzag c, c′, c′′ etc.
represent the original update scheme. Red lines represent the update step with successive
over-relaxation algorithm.

5.3.2 Successive Over-relaxation

Since it is very difficult to detect an update cycle in SphereSVM and MNSVM methods due

to the probabilistic nature of these algorithms, we decided to apply a different approach.

Instead of detecting and removing loops form the algorithms we will try to prevent them.

This prevention can be performed by use of successive over-relaxation approach.

The cycle is formed whenever an update along a vector xv − xu is too small. In such

case the same violating vector will be chosen again after several iterations. Increase of the

update step is very likely to prevent such situations. This increase can be performed by

introduction of a new parameter η into (3.3) describing the the update step that is simply

a translation of the solution c along vector xv − xu

c′ = c + ηβ(x̃v − x̃u). (5.5)

5.4 Alternative Approach to Multi-class Problems 63

The parameter η ∈ [1, 2) determines how much will the update be enlarged. In the

original SphereSVM and MNSVM algorithms the solution c was shifted by ‖β (x̃v − x̃u) ‖.

After introduction of the over-relaxation coefficient η, the length of the displacement

increased η times and is equal to η‖β (x̃v − x̃u) ‖.

In order to apply over-relaxation expressed by (5.5) to the SphereSVM algorithm shown

in Algorithm 3 it is required to change the line 8 into

β← min
{
ηβ̂, αu

}
. (5.6)

The same modification can be made to MNSVM algorithm listed in Algorithm 4, here the

line 6 must be replaced by (5.6).

5.4 Alternative Approach to Multi-class Problems

LIBSVM and LibCVM toolkits use one-vs-one (aka pairwise) approach to deal with multi-

class classification problems. For both tools single training procedure requires to obtain
n(n−1)

2 models (where c is the number of classes). This way, each possible pair of classes

is represented by an SVM model trained in recognizing these classes. The classification

process is based on a simple voting mechanism – for a given sample, the class that was

recognized by the largest number of classifiers is considered to be the true class of that

sample. This method has been proven to have good classification accuracy and time

performance [41].

5.4.1 All-at-once SVM Training

Several other multi-class training methods have been proposed. Especially interesting

are the ones proposed by Weston and Watkins [42] or Crammer and Singer [43]. In those

methods, the multi-class classification problem is not divided into several smaller binary

5.4 Alternative Approach to Multi-class Problems 64

problems. Instead, one universal SVM model, that is capable to distinguish all the classes,

is trained.

Recently, Ashraf et al. [20] proposed a multi-class SVM solver that is based on CVM

algorithm and that performs only one training to obtain model describing all classes.

The basic idea of the algorithm is to allow multi-dimensional vector labels. In a binary

classification problems the labels are one-dimensional (they have values +1 or −1). In the

case of Ashraf’s method the labels were c-dimensional (where c is the number of classes).

He proposed a way of choosing the labels and found simple equation describing the scalar

product between the labels.

The modified L2 SVM learning problem (2.87) with multidimensional labels becomes

arg min
W,b,ζ,ρ

1
2

trace (WᵀW) +
1
2
‖b‖2 − ρ +

C
2

m∑
i=1

ζ2
i , (5.7)

subject to

yᵀi (Wxi + b) > ρ − ζi, i = 1, . . . ,m. (5.8)

Please note that the bias vector b has the same dimensionality as the label vectors yi.

Moreover, the solution W is a matrix with the number of rows equal to the dimension of

the label vector and the number of columns equal to the dimensionality of the vector xi.

The corresponding dual form is

arg min
α

m∑
i=1

m∑
j=1

αiα j

(
yi · y j

) (
xi · x j

)
+

m∑
i=1

m∑
j=1

αiα j

(
yi · y j

)
+

1
C

m∑
i=1

α2
i , (5.9)

subject to

m∑
i=1

αi = 0 (5.10a)

αi > 0, i = 1, . . . ,m, (5.10b)

5.4 Alternative Approach to Multi-class Problems 65

and the Karush-Kuhn-Tucker conditions are as follows

αi

(
yᵀi (Wxi + b) − ρ + ζi

)
= 0, i = 1, . . . ,m. (5.11)

From the KKT conditions we obtain that

W =

m∑
i=1

αiyix
ᵀ
i , (5.12)

and

b =

m∑
i=1

αiyi. (5.13)

Now, the decision function for the SVM classifier is

d(x) = arg max
t=1...c

yᵀt (Wx + b), (5.14)

where yt for t = 1, . . . , c are the label vectors. Equation (5.14) is equivalent to

d(x) = arg max
t=1...c

m∑
i=1

αi
(
yt · yi

) (
xi · x j

)
+

m∑
i=1

αi
(
yt · yi

)
. (5.15)

5.4.2 Nonlinear Multi-class Training

The nonlinear version of the approach presented in this section can be easily derived.

First, the scalar products xi · x j from (5.9) must be replaced by a kernel function k
(
xi, x j

)
defining a dot product in some feature space Φ. The resulting criterion is

arg min
α

m∑
i=1

m∑
j=1

αiα j

(
yi · y j

)
k
(
xi, x j

)
+

m∑
i=1

m∑
j=1

αiα j

(
yi · y j

)
+

1
C

m∑
i=1

α2
i . (5.16)

5.5 Bias Evaluation 66

Similarly, the decision function (5.15) becomes

d(x) = arg max
t=1...n

m∑
i=1

αi
(
yt · yi

)
k (xt, xi) +

m∑
i=1

αi
(
yt · yi

)
. (5.17)

5.4.3 Label Vector Selection

We propose use of c − 1 dimensional labels that satisfy ‖yi‖ = 1 and that are distributed

in form of a symmetric multidimensional pyramid. From the algorithm’s point of view it

is not necessary to know exact coordinates of the label vectors. It is enough to know the

scalar products of the label vectors that in case of pyramid-like vector structure are equal

to

yi · y j =


1 yi = y j

−
1

c−1 yi , y j

. (5.18)

For binary problems, where c = 2, the scalar product defined by (5.18) is equal to 1 when

yi = y j and -1 when yi , y j. This is consistent with the traditional binary SVM classifier.

The label vectors proposed by Ashraf do not have this property – they cannot be applied

to binary problems.

5.5 Bias Evaluation

All geometric L2 SVM algorithms presented in this dissertation uses the same decision

function (2.109), namely

d(x) =

m∑
i=1

αiyik (xi, x) + b, (5.19)

where bias b can be calculated directly in the dual space (2.98)

b =

m∑
i=1

αiyi. (5.20)

5.5 Bias Evaluation 67

This way of bias evaluation may lead to inaccurate decision functions when the quality

of SVM model approximation is small (for instance, if large value of ε is used). Also,

for a bad-conditioned problem settings (e.g. for large values of penalty parameter C and

large variances of Gaussian kernel when the iteration is stopped before reaching the

optimal solution) equation (5.20) should not be used. Fortunately, the accuracy of the

bias evaluation can be improved. Instead of using the direct equation (5.20) it is possible

to calculate the bias from KKT conditions. For the modified L2 SVM problem the KKT

conditions are as follows

αi

yi

 m∑
j=1

α jy jk
(
xi, x j

)
+ b

 − ρ + ζi

 = 0, i = 1, . . . ,m. (5.21)

Knowing that for all support vectors xi ∈ S the values of the corresponding coefficients αi

are greater than 0 one can calculate bias term b from

b = yi
(
ρ − ζi

)
−

m∑
j=1

α jy jk
(
xi, x j

)
, ∀ xi ∈ S. (5.22)

In order to increase the accuracy it is better to average the calculation of the bias over all

support vector and (5.22) should be used as follows

b =
1
|S|

∑
i:xi∈S

yi
(
ρ − ζi

)
−

m∑
j=1

α jy jk
(
xi, x j

) . (5.23)

Furthermore, because of (2.100) and (2.102), formula (5.23) can be rewritten as

b =
1
|S|

∑
i:xi∈S

yi

(
‖c‖2 −

αi

C

)
−

m∑
j=1

α jy jk
(
xi, x j

) , (5.24)

where c is the solution of the underlying MEB or MN problem.

Experimental results suggest that bias calculated using (5.24) is less sensitive to the

accuracy of the final model estimation. This usually results in better classification perfor-

5.6 Other Minimal Norm Solvers in MNSVM 68

mance.

5.5.1 Bias Evaluation in All-at-once Multi-class Training

Similar bias evaluation may be applied to the multi-class SVM introduced in Section 5.4.1.

In order to find the label of a vector x using the decision function for multi-class SVM

(5.15) it is actually not necessary to know the bias b – the value of the decision function

can be evaluated if the scalar product yt ·b are known for all the labels yt where t = 1, . . . , c.

From the KKT conditions for the multi-class SVM (5.11) we know that for all support

vectors

yi · b = ρ − ζi − yᵀi Wxi, xi ∈ S. (5.25)

Therefore, the scalar product yt · b can be expressed as

yt · b =
1
|St|

m∑
i=1

(
ρ − ζi − yᵀt Wxi

)
, (5.26)

Where St is the set of support vectors xi such that yi = yt. The equation (5.26) can be

simplified to

yt · b =
1
|St|

m∑
i=1

(
‖c‖2 −

αi

C
− yᵀi Wxi

)
, (5.27)

which in case of nonlinear multi-class training becomes

yt · b =
1
|St|

m∑
i=1

‖c‖2 − αi

C
−

m∑
j=1

α j

(
yi · y j

)
k
(
xi, x j

) . (5.28)

5.6 Other Minimal Norm Solvers in MNSVM

The original MDM algorithm, that is used in MNSVM solver [44], mainly focuses on

removing support vectors violating KKT conditions from the coreset. In each iteration

two violators are found. First violator, identified by xv, is the vector located “in front”

5.6 Other Minimal Norm Solvers in MNSVM 69

of the current solution c. This vector satisfies condition xv · c < ‖c‖2. Second violating

vector, labeled as xu, is a support vector that is laying “behind” the solution and satisfies

xu · c > ‖c‖2. Finally, during the update step, weight αv corresponding to xv is increased

and weight αu related to xu is decreased (in other words – importance of the violator xv is

increased at the expense of the violator xu). Therefore, we can say that MDM is trying to

remove support vectors xu not supporting the solution.

The decision of selection particular violator xu is driven by the belief that the larger

xi · c is for a given sample xi the less this sample contributes to the final solution and it

should be a priority to eliminate if from the coreset (or at least its share in the final solution

should be decreased).

5.6.1 Improved MDM

Improved MDM (IMDM) proposed by Franc [45] uses different assumption. The algorithm

focuses on minimization of ‖c‖ (which is actually, the essence of the minimal norm problem

being solved). So instead of removing vectors from the coreset that do not support the

solution, IMDM is trying to maximize decrease of ‖c‖ in subsequent update steps.

The update to the solution c is performed by shifting it along line connecting two

violating points

c′ = c + β (xv − xu) . (5.29)

In MDM algorithm, first the violators xv and xu are selected and then the optimal value of

β is calculated in way that minimizes the norm of the new solution c′. In IMDM first the

violator xv is chosen and then the vector xu is selected in a way that would minimize ‖c′‖.

Since

‖c′ − c‖2 = 2β (xv − xu) · c + β2
‖xv − xu‖

2, (5.30)

5.6 Other Minimal Norm Solvers in MNSVM 70

the maximal possible improvement is achieved for

β = −
(xv − xu) · c
‖xv − xu‖

2 . (5.31)

If we use (5.31) in (5.30) we obtain that maximal decrease of ‖c′‖ is equal to

‖c′ − c‖2 = −

(
(xv − xu) · c
‖xv − xu‖

)2

. (5.32)

Therefore, we can say that IMDM during searching for a violator xu is solving

xu = arg max
xu∈S

(
(xv − xu) · c
‖xv − xu‖

)2

. (5.33)

Similarly, since MDM selects xu in such way as if to maximize xu · c it is actually solving

the following problem

xu = arg max
xu∈S

((xv − xu) · c)2 . (5.34)

Likeness of these two methods is clearly visible in Equations (5.33) and (5.34).

5.6.2 Generalized IMDM

It is possible to generalize both methods by introduction of coefficient k ∈ [0, 1]. The

generalized IMDM algorithm uses the following criterion

xu = arg max
xu∈S

(
(xv − xu) · c
‖xv − xu‖

k

)2

, (5.35)

to select the violator xu. When k = 0 then (5.35) is equivalent to the standard MDM since

(5.35) is the same as (5.34). Whereas, if k = 1 then criterion (5.35) is identical to (5.33) and

general MDM becomes the same as Improved MDM proposed by Franc.

5.7 Model Selection based on Pattern Search 71

5.6.3 MNSVM with different Minimal Norm Problem Solvers

Both Minimal Norm problem solvers presented in Sections 5.6.1 and 5.6.2 may be used

with MNSVM algorithm. The only change that must be introduced in respect to the

original MNSVM method is the way the violating vectors are found. Instead of searching

for a vector xu satisfying condition (4.4) (that is equivalent to (5.34)) the criterion (5.34) or

(5.35) should be used. In this way we may hope to obtain version of MNSVM that has

faster convergence compared to the original approach.

5.7 Model Selection based on Pattern Search

Same as in many other classifier designs, the training of SVM includes a search for the

best values of the so called hyper-parameters of an SVM model. These are the penalty

parameter C, the variances of Gaussian kernel or the order (degree) of the polynomial one.

Finding the most suitable values for a given problem, in respect to the CPU time needed,

is the most expensive part of the training (i.e. learning). In this section we will focus on

parameters selection for SVM training with Gaussian kernels. Such training requires two

parameters – the regularization parameter C and the kernel parameter γ.

Let us define a finite set of all possible values of parameter γ as

Γ = {γi}, i = 1, . . . ,nγ, (5.36)

where nγ is the number of all possible values of γ and elements of Γ satisfy γi > γ j for

i > j. Then, let the finite set of all possible values of parameter C be defined as

Θ = {Ci}, i = 1, . . . ,nC, (5.37)

where nC is the number of distinct values of C. The set Θ has the property that Ci > C j if

i > j. Now, the search space Ω for the model selection problem is the Cartesian product

5.7 Model Selection based on Pattern Search 72

of all possible values of parameters γ and C

Ω = Γ ×Θ. (5.38)

The model selection problem can be mathematically described as

ω∗ = arg max
ω∈Ω

P(ω), (5.39)

where ω∗ are the optimal model parameters and P(ω) denotes prediction accuracy for

SVM model obtained using parameters ω.

5.7.1 Grid Search Method

The Grid Search (GS) method, called also Combinatorial Search, is a widely used model

selection approach. It requires checking all combinations of the training parameters in

order to select the one that maximizes classification accuracy. Although such approach

provides reliable parameter values it cannot be used when the number of parameter

combinations is large or when the training time is long. This method scales exponentially

with the number of parameters.

5.7.2 Pattern Search Method

There are other, possibly faster, ways to obtain good model parameters. One of such

methods is the Pattern Search (PS) algorithm [46, 47]. It can be described as a greedy

numerical optimization method. An important property of this algorithm is that it does

not impose any constraints on the optimized function which makes it applicable for

problems like model selection.

5.7 Model Selection based on Pattern Search 73

We can define a pattern as a set of offsets

P =
{(

pγ, pC

)
i

}
. (5.40)

An example of a simple pattern may be the cross-pattern defined as

P+ = {(0, 0), (−1, 0), (1, 0), (0, 1), (0,−1)} . (5.41)

The pseudo-code of the Pattern Search algorithm is presented in Algorithm 6. Starting

from the center of the search grid, it is searching for the optimal set of parameters by

analyzing the neighboring parameter combinations and selecting the most promising

ones. The neighborhood is defined by the pattern P and the scale θ affecting the size of

that pattern. At the beginning, the steps made by the algorithm are relatively large but as

the algorithm progresses they become smaller (the step size is controlled by variable θ).

Whenever no improvement can be made by a shift of the current pattern towards better

parameters, the scale θ is halved. The algorithm stops when the scale θ is decreased below

1. The visualization of this procedure is presented in Figure 5.3.

Pattern Search does not guarantee obtaining optimal training parameters. Therefore

random restarts are needed in order to protect oneself against obtaining local optimum.

In our implementation we decided to use deterministic restarts. As the starting point

for the subsequent PS runs we select the points having the largest uncertainty. The

uncertainty measure is defined as

U
(
γκγ ,CκC

)
= min(

γκ′γ ,Cκ′C

)
∈Ω′

(
|κγ − κ

′

γ| + |κC − κ
′

C|
)
, (5.42)

where Ω′ is a set of training parameters for which training and testing has already been

performed. Function U(γκγ ,CκC) express uncertainty that a given combination of param-

eters has meaningfully better classification performance than the combinations already

5.7 Model Selection based on Pattern Search 74

Algorithm 6 Pattern Search
Require: Γ = {γi}, i = 1, . . . ,nγ {set of all possible values of γ}
Require: Θ = {Ci}, i = 1, . . . ,nC {set of all possible values of C}
Require: P =

{(
iγ, iC

)}
{the pattern}

Ensure: ω ∈ Ω {combination of parameters γ and C}
1:

(
κγ, κC

)
←

(⌈nγ
2

⌉
,
⌈

nC
2

⌉)
2: θ← min

{⌈nγ
2

⌉
,
⌈

nC
2

⌉}
3: while θ > 0 do
4:

(
pγ, pC

)
= arg max(pγ,pC)∈P accuracy for

(
γκγ+θpγ ,CκC+θpC

)
5: if

(
pγ, pC

)
= (0, 0) then

6: θ←
⌊
θ
2

⌋
{decrease scale}

7: else
8:

(
κγ, κC

)
←

(
κγ + θpγ, κC + θpC

)
{shift towards best parameters}

9: end if
10: end while
11: ω =

(
γκγ ,CκC

)
tested.

5.7 Model Selection based on Pattern Search 75

Figure 5.3: Pattern Search for shuttle dataset. Figure shows dependency of the classification
error on the values of the training parameters C and γ (upper part), the shape of the cross
pattern (lower left) and the steps of the PS algorithms (lower right) starting from C = 2−2,
γ = 24 andθ = 2 and converging to C = 2−3 and γ = 2−2 (red points represent combinations
of parameters C and γ for which SVM training was performed).

Chapter 6

Role of the Bias in the Geometric

Approach to SVM

It was shown by Vogt [48] and Kecman et al. [49, 50] that for positive definite kernels it is

possible to train SVM models without the bias term b. The bias may be implicitly included

into kernel so there is no need to use it in the decision function. In the case of the L1 SVM

training, the problem defined in (2.10) can be rewritten as

arg min
w,ζ

‖w‖2 + C
m∑

i=1

ζi, (6.1)

subject to

yi

(
φ(xi) ·w

)
> 1 − ζi, i = 1, . . . ,m, (6.2)

and

ζi > 0, i = 1, . . . ,m, (6.3)

6.1 Geometric Approach without Bias Term 77

whereϕ(x) represents a mapping of a vector x into some feature spaceΦ defined by kernel

k
(
xi, x j

)
= ϕ(xi) · ϕ(x j). That leads to the following decision function

d(x) =

m∑
i=1

αiyik (xi, x) . (6.4)

Similarly for L2 SVM it is possible to transform optimization problem defined in (2.31)

into

arg min
w,ζ

‖w‖2 + C
m∑

i=1

ζ2, (6.5)

subject to

yi

(
φ(xi) ·w

)
> 1 − ζi, i = 1, . . . ,m, (6.6)

which leads to the same decision function as in (6.4).

It was presented by Huang and Kecman in [51] that removing the bias term from SVM

models very often results in better accuracy. This is the main reason why we investigate the

application of this technique in SphereSVM and MNSVM algorithms. Additional premise

supporting this research is the fact that the geometric SVM criterion (2.87) without bias

term is closer to the original L2 SVM optimization problem (2.31). Since the geometric

algorithms without bias will be focused on minimization of ‖w‖2 instead of ‖w‖2 + b2,

approach not involving bias may result in better decision boundary (i.e. having larger

separation margin 2
‖w‖).

6.1 Geometric Approach without Bias Term

Removing the bias term b from the optimization problem (2.87), used by SphereSVM and

MNSVM algorithms, results in the following minimization problem

arg min
w,ζ,ρ

1
2
‖w‖2 − ρ +

C
2

m∑
i=1

ζ2
i , (6.7)

6.1 Geometric Approach without Bias Term 78

subject to

yi

(
φ(xi) ·w

)
> ρ − ζi, i = 1, . . . ,m. (6.8)

Similarly as it was performed in Section 2.3, it can be derived that this problem is equivalent

to the following

arg min
α

m∑
i=1

m∑
j=1

αiα jk̈
(
xi, x j

)
. (6.9)

subject to

m∑
i=1

αi = 1, (6.10a)

αi > 0, i = 1, . . . ,m. (6.10b)

The kernel k̈
(
xi, x j

)
, representing a mapping into feature space Φ̈, is defined as

k̈
(
xi, x j

)
= yiy jk

(
xi, x j

)
+
δi j

C
. (6.11)

Both problems, the original one (2.87) having the bias term and the newly introduced

one (6.7), can be reduced to the same minimal enclosing ball (or minimal norm) problems.

In fact (2.122) and (6.9) representing the dual space optimization criterion differ only in the

kernel. Compared with the kernel k̃
(
xi, x j

)
for the original optimization criterion (2.114),

kernel k̈
(
xi, x j

)
lacks the component yiy j.

6.2 Properties of the Feature Space 79

6.2 Properties of the Feature Space

When the model contains a bias term b, the feature space Φ̃ is defined by the following

mapping

ϕ̃(xi) =


yiϕ(xi)

yi

ei
√

C

 , (6.12)

where ϕ(x) is the original mapping associated with the kernel k, yi is the label of the vector

xi and ei is an m dimensional vector with all zeros except that the i-th entry equals to 1.

For training without bias, removal of the component yiy j from the kernel k̃ is equivalent

to removal feature yi from the mapping ϕ̃(x) and it leads to the following projection

ϕ̈(xi) =

 yiϕ(xi)
ei
√

C

 . (6.13)

This elimination causes the decrease of the condition number of the kernel matrix since

the most significant eigenvalue of the kernel matrix is reduced. Moreover, the reduction

of the main principal component leads to more balanced distribution of the datapoints in

the feature space Φ̈. For this reason, we can expect that the number of support vectors

in models generated by original approach involving the bias term will be smaller than in

the case of the models generated by the “bias-less” methods. The intuition tells that the

ball enclosing data points stretched along some direction will require smaller number of

supporting vectors than the ball enclosing evenly distributed points (see Figure 6.1).

Since the removal of the bias term is likely to increase the number of support vectors, it

is expected that the training time will be increased as well. Namely, not only the minimal

number of iterations (equal to the number of support vectors), but also the number of

kernel evaluations required to find a violator will be greater. Of course one can not

be absolutely certain that the approach not involving bias term will be slower since the

6.2 Properties of the Feature Space 80

Figure 6.1: Visualization of the minimal enclosing ball in the feature space for “stretched”
dataset (with bias, on the left side) and evenly distributed one (without bias, on the right
side).

distribution of the datapoints in the feature space is not the only criterion that affects the

speed of the algorithms.

Chapter 7

Experiments and Results

7.1 Geometric Support Vector Machines

7.1.1 Datasets and Experimental Environment

All results presented in this section were obtained using double cross-validation proce-

dure [52, 53, 54]. The double cross-validation is a very rigorous scheme for assessing a

classification model’s performance. Here, we evaluate the generalization performances of

the SVM models by using the double cross-validation procedure which is structured as the

two loop algorithm. In the outer loop, the data set is separated into J1 roughly equal-sized

parts (in this paper J1 = 5 was used in all the experiments). Each part is held out in turn as

the test set, and the remaining 4 parts are used as the training set. In the inner loop, J2-fold

cross-validation is performed over the training set only to determine the best values of

hyper-parameters (here, J2 = 5). The best model obtained in the inner-loop is then applied

on the test set. The double cross-validation procedure ensures that the class labels of the

test data will not be seen when tuning the hyper-parameters, which is consistent with the

real-world applications scenario. Obviously such a rigorous procedure is done in many

runs, but if the main goal is to compare different classification models on the same data

sets and under same conditions fairly, double cross-validation must be used.

7.1 Geometric Support Vector Machines 82

First, the datasets were normalized by linear transformation of the feature values into

the [0, 1] range. Then, the training process, that involved searching for the best model

parameters using a grid search method, was performed. The parameters were selected

among 64 possible combinations of the regularization parameter C and γ which is a

coefficient of the Gaussian kernel ϕ(xi) ·ϕ(x j) = e−γ‖xi−x j‖
2 . There were 8 possible values for

parameter C

C ∈ {4n
} , n = −2, . . . , 5, (7.1)

and 8 possible values of γ

γ ∈ {4n
} , n = −5, . . . , 2. (7.2)

The tolerance parameter ε used in the stopping criterion was set to ε = 10−3 for L1 SVM

and L2 SVM algorithms. As it was shown in [6], for SMO based algorithms the value

of ε does not affect the accuracy or the time performance significantly. In other words,

neither decrease of ε improves accuracy nor reasonable increase of its value speeds up

the training procedure in a way that could change the results substantially. Therefore, we

believe that this setting is a good trade-off between accuracy and the time required to train

the model. All geometric algorithms presented here (i.e. BVM, SphereSVM and MNSVM)

use a stopping criterion that is based on geometrical properties of the MEB problem. Since

this stopping criterion is different than the one used in SMO algorithms we had to use a

different strategy for determining correct value of the parameter ε. Therefore, the heuristic

proposed by Tsang was used. This heuristic allows to estimate ε parameter based on the

value of the regularization coefficient C

ε =

2·10−6

τ+1 + 1
NSC

τ + 1 + 1
C

, (7.3)

where NS is the expected number of support vectors (we assumed that NS = 15000) and

τ = k(x, x) = 1. In our case, values of ε were in the range
[
10−6, 10−3] depending on the

7.1 Geometric Support Vector Machines 83

value of C (smaller ε for larger C). More information regarding dependency of the ε

parameters for both methods can be found in [37, 55].

The selection of the best model’s parameters has been done by using 5-fold cross-

validation applied to the previously selected training sets. After the best parameters were

chosen, one additional SVM model was trained using entire training dataset. Finally, this

model was assessed on the test dataset.

The double CV experimental environment used here is the only objective procedure

for comparing performances of various classification algorithms and it is suggested as the

required environment for the models comparisons in the future.

The datasets used in our experiments and the results obtained are “divided” into three

groups dubbed as small, medium and large here. Note, that these are mostly the same

datasets as in [9] where BVM algorithm has been introduced. However, the experimental

environment in [9] was not as strict as the double CV used here. The three adjectives do

not necessarily describe the size of datasets only. They also include the complexity of the

classification tasks which is usually reflected in the percentage of the data becoming the

support vectors as well as in the number of classes mC because the number of classification

models which have to be designed equals mC(mC−1)
2 for a pairwise multi-class classification.

All the datasets can be downloaded from the LIBSVM1 and LibCVM2 sites.

7.1.1.1 Visualization of Statistical Properties

The measurements presented in this section are not precise and are subject to uncertainty.

In order to mark this uncertainty, various visualizations shown below contain error bars

representing the standard error (SEx) of the sample mean estimateµx = E[X]. The standard

error is calculated as follows

SEx =
σx
√

n
, (7.4)

1available at http://www.csie.ntu.edu.tw/ cjlin/libsvm/
2avaliable at http://c2inet.sce.ntu.edu.sg/ivor/cvm.html

7.1 Geometric Support Vector Machines 84

Dataset # of
classes

Dimension # of patterns

small datasets
iris 3 4 150
wine 3 13 178
sonar 2 60 208
glass 6 9 214
breast-cancer 2 10 638
diabetes 2 8 768

medium datasets
optdigits 10 64 5,620
satimage 6 36 6,435
usps 10 256 9,298
pendigits 10 16 10,992
reuters 2 8315 11,069
letter 26 16 20,000

large datasets
adult 2 123 48,842
w3a 2 300 49,749
shuttle 7 7 58,000
web (w8a) 2 300 64,700
ijcnn1 2 22 141,691
intrusion 2 127 5,209,460

Table 7.1: Datasets used in experiments, number of classes, number of features (dimension)
and number of samples.

where σx =
√

E[X2] − (E[X])2 is the standard deviation and n is the probe size.

7.1.2 Performance of the Sphere Support Vector Machines

In this section we present comparison of our algorithms to both classical L1 and L2 SVMs

and the BVM algorithm. The LIBSVM [4] software is used as the reference implementation

of the L1 and L2 SVMs, whereas the BVM implementation is taken from the LibCVM [7, 9]

package. We compared three different versions of SphereSVM

• SphereSVM – This version uses the same probabilistic speedup settings as the BVM

7.1 Geometric Support Vector Machines 85

algorithm. In each iteration the algorithm is searching for a violator among 59

candidate vectors and this search is repeated up to 10 times.

• SphereSVM-590 – This configuration preserves the same stopping probability as

the BVM and SphereSVM algorithms but it uses new drawing scheme proposed in

Section 5.1. In each iteration up to 590 attempts of finding a violating vector are

performed. In other words, the algorithm stops when the probability of finding

appropriate violator x̃v is estimated to be less than 1
590 .

• SphereSVM-100 – This configuration is very similar to SphereSVM-590 – the algo-

rithms performs at most 100 attempts of finding a violator. SphereSVM-100 is more

likely to stop prematurely therefore it is supposed to have lower accuracy but better

time performance.

Our experiments were performed using a computer cluster composed of 6 nodes. Each

node was equipped with 2 E5520 Intel Xeon CPUs (4-core, 2.27 GHz) and 24 GB of RAM.

Although the implementation of the algorithms that we show in this paper does not sup-

port multi-threaded execution, we utilized the multi-core environment by decomposing

the nested cross-validation procedure into several independent processes. In other words,

double cross-validation was performed by parallel execution of the independent training

and testing processes.

7.1.2.1 Medium Datasets

Figure 7.1 shows accuracies obtained during nested cross-validation for optdigits, satimage,

usps, pendigits, routers and letter datasets. It can be readily seen that the accuracies of all six

models are very similar. More precisely, they are equal within the standard error for four

datasets, namely optdigits, satimage, pendigits (not for SphereSVM-100) and reuters. For usps

dataset only, L1 and L2 SVMs are just slightly better (less than 0.5%) than SphereSVM,

and for the letter data only SphereSVM-100 is below the standard error difference for

7.1 Geometric Support Vector Machines 86

Figure 7.1: Medium datasets – accuracy obtained during nested cross-validation. For each
dataset the bars represent the accuracy of (bars from left to right): L1 SVM, L2 SVM, BVM,
SphereSVM, SphereSVM-590 and SphereSVM-100.

about 0.4%. As for the later, this tiny difference in accuracy is compensated by faster

training stage. Overall, we can say that the accuracy of the SphereSVM-100 seems to be

competitive to the other algorithms.

Figure 7.2 presents the total time of the nested cross-validation procedure. One can

readily notice that original BVM is slower than SphereSVM which consecutively is slower

than SphereSVM-590 and SphereSVM-100 algorithms. One can also see that for smaller

datasets Sphere-100 performs the best in terms of training time followed by LIBSVM’s

implementation of L1 SVM and SphereSVM-590.

The training time for the optimal parameters C and σ is shown in Figure 7.3. All

versions of SphereSVM algorithm are always faster than both, BVM and traditional SVMs

based on SMO approach. SphereSVM is approximately 10-60% faster than L1 SVM from

LibSVM library. But even greater improvement can be observed for SphereSVM-100

algorithm. Here, the speedup is in range 60%-300% (and what is interesting – the larger

the dataset is the larger the speedup is).

The average percent of support vectors (calculated as the average percent of support

7.1 Geometric Support Vector Machines 87

Figure 7.2: Medium datasets – total nested cross-validation time. For each dataset the
bars represent the nested cross-validation time of (bars from left to right): L1 SVM, L2
SVM, BVM, SphereSVM, SphereSVM-590 and SphereSVM-100.

Figure 7.3: Medium datasets – training time for optimal parameters. For each dataset
the bars represent the training time of (bars from left to right): L1 SVM, L2 SVM, BVM,
SphereSVM, SphereSVM-590 and SphereSVM-100.

7.1 Geometric Support Vector Machines 88

Figure 7.4: Medium datasets – average percent of support vectors for each of the models
obtained in one-vs-one training. For each dataset the bars represent the model size (bars
from left to right): L1 SVM, L2 SVM, BVM, SphereSVM, SphereSVM-590 and SphereSVM-
100.

vectors of the models resulting from the one-vs-one training) is presented in Figure 7.4.

All algorithms have similar percentage of support vectors. Since the time required to

evaluate the decision function is proportional to the size of the model, we can expect

that none of these methods will have significant advantage when it comes to the class

prediction speed.

7.1.2.2 Large Datasets

Figures 7.5, 7.6, 7.7 and 7.8 show results of the nested cross-validation obtained for large

datasets adult, w3a, shuttle, web, ijcnn1 and intrusion. Note that for the intrusion dataset we

present only results obtained by algorithms based on enclosing ball approach, including

SphereSVM. The reason is simple, both L1 and L2 SVM were unable to complete the learn-

ing process in a reasonable time. We decided to abort their training after approximately 60

hours because none of the algorithms were able to finish cross-validation even for a single

set of parameters. Since our nested cross-validation procedure consist of searching for an

7.1 Geometric Support Vector Machines 89

Figure 7.5: Large datasets – accuracy obtained during nested cross-validation. For each
dataset the bars represent the accuracy of (bars from left to right): L1 SVM, L2 SVM, BVM,
SphereSVM, SphereSVM-590 and SphereSVM-100.

optimal set of parameters among 64 combinations of C and γ values, we could roughly

estimate that the learning process would not have finished within 160 days, which is a

huge difference compared to 3 days required by SphereSVM- 590.

Figure 7.5 shows the accuracy obtained by the nested cross-validation procedure for

large datasets. For w3a, shuttle, web, ijcnn and intrusion there is no significant difference

between the methods (except for SphereSVM-100). The accuracy of the SphereSVM-100

is approximately 0.3% lower compared to other algorithms but, it is usually more than

10 times faster than the other methods (see Figure 7.6). One can notice that SphereSVM

achieved much lower accuracy for the adult dataset. The reason for that is too big value

of the tolerance parameter ε. We obtained competitive accuracy after decreasing its value

to 10−6. This is the only time when heuristic used by Tsang for determining the value of ε

failed.

The learning times presented in Figure 7.6 allow to conclude that all versions of the

SphereSVM are faster than their predecessor BVM (more precisely, the SphereSVM-590 is

usually 4 to 5 times more efficient than BVM). Moreover the capabilities of the SphereSVM

7.1 Geometric Support Vector Machines 90

Figure 7.6: Large datasets – total nested cross-validation time. For each dataset the bars
represent the nested cross-validation time of (bars from left to right): L1 SVM, L2 SVM,
BVM, SphereSVM, SphereSVM-590 and SphereSVM-100.

approach are even more evident in comparison of SphereSVM-100 and BVM. The former

is up to two orders of magnitude faster than the later (although, as mentioned earlier, its

accuracy is approximately 0.3% lower). Furthermore, SphereSVM approach is more than

competitive to L1 SVM. SphereSVM-590 is at least as fast as L1 SVM (except for the shuttle

dataset) and in case of datasets w3a and web it is even more than 35 times faster.

The training time for optimal parameters is presented in Figure 7.7. Similarly as in

the case of medium datasets, SphereSVM-590 and SphereSVM-100 are always faster than

BVM, L1 and L2 SVM. Furthermore, SphereSVM-100 shows outstanding speedup when

compared to LibSVM implementations (for example 50-times time improvement for web

dataset). Unfortunately, the price of this speedup is a slightly lower accuracy.

As for the models’ sizes, Figure 7.8 shows that the models generated by all three

SphereSVM algorithms are smaller compared to the models obtained by BVM algorithm.

This is caused by the difference in the way how both algorithms update the weight vector

α. The update scheme applied in SphereSVM allows reduction of the number of support

vectors (removal of the support vector is performed in line 10 of the Algorithm 3 whenever

7.1 Geometric Support Vector Machines 91

Figure 7.7: Large datasets – training time for optimal parameters. For each dataset the
bars represent the training time of (bars from left to right): L1 SVM, L2 SVM, BVM,
SphereSVM, SphereSVM-590 and SphereSVM-100.

β = αu). In contrast, BVM algorithm cannot remove a support vector from the coreset;

once a vector x̃i becomes a support vector it is not possible to decrease its weight αi to 0

(although αi value may asymptotically approach to 0).

Figure 7.9 shows how the training time of SphereSVM algorithm depends on the

complexity of the dataset, measured as the number of support vectors required to build

the model (SphereSVM-590 algorithm was used). A linear correlation between the training

time and the number of support vectors3 is clearly evident.

7.1.2.3 Draw Scheme for SphereSVM

From all the Figures presented so far it is easy to realize that SphereSVM-100 (SphereSVM

performing at most 100 attempts to find a vector violating the stopping condition) is by

far the fastest algorithm while still producing similar accuracy as the other methods. This

is particularly pronounced for large datasets (web, w3a and intrusion) where the training

3linear regression of the logarithm of the model size vs. the logarithm of the training time was performed
(p-value=0.007 and R2=0.54).

7.1 Geometric Support Vector Machines 92

Figure 7.8: Large datasets – average percent of support vectors for each of the models
obtained in one-vs-one training. For each dataset the bars represent the model size (bars
from left to right): L1 SVM, L2 SVM, BVM, SphereSVM, SphereSVM-590 and SphereSVM-
100.

Figure 7.9: Dependency of the training time of the SphereSVM algorithm upon the number
of support vectors for best hyper-parameters values

7.1 Geometric Support Vector Machines 93

speedup is up to the three orders of magnitude. In the case of intrusion both classic SVM

algorithms (L1 and L2 implemented in LIBSVM) never converged and the speedup cannot

be expressed.

This raises a question what is a good number of draws for SphereSVM. Figures 7.10,

7.11 and 7.12 present dependencies of accuracy, training time and percent of support

vectors upon the number of draws for medium datasets. By “number of draws” we mean

the maximal number of random vector draws Nd performed in one iteration (in other

words, in each iteration, the algorithm performs up to Nd draws from the entire dataset

until it finds a violator x̃v laying farther than (1 + ε̂)R from the center). The algorithms

dubbed SphereSVM-590 and SphereSVM-100 (both performing respectively up to 590 and

100 attempts to find a stopping criterion violator) presented in the Section 7.1.2 are the

examples of the new draw scheme presented here.

Figure 7.10 shows the dependency between the classification accuracy and the number

of draws for optdigits, pendigits, reuters and satimage datasets. It can be observed that

increasing Nd beyond 100 does not affect the performance of the algorithm. Although, for

these datasets even Nd = 100 seems to be enough to obtain maximal performance, one can

expect that for more complex datasets (having more support vectors) this number should

be increased. This expectancy is partially confirmed by the results presented in Figure

7.5, where for the largest datasets the accuracy of the SVM model trained with parameter

Nd = 100 is slightly smaller than for the rest of the models.

Figure 7.11 visualizes the dependency between the nested cross-validation time and

the number of random draws. It is an interesting observation that the training time

increases linearly when Nd parameter is large enough (Nd > 100 for optidigits, pendigits

and satimage and Nd > 600 for reuters).

The results presented in Figure 7.12 suggest that, for optdigits, pendigits and satimage,

increasing the number of draws beyond 100 does not affect the size of the model. The

exception here is reuters dataset, which achieves stable number of support vector for

7.1 Geometric Support Vector Machines 94

Figure 7.10: Dependency of the classification accuracy upon the maximal number of draws
allowed during one iteration.

Figure 7.11: Dependency of the total nested cross-validation time upon the maximal
number of draws allowed during one iteration.

7.1 Geometric Support Vector Machines 95

Figure 7.12: Dependency of the percent of support vectors upon the maximal number of
draws allowed during one iteration.

Nd � 100.

7.1.3 Performance of the Minimal Norm SVM

Our experiments were performed using a computer cluster equipped with E5520 Intel

Xeon CPUs. The double cross-validation was performed by parallel execution of the

independent training and testing processes. We used the LIBSVM [4] package as the

reference implementation of the L1 and L2 SVMs based on SMO approach. The BVM

implementation is taken from the LibCVM [7, 9] software. We applied the same double

cross-validation procedure as the one described in Section 7.1.1.

Figure 7.13 shows the total time of the nested cross validation procedure. Results

allow us to conclude that MNSVM is approximately two times more efficient than BVM.

In case of datasets w3a and web our approach is even more than 35 times faster. Note

that we do not present results for L1 and L2 SVM obtained for the intrusion dataset. The

reason is that, both SVM algorithms based on SMO were unable to complete the training

within reasonable time. Since the algorithms were not able to finish cross-validation

7.1 Geometric Support Vector Machines 96

Figure 7.13: Total nested cross validation time. For each dataset the bars represent training
time of (bars from left to right): L1 SVM, L2 SVM, BVM, MNSVM.

even for a single set of parameters C and γ, we were forced to abort their training (after

approximately 60 hours). Simple calculations lead to rough estimation, that the learning

process would not have finished within 160 days, which is a huge difference compared to

7 days required by MNSVM.

If we analyze the training times for optimal parameters (see Figure 7.14) we will see

that almost always MNSVM algorithm is faster than its competitors. It loses with L1

SVM only for shuttle and adult (here, BVM is slightly faster as well). Usually, MNSVM is

approximately two times faster than the fastest of the SMO-based algorithms – L1 SVM.

In the case of the web dataset a sevenfold speedup was achieved.

Figure 7.15 presents accuracies obtained for all datasets during nested cross validation.

It can be readily seen that the results of all four models are very similar in terms of the

accuracy. The error rate for MNSVM is usually higher than the one of L1 and L2 SVM but

the difference is almost always smaller than 0.5% (excluding adult dataset4). According to

4The reason for that is too big value of the tolerance parameter ε. We obtained competitive accuracy
after decreasing its value.

7.1 Geometric Support Vector Machines 97

Figure 7.14: Training time for optimal parameters. For each dataset the bars represent
training time of (bars from left to right): L1 SVM, L2 SVM, BVM, MNSVM.

the standard error range of our measurements – the significant difference can be observed

for datasets usps, letter, adult, shuttle and ijcnn1. Here, both algorithms BVM and MNSVM

have evidently higher error rate. BVM resulted in significantly better models only for

datasets letter and adult compared to MNSVM, but on the other hand MNSVM was more

accurate for usps dataset. Since both algorithms optimize the same cost function, we

strongly believe that further experiments will lead to conclusion that the accuracy of both

algorithms is the same. Fortunately, the small differences in accuracy are compensated by

shorter training time required by our geometrical method.

The average percent of support vectors5 is shown in Figure 7.16. All the models

obtained by different algorithms have similar number of support vectors. It can be

observed that the models created by MNSVM approach are always smaller compared to

the ones generated by BVM algorithm. The reason for that is the way the update step is

performed. Namely, MNSVM algorithm allows to reduce the number of support vectors

5By the percent of support vectors we mean the ratio of the number of non-zero coefficients αi to the total
number of training patterns used in one-vs-one training.

7.1 Geometric Support Vector Machines 98

Figure 7.15: Accuracy obtained during nested cross validation. For each dataset the bars
represent accuracy of (bars from left to right): L1 SVM, L2 SVM, BVM, MNSVM.

(by decreasing the weight αu for the violator x̃i to 0). In case of the BVM algorithm it

impossible to remove a support vector from the coreset.

The performance of the MNSVM algorithm has been verified on artificial “checkers”

dataset. This two-dimensional dataset consist of two classes that are distributed in form

of the checker board having four rows and four columns. Using such simulated data

allowed us to test the performance of the algorithm against extremely large training

problems. Figure 7.17 shows how the training time depends upon the number of training

samples (the number of the data varies from 100 to 10,000,000). The linear character

of the time complexity can be observed when the number of training patterns is less

than 30,000. When the size of the data is between 30,000 and 100,000 the training time

grows disproportionately faster than the problem size. The reason for that phenomenon

is the limited size of the kernel cache. When the number of support vectors grows above

the maximal cache capacity then the overall cache performance decreases since some of

the kernel values must be discarded and the cache-misses become more frequent which

7.1 Geometric Support Vector Machines 99

Figure 7.16: Average percent of support vectors obtained in one-vs-one training. For each
dataset the bars represent the model size for (bars from left to right): L1 SVM, L2 SVM,
BVM, MNSVM.

leads to additional kernel re-computations. When the data size grows above 100,000 the

dependency between the number of training samples and the training time becomes sub-

linear – the learning time grows slower than the increase of the dataset. For the number

of training samples above 1,000,000 the learning time is approximately constant. This can

be explained by the fact that the complexity of the MNSVM with probabilistic speedup

technique is not dependent upon the size of the data. The number of iterations is limited

by a function of the tolerance parameter ε.

7.1.4 Comparison of SphereSVM and Minimal Norm SVM

In this section we compare SphereSVM and MNSVM using the nested cross-validation

procedure described in Section 7.1.1. Both presented here algorithms were embedded into

LibCVM toolkit. To allow fair comparison, we use MEB-based stopping criterion for both

methods.

7.1 Geometric Support Vector Machines 100

Figure 7.17: MNSVM training time for “checkers” data set.

The accuracy obtained by L1 and L2 SVM (LIBSVM) and BVM, SphereSVM, MNSVM

(LibCVM) is presented in Figure 7.18. All these algorithms have similar performance

although for satimage, usps, letter and adult the geometric algorithms seem to be slightly

less accurate. In addition to comparing accuracies we have also run a series of Wilcoxon

signed-rank tests [56] to perform pair-wise comparisons of algorithms’ performance. The

null-hypothesis is that the algorithms perform at the same accuracy level. The significance

level was determined by a p-value of less than 0.05. Both SMO-based algorithms (L1 and

L2 SVM) and GSVM implementation of MNSVM (see Section 7.8) are significantly more

accurate than the geometric approaches that use MEB stopping criterion (p-values for all

comparisons were within the range p ∈ [0.0033, 0.0059]). Nonetheless, the accuracy of

SphereSVM and MNSVM is the same for all datasets except adult where high error rate for

SphereSVM is a result of inappropriate adjustment of the tolerance parameter ε6. There

6The value of the parameter ε was determined by a heuristic proposed and implemented by Tsang in
LibCVM tool.

7.1 Geometric Support Vector Machines 101

Figure 7.18: Comparison of accuracy obtained by various SVM algorithms. For each
dataset the bars represent the accuracy obtained by L1 SVM, L2 SVM, BVM, SphereSVM
and MNSVM (bars from left to right).

is no sufficient evidence to reject the null-hypothesis that the algorithms perform at the

same level in case of comparison of SphereSVM and MNSVM with BVM method (p = 0.16

and p = 0.42 respectively).

Figure 7.19 depicts the total nested cross-validation time for the SVM algorithms.

MNSVM is almost always faster than its predecessor SphereSVM. It is especially visible

on the datasets like web or reuters where MNSVM is approximately two times faster.

Moreover, both introduced in this dissertation algorithms, SphereSVM and MNSVM, are

always faster than BVM.

Comparison of the training time for optimal parameters, that is presented in Figure

7.20, reveals that MNSVM is almost always the fastest SVM algorithm. Only in the case

of adult and shuttle datasets it looses with L1 SVM and for optdigits and reuters it achieves

the same performance as SphereSVM.

The percent of support vectors found by the algorithms is presented in Figure 7.21. The

sizes of the models generated by all SVM algorithms seem to be similar. It is interesting

that for larger datasets the models obtained by MNSVM are slightly smaller than the ones

7.1 Geometric Support Vector Machines 102

Figure 7.19: Total nested cross-validation time for various SVM algorithms. For each
dataset the bars represent the cross-validation time obtained by L1 SVM, L2 SVM, BVM,
SphereSVM and MNSVM (bars from left to right).

Figure 7.20: Training time for optimal parameters for various SVM algorithms. For
each dataset the bars represent the learning time obtained by L1 SVM, L2 SVM, BVM,
SphereSVM and MNSVM (bars from left to right).

7.2 Geometric SVM without Bias 103

Figure 7.21: The model size for various SVM algorithms. For each dataset the bars
represent the percentage of support vectors of the models generated by L1 SVM, L2 SVM,
BVM, SphereSVM and MNSVM (bars from left to right).

generated by SphereSVM.

7.2 Geometric SVM without Bias

7.2.1 SphereSVM without Bias

The accuracy of the two versions of SphereSVM algorithm – with and without bias – is

presented in Figure 7.22. There is no significant difference between these two methods

except for the satimage dataset, where the approach without bias resulted in accuracy

greater by 0.23% (but even this improvement is still within a standard error range).

The Figure 7.23 shows the total time required for nested cross-validation procedure.

It is very difficult to draw any conclusions based on this plot. Neither of the algorithms

seems to be faster than the other. The cross-validation time seems to be independent upon

the size of the dataset. On the other hand it is unsettling that for w3a and web datasets

SphereSVM without bias was more than 10 times slower than the original algorithm.

The training times for optimal parameters obtained from the cross-validation proce-

7.2 Geometric SVM without Bias 104

Figure 7.22: Accuracy of two SphereSVM variants (with and without bias) obtained during
nested cross-validation.

Figure 7.23: Total nested cross-validation time for two SphereSVM variants (with and
without bias).

7.2 Geometric SVM without Bias 105

Figure 7.24: Training time for optimal parameters for two SphereSVM variants (with and
without bias).

dure are presented on Figure 7.24. It is very interesting that for larger datasets (letter, w3a,

shuttle and web) ShpereSVM without bias was faster, whereas for smaller datasets optdigits,

satimage, usps and pendigits) its performance was not as good as the performance of the

original algorithm. Moreover, it is noteworthy that the standard error of the training time

is very often greater for the method not involving the bias term. This means that it may

be more difficult to predict the training time required for this approach. These training

time fluctuations may explain the worse cross-validation performance that was achieved

by the algorithm for w3a and web datasets (see Figure 7.23).

Figure 7.25 compares the sizes of the models obtained by both versions of SphereSVM

algorithm. For large datasets the method not using the bias term results in slightly smaller

number of support vectors. The correlation between the results presented in Figures 7.23

and 7.25 is easily noticeable. Apparently, the smaller number of support vectors improved

the time performance of the training procedure.

7.2 Geometric SVM without Bias 106

Figure 7.25: Average percent of support vectors for each of the models obtained in one-
vs-one training (results obtained for two SphereSVM variants – with and without bias).

7.2.2 Minimal Norm SVM without Bias

The properties of MNSVM without bias were tested on several medium size datasets

(optdigits, pendigits, reuters, satimage, usps and letter). Figure 7.26 shows the accuracy of

the SVM model obtained on these data. Two versions of the algorithm were used –

standard MNSVM and MNSVM without bias. For both methods the learning process

was performed with optimal values of the training parameters C and σ. These values

were determined in a cross-validation procedure. Moreover, the training was performed

with different values of stopping parameter ε in order to check how this factor affects the

accuracy and the computation time.

For relatively large values of ε (i.e. greater than 0.01) the models generated by MNSVM

without bias seem to be much more accurate. When the value of ε decreases below 0.001

then the misclassification rate for both methods converges to approximately equal value

(although for optdigits and pendigits datasets, SVM training without bias yields slightly

7.2 Geometric SVM without Bias 107

Figure 7.26: Accuracy obtained by two versions of MNSVM solvers (with and without
bias) depending upon the value of the stopping criterion parameter ε.

better accuracy).

The training time for the optimal parameters of the Gaussian kernel is presented in

Figure 7.27. For values of the parameter ε that are less than 0.001 the version of the MNSVM

algorithm that does not use bias is always faster than the original method (approximately

10%). Furthermore, decreasing the value of ε below 0.001 does not affect the training time

in a significant way – the learning time stays approximately the same (the only exceptions

here are reuters and letter datasets where for the MNSVM with bias the computational

time increases proportionally to − ln ε).

The important conclusion resulting from Figures 7.26 and 7.27 is that by performing

training with MNSVM without bias one may expect both: slightly better accuracy and

shorter training time. Moreover, the reasonable value of the parameter ε for MNSVM

learning is 0.001 since further decrease of ε does not improve the accuracy. Although, if

one wishes to obtain very accurate model, then decreasing of ε is possible since it does

not affect the training time in a significant way.

7.3 Over-relaxation 108

Figure 7.27: Training time for the optimal Gaussian kernel parameters obtained by two
versions of MNSVM solvers (with and without bias) depending upon the value of the
stopping criterion parameter ε.

7.3 Over-relaxation

7.3.1 Over-relaxation in SphereSVM

Experiments on the SphereSVM algorithm enhanced by over-relaxation technique were

performed using nested cross-validation procedure with the same parameters as the

ones described in Section 7.1.1. There are noticeable differences in execution time when

compared with previously presented results. The reason for that is the fact that we used

different hardware configuration during our experiments. The results presented below

were obtained using a computer equipped with two Intel Xeon X5680 CPUs and 96 GB of

RAM.

Values of parameter η were selected from the range [1, 1.9995]. According to our

experiments, for η > 2 the convergence of the algorithm is jeopardized – this is especially

noticeable when the parameter C is large. The reason is that when η > 2 then subsequent

approximations of c obtained by the algorithm may move away from the origin. In other

words, it is possible that ‖c‖ will be increasing instead of decreasing which contradicts to

7.3 Over-relaxation 109

Figure 7.28: Accuracy of SphereSVM with over-relaxation depending upon parameter η.

the invariant of the proposed algorithm.

Figure 7.28 shows the accuracy of the over-relaxation method used with SphereSVM

algorithm. The trend lines were calculated based on the accuracy obtained during 11

independent nested cross-validation runs for η ∈ [1, 1.9995]. The trend lines suggest that

increase of the parameter η has a positive impact on the accuracy of the algorithm (p-

value of all regression lines satisfies p < 0.001, moreover R2 = 0.52 for optdigits, R2 = 0.23

for pendigits, R2 = 0.13 for reuters and R2 = 0.32 for satimage). For instance, in the case of

satimage dataset, setting this parameter to η ≈ 2 improved the accuracy by 0.25% compared

to the original method (having η = 1).

The dependency between the nested cross-validation time and the value of the param-

eter η is presented in Figure 7.29. Over-relaxation method increased the performance by

10-55%. Moreover, it is interesting that for optdigits, pendigits and satimage datasets the

best performance was achieved for relatively large values of η (around η ≈ 1.98) – see

Figure 7.30.

The training time for optimal parameters, obtained by cross-validation procedure, was

also improved by the over-relaxation technique (see Figure 7.31). Here, similarly to the

7.3 Over-relaxation 110

Figure 7.29: Nested cross-validation time of SphereSVM with over-relaxation depending
upon parameter η.

Figure 7.30: Nested cross-validation time of SphereSVM with over-relaxation depending
upon parameter η.

7.3 Over-relaxation 111

Figure 7.31: Training time for optimal parameters for SphereSVM with over-relaxation
depending upon parameter η.

total cross-validation time, the optimal times were achieved for larger values of η.

Figure 7.32 shows the size of the model depending upon the parameter η. In case

of satimage and reuters datasets, over-relaxation significantly decreased the number of

support vectors.

7.3.2 Over-relaxation in Minimal Norm SVM

Properties of the over-relaxation method used with MNSVM algorithm were tested on

several small-size datasets such as breast-cancer, diabetes, glass, iris, sonar and wine. First, the

execution times of the nested cross-validation procedure were recorded for for different

values of the parameter η . Then, the speedup was calculated as a percentage improvement

in training time of the MNSVM with over-relaxation over the original MNSVM method.

Speedups achieved for various datasets and values of η are presented in Figure 7.33.

For all training sets, the over-relaxation method with the value of η within the range

7.4 All-at-once Approach for Multi-class Problems 112

Figure 7.32: Percent of support vectors for SphereSVM with over-relaxation depending
upon parameter η.

η ∈ (1, 1.3) always resulted in performance improvement. The average speedup, marked

with black solid line, allows to conclude that the reasonable values for the parameter η

are somewhere around η ≈ 1.3. However, one must not assume that η ≈ 1.3 would be a

good choice for all dataset. Each training set has its own optimum in a different spot. For

example, using value of η = 1.3 for breast-cancer would result in almost no improvement.

Similarly, for diabetes the value of η that would maximize the time performance is equal

to η ≈ 1.75 (which results in almost 40% speedup).

7.4 All-at-once Approach for Multi-class Problems

Below we compare two multi-class SVM training methods – one-vs-one with voting

mechanism, used in LIBSVM and LibCVM, and all-at-once introduced in Section 5.4.1.

The tests were performed on several multi-class datasets using nested cross-validation

7.4 All-at-once Approach for Multi-class Problems 113

Figure 7.33: Dependency between speedup achieved by MNSVM algorithm using over-
relaxation and the values of parameter η. The speedup was calculated based on the nested
cross-validation times. The datasets are as follows (plots from top to bottom): diabetes,
glass, iris, wine, sonar, breast-cancer. The solid black line represents the mean value of the
speedups obtained for the datasets.

scheme described in Section 7.1.1. The hardware that was used during the experiments

was composed of 13 server nodes equipped with four AMD Opteron 6282 SE processors

and 256 GB RAM each.

The time required to complete nested cross-validation for both multi-class learning

approaches is presented in Figure 7.34. It can be observed that the all-at-once learning

method is much faster than the pairwise training approach. The achieved speedup is at

least threefold for all the training sets except usps. For the shuttle dataset the difference is

two orders of magnitude.

Unfortunately, this time improvement causes large accuracy decrease. Figure 7.35

shows the accuracy of the SVM models trained with all-at-once and pairwise methods.

The one-versus-one method always has lower error rate. In the case of shuttle dataset, the

7.4 All-at-once Approach for Multi-class Problems 114

Figure 7.34: Total cross-validation time for all-at-once multi-class training. For each
dataset, the bars represent the learning time obtained by pairwise (the left bar) and all-at-
once method (the right bar).

difference is 7%. The difference in accuracy obtained by both algorithms does not seem

to be dependent upon the number of classes. This suggest that the all-at-once method

could be potentially applied to classification problems having large number of classes.

This would allow to avoid training relatively large number of SVM models required by

the pairwise approach.

The differences in the training time for optimal learning parameters are presented in

Figure 7.36. Although all-at-once method is usually the fastest one, these results are not as

impressive as in the case of total nested cross-validation training times. Best performance

improvement were achieved for shuttle where multi-class approach is more than ten times

faster than the one-vs-one training. Unfortunately, the cost of this speedup is much lower

classification accuracy. The only case were pairwise classification method was more

efficient was pendigits dataset – here, the all-at-once training was almost two times slower.

Figure 7.37 compares the percent of support vectors generated by both algorithms.

Usually, the pairwise mutli-class method produces much large models (even two times

7.4 All-at-once Approach for Multi-class Problems 115

Figure 7.35: Accuracy for all-at-once multi-class training. For each dataset, the bars
represent the accuracy obtained by pairwise (the left bar) and all-at-once method (the
right bar).

Figure 7.36: Training time for optimal parameters for all-at-once multi-class training. For
each dataset, the bars represent the training time obtained by pairwise (the left bar) and
all-at-once method (the right bar).

7.5 Bias Evaluation Technique 116

Figure 7.37: Percent of support vectors for all-at-once multi-class training. For each
dataset, the bars represent the percent of support vectors obtained by pairwise (the left
bar) and all-at-once method (the right bar).

larger for optdigits, usps and letter datasets, not mentioning shuttle where the model gener-

ated by all-at-once approach is seven times smaller). Since the time required to classify a

sample is proportional to the number of support vectors, one may expect that the classifi-

cation using models generated by all-at-once method will be faster compared to pairwise

method.

7.5 Bias Evaluation Technique

Below, we present results that prove usefulness of the new bias evaluation method pro-

posed in Section 5.5. The tests were performed on the following datasets: optdigits, pendig-

its, reuters, satimage, usps and letter. First, the optimal training parameters for MNSVM

algorithm were found (multi-class problems were solved using the pairwise classification

method). Then, for the optimal training settings, we preformed 100-fold cross-validation

with various values of the tolerance parameter ε ∈
[
10−6, 10−1

]
. For each such training run,

the bias was evaluated using theoretic approach, where b =
∑m

i=1 αiyi, and using averaging

7.6 MNSVM with Improved MDM Solver 117

Figure 7.38: The accuracy obtained by different bias evaluation methods for reuters dataset.

method expressed in (5.24).

For most of the datasets there was no difference in the classification accuracy. However,

we noticed that for reuters and satimage the proposed approach to bias evaluation results

in noticeably better accuracy when large values of ε are used. In the case of reuters dataset

our approach is even better than the classification method without bias – this dependency

is presented in Figure 7.38.

Similar results were obtained for satimage dataset. In Figure 7.39 one can observe that

the classification accuracy for the models that use bias calculated with the new technique

seem to be slightly better than the accuracy of the original models. Unlike the results

for reuters dataset, here the SVM training without bias seems to be the best choice when

dealing with larger values of ε.

7.6 MNSVM with Improved MDM Solver

In order to test the performance of MNSVM with the update step based on Improved

MDM approach we performed 100-fold cross-validation on optdigits, pendigits, reuters,

satimage, usps and letter datasets. The optimal training parameters were used for each

7.6 MNSVM with Improved MDM Solver 118

Figure 7.39: The accuracy obtained by different bias evaluation methods for satimage
dataset.

dataset.

The classification accuracy obtained by MNSVM algorithm using the update steps

based on MDM and Improved MDM algorithms are compared in Figure 7.40. The

largest time improvement for Improved MDM was obtained on reuters training datasets

– MNSVM with Improved MDM turned out to be more than two times faster than the

original MNSVM algorithm. Much smaller speedup was observed for usps training set.

In case of letter dataset, Improved MDM resulted in small slowdown (around 5%). There

was no significant difference in training time for optdigits, pendigits and satimage datasets.

Figure 7.41 shows that there is no difference in accuracy for both methods – the error

rates (and even standard errors) are literally the same.

The percent of support vectors obtained by both MNSVM versions is presented in

Figure 7.42. MNSVM with Improved MDM update step usually results in slightly smaller

models, however the difference is usually almost unnoticeable. The only notable model

size decrease can be observed for reuters dataset where the percent of support vectors

generated by Improved MDM was almost 8% lower compared to the percentage of support

vectors obtained by the original MNSVM (please keep in mind that the accuracy was not

7.6 MNSVM with Improved MDM Solver 119

Figure 7.40: Training time for MNSVM with MDM and Improved MDM update step.

Figure 7.41: Accuracy for MNSVM with MDM and Improved MDM update step.

7.6 MNSVM with Improved MDM Solver 120

Figure 7.42: Percent of support vectors for MNSVM with MDM and Improved MDM
update step.

affected).

7.6.1 Generalized IMDM

Figure 7.43 shows the training time for optimal training parameters for MNSVM with

update step based on generalized IMDM presented in Section 5.6.2. The plot represents

the dependency of the training time on the parameter k affecting the way how the violating

vectors are selected in each iteration of the MNSVM algorithm. The results were collected

during 100 training runs on optdigits, pendigits, reuters, satimage, usps and letter datasets.

Almost for all training sets the optimal learning times were achieved either for k = 0

(which is equivalent to original MDM update scheme) or for k = 1 (which corresponds to

the Improved MDM update step). Very small speedups for k < {0, 1} can be observed for

reuters dataset (for k ≈ 0.7) and usps (when k ≈ 0.35). Unfortunately, these results cannot

be considered statistically relevant.

Obtained results suggest that Generalized IMDM approach is very unlikely to improve

the time performance and it is better to use MDM or Improved MDM instead.

7.7 Sparse Grid Model Selection Technique 121

Figure 7.43: MNSVM with Generalized IMDM update scheme.

7.7 Sparse Grid Model Selection Technique

Below, we compare Combinatorial Model Selection technique (called “Grid Search”) and

Sparse Grid Model Selection proposed in Section 5.7.2. The same cross-validation settings

were used as in Section 7.1.1. The results were obtained on AMD Opteron 6282 SE CPUs

using GSVM toolkit.

The total nested cross-validation time of the MNSVM training with pattern search and

grid search methods is presented in Figure 7.44. It is clearly visible that for all datasets

the training with sparse grid search (pattern search) is approximately three to four times

faster.

The accuracy obtained by both methods shown in Figure 7.45 indicates that despite

the huge speedup achieved by the pattern search method no accuracy deterioration can

be observed. Both algorithms generated models that describe the data with the same

precision.

The classification results presented in Figures 7.44 and 7.45 were obtained on relatively

sparse grids (the resolution7 was 8 × 8). In order to investigate how sparse grid model

7by the grid resolution we mean the number of distinct kernel parameters C and σ – for instance, grid
resolution 8 × 8 refers to the training settings having eight distinct values of parameter C and eight distinct

7.7 Sparse Grid Model Selection Technique 122

Figure 7.44: Training time for Pattern Search and Grid Search methods.

Figure 7.45: Accuracy for Pattern Search and Grid Search methods.

7.8 GSVM toolkit 123

Figure 7.46: Training time of the Pattern and Grid search methods.

selection technique decreases the training time for larger grids we performed additional

tests on glass, iris, sonar and wine datasets for grid resolutions ranging from 8×8 to 80×80.

Figure 7.46 compares the times required to find optimal model parameters for both

model selection methods. It is apparent that the speedup achieved by pattern search

increases with the density of the grid. For the largest grids the sparse grid model selection

is almost two orders of magnitude faster than the combinatorial search.

It should be emphasized that for the given datasets both methods achieved the same

accuracy.

7.8 GSVM toolkit

This Section compares GSVM tool with other open-source SVM frameworks such as

LIBSVM and LibCVM. The same settings as the ones described in Section 7.1.1 were used

during testing. The only difference is that MNSVM algorithm implemented in GSVM uses

stopping criterion more appropriate for minimal norm problems (with ε = 0.001) instead

the one implemented in LibCVM that originates from minimal enclosing ball problem.

values of parameter σ

7.8 GSVM toolkit 124

The training runs were performed on a cluster equipped with AMD Opteron 6282 SE

processors.

Figure 7.47 compares the accuracy obtained for different SVM implementations during

nested cross-validation training. The accuracy of the algorithms implemented in GSVM

tool are usually significantly better than the accuracy obtained by LibCVM implemen-

tation. This is mostly visible for optdigits, usps, letter and adult datasets where accuracy

improvement is between 0.2% and 0.6%. Wilcoxon signed-rank test with significance

level 0.05 applied in comparison of LibCVM and GSVM shows that MNSVM from GSVM

is significantly more accurate than BVM implemented in LibCVM (p-value is equal to

p = 0.025 which allows to reject the null-hypothesis that the two implementation perform

at the same level of accuracy). Moreover, models generated by GSVM are competitive

with the ones produced by LIBSVM. Both libraries produce similar results and for letter

dataset GSVM shows superiority over LIBSVM toolkit. Wilcoxon test reveals that there is

no sufficient evidence to conclude that there is a significant difference in accuracy between

LIBSVM and GSVM (p = 0.12).

The total nested cross-validation training time for all methods is presented in Figure

7.48. For smaller datasets GSVM using grid search outperforms algorithms implemented

in LibCVM. However, if patter search is used then GSVM is almost always an easily

identifiable winner (only for satimage and web its performance is comparable with LIBSVM

and LibCVM). Compared with LIBSVM, GSVM is slower in half of the experiments but

for training sets like usps or web it achieves impressive several fold speedup.

The training times for optimal kernel parameters shown in Figure 7.49 reveal huge

similarity between all methods. For smaller datasets GSVM is faster than LibCVM’s SVM

implementations. The reason for that is the implementation of the kernel cache – GSVM

uses LRU8 cache which is more efficient when dealing with smaller datasets, whereas

LibCVM (and LIBSVM) uses LFU9 cache that seems to be more effective when the cache
8Least Recently Used
9Least Frequently Used

7.8 GSVM toolkit 125

Figure 7.47: Comparison of accuracy obtained by various SVM algorithms. For each
dataset the bars represent the accuracy obtained by (bars from left to right): L1 SVM,
BVM, MNSVM embedded in LibCVM, and two versions of MNSVM implemented in
GSVM – with grid search and with pattern search model selection.

Figure 7.48: Comparison of total nested cross-validation time obtained by various SVM
algorithms. For each dataset the bars represent the accuracy obtained by (bars from left
to right): L1 SVM, BVM, MNSVM embedded in LibCVM, and two versions of MNSVM
implemented in GSVM – with grid search and with pattern search model selection.

7.8 GSVM toolkit 126

Figure 7.49: Comparison of training time for optimal parameters obtained by various SVM
algorithms. For each dataset the bars represent the accuracy obtained by (bars from left
to right): L1 SVM, BVM, MNSVM embedded in LibCVM, and two versions of MNSVM
implemented in GSVM – with grid search and with pattern search model selection.

capacity does not allow to store the kernel values for all support vectors10. Moreover

GSVM is significantly faster than LIBSVM for four datasets (optdigits, usps, reuters and

web) whereas definite superiority of LIBSVM implementations were shown only in case of

shuttle dataset (for the rest of the training sets the difference between classifiers is within

standard error range and no precise conclusions can be drawn).

Figure 7.50 shows the percent of support vectors used in SVM models trained by

the algorithms. The fact that algorithms implemented in GSVM usually produce larger

models than the ones from LibCVM is easily noticeable. The reason for that is more

accurate stopping criterion used in GSVM. Our geometric implementation uses more

precise conditions to determine whether a current solution is close enough to the true

solution. This usually results in larger number of iterations (and more support vectors).

Please note that even though the models are larger, GSVM attains competitive time-

10Currently we are working on improving the performance of the GSVM cache so that it would be more
efficient for large datasets

7.8 GSVM toolkit 127

Figure 7.50: Comparison of percent of support vectors obtained by various SVM algo-
rithms. For each dataset the bars represent the accuracy obtained by (bars from left to
right): L1 SVM, BVM, MNSVM embedded in LibCVM, and two versions of MNSVM
implemented in GSVM – with grid search and with pattern search model selection.

performance compared with LIBSVM (see Figure 7.49).

Chapter 8

Conclusions and future work

The novel L2 SVM classification algorithms developed in the dissertation and dubbed

SphereSVM and MNSVM are aimed at classifying large and very large datasets. They

show a significant speedup with respect to all three L1 and L2 SVM implementations in

LIBSVM and Ball Vector Machines approach. While achieving a speedup going over few

orders of magnitude for complex datasets, SphereSVM and MNSVM are still attaining

comparative accuracy as the other three algorithms.

The comparisons have been performed within the double (nested) cross validation

and thus accuracy estimates are obtained on the samples not seen by the classifiers during

the training phase. Such a rigorous experimental environment produces the accuracy

estimates which can be expected in a real life applications of all the models.

The over-relaxation scheme is proposed and implemented for the geometrical SVM

solvers. It turns out that it is a very successful improvement that can significantly decrease

the learning time. Further improvements such as training without bias or application of

Improved MDM solver to MNSVM training has been introduced. Together with proposed

multi-class solver and sparse grid search approach for model selection, the algorithms

constitute very efficient alternative for solving large classification problems (especially,

that the mentioned methods has been published as an open-source framework GSVM).

129

The proof of a convergence of the SphereSVM is given and it states that the time

complexity of the algorithm depends upon the tolerance parameter ε only. However, as

it is often the case with bounds, this one is also loose. In all our simulations we have

got results in much shorter time than given by the theoretical bound. Finally, it is worth

mentioning that proposed geometric SVM training methods usually generate sparser

models (having less support vectors) than the BVM which is the result of an efficient

elimination of support vectors. As of now, it seems that both SphereSVM and MNSVM

may well be the recommended sequential classification approach when data size goes into

ultra-large domains (say, when the number of samples comes to and crosses over into few

millions).

Appendix A

GSVM - Command Line Tool for

Geometric SVM Training

GSVM is a command-line tool that performs SVM training using MNSVM algorithm. It

implements several different variants of MNSVM algorithm and is able to perform model

selection and n-fold cross-validation (including nested cross-validation).

Usage: gsvm [OPTION]... [FILE]

Perform SVM training for the given data set [FILE].

Available options:

-h [--help]

produce help message containing description

of all available training options

-c [--c-low] arg (=0.0625)

the value of the penalty parameter C

(in case of model selection training

the argument determines the lower bound of C)

-C [--c-high] arg (=1024)

131

in case of model selection training,

the argument determines the upper bound of

the penalty parameter C

-g [--gamma-low] arg (=0.0009765625)

the value of the Gaussian kernel parameter gamma

(in case of model selection training

the argument determines the lower bound of gamma)

-G [--gamma-high] arg (=16)

in case of model selection training,

the argument determines the upper bound of

the Gaussian kernel parameter gamma

-r [--resolution] arg (=8)

the number of C and gamma parameters used

during model selection

-o [--outer-folds] arg (=1)

the number of nested cross-validation

outer folds, if arg > 1 then double

cross-validation is used

-i [--inner-folds] arg (=10)

the number of inner folds (the parameter k for

k-fold cross-validation)

-e [--epsilon] arg (=default)

tolerance parameter for the stopping criterion, if

"default" is used than the default value for

the stopping criterion will be evaluated:

- 0.001 if minimal norm stopping criterion is used

- heuristic value if MEB-based stopping criterion

132

is used

-E [--eta] arg (=1)

parameter for over-relaxation (eta should be

in range [1, 2), if eta = 1 then no

over-relaxation is used

-b [--bias] arg (=theoretic)

type of the bias evaluation strategy:

- theoretic - bias is evaluated as

b = \sum \alpha_i y_i

- average - bias is evaluated from KKT conditions

- nobias - training without bias (b = 0)

-d [--draw-number] arg (=600)

parameter of the probabilistic speedup - the number

of random draws during violator search

-u [--multiclass] arg (=allatonce)

type of the multi-class training approach

- allatonce - all-at-once training (only one model)

- pairwise - pairwise training with voting mechanism

-m [--model-selection] arg (=pattern)

type of the model selection method

- grid - grid search

- pattern - sparse grid search (based on

pattern search)

-t [--matrix-type] arg (=sparse)

data representation type

- sparse - sparse matrix

- dense - dense matrix

133

-p [--stop-criterion] arg (=adjmn)

stopping criterion

- adjmn - adjusted minimal norm stopping criterion

(the value of epsilon is scalled depending on

the value of the penalty parameter C)

- mn - minimal stopping criterion

- meb - minimal enclosing ball stopping criterion

-z [--optimization] arg (=mdm)

minimal norm problem solving strategy

- mdm - traditional MDM approach

- imdm - Improved MDM algorithm

- gmdm - generalized IMDM approach

-k [--gmdm-k] arg (=0.5)

parameter for generalized IMDM solver

-s [--randomizer] arg (=fair)

approach to selection violator candidates

- simple - basic random number generator

- fair - first a random class is picked, then

random sample belonging to that class

-S [--cache-size] arg (=200)

cache size (in MB)

-I [--input] arg

name of the training data set, the input file must

be in sparse LIBSVM format

Some examples of gsvm toolkit usage are presented below

• 10-fold cross validation with cache size set to 5 MB

134

gsvm -c 100.0 -g 1.0 -i 10 -S 5 iris.dat

• nested cross validation, for five values of parameter C from the range C ∈ [1, 10] and

five values of parameter γ from the range γ ∈ [0.1, 10]; 10 inner and outer folds are

used with model selection based on grid search

gsvm -c 1.0 -C 10.0 -g 0.1 -G 10.0 -i 10 -o 10 -r 5 -m grid iris.dat

• pairwise multi-class training on dense data without bias

gsvm -c 1.0 -g 0.1 -u pairwise -b nobias -t dense iris.dat

Bibliography

[1] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for optimal margin
classifiers,” in Proceedings of the fifth annual workshop on Computational learning theory,
pp. 144–152, 1992.

[2] E. Osuna, R. Freund, and F. Girosi, “An Improved Training Algorithm for Support
Vector Machines,” in Neural Networks for Signal Processing [1997] VII. Proceedings of
the 1997 IEEE Workshop, pp. 276 –285, 1997.

[3] T. Joachims, “Making large-scale support vector machine learning practical,” in Ad-
vances in kernel methods, pp. 169–184, MIT Press, 1999.

[4] C.-H. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,” ACM
Transactions on Intelligent Systems and Technology, vol. 2, no. 3, pp. 27:1–27:27, 2011.

[5] Q. Li, R. Salman, E. Test, R. Strack, and V. Kecman, “GPUSVM: a comprehensive
CUDA based support vector machine package,” Central European Journal of Computer
Science, vol. 1, no. 4, pp. 387–405, 2011.

[6] Q. Li, Fast parallel machine learning algorithms for large datasets using Graphic Processing
Unit. PhD thesis, Virginia Commonwealth University, 2011.

[7] I. W. Tsang, J. T. Kwok, and P.-M. Cheung, “Core Vector Machines: Fast SVM Training
on Very Large Data Sets,” Journal of Machine Learning Research, vol. 6, pp. 363–392,
2005.

[8] K. P. Bennett and E. J. Bredensteiner, “Duality and Geometry in SVM Classifiers,” in
In Proc. 17th International Conf. on Machine Learning (2000), pp. 57–64, 2000.

[9] I. W. Tsang, A. Kocsor, and J. T. Kwok, “Simpler core vector machines with enclosing
balls,” in Proceedings of the 24th international conference on Machine learning - ICML ’07,
(New York, New York, USA), pp. 911–918, ACM Press, 2007.

[10] J. C. Platt, “Sequential minimal optimization: A fast algorithm for training sup-
port vector machines,” Advances in Kernel Methods Support Vector Learning, vol. 208,
no. MSR-TR-98-14, pp. 1–21, 1998.

[11] T. M. Cover, “Geometrical and statistical properties of systems of linear inequalities
with applications in pattern recognition,” Electronic Computers, IEEE Transactions on,
no. 3, pp. 326–334, 1965.

BIBLIOGRAPHY 136

[12] S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. K. Murthy, “A fast iterative
nearest point algorithm for support vector machine classifier design.,” IEEE trans-
actions on neural networks / a publication of the IEEE Neural Networks Council, vol. 11,
pp. 124–36, Jan. 2000.

[13] V. Franc and V. Hlaváč, “An iterative algorithm learning the maximal margin classi-
fier,” Pattern Recognition, vol. 36, pp. 1985–1996, Sept. 2003.

[14] D. J. Crisp and C. J. C. Burges, “A Geometric Interpretation of nu-SVM Classifiers,”
in Advances in Neural Information Processing Systems, vol. 12, pp. 223–229, 2000.

[15] M. E. Mavroforakis and S. Theodoridis, “A geometric approach to support vector
machine (SVM) classification.,” IEEE transactions on neural networks / a publication of
the IEEE Neural Networks Council, vol. 17, pp. 671–82, May 2006.

[16] I. W. Tsang, J. T. Kwok, and P.-M. Cheung, “Very large SVM training using core vector
machines,” in Proc. 10th Int. Workshop Artif. Intell., pp. 349—-356, 2005.

[17] M. Badoiu and K. L. Clarkson, “Smaller Core-Sets for Balls,” in Proceedings of the
fourteenth annual ACM-SIAM symposium on Discrete algorithms, no. 1, pp. 1–2, 2003.

[18] I. W. Tsang, J. T. Kwok, and J. M. Zurada, “Generalized core vector machines.,” IEEE
transactions on neural networks / a publication of the IEEE Neural Networks Council, vol. 17,
pp. 1126–40, Sept. 2006.

[19] A. J. Smola and B. Schölkopf, “Sparse Greedy Matrix Approximation for Machine
Learning,” in Proceedings of the Seventeenth International Conference on Machine Learn-
ing, pp. 911—-918, 2000.

[20] S. Asharaf, M. N. Murty, and S. K. Shevade, “Multiclass core vector machine,” Pro-
ceedings of the 24th international conference on Machine learning - ICML ’07, pp. 41–48,
2007.

[21] J. López, A. Barbero, and J. R. Dorronsoro, “An MDM solver for the nearest point
problem in Scaled Convex Hulls,” in Neural Networks (IJCNN), The 2010 International
Joint Conference on, pp. 1–8, IEEE, 2010.

[22] B. N. Kozinec, “Recurrent algorithm separating convex hulls of two sets,” Learning
algorithms in patter recognition, pp. 43–50, 1973.

[23] B. F. Michell, V. F. Demyanov, and V. N. Malozemov, “Finding the point of polyhedron
closest to the origin,” SIAM JControl, vol. 12, pp. 19–26, 1974.

[24] V. N. Vapnik and A. Lerner, “Pattern recognition using generalized portrait method,”
Automation and Remote Control, vol. 24, pp. 774–780, 1963.

[25] V. N. Vapnik and A. J. Chervonenkis, “On the uniform convergence of relative fre-
quencies of events to their probabilities,” Theory of Probability and its Applications,
vol. XVI, no. 2, pp. 264–280, 1971.

BIBLIOGRAPHY 137

[26] M. Aizerman, E. Braverman, and L. Rozonoer, “Theoretical foundations of the poten-
tial function method in pattern recognition learning,” Automation and Remote Control,
vol. 25, pp. 821–837, 1964.

[27] C. Cortes and V. N. Vapnik, “Support-vector networks,” Machine learning, vol. 297,
pp. 273–297, 1995.

[28] A. Shigeo, Support vector machines for pattern classification. 2010.

[29] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis. Cambridge
University Press, 2004.

[30] B. Schölkopf, A. J. Smola, R. C. Williamson, and P. Bartlett, “New support vector
algorithms,” Jan. 2000.

[31] P. Kumar, J. S. B. Mitchell, and E. A. Yildirim, “Approximate minimum enclosing
balls in high dimensions using core-sets,” Journal of Experimental Algorithmics, vol. 8,
p. 1.1, Jan. 2003.

[32] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan, “Geometric approximation via
coresets,” in Combinatorial and Computational Geometry, MSRI, pp. 1–30, 2005.

[33] P. Kumar and A. E. Yildirim, “Minimum-volume enclosing ellipsoids and core sets,”
Journal of Optimization Theory and Applications, pp. 1–21, 2005.

[34] M. Badoiu and K. L. Clarkson, “Optimal Core-Sets for Balls A Lower Bound for
Core-Sets,” in DIMACS Workshop on Computational Geometry, pp. 3–6, 2002.

[35] A. Barbero, J. López, and J. R. Dorronsoro, “An accelerated MDM algorithm for SVM
training,” in Advances in Computational Intelligence and Learning, Proceedings of ESANN
2008 Conference, no. April, pp. 421–426, 2008.

[36] J. López, On the Relationship among the MDM, SMO and SVM-Light Algorithms for
Training Support Vector Machines. PhD thesis, 2008.

[37] G. Loosli and S. Canu, “Comments on the core vector machines: Fast svm training
on very large data sets,” The Journal of Machine Learning Research, vol. 8, pp. 291–301,
2007.

[38] A. Agresti and B. A. Coull, “Approximate Is Better than ”Exact” for Interval Es-
timation of Binomial Proportions,” The American Statistician, vol. 52, pp. 119–126,
1998.

[39] D. Young, “Iterative methods for solving partial difference equations of elliptic type,”
no. 2, pp. 92–111, 1950.

[40] A. Barbero, J. López, and J. R. Dorronsoro, “Cycle-breaking acceleration of SVM
training,” Neurocomputing, vol. 72, pp. 1398–1406, Mar. 2009.

BIBLIOGRAPHY 138

[41] C. Hsu and C. Lin, “A comparison of methods for multiclass support vector ma-
chines,” Neural Networks, IEEE Transactions on, vol. 13, no. 2, pp. 415–425, 2002.

[42] J. Weston and C. Watkins, “Multi-class support vector machines,” Pattern Recognition,
pp. 0–9, 1998.

[43] K. Crammer and Y. Singer, “On the learnability and design of output codes for
multiclass problems,” Machine Learning, no. 1995, pp. 201–233, 2002.

[44] R. Strack and V. Kecman, “Minimal Norm Support Vector Machines for Large Clas-
sification Tasks,” in 11th International Conference on Machine Learning and Applications,
2012.

[45] V. Franc, Optimization algorithms for kernel methods. PhD thesis, Czech Technical
University in Prague, 2005.

[46] M. Momma and K. Bennett, “A pattern search method for model selection of support
vector regression,” in Proceedings of the SIAM international conference on data mining,
p. 50, Citeseer, 2002.

[47] T. G. Kolda, R. M. Lewis, and V. Torczon, “Optimization by Direct Search: New
Perspectives on Some Classical and Modern Methods,” SIAM Review, vol. 45, no. 3,
p. 385, 2003.

[48] M. Vogt, “SMO algorithms for support vector machines without bias term,” Technische
Univ. Darmstadt, Inst. Automat. Contr., Lab., pp. 1–8, 2002.

[49] V. Kecman, M. Vogt, and T. M. Huang, “On the Equality of Kernel AdaTron and
Sequential Minimal Optimization in Classification and Regression Tasks and Alike
Algorithms for Kernel Machines,” Proc. of the 11th European Symposium on Artificial
Neural Networks, ESANN 2003, pp. 215–222, 2003.

[50] T. M. Huang, V. Kecman, and I. Kopriva, Kernel Based Algorithms for Mining Huge
Data Sets, Supervised, Semi-supervised, and Unsupervised Learning. Berlin, Heidelberg:
Springer-Verlag, 2006.

[51] T. M. Huang and V. Kecman, “Bias Term b in SVMs Again,” in Proc. of 12 the European
Symposium on Artificial Neural Networks, pp. 441–448, 2004.

[52] S. Varma and R. Simon, “Bias in error estimation when using cross-validation for
model selection,” BMC Bioinformatics, vol. 7, p. 91, 2006.

[53] T. Scheffer, Error estimation and model selection. PhD thesis, Technische Universität
Berlin, 1999.

[54] T. Yang and V. Kecman, Machine Learning by Adaptive Local Hyperplane Algorithm:
Theory and Applications. Saarbrücken, Germany: VDM-Verlag, 2010.

BIBLIOGRAPHY 139

[55] I. W. Tsang and J. T. Kwok, “Authors’ Reply to the ”Comments on the Core Vector
Machines: Fast SVM Training on Very Large Data Sets”,” Journal of Machine Learning
Research, pp. 1–14, 2007.

[56] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics bulletin, vol. 1,
no. 6, pp. 80–83, 1945.

Vita

Robert Strack received his M.S. Eng. degree in Computer Science from AGH University of
Science and Technology, Krakow, Poland, in 2007. He is now working towards his Ph.D.
degree in Computer Science at Virginia Commonwealth University, Richmond, USA. His
research is oriented towards Machine Learning and Data Mining algorithms and his field
of interest includes support vector machines classification and parallel computing.

• Journal papers

– Strack R., Kecman V., Li Q., Strack B., Sphere Support Vector Machines for
Large Classification Tasks, Neurocomputing, Vol. 101, pp. 59–67, 2013

– Li Q., Salman R., Test E., Strack R., Kecman V., Parallel Multi-task Cross Valida-
tion for Support Vector Machine Using GPU, Journal of Parallel and Distributed
Computing, Vol. 73, Issue 3, pp. 293-302, 2012

– Li Q., Salman R., Test E., Strack R., Kecman V., GPUSVM: A Comprehensive
CUDA Based Support Vector Machine Package, Cent. Eur. J. Comp. Sci., 1(4),
pp. 387-405, 2011

– Salman R., Kecman V., Li Q., Strack R., Test E., Fast K-means algorithm cluster-
ing, International Journal of Computer Networks & Communications (IJCNC),
Vol.3, No.4, pp. 17-31, 2011

• Conference papers

– Strack R. and V. Kecman, Minimal Norm Support Vector Machines for Large
Classification Tasks, Proc. of the 11th IEEE international conference on machine
learning applications (ICMLA 2012), vol.1, pp. 209 - 214, Boca Raton, FL, 2012

– Test E., Kecman V., Strack R., Li Q., Salman R., Feature Ranking for Pattern
Recognition: A Comparison of Filter Methods, IEEE SouthEast Conference
Paper, DOI 10.1109/ SECon.2012.6196888, pp. 1 - 5, 2012 Orlando, FL, March
2012

– Salman R., Kecman V., Li Q., Strack R., Test E., Two-Stage Clustering with
k-means Algorithm, in A. Özcan, J. Zizka, and D. Nagamalai (Eds.): Commu-
nications in Computer and Information Science, 1, Volume 162, Recent Trends
in Wireless and Mobile Networks, Part 1, pp. 110-122, Springer-Verlag, Berlin,
Heidelberg, 2011

• Invited talks

– Kecman V., Li Q., Strack R., Mining Ultra-Large Datasets by Kernel Machines,
11th International Conference on Intelligent Systems Design and Applications,
ISDA 2011, Cordoba, Spain, 2011

BIBLIOGRAPHY 141

• Seminars

– Kecman V., Strack R., Zigic Lj., Big Data Mining by L2 SVMs - Geometrical In-
sights Help, Seminar at CS Department, Virginia Commonwealth University, VCU,
Richmond, VA, April 24, 2013

	Virginia Commonwealth University
	VCU Scholars Compass
	2013

	Geometric Approach to Support Vector Machines Learning for Large Datasets
	Robert Strack
	Downloaded from

	Introduction
	Contributions of the Dissertation

	Background
	Large Margin Classifiers
	L1 Support Vector Machines
	L2 Support Vector Machines
	Kernel SVM

	Fundamental Problems of the Computational Geometry
	Minimal Norm Problem
	Generalization to Kernel MNP

	Nearest Point Problem
	Minimal Enclosing Ball Problem
	Generalization to Kernel MEB

	Geometric L2 Support Vector Machines
	Nonlinear Geometric SVM
	L2 SVM as a Geometric Problem
	L2 SVM and Minimal Norm Problem
	L2 SVM and Minimal Enclosing Ball Problem

	Solving L2 SVM based on Minimal Enclosing Ball Approach
	Core Vector Machines
	Ball Vector Machines

	Geometric L1 Support Vector Machines
	Soft Minimal Enclosing Ball Problem

	Sphere Support Vector Machines
	Relation to Ball Vector Machines
	Steps of the Algorithm
	Initialization
	Selection of Violating Vectors
	Update Procedure

	Convergence and Computational Complexity

	Minimal Norm Support Vector Machines
	Relation to MEB-based algorithms
	Steps of the Algorithm
	Initialization
	Selection of the Violating Vectors
	Update Procedure
	Stopping Criterion

	Properties of the Solution and the Feature Space

	Implementation Techniques
	Draw Scheme for Geometric SVM Solvers
	Impact on the Model Accuracy
	Impact on the Computational Complexity

	Multi-scale Approximation
	Over-relaxation
	Cycles in MDM Algorithm
	Successive Over-relaxation

	Alternative Approach to Multi-class Problems
	All-at-once SVM Training
	Nonlinear Multi-class Training
	Label Vector Selection

	Bias Evaluation
	Bias Evaluation in All-at-once Multi-class Training

	Other Minimal Norm Solvers in MNSVM
	Improved MDM
	Generalized IMDM
	MNSVM with different Minimal Norm Problem Solvers

	Model Selection based on Pattern Search
	Grid Search Method
	Pattern Search Method

	Role of the Bias in the Geometric Approach to SVM
	Geometric Approach without Bias Term
	Properties of the Feature Space

	Experiments and Results
	Geometric Support Vector Machines
	Datasets and Experimental Environment
	Visualization of Statistical Properties

	Performance of the Sphere Support Vector Machines
	Medium Datasets
	Large Datasets
	Draw Scheme for SphereSVM

	Performance of the Minimal Norm SVM
	Comparison of SphereSVM and Minimal Norm SVM

	Geometric SVM without Bias
	SphereSVM without Bias
	Minimal Norm SVM without Bias

	Over-relaxation
	Over-relaxation in SphereSVM
	Over-relaxation in Minimal Norm SVM

	All-at-once Approach for Multi-class Problems
	Bias Evaluation Technique
	MNSVM with Improved MDM Solver
	Generalized IMDM

	Sparse Grid Model Selection Technique
	GSVM toolkit

	Conclusions and future work
	GSVM - Command Line Tool for Geometric SVM Training

