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The purpose of this work is to present the development and validation of a novel method 

for reconstructing time-dependent, or 4D, cone-beam CT (4DCBCT) images.  4DCBCT can have a 

variety of applications in the radiotherapy of moving targets, such as lung tumors, including 

treatment planning, dose verification, and real time treatment adaptation.  However, in its 

current incarnation it suffers from poor reconstruction quality and limited temporal resolution 

that may restrict its efficacy.  Our algorithm remedies these issues by deforming a previously 

acquired high quality reference fan-beam CT (FBCT) to match the projection data in the 4DCBCT 



 

data-set, essentially creating a 3D animation of the moving patient anatomy.  This approach 

combines the high image quality of the FBCT with the fine temporal resolution of the raw 

4DCBCT projection data-set.  Deformation of the reference CT is accomplished via a patient 

specific motion model.  The motion model is constrained spatially using eigenvectors generated 

by a principal component analysis (PCA) of patient motion data, and is regularized in time using 

parametric functions of a patient breathing surrogate recorded simultaneously with 4DCBCT 

acquisition.  The parametric motion model is constrained using forward iterative projection 

matching (FIPM), a scheme which iteratively alters model parameters until digitally 

reconstructed radiographs (DRRs) cast through the deforming CT optimally match the 

projections in the raw 4DCBCT data-set.  We term our method FIPM-PCA 4DCBCT.  In 

developing our algorithm we proceed through three stages of development.  In the first, we 

establish the mathematical groundwork for the algorithm and perform proof of concept testing 

on simulated data.  In the second, we tune the algorithm for real world use; specifically we 

improve our DRR algorithm to achieve maximal realism by incorporating physical principles of 

image formation combined with empirical measurements of system properties.  In the third 

stage we test our algorithm on actual patient data and evaluate its performance against gold 

standard and ground truth data-sets.  In this phase we use our method to track the motion of 

an implanted fiducial marker and observe agreement with our gold standard data that is 

typically within a millimeter.
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1 Introduction 

 

 

1.1 Purpose 

 

Radiotherapy of moving targets, in particular tumors of the lungs, presents two 

complications over radiotherapy of static targets.  The first issue is that computed tomography 

(CT) images acquired for planning purposes are often plagued by motion artifacts.  This can 

make accurate delineation of the tumor volume difficult, which can lead to a plan that treats an 

inaccurately shaped and/or positioned target volume.  The second complication is that motion 

compensation must be included in the treatment plan.  Typically this is done by extending a 

margin, termed the planning treatment volume (PTV), around the delineated tumor volume 

that will be treated as if it too is a part of the tumor.  Thus the tumor can move around during 

treatment and still receive full dose coverage as long as it stays within the margin.  This 

approach comes at the expense of exposing normal tissue to high radiation doses, which can 

lead to unpleasant and dangerous complications and also increase the risk of secondary 

cancers.  These problems can be reduced by explicitly including the changes of anatomy over 

time in the imaging, planning, and treatment processes.  Collectively these strategies are known 
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as 4D radiotherapy.1  Each phase of 4D radiotherapy depends on the quality of the previous 

phase.  Success at the planning stage depends on the quality of the 4D image set used as input, 

and treatment can only be as accurate as the plan it implements. 

4D imaging for the purposes of radiotherapy planning and treatment is generally 

accomplished via time correlated CT imaging, otherwise known as 4DCT imaging.  Instead of the 

single 3D image produced by regular CT imaging, 4DCT generates a set of 3D images that each 

correspond to a specific anatomic breathing pose of the object. Within 4DCT there exist two 

sub-modalities, 4D fan-beam CT (4DFBCT) and 4D cone-beam CT (4DCBCT).   

Current 4D planning approaches can generally be divided into three groups: plans that 

incorporate 4D anatomic information to reduce the PTV, plans that incorporate 4D information 

directly into the optimization process, and plans that require real-time adaptation of the 

treatment beam and/or patient position to target the tumor at its current position. Harsolia et 

al. compared several different 4D based planning techniques against each other and a non-4D 

technique.2  In one of the 4D techniques the gross tumor volume (GTV) was constructed as the 

union of the tumor volume outlined on six different phases of a 4DCT, and an isotropic PTV 

margin was added solely to account for setup error.  Another technique convolved a probability 

density function (PDF) characterizing the probability of the patient’s tumor being at a certain 

location, determined from fluoroscopy, with a static dose distribution planned on a phase of 

the 4DCT at which the tumor was at approximately its mean position.  The dose to the clinical 

target volume (CTV) from this moving dose distribution was calculated, and the beam aperture 

was enlarged until adequate coverage was achieved.  In comparison with the 3D technique 

both of the 4D techniques provided adequate coverage of the CTV using a smaller PTV, and 
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thus had better normal tissue sparing, with the PDF technique performing the best.2  Dietrich et 

al. also describe several approaches to 4D treatment planning.3  The first convolves a pencil 

beam kernel with a probability density function characterizing the 3D tumor trajectory, 

resulting in a smeared out dose distribution that is less sensitive to tumor motion.  Another is 

the class of inverse planning techniques that incorporate real time tumor-tracking to minimize 

dose to organs at risk while maintaining prescription dose to the tumor.  Finally they cite as 

most common the co-registration of dose distributions calculated on individual CTs from a 4D 

set in order to accumulate the time weighted distributions on a reference CT.  All of these 

techniques either require or greatly benefit from a 4DCT used as input to the planning process.  

Thus they depend on the accuracy of the planning 4DCT for their success.   

Dietrich lists several drawbacks to 4DCT which might hamper 4D radiotherapy, including 

errors due to data sorting, image registration, and image artifacts, as well as a very limited time 

sampling of the patient’s anatomy.3  Yamamoto et al. investigated the type, frequency, and 

magnitude of image artifacts in phase sorted 4DCTs of 50 cancer patients.  They found that 

most patient 4DCTs had at least one artifact and that the median number was two.4  Xing et al. 

outlined several outstanding issues facing 4DCT as a means for accurate treatment planning.  

They cite irregular patient breathing as a source of binning complication and subsequent image 

artifacts.  In addition, they note that each piece of internal anatomy may have its own phase 

and amplitude relationship with the recorded external fiducial.  Also, they point out that 

smoothly interpolating between points in the respiratory cycle can miss non-rigid organ 

deformations. 5 
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From this picture we can describe the characteristics of an ideal 4DCT reconstruction 

algorithm for the purposes of the purposes of 4D radiotherapy: 

 High image resolution and quality. 

 Minimal image artifact. 

 High temporal resolution that accurately depicts the deformation undergone by 

the moving patient anatomy. 

 The goal of this work is to describe a 4DCT algorithm that exceeds methods found in the 

literature with regards to all of these parameters for the purpose of improving radiotherapy of 

lung tumors. 

 

1.2 Current approaches 

 

In general, 4DCT reconstruction requires an oversampled CT data-set acquired 

concurrently with a surrogate measure of patient breathing motion.  The motion surrogate can 

be measured from the CT data-set itself, e.g. 1D diaphragm position measured from chest CBCT 

projections, or from a separate device, e.g. the Real-time Position Management™ (RPM) system 

(Varian Medical Systems, Palo Alto, CA).  Current approaches to 4DCT reconstruction can be 

divided into two categories: data binning and motion model based algorithms.  The defining 

characteristic of data binning approaches is the sorting of raw CT into bins according to the 

breathing phase or amplitude at which they were acquired.  The bin into which a particular 

piece of CT data is sorted is determined by the value of the motion surrogate at the time at 

which it was acquired.  It should be noted that the data being sorted is different for 4DFBCT and 
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4DCBCT.  For 4DFBCT reconstructed 3D axial slices captured at different couch positions are 

sorted, while for 4DCBCT raw 2D projections taken at a single couch position are sorted.  From 

this point each phase bin is reconstructed as if it were a normal 3DCT.  For FBCT the 

reconstructed slices are simply stitched together, while for CBCT the raw data are 

reconstructed using an image reconstruction algorithm, the most common of which is filtered 

backprojection (FBP).  The result is a series of images covering one time-averaged cycle of 

patient breathing, typically consisting of ~10 images.  The reconstructed sequence is time 

averaged in the sense that data from multiple breathing cycles are combined to form each 

individual image. The class of motion model based algorithms attempts to sidestep the 

requirement of data binning.  These algorithms seek to construct an un-averaged portrait of 

patient anatomy during breathing, typically with a temporal resolution equivalent to that of the 

raw 4DCT data.  Much work has been done with regards to both reconstruction approaches, 

and the following two sections explore some of these methods. 

 

1.2.1 Binning based 4DCT reconstruction 

 

One of the first 4DCT protocols was presented by Vedam et al. as early as 2003.  The 

procedure required an oversampled spiral FBCT which it retrospectively sorted into phase bins 

based on a respiratory breathing trace acquired with an external marker.6  Also in 2003 Taguchi 

published a paper comparing the performance of candidate backprojection algorithms for the 

reconstruction of 4DCBCTs.7  Since then many groups have sought to improve various aspects 

of the binning based 4DCT reconstruction process.   
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One topic of research has been the binning of CT data according to motion surrogate 

phase, amplitude, or both.  Most investigators seem to have come to the consensus that 

amplitude based binning produces CTs with less motion artifact than phase-based techniques, 

though it can aggravate bin undersampling issues.8-10  Langner et al. investigated a prospective 

sorting technique that binned images based on both displacement and velocity criteria.11  Their 

objective was to reduce patient dose by avoiding acquisition of redundant data as well as to 

reduce residual CT motion artifact by using their more stringent binning requirements.  

Compared to retrospective displacement sorting they found that the spread in displacements 

within the bins was at least as good using the prospective method and that patient dose was 

reduced by 20-50%.  However prospective binning came at the price of increased acquisition 

time.11  

Another variable is the method used to acquire the breathing motion surrogate.  

Fitzpatrick et al. used optical tracking of an external chest marker (RPM system).8  Lu et al. used 

the combination of a spirometer and pressure sensitive belt wrapped around the chest 

(pneumo-bellows).10  Sonke et al. determined the position of the diaphragm directly from the 

projections in their 4DCBCT data-set to form their respiratory trace.12 

Other work has examined the tradeoff between number of projections and dose per 

projection.  In a direct attempt to eliminate undersampling Li et al. investigated the effect of 

reducing mAs in order to acquire a greater number of projections with the same patient dose.  

They found that this approach helped to alleviate view aliasing while maintaining a satisfactory 

signal-to-noise ratio (SNR).13 
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Conventional binning based 4DCBCT methods typically reconstruct individual bins via 

filtered backprojection.6, 8, 12-14  With FBP image quality is often impaired by streak artifacts 

resulting from projection undersampling due to binning.15-18  To assess the potential of more 

advanced methods to improve image quality Bergner et al. investigated five 4DCBCT 

reconstruction algorithms and analyzed the results based on image noise, streak artifacts, 

temporal resolution, and computational effort.  They examined two filtered backprojection 

algorithms: conventional phase correlated (PC) reconstruction in which projections are binned 

according to phase and backprojected, and autoadaptive phase correlation (AAPC) 

reconstruction in which motion unaffected areas of each projection are backprojected in every 

bin regardless of that projection’s phase.  They examined two forward iterative projection 

approaches, prior image constraint compressed sensing (PICCS) and adaptive steepest descent 

projection onto complex sets (ASD-POCS), which seek to minimize both the integral of the 

absolute value of the gradient of an image as well as the mismatch between forward 

projections taken through the reconstructed images and raw data images of the selected phase.  

Additionally, they looked at a hybrid approach, the McKinnon-Bates algorithm (MKB), 

combining a deterministic backprojection reconstruction with a single forward projection step. 

Their results failed to identify any clear cut best choice.  The backprojection algorithms were 

quicker and produced more dependable results, while the iterative solutions took far longer 

and were dependent on initial data and starting points but produced lower noise and artifact 

images.  They mentioned that the MKB algorithm fell between the two groups and might be an 

acceptable compromise. 19 
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Other investigators have observed that the information contained in different phases of 

a 4DCT is highly correlated, which can be exploited to increase image quality and/or reduce 

patient dose.  In the simplest example Schreibmann et al., whose goal was to reduce patient 

dose and equipment workload, only acquired images at the end inspiration and expiration 

phases of breathing.  They used deformable image registration (DIR) to produce a displacement 

vector field (DVF) linking the two images, and then interpolated the intermediate phase images 

by deforming one of the starting CTs with successive fractions of this DVF.  They compared their 

interpolated results to a full 4DCT and determined the two sets to match reasonably well.20  Li 

et al. assessed several ways of enhancing 4DCBCT to address undersampling concerns.  Their 

strategy was to bin projections into possibly undersampled phase bins and then backproject.  

These view-aliased CT volumes were then all deformably registered to a desired phase, and the 

deformed CTs were added together to form a non-aliased image at that particular phase.  

Starting from the reconstructed 4DCBCT with view aliasing they investigated three different 

ways of achieving this result, the first of which was to simply deformably register the view 

aliased phases to a particular phase and then add the deformed volumes to that phase.  The 

second approach consisted of registering each phase to the artifact free planning CT acquired 

prior to the 4DCBCT.  With this approach only one of the volumes in the registration had view 

aliasing artifacts, and thus it was expected that the deformable registrations would be more 

accurate.  The third and most novel approach involved deformably registering the planning CT 

to unreconstructed bins of projections via 2D to 3D registration, and then using the 

displacement vector fields (DVFs) from this process to deform the reconstructed phases to a 

desired phase.  Its advantage over the first two methods lay in the fact that it did not require 
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the registration of artifact affected images.  Their results showed that the third method 

produced the most artifact free reconstructions while the first two methods performed 

approximately equally.15  Gau et al. investigated an iterative reconstruction seeking to minimize 

a data fidelity term and a regularization term penalizing large intensity gradients.  The 

regularization term operated in both the spatial and temporal domains and thus was able to 

combine information from all phases to improve the reconstruction of individual phases.21 

 

1.2.2 Motion model based 4DCT reconstruction 

 

The above methods differ in many respects, but they all require the binning of image 

data in order to reconstruct a single time-averaged breathing cycle.  A second class of algorithm 

attempts to circumvent this limitation using modeling of patient breathing motion.  For 4DFBCT 

there already exist an un-averaged time series of reconstructed 3D images at each couch 

position.  Standard 3D to 3D deformable image registration can be used to create a motion 

model tied to a patient breathing trace for each couch position, and then the motion models 

for all couch positions can be combined.  McClelland et al. designed a 4DFBCT reconstruction 

algorithm that created separate 4D motion models for each slab or couch position via 

deformable registration between phases within a slab.  B-splines were used to register each 

individual time series of slabs, and the resulting time series of control points were fit to a 

respiratory trace to model their temporal evolution.  Finally, the motion models for separate 

slabs were combined to form a motion model covering the entire imaging volume.  In this 

manner the motion model was able to propagate the FBCT to unique poses based on the 
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patient respiratory trace.22 A similar approach was employed by Yang et al. who used their ‘5D 

motion model’ to fit the motion described by deformable registration of 4DFBCT slabs.23  Zhang 

et al. reconstructed and registered the phases of a 4DFBCT and performed principal component 

analysis (PCA) on the resultant DVFs to linearly correlate the DVF motion with a small number 

of variables on a voxel by voxel scale.  They chose the two eigenmodes with the largest variance 

as their variables and modeled the temporal evolution of the two eigenmodes using the patient 

breathing trace and the patient breathing trace time-shifted by three data points.24   

Similar motion model based reconstruction of 4DCBCT images via motion modeling is 

more challenging since the relevant data are raw 2D projection images rather than 

reconstructed 3D slices.  However, the process is simpler in that there is only a single couch 

position to consider due to the large area of CBCT detectors.   Motion model based 4DCBCT 

reconstruction methods combine three elements: a parametric time dependent deformation 

model, a static CT image, and an optimization framework based on minimizing the difference 

between raw CBCT projections and forward projections of the current image sequence.  A 

single pass through the algorithm proceeds by animating the static CT with the deformation 

model to create a sequence of images, then uses the known CBCT system geometry to simulate 

forward projections, or digitally reconstructed radiographs (DRRs), cast through the animated 

CT image sequence, and then computes the mismatch between the DRRs and the measured 

CBCT projection data.  The deformation model is iteratively updated until designated stopping 

criteria, such as data mismatch falling below a threshold, are met.  We term these algorithms 

time dependent forward iterative projection matching (FIPM) approaches.  Several 

investigators have explored this method.  Zeng et al. used such a projection matching approach 
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to constrain a deformation motion model consisting of the tensor product of 3 spatial and 1 

temporal B-splines.25  Docef et al. used a model consisting of the tensor product of 3 spatial B-

splines to represent spatial deformation and modulated the control points in time using a 

parameterized function of the patient breathing trace.26  Li et al. reconstructed  a 4DFBCT via 

backprojection, deformably registered the sequential phases to a reference phase to obtain 

DVFs, and then calculated the eigenmodes of the DVFs  to form a PCA model similar to that of 

Zhang et al.24, 27, 28  Rather than build an explicit time dependence into their deformation model 

they optimized the model separately for each individual CBCT projection.27  Their principal aim 

was to reconstruct the trajectory of a lung tumor.  More recently they have explored the 

mathematical underpinnings of the PCA model and compared it to the 5D lung motion model of 

Low et al.29, 30 

The principal challenge in this type of approach is achieving a physically realistic 

deformation model with a tractable number of parameters that is easily generalized to any 

imaging subject.  The 4D DVF B-spline model of Zeng et al., while completely general, would 

require many thousands of control points to provide a reasonable time resolution for the 

duration of a typical CBCT exam. 25  The method of Docef et al. greatly reduces the number of 

control point parameters but requires assumptions about the relative phase and amplitude of 

the individual displacement vectors. 26  The method of Li et al. requires few parameters and 

makes no assumptions, but it does not explicitly model time dependence, instead requiring re-

optimization of the model for each time point. 27 
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1.3 Our approach 

 

Our algorithm follows the time dependent FIPM approach.  Its salient feature is the 

deformation model employed, which is based on the principal motion eigenmodes of breathing, 

obtained via PCA.  The principal components are trained on a conventionally reconstructed 

4DCBCT of the patient, whereby they “learn” the relative amplitudes and phases of motion 

among the moving image elements without recourse to a specific physical model.  Specifically 

they are trained on DVFs linking a high quality static prior CT of the patient to phases of the 

conventionally reconstructed 4DCBCT.  Such a static CT might be a breath hold FBCT or an 

artifact free phase of a 4DFBCT captured of the patient previously.  The time dependence of the 

model is accounted for in the principal coefficients, which are modeled as parametric functions 

of the patient breathing trace.  We term our method FIPM-PCA 4DCBCT. 

With regards to other time dependent FIPM reconstruction algorithms our approach has 

several key advantages.  Compared to the 4D and 3D B-spline models of Zeng et al. and Docef 

et al. our deformation model has far fewer free parameters, making its optimization both more 

robust and potentially fast enough for clinical implementation.  As compared to Li et al. we fit 

the motion model to the entire set of CBCT projection radiographs simultaneously, which has 

the benefit of explicitly modeling the temporal behavior of the deformation.  An additional 

difference between our implementation and that of Li et al. is our use of the 4DCBCT data set to 

generate the training DVFs as opposed to a previously acquired 4DFBCT.  Though we do not test 

for this specifically we expect, and they comment, that a motion model based on the most 

current training DVFs, i.e. those obtained from the raw 4DCBCT data-set itself, will be more 
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accurate than a model based on training DVFs from a 4DFBCT that might be days or weeks 

old.28 

The advantage of our 4DCBCT algorithm over motion model based 4DFBCT lies in the 

advent of linac mounted, or “onboard”, CBCT imaging devices within radiotherapy clinics.  

These systems allow for online imaging of the patient on the same treatment couch and in the 

exact pose in which radiotherapy will be delivered.  As only CBCT systems are suitable for such 

integration CBCT has an intrinsic advantage that FBCT cannot match.  Workarounds such as 

couches that translate between a FBCT and linac are costly and may still induce changes in the 

patient pose between imaging and treatment delivery.  We also take note of the TomoTherapy 

treatment system (Accuray, Sunnyvale, CA), which is essentially a mega-voltage helical CT 

device that can be used to image the patient on the same couch and in the same pose in which 

treatment will be performed.  However, the soft tissue contrast in mega-voltage CT images is 

inferior to that obtained using kilo-voltage CBCT systems. 

Compared to binning based 4DCT algorithms the benefits of our algorithm are 

numerous.  By deforming a static high quality FBCT to produce our reconstructed image 

sequence our method preserves the high image quality of the initial image.  Binning based 

4DCBCT in particular suffers from streak artifacts due to undersampling that can severely 

degrade image quality, while binning based 4DFBCT can exhibit discontinuities at couch 

position boundaries.  Furthermore, the non-uniform scatter collected across the detector 

surface makes CT numbers in FBP reconstructed CBCT unreliable.  Since our reconstructed 

images are simply deformed versions of a superior quality FBCT, the high CT number fidelity of 

the reference FBCT is preserved in our reconstructed 4DCBCTs.  In addition, our method 
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provides a non-time averaged, high temporal resolution portrait of moving patient anatomy.  

Whereas binning based 4DCT reconstruction may provide ~10 images for an acquisition time 

covering a minute or more, our method can produce a reconstructed image at the rate of raw 

data acquisition, which may be on the order of 10 Hz or more.  Finally, our method intrinsically 

produces DVFs linking reconstructed images to a reference phase.  Such DVFs are often an 

integral part of 4D planning methods and are normally produced by deformably registering 

reconstructed images in a separate step.  Our algorithm simplifies this workflow and may avoid 

errors associated with a separate DIR procedure. 

Our time dependent FIPM 4DCBCT reconstruction algorithm relies on three key factors: 

the assumption that the correlation between our measured breathing motion surrogate and 

the motion of internal anatomy remains relatively constant during image acquisition (as noted 

in Section 1.2 either internal or external surrogates may be used), the quality of the DVFs used 

to train our PCA deformation model, and the accuracy with which our DRR module simulates 

the geometry and physics underlying the formation of our raw projection data.  A large portion 

of our work explorers the effect played by these factors.   

 

1.4 Layout of this manuscript 

 

The rest of this manuscript is laid out in four chapters.  Chapter 2 details the specifics of 

our algorithm and describes its proof of concept testing using simulated data.  Chapter 3 

describes adjustments made to the algorithm to account for real world considerations.  

Specifically we discuss the optimizations made to our DRR algorithm to generate physically 
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realistic forward projections.  Chapter 4 describes the application of our algorithm to actual 

patient data.  Each of these chapters begins with an introduction that describes the problem to 

be addressed, followed by a description of the methods used to solve the problem, and is 

concluded with results and discussion.  Chapter 5 serves as a reflection on the process as a 

whole, including a summary of our progress and thoughts on future directions.
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2 Algorithm proof of concept 

 

 

2.1 Introduction 

 

This chapter begins with a detailed description of our FIPM-PCA 4DCBCT algorithm 

including required input data, mathematical framework, and output data.  It proceeds by 

describing our method of numerically generating synthetic data-sets to enable testing with a 

known gold standard.  We then list various aspects of the algorithm for which different 

approaches are tested and describe the matrix of different tests that these variations create.  

Next we present the results of testing and verification of our algorithm on our synthetic data-

sets, and conclude with a discussion of the results. 

 

2.2 Algorithm details 

 

2.2.1 Mathematical framework 
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Our reconstructed 4DCBCT can be formulated as the solution to the following 

minimization problem: 

 

2

2
1

arg min
TN

t t

t

 
  

 


X

X AX Y          (1) 

 

where tX is a reconstructed 3D image of the patient anatomy at time t, tY is a 2D projection 

from the raw 4DCBCT data-set captured at time t, A is the forward projection operator, NT is 

the total number of time points at which projections were captured in the raw 4DCBCT data-

set, and  
1: T

t t N
X X is the complete set of NT reconstructed 3D images, i.e. the reconstructed 

4DCBCT.  We further define tX as the following: 

 

    0t tr r r X X u
  

         (2) 

 

where  t rX


is the intensity value of image tX at location r


, 0X is a static prior 3D image of the 

patient anatomy (the reference image), and  t ru


is the value of time dependent DVF 

deformation model  
1: T

t t N
u u at time t and location r


(a 3 component vector). Thus tX is a 

deformed version of static image 0X . In general, the smaller the time gap between the 

acquisition of the reference image 0X and the CBCT projection data-set Y the better the 

expected reconstruction quality.  Gross anatomic changes, such as the shrinkage of a tumor or 

the collapse or reinflation of a portion of the lung, occurring in the interval between FBCT and 

CBCT acquisition will be difficult for our algorithm to recover.  Minimizing this acquisition 
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interval to ideally a day or less will minimize the risk of such changes occurring.   tu can be 

further expanded as: 

 

 
1

i M

t avg i i

i

w t




 u u e           (3)  

 

where avgu is a mean DVF, ie is an orthonormal basis vector of the same dimensionality as tu , 

 iw t is a scalar time dependent weighting coefficient, and M is the total number of basis 

vectors.  Finally,  iw t can be expanded as: 

 

   i i i iw t Ab t C            (4) 

 

where  b t is a time dependent patient breathing motion surrogate and iA , i , and iC are free 

parameters that modify the amplitude, time offset, and amplitude offset of the breathing 

motion surrogate respectively.  For convenience we define a generic free parameter vector that 

stores all3*M free parameters,    
1: 1:

, ,i i i ii M i M
A C

 
 p p . 

 

2.2.2 Algorithm workflow 

 

The goal of our algorithm is to find the set of iA , i , and iC such that Eqn. (1) is satisfied.  

This goal is achieved iteratively.  As an example, the workflow for iteration j of the algorithm is 

outlined below:  
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1. Plug the free parameter values,    
1: 1:

, ,
j jj

i i i ii M i M
A C

 
 p p , into the DVF deformation 

model to get the current guess at the time dependent deformation model, 

 
1: T

jj

t t N
u u . 

2. Deform the static prior 3D image, 0X , with the deformation model to generate an initial 

guess at the reconstructed 4DCBCT,  
1: T

jj

t t N
X X . 

3. Compute the value of the objective function, formulated as the sum of squared 

differences (SSD) between forward projections cast through reconstructed 4DCBCT and 

the known projections of the raw 4DCBCT data-set, 
2

2
1

TN
j j

t t

t

SSD


  AX Y . 

4. If jSSD falls below a threshold terminate the algorithm.  If not, proceed to step 5. 

5. Use the optimizer to generate a new set of free parameters, 

   
1 11

1: 1:
, ,

j jj

i i i ii M i M
A C

 

 
 p p . 

6. Advance the iteration number 1j j  and return to step 1. 

For the first iteration this workflow is preceded by an additional step 0: 

0. Generate an initial guess at the free parameters of the DVF deformation model, 

   
0 00

1: 1:
, ,i i i ii M i M

A C
 

 p p . 

This workflow is presented diagrammatically in Figure 1. 
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Figure 1: 4DCBCT reconstruction algorithm workflow diagram. 

 

2.2.3 DVF deformation model 

 

Our deformation model is based on the fundamental assumption that the time-changing 

displacements of all the anatomical elements of the patient can be completely described by 

their relative amplitudes and phases, and that these relative amplitude and phase relationships 

remain approximately constant for the duration of the CBCT scan.  Under this assumption, we 

expect that the motion of each voxel will track with the motion of a single reference point, to 
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within their relative amplitude and phase shift factors.  If the motion of the reference point is 

represented by a measured breathing trace  b t , then we assume that the motion of the other 

voxels will track with  b t .  This forms the basis for our breathing model.  

As described in Eqn. (3) our deformation model is constructed as a weighted sum of 

orthonormal basis vectors.  The most desirable basis is one in which the variance of the motion 

data is maximally concentrated along the first few basis vectors and becomes zero or negligible 

for all other basis vectors.  In addition, we desire that the motion data vary independently along 

each basis vector in relation to all other basis vectors.  Then we must only determine weights 

for the limited set of important basis vectors and need not worry about any interdependence 

between them.  Such a basis is represented by the principal components of the breathing 

motion.  Although the principal component basis vectors are not necessarily stochastically 

independent they are maximally de-correlated, which serves as a reasonable approximation of 

independence.  We determine this optimal basis by performing PCA on a training set comprised 

of a temporal sequence of DVFs derived from the breathing motion of the imaging subject.   

The training set must be of sufficient quality to characterize the phase and amplitude 

relationships present between voxels during patient breathing.  Unlike Li et al. we produce our 

training set directly from the CBCT data to be reconstructed. 27 Methods 3 and 4 in Section 2.4.1 

detail the two realistic approaches that we test to generate such a group of DVFs.  For example, 

in method 3 from Section 2.4.1 we first group our raw CBCT projections into bins based on 

breathing phase using the breathing motion surrogate signal.  We then perform a 2D/3D 

registration x between each bin of projections and the reference FBCT using a novel DIR 

algorithm developed within our group. 31  Each registration produces one DVF for the training 
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set.  Once the training set is acquired its covariance matrix is calculated and the eigenvectors of 

the covariance matrix are determined using PCA.  These eigenvectors, or principal components, 

are the orthonormal basis vectors ie in Eqn. (3).  They capture the relative amplitude and 

temporal phase relationships of all of the individual displacement vectors. As in Eqn. (4) the 

weights  iw t , or principal coefficients, are modeled in time using a patient breathing motion 

surrogate or, breathing trace,  b t as a template so that, per our assumption above, the 

displacement vectors will approximately track with the observed movement of the breathing 

reference point.  The idea of creating a complete spatial motion model by driving a set of 

principal component vectors by the movement of a single reference point has been 

independently investigated by Li et al, who also find that it is a reasonable approach.30 

We relate each principal coefficient to the breathing trace through three adjustable 

parameters: iA , i , and iC that modify the amplitude, time offset, and amplitude offset of the 

breathing trace respectively.  The rationale for this simple temporal parameterization of the 

principal coefficients (and our underlying assumption about the relative movement of voxels) is 

found in the behavior of actual 4DCT principal coefficients, as shown for example in Vaman et 

al., where the first two principal coefficients track the breathing cycle to within an amplitude, 

phase, and offset factor as in Eqn. (4).32 This parameterization has been observed to provide a 

reasonable representation of the temporal behavior of principal coefficients derived directly 

from the principal component analysis of a set of empirical breathing DVFs, as discussed below. 

The model utilizes M different eigenvector-principal coefficient pairs. In practice it has 

been found that the first two or three PCA eigenvectors are usually sufficient to accurately 

describe the breathing motion in the training set.24, 27, 28, 32  In the tests of our fitting algorithm a 
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motion model utilizing 5, 7, or 10 eigenvectors produced no improvement in fitting accuracy 

over the 3 eigenvector model. 

 

2.3 Generating a synthetic 4DCBCT data-set 

 

Rather than use actual CBCT data for our proof of concept testing, we used numerically 

simulated raw 4DCBCT data-sets. This afforded us control over the motion complexity of the 

moving 3D object underlying the data and provided us a gold standard with which to evaluate 

our results at every step of the reconstruction process. A numerical 4DCBCT data-set was 

produced as follows:  

1. We constructed a numerical CT phantom, also referred to as the reference CT, in the 

form of a cubic volume cropped from a patient pelvis CT. 

2. An initial DVF was created with 3 spatial components, with the amplitudes varying in 

space according to a 3 dimensional Gaussian function with its maximum at the image 

center. 

3. A time series of DVFs was produced by scaling the vectors in the initial DVF by the 

amplitude of a breathing trace sampled at successive time points.  

4. The time series of DVFs was applied to the reference CT (our static prior image), 

producing a time series of deformed CTs. 

5. DRRs at different simulated gantry angles were cast through the time series of 

deformed CTs to produce a rotating set of projections taken through moving anatomy. 

This became our simulated 4DCBCT data-set.   In our CBCT geometry the CTs were 
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composed of a 64x64x64 matrix of 1x1x1 mm voxels, and a flat panel detector was 

simulated as a 256x256 matrix of 1x1 mm pixels. 

Generating our 4DCBCT in this manner not only produced the requisite set of rotating 

projections of our moving object, but also gave us the true CTs underlying each projection and 

the true DVFs linking those CTs to the reference CT.  These are used in our analysis of the 

factors contributing to reconstruction accuracy. 

 

2.4 Algorithm test matrix 

 

For the purposes of testing and validating our algorithm we performed 4DCBCT 

reconstructions while varying three different environment variables.  The different unique 

combinations of environment variables, 48 in all, yield different settings in which to test our 

algorithm, ranging from most ideal to most realistic.  The three environment variables and the 

different values which they can take are described in the following sections. 

 

2.4.1 DVF training set 

 

The DVF training set serves as the input to the PCA that produces the basis of 

eigenvectors, which is the heart of the deformation model. Each DVF in the training set serves 

as a snapshot of the phase and amplitude relationships between voxel displacements at a 

particular time. For the motion model to perform well it is important that the training DVFs be 

reasonably free of artifacts and errors and sufficiently numerous to capture the essential 
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features of the patient’s breathing.  We investigated four different methods of producing the 

DVF training set, two ideal methods to serve as benchmarks, and two realistic methods.  The 

ideal methods take advantage of the fact that our numerically simulated data-sets contain the 

known CTs underlying each projection image and the known DVFs linking those CTs back to the 

reference CT.  The realistic methods utilize only the projection data, as would be possible in real 

life. 

1. Method 1: Populate the training set with 16 DVFs sampled directly from the full time 

series of known DVFs. 

a. The sampled DVFs are guaranteed to be artifact free. 

b. This is our most ideal method; it produces the gold standard DVF training set. 

2. Method 2: Deformably register the reference CT to 16 deformed CTs sampled from the 

full time series of known deformed CTs to produce 16 DVFs. 

a. The sampled deformed CTs are guaranteed to be artifact free. 

b. The DVFs may contain artifacts from the 3D/3D DIR process. 

c. This method is an idealization but is expected to produce a lower quality training 

set than method 1. 

3. Method 3: Cast 100 projections through each of 16 deformed CTs sampled from the full 

time series of known deformed CTs to simulate 16 phase bins of raw 4DCBCT data.  

Deformably register the reference CT to each bin of projection images. 

a. The projection images within each bin are guaranteed to be artifact free. 

b. The DVFs may contain artifacts from the 2D/3D registration process.  The 

registrations are performed using a novel time independent FIPM DIR algorithm 
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developed within our group.  It is termed FIPM-bspline registration due to its use 

of a bspline DVF model.31  

c. This method simulates a procedure that will be possible in real life.  

4. Method 4: Cast 100 projections through each of 16 deformed CTs sampled from the full 

time series of known deformed CTs to simulate 16 phase bins of raw 4DCBCT data.  Use 

filtered backprojection to reconstruct each phase bin.  Deformably register the 

reference CT to each reconstructed phase bin to produce the DVF training set. 

a. The reconstructed phase bins may contain artifacts due to the FBP 

reconstruction. 

b. The DVFs may contain errors due the 3D/3D registration process, which will be 

exacerbated by artifacts from the FBP reconstruction. 

c. This method simulates a procedure that will be possible in real life.  

It should be noted that we have implemented an idealized projection binning procedure 

for the FIPM and backprojection based methods.  By doing this we sidestepped the 

complications of intra-bin motion that can be expected to occur in real life.  Our goal was to 

test the two methods under identical conditions and discover the best possible performance 

we could expect from each when those conditions are favorable.  Thus we were more 

interested in identifying which method offered the best performance relative to the other 

rather than precisely quantifying that performance. 

For purposes of comparison Figure 2 displays an example slice of the reference CT, a 

known (i.e., ground truth) deformed CT phase, the same CT phase reconstructed by the 2D/3D 
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registration algorithm outlined in method 3, and the CT phase reconstructed via conventional 

FBP 4DCBCT as in method 4. 

 

Figure 2: A slice through the source CT, b) a slice through a known deformed CT, c) a slice through the deformed 
CT reconstructed using the FIPM method, d) a slice through the same deformed CT reconstructed with filtered 
backprojection.  The simulated motion type for this example uses a sine waveform with no phase shifts. The grid 
overlaying the images was added to enhance the visibility of the deformation.  

 

2.4.2 Simulated breathing motion complexity 
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As described in Section 2.3 the time series of DVFs that determines our simulated 

motion was generated by scaling each vector component of an initial DVF with sequential 

amplitude values sampled from a breathing trace.   We altered the complexity of this simulated 

motion in two different ways: by introducing phase shifts in the breathing trace used to scale 

different DVF vectors and by using breathing traces of varying complexity.  For the phase shift 

case we tested two different scenarios: all DVF vectors moving in phase and vectors moving 

with three relative phase shifts.  Phase shifts were distributed by scanning across rows of 

vectors and applying the different shifts in sequence, repeating the pattern every three vectors.   

For the case of breathing trace complexity we also tested two scenarios: a synthetic breathing 

trace sampled from a sinusoid and an actual breathing trace acquired from a patient.  In 

combination this setup produced four different simulated motion complexities, one simple, two 

intermediate, and one complex.  They are as follows: 

1. No phase shifts, sinusoidal breathing trace; the simplest motion. 

2. No phase shifts, actual patient breathing trace; intermediate complexity motion. 

3. Three phase shifts, sinusoidal breathing trace; intermediate complexity motion. 

4. Three phase shifts, actual patient breathing trace; the most complex motion. 

In real life patient breathing will likely span a wide spectrum of complexity.  With these 

different tests our goal was to simulate different motion complexities in a highly controlled 

manner to identify their effect on the results of our reconstruction algorithm. 

 

2.4.3 Fitting target 
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The fitting target is the known data to which the algorithm compares its output.  In real 

life the known data will always be the raw 4DCBCT projections.  However, our numerically 

generated data-sets also contained the true CTs and DVFs underlying the projections.  

Therefore we could modify our algorithm to test against either of these two fitting targets to 

determine the effect on reconstruction quality.  For the three possible fitting targets the 

objective function from step 3 in the algorithm workflow from section 2.2.2 is formulated as: 

1. DVF fitting target: 
2

2
1

TN
j j known

t t

t

SSD


  u u , where known
u is the known set of DVFs 

generated as part of the simulated 4DCBCT data-set. 

2. CT fitting target: 
2
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  X X , where known
X  is the known set of CTs 

generated as part of the simulated 4DCBCT data-set. 

3. Projection fitting target: 
2

2
1

TN
j j

t t

t

SSD


  AX Y , identical to section 2.2.2. 

The DVFs are a direct representation of our deformation model, therefore the set of 

known DVFs was expected to provide the most sensitive fitting target to optimize the model 

with.  The CTs are further removed from the deformation model, so their use as the fitting 

target was expected to produce worse results.  The projections are yet another step removed 

from the deformation model.  In addition, they compress the 3D data of the CTs into a 2D form.  

Therefore we expected them to provide the least sensitive fitting target.  In practice, the effect 

of using successively less sensitive fitting targets is to challenge to optimizer to greater and 

greater degrees in finding the true global minimum, which represents the most correct 

deformation model.  By performing these tests we were able to separate these optimization 
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related effects from those introduced by the previously described tests in sections 2.4.2 and 

2.4.1.     

In addition, this test suite enabled the evaluation of several different optimization 

routines.  We tested the Levenberg-Marquardt, Polak-Ribiere conjugate gradient, BFGS, and 

Nelder-Mead downhill simplex algorithms.  All optimization algorithms were implemented 

using the GNU Scientific Library (GSL), a C library containing various routines for scientific 

computing.33  Of these options, the Nelder-Mead simplex algorithm was the only one to provide 

robust convergence for the projection fitting target, therefore it was used for all reported 

results. 

 

2.5 Results 

 

The product of our reconstruction algorithm is two sets of data, a time series of CTs and 

a time series of DVFs linking those CTs to the reference CT.  From our numerically generated 

data-sets we knew both the ground truth CT time series and the ground truth DVF time series.  

Therefore we could evaluate the results of our algorithm using two metrics, the DVF root mean 

square error (RMSE) and the CT RMSE.  The DVF and CT RMSEs were formulated as  
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  X X      (6) 

 

respectively, where NX is the number of voxels along the CT X (left-right) direction, NY is the 

number of voxels along the CT Y (anterior-posterior) direction, NZ is the number of voxels along 

the CT Z (superior-inferior) direction, NV is the number of directional components composing a 

single DVF vector (always 3), txyzvu is the value in mm of the vth component of the DVF vector 

located at position x,y,z at time t, and txyzX is the value in CT number intensity units (i.u.) of the 

reconstructed 4DCBCT at position x,y,z at time t.  Vector components in the known DVFs ranged 

from about 0 to 6 mm (CT voxels are 1x1x1 mm), while CT number intensity units in the known 

CT time series ranged from 0 to about 3000 i.u.  For our testing on simulated data NT=15 and 

NX= NY= NZ=64.  Our test matrix included four different methods of generating the DVF training 

set, four different types of simulated motion, and three different fitting targets for a total of 

4*4*3=48 unique test scenarios.  We calculated the RMSEDVF and the RMSECT for each of these 

cases and plotted the results.  To display this data we took a particular combination of two 

environment variables and created a trend by holding them constant while the third variable 

was changed.  An overlay of all trends for the changing variable composed a finished graph.  

Thus we were able to plot the 48 data-points for RMSEDVF and RMSECT in three different ways to 

focus on each environment variables.  In Figure 3 we varied the DVF training set generation 

method for different combinations of motion complexity and fitting target, in Figure 4 we 

varied the motion complexity for different combinations of DVF training set generation method 
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and fitting target, and in Figure 5 we varied the fitting target for different combination of 

motion complexity and DVF training set generation method.   
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Figure 3: Variation of DVF (top) and CT (bottom) RMSE with training set generation method for different 
combinations of simulated motion complexity and fit target. 

 
Figure 4: Variation of DVF (top) and CT (bottom) RMSE with simulated motion complexity for different 
combinations of training set generation method and fit target. 
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Figure 5: Variation of DVF (top) and CT (bottom) RMSE with fit target for different combinations of simulated 
motion complexity and training set generation method. 
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From these figures we can discern the overall trend correlated with each environment variable 

and we can also focus on individual trends to make useful observations.  We quantified these 

figures by computing the mean of each column of data points, which are listed in Table 1, Table 

2, and Table 3 for DVF training set generation method, motion complexity, and fitting target 

respectively.   

Table 1: Average reconstructed DVF and CT RMSE for different DVF training set generation methods. 

RMSE variation with DVF training set generation method 

  True DVF subset True CT subset reg 2D/3D reg FBP 3D/3D reg 

DVF RMSE (mm) 0.012 0.053 0.093 0.278 

CT RMSE (i.u.) 8.56 21.65 24.91 57.3 

 

Table 2: Average reconstructed DVF and CT RMSE for different simulated motion complexities. 

RMSE variation with simulated motion complexity 

  
sine,  
single-phase 

patient,  
single-phase 

sine,  
multi-phase 

patient,  
multi-phase 

DVF RMSE (mm)  0.091 0.094 0.124 0.126 

CT RMSE (i.u.)  19.37 25.41 31.61 35.52 

 

Table 3: Average reconstructed DVF and CT RMSE for different fitting targets. 

RMSE variation with fitting target 

  DVF fit target CT fit target DRR fit target 

DVF RMSE (mm) 0.099 0.107 0.122 

CT RMSE (i.u.) 25.76 26.97 31.2 

 

The data plotted in Figure 3, Figure 4, and Figure 5 was obtained by fitting 15 time steps 

spanning about two breathing cycles.  This provided a close up look at the algorithm’s 

performance over a short, closely sampled time interval.  For 4DCBCT data-sets generated using 

the sine breathing trace each breathing period is identical so the number of breathing cycles 

considered in the fit is not important.  However, to ensure that the performance of our 

algorithm did not degrade when we considered more extended periods of patient breathing we 
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also fit data at 100 time points covering about 10 patient breathing cycles for the most realistic 

fitting scenario, i.e., motion driven by the patient breathing trace with multiple phase shifts and 

projections as the fitting target.  For all training set generation methods, including more time 

points spanning a larger number of breathing cycles improved the accuracy of the fit.  For 

training set methods 1-4 the reductions in reconstruction error of the extended fit over the 

limited fit in terms of percent DVF RMSE/CT RMSE were 19 % / 15 %, 12 % / 8 %, 9 % / 7 %, and 

5 % / 5 % respectively. 

 

2.6 Discussion 

 

Conventional backprojection, algebraic, and statistical reconstruction methods for CBCT 

must recover all of the Hounsfield numbers from the projection data. This places maximal 

demands on the amount of sampled projection data and the accuracy of the physical processes 

incorporated in the reconstruction process, resulting in well-known CBCT deficiencies.  Phase-

binned reconstruction for 4DCBCT only makes the problems worse.   We have presented here a 

new reconstruction approach that sidesteps these problems.  Our strategy of deforming a prior 

FBCT image to match CBCT projection images not only relaxes the demands on projection data 

sampling through the use of prior information, it obviates the need to recover Hounsfield 

numbers directly from the CBCT projections.  Furthermore, the use of a motion model to 

animate the prior image allows us to obtain a temporal portrait of anatomical motion that is 

limited only by the time resolution and the duration of the CBCT scan, rather than by the 

practical considerations of conventional 4DCT phase bins.   The gain in image quality when 
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moving from a typical FBP reconstruction algorithm to a FIPM based reconstruction algorithm 

incorporating prior information is clearly seen in Figure 2.  

Our 4DCBCT reconstruction concept was subjected to tests designed to address three 

questions:  

1. What is the best way to generate the DVF training set for PCA? 

2. How is the algorithm’s performance influenced by the complexity of the breathing 

motion? 

3. How does each proxy connecting the DVF deformation model to the output DRRs 

affect the accuracy with which the optimal model parameters can be determined? 

 

2.6.1 DVF training set generation method 

 

We investigated two practical means of obtaining a DVF training set -- the 2D/3D FIPM-

bspline forward projection matching approach (method 3 from section 2.4.1), and the 

conventional backprojected 3D/3D registration approach (method 4 from section 2.4.1) -- and 

compared them to the idealized methods 1 and 2.  The two idealized methods represent the 

gold standards. Figure 3 clearly shows that the FIPM-bspline 2D/3D approach produces better 

results than the backprojected 3D/3D method.  Furthermore, results from the 2D/3D method 

don’t differ substantially from those obtained by directly registering a sub-sample of the known 

CTs to the reference CT (method 2 from section 2.4.1).  As expected, avoiding registration 

altogether by using a sub-sample of the known DVFs (method 1 from section 2.4.1) provides the 

best result.  Looking at Table 1 we see that method 4 produced a roughly threefold increase in 
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RMSE over method 3, while method 3 introduced a less substantial increase in error over 

method 2.  One point of interest is that while the average DVF RMSE of method 3 was nearly 

twice that of method 2, the CT RMSE was only slightly higher.  This is due to the fact that large 

differences in the DVF often cause negligible changes in the resulting deformed CT, especially 

when the CT contains objects that are more or less homogeneous. Exceptions can occur at 

object boundaries, where small DVF changes may produce large intensity changes in edge 

voxels of the deformed image.  Finally, we note that even areas of the numerical phantom that 

appear homogenous tend to have a voxel-to-voxel standard deviation of around 8-10 i.u., which 

is typical of a fan-beam CT.  Average CT RMSEs from the first 3 methods fall within 2 or 3 factors 

of this number, while the RMSE of method 4 is greater by a factor of 5 or 6.   

In our comparison of the DVF training set generation methods we chose to implement 

an idealized image binning procedure for methods 3 and 4.  Our purpose was to eliminate any 

residual motion from the bins and ensure that each contained an adequate projection count in 

order to compare both approaches under ideal circumstances.  In the real world, projections 

will be binned according to the patient breathing trace, which will result in intra-bin residual 

motion and irregular numbers of projections per bin.  We expect that under these conditions 

the forward iterative projection matching method will further distance itself from the 

backprojection method.  The FIPM-bspline method has been shown to produce accurate results 

with far fewer projections than are required for a FBP reconstruction of decent quality.31  This 

allows for narrower bin widths which will in turn reduce residual motion within the bin.  In 

addition, if bins are narrower, then more bins can be used without redundancy, allowing for a 

more densely populated DVF training set that should lead to more accurate PCA eigenvectors.   
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2.6.2 Simulated motion complexity 

 

Our second concern was the performance of the algorithm when faced with different 

degrees of simulated motion complexity.  We have broken this down into two sub-areas of 

inquiry: 1) How many eigenmodes are sufficient to create an accurate motion model, and 2) can 

our breathing trace parameterization accurately represent known principal coefficient traces as 

motion complexity increases? 

Our expectation based on our previous experience32 as well as that of others24, 27, 28 was 

that three eigenmodes would be sufficient for an accurate model.  Figure 6 illustrates the 

eigenvalue spectra for the four different complexities of simulated motion when PCA is 

computed on DVFs sampled directly from the known DVF time series.   
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Figure 6: Eigenvalue spectra for PCA performed on DVFs generated with different simulated motion complexity.  
The DVFs are directly sampled from the sets of known DVFs. 

 

The two single-phase motion types each generate only one non-zero eigenmode, the sine multi-

phase type generates two non-zero modes, and the patient multi-phase type generates 3 non-

negligible modes. This is what one would expect from the principal components analysis of 

time-varying DVFs. For a single-phase, sinusoidal motion, the covariance matrix of the DVFs has 

rank one, and thus only one non-zero eigenvector.  For a sinusoidal motion with different voxel 

phases the covariance matrix has rank two and there are only two non-zero eigenvectors.  For 

more complex motions, the covariance matrix has higher rank (cf reference 34 for the proof).  

For these idealized cases, three eigenmodes will be sufficient to fully model any of these 

motion types.  However, when imperfect DVF training data are used from methods 2-4 a tail 

appears in the eigenvalue spectra extending non-zero values all the way to mode 15 (there are 

16 DVFs per training set, which allows for a maximum of 15 non-zero eigenmodes).  Even so, we 
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have observed that in terms of DVF or CT error there is no benefit gained by modeling more 

than 3 modes.  In terms of convergence of the optimization routine, including more 

eigenmodes does not appear to have any effect.  In the cases tested the algorithm reduced the 

objective function to the same value when fitting 3 modes as it did when fitting 4 or more 

modes.  

To examine the effectiveness of our breathing trace parameterization it is useful to look 

at the bottom-most trend of Figure 4.  This trend plots the RMSE for fits to motion data of 

varying complexity under the most ideal conditions, i.e. the known DVFs are used as the fitting 

target and method 1 is used to generate the DVF training set.  The first three data-points are 

more or less flat, with an increase in RMSE occurring only for patient multi-phase motion 

complexity.  This is due to the fact that pseudo-periodic motion with multiple phases cannot be 

perfectly modeled by the parameterized function of the breathing trace, while the simpler 

three motion types can.  Figure 7 displays the parameterized breathing trace of Eqn. (4) fit 

directly to the known principal coefficient traces for the first and second breathing modes of 

patient multi-phase type data.  Such principal coefficient traces can be constructed by 

projecting the known DVFs from the simulated 4DCBCT data-set into error free eigenvectors 

generated using method 1 from section 2.4.1.  Figure 7 shows that the breathing trace fit is 

close to the known principal coefficient traces but cannot represent them perfectly.  This 

limitation becomes a greater issue when multiple eigenmodes contribute equally to the overall 

variance of the motion data.  However, we have previously observed only one dominant mode 

with one or two much weaker modes in a data-set tracking patient breathing32, and have 

designed our simulated motion to match.  Thus the increase in fitting error is small when going 
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from the sine multi-phase motion type to the patient multi-phase motion type, as illustrated by 

Figure 4 and quantified by Table 2.  Overall Figure 4 and Table 2 indicate a very gradual increase 

in reconstruction error as the complexity of our simulated motion increases. 

 

Figure 7: Parameterized breathing trace fit to known principal coefficient traces for the first (top) and second 
(bottom) eigenmodes.  The known principal coefficient traces were produced by taking DVF time series 
generated with the patient multi-phase motion type and projecting them into the first and second eigenvectors.  
Eigenvectors were trained on a set of DVFs sampled from the known DVF time series. 
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2.6.3 Fitting target 

 

Our final area of inquiry concerned the compression of DVF data down to the DRR level 

at which matching to known data is performed.  This gives the optimization algorithm less 

information to constrain the model parameters.  When starting from parameter values 

initialized to zero, markedly worse results can occur when using DRRs as the target data instead 

of DVFs or CTs.  However, this problem can be avoided by using a good starting guess for the fit 

parameters, as evidenced by the results in Figure 5.  One can get a good starting set of model 

parameters by projecting the DVF training set into the eigenvectors to get estimated principal 

coefficient traces and then fitting them directly with an average phase of the parameterized 

breathing trace function.  As with our test of motion complexity the overall trend depicted by 

Figure 5 and Table 3 is a very gradual increase in reconstruction error as the fitting target 

becomes less optimal. 

In addition, the effects of target data compression were a deciding factor in our choice 

of optimization algorithm.  Our initial pick was the Levenberg-Marquardt algorithm, which 

offered fast convergence in a small number of iterations for the DVF fitting case, but failed at 

the CT and DRR matching levels.  At the DVF matching level the optimization landscape is 

relatively smooth and contains a steep and well pronounced global minimum.  However, when 

CT and DRR matching are introduced the sharp global minimum becomes a more gently sloping 

basin and shallow local minima appear as ripples in the texture of the optimization landscape.  

Examples of the different optimization landscapes encountered when using the DVFs or the 

DRRs as the matching targets are presented in Figure 8.  Both the Polak-Ribiere conjugate 
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gradient method and the BFGS algorithm provided at least partial success, but the Nelder-Mead 

simplex algorithm, our only non-gradient method, proved to be the most dependable.  Our 

motion model requires the optimization of 3*M free parameters, where M is the number of 

eigenmodes incorporated.  For our simulations M was equal to 3, giving us 9 free parameters.  

For comparison, the B-spline models of Docef et al,26 and Zeng et al.25 both contain thousands 

of free parameters while the PCA model of Li et al.27, 28 requires only M free parameters, where 

they set M equal to 3.  However, unlike our model and that of Docef et al. and Zeng et al. their 

model contains no temporal dependence and therefore the fitting process must be repeated at 

every time step. In terms of algorithm efficiency, when fitting data simulated with the most 

realistic conditions around 200 iterations are generally required for convergence of the Nelder-

Mead simplex algorithm.  On an Intel core i7 CPU running at 2.8 GHz with 12 GB of memory and 

considering 15 time steps in the fit this process generally took between 5-10 minutes.  On our 

initial GPU implementation of the code (GeForce GTX480) the same trial finished in about 1-1.5 

minutes. 
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Figure 8: a) Slice taken through the optimization landscape with DVFs used as the matching target. b) A slice 
through the same section of parameter space but with DRRs used as the matching target.  The data for this fit 
was generated using sine motion with no phase shifts and DVFs sampled from the known set of DVFs for the 
training set. 

 

2.7 Conclusions 

 

The contents of this chapter are designed to establish the mathematical framework 

upon which our algorithm is based and put it through proof of concept testing designed to 
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validate its worthiness for further pursuit.  Starting from conditions in which it is essentially 

guaranteed to perform well we have seen that reconstruction performance degrades in a 

gradual and orderly manner when more realistic test scenarios are considered.  The one 

exception to this rule was the use of FBP 4DCBCT reconstruction coupled with 3D/3D DIR to 

generate the DVF training set (method 4 from section 2.4.1).  In this case both DVF and CT 

RMSE experienced a marked jump compared to the gold standard methods as well as the FIPM 

based 2D/3D registration method (method 3 from section 2.4.1).  Therefore the FIPM based 

method is the clear choice moving forward.



 

47 
 

 

3 Tuning for the real world 

 

 

3.1 Introduction 

 

For the most realistic tests described in Chapter 2 we endeavored to simulate complex 

breathing motion, used DVF training set generation methods that will be available for actual 

patient data, and used projections as the fitting target data.  However, those projections were 

generated using the same process as that used to create our DRRs.  In the real world our DRR 

module will not perfectly simulate the projection formation process, and the degree to which 

the two disagree may have a large effect on the success of our FIPM-PCA 4DCBCT 

reconstruction algorithm.  The influence of such projection/DRR mismatch was explored in the 

testing and validation of the 2D/3D FIPM-bspline DIR algorithm used by method 3 in Section 

2.4.1 to generate the DVF training set.  In that work contrast mismatch was simulated by adding 

values sampled from a non-linear gamma function to the target projections, with peak gamma 

function amplitudes equal to either 0.25 or 0.5 % of the max pixel value.  Results indicated that 

the normalized root mean squared error (nRMSE) of the deformed CT when using a high 

contrast numerical phantom increased from a baseline of about 1 % to 3 and 5 % for the two 
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contrast mismatch amplitudes.  For a more realistic pelvic CT image deformed CT nRMSEs 

increased from 1 % to 12 % and 23 %.31  This chapter is devoted to our efforts to devise a DRR 

algorithm that achieves the optimal combination of realism and computational efficiency in 

order to minimize the considerable degradation possible due to this mismatch effect. 

Our group has developed and investigated several FIPM based 2D/3D registration 

methods, of which the topic of this work is one.35-38 In general, this class of algorithms requires 

the calculation of DRRs from the FBCT for comparison to actual cone-beam radiographic 

projections.  The anatomical features that must be registered, as well as the quantitative 

manner in which the DRRs and the projections are compared (i.e., the matching metric, or merit 

function), determine the accuracy with which the two images must match.   

For example, rigid 2D/3D registration for radiotherapy applications typically focuses on 

high-contrast bony features, while a deformable registration algorithm must be sensitive to low 

contrast soft tissue features. Among other applications of DRR-to-projection matching we take 

notice of simultaneous algebraic reconstruction techniques and prior-image-constrained 

remote sensing. 18, 39  Each of these FIPM applications has its own requirements for the DRR 

quality.   

The problem of rigid 2D/3D registration via projection matching to DRRs has a long 

history of study, during which many different image matching metrics have been 

investigated.40-42  Though our interest is in deformable 2D/3D registration, insights from rigid 

registration can provide us with useful guiding principles with regards to such optimization 

parameters.  The lengthy experience documented in the literature demonstrates that each 

metric has merits and weaknesses.  The sum-of-squared intensity differences metric has the 
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advantage of being robust with respect to noise and is easy to formulate for a gradient-driven 

iterative search process, but requires a close correspondence of the absolute image intensities 

in the DRRs and the projections.38, 43, 44  The many formulations of mutual information allow 

much greater variability in the comparative image intensities, but most studies of its 

effectiveness have involved 3D images. 45  Mutual information has been shown to be less robust 

for 2D image matching, owing to the relatively small number of available data samples 

compared to 3D/3D registration.40, 45  This weakness is compounded when there is noise.  It also 

has a smaller and more sharply delimited capture range, which makes it less robust in a 

gradient-driven iterative search.  Formulating gradients of the iterative cost function for mutual 

information is also more difficult than for SSD.44 

In our development of deformable FIPM we have preferred a gradient search and 

therefore have opted to use the sum-of-squared differences as our image matching metric.  We 

have already shown via simulations that this formulation is sensitive to contrast mismatch 

between the DRRs and the projection images, but is relatively insensitive to noise.38  This has 

motivated the present work.  Our goal here was to calculate DRRs solely from fundamental 

physical principles underlying image formation to accurately replicate the absolute image 

intensities in a CBCT projection; i.e. to calculate DRRs from first principles.  We avoid recourse 

to intensity normalization or any other artificial numerical intensity adjustment, which could 

bias the registration towards an inaccurate deformation.  It is not our purpose to maximize the 

contrast in the DRRs, but to reproduce what is present in the projections.  The effects of noise 

on FIPM are minor and relatively easy to incorporate, and therefore were not considered here. 



 

50 
 

Many investigators have described algorithms covering various aspects of the DRR 

generation process.  In particular, much attention has been paid to the x-ray volume rendering 

component, with regards to geometric realism, spatial resolution, and computational efficiency.  

Siddon introduced a widely used algorithm for efficiently calculating the exact radiological path 

through a CT volume. 46 Russakoff et al. developed the concept of “attenuation fields” for fast 

DRR rendering.47  Moore et al. used pencil beams rather than rays as projectors to increase DRR 

realism and avoid aliasing effects.48 Birkfellner et al. used a “wobbled splatting” technique for 

fast DRR generation.49  Other techniques including shear-warp volume rendering, frequency 

domain volume rendering, and Monte-Carlo integration based methods have also been 

investigated.50-52  We note that much of this prior work is tailored to rigid 2D/3D registration for 

patient setup, which emphasizes precise geometrical reproduction of the anatomical pose and 

benefits from the high contrast of skeletal features.  In addition, many authors have used a 

graphics processing unit (GPU) to speed up DRR computation.53-57  Our algorithm uses a 

standard ray-casting approach with GPU acceleration.57 

The basic ray-tracing component of a DRR algorithm models only the attenuation of 

primary photons, whereas projection image formation is influenced by additional physical 

effects.  One such effect is scatter, which can have a large presence in CBCT projections.58  

Various methods of estimating CBCT scatter exist, including beam stop arrays, scatter kernel 

methods, and Monte Carlo simulation.  Ruhrnschopf et al. give a comprehensive summary of 

scatter estimation and correction techniques.59  These solutions are generally framed in the 

context of scatter mitigation in CBCT projections, rather than scatter modeling for DRRs.  

Moore et al. applied a scatter correction specifically aimed at improving DRRs using the beam 
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stop array method.48  Our approach is to use an in-house Monte Carlo algorithm simulating the 

CBCT system to obtain scatter estimates.60  In contrast to the beam stop array method, this 

approach does not require any special equipment and more importantly avoids any extra scans, 

which deliver extra dose to a patient. 

A second effect influencing projection image formation is beam hardening.  Again, there 

are many papers describing beam hardening and beam hardening corrections, but nearly all are 

applied to improving CT reconstruction.  Two popular methods assume that the subject is 

composed entirely of water or bone.61, 62  Yan et al. describe a method for correcting single and 

dual energy CT using an iterative method by representing each voxel in the CT as a sum of basis 

materials.63  In their DRR algorithm Moore et al. explicitly modeled a poly-energetic beam 

rather than applying a correction.  For our DRR algorithm we evaluated both an analytical and 

measurement approach to a beam hardening correction implemented in post-processing.  

A final effect is veiling glare, or leakage of signal from a detector pixel to its neighbors.64-

66  A group at our institution has measured the effect of veiling glare on the flat panel detector 

used in this study. 

We maximize the realism in our DRRs by using an efficient ray-tracing routine combined 

with scatter, beam hardening, and veiling glare corrections.  In this chapter we provide a step 

by step account of the measurements and calculations needed by our algorithm.  Though many 

descriptions of these effects have been described separately, few works exist that consolidate 

them into one algorithm for the purpose of computing realistic DRRs. 
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3.2 Projection definitions 

 

We begin by defining a CBCT projection through an object: 

 

1( ) ( ) ( ) ( ) ( )CBCT i CBCT i CBCT i CBCT i CBCT iP A R S  r r r r r
      (7) 

 

where ir is the location of detector pixel i (all coordinates are in the world coordinate frame), 

( )CBCT iP r is the signal recorded by detector pixel i, 1A is a tube output factor corresponding to 

mAs, ( )CBCT i r is the source fluence distribution aimed at the detector pixel, ( )CBCT i r is the 

transmission, or the fraction of primary particles that remain when the beam reaches the 

detector pixel, ( )CBCT iR r is a pixel dependent detector response function, and ( )CBCT iS r is the 

contribution of scattered photons to the detector signal.  We further define the transmission 

as: 

 

0

( ) exp[ ( )] exp ( )
i

CBCT i i dr 
 

    
 
 

r

r

r r r

       

(8) 

 

where ( ) r is the linear attenuation coefficient (LAC) at location r within the object being 

imaged, 0r is the location of the source, and ( )i r is the line integral of linear attenuation 

coefficients (cumulative LAC) along the ray connecting 0r to ir .  We can expand the scatter term 

as: 
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1( ) ( ) ( )CBCT i CBCT i CBCT iS A Rr r r
        (9) 

 

where ( )CBCT i r is the object scatter distribution.  In general, the scatter distribution is a 

complex function of the object being imaged, the source fluence distribution, and the detector 

pixel location.   

Finally, it is useful to define a special case of Eq. (7) termed a flood projection.  A flood 

projection is taken with no object in the beam, thus transmission is 1 and scatter is 0 across the 

detector surface.  This leads to the following simplified mathematical description: 

 

0( ) ( ) ( )CBCT i CBCT i CBCT iF A R r r r
        (10) 

 

where ( )CBCT iF r is the flood projection signal recorded by detector pixel i.  The flood projection 

empirically captures the source fluence distribution and detector response function. 

 

3.3 DRR challenges 

 

A CT image represents the x-ray attenuation coefficients of materials in the imaged 

object, relative to the attenuation coefficient of water, for the particular energy spectrum of 

the incident x-rays.  The goal of our algorithm is to use a CT image of an object to simulate an x-

ray radiograph (projection) of the object as defined in Eq. (7).  We can divide the physical 

processes that produce a projection into primary and secondary effects.   
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The primary process responsible for image formation is the attenuation of primary 

photons by the object.  This process is governed by the object’s LAC distribution, ( ) r  , in the 

following manner: 

 

0

0 exp ( )i CI I d
 

  
 
 

ir

r

r r

         

(11) 

 

where 0I is the initial intensity of the (mono-energetic) photon beam, iI is the intensity of 

primary photons remaining after the beam passes through the object, and the integral runs 

along the line connecting 0r to ir .  We can use Eq. (11) to calculate the transmission 

factor ( )i r in Eq. (7).  The line integral in Eq. (11) can be estimated using a ray-tracing routine; 

however the CT through which we make projections has dimensionless units of CT number 

(attenuation relative to water), not absolute LAC.  Therefore, our first requirement is to convert 

CT number to absolute LAC in order to render the CT in physically meaningful units.  This is 

complicated by the fact that the absolute LAC depends on the incident x-ray energy spectrum. 

Therefore one must measure the x-ray attenuation through objects of known composition 

using the precise x-ray spectrum of the CBCT system whose projections one wishes to emulate. 

The secondary processes that we need to model are scatter, beam hardening, and 

veiling glare.  Scatter refers to particles that have been deflected by the object but are still 

absorbed by the detector.  Beam hardening refers to the effect whereby the energy distribution 

of a poly-energetic beam is shifted towards higher energies as it passes through an attenuating 

medium.  Veiling glare denotes the leakage of signal from the detector pixel in which it is 
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generated to its neighbors.  These effects must be accounted for in two ways: they must be 

removed from the measurements used to determine the CT number to LAC conversion 

function, and they must be folded into the raw DRR produced by the ray-tracing routine.  This 

separation ensures that scatter, beam hardening, and veiling glare are explicitly and precisely 

accounted for in each individual DRR rather than entangled within the CT number conversion 

function.   

 

3.4 Secondary physics effects 

 

3.4.1 Beam hardening 

 

As a poly-energetic beam passes through a material the lower energy photons are 

preferentially attenuated, causing the average beam energy to increase.  This effect is known as 

beam hardening.  The LAC is an energy dependent quantity, so for a given material with a 

uniform CT number, beam hardening causes the beam to “see” a progressively lower effective 

LAC as the beam traverses the material.  In order to produce physically realistic DRRs we must 

account for this effect.  To this end we must first acquire raw data that characterizes the beam 

hardening effect in material similar to that composing the human body.  Then we must process 

the raw data into correction functions that can either impart or remove the beam hardening 

effect.  We explored two different approaches for both the data collection and data processing 

steps.  With regards to the collection of raw data we tested both measurement and calculation 

based methods, and for data processing we explored methods that produced an aggregate 
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correction function applied to cumulative LAC and an “in-place” correction function applied to 

single LAC values.  

 

3.4.1.1 Beam hardening data 

 

The raw data for the measurement approach is a set of 32 CBCT projections taken 

through solid water blocks ranging in thickness from 2 mm to 180 mm.  The solid water slabs 

are positioned so that the couch does not interfere with the measurement, and a minimal 

volume of the slabs is exposed to the beam to minimize scatter.  In addition, we acquire a flood 

projection at the same CT technique.  We begin by choosing a position on the detector that lies 

beneath the shadow of the solid water slabs as our measurement point and calculate the 

transmission for each slab thickness.  Assuming scatter to be negligible, Eqs. (7) and (10) can be 

used to calculate transmission as follows: 

 

0

1

( )
( )

( )

CBCT i
CBCT i

CBCT i

A P

A F
 

r
r

r          
(12) 

 

In general 0

1

A

A
can be estimated as the ratio of the mAs of the flood projection to that of the 

object projection, or calculated as the ratio of the flood projection to the object projection in an 

area where there is no attenuation in the object projection, i.e. ( ) 1CBCT i r .  The transmission 

for each thickness l  of solid water can be converted to the hardened cumulative LAC using Eq. 

(8): 
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1( ) ln[ ( )]bh CBCTl l  
         (13) 

 

where the subscript “bh1” refers to the presence of beam hardening.  After making these 

measurements for each thickness we estimate the corresponding set of unhardened cumulative 

LAC values as follows: 

 

0 0( )bh l l 
           (14) 

 

where 0 is the average LAC of the material in the unhardened beam spectrum, l is the thickness 

of the solid water slab, and the subscript “bh0” refers to the absence of beam hardening.  While 

we know l for each slab we must calculate 0 .  To do this we start by fitting an 8th order 

polynomial function to our previously determined hardened 1( )bh l data plotted as a function 

of l , generating a function ( )y l such that: 

 

1( )bh l ≈ 2 8( ) a b ...hy l l l l  
        (15) 

 

As thickness l approaches zero we know that 1( )bh l and 0 ( )bh l will converge: 

 

1 0 0
0

lim ( ) ( )bh bh
l

l l l

            (16) 
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Thus we can estimate 0 as the linear coefficient of our polynomial function from Eq. (15): 

 

0 ≈ a             (17) 

 

From this we can calculate 0 ( )bh i r for each slab thickness using Eq. (14). 

Our second approach is to analytically calculate the attenuation process through slabs of 

a test material to obtain the same data-set as above.  This requires three items of input: the 

beam spectrum of our CBCT source, 0 ( )W E , the LAC distribution of the bowtie filter material 

(aluminum), ( )Al E , and the LAC distribution of a test material, ( )mat E , through which we 

calculate the passage of the beam.  We use liquid water as our test material, though any 

material whose attenuation coefficient is known is a possible candidate.  We begin by 

propagating the beam through the middle of the bowtie filter, where it is at its thinnest: 

 

,min 0 ,min( ) ( )exp ( )BT Al BTW E W E E l           
(18) 

 

For all practical purposes this is our true unhardened spectrum, as images are never acquired 

without the bowtie filter and this is the area of the beam used to calibrate our CT number to 

LAC conversion function, described in section 3.5.  We can now calculate the 0 value for our 

test material using an average of ( )mat E weighted by ,min ( )BTW E : 
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,min

0

,min

( ) ( )

( )

BT mat

BT

W E E EdE

W E EdE


 



         

(19) 

 

We then proceed on a pixel by pixel basis, propagating the spectrum through the thickness of 

bowtie filter that each pixel “sees”.  For detector pixel i this new spectrum is calculated as: 

 

, 0 ,( ) ( )exp ( )BT i Al BT iW E W E E l            
(20) 

 

Next, the spectrum for each pixel is filtered through thicknesses of the test material ranging 

from 0 mm to 150 mm in 5 mm increments.  For a given thickness of test material ,mat jl this 

newly filtered spectrum is: 

 

, , , ,( ) ( )exp ( )mat i j BT i mat mat jW E W E E l           
(21) 

 

From here the cumulative hardened LAC corresponding to thickness ,mat jl of material for 

detector pixel i is calculated as: 

 

, ,
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,min
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( ) ln

( )

mat i j

bh i

BT

W E EdE

W E EdE

 
   
 
 




r

        

(22) 

 

and the corresponding unhardened cumulative LAC is calculated as: 
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 0 0 ,bh i mat jl r
          

(23) 

 

In practice the unhardened cumulative LAC values need only be calculated once since they have 

no detector pixel dependence. 

 

3.4.1.2 Beam hardening data processing 

 

Having obtained our data-set of 0bh and corresponding 1bh values, either by 

measurement or calculation, we are prepared to calculate our beam hardening and 

unhardening functions.  The procedure that generates a function correcting cumulative LAC is 

the most straightforward of our two methods.  It generates a function,   1bh ih  r , that will 

convert hardened cumulative LAC from measured attenuation data to unhardened cumulative 

LAC in order to eliminate beam hardening.  It also produces a function   0bh ig  r  that does 

the reverse.   

The beam hardening function   0bh ig  r is obtained by fitting an 8th order polynomial 

to the 1bh values plotted as a function of 0bh .  The input to the function is an unhardened 

cumulative LAC value and the output is a hardening cumulative LAC value, as follows: 

 

          
2 8

1 0 0 0 0...bh i bh i bh i bh i bh ig a b h         r r r r r     (24) 
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Likewise, the beam unhardening function   1bh ih  r  is determined by fitting an 8th order 

polynomial to the 0bh values plotted as a function of 1bh .  The input to this function is a 

hardened cumulative LAC value and the output is an unhardened cumulative LAC value: 

 

          
2 8

0 1 1 1 1...bh i bh i bh i bh i bh ih i j p         r r r r r     (25) 

 

These functions constitute the aggregate beam hardening correction. 

The “in-place” beam hardening correction is more complex to produce and apply than 

the aggregate method, but its structure is motivated by a more natural simulation of the 

physical mechanism of beam hardening.  The goal is a function that takes as input the total 

unhardened cumulative LAC the beam has encountered up to its current point and returns a 

scaling factor to be applied to the unhardened LAC at that point to correct for beam hardening.  

Thus the magnitude of the effect evolves as the beam passes through more material.  To begin 

we extract the following relationship from Eq. (8): 

 

   1 1bh bh d    
0

r

r

r r r          (26) 

 

Taking the derivative of both sides of Eq. (26) yields: 

 

   1 1bh bh

 


r r

r
          (27) 
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Or in terms of unhardened cumulative LAC using Eq. (24): 

 

     0 1 0bh bh bhg 


  


r r
r

        (28) 

  

Using Eq. (28) we define our in-place beam hardening correction function as: 
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r rrr       (29) 

 

This function produces a value between 0 and 1 that scales an unhardened LAC value to impart 

beam hardening effects based on the quantity of material (denoted by  0bh r ) that the beam 

has passed through up to that point.  It is applied as follows: 

 

      1 0 0bh bh bhk  r r r         (30) 

 

A function to convert hardened LAC to unhardened LAC can be similarly computed: 
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      (31) 
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And applied as: 

 

      0 1 1bh bh bhj  r r r          (32) 

 

For both aggregate and in-place corrections if the raw beam hardening data are obtained by the 

measurement method only one of each type of function will be produced.  If the data are 

obtained via calculation unique versions of both functions will be produced for each pixel. 

 

3.4.1.3 Equivalence of aggregate and in-place beam hardening corrections 

 

In general Eq. (32) is not particularly useful since it requires knowledge of the object’s 

hardened LAC distribution, which is dependent not only on initial beam energy but also the 

precise geometrical setup of the object with respect to the beam.  However, Eq. (30) can be 

practically applied to include beam hardening effects in the calculation of the transmission term 

described in Eq. (8).  From the standpoint of computational efficiency the aggregate correction 

method is clearly superior as it is applied once after ray-tracing has finished rather than many 

times as the ray progresses through the object.  However, the in-place method is a more 

faithful simulation of the actual beam hardening process.  Therefore, it is useful to investigate 

whether or not the two corrections produce different results with regards to hardened 

cumulative LAC in order to choose one or the other.  To this end we compute cumulative 

hardened LAC values through two objects with analytically defined unhardened LAC 

distributions using both methods and compare the results.   
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We begin by re-defining our beam hardening corrections.  From Eq. (24), which we 

truncate to a third order polynomial for simplicity, the aggregate correction is: 

 

          
2 3

1 0 0 0 0bh bh bh bh bhg a b c        r r r r r     (33) 

 

Plugging Eq. (33) into Eq. (29) yields the form of the in-place correction: 
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   (34) 

 

where the final equality is obtained by using Eq. (14) to note that  0 0bh  r r and 

subsequently  0 0bh 

 


r

r
. 

Next we define two simple objects to be used as test cases.  Objects are defined as 

spatial distributions of unhardened LAC as follows: 

 

 0bh r r            (35) 
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and 

 

   0 cosbh r r           (36) 

 

To begin, we find the cumulative hardened LAC for the first object using the aggregate 

method.  From Eq. (8) we first calculate the cumulative unhardened LAC for the object: 

 

    
2

0 0
2

bh bh d d        
0

r r

r 0

r
r r r r r        (37) 

 

where we have assumed that 0r 0 for convenience.  Plugging this result into Eq. (33) yields the 

desired expression for cumulative hardened LAC: 
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r r r r
r        (38) 

 

Next we test the in-place method for the same object.  Using Eq. (26), Eq. (34), and Eq. (37) the 

hardened cumulative LAC is calculated: 
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Evaluating the final integral yields: 
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Comparing Eq. (40) and Eq. (38) we see that the two are identical.  Next we used object two to 

test a more complex non-linear LAC distribution.  As before, we began by evaluating hardened 

cumulative LAC using the aggregate beam hardening correction.  To start we computed the 

form of the unhardened cumulative LAC for object two: 

 

     0 0 sinbh bh d d       
0

r r

r 0

r r r r r        (41) 
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Plugging this result into Eq. (33) yields: 

 

          2 3

1 sin sin sin sinbh g a b c    r r r r r      (42) 

 

Next we tested the in-place method for the second object, using the same procedure as 

before: 
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Evaluating the final integral yields: 
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Once again the result from the in-place correction is identical to that of the aggregate 

correction. 

Though this exercise does not represent a proof that the two methods are equal it does 

provide convincing evidence to that effect.  In addition, empirical testing confirmed that DRRs 

corrected by the two methods were identical to within margins of round-off error.  This being 

the case we chose the aggregate method as our standard of practice due to its superior 

computational efficiency over the in-place correction. 

 

3.4.2 Scatter 

 

Scatter refers to those photons reaching the detector that have been previously 

deflected by the object. For our purposes we must be able to remove and add the effects of 

scatter.  To do this we used an in-house Monte Carlo algorithm capable of simulating scatter-

only projections of an object.60, 67  A Monte Carlo scatter projection can be represented as: 

 

     2MC i MC i MC iS A Rr r r          (45) 

 

The Monte Carlo algorithm can also simulate a flood projection: 

 

     2MC i MC i MC iF A R r r r          (46) 
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Dividing Eq. (45) by Eq. (46) produces: 

 

 

 

 

 
MC i MC i

MC i MC i

S

F





r r

r r
          (47) 

 

Making use of a previously acquired CBCT flood projection we multiply Eq. (47) by Eq. (10) to 

yield: 
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Finally, multiplying Eq.  by the inverse of the output factor from Eq. (12), 1

0

A

A
, and assuming 

that  MC i r is approximately equal to  CBCT i r , we obtain an estimate of the scatter 

described in Eq. (9): 

 

     1CBCT i MC i CBCT iS A Rr r r         (49) 

 

This scatter projection could be added or subtracted from another projection to add or remove 

scatter effects. 
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3.4.3 Veiling glare 

 

Veiling glare refers to the leakage of signal from its detector pixel of origin to 

surrounding detector pixels.  We modeled this effect using a point spread function (PSF) that 

characterized this signal spread over an area up to 10 cm distant from the signal origin.  The 

veiling glare PSF was modeled by fitting a parametric function to the edge response function 

obtained from half-blocked projection images, which were obtained by acquiring projections 

with a lead plate positioned over half of the detector surface.  Measurements and fits were 

performed by a group at our institution using the same hardware as used in our DRR 

experiments.  The parametric function was a weighted sum of Gaussian and exponential terms 

used to describe the short and long range effects of veiling glare, respectively.  The veiling glare 

effect was introduced to a projection by convolving it with the PSF: 

 

1 0vg vgP P PSF 
          

(50) 

 

where the subscript “vg1” indicates that veiling glare is present, “vg0” indicates that veiling 

glare is absent, and is the convolution operator.  Likewise veiling glare was removed by 

deconvolving the PSF: 

 

1

0 1vg vgP P PSF 
          

(51) 

 

where 1 denotes the deconvolution operator. 
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3.5 CT number to LAC conversion function 

 

In order to evaluate the integral in Eq. (11) we must convert the CT numbers to units of 

linear attenuation coefficient.  This conversion depends on the energy spectrum (and thus on 

the kVp) at which one wishes to emulate a CBCT projection.  Our method is the same general 

procedure as that used by Moore et al.48  We began by collecting cylindrical plugs composed of 

different materials.  The plugs were inserts of known dimensions taken from a Gammex 

electron density calibration phantom.  We first acquired a FBCT of the phantom with plugs in 

place to determine the CT number of each plug.  Next we separately captured CBCT projections 

at a given technique for each plug.  After removing beam hardening, scatter, and veiling glare 

from these projections, LAC values for each plug material were calculated using Eqs. (8) and 

(14). Once this was accomplished, a 2nd order polynomial fit to the LACs plotted as a function of 

CT number yielded our desired CT number to LAC conversion function,  LACf CT  r , 

where  CT r is the CT number at location r . First, veiling glare was removed from the plug 

projections: 

 

1

, , 0 ,CBCT plug vg CBCT plugP P PSF 
        

(52) 

 

Next scatter was subtracted: 
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     , , 0 0 , , 0 ,CBCT plug vg sc i CBCT plug vg i CBCT plug iP P S r r r
      

(53) 

 

Then the projection was reduced to cumulative LAC: 
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r
r

r
       (54) 

 

and a correction was applied to remove beam hardening: 

 

   , , 0 0 0 , , 0 0( )CBCT plug vg sc bh i CBCT plug vg sc ih  r r
      

(55) 

 

Finally, LAC was calculated from the cumulative unhardened LAC: 

 

 , , 0 0 0

, , 0 0 0

CBCT plug vg sc bh c

CBCT plug vg sc bh
t





r

       
(56) 

 

where t is the thickness of the plugs, 7 cm, and cr is the coordinate of the detector center over 

which the plugs were positioned during imaging.  Plotting , , 0 0 0CBCT plug vg sc bh as a function of CT 

number and fitting with a polynomial yielded our conversion function,  LACf CT  r .  (As 

previously mentioned, this conversion function is specific to the x-ray tube technique at which 

the CBCT projections were made.)  To illustrate the effect of the scatter, beam hardening, and 

veiling glare corrections on the final conversion function, the data points used to build the 
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function and their polynomial fits are plotted in Figure 9 for both uncorrected and fully 

corrected data. 

 

Figure 9: Plot of LAC vs. CT number data points and 2
nd

 order polynomial fits generated from attenuation 
measurements of different plug materials.  Attenuation measurements are either uncorrected or fully corrected 
for scatter, beam hardening, and veiling glare effects. 

 

3.6 DRR workflow 

 

The workflow for producing a fully corrected DRR was similar to the reverse of that for 

processing the plug projections.  First, a raw DRR was produced using an x-ray volume 



 

74 
 

rendering routine.  We used a ray-tracing based approach that approximated the line integral in 

Eq. (11) as the following: 

 

 
0

0

i

bh d
r

r

r r ≈  , 0 0

0

[ ( )]
K

DRR bh i LAC

k

f CT k r


   r r Δr

     

(57) 

 

Where K is the number of steps that fit between 0r and ir ,Δr is the ray-step vector, and r is the 

ray-step length.  The CT is sampled at location 0 kr Δr using tri-linear interpolation.  This 

algorithm is fully supported by the hardware implementation of ray tracing and interpolation 

on a GPU platform.57 After the raw DRR was generated, beam hardening effects were 

introduced: 

 

   , 1 , 0( )DRR bh i DRR bh ig  r r
        

(58) 

 

Using this result and Eqs. (7) and (8) a beam hardening corrected projection image was 

produced: 

 

     1
, 1 , 1

0

exp[ ]DRR bh i CBCT i DRR bh i

A
P F

A
 r r r

      
(59) 
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The flood projection allowed us to reproduce the CBCT source fluence distribution in the DRR, 

and the output factor allowed us to recover the beam output of the target projection.  This 

image was then corrected for scatter: 

 

     , 1 1 , 1 ,DRR bh sc i DRR bh i CBCT obj iP P S r r r
       

(60) 

 

where the scatter projection was calculated using the method of section 3.4.2.  Lastly, the 

veiling glare effect was introduced and the DRR was fully corrected: 

 

, 1 1 1 , 1 1DRR bh sc vg DRR bh scP P PSF 
        

(61) 

 

3.7 Projection acquisition 

 

For verification, DRRs were computed through object FBCTs and compared to actual 

CBCT projections of the same object.  Two different objects were tested in this study, a 

Catphan™ CT phantom (The Phantom Laboratory, Salem NY), and an actual patient.  In each 

case projections were acquired at 20 ms, 20 mA, and 125 kVp.  Catphan™ projections were 

acquired in full-fan mode while patient projections were captured in half-fan mode, each using 

their respective aluminum bow-tie filters.  All images were acquired on the OBI™ CBCT system 

(Varian Medical Systems, Palo Alto, CA) which utilizes a G242 kilovoltage x-ray source and a 

PAXSCAN 4030CB flat panel detector mounted to the CLINAC.  In addition a 10:1 antiscatter grid 

is positioned on top of the detector system, which is protected by a 0.5 mm aluminum cover.
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3.8 Results 

 

We tested the accuracy of the DRR algorithm using comparisons between our DRRs and 

the actual CBCT projections they were intended to match.  We calculated two different sets of 

DRRs – one set using just the measured linear attenuation through the medium (uncorrected) 

and a second set using the full algorithm with corrections for beam hardening, scatter, and 

veiling glare in both the LAC measurements and the DRR projections.  This displays the relative 

importance of the corrections as a whole.  We do not provide a complete breakdown of the 

effect of each individual effect, however we do provide a general quantitative analysis as 

discussed in the latter stages of Section 3.9.1.   We used two different objects as test cases - a 

Catphan™ CT phantom, and an actual patient.  For both sets of DRRs, a CBCT flood projection 

was used to measure the output and source fluence distribution of the CBCT system when the 

raw DRRs were post-processed.  We emphasize that these DRRs are absolute calculations of 

detected signal intensity, without any normalization factor or other numerical adjustment to 

match to the CBCT projections.  For qualitative validation we focus on visual comparison, 

comparison of pixel intensity profiles, and comparison of image intensity histograms. For 

quantitative validation we correlate the DRR pixel intensities with the actual projection pixel 

intensities. 

 

3.8.1 Visual comparison 
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Figure 10 displays projections cast through the CT phantom, and Figure 11 and Figure 12 

show projections cast through an actual patient at different angles.  The images in each figure 

are set to the same window and level for comparison.  In Figure 10 the bottom of each DRR was 

contaminated by metal artifacts in the Catphan™ FBCT.  This has no bearing on the efficacy of 

our method and is subsequently ignored.   

a   b  

c  

Figure 10: Projections through a Catphan
™

 CT phantom at a projection angle of 0 degrees. a) uncorrected DRR, b) 
fully corrected DRR, c) actual CBCT projection.  Red lines in c) indicate locations where line profiles are sampled. 
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a   b  

c  

Figure 11: Projections through a patient at a projection angle of 92.67 degrees. a) uncorrected DRR, b) fully 
corrected DRR, c) actual CBCT projection.  Red lines in c) indicate locations where line profiles are sampled. 
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a   b  

c  

Figure 12: Projections through a patient at a projection angle of 178.93 degrees. a) uncorrected DRR, b) fully 
corrected DRR, c) actual CBCT projection.  Red lines in c) indicate locations where line profiles are sampled. 

 

The goal of this evaluation is not to give an expert analysis of DRR image quality, as 

might be provided by a radiologist, but to make some basic visual observations on the output of 

our algorithm.  We begin by noting that both uncorrected and corrected DRRs bear a close 

resemblance to the CBCT projections, with most obvious features clearly reproduced.  In 

general the uncorrected and corrected DRRs look similar; both look less crisp than the CBCT 

projections due to the coarse resolution of the FBCT relative to the size of the detector pixels.  

This effect causes the loss of some detail in both corrected and uncorrected DRRs, such as the 

spine and vertebral disks in Figure 11. 
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However, in the patient projections in particular the corrected DRRs show more realistic 

contrast than the uncorrected DRRs with respect to the actual CBCT projections.  In Figure 11a, 

the uncorrected DRR, the upper right side of the patient is essentially saturated in black while 

the actual projection, Figure 11c shows considerable contrast.  In the corrected DRR, Figure 

11b, some of this lost contrast has been visibly recovered.  Similarly, Figure 12 shows areas, 

particularly at the top of the image above the crest of the lung, where the uncorrected DRR is 

saturated in black, while both the corrected DRR and actual CBCT projection maintain visible 

contrast. 

 

3.8.2 Pixel intensity profiles 

 

Figure 13, Figure 14, and Figure 15 show pixel intensity profiles sampled along the 

horizontal direction from each set of uncorrected, fully corrected, and actual projections.  The 

locations at which these profiles were sampled are marked on the actual CBCT projections in 

Figure 10, Figure 11, and Figure 12.  For the most part, both the curves for the fully corrected 

and uncorrected DRRs track with the actual CBCT projection, although the uncorrected curves 

tend to consistently underestimate the pixel intensity.  This is particularly visible in Figure 15.  

Figure 14 and Figure 15 compare intensity profiles for real patient data.  The FBCT through 

which the DRRs were cast was taken on a different day than the CBCT projections to which the 

DRRs are compared.  For this reason it is impossible to perfectly match patient CBCT projections 

and DRRs, as the patient setup will invariably differ and some internal anatomic deformation 

will be unavoidable.  In addition, the CBCT and FBCT systems have different couches, and in 
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Figure 11 and Figure 12 couch structures that are plainly visible in the actual CBCT projections 

are absent from the DRRs.  Areas in the line profiles of Figure 14 and Figure 15 where the DRRs 

and CBCT projections radically disagree reflect these differences. 

a   b  

c  

Figure 13: Comparison of line profiles sampled from an actual CBCT projection, a DRR uncorrected for beam 
hardening, scatter, or veiling glare, and a fully corrected DRR.  Projections are taken through a Catphan

™
 CT 

phantom at a projection angle of 0 degrees.  Line profiles are sampled at a) row 48, b) row 284, and c) row 582. 
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a   b  

c  

Figure 14: Comparison of line profiles sampled from an actual CBCT projection, a DRR uncorrected for beam 
hardening, scatter, or veiling glare, and a fully corrected DRR.  Projections are taken through an actual patient at 
a projection angle of 92.67 degrees.  Line profiles are sampled at a) row 145, b) 360, and c) row 630. 
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a   b  

c  

Figure 15: Comparison of line profiles sampled from an actual CBCT projection, a DRR uncorrected for beam 
hardening, scatter, or veiling glare, and a fully corrected DRR.  Projections are taken through an actual patient at 
a projection angle of 178.93 degrees.  Line profiles are sampled at a) row 145, b) 360, and c) row 630. 

 

3.8.3 Intensity histograms 

 

Figure 16 plots intensity histograms of the actual CBCT projections alongside histograms 

of uncorrected and fully corrected DRRs.  Areas contaminated by the treatment couch, in the 

case of the patient projections, or metal artifact, in the case of the Catphan™ projections, were 

excluded from the histograms.  For all cases the fully corrected DRR histograms exhibit a closer 

match to the CBCT projections than the uncorrected DRRs.  Computing the Dice coefficient 

between CBCT and DRR histograms yields a measure of the overlap between the two 
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distributions.  The Dice coefficient ranges from 0 (no overlap) to 1 (perfect overlap) and is 

defined as: 

 

2( )CBCT DRR

CBCT DRR

H H
D

H H





         (62) 

 

For the Catphan™ histograms in Figure 16c the Dice coefficients for the fully corrected 

and uncorrected DRR histograms when measured against the CBCT histogram were 0.87 and 

0.76 respectively.  For the patient histograms in Figure 16b corrected and uncorrected values 

were 0.84 and 0.80, and for the patient histograms in Figure 16a corrected and uncorrected 

values were 0.73 and 0.59.  
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a   b  

c  

Figure 16: Histograms comparing the intensity distributions of actual CBCT projections, DRRs uncorrected for 
beam hardening, scatter, or veiling glare, and fully corrected DRRs. Comparisons are for projections cast through 
a) a patient at a projection angle of 92.67 degrees, b) a patient at a projection angle of 178.93 degrees, and c) a 
Catphan

™
 CT phantom at a projection angle of 0 degrees.  In a) and b) areas of the projections contaminated by 

the treatment couch are omitted from the distributions. In c) areas of the projections contaminated by metal 
artifacts in the FBCT image are omitted from the distributions. 

 

3.8.4 DRR-to-projection intensity correlation 

 

The scatter plots in Figure 17 display the correspondence between intensity values 

recorded by actual detector pixels and their counterparts in both corrected and uncorrected 

DRRs. A perfect match of DRR to projection is represented by the (pink) line of slope one.  

Intensity mismatch is represented by the scatter around this line as well as any systematic 

offset in slope or intercept. 
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We obtain a quantitative measure of these correlations by computing the mean percent 

disagreement between CBCT projection and DRR pixel intensities averaged over all pixels, along 

with the standard deviation about this mean.  The mean value describes the extent to which a 

scatter distribution is systematically offset from the line of perfect agreement, while the 

standard deviation describes how tightly grouped the distribution is.  A positive mean 

difference indicates that on average the DRR overestimated the true pixel intensity, while a 

negative difference signifies that on average the DRR underestimated the true pixel intensity.  

For the patient data plotted in Figure 17a the percent disagreements for the corrected and 

uncorrected DRRs were 34.22 ± 33.88 % and -46.61 ± 41.19 % respectively.  For the patient data 

plotted in Figure 17b percent disagreements for corrected and uncorrected DRRs were 6.52 ± 

6.46 % and -22.09 ± 21.87 % respectively.   For the Catphan™ data plotted in Figure 17c percent 

disagreements for corrected and uncorrected DRRs were 4.01 ± 3.97 % and -6.58 ± 6.52 % 

respectively. 
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a   b  

c  

Figure 17: Scatter plots showing the correspondence between pixel intensities in actual CBCT projections and 
those of both corrected (black) and uncorrected (green) DRRs.  The pink line indicates the track along which 
perfect correspondence is achieved.  Scatter plots are plotted for projections cast through a) a patient at a 
projection angle of 92.67 degrees, b) a patient at a projection angle of 178.93 degrees, and c) a Catphan

™
 CT 

phantom at a projection angle of 0 degrees. 

 

3.8.5 Beam hardening comparison 

 

Figure 18 displays intensity profiles comparing the measured and calculated beam 

hardening corrections.  For reference, the actual CBCT projection intensity profiles are also 

included.  In the center of the profiles the two beam hardening methods exhibit the best 

agreement, while the two curves begin to diverge closer to the edges.  This is expected, as the 

data for the measured correction is collected at the center of the detector.  At the sides of the 



 

88 
 

detector the calculated method, which accounts for the heterogeneous bowtie filter thickness, 

increasingly deviates from the measurement based method, which does not.  

a   b  

c  

Figure 18: Line profiles sampled from projections cast through Catphan CT phantom for comparison of two 
different beam hardening correction methods.  Line profiles are sampled at a) row 48, b) row 284, and c) row 
582. 

 

3.9 Discussion 

 

Before discussing our results it is important to reiterate our motivation for developing a 

DRR algorithm from first principles for the purpose of FIPM based deformable 2D/3D 

registration within the context of our FIPM-PCA 4DCBCT algorithm.  As our goal is to minimize 

the discrepancy between DRRs and CBCT projections in absolute units we must have a DRR 
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algorithm that produces realistic image intensities.  However, our DRR algorithm must also be 

unbiased, i.e. it must not conceal or misrepresent differences between DRRs and CBCT 

projections that correspond to actual deformation features.  Any scheme that artificially scales 

or adjusts the DRRs to the actual CBCT projections runs the risk of compromising such features.  

By grounding our algorithm in the fundamental physics of image formation our method meets 

the dual goals of closely reproducing CBCT projection intensities while avoiding bias that could 

affect the integrity of our image registration process.   

 

3.9.1 Qualitative and quantitative algorithm assessments 

 

In testing our algorithm we calculated DRRs both with and without physics corrections 

and compared the results to actual CBCT projections.  This allowed us to compare our DRRs to a 

“ground truth” in order to determine the absolute accuracy achieved by our algorithm, as well 

as to examine the relative effect of our physics based corrections.  In our assessment of 

absolute DRR and CBCT projection agreement there were two potentially confounding factors.  

The DRRs were manually aligned to the CBCT system geometry, with small misalignments 

possibly resulting in large discrepancies between pixel intensities.  Additionally, for patient data 

some deformation inevitably occurred in the time between FBCT and CBCT projection 

acquisition.  This likely caused differences between DRRs and CBCT projections unrelated to the 

DRR algorithm. Due to these factors our quantitative assessments likely indicate an upper 

bound on the accuracy we can expect from our algorithm.   
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With respect to our visual comparison of DRRs to the actual CBCT projections, both 

corrected and uncorrected methods appear to produce images that look similar to each other 

and to the actual projection.  Differences mainly appear in low intensity areas where the 

uncorrected DRR became saturated in black while the corrected DRR and actual projection 

maintained some visible contrast.  The line plots in Figure 13, Figure 14, and Figure 15 show 

that in general both corrected and uncorrected DRRs follow the general shape of the actual 

CBCT projection.  It is observed that the uncorrected DRRs tend to underestimate the true CBCT 

projection intensity, while the corrected DRRs slightly overestimate the CBCT projection 

intensity.  A similar effect is observed in the intensity histogram plots of Figure 16, with 

histograms of corrected DRRs shifted to the right and those of uncorrected DRRs shifted to the 

left.  In each of the three cases shown the Dice coefficient for the corrected DRRs was larger 

than that of the uncorrected DRRs, indicating that the physics corrections consistently provide a 

quantifiable improvement in DRR quality.  Assessment of the scatter plots in Figure 17 supports 

this conclusion.  Scatter distributions from corrected DRRs all fall somewhat above the line of 

perfect agreement indicating overestimation of pixel intensity, while distributions for 

uncorrected DRRs consistently fall below the line, indicating underestimation.  In all cases the 

mean error for the corrected DRRs is less than the uncorrected DRRs.  The same goes for the 

standard deviations of the errors, indicating a tighter distribution for the corrected DRRs.  The 

smallest error and error standard deviation of 4.01 ± 3.97 % occurs for the corrected DRR cast 

through the Catphan™.  We expect the Catphan™ to give us the smallest errors since it is a rigid 

object and will thus avoid the deformations that can occur in patient images.  For this reason it 

is our best estimate of the true error of our algorithm.  We choose to quantitatively evaluate 
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our algorithm using percent mean error of the absolute DRR intensities since this is the most 

relevant quantity with regards to the SSD merit function.  This measure is a broad indicator, in 

the sense that a small percent error in absolute intensity will usually be indicative of a small 

error in relative metrics such as contrast, while the reverse may not be true.  

In a previous study we quantitatively examined the effect of intensity mismatch on 

registration quality by introducing an artificial, non-linear variation between projection and DRR 

intensities.38  The magnitude of disagreement required to induce appreciable degradation of 

the registration results was in the neighborhood of 1 %, which is below our present best value 

of 4.01 %. However, looking at Figure 17c, the variations in our Catphan™ DRR appear to follow 

a straight line, and therefore may have less of an effect on the FIPM algorithm than those 

previously considered. We are now in a position to repeat our test of the sensitivity of 2D/3D 

FIPM to DRR accuracy using actual rather than contrived contrast mismatch. 

The corrected DRRs consistently overestimate true projection intensities, while our 

uncorrected DRRs consistently underestimate them.  In the uncorrected DRRs the effects of 

scatter, beam hardening, and veiling glare are included in the CT number to LAC conversion 

function to the degree that they are present in the plug projections.  If the sum of those effects 

is greater in the plug projections than in the actual object projections the DRR will overestimate 

the true CBCT projection intensity.  If the reverse is true the DRR will underestimate the true 

CBCT projection intensity.  Averaged over all 12 plug materials, the absence of the scatter, 

beam hardening, and veiling glare effects reduces the image intensity within the plug shadows 

by 9, 5, and 19 % respectively when each is individually removed from the plug projections.  

Likewise, when scatter, beam hardening, and veiling glare effects are not accounted for in DRR 
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post-processing the average DRR pixel intensities are decreased by 32, 19, and 1 % respectively, 

using the Catphan™ DRRs as an example.  From this we see that the veiling glare effect is 

overrepresented in the plug projections as compared to the object projections, while the beam 

hardening and scatter effects are underrepresented.  This suggests that the two large 

underestimations with regards to scatter and beam hardening outweigh the overestimation of 

veiling glare, leading to a net underestimation of the total effect, which in turn produces the 

observed underestimation of CBCT projection intensity in the uncorrected DRRs.  Analyzing the 

source of the consistent overestimation of CBCT pixel intensity in the corrected DRRs is 

somewhat trickier, since our whole effort has been to accurately mimic the physics behind 

image formation.  The most likely source is an overly aggressive beam hardening correction, 

which assumes that the object is composed of a single material (solid water in the case of the 

measured correction, liquid water in the case of the calculated correction).  Using our 

calculation based framework we can test many different materials and examine the beam 

hardening functions they produce.  For example, using polystyrene or adipose as the test 

material produces a less aggressive beam hardening function than liquid water, using muscle or 

lung produces a nearly identical correction, and using bone produces a more aggressive 

correction. 

In addition to the systematic intensity offset present in the DRRs, the scatter 

distributions in Figure 17 are also spread about the mean.  This is likely a result of geometric 

misalignment of the FBCT scan, deformation of the object between FBCT and CBCT projection 

acquisition (if applicable), and the volume averaging effect caused by the relatively coarse 
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resolution of the FBCT with respect to the size of the detector pixels.  Indeed, the Catphan™ 

scatter plot, where the second of these factors is absent, shows the tightest distribution. 

Of additional interest is our comparison of the calculated and measured beam 

hardening corrections.  While the measurement approach has the benefit of using the actual x-

ray technique and detector used to form the CBCT projections, the calculation method 

intrinsically avoids scatter and veiling glare, is uncontaminated by noise, and can be calculated 

separately for each detector pixel to account for the non-uniform thickness of the bowtie filter.  

In addition, any desired test material can be used to simulate the beam hardening effect, 

opening up the possibility of a material-sensitive correction.  The two corrections tend to agree 

well in the center of projection images, where we expect the measured approach to perform 

well since the beam hardening data are recorded there.  They diverge towards the edges of the 

projections, with the calculation method providing a better match to the actual CBCT 

projections as increased bowtie filter thickness becomes a factor.  For this reason we chose the 

calculation based correction as our method of choice, and all corrected DRRs other than those 

used for Figure 18 were post-processed using calculated beam hardening. 

 

3.9.2 Comparison to the literature 

 

The x-ray volume rendering approach that we have employed has various benefits over 

other methods for the purpose of FIPM.  Splatting algorithms are fast but produce inferior 

quality DRRs compared to ray-tracing methods, especially with respect to image sharpness. 68, 69  

Shear-warp methods produce similarly blurry images.69  Fourier volume rendering does not 
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support perspective projection and thus is of limited use.52  Exact path length ray-tracing 

methods are known to suffer from artifacts due to aliasing.48, 69  Our method avoids such 

artifacts because the tri-linear interpolation used to sample the CT serves as an anti-aliasing 

(smoothing) filter.  Moore et al. modified an exact path length algorithm to use a pencil beam 

rather than a ray as the projector to avoid artifacts.48  This approach provides a similar 

smoothing effect but is not as easily ported to run on the GPU as our method, which takes 

advantage of hardware-implemented tri-linear interpolation. 57  Light field methods provide a 

means of interpolating between pre-computed DRRs to generate DRRs from arbitrary angles.47  

However, FIPM algorithms for deformable registration must calculate projections through 

continuously changing CT volumes, thus any pre-computed projection data become useless as 

the algorithm iterates.  Likewise, Monte Carlo methods rely on a pre-computed sample of 

points within the CT space, limiting their utility for our purposes.52   

While many different approaches to the x-ray volume rendering problem exist in the 

literature, references that construct realistic DRRs based on complete image formation physics 

are difficult to find.  Moore et al. provide one such work, with the goal of creating a tool to aid 

in the optimization of computed radiography (CR) imaging parameters for chest radiographs 

that avoids additional patient exposures.  Their algorithm contains many of the same elements 

as ours, though implemented in different ways.  As noted, their ray-tracing routine uses a 

volume based projector to sample the CT, whereas we use tri-linear interpolation.  Both 

algorithms are likely to produce similar results, but our approach is attractive since it is easily 

ported to run on the GPU.  Beam hardening is another area of differentiation.  Moore et al. 

explicitly account for beam hardening by casting many projections through the CT at different 
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simulated energies, and then computing an average projection weighted by the measured x-ray 

spectrum of their machine.  In contrast, our approach computes a single DRR at the average 

beam energy and then applies a beam hardening correction as a post-processing step.  While 

their approach may provide a realistic simulation they pay a massive price in speed, with 

reported times of 45-90 minutes per DRR.  Our correction incurs minimal additional 

computational overhead, a necessity for an application like FIPM.  In addition, Moore et al. use 

a beam stop array method to measure scatter, as opposed to our Monte Carlo approach.  

Measurement based approaches have the benefit of intrinsically including the characteristics of 

the x-ray source/detector system.  However, in order to avoid giving patients extra dose Moore 

et al. were forced to adapt scatter distributions measured from a RANDO phantom to their 

patient geometries, limiting them to patients with approximately the same proportions as the 

phantom.  Using Monte Carlo, independent scatter distributions can be calculated for any 

patient, which is preferable for a registration algorithm meant to be generally applicable.  

Finally, Moore et al. do not account for the veiling glare effect.  As discussed in section 3.9.1, 

this effect has the greatest impact in the plug projections used to make our CT number to LAC 

conversion function.  Moore et al. create a similar conversion function; however instead of 

directly measuring the LAC of each plug insert they calculate it from reported density and 

elemental makeup values.  This approach has the drawback of depending on manufacturer-

reported values for a critical aspect of the overall DRR calibration process, but renders the 

absence of a veiling glare correction more or less harmless.  Overall, Moore et al. report CBCT 

and DRR intensity histograms that look similar, as well as comparable signal-to-noise ratios and 

tissue-to-rib ratios (their measure of contrast) for different tissues within their real and 
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calculated projections.  The differences between their algorithm and our own do not 

necessarily reflect better or worse ways of producing DRRs, but instead relate to the different 

applications for which the DRRs are meant to be applied, particularly with regards to speed. 

 

3.9.3 Computational efficiency 

 

Computational efficiency is an area of concern for the application of FIPM.  Our test 

scenario used a 1024x768 detector matrix, a 512x512x281 CT with voxels of approximately 

1x1x1 mm, and a ray step-size of 0.5 mm.  The workstation on which we calculated projections 

ran Debian Linux on an Intel Core i7 CPU clocked at 2.8 GHz with 12 GB of memory.  Execution 

time scales linearly with number of detector pixels and ray step-size, and approximately linearly 

with the length of the projected rays.  Under these conditions, uncorrected DRRs were 

calculated in about 0.35 seconds on average using a GeForce GTX 480 GPU.  Over 95% of the 

computation time was spent performing tri-linear interpolation on the CT image, which was 

carried out by the GPU hardware using special texture memory.  Once the GPU finished ray-

tracing, it handed the raw DRR back to the CPU where the scatter, beam hardening, and veiling 

glare post-processing corrections were applied.  The scatter and beam hardening corrections 

were performed in a matter of milliseconds, however the veiling glare correction, which 

requires a convolution between a kernel sampled on a 600x600 grid and the 1024x768 pixel 

projection, generally took around 15 seconds.  Of the three post-processing corrections the 

veiling glare correction is by far the least important.  As noted in section 3.9.1, the veiling glare 

effect produces only a small change in image intensities of large object projections, such as 
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Catphan™ images.  Therefore in practice it will likely be acceptable to omit this step for the sake 

of efficiency.  The veiling glare effect was mainly apparent when a small highly attenuating 

object was imaged in an otherwise unobstructed x-ray fluence.  In this scenario a large 

proportion of the signal that appeared in the object’s shadow could be attributed to veiling 

glare.  As demonstrated in section 3.9.1 the plug projections used for our CT number calibration 

curve fall into this category, thus it remains important to correct for veiling glare in the 

attenuation measurement data. 

Finally, we note that the post-processing corrections applied to our DRRs can just as 

easily be applied in reverse to “clean up” actual CBCT projections.  This is likely the preferable 

route in the context of our full FIPM algorithm, as it can be done once, offline, before the 

iterative reconstruction process is initiated.  Even though this type of backwards correction is 

done offline, the veiling glare effect may still be too costly to include, as in reverse it requires a 

deconvolution taking 15-20 minutes using an implementation of the Richardson-Lucy algorithm. 

70  However, it is likely that a large speedup of the deconvolution algorithm can be obtained 

using a GPU. 

 

3.10 Conclusions 

 

The goal of this chapter was to devise an algorithm for producing physically-realistic 

DRRs that match actual CBCT projections with no artificial scaling, renormalization, or other 

adjustment.  We analyzed the effects of beam hardening, scatter, and veiling glare and have 

found that they play a small but non-negligible role in the agreement between DRR and CBCT 
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projection.  In addition, we compared beam hardening corrections generated from measured 

and simulated data and determined simulation to be the superior method.  Finally, we 

benchmarked our algorithm for speed and found it to be sufficiently fast for application to our 

FIPM based 4DCBCT reconstruction method. 

We were motivated in these efforts by the observation that simulated contrast 

mismatch in a previous study of an FIPM based algorithm induced a jump in CT nRMSE of over 

20 %.31  While it is not yet clear whether our improvements are sufficient to mitigate this effect, 

we now have the tools to perform a simulation study using realistic projection/DRR mismatch. 
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4 Real data testing and verification 

 

 

4.1 Introduction 

 

In this chapter we document our experience reconstructing actual patient lung 

movement data using the full implementation of our algorithm as described in Chapters 2 and 

3.  As in Chapter 2 we designed a matrix of tests of escalating complexity and realism to assess 

the performance of our method.  In each test the accuracy of our reconstruction was evaluated 

in comparison to a gold standard derived from an independent reconstruction of the 3D 

movement of fiducial landmarks in the lung.  We present both quantitative and qualitative 

reconstruction results and analyze their implications. 

 

4.2 Patient data-sets 

 

At our institution we have patient data-sets containing multiple 4DFBCTs and 4DCBCTs 

acquired over the course of lung cancer radiotherapy treatment.  The 4DCBCT data-sets contain 

the raw 4DCBCT projections and their associated meta-data, patient breathing traces captured 
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simultaneously with image acquisition using the RPM system, and final 4DCBCTs reconstructed 

via phase-binning and backprojection.  In addition, patient tumors were implanted with radio-

opaque fiducial markers prior to imaging and we have 3D marker positions in the imaging world 

coordinate system for each projection in the raw 4DCBCT data-set in which the marker was 

visible.  Together these positions form a 3D motion trajectory of the marker as captured during 

imaging.  These 3D marker trajectories were estimated independently using the method of 

Poulsen et al. as described in section 4.6.1, and were treated as a gold standard of internal 

anatomic patient motion to which we compared our results. 71 

 

4.3 Data pre-processing 

 

Before reconstructing a 4DCBCT with our algorithm we first pre-processed the input 

FBCT and CBCT data by masking it so that the implanted marker was the only visible structure.  

For the FBCT data we isolated the 3D marker and set all other voxels to zero.  In addition, we 

cropped the full FBCT volume down to a smaller size to enable faster DRR computation.  For the 

CBCT data, we segmented the 2D marker shadow within each raw 4DCBCT projection so that it 

was the only visible structure.  After segmentation we then blurred the marker using a Gaussian 

function.  The blurring step was enacted to make the registration process more robust and is 

not required for unsegmented data-sets showing the full patient anatomy.  This process is 

visualized in Figure 19. 
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Figure 19: Illustration of the raw 4DCBCT projection pre-processing chain.  The initial image (top-left) is 
segmented so that only the implanted marker is visible (top-right).  Then the segmented marker is blurred using 
a Gaussian function to help mask segmentation irregularities and make it more visible to the optimization 
algorithm (bottom). 

 

4.4 Test matrix 

 

To test the performance of our algorithm with real patient data we investigated it in 

scenarios of varying realism, with tests ranging from highly idealized to fully realistic.  These 

tests examined the performance of the algorithm with respect to three fundamental elements: 

the method used to produce the eigenvector training data, the formulation of the motion 

model itself, and the fitting target data to which the motion model was optimized.  For 
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instance, since the gold standard 3D marker trajectory was one of our validation data-sets we 

tested how accurately it could be reproduced by our motion model in the absence of any other 

complications.  To do this we trained the motion model eigenvectors on points sampled from 

the gold standard marker trace itself.  We then fit our parametric motion model directly to the 

full gold standard marker trace.  This was analogous to the tests using the DVF fitting target 

described in Section 2.4.3.  At the other end of the spectrum we used our complete 2D/3D 

FIPM-bspline registration method to produce training DVFs in a fully realistic manner and then 

fit the resulting motion model to actual patient 4DCBCT projections.    

Each fundamental component of our algorithm was configured in multiple ways, as 

listed below. The components were then combined in the sequence of tests described in order 

of increasing complexity in Table 4.  This set of tests can be decomposed in 3 main sub-groups.  

Tests 1-8 all use the 3D gold standard maker trajectory as both the optimization fitting target 

and the source of the eigenvector training data.  The purpose of this group is to demonstrate 

the accuracy with which a motion model based on our patient breathing trace can reproduce 

the 3D gold standard marker trajectory.  It provides a baseline level of 3D marker trajectory 

disagreements as a reference point for later tests.  Tests 9-18 use actual projection data as the 

fitting target and source of training data.  These tests constitute our investigation of actual 

algorithm performance.  Tests 19-25 also use actual patient data as the fitting target and 

training data source.  However, they are devised specifically in order to test the temporal 

durability of the optimized motion model.  
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Table 4: Matrix of patient data test conditions. 

Test 
number 

Training data Motion model Optimization target 

Test 1  
 

 None.   Single parameterized 
function of breathing 
trace. 

 Individual 
components of gold 
standard marker 
trajectory. 

Test 2  
 

 Full set of points 
composing gold 
standard marker 
trajectory, subtracted 
from reference position 
to convert to 
displacement vectors. 

 700 points total. 

 Multiple 
parameterized 
functions of breathing 
trace coupled to 
eigenvector basis. 

 3 modes. 

 Gold standard 
marker trajectory. 

Test 3  
 

 Subset of points 
composing gold 
standard marker 
trajectory, subtracted 
from reference position 
to convert to 
displacement vectors. 

 10 point total. 

 Multiple 
parameterized 
functions of breathing 
trace coupled to 
eigenvector basis. 

 3 modes. 
 

 Gold standard 
marker trajectory. 

Test 4  
 

 Manually tracked 
marker locations in each 
phase of backprojection 
reconstructed 4DCBCT. 

 10 points total. 

 Multiple 
parameterized 
functions of breathing 
trace coupled to 
eigenvector basis. 

 3 modes. 

 Gold standard 
marker trajectory. 

Test 5  
 

 FIPM-bspline algorithm 
used to register 3D 
marker mask to 
amplitude binned 2D 
marker projection 
masks. DVFs from 
registration used to 
deform 3D mask.  
Calculated centroid of 
each deformed 3D 
mask. 

 10 points total.  

 Multiple 
parameterized 
functions of breathing 
trace coupled to 
eigenvector basis. 

 3 modes. 

 Gold standard 
marker trajectory. 

Test 6  
 

 Full set of points 
composing gold 

 Multiple 
parameterized 

 Geometric 
projections of gold 
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standard marker 
trajectory, subtracted 
from reference position 
to convert to 
displacement vectors. 

 700 points total. 

functions of breathing 
trace coupled to 
eigenvector basis. 

 3 modes. 

standard marker 
trajectory positions. 

Test 7  
 

 Manually tracked 
marker locations in each 
phase of FIPM-bspline 
reconstructed 4DCBCT, 
subtracted from 
reference position to 
convert to displacement 
vectors. 

 10 points total. 

 Multiple 
parameterized 
functions of breathing 
trace coupled to 
eigenvector basis. 

 3 modes 

 Geometric 
projections of gold 
standard marker 
trajectory positions. 

Test 8  
 

 Manually tracked 
marker locations in each 
phase of backprojection 
reconstructed 4DCBCT, 
subtracted from 
reference position to 
convert to displacement 
vectors. 

 10 points total. 

 Multiple 
parameterized 
functions of breathing 
trace coupled to 
eigenvector basis. 

 3 modes. 

 Geometric 
projections of gold 
standard marker 
trajectory positions. 

Test 9  
 

 Subset of points 
composing gold 
standard marker 
trajectory, subtracted 
from reference position 
to convert to 
displacement vectors.  
Copies of single vectors 
used to fill out full DVFs 
covering full CT ROI. 

 10 DVFs total. 

 Multiple 
parameterized 
functions of breathing 
trace coupled to 
eigenvector basis. 

 3 modes. 

 Raw 4DCBCT 
projections; masked 
so that only marker 
is visible. 

 60 projections 
included.  Only 
projections from 
first 700 time points 
considered. 

Test 10  
 

 DVFs from FIPM-bspline 
registration of 3D 
marker mask to binned 
2D marker projection 
masks. 

 “Bad” phase binning. 

 10 bins. 

 Projections per bin 

 Multiple 
parameterized 
functions of breathing 
trace coupled to 
eigenvector basis. 

 3 modes. 

 Raw 4DCBCT 
projections; masked 
so that only marker 
is visible. 

 60 projections 
included.  Only 
projections from 
first 700 time points 
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(min, max, avg): 215, 
255, 235 

considered. 

Test 11  
 

 DVFs from FIPM-bspline 
registration of 3D 
marker mask to binned 
2D marker projection 
masks. 

 Amplitude binning. 

 10 bins. 

 Projections per bin 
(min, max, avg): 164, 
478, 235 

 Multiple 
parameterized 
functions of breathing 
trace coupled to 
eigenvector basis. 

 3 modes. 

 Raw 4DCBCT 
projections; masked 
so that only marker 
is visible. 

 60 projections 
included.  Only 
projections from 
first 700 time points 
considered. 

Test 12  
 

 DVFs from FIPM-bspline 
registration of 3D 
marker mask to binned 
2D marker projection 
masks. 

 Amplitude binning. 

 20 bins. 

 Projections per bin 
(min, max, avg): 71, 
291, 117 

 Multiple 
parameterized 
functions of breathing 
trace coupled to 
eigenvector basis. 

 3 modes. 

 Raw 4DCBCT 
projections; masked 
so that only marker 
is visible. 

 60 projections 
included.  Only 
projections from 
first 700 time points 
considered. 

Test 13  
 

 DVFs from FIPM-bspline 
registration of 3D 
marker mask to binned 
2D marker projection 
masks. 

 Amplitude binning. 

 30 bins. 

 Projections per bin 
(min, max, avg): 49, 
220, 117 

 Multiple 
parameterized 
functions of breathing 
trace coupled to 
eigenvector basis. 

 3 modes. 

 Raw 4DCBCT 
projections; masked 
so that only marker 
is visible. 

 60 projections 
included.  Only 
projections from 
first 700 time points 
considered. 

Test 14  
 

 DVFs from FIPM-bspline 
registration of 3D 
marker mask to binned 
2D marker projection 
masks. 

 Hybrid binning. 

 60 bins. 

 Projections per bin 
(min, max, avg): 15, 67, 
32 

 Multiple 
parameterized 
functions of breathing 
trace coupled to 
eigenvector basis. 

 3 modes. 

 Raw 4DCBCT 
projections; masked 
so that only marker 
is visible. 

 60 projections 
included.  Only 
projections from 
first 700 time points 
considered. 

Test 15   DVFs from FIPM-bspline  Multiple  Raw 4DCBCT 
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 registration of 3D 
marker mask to binned 
2D marker projection 
masks. 

 Hybrid binning. 

 60 bins. 

 Projections per bin 
(min, max, avg): 15, 67, 
32 

parameterized 
functions of breathing 
trace coupled to 
eigenvector basis. 

 1 mode. 

projections; masked 
so that only marker 
is visible. 

 60 projections 
included.  Only 
projections from 
first 700 time points 
considered. 

Test 16  
 

 DVFs from FIPM-bspline 
registration of 3D 
marker mask to binned 
2D marker projection 
masks. 

 Hybrid binning. 

 60 bins. 

 Projections per bin 
(min, max, avg): 15, 67, 
32 

 Multiple 
parameterized 
functions of breathing 
trace coupled to 
eigenvector basis. 

 2 modes. 

 Raw 4DCBCT 
projections; masked 
so that only marker 
is visible. 

 60 projections 
included.  Only 
projections from 
first 700 time points 
considered. 

Test 17  
 

 DVFs from FIPM-bspline 
registration of 3D 
marker mask to binned 
2D marker projection 
masks. 

 Hybrid binning. 

 60 bins. 

 Projections per bin 
(min, max, avg): 15, 67, 
32 

 Multiple 
parameterized 
functions of breathing 
trace coupled to 
eigenvector basis. 

 4 modes. 

 Raw 4DCBCT 
projections; masked 
so that only marker 
is visible. 

 60 projections 
included.  Only 
projections from 
first 700 time points 
considered. 

Test 18  
 

 DVFs from FIPM-bspline 
registration of 3D 
marker mask to binned 
2D marker projection 
masks. 

 Hybrid binning. 

 60 bins. 

 Projections per bin 
(min, max, avg): 15, 67, 
32 

 Multiple 
parameterized 
functions of breathing 
trace coupled to 
eigenvector basis. 

 5 modes. 

 Raw 4DCBCT 
projections; masked 
so that only marker 
is visible. 

 60 projections 
included.  Only 
projections from 
first 700 time points 
considered. 

Test 19  
 

 DVFs from FIPM-bspline 
registration of 3D 
marker mask to binned 

 Multiple 
parameterized 
functions of breathing 

 Raw 4DCBCT 
projections; masked 
so that only marker 
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2D marker projection 
masks. 

 Amplitude binning. 

 20 bins. 

 Projections for training 
set sampled from all 
valid time points. 

 Projections per bin 
(min, max, avg): 71, 
291, 117 

trace coupled to 
eigenvector basis. 

 3 modes. 

is visible. 

 60 projections 
included.  Only 
projections from 
first 700 time points 
considered. 

Test 20  
 

 DVFs from FIPM-bspline 
registration of 3D 
marker mask to binned 
2D marker projection 
masks. 

 Amplitude binning. 

 20 bins. 

 Projections for training 
set sampled from all 
valid time points. 

 Projections per bin 
(min, max, avg): 71, 
291, 117 

 Multiple 
parameterized 
functions of breathing 
trace coupled to 
eigenvector basis. 

 3 modes. 

 Raw 4DCBCT 
projections; masked 
so that only marker 
is visible. 

 60 projections 
included.  Only 
projections 
acquired at or after 
time point 1612 
considered. 

Test 21  
 

 DVFs from FIPM-bspline 
registration of 3D 
marker mask to binned 
2D marker projection 
masks. 

 Amplitude binning. 

 20 bins. 

 Projections for training 
set sampled from all 
valid time points. 

 Projections per bin 
(min, max, avg): 71, 
291, 117 

 Multiple 
parameterized 
functions of breathing 
trace coupled to 
eigenvector basis. 

 3 modes. 

 Raw 4DCBCT 
projections; masked 
so that only marker 
is visible. 

 120 projections 
included.  Both 
projections 
acquired at or 
before time point 
700 and at or after 
time point 1612 
considered. 

Test 22  
 

 DVFs from FIPM-bspline 
registration of 3D 
marker mask to binned 
2D marker projection 
masks. 

 Amplitude binning. 

 Multiple 
parameterized 
functions of breathing 
trace coupled to 
eigenvector basis. 

 3 modes. 

 Raw 4DCBCT 
projections; masked 
so that only marker 
is visible. 

 60 projections 
included.  Only 
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 10 bins. 

 Projections for training 
set sampled only from 
projections acquired at 
or before time point 
700. 

 Projections per bin 
(min, max, avg): 32, 
172, 70 

projections from 
first 700 time points 
considered. 

Test 23  
 

 DVFs from FIPM-bspline 
registration of 3D 
marker mask to binned 
2D marker projection 
masks. 

 Amplitude binning. 

 10 bins. 

 Projections for training 
set sampled only from 
projections acquired at 
or before time point 
700. 

 Projections per bin 
(min, max, avg): 32, 
172, 70 

 Multiple 
parameterized 
functions of breathing 
trace coupled to 
eigenvector basis. 

 3 modes. 

 Raw 4DCBCT 
projections; masked 
so that only marker 
is visible. 

 60 projections 
included.  Only 
projections 
acquired at or after 
time point 1612 
considered. 

Test 24  
 

 DVFs from FIPM-bspline 
registration of 3D 
marker mask to binned 
2D marker projection 
masks. 

 Amplitude binning. 

 10 bins. 

 Projections for training 
set sampled only from 
projections acquired at 
or after time point 
1612. 

 Projections per bin 
(min, max, avg): 42, 
133, 73 

 Multiple 
parameterized 
functions of breathing 
trace coupled to 
eigenvector basis. 

 3 modes. 

 Raw 4DCBCT 
projections; masked 
so that only marker 
is visible. 

 60 projections 
included.  Only 
projections 
acquired at or after 
time point 1612 
considered. 

Test 25  
 

 DVFs from FIPM-bspline 
registration of 3D 
marker mask to binned 
2D marker projection 

 Multiple 
parameterized 
functions of breathing 
trace coupled to 

 Raw 4DCBCT 
projections; masked 
so that only marker 
is visible. 
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masks. 

 Amplitude binning. 

 10 bins. 

 Projections for training 
set sampled only from 
projections acquired at 
or after time point 
1612. 

 Projections per bin 
(min, max, avg): 42, 
133, 73 

eigenvector basis. 

 3 modes. 
 60 projections 

included.  Only 
projections from 
first 700 time points 
considered. 

 

4.4.1 Training data for the PCA eigenvectors 

 

1. None: No training data required.   

2. Marker trace sample: A set of points selected from the gold standard 3D marker 

trajectory were subtracted from a reference position to create displacement vectors.  

Each displacement vector served as a DVF feature vector. 

a. Anywhere from 700 to 10 points used in the training set. 

3. Manually tracked marker in reconstructed 4DCBCT: Markers were manually identified 

in each of 10 phases of the conventionally reconstructed 4DCBCT.  Marker centroids 

were subtracted from a reference position to create displacement vectors.  Each 

displacement vector served as a DVF feature vector. 

a. Backprojection reconstruction. 

b. FIPM-bspline reconstruction. 

4. Upscaled marker trace sample: A small number of points from the gold standard 3D 

marker trajectory were subtracted from a reference position to create displacement 
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vectors.  Each displacement vector was copied to all positions of a DVF with the 

dimensions of the reference FBCT.  Each DVF created in this manner served as a feature 

vector. 

5. FIPM-bspline registration: The FIPM-bspline 2D/3D registration method was used to 

register the FBCT marker mask to the masked 4DCBCT projections grouped into 

breathing bins.  Binning was performed based on breathing trace phase as determined 

by the RPM system.  The DVFs from each registration served as feature vectors. 

a. Binning based on breathing phase, amplitude, or phase/amplitude hybrid. 

b. 10, 20, 30, or 60 bins created. 

 

4.4.2 Motion model formulation 

 

1. Single parameterized function of breathing trace: No eigenvectors needed.  This 

formulation was designed to model an individual spatial component of a single 

displacement vector. It was valid only with training data option 1. 

2. Parameterized functions of breathing trace coupled to eigenvectors:  The full model as 

defined by Eq. (3) in section 2.2.1.  

a. 1, 2, 3, 4 or 5 modes. 

 

4.4.3 Fitting target  
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1. Gold standard 3D marker trajectory, individual components: The motion model was fit 

directly to individual spatial components of the gold standard marker trajectory.  This 

target data type was valid only in conjunction with training data type 1 and motion 

model type 1. 

2. Gold standard 3D marker trajectory: The motion model was fit directly to the full gold 

standard marker trajectory.  This target data type was valid in conjunction with training 

data types 2 and 3 and motion model type 2. 

3. Geometric marker projections: Each point in the gold standard marker trajectory was 

geometrically projected into the 2D detector plane.  Projected points were blurred with 

a Gaussian function to give them a finite spatial extent.  The motion model was used to 

displace a reference point for which like geometric projections were calculated.  The 

motion model was optimized to minimize intensity mismatch between the two sets of 

projections. This target data type was valid in conjunction with training data types 2 and 

3 and motion model type 2. 

4. Masked 4DCBCT projections: The motion model was used to deform the reference FBCT 

marker mask and DRRs were cast through the deformed CT at chosen time points.  The 

motion model was optimized to minimize the intensity mismatch between the DRRs and 

pre-processed raw 4DCBCT projections.  This target data type was valid in conjunction 

with training data types 4 and 5 and motion model type 2. 

 

4.5 Areas of investigation 
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The real data testing phase allowed us to evaluate the best implementations and 

practices for various components of our algorithm.  Some of these, such as our investigation of 

the optimal number of modes for inclusion in the motion model, were previously examined in 

the proof of concept testing detailed in Chapter 2.  Others, like our examination of different 

projection binning techniques, are new areas of exploration.   All proposed refinements based 

on our real data experience are listed below. 

 

4.5.1 Motion model  

 

The first component that we sought to optimize was the eigenvector basis underlying 

the DVF motion model.  We hypothesized that the eigenvectors would be sensitive to the 

phase-to-phase DVFs used for our training data, which in turn would be sensitive to the binning 

method used to obtain the CT time bins.  We therefore looked for the projection binning 

strategy for which the FIPM-bspline 2D/3D registration method produced the highest quality 

training DVFs. This included an investigation of the number of breathing bins into which the 

projections were divided (and thus the density of the training set), as well as the overall binning 

strategy. 

The second area we explored was the number of modes included in the motion model.  

We studied the performance of our algorithm when the motion model incorporated anywhere 

from 1-5 principal modes. 
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4.5.1.1 Projection binning methods 

 

4.5.1.1.1 Phase binning 

 

Our projection binning algorithm based on breathing phase was lifted from the output 

log of the RPM system.  This proprietary method labeled each breathing data point with a 

phase tag ranging from 1-10.  Projections with identical phases were sorted into the same 

breathing bins. 

 

4.5.1.1.2 Amplitude binning 

 

Our projection binning algorithm based on breathing amplitude used the RPM breathing 

trace to group projections with similar breathing trace amplitude.  The total set of bins 

consisted of two sub-sets of bins with identical boundaries, with one set reserved for breathing 

points with positive breathing trace gradient, and the other set for breathing points with 

negative gradient.  All bins had nominally identical widths, however projections occurring at 

breathing points above the maximum bound of the highest bins were included in those bins 

and projections occurring at breathing points below the minimum bound of the lowest bins 

were included in those bins.  The first step in determining bin boundaries was to label the 

amplitude of each peak and trough in the RPM breathing trace and calculating average peak 

and trough amplitudes.  The uniform breathing bin width was then calculated as the difference 
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between the average peak and trough heights divided by half the desired number of breathing 

bins, N/2, as specified by the user (only even numbers of total bins, N, were allowed).   

 

 

2

peak trough

width

A A
A

N


          (63) 

 

Finally, the minimum and maximum amplitude bounds for each bin were calculated.  

 

  min, 1i trough widthA A i A      ,   
max,i trough widthA A iA   1: 2i N      (64) 

 

4.5.1.1.3 Hybrid binning 

 

We devised a novel hybrid projection binning algorithm that grouped projections based 

on both their breathing trace amplitude and gradient.  The goal of this method was to collect 

only those projections that were acquired within a jointly-defined breathing phase and 

amplitude range into time bins, discarding those projections for which either the amplitude or 

phase identified it as a potential outlier.  The expectation was that this approach would weed 

out projections acquired at irregular points in the breathing history.  Bins in this method were 

two dimensional, having a width in the amplitude direction and a height in the gradient (phase) 

dimension.  The algorithm proceeded in two steps, bin center identification and bin boundary 

optimization. 
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The purpose of the bin center identification phase was to identify the amplitude and 

gradient values around which each breathing bin was to be centered.  Step 1 of this phase was 

to add each breathing point at which a projection was acquired to a finely sampled 2D 

histogram, where the X direction of the histogram corresponded to breathing trace amplitude 

and the Y direction corresponded to breathing trace gradient.  This step is visualized in part A of 

Figure 20.  Next the histogram was smoothed by convolving it with a 2D Gaussian function.  

Finally, all peaks in the smoothed histogram were identified and any peak exceeding a user 

specified threshold was accepted as a bin center.  This step is visualized in part B of Figure 20. 

In the bin boundary optimization phase a bounding box was dropped around each 

previously identified bin center and the width and height of the box were adjusted until the 

breathing points and corresponding projections contained within it were determined to be 

optimal.  The optimality of each box was scored based on four criteria:  

1. Breathing trace amplitude spread: This criterion was quantified as the standard 

deviation of the breathing trace amplitude of points falling within the bin. A smaller 

value indicated a better bin. 

2. Breathing trace gradient spread: This criterion was quantified as the standard deviation 

of the breathing trace gradient of points falling within the bin.  A smaller value indicated 

a better bin. 

3. Projection angular distribution: The criterion was also quantified as a standard 

deviation, and was calculated in a multi-step process.  First the gantry angles of 

projections within the bin were organized into a list sorted by ascending value.  Angular 

intervals were calculated by computing the difference between adjacent gantry angles.  
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Next the self-weighted mean angular interval was computed, in which the weight for 

each value was the value itself, 1

1
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, where pN was the number of 

projections contained within the bin.  Finally the sample standard deviation of the 

angular intervals about the self-weighted mean was calculated, 
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.  

A lower standard deviation indicated a more uniform angular distribution and thus a 

better bin. 

4. Projection count: The total number of projections contained within the bin. A larger 

number indicated a better bin. 

The values of each score were normalized to 1 and a weighted average computed to determine 

the final bin score (weighting factors were user supplied and set to 1 for the results reported 

here).  The highest scoring dimensions for each bin were taken as the final bin parameters.  This 

step is visualized in parts C and D of Figure 20. 

It should be noted that parameters for each bin were determined independently, 

allowing multiple bins to share the same projection while some projections were not included 

in any bin.  
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Figure 20: Illustration of steps taken in hybrid binning algorithm. A) Each breathing trace point is added to a cell 
in a 2D histogram based on its amplitude and phase (amplitude gradient) to build the distribution of (green) 
points. B) Peaks in the histogram are identified and chosen as bin centers if they exceed a threshold value. 
Accepted bin centers are labeled as white dots. C) Boxes of different shapes and sizes in the amplitude/phase 
grid are drawn around each bin center, and the characteristics of the breathing points and corresponding 
projections within each box are given a score.  The highest scoring box defines the boundaries in amplitude and 
phase for that bin (red box). D) Bounding boxes for all bin centers.  Bounding boxes are calculated 
independently for each bin center and can overlap.  In addition, some breathing trace points, and thus their 
corresponding projections, are not included in any bin. 
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4.5.1.2 Training set density 

 

Another projection binning related parameter was the number of DVF feature vectors 

included in the training set.  Sorting the projections into more bins resulted in a corresponding 

increase in the number of feature vectors.  With all other circumstances being the same, we 

expect a more densely sampled training set to more fully capture the imaging target motion 

and thus generate better eigenvectors.  However, changing the binning parameters can affect 

the quality of the individual 2D/3D registrations and introduce noise or artifact into the 

eigenvectors. 

For the purposes of testing we created eigenvectors from registrations of projections 

grouped into 10, 20, and 30 amplitude bins as well as 60 hybrid bins.  While such large numbers 

of bins and the corresponding reduction in number of projections per bin are not practical for a 

FBP based method, the FIPM-bspline algorithm has been shown to be effective with as few as 8 

projections.31  

 

4.5.1.3 Number of eigenmodes 

 

Our final area of inquiry into the motion model regarded the optimal number of modes 

to include.  Using more modes helps to ensure that no motion information is omitted from the 

model, but it can also make the optimization process less robust by increasing the 

dimensionality of the search space, as well as result in the inclusion of modes dominated by 

noise. 
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To find the appropriate number we performed reconstructions using anywhere from 1-5 

modes under otherwise identical situations.  In all cases the eigenvectors were generated from 

the DVF training set using 60 hybrid bins and the fitting target used was the pre-processed raw 

4DCBCT projections. 

 

4.5.2 Optimization  

 

Our second avenue of algorithm development was to make our numerical optimization 

scheme more robust, i.e. improve its convergence to the objective function global minimum.  

We used three strategies to achieve this goal, the first and foremost of which was to design a 

process for initializing the motion model free parameters.  The other two were pre-processing 

the patient breathing trace in order to decouple the motion model amplitude and baseline 

offset free parameters, and implementing a free parameter scaling vector to rescale parameter 

magnitudes to a uniform range of values. 

 

4.5.2.1 Initial free parameter guess 

 

Our solution to this problem was achieved in several steps, beginning with the 

acquisition of average breathing and principal coefficient traces.  Average breathing traces were 

obtained by calculating the average breathing trace amplitude of the projections contained 

within each breathing bin used to generate the DVF training set.  The full set of these average 

amplitude values represented a single average breathing trace cycle.  Average principal 



 

120 
 

coefficient traces were obtained for each mode by projecting each feature vector from the 

training set into that mode’s eigenvector.   

The next step was to determine the amplitude, time shift, and baseline offset terms (see 

Eq. (4) in Section 2.2.1) necessary to make the average breathing trace emulate each average 

principal coefficient trace as closely as possible.  The magnitude of the amplitude term was 

determined by taking the ratio of the principal coefficient and breathing trace amplitudes.  The 

phase shift term was determined by shifting the average breathing trace in time and calculating 

the correlation coefficient between the shifted breathing trace and the principal coefficient 

trace.  The shift generating the largest magnitude correlation coefficient was set as the time 

shift term initial guess, and the sign of the correlation coefficient was assigned as the sign of the 

amplitude term.  The baseline offset term was determined as the difference between the 

average breathing trace mean and the average principal coefficient trace mean.   

Plots of the these average traces are displayed for a training set generated using FIPM-

bspline registration to 10 phase bins in Figure 21 and a training set generated from an upscaled 

marker trace sub-sample in Figure 22. 
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Figure 21: Average breathing and principal coefficient traces.  The training set is generated using FIPM-bspline 
registration to 10 phase bins. 
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Figure 22: Average breathing and principal coefficient traces.  The training set is generated from 10 upscaled 
gold standard marker displacement points. 

 

4.5.2.2 Breathing trace pre-processing 

 

Before initiating our optimization routine we first pre-processed the breathing trace by 

subtracting its mean.  The rationale for performing this step is described by the following.  The 

patient breathing trace can be considered as a function with the following form: 

 

   b t Dx t E             (65) 
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a normalized, zero mean pseudo-periodic signal,  x t , scaled by an amplitude term, D , and 

riding on top of a baseline offset E .  Likewise, each principal coefficient trace is assumed to be 

a function with similar form: 

 

   pc t Fx t G              (66) 

 

As defined in Eq. (4) the goal of our algorithm is to represent each principal coefficient trace as 

a parameterized function of the breathing trace: 

 

   pc t Ab t C             (67) 

 

Substituting Eq. (65) into Eq. (67) yields: 

 

      pc t A Dx t E C ADx t AE C               (68) 

 

Comparing Eqs. (66) and (68) we see that  

 

FAD F A
D

              (69) 

t t t t                 (70) 

AE C G C G AE              (71) 
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Examining Eq. (71) we see that the amplitude and baseline offset terms of our model 

are coupled rather than independently varying.  This dependence could effectively cause our 

optimization algorithm to change the value of one term when only intending to adjust the value 

of the other.  However, if the term E  in Eq. (71) is zero this dependence disappears.  Since E  is 

the baseline offset of the breathing trace we can ensure that its value be zero by pre-processing 

the breathing trace to have zero mean and avoid this possible complication. 

 

4.5.2.3 Parameter scaling vector 

 

Our optimization algorithm attempts to find the optimal set of free parameters by 

stepping through parameter space along its best estimate of the direction leading towards the 

objective function minimum.  If the magnitudes of our free parameters have greatly different 

scales, then a small step along one axis of the parameter space may be equivalent to a huge 

leap along another axis.  If this is the case then our optimization algorithm could be forced to 

move at a lethargic pace to accommodate the small-magnitude parameter, or experience wild 

objective function fluctuations when taking steps appropriate for the large-magnitude 

parameter.  In our application the amplitude and baseline offset free parameters could be two 

orders of magnitude greater than the time shift term, so this was a potential issue of concern. 

Our solution was to assign a fixed scaling term for each free parameter such that the 

free parameter magnitudes become approximately equal from the optimization algorithm’s 

point of view.  These scaling terms were stored in a data structure referred to as a scaling 

vector.  The amplitude scaling terms were the inverses of the amplitude term initial guesses 
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calculated in section 4.5.2.1.  The time shift scaling term was set as the inverse of the average 

breathing trace period.  The baseline offset scaling term was set to a value equal to half the 

amplitude scaling term.  Empirical observations showed that the baseline offset initial guess 

could be a poor indicator of parameter magnitude, while a number about half the amplitude 

parameter initial guess was roughly appropriate. 

 

4.5.3 Motion model temporal stability 

 

A final avenue of investigation was the temporal stability of our optimized motion 

model.  Essentially we wanted to know if a motion model trained and optimized on data from 

an earlier time could accurately model motion recorded at a later time.  To explore this 

question we divided our raw 4DCBCT projection data-set into two groups each composed of 

approximately 700 projections.  The first group contained the first 700 projections from the full 

4DCBCT data-set, while the second group contained the last 700 projections from the full data-

set.  About 900 projections in the middle were excluded, equating to a temporal separation of 

about 225 seconds based on the projection acquisition rate of approximately 4 Hz.  We then 

created DVF training sets based on the data contained in each group and generated eigenvector 

bases from each training set.  Finally, we optimized a motion model incorporating each 

eigenvector basis against target projection data sampled from each group.  For instance, in one 

test we optimized a motion model trained on data from the first group against projections from 

the second group.  We also optimized a motion model trained on data from both groups against 

target projection data from either the first, second, or both groups.  Specific descriptions and 
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results for data runs investigating motion model temporal stability are detailed in tests 19-25 in 

Table 4, Table 5, and Table 6.  

 

4.6 Validation data-sets 

 

As described in Chapter 2, reconstruction using our FIPM-PCA 4DCBCT algorithm 

produces 3 data-sets when optimization is complete: a time series of DVFs, a time series of CTs, 

and a time series of DRRs, all of which track the moving anatomy present during imaging.  For 

our pre-processed patient data, the CT time series tracks the 3D motion of the marker in the 

patient or world reference frame (the gold standard), and the DRR time series tracks the 2D 

marker motion in the detector reference frame (the ground truth).  For purposes of validation 

we transformed our reconstructed CT and DRR data to 3D and 2D marker motion traces and 

compared to gold standard and ground truth data respectively. 

 

4.6.1 3D marker trajectory gold standard data 

 

The question of whether or not the 3D position of the marker has been accurately 

reconstructed is the greatest area of relevance for validation of our algorithm.  However, we 

have no ground truth 3D marker data with which to compare our results.  Therefore, our 

strategy was to use an independent method to reconstruct the 3D marker trajectory as a gold 

standard. 
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To perform this task we used 3D trajectories reconstructed from our patient data sets 

by a group at our institution via the method of Poulsen et al. 71, 72 In this method the 2D 

position of the marker was first determined in the detector reference frame for each projection 

using an auto-segmentation algorithm.  Next, each 2D position was backprojected in 3D space 

along the line connecting it to the CBCT x-ray source using the known gantry angle and CBCT 

projection geometry.  A 3D Gaussian function was then fit to the backprojection image to 

create a 3D PDF characterizing the likelihood of the marker residing at a particular point in 

space.  Finally, the line connecting each 2D marker position to the CBCT x-ray source was 

revisited.  The marker was known to lie somewhere along this line, however its position along 

the line was unresolved.  This final position was estimated by extracting the 1D PDF described 

by the intersection of the backprojection line and the 3D Gaussian PDF and calculating its 

expectation value.  In this manner the 3D position of the marker for each frame in the raw 

4DCBCT projection data-set was estimated. 

When the target data to which the motion model was optimized was the gold standard 

trajectory itself (tests 1-8 in Table 4) then the output of our algorithm was a directly 

comparable 3D marker motion trace.  However, if the fitting target data used was the actual 

CBCT projections then our reconstructed data was in the form of a series of deformed CT 

volumes.  To transform our data into a series of 3D positions we calculated the centroid of each 

deformed CT image, obtaining the approximate 3D location of the marker at each time point. 

Comparison of the two 3D marker trajectories was complicated by the fact that the CBCT 

imaging geometries to which they were referenced were formulated in different ways.  
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Misalignment of the two could result in artificial offset differences not indicative of true 

disagreement.  This issue is discussed further in Section 4.8. 

 

4.6.2 2D marker position ground truth data 

 

Our second set of validation data was the 2D position of the marker in the raw 4DCBCT 

projections themselves.  Since these data came directly from known patient measurements 

with no interpolation or approximation they served as a ground truth.  We compared positions 

in this data-set with the projected position of the marker in DRRs cast through the reference CT 

deformed by the optimized motion model. 

Since the 2D projections and the 3D reference CT were pre-processed to contain only 

the marker, determining 2D marker positions was a simple procedure.  The centroid of each 

image was calculated for both DRRs and projections, yielding the marker centroid coordinates 

within the detector reference frame.  This validation method was only applicable to test runs 

using the actual 4DCBCT projection images as the fitting target (tests 9-25 in Table 4).  

 

4.7 Results 

 

4.7.1 Marker trajectory plots 

 

The marker provides a fiducial with which we can detect the breathing motion 

simulated by our motion model and used to animate the reference CT.  After reconstructed and 
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gold standard 3D marker trajectory data were acquired via the methods of Section 4.6.1 they 

were plotted together for visual comparison.  Figure 23, Figure 24, Figure 25, Figure 26, Figure 

27, Figure 28, Figure 29, Figure 30, Figure 31, Figure 32, Figure 33, Figure 34, and Figure 35 plot 

reconstructed and gold standard 3D marker trajectory results for tests 2, 7, 8, 10, 11, 13, 14, 15, 

18, 22, 23, 24, and 25 respectively.  In each figure motion in the X, or left-right (LR), Y, or 

anterior-posterior (AP), and Z, or superior-inferior (SI) direction was plotted separately in mm 

units.  Figure 23, Figure 24, Figure 25, Figure 26, Figure 27, Figure 28, Figure 29, Figure 30, and 

Figure 31 plot results for the motion model and optimization tests described in Section 4.5.1 

and 4.5.2.  These plots cover the first 700 time points contained in the raw 4DCBCT data-set.  

Figure 32, Figure 33, Figure 34, and Figure 35 plot results for the temporal stability tests 

described in Section 4.5.3.  They display results for all 2345 time points contained in the raw 

4DCBCT data-set.  For approximately the middle 900 time points in these figures the gold 

standard data is missing as the marker was outside of the detector field of view during this 

period.  



 

130 
 

 
Figure 23: Comparison of gold standard and FIPM-PCA 4DCBCT reconstructed marker trajectories for each spatial 
component.  Reconstructed trajectories use the marker trace full-sample training set, parameterized functions 
of the breathing trace coupled to eigenvectors with 3 modes for the motion model, and the gold standard 
marker trajectory as the fitting target (Test 2). 
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Figure 24: Comparison of gold standard and FIPM-PCA 4DCBCT reconstructed marker trajectories for each spatial 
component.  Reconstructed trajectories use manual marker tracking in the FIPM-bspline reconstructed 4DCBCT  
to generate the training set, parameterized functions of the breathing trace coupled to eigenvectors with 3 
modes for the motion model, and geometric marker projections as the fitting target (Test 7). 
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Figure 25: Comparison of gold standard and FIPM-PCA 4DCBCT reconstructed marker trajectories for each spatial 
component.  Reconstructed trajectories use manual marker tracking in the backprojection reconstructed 
4DCBCT to generate the training set, parameterized functions of the breathing trace coupled to eigenvectors 
with 3 modes for the motion model, and geometric marker projections as the fitting target (Test 8). 

 



 

133 
 

 

Figure 26: Comparison of gold standard and FIPM-PCA 4DCBCT reconstructed marker trajectories for each spatial 
component.  Reconstructed trajectories use FIPM-bspline registration with 10 phase bins to generate the 
training set, parameterized functions of the breathing trace coupled to eigenvectors with 3 modes for the 
motion model, and masked 4DCBCT projections as the fitting target (Test 10). 
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Figure 27: Comparison of gold standard and FIPM-PCA 4DCBCT reconstructed marker trajectories for each spatial 
component.  Reconstructed trajectories use FIPM-bspline registration with 10 amplitude bins to generate the 
training set, parameterized functions of the breathing trace coupled to eigenvectors with 3 modes for the 
motion model, and masked 4DCBCT projections as the fitting target (Test 11). 
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Figure 28: Comparison of gold standard and FIPM-PCA 4DCBCT reconstructed marker trajectories for each spatial 
component.  Reconstructed trajectories use FIPM-bspline registration with 30 amplitude bins to generate the 
training set, parameterized functions of the breathing trace coupled to eigenvectors with 3 modes for the 
motion model, and masked 4DCBCT projections as the fitting target (Test 13). 
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Figure 29: Comparison of gold standard and FIPM-PCA 4DCBCT reconstructed marker trajectories for each spatial 
component.  Reconstructed trajectories use FIPM-bspline registration with 60 hybrid bins to generate the 
training set, parameterized functions of the breathing trace coupled to eigenvectors with 3 modes for the 
motion model, and masked 4DCBCT projections as the fitting target (Test 14). 

 



 

137 
 

 
Figure 30: Comparison of gold standard and FIPM-PCA 4DCBCT reconstructed marker trajectories for each spatial 
component.  Reconstructed trajectories use FIPM-bspline registration with 60 hybrid bins to generate the 
training set, parameterized functions of the breathing trace coupled to eigenvectors with 1 mode for the motion 
model, and masked 4DCBCT projections as the fitting target (Test 15). 
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Figure 31: Comparison of gold standard and FIPM-PCA 4DCBCT reconstructed marker trajectories for each spatial 
component.  Reconstructed trajectories use FIPM-bspline registration with 60 hybrid bins to generate the 
training set, parameterized functions of the breathing trace coupled to eigenvectors with 5 modes for the 
motion model, and masked 4DCBCT projections as the fitting target (Test 18). 
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Figure 32: Comparison of gold standard and FIPM-PCA 4DCBCT reconstructed marker trajectories for each spatial 
component.  Reconstructed trajectories used FIPM-bspline registration with 10 amplitude bins to generate the 
training set, parameterized functions of the breathing trace coupled to eigenvectors with 3 modes for the 
motion model, and masked 4DCBCT projections as the fitting target.  Training data was limited to the first 700 
projections in the raw 4DCBCT data-set, and the fitting target projections were also sampled from the first 700 
projections in the raw 4DCBCT data-set (Test 22).  
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Figure 33: Comparison of gold standard and FIPM-PCA 4DCBCT reconstructed marker trajectories for each spatial 
component.  Reconstructed trajectories used FIPM-bspline registration with 10 amplitude bins to generate the 
training set, parameterized functions of the breathing trace coupled to eigenvectors with 3 modes for the 
motion model, and masked 4DCBCT projections as the fitting target.  Training data was limited to the first 700 
projections in the raw 4DCBCT data-set, and the fitting target projections were sampled from the last 700 
projections in the raw 4DCBCT data-set (Test 23).  
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Figure 34: Comparison of gold standard and FIPM-PCA 4DCBCT reconstructed marker trajectories for each spatial 
component.  Reconstructed trajectories used FIPM-bspline registration with 10 amplitude bins to generate the 
training set, parameterized functions of the breathing trace coupled to eigenvectors with 3 modes for the 
motion model, and masked 4DCBCT projections as the fitting target.  Training data was limited to the last 700 
projections in the raw 4DCBCT data-set, and the fitting target projections were also sampled from the last 700 
projections in the raw 4DCBCT data-set (Test 24). 
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Figure 35: Comparison of gold standard and FIPM-PCA 4DCBCT reconstructed marker trajectories for each spatial 
component.  Reconstructed trajectories used FIPM-bspline registration with 10 amplitude bins to generate the 
training set, parameterized functions of the breathing trace coupled to eigenvectors with 3 modes for the 
motion model, and masked 4DCBCT projections as the fitting target.  Training data was limited to the last 700 
projections in the raw 4DCBCT data-set, and the fitting target projections were sampled from the first 700 
projections in the raw 4DCBCT data-set (Test 25). 

 

Similarly, after reconstructed and ground truth 2D projected marker centroid positions 

were acquired using the method of Section 4.6.2 they were plotted together for comparison.  

Figure 36, Figure 37, Figure 38, Figure 39, Figure 40, Figure 41, Figure 42, Figure 43, Figure 44, 

and Figure 45 plot reconstructed and ground truth 2D projected marker position results for 

tests 10, 11, 13, 14, 15, 18, 22, 23, 24, and 25 respectively.  In each figure results were plotted 

in the detector U direction (along the long axis of the detector, tangential to the circle swept 
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out by the rotating gantry) and the detector V direction (along the short axis of the detector, 

pointing along the SI direction).   They were left in their native units of detector pixels.  For 

reference, each detector pixel was 0.388 x 0.388 mm, and, assuming the 3D object to be 

located at the machine isocenter, its projection would have been magnified by approximately a 

factor of 1.5.  Thus a rough conversion from detector pixels to mm was 1 detector pixel ≈ 

0.388/1.5 = 0.259 mm.  As before Figure 36, Figure 37, Figure 38, Figure 39, Figure 40, and 

Figure 41 cover the first 700 time points of the 4DCBCT data-set while Figure 42, Figure 43, 

Figure 44, and Figure 45 span the full 2345 time points.   

 
Figure 36: Comparison of 2D marker centroid locations in detector reference frame for known CBCT projections 
and DRRs cast through optimized FIPM-PCA 4DCBCT.  FIPM-PCA 4DCBCTs were reconstructed using FIPM-bspline 
registration with 10 phase bins to generate the training set, parameterized functions of the breathing trace 
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coupled to eigenvectors with 3 modes for the motion model, and masked 4DCBCT projections as the fitting 
target (Test 10). 

 

 
Figure 37: Comparison of 2D marker centroid locations in detector reference frame for known CBCT projections 
and DRRs cast through optimized FIPM-PCA 4DCBCT.  FIPM-PCA 4DCBCTs were reconstructed using FIPM-bspline 
registration with 10 amplitude bins to generate the training set, parameterized functions of the breathing trace 
coupled to eigenvectors with 3 modes for the motion model, and masked 4DCBCT projections as the fitting 
target (Test 11). 
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Figure 38: Comparison of 2D marker centroid locations in detector reference frame for known CBCT projections 
and DRRs cast through optimized FIPM-PCA 4DCBCT.  FIPM-PCA 4DCBCTs were reconstructed using FIPM-bspline 
registration with 30 amplitude bins to generate the training set, parameterized functions of the breathing trace 
coupled to eigenvectors with 3 modes for the motion model, and masked 4DCBCT projections as the fitting 
target (Test 13). 
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Figure 39: Comparison of 2D marker centroid locations in detector reference frame for known CBCT projections 
and DRRs cast through optimized FIPM-PCA 4DCBCT.  FIPM-PCA 4DCBCTs were reconstructed using FIPM-bspline 
registration with 60 hybrid bins to generate the training set, parameterized functions of the breathing trace 
coupled to eigenvectors with 3 modes for the motion model, and masked 4DCBCT projections as the fitting 
target (Test 14). 
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Figure 40: Comparison of 2D marker centroid locations in detector reference frame for known CBCT projections 
and DRRs cast through optimized FIPM-PCA 4DCBCT.  FIPM-PCA 4DCBCTs were reconstructed using FIPM-bspline 
registration with 60 hybrid bins to generate the training set, parameterized functions of the breathing trace 
coupled to eigenvectors with 1 mode for the motion model, and masked 4DCBCT projections as the fitting target 
(Test 15). 
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Figure 41: Comparison of 2D marker centroid locations in detector reference frame for known CBCT projections 
and DRRs cast through optimized FIPM-PCA 4DCBCT.  FIPM-PCA 4DCBCTs were reconstructed using FIPM-bspline 
registration with 60 hybrid bins to generate the training set, parameterized functions of the breathing trace 
coupled to eigenvectors with 5 modes for the motion model, and masked 4DCBCT projections as the fitting 
target (Test 18). 
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Figure 42: Comparison of 2D marker centroid locations in detector reference frame for known CBCT projections 
and DRRs cast through optimized FIPM-PCA 4DCBCT.  FIPM-PCA 4DCBCTs were reconstructed using FIPM-bspline 
registration with 10 amplitude bins to generate the training set, parameterized functions of the breathing trace 
coupled to eigenvectors with 3 modes for the motion model, and masked 4DCBCT projections as the fitting 
target. Training data was limited to the first 700 projections in the raw 4DCBCT data-set, and the fitting target 
projections were also sampled from the first 700 projections in the raw 4DCBCT data-set (Test 22). 
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Figure 43: Comparison of 2D marker centroid locations in detector reference frame for known CBCT projections 
and DRRs cast through optimized FIPM-PCA 4DCBCT.  FIPM-PCA 4DCBCTs were reconstructed using FIPM-bspline 
registration with 10 amplitude bins to generate the training set, parameterized functions of the breathing trace 
coupled to eigenvectors with 3 modes for the motion model, and masked 4DCBCT projections as the fitting 
target. Training data was limited to the first 700 projections in the raw 4DCBCT data-set, and the fitting target 
projections were sampled from the last 700 projections in the raw 4DCBCT data-set (Test 23).  
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Figure 44: Comparison of 2D marker centroid locations in detector reference frame for known CBCT projections 
and DRRs cast through optimized FIPM-PCA 4DCBCT.  FIPM-PCA 4DCBCTs were reconstructed using FIPM-bspline 
registration with 10 amplitude bins to generate the training set, parameterized functions of the breathing trace 
coupled to eigenvectors with 3 modes for the motion model, and masked 4DCBCT projections as the fitting 
target. Training data was limited to the last 700 projections in the raw 4DCBCT data-set, and the fitting target 
projections were also sampled from the last 700 projections in the raw 4DCBCT data-set (Test 24). 
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Figure 45: Comparison of 2D marker centroid locations in detector reference frame for known CBCT projections 
and DRRs cast through optimized FIPM-PCA 4DCBCT.  FIPM-PCA 4DCBCTs were reconstructed using FIPM-bspline 
registration with 10 amplitude bins to generate the training set, parameterized functions of the breathing trace 
coupled to eigenvectors with 3 modes for the motion model, and masked 4DCBCT projections as the fitting 
target. Training data was limited to the last 700 projections in the raw 4DCBCT data-set, and the fitting target 
projections were sampled from the first 700 projections in the raw 4DCBCT data-set (Test 25). 

 

4.7.2 Marker data tables 

 

Table 5 describes the 3D marker trajectory results for all tests listed in Table 4.  For each 

test it first lists a qualitative description of the plot of the reconstructed and gold standard data.  

It then lists the mean, standard deviation, and root mean square (RMS) of the disagreement 

between the two trajectories for the X, Y, and Z components of motion.  The mean displays 
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differences between the two data-sets due to systematic offsets, while the standard deviation 

captures differences in phase, amplitude, and waveform.  The RMS serves as a combination of 

the two.  For tests 19-25 three values are listed in each slot to provide temporally segmented 

results.  The first value describes the mean, standard deviation, or RMS difference calculated 

over the first 700 data-points, the second value describes the same quantities calculated over 

only the final 700 data-points, and the third value calculates those quantities over all data-

points (excluding times when the marker was out of frame). 

 

Table 5: List of qualitative and quantitative results for real patient data test scenarios comparing reconstructed 
and gold standard 3D marker trajectories. 

Test 
number 

Qualitative marker trajectory 
observations 

Trajectory 
difference mean 
(mm) 

Trajectory 
difference 
standard 
deviation (mm) 

RMS difference 
(mm) 

Test 1  
 

 Reconstructed trajectory 
tracks well with gold 
standard for all 
components, best for Z, 
worst for X. 

 X: 5.94e-07 

 Y: 2.37e-06 

 Z: -6.78e-07 

 X:  2.26e-01 

 Y: 3.86e-01 

 Z:  7.12e-01 

 X: 0.226128 

 Y: 0.385359 

 Z: 0.711841 

Test 2  
 

 Reconstructed trajectory 
tracks well with gold 
standard for all 
components, best for Z, 
worst for X. 

 X: -9.81e-08 

 Y: 1.37e-06 

 Z: -5.15e-07 

 X:  2.27e-01 

 Y:  6.66e-01 

 Z: 4.07e-01 

 X: 0.226721 

 Y: 0.665752 

 Z: 0.406924 

Test 3 
 

 Reconstructed trajectory 
tracks well with gold 
standard for all 
components, best for Z, 
worst for X. 

 X: 1.25e-07 

 Y: 6.87e-07 

 Z: -2.34e-07 

 X:  2.26e-01 

 Y: 7.12e-01 

 Z: 3.86e-01 

 X: 0.225908 

 Y: 0.711841 

 Z: 0.385359 

Test 4  
 

 Reconstructed trajectory 
tracks well with gold 
standard for all 
components, best for Z, 
worst for X. 

 X:  -4.46e-06 

 Y: 5.46e-07 

 Z: -5.98e-06 

 X: 2.48e-01 

 Y: 6.62e-01 

 Z: 4.43e-01 

 X:  0.248054 

 Y: 0.661302 

 Z:  0.442314 

Test 5  
 

 Reconstructed trajectory 
tracks well with gold 

 X: 1.50e-06 

 Y: -1.07e-07 

 X:  2.59e-01 

 Y:  6.99e-01 

 X: 0.258994 

 Y: 0.698203 
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standard for all 
components, best for Z, 
worst for X. 

 Z: -7.04e-07  Z: 4.17e-01  Z: 0.417151 

Test 6  
 

 Reconstructed trajectory 
doesn't track quite as well 
with gold standard for all 
components, best for Z, 
worst for Y. 

 X: 5.94e-06 

 Y: -2.39e-07 

 Z: -3.25e-06 

 X:  2.27e-01 

 Y:  4.07e-01 

 Z: 6.66e-01 

 X: 0.226544 

 Y: 0.406912 

 Z: 0.665781 

Test 7  
 

 Reconstructed trajectory 
tracks well with gold 
standard for Y and Z 
components. X 
component has significant 
waveforms differences. 

 X: -3.58e-01 

 Y: 4.97e-02 

 Z:-1.47e-03 

 X: 4.01e-01 

 Y: 7.64e-01 

 Z: 4.83e-01 

 X: 0.537318 

 Y: 0.764875 

 Z:0.482190 

Test 8  
 

 Clear differences in all 3 
directions, overshoot in X 
direction, undershoot in Y 
and Z directions. 

 X: -4.07e-01 

 Y: -3.64e-02 

 Z: 1.34e-01 

 X:  7.03e-01 

 Y:  2.06e+00 

 Z: 1.29e+00 

 X: 0.811502 

 Y: 2.063412 

 Z: 1.298394 

Test 9  
 

 X is pretty good, maybe 
slight offset miss, Y looks 
decent but has small but 
definite offset miss, Z is 
good except for the usual 
offset miss. 

 X: 1.30e-01 

 Y: -1.07e+00 

 Z: -1.14e+00 

 X: 2.40e-01 

 Y: 7.52e-01 

 Z: 4.46e-01 

 X: 0.272941 

 Y: 1.308146 

 Z: 1.221108 

Test 10  
 

 Total offset miss in the X 
direction, amplitudes are 
far off in Y and Z 
directions. 

 X: -3.02e+00 

 Y: -7.17e-01 

 Z: -3.34e-01 

 X: 5.00e-01 

 Y: 1.44e+00 

 Z: 2.25e+00 

 X: 3.063418 

 Y: 1.609857 

 Z: 2.271602 

Test 11  
 

 Fairly large amplitude 
miss in X, smaller 
amplitude misses in Y and 
Z. 

 X: -6.56e-01 

 Y: -2.28e-01 

 Z: -1.07e+00 

 X: 6.21e-01 

 Y:  1.13e+00 

 Z: 8.33e-01 

 X: 0.782153 

 Y: 0.877719 

 Z: 1.149748 

Test 12  
 

 Clear offset miss in X, Y 
looks good except for 
waveform differences, Z 
looks good except for 
usual offset. 

 X: -8.64e-01 

 Y: -5.15e-01 

 Z: -1.02e+00 

 X:  3.65e-01 

 Y:  8.60e-01 

 Z: 3.84e-01 

 X: 0.938167 

 Y: 1.001395 

 Z: 1.090238 

Test 13  
 

 Amplitude and offset miss 
in X direction, waveform 
incorrect in some spots in 
Y direction, usual small 
offset in Z direction. 

 X: -2.84e-01 

 Y: -6.48e-01 

 Z: -1.11e+00 

 X: 3.00e-01 

 Y: 7.66e-01 

 Z: 3.87e-01 

 X: 0.412556 

 Y: 1.003235 

 Z: 1.173118 

Test 14   Amplitude somewhat  X: -2.74e-02  X:  4.00e-01  X: 0.400234 



 

155 
 

 wrong in X direction, 
waveform incorrect in 
some spots in Y direction, 
usual small offset in Z 
direction. 

 Y: -4.13e-01 

 Z: -1.13e+00 

 Y:  9.74e-01 

 Z: 4.04e-01 

 Y: 1.057032 

 Z: 1.198411 

Test 15  
 

 Amplitude and offset 
misses in X, amplitude 
miss in Y, amplitude and 
usual offset miss in Z. 

 X: -4.60e-01 

 Y: -4.90e-03 

 Z: -8.69e-01 

 X: 2.90e-01 

 Y: 1.94e+00 

 Z: 1.06e+00 

 X: 0.543522 

 Y: 1.937586 

 Z: 1.367888 

Test 16  
 

 Offset miss in X, Y is 
pretty good beyond 
waveform differences, Z 
good besides usual offset. 

 X: -4.99e-01 

 Y: -6.60e-01 

 Z: -1.08e+00 

 X:  2.71e-01 

 Y:  8.31e-01 

 Z: 3.92e-01 

 X: 0.567820 

 Y: 1.060678 

 Z: 1.149069 

Test 17  
 

 Mostly waveform miss in 
X and Y, good in Z except 
for usual offset. 

 X: -1.91e-01 

 Y: -8.91e-01 

 Z: -1.11e+00 

 X:  4.00e-01 

 Y:  7.07e-01 

 Z: 3.98e-01 

 X: 0.443175 

 Y: 1.137718 

 Z: 1.182145 

Test 18  
 

 Amplitude and minor 
offset error in X, 
waveform and minor 
amplitude error in Y, 
usual offset error in Z. 

 X: 3.50e-01 

 Y: -8.42e-01 

 Z: -1.23e+00 

 X:  5.77e-01 

 Y:  8.31e-01 

 Z: 4.10e-01 

 X: 0.674610 

 Y: 1.182225 

 Z: 1.295403 

Test 19 
 

 Offset miss in both 
sections in X, pretty good 
in first section with 
waveform differences 
more prominent for 
second section in Y, usual 
offset miss in Z but bigger 
for second section than 
first. 

 X: (-8.67e-01, 
-7.37e-01,       
-8.02e-01) 

 Y: (-5.19e-01,  
-1.70e-01,         
-3.45e-01) 

 Z: (1.00e+00,   
-2.08e+00,        
-1.54e+00) 

 X:  (3.68e-01,      
4.43e-01, 
4.12e-01) 

 Y: (8.64e-01, 
1.17e+00, 
1.04e+00)  

 Z: (3.99e-01, 
7.09e-01, 
7.87e-01) 

 X:  
(0.941319, 
0.859742, 
0.901482) 

 Y: (1.007100, 
1.182243, 
1.098110)  

 Z: (1.080324, 
2.197397, 
1.731063) 

Test 20 
 

 Offset undershoot in both 
sections for X, offset 
undershoot in first section 
with good fit in second 
section for Y, no offset in 
first section with typical 
offset in second section 
for Z. 

 X: (-8.23e-01, 
-7.11e-01,     
-7.67e-01) 

 Y: (-1.10e+00   
-5.74e-01,       
-8.36e-01) 

 Z: (1.78e-01,   
-8.64e-01,         
-3.43e-01) 

 X: (3.04e-01, 
3.76e-01, 
3.46e-01) 

 Y: (7.14e-01, 
9.69e-01, 
8.90e-01) 

 Z: (4.37e-01, 
7.28e-01, 
7.95e-01) 

 X: (0.876673, 
0.804042, 
0.841167) 

 Y: (1.309937, 
1.125397, 
1.221220) 

 Z: (0.471192, 
1.129727, 
0.865328) 

Test 21 
 

 Similar offset miss in both 
sections for X, small offset 
miss in first section and 

 X: (-8.27e-01, 
-7.79e-01,       
-8.03e-01) 

 X: (2.54e-01, 
2.88e-01, 
2.73e-01) 

 X: (0.864791, 
0.830461, 
0.847812) 
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pretty good in second 
section for Y, small offset 
miss in first section with 
larger offset miss in 
second section for Z. 

 Y: (-
1.01e+00, -
4.65e-01,       
-7.37e-01) 

 Z: (-4.84e-01,  
-1.44e+00,      
-9.64e-01): 

 Y: (7.14e-01, 
9.84e-01, 
9.01e-01) 

 Z: (3.99e-01, 
7.09e-01, 
7.49e-01) 

 Y: (1.235932, 
1.087428, 
1.164101) 

 Z: (0.627017, 
1.608610, 
1.220508) 

Test 22 
 

 Offset miss in both 
sections but worse for 
first section in X, good fit 
for both in Y, offset miss 
in both sections but larger 
for second section for Z. 

 X: (-2.75e-01, 
-2.91e-01,       
-2.83e-01) 

 Y: (-8.36e-01,  
-2.62e-01,       
-5.49e-01) 

 Z: (-9.78e-01,  
-1.94e+00,      
-1.46e+00) 

 X: (2.44e-01, 
3.13e-01, 
2.81e-01) 

 Y: (7.00e-01, 
9.79e-01, 
8.98e-01) 

 Z: (4.09e-01, 
7.23e-01, 
7.60e-01) 

 X: (0.367101, 
0.427534, 
0.398445) 

 Y: (1.089817, 
1.012982, 
1.052128) 

 Z: (1.060040, 
2.072902, 
1.645971) 

Test 23 
 

 Offset miss in both 
section but worse for 
second section in X, offset 
miss in first section and 
pretty good in second 
section for Y, no offset 
miss in first section with 
typical offset miss in 
second section for Z. 

 X: (-4.06e-01, 
-4.36e-01,       
-4.21e-01) 

 Y: (1.53e+00,  
-9.15e-01,       
-1.22e+00) 

 Z: (6.15e-02,   
-8.76e-01,       
-4.07e-01) 

 X: (2.55e-01, 
3.34e-01, 
2.97e-01) 

 Y: (7.17e-01, 
9.93e-01, 
9.19e-01) 

 Z: (4.32e-01, 
7.41e-01, 
7.66e-01) 

 X: (0.479227, 
0.548988, 
0.515266) 

 Y: (1.689711, 
1.349992, 
1.529429) 

 Z: (0.435730, 
1.147194, 
0.867510) 

Test 24 
 

 No offset miss but bad 
phase miss in both 
sections for X, amplitude 
and small offset miss in 
both sections for Y, no 
offset miss in first section 
with typical offset miss in 
second section for Z. 

 X: (2.32e-01,   
-6.22e-03, 
1.13e-01) 

 Y: (-
1.59e+00, -
1.20e+00,      
-1.40e+00) 

 Z: (1.85e-01,   
-9.012e-01,     
-3.58e-01) 

 X: (5.81e-01, 
6.60e-01, 
6.33e-01) 

 Y: (7.76e-01, 
1.08e+00, 
9.60e-01) 

 Z: (4.50e-01, 
7.35e-01, 
8.17e-01) 

 X: (0.625314, 
0.659519, 
0.642632) 

 Y: (1.772427, 
1.615938, 
1.696041) 

 Z: (0.486621, 
1.162829, 
0.891126) 

Test 25 
 

 Offset miss in both 
sections for X, good fit for 
both sections with worse 
waveform difference for 
second section in Y, small 
offset for first section 
with bigger offset for 
second section in Z. 

 X: (4.37e-01, 
4.70e-01, 
4.53e-01) 

 Y: (-7.75e-01,  
-5.26e-01,       
-6.51e-01) 

 Z: (-
1.11e+00, -

 X: (3.43e-01, 
4.08e-01, 
3.77e-01) 

 Y: (7.58e-01, 
1.08e+00, 
9.42e-01) 

 Z: (4.20e-01, 
7.28e-01, 

 X: (0.555544, 
0.622024, 
0.589699) 

 Y: (1.084385, 
1.202497, 
1.144924) 

 Z: (1.184700, 
2.288478, 
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2.17e+00,      
-1.64e+00) 

7.97e-01) 1.821817) 

 

Table 6 describes the 2D projected marker position results for tests 9-25 listed in Table 

4.  For each entry it also gives a qualitative description of the corresponding plot followed by 

the mean, standard deviation, and RMS of the error of the reconstructed data with reference to 

the ground truth data.  As before three values were supplied for each metric for tests 19-25.  

 

Table 6: List of qualitative and quantitative results for comparison of marker projection centroids between 
ground truth 4DCBCT data and model generated DRRs. 

Test 
number 

Qualitative marker 
projection centroid 
observations 

Marker 
projection 
centroid error 
mean (detector 
pixels) 

Marker 
projection 
centroid error 
standard 
deviation 
(detector pixels) 

Marker 
projection 
centroid error 
RMS (detector 
pixels) 

Test 9 
 

 Good fit with largest 

disagreement in the 

center for U, small 

offset in V. 

 U: 4.10 

 V: 1.79 

 U: 4.46 

 V: 1.91 

 U: 6.05 

 V: 2.62 
 

Test 10 
 

 Large phase and offset 

miss in U, large 

amplitude and offset 

miss in V. 

 U: 8.86 

 V: -17.22 
 

 U: 30.25 

 V: 8.81 
 

 U: 31.50 

 V: 19.34 
 

Test 11 
 

 Excellent agreement 

for both U and V. 

 U: -0.25 

 V: 0.07 
 

 U: 3.13 

 V: 1.75 
 

 U: 3.14 

 V: 1.75 
 

Test 12 
 

 Excellent agreement 

for both U and V. 

 U: -0.83 

 V: -0.12 
 

 U: 3.06 

 V: 1.64 
 

 U: 3.17 

 V: 1.65 
 

Test 13 
 

 Excellent agreement 

for both U and V. 

 U: 0.12 

 V: 0.23 
 

 U: 2.44 

 V: 1.65 
 

 U: 2.44 

 V: 1.67 
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Test 14 
 

 Excellent agreement 

for both U and V. 

 U: 0.88 

 V: 0.31 
 

 U: 3.00 

 V: 1.72 
 

 U: 3.12 

 V: 1.75 
 

Test 15 
 

 Large amplitude 

misses in both U and 

V. 

 U: 0.46 

 V: -0.72 
 

 U: 6.43 

 V: 4.17 
 

 U: 6.44 

 V: 4.23 
 

Test 16 
 

 Excellent agreement 

for both U and V. 

 U: -0.16 

 V: 0.13 
 

 U: 2.55 

 V: 1.66 
 

 U: 2.56 

 V: 1.67 
 

Test 17 
 

 Excellent agreement 

for both U and V. 

 U: 0.04 

 V: 0.26 
 

 U: 2.57 

 V: 1.63 
 

 U: 2.57 

 V: 1.65 
 

Test 18 
 

 Good agreement in U, 

slight amplitude miss 

in V. 

 U: 1.61 

 V: 0.73 
 

 U: 2.81 

 V: 1.76 
 

 U: 3.24 

 V: 1.90 
 

Test 19 
 

 Excellent agreement 

for both sections in U, 

excellent agreement in 

first section with good 

agreement with small 

offset miss in second 

section for V.  

 U: (-0.83,         
-0.36, -0.59) 

 V: (-0.12, 
4.22, 2.10) 

 

 U: (3.06, 
4.13, 3.66) 

 V: (1.64, 
3.05, 3.28) 

 

 U: (3.17, 
4.14, 3.70) 

 V: (1.65, 
5.20, 3.90) 

 

Test 20 
 

 Excellent agreement 

for both sections in U, 

small offset miss in 

first section with good 

agreement in second 

section for V. 

 U: (-1.03,         
-0.60, -0.81) 

 V: (-4.66,          
-0.48, -2.52) 

 

 U: (2.54, 
3.26, 2.94) 

 V: (1.73, 
3.02, 3.24) 

 

 U: (2.74, 
3.31, 3.04) 

 V: (4.97, 
3.05, 4.10) 

 

Test 21 
 

 Excellent agreement 

for both sections in U, 

small offset miss in 

different directions for 

both sections in V. 

 U: (-0.96,         
-0.60, -0.77) 

 V: (-2.10, 
1.76, -0.12) 

 

 U: (2.49, 
3.41, 3.00) 

 V: (1.61, 
3.00, 3.09) 

 

 U: (2.66, 
3.46, 3.09) 

 V: (2.64, 
3.47, 3.10) 

 

Test 22  Excellent agreement  U: (0.19, 
0.69, 0.45) 

 U: (2.48, 
3.82, 3.24) 

 U: (2.49, 
3.88, 3.27) 
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 for both sections in U, 

good agreement in 

first section with small 

offset miss in second 

section for V. 

 V: (-0.14, 
3.58, 1.76) 

 

 V: (1.81, 
3.19, 3.20) 

 

 V: (1.81, 
4.79, 3.65) 

 

Test 23 
 

 Excellent agreement 

for both sections in U, 

small offset miss in 

first section with good 

agreement in second 

section for V. 

 U: (-0.44,         
-0.038, -0.23) 

 V: (-4.13,          
-0.55, -2.30) 

 

 U: (2.70, 
3.31, 3.03) 

 V: (1.87, 
3.20, 3.19) 

 

 U: (2.74, 
3.31, 3.04) 

 V: (4.54, 
3.25, 3.93) 

 

Test 24 
 

 Excellent agreement 

for both sections in U, 

small offset miss in 

first section with good 

agreement in second 

section for V. 

 U: (0.72, 
0.47, 0.59) 

 V: (-4.61,          
-0.43, -2.47) 

 

 U: (3.55, 
3.70, 3.63) 

 V: (1.93, 
3.16, 3.36) 

 

 U: (3.62, 
3.73, 3.67) 

 V: (5.00, 
3.19, 4.17) 

 

Test 25 
 

 Excellent agreement 

for both sections in U, 

good agreement in 

first section with small 

offset miss in second 

section for V. 

 U: (1.44, 
1.69, 1.57) 

 V: (0.37, 
4.49, 2.48) 

 

 U: (2.79, 
3.63, 3.25) 

 V: (1.88, 
3.21, 3.35) 

 

 U: (3.14, 
4.00, 3.61) 

 V: (1.92, 
5.52, 4.17) 

 

 

4.8 Discussion 

 

Before beginning our analysis of the patient data reconstruction results it is important 

to note that our 3D validation data, the independently reconstructed 3D marker trajectory, is a 

gold standard rather than a ground truth.  It itself is an estimate derived from the same 

projection data that feeds our algorithm.  Therefore, we refer to discrepancies between those 

two data-sets as differences, rather than errors.  It is impossible to know which data is truly 

correct, however we assert that agreement between the two sets is a valuable indicator that 
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both methods are performing well.  A further complication is that in order to compare the two 

sets of data their imaging reference frames must be precisely aligned.  We believe that 

misalignment of this type is the cause of the persistent offset in the Z direction observed in 

tests 9-25.  Indeed, in our 2D validation data comparing projected marker positions we see no 

evidence of such a shift in the V direction, which is essentially the same as the Z direction. Thus 

we believe that this is an artificial difference due to misalignment of the two geometries rather 

than a true discrepancy between the 3D validation and reconstructed data. 

In addition we note that all tests are carried out on the same patient data-set.  

Differences in results are due solely to the different scenarios under which reconstructions 

were performed. 

 

4.8.1 General observations 

 

Based on the 3D marker trajectory difference data and plots, we can divide our tests 

into two rough groups: those fit to the gold standard data, and those fit to the masked 4DCBCT 

projections. 

The first group encompasses test runs 1-8 and is characterized almost uniformly by tiny 

systematic offsets (difference mean), as well as submillimeter discrepancies due to 

phase/amplitude/waveform disagreement (difference standard deviation).  The results plotted 

in Figure 23 confirm this story.  Qualitatively we observe an excellent agreement for the X 

component of motion, with observable discrepancy only in the center where the gold standard 

trajectory becomes noisy.  The Y component also displays close agreement, with small 
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differences in amplitude apparent for some breathing cycles.  The Z component shows the 

closest match of the three, with the two trends nearly indistinguishable.   This tells us that our 

formulation of the motion model is sufficient to accurately represent the gold standard data.  In 

doing so it helps lay the groundwork for ascertaining the effects of fitting to actual projection 

data by effectively ruling out one mode of failure.  The lone outlier in this group is test 8 (results 

plotted in Figure 25), which uses eigenvectors trained on manually tracked marker locations 

within the backprojection reconstructed 4DCBCT, and fits to 2D geometric projections of the 3D 

gold standard marker trajectory.  This test suffers from visible amplitude and phase 

discrepancies in the X and Y directions and a visible amplitude discrepancy in the Z direction.  Its 

closest point of comparison, test 7 (plotted in Figure 24), which uses a training set based on 

manual tracking of the marker in the FIPM-bspline reconstructed 4DCBCT, shows some 

waveform disagreement in the X direction but is of high quality in all other aspects.  It seems 

that a combination of degraded eigenvectors resulting from this training set generation method 

and the more complicated projection fitting target caused the drop in performance, as runs 4 

and 6, where only one of these factors was present, both had results comparable to the other 

tests in the first group.  

The second group covers test runs 9-18, and here the reconstructed 3D marker 

trajectories differ more widely from each other as well as from the gold standard trajectory.  

Discounting tests 10 and 15 for the moment as outliers, we see difference means ranging from -

0.0274 to -0.864, -0.228 to -1.07, and -1.02 to -1.23 mm for the X, Y, and Z marker trajectory 

spatial components respectively.  Difference standard deviations range from 0.24 to 0.621, 

0.707 to 1.94, and 0.384 to 0.833 mm for the X, Y, and Z marker trajectory spatial components 
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respectively.  However, the qualitative assessments of the marker plots tell the most interesting 

story.  Looking at Figure 27, Figure 28, Figure 29, and Figure 31 it becomes apparent that the X 

direction is the most volatile, with noticeable amplitude and offset differences present across 

all tests.  The quantitative results for the X component are comparable or even favorable to the 

other two components, but the much smaller magnitude of motion in the X direction masks the 

ambiguity with which the algorithm is able to track the marker along this axis.  Overall, the Y 

component appears to suffer mostly from mild differences in marker trajectory amplitude.  The 

Z component plots display the systematic offset difference that is consistently observed across 

all test runs 9-18.  Disregarding this difference as an artificial misalignment between the 

reconstruction and validation geometries the marker trajectory reconstruction along this axis 

appears nearly as good as that observed for tests 1-8.  Intuitively these observations make 

sense; the poorest tracking occurs in the X direction, in which the motion is in the axial plane 

and has the smallest magnitude.  Movement along an axis within the axial plane is resolved in 

the projection geometry with variable accuracy depending on the gantry angle, with the least 

sensitivity for motion normal to the detector plane and greatest sensitivity to motion parallel to 

the detector plane. The most accurate tracking occurs in the Z direction, in which the 

magnitude of motion is the greatest and is in a direction resolved equally well from all gantry 

angles.   

The data for the 2D marker projection positions is somewhat more uniform, both 

qualitatively and quantitatively.  Once again discounting tests 10 and 15 we see that Figure 37, 

Figure 38, Figure 39, and Figure 41 all appear similar for both the U and V directions and from 

Table 6 it is apparent that errors in U are generally bracketed between 2.5 to 3.5 detector pixels 
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while errors in V tend to fall between 1.5 to 2.5 detector pixels.  This homogeneity coupled with 

the variance observed in the 3D data implies that multiple 3D motion trajectories are capable of 

producing similar projection results.  Since our optimization algorithm is driven by results in the 

projection domain it may indicate degeneracy within our solution search space. 

Tests 10 and 15, which were deemed outlier tests, also present interesting cases.  Test 

10 is a testament to the importance of an effective binning strategy.  The proprietary phase 

based binning method implemented automatically by the RPM system is a notoriously poor 

solution, and as such the results of the FIPM-bspline registrations to projections binned by this 

method are expected to be poor.  As seen in Figure 21 there is no observable correlation 

between the average principal coefficient and breathing traces when using this method, 

producing random eigenvectors and a nonsensical initial parameter guess.  In contrast, the 

average principal coefficient and breathing traces in Figure 22 show clear waveform similarities 

for the first two, dominant modes.  The end results, displayed in Figure 26 and Figure 36, are 

huge misses in each spatial component. Test 10 display the consequences when the projection 

binning portion of the overall algorithm is not well executed.  Test 15 is treated as an outlier for 

a different reason, namely because it includes only one mode in the motion model; it is 

discussed further in Section 4.8.5. 

 

4.8.2 Comparison to literature 

 

Within the literature there are a handful of investigators who have proposed methods 

to track either full moving anatomy or a moving lung tumor in a non-time averaged manner 
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within the context of an image registration or reconstruction algorithm.  Most of these 

algorithms are in the proof of concept stage and none compare reconstructed 3D motion 

results for patient data to a gold standard.  Regardless, their experiences are still useful in 

comparison to our own. 

One such method uses a motion model capable of rigid transformations to 

simultaneously reconstruct a reference image and its time dependent deformation.  The 

temporal dependence of the motion model is based on a linear combination of scaled versions 

of motion surrogate amplitude and velocity traces.  The intent of the algorithm is to reconstruct 

implanted marker or tumor motion.  In a simulation study they documented an average marker 

tracking error of 0.08 mm and an average tumor tracking error of about 1.0 mm.73 

Another method optimizes the principal coefficients of a PCA based deformation model 

to warp a reference image such that it matches individual x-ray projections.  Though they 

reconstruct the full deforming anatomy with this method their principal goal is to track a tumor 

in 3D.  In experiments using a numerical phantom they report a 3D tracking error of about 0.8 

mm.  They report similar error for a physical motion phantom moving in a single direction.  

They also reconstruct 3D tumor motion for patient data, however for validation they only 

assess tumor motion in the 2D detector reference frame.  For this test they find an average 

error of about 1-2 mm along each axis of the detector plane when scaled back to the average 

3D tumor location.28 

A final method iteratively registers a prior image to a projection image acquired at a 

later time using a rigid deformation model.  This algorithm is described as a 2D/3D registration 

approach and its intent is to track tumor motion in real time.  In a physical motion phantom 
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study with displacement in a single direction the authors reported a RMS tracking error of 2.6 

mm.  In a patient data study they did not provide numerical results but noted a visual 

correlation between the reconstructed 3D tumor path and the 1D motion of the patient 

diagram.74 

Although somewhat sparse, these examples display roughly the same trends that we 

observe, namely successful motion tracking with errors on the order of a millimeter.  

 

4.8.3 Binning strategy 

 

For our investigation of the most effective binning strategy we tested three different 

algorithms based on breathing trace phase, amplitude, and a hybrid of phase and amplitude.  

As discussed at the end of Section 4.8.1 the phase based method (in the particular 

implementation that we considered) was known to be a poor solution and was never a true 

candidate.  Regarding the comparative advantage of the amplitude vs. hybrid method, the 

results appear fairly inconclusive.  Both deliver reconstructions that are quantitatively and 

qualitatively similar.  The hybrid algorithm would appear to have several advantages over the 

simpler amplitude based method; it considers multiple criteria relevant to successful 4DCBCT 

registration/reconstruction when choosing bin boundaries, bins are calculated independently 

so that bin quality is not related to the number of bins generated, and it allows outlier 

projections to be rejected while including particularly useful projections in multiple bins.  It also 

has some disadvantages in that its results are less predictable and it requires user supplied 

weighting factors that must be determined empirically.  
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Regardless, the distinctions appear moot in this case as there is no clear differentiation 

between results obtained with one method or the other.  It is possible that the rigid, fairly 

regular, motion exhibited by the marker is simply not complicated enough to challenge either 

algorithm.  This should be tested further in data-sets containing true deformable motion within 

a complete patient anatomy. 

Of additional interest are the eigenvalue spectra associated with the eigenvectors 

generated from each method.  The eigenvalue spectra tabulate the training set variance 

captured by each eigenvector; in other words they quantify the relative importance of each 

mode.  A flat eigenvalue spectrum indicates feature vectors composed entirely of random 

noise, while noise free feature vectors that track motion coherent across all spatial components 

will result in a single non-zero eigenvalue.  Feature vectors whose components contain relative 

phase shifts but follow an identical periodic waveform (disregarding amplitude and baseline 

offset differences) will be fully described by two modes, while for pseudo-periodic waveforms 

with multiple phase shifts 3 or more modes will be required.  The eigenvalue spectra in Figure 6 

from the simulated training data described in Chapter 2 display these trends.  In our patient 

data testing feature vectors come from actual deformable registrations, and are therefore 

expected to contain a mixture of true motion signal and registration noise.  Thus we expect the 

eigenvalue spectra generated by these tests to exhibit a few meaningful modes that fall off 

sharply in importance and are appended with long tails of non-zero modes dominated by noise.  

With this knowledge in hand we can use these spectra as rough diagnostic tools to assess the 

coherence of patient motion and the noisiness of deformable registrations.  Figure 46 displays 

the eigenvalue spectra for feature vector training sets generated using the FIPM-bspline 
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registration algorithm with different projection binning strategies.  For reference it also includes 

a “clean”, or noise free, training set obtained by upscaling a group of displacement vectors 

sampled directly from the gold standard marker trajectory.  All methods show the sharp falloff 

and long tail that we expect, with the shape of the curves being fairly smooth and similar for 

the amplitude and hybrid methods, while somewhat different and more jagged for the phase 

based method.  Though the irregularity of the phase based spectrum may be an indicator of its 

poor quality, the effect does not appear to be drastic enough to be conclusive. 

 

Figure 46: Eigenvalue spectra of feature vectors generated from FIPM-bspline registration of projections binned 
using different bin numbers and binning strategies. 
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4.8.4 Number of bins 

 

The conclusion here is the same as that for overall binning strategy.  Tests 11, 12, and 13 

using 10, 20, and 30 amplitude bins respectively show similar results.  In addition, the 

eigenvalue spectra in Figure 46 look more or less the same for different amplitude bin numbers.  

Once again, the simplicity of the marker motion may obscure effects that will be relevant for 

reconstruction of more complicated data.  Based on previous work we expect 10 bins to act as a 

bare minimum, with an optimal number somewhere in the 20-30 range.34  

 

4.8.5 Number of modes 

 

Our investigation of the number of modes required for a complete motion model began 

with one mode and built up to the first five principal modes.  The goal of this inquiry was to find 

the minimum number of modes required for an accurate reconstruction.  In general, including a 

large number of modes will increase the dimensionality of the search space without introducing 

meaningful new motion data.  Test 15, the run using only one mode, displayed visibly degraded 

marker trajectory results, as evidenced by Figure 30 and Figure 40.  This was expected as it is 

mathematically impossible for one mode to fully capture hysteresis motion in which the spatial 

motion components are out of phase by anything other than 180 degrees.  In an interesting 

result test 16 incorporating only 2 modes performed approximately evenly with tests 11-13, 17, 

and 18 which used 3, 4, and 5 modes respectively.  This was approximately in line with our 

expectations based on the literature as well as our own past experiences.24, 27, 28, 32  However, 
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the simplicity of the motion contained in our segmented data-sets remains a factor to keep in 

mind when extrapolating these results to more general data. 

 

4.8.6 Motion model temporal stability 

 

Our present formulation of the PCA motion model assumes that the relative phase and 

amplitude relationships between the DVF motion vector components (which are represented 

by the eigenvectors) are constant for the duration of the reconstructed time series. It also 

assumes a fixed relationship in time between a tracked reference feature (the RPM breathing 

trace) and the moving anatomy to be reconstructed.   We investigated the timeframe in which 

this assumption held in our chosen data-set by splitting it into two smaller sets and generating 

optimized motion models based solely on either set.  We also examined hybrid scenarios in 

which training data was selected from one set and the optimization fitting target data was 

selected from the other set.  Though for these tests we used limited data to train and optimize 

our motion model, we reconstructed the marker trajectory for all time points.  Observing the 

reconstruction results for data not included in the motion model generation process gave us a 

picture of the degree to which the model was still valid for later (or earlier) time periods.   

From tests 22 and 24 we can see the effect of reconstructing data from one time group 

using a motion model trained and optimized on data from a different time group.   The general 

trend is most readily observable in the 2D marker projection data for tests 22 and 24 tabulated 

in Table 6 and plotted in Figure 42 and Figure 44.  In test 22 the motion model was trained and 

optimized on the first group of time points, while for test 24 it was trained and optimized on 
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the second set of time points.  For the first group of time points going from test 22 to test 24 

increased the projected marker centroid RMS error from 2.49 to 3.62 and 1.81 to 5.00 detector 

pixel units in the U and V directions respectively.  Likewise, for the second group of time points 

going from test 24 to test 22 increased the projected marker centroid RMSE from 3.73 to 3.88 

and 3.19 to 4.79 detector pixel units in the U and V directions respectively.  Thus we see that 

for this metric, error increased for data reconstructed in a different time period than the data 

used to construct the motion model.  When the two data-sets are one and the same, error is 

reduced.  Even so, looking at Figure 42 and Figure 44 we still see a close correspondence 

between reconstructed and known marker positions for data not included in the training and 

optimization of the motion model.  Indeed, using the approximate conversion factor of 0.259 

mm/det. pixel described in section 4.7 the largest observed RMS error of 5.00 detector pixels 

translates to an error of only 1.295 mm at isocenter.  The picture is murkier when viewed 

through the lens of the 3D marker trajectory data tabulated in Table 5 and plotted in Figure 32 

and Figure 34.  For this evaluation method the data in both groups exhibit closer agreement in 

test 22 than in test 24.  It may be that noise and alignment errors in the gold standard data are 

large enough to wash out the small effect documented in the projected marker centroid results. 

From tests 22-25 we also observe that fitting target data is the dominant factor 

influencing temporal stability of the motion model.  This trend is on display in the 2D projected 

marker positions displayed in Figure 42, Figure 43, Figure 44, and Figure 45.  For Figure 42 the 

training data was taken from the first group of time points, as was the fitting data.  The plots, 

particularly in the V direction, show a superior agreement between the first group of time 

points as compared to the second.  For Figure 43 the training data was taken from the first set 
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of time points as well, but the target data was selected from the second group of time points.  

Compared to the plots in Figure 42 the agreement for the second section of time points is 

visibly improved while that for the first group is visibly degraded.   Comparing Figure 44 and 

Figure 45, which are both trained on data from the second time group but fit to projections 

sampled from different groups, we observe the same effect.  The best agreement occurs for the 

time points from which the fitting data was sampled regardless of the origin of the training 

data.  

 

4.9 Conclusions 

 

The goal of this chapter was to test our algorithm on real patient data in a variety of 

different scenarios.  We simplified our data-sets to show only an implanted radio-opaque 

fiducial marker and compared the marker trajectory reconstructed by our FIPM-PCA 4DCBCT 

algorithm to a gold standard marker trajectory generated by an independent method.  We 

found that our reconstructed data agreed with the validation data to within about a millimeter 

for all components of motion.  We also investigated specific parameters of our algorithm, such 

as overall projection binning strategy and number of projection bins.  These tests were largely 

inconclusive, with most options performing at a high level.  In addition we confirmed two or 

three modes to be the optimal number for inclusion in the motion model for the tests 

considered.  Finally, we studied the temporal stability of our motion model by using it to predict 

data on which it was not trained or optimized.  In general we found that results were degraded 

in this scenario, however the effect was not large.  These tests were carried out on only a single 
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patient data-set.  In particular our conclusions regarding the amplitude and hybrid binning 

algorithms and the test for the optimal number of modes should be revisited as more data-sets 

are examined.  In the future, multiple patient data-set exhibiting different motion patterns 

should be considered.
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5 Final thoughts 

 

 

5.1 Summary of work 

 

The purpose of this project was to build and validate a novel 4DCBCT reconstruction 

algorithm for the purpose of making lung cancer radiotherapy safer and more effective.  In 

Chapter 2 we began by formulating our algorithm mathematically and implementing it in code.  

Achieving a stable, well organized, code base was one of the chief accomplishments in this 

development phase.  We also devised a scheme for producing numerical 4DCBCT data-sets and 

tested our algorithm using this data.  From these tests we learned several important lessons.  

For one, we saw only a modest increase in error as we increased the complexity of motion 

within our simulated data-sets.  We also found that optimization of our motion model was 

frequently a tricky process, with gradient based optimizers proving unreliable.  Based on this 

fact the downhill simplex algorithm became our method of choice.  Finally, we compared 

results using ideal training set generation methods to results using realistic methods based on 

backprojection reconstructed 4DCBCT and FIPM-bspline 2D/3D registration.  The clear take 
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away from this test was the superiority of the FIPM-bspline method.  This conclusion allowed us 

to confidently establish this method as an important piece of our algorithm moving forward. 

In Chapter 3 we equipped our algorithm to perform reconstructions for real world data.  

Specifically, we developed an improved DRR algorithm meant to produce accurate emulations 

of actual CBCT projections.  Having a DRR model that faithfully reproduces real projections is 

critical to our overall strategy of matching DRRs and projections to optimize our motion model, 

especially given our preference for a SSD based merit function.  Our strategy was to combine an 

empirical characterization of our CBCT system with knowledge of the various physical effects 

important to image formation.  In Chapter 3 we began by laying a mathematical foundation for 

our DRR algorithm based on the primary and secondary physical processes that influence 

projection image formation.  We then described our methods for accounting for three 

secondary effects: scatter, beam hardening, and veiling glare.  Next we introduced a procedure 

for obtaining a CT number to LAC conversion function based on measurements taken with the 

FBCT and CBCT systems.  In addition, we discussed and demonstrated the effects of scatter, 

beam hardening, and veiling glare on these measurements.  After this we tied all the pieces 

together by listing a step by step recipe for computing a DRR using our method.  Finally we 

tested our algorithm by comparing DRRs to projections for both phantom and patient data.  In 

these tests we compared both the complete version of our algorithm and a simplified version 

that ignored secondary physics effects to ground truth projection images.  The results showed a 

close correspondence to the actual data for both methods, with a small but meaningful edge 

going to the full DRR algorithm.  A final achievement from this stage was our successful 
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transition to GPU based calculation, which improved the speed of our DRR algorithm by over 

30x. 

In Chapter 4 we took advantage of patient data-sets containing previously tracked 

implanted fiducial markers to test our algorithm on real data and compare the results to a 

ground truth.  In addition, we investigated best practices and implemented various 

improvements to our algorithm with regards to both the motion model and optimization 

scheme.  To do so we established a matrix of tests designed tease out the relationships 

between various algorithm parameters and our reconstruction results.  One area of 

investigation was the method used to bin projections for performing 2D/3D registrations.  The 

binning procedure is important because it can have an effect on the quality of results generated 

by the FIPM-bspline algorithm, which will in turn impact the quality of the motion model 

eigenvectors, and ultimately the success or failure of our 4DCBCT reconstructions.  We 

investigated both breathing amplitude and hybrid amplitude/phase based approaches, and also 

investigated the effect of specifying different bin numbers for the amplitude method.  Results 

for this test were somewhat inconclusive, with all methods performing at relatively the same 

level.  We also tried including anywhere from one to five modes in our motion model.  As 

expected the results indicated that one mode was insufficient and no benefit was gained 

beyond three modes.  In addition, we implemented improvements to our optimization scheme, 

foremost of which was an automatic method for generating a good initial parameters guess.  

Finally we tested the temporal stability of our motion model and found only small degradation 

with separations of approximately three and a half minutes.  Overall results were very 
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promising with close agreement between reconstructed and gold standard marker trajectories 

resulting in largely submillimeter differences for individual components of motion. 

 

5.2 Future directions 

 

Immediately moving forward our algorithm should be tested on more patient data-sets 

containing implanted markers for further validation of the tests described in Chapter 4.  

Following this step, testing of the algorithm on full patient data-sets should be implemented.  

The chief obstacle to this phase will undoubtedly be designing a method to verify the results at 

many anatomic locations rather than a small set of fiducial or landmark positions.  This is a 

difficult problem in its own right, and is typically resolved in the literature only through the use 

of numerical phantoms and simulated data-sets.  One potentially valuable study might be to 

acquire a 4D series of high speed magnetic resonance (MR) images to form a ground truth 

picture of moving patient anatomy and then to create a simulated raw 4DCBCT data-set by 

casting projections through the MR images.  The simulated raw 4DCBCT data-set could be 

reconstructed by our method and compared to the ground truth time series. 

Further on, the speed of the algorithm must certainly be improved for clinical adoption 

to become a possibility.  The most demanding application, onboard image reconstruction, likely 

requires that reconstructions be performed in a matter of minutes, while even the simplified 

tests documented in Chapter 4 required hours for algorithm convergence.  Improvements in 

code efficiency and implementation on more powerful hardware will likely go a long way 

towards resolving this issue. 



 

177 
 

Once the algorithm has been suitably polished and verified it should be studied within 

the greater context of 4D radiotherapy delivery.  Its potential for use in 4D pre-treatment 

planning, post-radiotherapy dose verification, and possibly even real-time radiotherapy 

adaptation and target tracking will need to be investigated alongside novel algorithms in those 

areas.  Our FIPM-PCA 4DCBCT algorithm essentially provides a rich data platform upon which a 

host of new applications can be supported.  Without proper integration into the overall 

radiotherapy process its full potential cannot be realized.
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