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A fundamental challenge in the treatment planning process of multi-fractional external-

beam radiation therapy (EBRT) is the tradeoff between tumor control and normal tissue sparing 

in the presence of geometric uncertainties (GUs).  To accommodate GUs, the conventional way 

is to use an empirical planning treatment volume (PTV) margin on the treatment target.  

However, it is difficult to determine a near-optimal PTV margin to ensure specified target 

coverage with as much normal tissue protection as achievable.   

Coverage optimized planning (COP) avoids this problem by optimizing dose in possible 

virtual treatment courses with GU models directly incorporated.  A near-optimal dosimetric 

margin generated by COP was reported to savvily accommodate setup errors of target and 

normal tissues for prostate cancer treatment. 
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This work further develops COP to account for (1) deformable organ motion and 

(2) delineation uncertainties for high-risk prostate cancer patients.  The clinical value of COP is 

investigated by comparing with two margin-based planning techniques: (i) optimized 

margin (OM) technique that iteratively modifies PTV margins according to the evaluated target 

coverage probability and (ii) fixed margin (FM) technique that uses empirically selected constant 

PTV margins.   

Without patient-specific coverage probability estimation, FM plans are always less 

immune to the degraded effect of the modeled GUs than the COP plans or the OM plans.  

Empirical PTV margins face more risks of undesirable target coverage probability and/or 

excessive dose to surrounding OAR. 

The value of COP relative to OM varies with different GUs.  As implemented for 

deformable organ motions, COP has limited clinical benefit.  Due to optimization tradeoffs, COP 

often results in target coverage probability below the prescribed value while OM achieves better 

target coverage with comparable normal tissue dose.  For delineation uncertainties, the clinical 

value of COP is potentially significant.  Compared to OM, COP successfully maintains 

acceptable target coverage probability by exploiting the slack of normal tissue dose in low dose 

regions and maximally limiting high dose to normal tissue within tolerance.   
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1 Introduction 

In external radiation therapy (EBRT), desirable treatment techniques allow tumoricidal 

dose coverage to malignant tumor cells with dose sparing of normal tissues. Geometric 

uncertainties (GUs) involved in multi-fractional treatment delivery constrain the available 

solution space.  The conventional way to accommodate GUs, called margin-based planning 

techniques, uses margins to create expanded volumes as surrogates of regions of interest (ROIs). 

(ICRU Report 50 1994)  This technique inherently assumes that the ROI under the influence of 

GUs can occupy any location within the expanded volume with equal probability, which may not 

be true in real cases.  Inadequate margin selection may cause poor dose coverage or excessive 

toxicity to normal tissues.  While advanced technologies for target localization and plan 

adaptation aim to reduce GUs, they are not yet included in the clinical routine.  An intermediate 

solution can be found by using a technique called probabilistic treatment planning (PTP).  PTP 

directly incorporates models of GUs into treatment planning and results in margins customized 

to the GUs and the orientation of the patient anatomy.  As a new frame work of PTP, coverage 

optimized planning (COP) was tested to give desirable treatment plans for prostate cancer in the 

presence of setup errors and shows some potential as an alternative to the margin-based planning 

technique. (Gordon et al. 2010)  This dissertation further develops COP to explicitly incorporate 

other GUs using appropriate mathematical models.  Virtual clinical trials are performed to assess 
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the hypothesis that COP produces more desirable plans than those planning techniques that use 

margin-based surrogate volumes. 

Chapter 1 describes some background knowledge of GUs involved in EBRT for prostate 

cancer (1.1) and evolved treatment planning techniques to consider these GUs (1.1.2).  In 1.3, the 

purposes and the outline for the following chapters (2-0) of this dissertation are given.   

1.1 Introduction to GUs in external beam radiation therapy 

1.1.1 External beam radiation therapy for prostate cancer 

Prostate cancer
1
 is the third most common cause of death from cancer in men of all ages. 

In 2012, there were about 242,000 new cases of prostate cancer in the United States. (National 

Cancer Institute (NCI) booklet, 2012) With the widespread use of prostate-specific antigen 

(PSA) screening, radiation therapy (RT) has become a primary treatment for the patients with 

clinically localized disease.  As the National Comprehensive Cancer Network (NCCN) treatment 

guidelines specified, patients in low, intermediate or high risk groups (Table I) may be treated 

with RT for therapeutic management.   

Table I. NCCN Risk Groupings on prostate cancer staging (T1-T4) and PSA. (National Comprehensive 

Cancer Network (NCCN Clinical Practice Guidelines in Oncology v.1.2005) 

 Low risk:  

 Intermediate risk:  

 High risk:  

 T1-T2a, PSA < 10 ng/mL  

 T2b-T2c, PSA 10-20 ng/mL  

 T3-T4, PSA > 20 ng/mL 

 

External beam radiation therapy (EBRT) is one of the most common forms of RT for 

prostate cancer treatment.  When a patient lies on a couch, EBRT directs high doses of radiation 

from a source outside patient body to a particular part of body (Figure 1).  With a long history, 

EBRT has been developed into several advanced delivery modes such as intensity modulated 

                                                 
1
 Note, prostate cancer is studied as a “test bench” in this dissertation. There are no exclusions for the other 

interesting clinical sites. 
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radiation therapy (IMRT).  IMRT takes the advantage of multi-leaf collimators to produce 

customized radiation fluence (Figure 2), thereby allowing high-precision radiation doses to be 

focused to regions to of regular or irregular shaped targets.   

 

 

However, like the other treatment modalities, EBRT is far from perfect even with the 

advanced modes.  The ultimate goal of EBRT is to deliver a prescribed dose to treat targets (i.e. 

malignant cells) with as low as possible toxic irradiation to the surrounding normal tissues. 

 

Figure 2: A sketch of fluence intensity of 3 beams in an IMRT for prostate cancer treatment. High beam 

intensity (and therefore high dose) is delivered to the target prostate (red) and low beam intensity (and 

low dose) is delivered to the surrounding bladder (yellow) and rectum (magenta).  

 

Figure 1. EBRT for prostate cancer treatment. (adapted from Patient Health International, © 

AstraZeneca 2012) 



 

4 

 

According to a clinical outcome review (Cahlon et al. 2008) on 478 prostate cancer patients 

treated with 86.4 Gy
2
 using a 5- to 7-field IMRT technique, the 5-year actuarial PSA relapse-free 

survival according to the nadir plus 2 ng/mL definition was 98%, 85% and 70% for the low, 

intermediate, and high risk NCCN prognostic groups, respectively.  The normal tissue 

complication, such as Grade 2 genitourinary toxicity and acute Grade 2 gastrointestinal toxicity 

that associated with bladder toxicity and rectal bleeding, was experienced by 22% and 8% 

patients.  The improvement of tumor control rate is still limited by treatment complications to 

surrounding normal tissues.   

  EBRT is composed of multiple processes: problems in any process could prevent the 

destruction of all the cancer cells or excessively damaging normal tissues.  The flow of EBRT is 

as follows.  First, the cancer is staged and a therapeutic decision is made for the patient.  When 

EBRT is chosen, the patient is imaged to quantify the location and volume of tumor and 

surrounding normal tissues.  Often, to better align the target, fiducial markers are inserted into 

prostate before patient being imaged.  Based on the imaging data, the treatment target and 

normal tissue structures are delineated.  A computerized treatment planning system (TPS) is then 

used to design a treatment plan on the patient image.  Treatment parameters such as treatment 

volume, dose prescription and external beam arrangement are determined.  During the IMRT 

inverse planning (See chapter 2, section 2.1), the dose distribution is calculated and optimized 

until it satisfies a specific set of dose objectives.  The treatment delivery is then simulated for 

quality assurance purposes prior to the treatment.  During the treatment course, the prescribed 

dose is delivered in multiple treatment fractions on separate days.  (For instance, total dose 78 

Gy for a patient may be delivered in fractions of 2 Gy on each of five day per week over 8 

                                                 
2
 Gy is dose unit used in this dissertation. 1 Gy = absorbed energy (associated with ionizing radiation) 

deposited per unit mass of irradiated tissue. 1Gy = 1J/kg. 
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weeks.)  The treatment is fractionated with the purpose of e.g., allowing repair of cellular 

damage for normal tissues based on radiobiological principles.  (See section 3.3.1 of chapter 3 

for more details of cellular response to fractionated dose.)   Obviously, the uncertainties involved 

in each stage of the EBRT can impact the final treatment outcome.  Within the scope of this 

dissertation, a particular attention is paid to how GUs can be addressed during the EBRT 

treatment planning process.   

1.1.2 GUs and their models 

To improve the probability of achieving the therapeutic intent of treatment, GUs should 

be considered adequately during the treatment planning.  GUs introduce deviations between the 

planned (intended) and the treatment geometry, which, if inadequately accounted for, could 

result in undesirable target dose coverage and/or more normal tissue toxicity.  This problem is 

especially significant for IMRT, as miss-aligned conformal dose distribution may be more likely 

miss the intended target.  Moreover, GUs are mostly unavoidable and not easy to predict.  To 

achieve desirable treatment outcomes, a specified knowledge of GUs caused by each process of 

external beam radiation therapy is essential for planning purposes (Wilkinson 2004).  

 The standard method of accommodating GUs is to define various treatment volumes as 

recommended by the International Commission on Radiation Units and Measurements report 

(ICRU) reports. (ICRU Report 50 1994, ICRU Report 62 2000, ICRU Report 83 2011)  These 

volumes aid the current planning process for the consideration of GUs.  A schematic 

representation of these volumes is shown in Figure 3. 

The targets for treatment purpose are called the clinical target volume (CTV), which 

consists of the gross tumor volume (GTV) that is visible through the employed image modalities 

and suspected anatomical spread disease.  In order to absorb the GUs associated with the CTV, 
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the planning target volume (PTV) is defined.  The distance between the CTV and PTV is termed 

the CTV-to-PTV margin. This margin is expected to be large enough to ensure clinically 

acceptable probability of CTV coverage when the PTV dose distribution serves as a surrogate of 

the CTV dose distribution.  For normal tissues, an organ at risk (OAR) is defined as “the normal 

tissues whose radiation sensitivity may significantly influence treatment planning and/or 

prescribed dose”. (ICRU Report 50 1994) The critical OARs for prostate cancer patients include 

the bladder, the rectum, the femurs and small bowel if within the primary beam aperture.  The 

recent ICRU 83 report (ICRU Report 83 2011) articulates that the bladder wall and rectal wall 

should be used to explicitly exclude the inside content for the bladder and rectum.  However, use 

of bladder/rectal wall structures is not yet routine clinical practice.  In analogy with the PTV, the 

concept of the planning organ at risk volume (PRV) is introduced (ICRU Report 62 2000) to take 

into account the GUs of the OAR by adding margins.  Clinically, PRVs are rarely used.  

 

GUs to be accounted for in the CTV-to-PTV margin or the OAR-to-PRV margin can be 

categorized as (1) setup errors, (2) delineation uncertainties, (3) interfraction and (4) intrafraction 

variations in structure position shape and size.  Setup errors (Figure 4a) are deviations in the 

positioning and alignment of patient (where the coordinate system of GTV, CTV and OAR are) 

 

Figure 3:  Schematic representations of relationship between volumes GTV, CTV, PTV for target 

structures and OAR, PRV for surrounding normal tissues.  
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with respect to therapeutic beams (the accelerator coordinate system in which PTV and PRV 

exist).  Delineation uncertainties refer to the deviations (between different observations, or 

between the indicated value and the true value) on the location of the interface between target 

and adjacent tissues.  The sources of delineation uncertainties include (i) limited image quality of 

employed imaging modalities (e.g. poor soft-tissue contrast in CT images), (ii) different clinical 

judgment of different observers (inter-observer delineation uncertainties) (Figure 4b.), and (iii) 

different clinical judgment of the same observer in different trials (intra-observer delineation 

uncertainties).  Interfraction variations refer to the day-to-day (fraction-to-fraction) variations in 

positions and volumes (and/or shapes) of the region of interest (ROI) in different treatment 

fractions.  Intra-fraction variations occur between the completion of setup procedure and 

completion of delivery of the intended radiation fraction.  Both interfraction and intrafraction 

variations are caused by internal organ motion and deformation (Figure 4c).   

 

`            

      (a)               ``   (b) 

 
(c) 

Figure 4: Illustration of different types of GUs: (a) setup errors that fail to align patient position to the 

beam treatment head of LINAC (linear accelerator), (b) inter-observer delineation uncertainties for the 

same structures, (c) organ motion and deformation that may occur between treatment fractions 

(interfraction organ variations) or during a single treatment fraction at different treatment fractions 

(intrafraction organ variations). 
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To incorporate GUs into treatment planning techniques, mathematical models can be very 

useful.  The following paragraphs review the models developed for each category of GUs.   

Setup errors are often modeled in terms of rigid body shifts and rotation.  Methods have 

been proposed to describe these rigid uncertainties by six translational and rotational parameters. 

(Killoran et al. 1997, van Herk et al. 2002, Baum et al. 2004, Gordon et al. 2007)  The 

probability distributions of these parameters are usually assumed to be Gaussian distributions 

(Stroom et al. 1999, Yan et al. 1999, Stroom and Heijmen 2002) and can be derived from a 

population or sometimes an estimated patient-specific level retrospectively.  

Mathematical models of internal organ motions and deformations, though still evolving, 

show some potential in representing realistic interfraction/intrafraction variations.  When it 

comes to prostate, building good mathematical models may not be a problem for the following 

reasons.  Although prostate is surrounded by the rectum (Hoogeman et al. 2004, Adamson and 

Wu 2009)
 
and bladder (Meijer et al. 2003), which empty and fill unpredictably to some extent, it 

is well known that prostate deforms less than bladder and rectum (Roeske et al. 1995) and 

prostate displacement can be reliably tracked using implanted fiducial markers or Calypso 

transponders (Calypso, Seattle, WA) on an interfraction (Kupelian et al. 2005, Peng et al. 2010) 

and an intrafraction (Langen et al. 2008, Santanam et al. 2009, Bittner et al. 2010) basis.  In-

room computed tomography (CT) (Keall 2004, Pouliot 2007, Frank et al. 2008) and cine-

magnetic resonance imaging (cine-MRI) scans (Mah et al. 2002, Ghilezan et al. 2005)
 
can also 

record anatomy motion and volumetric information.  All these techniques provide information 

about target motion, from which dosimetric or biological effects can be estimated.  Much 

published work (listed in Table II) has described prostate interfraction or intrafraction variations 

by constructing mathematical models.   
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Table II. Some published models of interfraction, intrafraction variations for prostate, bladder, and rectum. 

reference model uncertainties ROI(s) 

(Fontenla et 

al. 2001) 

method for reconstructing 

statistical distribution of 

organ motion  

interfraction motion  Prostate/bladder/rectum 

(any site with serial 

measurement) 

(Söhn et al. 

2005a) 

individual-based principal 

component analysis (PCA) 

model 

interfraction deformation 

of structure surface 

Prostate + bladder + 

rectum for prostate caner 

(Budiarto et 

al. 2011) 

population-based PCA model interfraction motion and 

deformation of voxels 

Prostate + seminal vesicles 

for prostate cancer 

(Chow et al. 

2009) 

Gaussian error function for 

cumulative DVH for 

planning evaluation  

interfraction motion of 

prostate shifting in AP 

direction 

Prostate/bladder/rectum for 

prostate caner 

(Jeong et al. 

2010)  

bilinear model to capture and 

decouple inter- and intra-

patient shape variation of 

organ A method for 

reconstructing statistical 

distribution of organ motion  

inter- and intra-patient 

shape variation and  

interfraction motion  

Prostate for prostate cancer  

 

(Lotz et al. 

2004)  

 

linear model to predict 

bladder shapes based on 

known urinary inflow and 

rectal filling 

interfraction motion and 

deformation 

Bladder for bladder cancer 

(Chai et al. 

2011) 

Biomechanical model to 

predict short-time bladder 

shape with bladder volume as 

input 

interfraction motion Bladder + 6 surrounding 

pelvic organ for bladder 

cancer 

(Hoogeman 

et al. 2002) 

stochastic shape description 

model with population-based 

parameters based on dose-

wall histogram 

interfraction deformation  Rectum for prostate cancer 

Abbreviations: ROI = region of interest; DVH = dose volume histogram; AP = anterior-posterior 

 

    Mathematical models have also been built for bladder and rectum deformable motion.   

Bladder and rectum are known as main drivers of pelvic organs motion (Ten Haken et al. 1991) 

and are much more likely to move and deform due to filling than prostate.  As OARs, bladder 
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and rectum are not as well studied as target prostate, therefore many of their models may be less 

optimal than prostate model.  For the examples listed in Table II, the linear bladder shape model 

(Lotz et al. 2004) is for the bladder as a tumor, not an OAR.  The biomechanical model has much 

poorer accuracy compared with the higher degree models (Chai et al. 2011).  The stochastic 

shape description model needs more patients for evaluation (Hoogeman et al. 2002).  However, 

the principal component analysis (PCA) model (Söhn et al. 2005b) addresses the above 

challenges and provides a quantitative description of geometric variability.  Therefore, 

interfraction and intrafraction variations can be approximated in a quasi-realistic way by models 

like the PCA model.  

In contrast, as the “weakest link in the search for accuracy” (Njeh 2008), delineation 

uncertainties were rarely modeled.  As there is no verifiable ground truth of the tumor 

locations/volume, delineation uncertainties persist even with perfect images. Delineation 

uncertainties are usually quantified by difference of repeatedly delineated contours.  Though 

recent developed auto-contouring tools allows much faster with more consistent contours 

between trials, the tedious and time-consuming manual contours are usually still required for 

validations and corrections (Huyskens et al. 2009).  Based on limited number of manual contours,  

most researches have been only focused on evaluation of boundary visualization (Zhou et al. 

1998, Rasch et al. 1999, Weiss and Hess 2003, Gao et al. 2007, Weiss et al. 2010) or 

development of 3D analysis tools (Remeijer et al. 1999, Korporaal et al. 2010, Wu et al. 2010).   
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1.2 Evolution of treatment planning approaches 

1.2.1 Margin-based planning 

For the current practice of conventional margin-based planning approach, the PTV or 

PRV margin given by conventional margin formulas may be suboptimal to account for GUs.  

(Note, the PTV/PRV margin is the short name of CTV-to-PTV/OAR-to-PRV margin.)  This is 

because coverage probability, the probability that desirable dose delivered to a volume is 

achieved, is dictated by the dose distribution, not the margins. (Gordon and Siebers 2009)  An 

inadequate PTV margin, e.g., over-sized, may result in unnecessary irradiation to normal tissues 

and cause a higher risk of normal tissue toxicity.  Margin size can be optimized using evolving 

treatment planning techniques such as the PTP approach.  This actively researched approach can 

create anisotropic and patient-specific margins on the premise that the probability distribution 

function (PDF) of GUs is known.  Both margin-based planning approach and PTP approach will 

be discussed in the following paragraphs.     

While commonly practiced in the planning process for real patient treatments, the 

conventional margin-based planning approach faces the obstacle of defining desirable PTV 

and/or PRV margins in the presence of GUs.  Numerous margin recipes (or guidelines) (Stroom 

et al. 1999, van Herk et al. 2000, McKenzie et al. 2002, van Herk 2004) were published to 

determine PTV margins, but no gold standard/consensus of recipe/guideline is clinically used for 

margin-based planning, whose planning objectives includes uniform dose to PTV volumes.   

Two problems in the current margin recipes/guidelines are likely to be involved in the 

margin-based planning approach.  The first problem is that the PTV margin derived from a 

population-based model cannot ensure patient-specific coverage in the presence of GUs.  Use the 

most commonly used recipe — van Herk margin formula
 
(van Herk et al. 2000) — as an 
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example.  With the intention to guarantee that 90% of patients in a population receive a 

minimum cumulative CTV dose of at least 95% of the prescribed dose, this margin formula is 

approximately 2.5 times the total standard deviation (SD) of the systematic errors (which shift 

structures relative to the cumulative dose distribution) and 0.7 times the total SD of the random 

errors (which blur the cumulative dose distribution).  The errors in convolution are assumed to 

follow a Gaussian distribution.  The assumption of Gaussian-distributed errors may be not 

adequate for GUs such as prostate deformation (Deurloo et al. 2005), especially given that 

prostate is surrounded with the rectum (Hoogeman et al. 2004, Adamson and Wu 2009)
 
and 

bladder (Meijer et al. 2003) which empty and fill unpredictably to some extent.  Even if GUs are 

Gaussian distributed, the assumptions of population statistics being representative to individual 

patient are questionable.  Setup errors are frequently believed to follow a Gaussian distribution 

approximately (Stroom et al. 1999, Yan et al. 1999, Stroom and Heijmen 2002).  However, if 

one considers setup errors only, and uses margins based on population statistics (i.e. SD of setup 

or random errors) derived from the van Herk formula (van Herk et al. 2000),  recent research 

(Gordon and Siebers 2008) showed no one-to-one relationship between PTV and target coverage.  

Patient-specific characteristics such as anatomy geometry (Yan et al. 1997) are too complicated 

to be summarized in a simple equation/guideline.  Consequently, the patient-specific coverage 

probabilities for both target and OARs may vary widely  between patients (e.g., 57% - 100% for 

prostate prescribed at minimum dose with setup SD 3mm) (Xu et al. 2011).  (In practical cases, 

population statistics are still utilized, although they are necessarily approximate.)  The second 

problem in margin recipes/guidelines is that margins are not ideally suited to balance the tradeoff 

of CTV coverage and OAR toxicity.  During treatment planning, each voxel inside a PTV (in the 

accelerator coordinate system) is naively assumed equally important for CTV (in patient 
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coordinate system).  For adjacent organs, often consideration of uncertainties yields situations 

where the PTV and OAR/PRV overlaps, yielding a paradox for a plan optimization algorithm.  

Competition between PTV and OAR criteria may end up with an unacceptable solution since 

shaving margins in some direction to avoid the overlap does not necessarily result in an 

acceptable tradeoff between target coverage and OAR sparing.  These limitations potentially 

prevent the conventional margin-based planning approach from best accommodating GUs effect 

on the patient treatment plan.   

1.2.2 Probabilistic treatment planning 

Probabilistic treatment planning (PTP) has been studied as a potential replacement of 

margin-based planning approach that ameliorates the problems of margin definition.  This 

evolving planning approach requires explicit specification of GUs (e.g., GU models and PDF) 

and directly incorporates GU information into planning optimization.  Governed by the 

probabilistic planning criteria, the treatment planning system (TPS) builds a dose distribution to 

achieve the desired coverage probability.  Therefore, PTP does not require prior specification of 

margin-based volumes (i.e. the PTV and the PRV) but allows direct determination of probable 

dose coverage in the presence of GUs.  Recent publications addressed different PTP approaches.  

These approaches can be classified into two categories:  either based on a probability weighted 

dose distribution (PWDD), or a probability weighted objective function (PWOF).(Gordon et al. 

2010)  The PWDD technique is to optimize dose distribution in terms of e.g., dose expectation 

values (Löf et al. 1998) alone or with dose variance together (Unkelbach and Oelfke 2004, 

2005a, 2005b, Maleike et al. 2006), or the treatment course generated by fluence convolution 

(Moore et al. 2009).  The PWOF method uses objective functions with probabilistic weights in 
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terms of e.g., voxel likelihood (Baum et al. 2006) or biological quantities
3
 such as equivalent 

uniform dose (EUD) (Yang et al. 2005), TCP and NTCP (Witte et al. 2007).  Despite the 

difference, most PTP studies share a common conclusion:  PTP approaches can reduce dose of 

OARs without compromise of the highly conformal dose to targets, even though the GUs being 

incorporated are approximated.  

1.2.3 Coverage optimized planning 

The COP framework (Gordon et al. 2010) is another PTP framework.  The principle of 

COP is described in chapter 2.  Analogous to the dose volume histogram (DVH) criteria 

popularly used in other planning approaches, COP utilizes percentile dose volume histogram 

(pDVH) criteria for optimization.  These criteria aim to achieve adequate target prescription dose 

and avoid exceeding OAR tolerance for a specified percentage of GUs.  The plan optimization in 

COP is based on dose coverage probabilities, as opposed to static dose in conventional margin-

based planning.   

To date, COP has only been used to compensate setup errors of prostate cancer treatment.  

Like the other PTP approaches, COP demonstrated better OAR dose sparing and lower NTCP 

values without sacrificing target dose coverage and TCP values using the PDVH criteria for the 

target and the OARs. (Gordon and Siebers Unpublished)  With the target pDVH criteria alone, 

COP can improve target coverage probability while maintaining OAR dose within the tolerance. 

(Gordon et al. 2010)  To explore the application of COP, it is necessary to develop COP 

approach for delineation uncertainties, organ deformable motions of prostate, bladder and rectum 

for prostate cancer patients.  Due to the fact that the treatment delivery effort of COP is not 

different from a margin-based planning, if COP can reduce normal tissue doses without 

                                                 
3
 Please refer to chapter 3.3 for details of these biological quantities. 
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compromising target coverage for these GUs, it should be cost beneficial to be regarded as a 

promising alternative of the margin-based planning. 

1.2.4 COP in different clinical scenarios 

The dosimetric benefit of COP may vary with different clinical strategies for target 

localization and adaptive replanning in EBRT.  These gradually maturing advanced strategies 

include image-guided radiation therapy (IGRT), adaptive radiotherapy (ART) and their 

collaboration—image-guided adaptive radiation therapy (IGART).  The purpose of these 

strategies is to reduce uncertainties and/or adapt radiation treatment to individual patient 

variations.  IGRT localizes target areas during treatment by using a variety of imaging 

techniques in the treatment room.  ART periodically adjusts the treatment to account for 

anticipated or observed variations (i.e., translations, rotations and deformations) of targets and 

critical structures.  IGART uses individual patient dynamic or time-serial four-dimensional 

treatment history, ambitiously to allow dose evaluation and modification on a patient-specific 

basis with a frequency as often as treatment-day-specific.   

The cost for each strategy could be (a) potentially excessive radiation exposure 

introduced by the IGRT imaging methods using cone-beam imaging technology with kilovoltage 

(kV) or megavoltage (MV) X rays for CTV positioning (Ding et al. 2008), (b) low efficiency of 

ART for plan modification due to excessive clinical work such as quality assurance (QA) effort 

and plan approval (Li et al. 2011), and (c) technical challenges of contemporary IGART 

including a general lack of a comprehensive QA procedure. (Timmerman and Xing 2009) 

Despite the cost, IGRT, ART and IGART are considered to be promising for clinical use due to 

their resulting benefits (de Crevoisier et al. 2005, Ghilezan et al. 2010, Lagrange and de 

Crevoisier 2010).  Recently, the clinical evidence has been reported that adaptive IGRT “appears 
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to reduce the risk of geometric miss and results in good biochemical control that is independent 

of rectal volume at the time of simulation while maintaining low rates of toxicity.” (Park et al. 

2012)  Before becoming routine procedure in the clinic, these strategies need more clinical 

evidence to demonstrate their benefit and cost.   

Image guidance and adaptive replanning due to these strategies will reduce the magnitude 

of GUs and perhaps inherent uncertainties such as delineation uncertainties as well.  

Consequently, when IGRT, ART and IGART become clinical realities, the potential role of COP 

will be to account for residual uncertainties.  The benefit of COP relative to margin-based 

planning approaches may be less pronounced because of i.e., the negligible size of residual 

uncertainties.  As a potential intermediate solution before the widespread of the advanced clinical 

strategies, COP is expected to either reduce normal tissue doses for the same target coverage or 

enable better target coverage with same normal tissue doses with respect to margin-based 

planning.   

1.3  Thesis Objectives and Outlines 

 The objectives of this dissertation are to (1) construct mathematical models for GUs 

including (i) interfraction organ deformable motions with prostate centroid alignment and 

(ii) delineation uncertainties of prostate, bladder and rectum, (2) create COP plans with GU 

model incorporated to accommodate these uncertainties and (3) research the clinical value of 

COP in the scenarios with/ without advanced strategies by comparing with plans generated by 

using two  margin-based planning techniques. 

 The outline of this dissertation is described here.  The principle of COP and how COP is 

implemented in a commercial TPS are stated in chapter 2.  Treatment planning metrics utilized in 

this dissertation to quantify dosimetric effect of GUs and compare COP and two different PTV 
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plans are covered in chapter 3.  Some general materials and methods used in the COP studies are 

described in chapter 4.  For multi-fractional treatment for prostate cancer, COP plans with 

incorporated interfraction deformable organ motion (chapter 5) or delineation uncertainties 

(chapter 6) are compared with the parallel PTV plans.  In chapter 7, the clinical value of COP 

based on results in chapter 5 and 6 is discussed and concluded and further directions of COP 

studies are suggested.   
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2 The principle of coverage optimized planning 

COP is a framework of PTP and a modified IMRT approach.  This chapter reviews the 

principle of COP and its implementation in a commercial TPS.  The principle of IMRT, 

mathematics of different type of objective functions corresponding to different optimization 

criteria and how they work in a TPS are also given here.   

2.1 From IMRT to COP 

The idea of IMRT is to treat a patient using beams of non-uniform fluences from a number 

of different directions (or a continuous arc) to plan and deliver a dose distribution to enable 

conformal high dose to target volumes and acceptably low dose to the OARs (A simple example 

was shown in Figure 2, page 3.)  IMRT is an advanced form of three-dimensional conformal 

radiotherapy (3D-CRT).  As Figure 5 illustrates, both 3D-CRT and IMRT require the planner to 

set the beam arrangement (beam angle, energy, and etc.).  In 3D-CRT, the planner also has to 

decide how to use beam shapers to shapes the resulting radiation.  In IMRT, the planner only 

needs to specify the treatment criteria (such as what minimum dose delivered to target volumes) 

so that the radiation is inversely optimized by TPS.  Each beam is automatically shaped by an 

MLC and divided into non-equi-weighted segments.  The non-uniform beam fluence is inversely 

optimized by the objective function algorithm imbedded in TPS to optimally meet all the 

treatment criteria.  With direct machine parameter optimization, MLC settings are produced 
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directly during the optimization process without post process like conversion or filtering which 

may degrade the plan quality during dose delivery.   Conventionally, the objective functions used 

in IMRT are (static) dose-volume based. 

 

 COP is an IMRT process that uses probabilistic (stochastic) dose-volume-based pDVH 

objective functions to adjust the beam fluence intensity profiles.  Denote Dv the dose delivered to 

volume v of an ROI.  In contrast to the static Dv in basic criteria/objective functions, COP 

computes and optimizes Dv at a specified coverage probability — the probability that a realized 

target or OAR dose metric Dv exceeds the dose of interest (Rx, tolerance or other dose) when the 

modeled treatment planning and delivery uncertainties are taken into account.  COP seeks an 

optimized dose distribution for a patient to i.e., maximally achieve targets and OARs coverage 

probability to overcome the degraded dosimetric effect due to GUs.   

The procedure of COP optimization on the patient-specific coverage probability with 

incorporated GUs of known PDFs is graphically illustrated in Figure 6.  The deviations 

introduced by GUs may include shifting effects (due to systematic setup errors), blurring effects 

(due to random setup errors) and re-arranging dose with respect to the voxels (due to organ 

deformation).  Different probable treatment courses (one treatment course = delivery of the 

 

Figure 5.  An illustration of 3-beam 3D-CRT (left) versus IMRT (right). 
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prescription dose in nfrac fractions) can yield different dose distribution and different patient 

responses.  To evaluate dose incorporating uncertainties, one way is to mimic dose delivery to 

one of thousands of possible virtual treatment courses, each with nfrac fractions.  Each fraction of 

each treatment course is associated with different GUs dependent on the parameters sampled 

from the known PDF(s).  Dose shift invariance (Sharma et al. 2012) is assumed here so that dose 

distribution remains unchanged regardless of geometric changes of ROIs.  Dose of each 

displaced voxel in the ROIs is calculated and accumulated over nfrac fractions.  The consequent 

accumulative DVHs of each ROI for all the treatment courses can be obtained and converted into 

a dose volume coverage map (DVCM) – a 2D grid with many small grid squares that contain 

percentile values of DVHs on their Dv locations. (See section 3.2.1 for details)  These percentile 

values, also called coverage probability, are associated each Dv on the DVCM.  A pDVH of q 

(Gordon et al. 2010) is a virtual DVH created by connecting all Dv with coverage probability q.  

A pDVH criterion for q is Dv corresponding to q for a target/an OAR. 

 

 

Figure 6. Workflow of how a pDVH of coverage probability q are determined (a–c) and how COP performs 

optimization (a-d) based on pDVH criteria by simulating ntx virtual treatment courses, each with nfrac 

fractions.  (a) For each fraction of a virtual treatment course, find the total offset (black arrow) for all the 

GUs of each voxel in the ROI (black thick circle) and get the dose for the displaced voxel, assuming shift-

invariance for dose distribution (illustrated as grey thin solid isodose lines).  (b) Get ntx accumulative ROI 

DVHs over all the fractions.  (c) The ntx DVH samples are converted into a dose volume coverage map 

(DVCM), as a 2D grid built with many small grid squares.  Each grid square will be assigned a probability 

value equivalent to the percentile value of DVHs that lie left to this grid squares, according to the 

distribution of DVH samples. A virtual DVH of a certain percentile value (i.e., coverage) q, namely pDVH 

of q, can be determined on this map.  (d) pDVH criteria (such as Pr[Dv ≥d] ≥q) are used to optimize the dose 

distribution with the goal of achieving dose-volume metric Dv in the presence of q of GUs. 
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Note that the concept of pDVH is not unique.  A similar metric called dose–volume 

population histogram (DVPH) related to the patient-specific coverage probability was 

independently and simultaneously developed before (Nguyen et al. 2009).   With known SDs of 

the systematic and random errors for deformation-free/rotation-free structures, DVPH was the 

consequence of the distribution of systematic and random errors being incorporated into DVH 

display.  Compared to DVPH, the usage of pDVH in this dissertation has been extended to plan 

optimization to account for GUs for both rigid and deformable structures.    

2.2 The starting point — optimization criteria 

As mentioned before, the planner needs to specify optimization criteria to start an 

IMRT/COP plan.  The optimization criteria for treatment planning used in this dissertation are 

listed in Table IV.  Based on a modified VCU protocol, these criteria are designed for a 30-

fraction treatment course for high-risk prostate cancer patients.  ROIs corresponding to these 

criteria include target structures to treat and normal tissues/organs to protect.  Target structures 

for COP plans are the CTV volumes which include the prostate and the seminal vesicles 

(namely, CTVprostate and CTVSV).  Their PTV-margin-expanded volumes PTV1, PTV2 are 

surrogate target structures used in PTV plans.  Normal tissues/organs for both COP and PTV 

plans are the bladder, rectum as OARs and norm_tissue_ring which is a virtual structure used to 

ensure a steep target dose drop-off.  Three types of criteria are involved here.  (1) Dose-based 

criteria (e.g. Dmax  60 Gy for norm_tissue_ring) specify the minimum or maximum dose to the 

whole volume of an ROI.  Norm_tissue_ring Dmax  60 Gy means the maximum dose delivered 

to the norm_tissue_ring cannot be larger than 60 Gy. (2) Dose-volume-based criteria (e.g., D98 ≥ 

78 Gy for prostate in PTV plans) that restrict dose to a certain percentage of ROI volume.  

CTVprostate D98 ≥ 78 Gy means dose delivered to the 98% volume of the CTVprostate should be 
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above 78Gy.  (3) pDVH based criteria (e.g., D98,95 ≥ 78 Gy for prostate in COP plans) specify 

dose-volume criteria corresponding to a certain coverage probability.  Prostate D98, 95 ≥ 78 means 

that the dose delivered to the 98% volume of the prostate should be no less than 78 Gy for 95% 

probablle treatment courses.  

Table III. IMRT optimization criteria of ROIs used for COP and conventional PTV plans. Doses (D) are in 

the unit gray (Gy). Subscript is percentage volume +/- coverage value. Read D98,95 as 98% of volume receiving 

≥ 78 Gy for 95% of simulated treatment courses.  Criterion weights are shown in square brackets. PTV1 = 

CTVprostate + PTV margin and PTV2 = CTVSV + PTV margin.  

Optimization criteria for COP plans
1
 

CTVprostate D98, 95 ≥ 78  [100],  D2 ,5  81  [50] 

CTVSV D98, 95 ≥ 66  [100] 

Bladder 

D70, 5  18, D50, 5  36, D30, 5  57 , D20,5  66 ,  

D14,5  69,  D9,5  75, D2,5  81 [10] 

Rectum D50, 5  36, D30, 5  51, D20, 5  66 ,  D5, 5  69,  D2, 5  75   [10]   

norm_tissue_ring (static) Dmax  60   [1] 

CTV_neighborhood (static) D10 ≥ 25  [0] 

Optimization criteria for PTV-based plans 

PTV1  D98 ≥ 78  [100],  D2  81  [50]  

PTV2 D98 ≥ 66  [100] 

Bladder 

D70  18, D50  36, D30  57 , D20  66,  

D14  69,  D9  75, D2  81 [10]  

Rectum D50  36, D30  51, D20  66,  D5  69,  D2  75   [10]   

norm_tissue_ring Dmax  60  [1] 

 Note, margin formulation (Stroom et al. 1999, van Herk et al. 2000) are designed to dicit a population 

based probability (e.g., 95%) of target coverage.  As used for optimized margin, the PTV margins are iterated until 

95% coverage is achieved.   
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Once the optimization criteria are specified, an optimization altorithm is used to 

determine beam fluence distribution which best meet the optimization objectives.  One broad 

category of computer algorithm to do so is called iterative methods (Khan 2003).   Such methods 

interatively adjust beamlet weights for a given number of beams to minimize the deviation from 

the desired goal.  Mathematically, this deviation is represented by the sum of objective functions 

which are transformed from the specified optimization criteria. 

2.3 The central concept — objective functions 

Objective functions are the central concept of IMRT inverse planning to generate a dose 

distribution that can maximally satisfy the specific optimization criteria.  They are also termed 

cost functions since they represent the “costs” associated with a dose distribution of a given plan 

and a set of pre-determined optimization criteria.  Let f  denotes an individual objective function 

for the objective of interest o ,  f  can also be expressed in a generalized way as  

2

Rx(D D )
N

i i

i

f c   
(1) 

where Di  is the current dose to  i
th

 voxel of o , 
RxD is the prescribed dose to be achieved for this 

objective, N  is the total number of voxels and 
ic  is a voxel-dependent constant.   

ic  is zero when 

the voxel is not participating in the objective function.   

With the aims of reducing total “cost” of all the individual objective functions, the dose 

distribution is iteratively optimized by adjusting treatment parameters (i.e., beamlet weight) to 

decrease composite objective function value.   Let ,total nf  denote the total objective in n
th

 

iteration of optimization. We have   

,

nObj

total n nf p f   
(2) 
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where 
nf  is an individual objective function for the objective of interest o  in n

th
 iteration. p is 

weighting factor of 
nf  and nObj  is the total number of objectives of interest.  ,total nf  is 

transformed according to the TPS algorithm and then compared with a pre-defined stopping 

tolerance (e.g., 0.0001) to determine if next iteration of optimization is necessary.  The 

optimization terminates whenever the stopping tolerance has been satisfied or n  exceeds the 

maximum iteration number (e.g., set as 50 here due to sufficient convergence).  

Within the TPS optimizer, dose optimization by adjusting beamlet weight for next 

iteration is carried out by utilizing Newton’s method.   Denote beamlet weight ,j nw  for beamlet 

index j  is the index of beamlet in n
th

 iteration.  The recommended change in weight , 1j nw   in 

next iteration for an individual objective function 
nf  is defined as 

,
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based on Newton’s method.  Since the dose at voxel i  is given by 

Di ij j

j

K w  
(4) 

where ijK  is the dose contribution of the j
th

 beamlet to the i
th

 voxel per unit intensity, the first 

derivative of equation (1) is 
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and the second derivative of equation (1) is  
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For a composite objective function in equation (2), the derivatives are the sums of the individual 

derivative of each objective function: 

2 2
, ,

2 2

, , , ,

 and 
nObj nObj

total n total nn n

j n j n j n j n

f ff f

w w w w

  
 

   
   

(7) 

According to equations (3)-(7), the weight change for a given beamlet is then 
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The new beamlet weight for 1n 
th

 iteration is  

, 1 , , 1j n j n j nw w w    
(9) 

An example of how a composite objective value converges during the progress of an 

optimization is illustrated in Figure 7.  The optimization is terminated in either of the following 

conditions: i) constraints and objectives are reasonably met as to the pre-defined stopping 

tolerance, ii) the maximum iteration number is reached, or iii) further iteration is determined as 

helpless to keep reducing the composite objective value.    

 

      
(a)                                                                       (b) 

Figure 7.  The converged composite objective value (vertical axis) as a function of iterations during the 

progress of optimization in the case that optimization terminates (a) when constraints and objectives 

are reasonably met as to the stopping tolerance and (b) when further iteration is determined as 

helpless.  
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2.4 Types of objective functions 

Three types of objective functions will be described here in term of the three types of 

optimization mentioned in Table III:  1) dose based objectives for dose-based criteria, 2) dose-

volume based objectives for dose-volume-based criteria and 3) pDVH objective, which is the 

research objectives used to achieve the aims of this dissertation.  The pDVH objectives are 

particularly used in COP to achieve pDVH criteria. 1) and 2) are the basic format of objectives 

that operate on static DVH and are used in both conventional non-probabilistic optimization and 

COP.  These basic objectives are useful for COP as they can (i) smooth the dose around target in 

the first several (~5) iterations for quicker convergence of composite objective value and (ii) 

save computation time and memory for COP implementation when an ROI that is not that 

critical to have pDVH objectives.   

2.4.1 Dose-based objectives 

Dose-based objective functions primarily build blocks for the desired DVH by penalizing 

dose above (or below) a specified dose to an ROI.  (Here, DVH is a graphical 2D plot of dose vs. 

percentage volume for an ROI visualized in a cumulative way.  Please refer to section 3.1 of 

chapter 3 for more details.)  The corresponding criteria can be written in the form of 

max RxD D (maximum), RxminD D (minimum) or RxuniformD =D  (uniform), where RxD  is the 

corresponding maximum, minimum or uniform prescription dose value.   

For a minimum dose-based objective function of an ROI (with criterion

 
RxminD D ), the 

goal is to ensure the dose to each voxel is above a minimum prescription dose RxD .  The voxels 

within the ROI with dose below the prescription dose are penalized proportional to the deficit 

squared as 
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where i  is the voxel index of total voxel number 
ROIN  of ROI, Di  is the dose in the i

th
 voxel of 

the ROI and H  is Heaviside function defined as 
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 Note, voxels outside ROI do not contribute to the ROI objective function.   

For a maximum dose-based objective function of an ROI (with criterion max RxD D ), the 

goal is to limit the dose to each voxel below a maximum prescription dose RxD .  The voxels 

within the ROI with dose above the prescription dose are penalized proportional to the excess 

squared as 

2

Rx Rx
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f H
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(12) 

For a uniform dose-based objective function of an ROI (with criterion

 
RxuniformD D ), the 

goal is to make the dose to each voxel equivalent to a uniform prescription dose RxD .  The 

voxels within the ROI with dose above or below the prescription dose are penalized proportional 

to the deviation from the uniform dose squared.  This is equivalent to a combination of 

maximum and minimum dose-based objectives.  

2

Rx

1
(D D )

ROIN
Uniform MaxDose MinDose

i

iROI

f f f
N

      
(13) 

Details of dose-based objective functions are described by Wu and Mohan (Wu and Mohan 

2000).  
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2.4.2 Dose-volume based objectives 

Dose-volume based objectives corresponds a dose-volume based criterion in the form of 

Rxv RxD D  (maximum) or
Rxv RxD D  (minimum), where 

RxvD  is the dose computed to the 

prescription volume 
Rxv  of objective’s ROI for a given dose distribution.  Here, dose received by 

a proportion of voxels is constrained to be above or below a prescription dose RxD .  (Note that 

dose-based objectives are special cases of dose-volume based objectives when 
Rxv = 100% for 

maximum or 
Rxv = 0% for minimum objectives.)  Figure 8 shows an example of how a minimum 

and a maximum DVH objectives work on a DVH graphically.  During optimization,  
RxvD  is 

recomputed for each iteration after beamlet weight for each beam has been adjusted according to 

equation (9) .      

 For a minimum DVH objective (with criterion

 
Rxv RxD D ), the goal is to keep the dose 

to the percentage of voxels (≤ the prescription volume Rxv ) above the prescription dose RxD .  

Only those voxels with dose between 
RxvD  and RxD  are penalized.  (See the pink region in 

     

Figure 8. Graphical illustration of variables for (left) a minimum DVH objective (with goal 
Rx

v Rx
D D ) and 

a maximum DVH objective (with goal 
Rx

v Rx
D D )  The blue curve and the black curve represent desired 

DVH and current DVH. 
Rx

v
D  and  RxD  are the current and prescription dose to the prescription volume 

Rxv . The purpose of this DVH objective is to have the DVH  (
Rx

v
D , Rxv ) optimized to the desirable location 

(
Rx

D , Rxv ).  The red shaded region is the penalty region. 
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Figure 8.) The voxels with higher dose than 
RxD  have no penalty because they meet the 

constraints of the objective.  The voxels with lower dose than 
RxvD  have no penalty because they 

are in the permitted percentage of the high dose volume, i.e., 
Rxtotalv -v RxD D  is allowed with 

respect to 
Rxv RxD D

 

where  
totalv  is the total percentage volume of ROI.  The objective function 

is  

Rx
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Rx V Rx

1
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f H H
N

        
(14) 

When 
RxvD is optimized above RxD , the function value is 0 as the objective has been fully 

satisfied. 

For a maximum DVH objective (with criterion

 
Rxv RxD D ), the goal is to limit the dose 

to the specified percentage of voxels (≥ the prescription volume 
Rxv ) to be below the 

prescription dose.  Analogous to the minimum DVH objective, only the voxels with dose below 

RxD  and above 
RxvD are penalized.  The objective function of the maximum DVH objective can 

be  

Rx
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Rx V Rx

1
(D D ) (D D ) (D D )

ROIN
MaxDVH
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f H H
N

        
(15) 

When 
RxvD is optimized below RxD , the function value is 0 as the objective has been fully 

satisfied.  Details of dose-volume-based objective functions are described by Wu and Mohan 

(Wu and Mohan 2000). 

2.4.3 pDVH based objective 

The pDVH objective functions (Gordon et al. 2010) serve as key functions for COP 

optimization.  As mentioned before, pDVH is a result of “dynamic” DVHs which are different in 
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each virtual treatment course due to the different GUs sampled from PDFs of GU model.  Unlike 

the previous basic objectives that operate on static DVH, pDVH-based objectives operate on 

pDVH with GU variability considered.  These objective functions are utilized in COP to meet 

pDVH criteria in the format of 
Rx Rx RxCPr[D D ] q   (minimum pDVH criteria) or 

Rx Rx RxCPr[D D ] 1 q    (maximum pDVH criteria) or where 
RxCD is dose at prescribed coverage 

and Pr[] denotes the probability of a DVH-based objective (
Rx RxCD D  or 

Rx RxCD D ) is met 

and Rxq  is the prescribed coverage probability value.  A typical value of  Rxq  is 95% for target 

volumes and 5% for OAR to allow 5% outlier cases.   Figure 9 shows an example of how 

maximum pDVH objective works on a pDVH graphically.  During optimization, 
RxCD  must be 

recomputed in each iteration. 

 

  For a minimum pDVH objective (with criterion

 
Rx Rx RxCPr[D D ] q  ), the goal is to 

ensure that dose at the prescribed coverage Rxq , 
RxCD , achieves the prescription dose RxD .  The 

objective function is written as 

      

Figure 9. Graphical illustration of variables for a minimum pDVH objective (left) and a maximum pDVH 

objective (right) in the form of 
Rx

C Rx Rx
Pr[D D ] q   and 

Rx
C Rx Rx

Pr[D D ] 1 q   .  The blue curve and the 

black curve represent desired pDVH and current pDVH of coverage value Rxq . 
RxCD  and 

RxD  are the 

current and prescription dose to the prescription volume Rxv . The purpose of this pDVH objective is to 

pull the pDVH from (
RxCD , Rxv ) to the desirable location ( RxD , Rxv ) on the pDVH plot.   
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where _ROI neighborhood  refers to the voxels within an ROI neighborhood composed of ROI 

and a ring structure surrounding the ROI, and 
i  stands for a voxel-specific weighting factor.    

Only voxels within _ROI neighborhood  with Di
 between 

RxCD  and RxD  are penalized. 

For a maximum pDVH objective (with criterion

 
Rx Rx RxCPr[D D ] 1 q   ), the goal is to 

ensure that dose at the prescribed coverage Rxq , 
RxCD , is below the prescription dose RxD  for at 

least Rx1-q  chance.  The objective function is  

_

Rx

2 2

Rx C Rx

_

1
(D D ) (D D ) (D D )

ROI neighborhoodN

MaxpDVH

i i i i

iROI neighborhood

f H H
N

      
 

(17) 

When 
RxCD is optimized below RxD , the function value is 0 as the objective has been fully 

satisfied. 

The novelty of using _ROI neighborhood  and voxel-specific weight i  makes COP 

distinctive from other treatment planning techniques.  _ROI neighborhood  is a PTV-like structure  

to include all the voxels that potentially contribute the ROI coverage, and i  is to weight each 

voxel inside _ROI neighborhood  based on its contribution of ROI converge.  As opposed to that 

a PTV is determined empirically and assumed of equal importance for each voxel, both 

_ROI neighborhood  and i  are determined by simulating GUs in a large number of (e.g., 1000) 

virtual treatment courses before optimization starts.  To make sure _ROI neighborhood  is large 

enough, ROI is first expanded by 1 voxel to include the nearest exterior surface voxels for the 

purpose of dose interpolation.  Then possible voxel locations as a result of ROI offset in the 

virtual treatment courses are added to this _ROI neighborhood .  Let _ROI ring  denote a 
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concentric series of _ROI neighborhood  voxels which exclude ROI voxels.  Since its location 

and chance of being covered by the “moving” ROI are different from others, each _ROI ring  

voxels may have different contributions to ROI coverage probability.  To consider this,  
i  is 

used to weight the squared dose term in equation (17) for each _ROI neighborhood  voxel.  
i  

can be expressed as an empirical function below 

  

n

n

5                                   v  

4
1      v _  = _  -   

1  5

ROI

ROI ring ROI neighborhood ROI
d








   
  

 (18) 

 

The empirical weight is constantly 5 for ROI voxels and ranges from 1 to 5 for _ROI ring  

voxels.  To weight a _ROI ring  voxel, a quantity   is used to represents a “voxel distance” in 

the form of 

 norminv ,  0,  0.3ROIprob    
(19) 

where ROIprob  is probability that a _ROI ring  voxel may be covered by the “moving” ROI due 

to GUs, norminv() is the normal inverse cumulative distribution function with parameters 

ROIprob  as probability, 0 as mean, 0.3 as SD.    decreases from   to 0 as ROIprob  increases 

from 0 to 1.  If a _ROI ring  voxel dose is d ,  d  represents the minimum   value among all 

the _ROI ring  voxels whose dose are d . The smaller  d   is, the larger   (and more 

important coverage contribution) of the _ROI ring  voxel is.  The mechanism of i  is to 

encourage the optimizer to optimize dose to ROI voxels first and then _ROI ring  voxel from 

“near” (=more important) to “far” (=less important).  Thus, more rapid convergence of 

optimization can be achieved to shape a desired dose distribution.  
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2.5 Implementation of objective functions in a commercial TPS 

A base theoretical method of IMRT and COP optimization has been described in the 

previous sections.  The commercial TPS in this dissertation is Pinnacle
3
 9.0 (research version) 

(Philips Healthcare, Andover, MA).  To implement COP to Pinnacle
3
, practical modifications are 

required including (1) a change in the format of objective functions, (2) beam fluence 

initialization for the pDVH objectives used in COP. 

2.5.1 Reformatted objective functions 

All the objective functions mentioned before are reformatted when used in Pinnacle
3
.  

The ROI volumes are normalized to 1, so the 
1

ROIN
 term is not necessary in the objective 

functions.  Additionally, the weighting factor p  in equation (2)  is moved into each individual 

objective function.  For example, a maximum DVH objective in equation (15) becomes  

Rx

2

Rx v Rx(D D ) (D D ) (D D )
ROIN

MaxDVH

i i i i

i

f p V H H         
(20) 

where is iV  the normalized volume of each voxel. 

 Also, a scaling factor 

2

Pinn

Rx

1

D
S

 
  
 

 to normalize scores from different prescription dose 

levels is used to eliminate the dose-dependent term in derivatives. In this way, the example 

objective in equation (20) is changed to 

Rx

2

Pinn Rx v Rx(D D ) (D D ) (D D )
ROIN

MaxDVH

i i i i

i

F p V S H H          
(21) 

where F  denotes the Pinnacle
3
 objective function for a objective of interest o .  The first 

derivative and the second derivative of the non-zero part of equation (21) with respect to the 

beamlet weight jw  are 
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RxPinn Rx v Rx2 (D D ) (D D ) (D D )
ROI ROIN NMaxDVH

MaxDVH

i i i i ij i ij

i ij

F
p V S H H K G K

w


            


   

(22) 

and  

Rx

2
2 2

Pinn Rx v2
2 (D D ) (D D )

ROI ROIN NMaxDVH
MaxDVH

i i i ij i ij

i ij

F
p V S H H K K

w


          


 H  

(23) 

Particularly, MaxDVH

iG  in equation (22) is the Pinnacle objective function gradient on a per voxel 

basis.  MaxDVH

iG  is used since Pinnacle computes and stores ijK  independently of the first 

derivative matrix.  The separation results in ijK  being dependent only on the beam and anatomy 

configuration and independent of objective function. For a similar reason, MaxDVH

iH  is used in 

equation (23).  It is a constant handled internally in Pinnacle
3
. 

 To sum up, as IMRT inverse planning is a process of iteratively computing the composite 

cost function and changing beamlet weight, Pinnacle
3
 computes function value 

nObj

totalF F  and 

the gradient ,

nObj

total i iG G  to adjust beamlet intensity via Newton’s method for each iteration.   

2.5.2 Beam fluence initialization for COP 

Readers may have already noticed that in Table III (page 22) a structure called 

CTV_neighborhood is added to the optimization criteria for COP plans.  CTV_neighborhood is a 

virtual target expansion utilized as an initial target volume in Pinnacle
3
.  The initial target 

volume forces Pinnacle
3
 to

 
set initial beamlet intensities, in order to permit creation of a desirable 

dose distribution.  This volume may be not necessary in other TPS but required to be determined 

before COP optimization in Pinnacle
3
.  At the start of an optimization, Pinnacle

3
 initializes 

beamlet intensities to a nonzero value only for those beamlets that traverse the initial target 

volume.  The intensities of all other beamlets are initialized to zero, and remain zero through the 
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optimization.  For conventional PTV-based plans, the initial target volume is not required since 

PTV using minimum dose-based or dose-volume based criterion is regarded as the default initial 

target volume.  However, for COP plans, the target structures CTVprostate and CTVSV are too 

small to be used as the initial target volume.  GUs can result in CTVprostate or CTVSV occupying 

voxels outside its static contoured boundary (in the accelerator coordinate system).  Dose in 

these “exterior” voxels affects coverage probabilities of CTVprostate and CTVSV, too.  To ensure 

enough voxels are occupied, the CTV_neighborhood is used in COP as the initial target volume.  

In this dissertation, CTV_neighborhood is empirically defined as the union volume of CTVprostate 

and CTVSV on all fractions of patient database (see chapter 4.1) with a uniform expansion by 12 

mm.   

2.6 Summary 

COP is a modified inverse planning technique of IMRT process, where beam 

fluence/intensity is adjusted in the goal of minimizing the composite objective function 

associated with the optimization criteria.  The novelty of COP is using pDVH criteria and pDVH 

objectives to seek an optimized dose distribution to i.e., maximally achieve targets and OARs 

coverage probability at prescribed value to overcome the degraded dosimetric effect caused by 

GUs.  In the pDVH objective functions, some exterior ROI voxels with potential contribution to 

ROI coverage probability are particularly included and weighted according to their potential 

contribution.  To implement COP in a commercial TPS Pinnacle
3
, the objective functions need to 

be reformatted and beam fluence initialization is required. 
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3 Metrics for plan evaluation 

In clinical radiation therapy plan development, plan evaluation serves to judge one or 

inter-compare two competing treatment plans with respect to the treatment objectives.  Planning 

metrics distill information contained in a complex patient 3D dose distribution into quantities 

that can be readily compared.  These metrics/quantities are very useful to help determine whether 

COP is needed to optimize a current dose distribution and how better or worse COP plans can be 

relative to other PTV plans.   

This chapter examines planning metrics for plan evaluation, optimization and 

comparison.  Some are dosimetric endpoint metrics and the others are biological endpoint 

metrics.  These metrics are used in the following chapters to investigate the potential clinical 

impacts of GUs and the planning methods (including COP) used to compensate these clinical 

impacts.    

3.1 Dosimetric endpoint: dose-volume metrics 

In clinical practice, dose-volume metrics of a specified structure are most commonly and 

routinely used metrics for plan prescription and reporting.  These metrics conveniently reveal the 

relationship of the absorbed dose to relevant anatomic volumes.  For example in Table IV, Dv 

represents absorbed dose to v% volume of the structure.   For a target structure, Dmin (= D100) or 

D98 is often used to quantify the minimum dose to be delivered.  D98 is used instead of Dmin when 
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2% volume cold spot
4
 is allowed.  A typical dose-volume metric based criterion/prescription can 

be D98 ≥ d.  

Dose metrics can be read by a calculating associated dose volume histogram (DVH) 

which is composed of all the dose-volume metric points.  A DVH summarizes a 3D dose 

distribution (which is a 3D dose array computed for all voxels) of a structure in a graphical 2D 

format.  A DVH is usually visualized in a cumulative way.  A cumulative DVH displays the 

percentage of the volume of a given region of interest which receives greater than a specified 

dose.  Note in this dissertation, DVH elsewhere refers to cumulative DVH.  Figure 10(a) 

demonstrates how a DVH can be used in plan comparison.  DVH A lies to the right of DVH B.  

The dose received by a certain percentage volume of an ROI in DVH A is always higher than 

that in DVH B.  If DVH A and DVH B are both for the same ROI, DVH A is usually preferred 

when the ROI is a target structure to achieve high and uniform prescribed dose.  Otherwise, 

DVH B is better as low dose to an OAR is desired.  

Table IV. Dose-volume metrics that can be obtained from a DVH curve 

Metric Meaning 

Dv Absorbed dose to v% volume of the structure. 

e.g., 

Davg =Average dose  

D50 = Median dose  

D98 = Near minimum dose 

D2 = Near maximum dose 

VD volume receiving at least an absorbed dose of D 

 

                                                 
4
 A cold spot refers to an area in the target that receives a lower dose than the specified target dose.  Only if 

its area covers at least 2 cm
2
, a cold spot is considered clinically meaningful. (Khan 2003) 
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However, DVH has limitations.  First, the standard DVH loses spatial information of 

dose distribution.  It is impossible to locate a specific position of an ROI voxel on a DVH in 

Figure 10.  To augment this, many methods have been proposed i.e., to show distance between 

ROI voxels in DVH to either the ROI or another adjacent ROI. (Cheng and Das 1999, Chao et al. 

2003, Bortfeld et al. 2008, Wu et al. 2008, 2009, 2011, Huang et al. 2010, Zhao et al. 2010, Zhu 

et al. 2011, Witte et al. 2011, Mayo et al. 2013)  One example is to calculate vectors pointing 

from the voxels in one ROI DVH to the nearest points on surfaces of other ROI and add the 

vector information on a DVH. (Mayo et al. 2013)  However, these methods are still proof-of-

concept and cannot totally represent 3D dose distribution.  They are so far only used in-house by 

the developers and have not been standardized.  Another limitation of DVH is that DVH 

comparison can be very complex sometimes. It is possible that two DVHs from competing plans 

cross on another and may share the same average/min/max dose (e.g., Figure 10 (b)).  Therefore, 

a thorough review of the 3D dose distribution or other metrics is still needed to judge or compare 

treatment plans.   

 

  
(a)                                                                 (b) 

Figure 10.  Two examples of (a) a simple (cumulative) DVH comparison and (b) a complex DVH 

comparison between A and B.   Example (b) is complex because two DVHs of same ROI can have same 

(i.e., min, average and max) dose metrics. 



 

39 

 

3.2 Dosimetric endpoint: coverage probability 

Coverage probability is an important and unique dosimetric concept that directly reveals 

the relationship of ROI dose and GUs.  This metric is important for the evaluation/comparison of 

plans under the influence of GUs.  A coverage probability value is the probability that a realized 

target or OAR dose metric Dv exceeds the dose of interest (Rx, tolerance or other dose) when 

treatment planning and delivery uncertainties are taken into account. (Gordon and Siebers 2008)  

For evaluation of a static plan (one free of GUs), coverage probability reduces to boolean (i.e., 

0% or 100%) values.  However, realistically, a static patient geometry is not possible in multi-

fractioned radiation therapy.  Coverage probability values of targets and OARs often differ 

considerably from the value implied by the static plans (Gordon and Siebers 2008, Xu et al. 

2011).  Therefore, coverage probability evaluations are essential for evaluating plans under the 

influence of GUs.  

Two methods have been used to estimate coverage probability.  One is using DVCM and 

the other is dosimetric margin distribution (DMD).  The DVCM method estimates coverage 

probability by simulating possible treatment outcome while the DMD method calculates 

coverage probability by a formula under the condition that the relationship of GUs PDF and 

coverage probability is known.  In fact, the DMD method is a simplified version of the DVCM 

method when a simple GUs PDF (e.g., Gaussian) is considered.   Compared to the DMD method 

which estimates coverage probability values for only a single dose-volume metric, the DVCM 

method (mentioned in section 2.1) is more general and permits simultaneous analysis of multiple 

dose-volume metrics.  Therefore, the DVCM method is used to estimate coverage probabilities 

for this dissertation.  Both methods will be discussed in the following paragraphs.  
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3.2.1 Coverage probability estimation method: DVCM 

One way to estimate coverage probability is by constructing a DVCM, a 2D dose volume 

coverage map that contains coverage probability for each dose-volume metric for an ROI. 

(Gordon et al. 2010)  It has been mentioned briefly in the workflow of pDVH and COP in Figure 

6 (page 20) and will be described in detail (Figure 11) here.  To get a DVCM, a large number 

(ntx) of virtual treatment courses, each with multiple fractions (nfrac) are simulated.  For each 

virtual treatment course, different GUs sampled from PDF of the constructed GU model result in 

different ROI DVHs as a result of the accumulated dose distribution of all the nfrac fractions.  The 

axes of dose and volume of DVH are divided into small increment, 0.1Gy and 1% respectively, 

to create a 2D grid map.  For the 1
st
 DVH of the 1

st
 virtual treatment course, the grid squares 

below or left to the DVH curve are assigned value 1.0 (=100%) and the others are 0.0.  Then for 

each DVH, increment all grid squares lying below or to the left of the DVH by 1.0.   All the grid 

values are divided by total number of DVHs (=ntx) to finalize this map, which is so-called 

DVCM.  In an ROI DVCM, each grid square (corresponding dose d and volume v) contains the 

probability that, in an individual treatment course, Dv ≥ d can be achieved for the ROI when 

GU(s) are considered.  For the example of a ROI DVCM in Figure 11, Dv with probability 1.0 

can be achieved 100% based on the 2 simulated virtual treatment courses. The probability of 

each grid square is called the coverage probability corresponding to the metric Dv and can be 

used for plan evaluation and/or optimization.   
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3.2.2 Coverage probability estimation method: DMD 

Another way to estimate coverage probability is via a DMD, the distribution of 

dosimetric margins (DMs) over 3D directions.  DMD was inspired by the fact that ROI coverage 

probability with respect to dose d is a function of the distance between the ROI and the volume 

enclosed by the critical isodose surface of dose d. (Gordon and Siebers 2008)  Such distance in a 

specific direction (φ, θ) is called DM and denoted as Mv,d(φ, θ).  DM is the safety margin that the 

ROI can be offset while still satisfying a dose constraints Dv ≥ d for CTV or Dv ≤ d for OAR.  

For example Mmin,70(φ, θ) (=M100,70(φ, θ)) denotes the maximum distance the CTV (or OAR) can 

be offset in the direction (φ, θ) before its Dmin (=D100) falls below (exceeds) 70 Gy.  For an 

isodose surface that is within or crosses the structure, DM = 0.  Examples of DMD for a target 

CTV and a bladder for prostate cancer treatment are shown in Figure 12.  A type I (type II) ROI 

indicates that the static plan meets (violates) the specified dose-volume criteria.  A type II ROI is 

non-standard and ends up with low coverage for targets and high coverage for OARs.  Please 

refer to Appendix II.b for detailed distinction of type I and type II structures.     

 

Figure 11. Example of how a ROI DVCM is generated for a simple case with only two virtual treatment 

courses.  Get DVH (grey lines) with different GU(s) for each treatment course.  For each DVH, increment 

all grid squares lying below or to the left of the DVH by 1.0.  Then normalize the whole grid values. 
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When DM , ( , )v dM   and geometric uncertainty parameter(s) such as SD of systematic 

setup errors Σ are known, the corresponding coverage probability ( , , )Q     in this specific 

direction can be estimated using the following function, 

,( , , ) ( ( , ), )v dQ f M       
(24) 

where f() denotes a coverage function whose form depends on the PDF of the geometric 

uncertainty.  Note here we use Q  (not q ) to represent the coverage probability that is obtained 

via DMD method (not DVCM method).  The overall coverage ( )Q   is 

,

,

( ) ( , , )Q W Q 

 

      
(25) 

where ,W   is a weighting factor equal to the fraction of 4π sr covered by the ray in the direction 

(φ, θ).  An example of how ( )Q  of a CTV and an OAR varies with Σ is shown in Figure 13, 

where random uncertainties are accounted for through fluence convolution.  Each coverage curve 

corresponds to a single dose-volume metric Dv of the ROI.   

 

Figure 12. Examples of DMD sampled using fixed angular increment method for (a) CTV Dmin, 79.2(type I), 

(b) bladder D25, 70 (type I) and (d) bladder D25, 70 (type II) (Xu et al. 2011) 
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 For coverage estimations using DMD method, it is important to note that a sufficient 

sample of DM is required to ensure a representative DMD and accurate Q .  The earlier study 

(Xu et al. 2011) proved that DMD sampling with angular increment ω (fixed angular increment 

method) or ωeff (isotropic sampling method) = 10° and δ = 0.5 mm should be adequate for 

planning purposes.    

3.3 Biological endpoints: BED, EUD, TCP and NTCP 

Biological metrics in this dissertation refers to metrics that are modeled to correlate 

physical dose to biological response such as cell killing and normal tissue complication.  The 

biological metrics related to this dissertation include biological equivalent dose (BED), 

equivalent uniform dose (EUD), tumor control probability (TCP) and normal tissue complication 

probability (NTCP).  Biological models used in biological metrics intend to represent complex 

reality (i.e., clinical observations of cell radiobiology response) by simplistic equations and a few 

parameters.   Such models, if realistic and representative, could be considerably useful in both 

plan evaluation and optimization.  However, uncertainty introduced by the models and their 

 

Figure 13. Qualitative dependence of coverage probability Q on systematic SD for type I targets and type 

I/II OAR.  (Xu et al. 2011) 
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parameters associated with the biological metrics remains a concern. (ICRU Report 83 2011) 

After all, the complex biology of tumors and normal tissues for each patient is unlikely to be 

represented by a single equation with population-based parameters.  Therefore, ICRU 83 report 

suggests using biological metrics for secondary plan evaluation only. (ICRU Report 83 2011) 

Nonetheless, these metrics provide additional quantitative measures for plan comparisons.    

3.3.1 Basic radiobiology: cell survival curves and fractionated dose 

The biological effects of radiation lead to a certain level of DNA damage and therefore 

cell death in tumors and normal tissues.  Damage is tissue-specific and dependent on irradiated 

dose and cell characteristics such as sensing and repair of damaged DNA.  The cell survival 

curve depicts cell survival after irradiation as a function of dose, as shown in Figure 14. The 

linear-quadratic model is the most widely accepted way to describe the relationship of cell 

surviving fraction S and dose D  as. 

2S exp( D D )     
(26) 

where 
 
and   are linear and quadratic component slope when equation (26) is plotted on the 

logarithmic scale.    is an important term which shows the tissue sensitivity to dose.  When 

D = 
 
   , linear killing and quadratic killing are equivalent.     
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 Fractionated radiotherapy is performed in clinical treatment to take advantage of 

different    ratios between tumors and normal tissues.  As Figure 14 illustrates, late-

responding tissues (lower   ) are relatively more resistant to low doses (=higher survival) and 

more sensitive to high doses than early-responding tissues (higher   ).  There is a growing 

 

 

Figure 14.  Illustration of (upper) cell survival curve of dose D  versus survival fraction S  when the  
 

ratio = 3 and (lower) example of different cell survival curve of early and late response tissues.   
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consensus that    for prostate cancer is lower than that of normal tissues.  (Fowler et al. 2001, 

Bentzen and Ritter 2005, Daşu 2007, Fatyga et al. 2009)   If this is true, theoretically, increasing 

the dose per fraction (and therefore larger fraction size) can result in more injury (or less repair) 

to the prostate cancer cells than surrounding normal tissues.   

To consider    and fractionation scheme with respect to biological response, BED is 

often computed. Based on the linear quadratic model, BEDi
of fraction i  with dose Di

  is 

 

D /
BED D 1 i

i i

n

 

 
   

 

 
(27) 

where n  is the total number of treatment fractions and    is the tissue-specific fractionation 

sensitivity.     introduces uncertainties of BED estimation as its value is still debated.  Here, a 

relatively conservative    = 3 is selected for prostate (Fatyga et al. 2009).     = 5 is 

assumed for bladder and rectum. 

3.3.2 Equivalent uniform dose 

EUD of an ROI is the uniform dose that would give the same biological response as the 

non-uniform dose distribution of interest.  EUD was originally introduced in a mechanistic 

model for tumors by employing the linear quadratic cell survival formalism. (Niemierko 1997) 

Later, generalized EUD (gEUD) was presented to make the concept of EUD applicable to both 

tumours and normal tissues (Niemierko 1999).  gEUD replaces a complicated dose distribution 

by a single scalar dose value.  This value is calculated based on the assumption that all the other 

conditions (e.g., patient, dose fraction, total dose) of the non-uniform dose remain unchanged.  

The equation of gEUD is 
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1/

gEUD ν D

a

a

i i

i

n
 

  
 
  

(28) 

where n  is the total number of treatment fractions, νi
 is the volume of the dose–volume bin with 

absorbed dose Di , and the exponent a is a response-specific parameter.  For tumor control in 

target structures (e,g., prostate), a < 1 so that gEUD is more sensitive to the lower doses.  For a 

(parallel-like) normal tissue such as lung, a = 1 and gEUD is equivalent to the mean dose.  For a 

(serial-like) normal tissue, a > 1 so that gEUD is largely affected by the higher dose.  a  may be 

determined empirically by fitting dose-volume data, but there are no universal recommendations 

value for a . Here a = 0.16 (Fatyga et al. 2009), 20 (Cahlon et al. 2008), 11.1 (QUANTEC) are 

used for prostate, bladder and rectum, respectively.  

As an extension of concept of gEUD, general equivalent uniform biological effective 

dose gBEUD can be calculated by substituting Di  by biological effective dose BEDi  (in 

equation (27)).  Namely, 

1/

gBEUD ν BED

a

a

i i

i

 
  
 
  

(29) 

Both gEUD and gBEUD can be used as an independent metric or a parameter to estimate 

another biological metric such as normal tissue complication probability (in section 3.3.4).  

3.3.3 Tumor control probability 

TCP is a biological metric to predict the probability of long-term recurrence-free survival 

(which means the absence of a detectable or symptomatic tumor).  The key assumption of all the 

TCP models is that a tumor is controlled when all the cells lose clonogenic viability.  A TCP 

model based on Poisson statistics (Nahum and Tait 1992, Niemierko and Goitein 1993, Webb 

and Nahum 1993, Sanchez-Nieto and Nahum 1999) is used in this dissertation. This model 
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simply assumes that all clonogens within the tumor are uniformly distributed and have identical 

radio-sensitivities.   TCP is estimated from a 3-D dose distribution (with uniform dose 
iD  for i

th
 

voxel) of the tumor (CTV) of total N  voxels given the dose required for a 50% probability of 

tumor control (
50D ) and the normalized slope (

50 ) of the sigmoid-shaped dose–response curve 

at 
50D . The formula is 

50

50

50

50

Dln 2
exp exp 2 1      non-EUD Possion

ln 2
TCP

gEUD
exp ln 2 exp 2 1      EUD Possion

ln 2

i

iN D

D





    
            

 
   
            


 

(30) 

Parameters for TCP calculations can be obtained from studies that evaluate clinical data for 

dose–response relationships.  The fitting parameters in (Cheung et al. 2005) are used here.  Note 

Di
 (or gEUD) does not have to be physical dose.  It can be the BED in equation (29) as long as 

50D  is the same type of dose.  In this dissertation, BED and gBEUD are used. 

3.3.4 Normal tissue complication probability 

NTCP is a biological metric used to predict the probability of an OAR complication, such 

as bladder bleeding or rectal bleeding that may occur after prostate cancer treatment.  The 

complication is modeled as a function of the dose (or biological equivalent dose) and volume.  

The classic phenomenological Lyman-Kutcher-Burman (LKB) model (Lyman 1985, 

Cheung et al. 2005) is most commonly used to calculate NTCP.  This model assumes that the 

complication probability sigmoid curve can be described by the error function.  It explicitly 

relates partial-volume tolerance dose through a power law in volume.  LKB model can be written 

as 
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 21
NTCP exp / 2

2

t

du u
 

   
(31) 

where 

50 50t  (gBEUD  ) / (m )TD TD    
(32) 

where gBEUD is general equivalent uniform biological effective dose in equation (29), 
50TD  is 

the tolerance dose producing a 50% complication probability and m  is the slope parameter of the 

complication sigmoid curve.  Many published values of 
50TD and m  are inconsistent.  

Quantitative Analysis of Normal Tissue Effects in the Clinic (QUANTEC) has recommendations 

for the rectum but not for the bladder risk assessment, probably related to the fact that bladder 

wall is rarely contoured. Here, bladder parameters are obtained from other literature.  (Burman et 

al. 1991, Luxton et al. 2004) 

 The TCP and NTCP models and associated parameters used in the COP studies described 

in chapter 5 and 6 are summarized in Table V.  Note the conventional way to estimate 

TCP/NTCP of a CTV/OAR after treatment (under the influence of GUs) is via applying the 

Table V to the surrogate volumes PTV or PRV.  This is based on the assumption that PTV/PRV 

exactly represents CTV/OAR with GUs, which is not true in reality.   A novel way to incorporate 

GUs into TCP/NTCP estimation is by calculating the distribution of the CTV TCP values or the 

OAR NTCP values in a large number of virtual treatment courses.  The possible TCP/NTCP 

distribution reveals the biological effect of GUs to CTV/OAR in a more representative way.  An 

example of comparing TCP/NTCP distributions of two competing plan is in Figure 18. (chapter 

4, page 59) 
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Table V. A summary of TCP and NTCP model and parameters for prostate, bladder and rectum used in this 

dissertation.  Note conventionally TCP or NTCP value is calculated for a PTV or PRV volume.  Here, TCP or 

NTCP distribution for a CTV or OAR volume is a novel way to account for GUs  

TCP: Poisson Model 

Equation 

 

50

50

50

50

1/

BEDln 2
TCP exp exp 2 1  or

ln 2

gBEUD
        =exp ln 2 exp 2 1

ln 2

D /
where BED D 1  and gBEUD ν BED  
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i
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i i i i

i

N D

D

n





 

   
          

   
          

   
       

    





 

Parameters 

 

50D  (dose producing 50% tumor control), 
50  (slope parameter),        

a  (EUD parameter),   (BED parameter) 

Prostate 50D  = 67.5 Gy, 
50  = 2.2 , a = 0.16,    = 3Gy 

NTCP: Lyman-Kutcher-Burman model 

Equation 
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Parameters 
TD50 (the tolerance dose producing a 50% complication probability), 

m (slope parameter), a  (gBEUD parameter),   (BED parameter) 

Bladder TD50 = 80 Gy, m = 0.11, a = 20,   = 5Gy 

Rectum TD50 = 76.9 Gy, m = 0.13, a = 11.1,   = 5Gy 

 

3.4 Summary 

This chapter described the dosimetric and biological endpoint metrics used in this 

dissertation for plan evaluation, optimization and comparison.  The pros and cons of each metric 

in terms of its representativeness for plan evaluation are summarized in Table VI.  In the 
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following COP studies, multiple metrics are calculated to perform a comprehensive plan 

evaluation/comparison. 

Table VI. Summary of metrics for plan evaluation used in this dissertation. All have the con that 3D 

information is lost. 

Metric Name Metric type Pros Cons 

Dv (DVH) Dosimetric simple  Static values regardless GUs 

 Not treatment outcome correlated 

Coverage 

probability 

Dosimetric GUs incorporated  Model of geometric uncertainty  may not 

be representative  

 Not treatment outcome correlated 

gEUD(gBEUD) Biological One simple value 

substituted from dose 

distribution 

 Parameter is ambiguous 

 Model may be oversimplified 

TCP (single 

value for PTV) 

 

Biological Treatment outcome  

(tumor control rate) 

correlated 

 Parameters are ambiguous 

 Model and GUs may be oversimplified 

 

NTCP (single 

value for PRV) 

Biological Treatment outcome  

(normal tissue complication) 

correlated 

 Parameters are ambiguous 

 Model and GUs may be oversimplified 

TCP (distribution 

for CTV) 

 

Biological Treatment outcome  

(tumor control rate) 

correlated and GUs 

incorporated 

 Parameters are ambiguous 

 Model and GUs may be oversimplified 

 

NTCP 

(distribution for 

OAR) 

Biological Treatment outcome  

(normal tissue complication) 

correlated 

 Parameters are ambiguous 

 Model and GUs may be oversimplified 
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4 General materials and methods for COP Study 

This chapter describes some general materials and methods for the following COP studies 

in chapter 5 and 6 to account for GUs like organ deformation and delineation uncertainties for 

prostate cancer treatment. In section 4.1, the patient database and the basic settings of IMRT 

planning are presented.  In section 4.2, the software that implements the GU models in plan 

optimization (e.g., COP) and evaluation is given.  To evaluate the clinical role of COP, the 

planning techniques to be compared with COP are introduced in section 4.3.  The accuracy and 

precision tests of coverage estimates used in the plan evaluation/comparison for each COP study 

are discussed in section 4.4.   

4.1 Patient database and IMRT planning 

The patient database used in this dissertation is a 19-prostate cancer patient-cohort from 

the Netherlands Cancer Institute (NKI).  The patient database with 8-13 CT images throughout 

the course of treatment per patient permits (a) reasonable confidence to do a population-based 

research,  (b) important GU information for modeling GUs in multi-fractional treatment for 

prostate cancer representatively,  e.g., different positions and shapes of ROI contours reveals 

interfraction organ motion and deformation during treatment, and (c) the convenience to perform 

treatment planning on any selected image to simulate virtual treatment courses with or without 

IGART strategies.   
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A brief description of this patient database is given here as more details can be found in 

an earlier work (Deurloo et al. 2005).  The patient disease stages are: T1, 3 patients; T2, 4 

patients; and T3, 12 patients. (Please refer Table I, page 2 for NCCN groupings of prostate 

cancer.)  During a 7–8 week course of conformal radiotherapy, each patient received a planning 

fan-beam computed tomography (FBCT) scan and multiple (8-12 and 11 on average) repeat 

FBCT scans.  The patient was instructed to empty his bladder and rectum and subsequently drink 

250 ml of fluid one hour before the planning FBCT was taken and before each treatment fraction 

started.  The repeat FBCT scans were obtained within 30 min before or after the daily treatment 

fraction.  All FBCT scans (planning + repeat) were performed in same supine position on a flat 

tabletop.   

The original FECTs were per-patient boney-anatomy aligned, truncated to have the scene 

number of slice 66–77 slices for each image set for each patient and  resampled to have 3 mm 

slice thickness, and 512 × 512 image resolution with voxel size 0.8 × 0.8 mm
2
.  The scans cover 

the anatomical regions from the upper part of the sacroiliac joints to 4 cm below the bottom of 

the os pubis.  For each FBCT image, the structures including prostate, seminal vesicles, rectum, 

bladder, left femur and right femur were delineated by a single physician.  As all the patients 

were assumed to have high-risk prostate cancer in COP studies here, the target volumes CTVs 

were prostate and seminal vesicles. No associated lymph nodes are included.  The remaining 

contoured structures (bladder, rectum, and etc.) were regarded as OARs, while the left and right 

femur and the small bowel were excluded since their dose limits are rarely violated due to their 

further distance to CTVs than the bladder and rectum.  
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For IMRT planning purposes, one FBCT (usually the first image, but the second image 

for patient C) was selected for each patient as the reference image and the other FBCT images 

were called fractional images.  On each reference image (e.g., Figure 15), contours of seminal 

vesicles, rectum and bladder were modified slightly to eliminate overlapping region with prostate 

and with each other.  The treatment plan utilizes seven coplanar (transverse) photon beams with 

gantry angle 30, 80, 130, 180, 230, 280, 330º.   The beam isocenter was set to the centroid of 

prostate (=GTV=CTVprostate).   A dose grid was created based on a volume expanded from union 

 

Figure 15. A transverse view of IMRT plan settings shared in COP studies: a typical seven-beam 

arrangement (red lines) with the beam isocenter located at prostate centroid (small red circle in the 

middle).  The dose grid that always covers prostate (red contour), seminal vesicles (green contour), bladder 

(yellow contour) and rectum (magenta contour) is indicated by the dashed green box.   
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ROI (prostate + seminal vesicles + rectum + bladder) by 30 mm.  This dose grid size ensures all 

the ROIs and regions of uncertainties are covered, while excluding the unnecessary regions to 

reduce dose calculate time and reduce computer memory usage.   The dose grid resolution is 

either 2×2×2 mm
3
 or 3×3×3 mm

3
, depending on which COP study is being performed.  For 

planning optimization to account for interfraction deformable motion (chapter 5), the dose grid 

resolution is 3×3×3 mm
3
.  The remainder studies use 2×2×2 mm

3
. 

4.2 Software (GUI) for COP study 

Software for the COP study refers to (i) dynamic libraries (plugins) in Pinnacle
3
 which 

incorporate several GUs models to perform COP and related probabilistic evaluation and 

optimization and (ii) a graphical user interface (GUI) that allows users to interact with Pinnacle
3
 

via a more user-friendly interface than text.  This software implements COP theory (chapter 2) in 

a TPS that is realistic and convenient.  This section focuses on the GUI. 

The dose-volume-coverage (DVC) GUI is a multi-functional tool with embedded plugins 

for Pinnacle
3
 for the convenience of both developers and ordinary treatment planners.  It serves 

as a bridge between the TPS and the developed plugins. 

The functions of GUI have been extended.   Multiple GU models have been developed to 

perform the COP optimization (mentioned in chapter 2) and the optional probabilistic plan 

evaluation based on the dosimetric/biological metrics (described in chapter 3).  The results of 

these metrics can be displayed graphically in the GUI, allowing an efficient plan 

evaluation/comparison.  Each function is associated with a GUI tab, whose details are listed in 

Table VII.  How to use different GUI tabs for different purposes is illustrated in Figure 16 and 

the screen shots of all the functioning tabs are shown in Figure 17 and Figure 18. 
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Table VII. The main functions of the functioning tabs of DVC GUI 

Tab 1: “Optimization” (chapter 2) 

 Specify/load optimization criteria in TPS 

 Error check: bad weight, bad format of a research objective 

Tab 2: “GU models” (II and IV are included in chapter 5 and 6 ,respectively) 

 Specify geometric uncertainty model and parameters 

I. RigidBodyNormal (for setup errors or rigid organ motion) 

II. PCAdvfModel (for deformable organ motion) 

III. PCA+ RigidBodyNormal (a combination of the above two models) 

IV. DelineationModel (for delineation uncertainties) 

 Error check: bad parameter file that is inconsistent with the selected GU model and each structure can have 

only one GU model. 

Tab 3: “Endpoint” (chapter 3) 

 Specify endpoint model for biological metrics 

I. TCP_Poisson (TCP Poisson model using physical dose or BED) 

II. TCP_PoissonEud (TCP Poisson model using physical dose or BED-based gEUD) 

III. NTCP_LKB_ErfEud (NTCP LKB model using physical dose or BED-based gEUD) 

 Error check: bad parameter file that is inconsistent with the selected endpoint model 

Tab 4: “Evaluation” (chapter 2 and 3) 

 Specify DVHs/pDVHs to be plotted in the DVHs/PDVHs tab 

 Error check:  bad  DVH/pDVH metric name 

Tab 5: “DVHs/PDVHs”  

 Show DVHs/PDVHs of ROIs on the trials of interest  

Tab 8: “Outcome”  

 Show box plot of TCP/NTCP distribution of ROI on the trials of interest. 
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Figure 16.  DVC GUI flow for performing COP or margin-based treatment planning (MP) +/- 

probabilistic plan evaluation by computing and plotting specified pDVHs and/or TCP/NTCP distribution. 

Colored arrows indicate the flow for the item listed in the same color.  The details are described in the 

text. 
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Figure 17. Interface of DVC GUI tabs: (upper) Tab 1 “Optimization” which is used to set the criteria used 

for optimization;  (middle)  Tab 2 “ GU Models” used to set the GU models used for COP optimization or 

plan probabilistic evaluation;  (lower) Tab 3 “End Points” used to set the TCP/NTCP model and 

parameters to calculate TCP/NTCP distribution for probabilistic evaluation and plot it in “Outcomes” 

tab. The primary GUI design is done by Dr. John James Gordon.  (copyright JJ Gordon 2011©, copyright 

H Xu 2013©) 
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Figure 18. Interface of DVC GUI tabs: (upper) Tab 4 “Evaluation” that determines the pDVHs to be 

plotted in “GU Models” tab;  (middle)  Tab 5 “ GU Models” that plots pDVHs of multiple ROIs on 

multiple trials (plans)  with criteria highlighted as triangles.  Here, dose is displayed in the unit cGy 

while 1 cGy = 0.01 Gy. (lower) Tab 8 “Outcomes” that plots distribution of TCP and NTCP for 

multiple ROIs on multiple trials (plans). For both Tab 5 and Tab 8, legends are displayed on the left 

showing pDVH or TCP/NTCP of different ROIs (with different color) on different trials (solid or 

dashed). (copyright JJ Gordon 2011©, copyright H Xu 2013©) 
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4.3 Planning techniques for comparison 

The planning techniques to be compared with COP in this dissertation utilize PTV 

margins to accommodate GUs of CTVs.  The PTV margins are either empirically predefined or 

optimized based on the target coverage evaluation.  These techniques are also generally called 

margin-based planning techniques in the following text. 

 

The two margin-based planning techniques used for planning comparison with COP are 

called optimized-margin planning technique (OM) and fixed margin planning technique (FM).  

The workflow of COP, OM and FM are illustrated in Figure 19.  To generate a dose distribution 

  

Figure 19. Workflow of COP versus OM and FM planning technique to account for GUs e.g., interfraction 

organ deformable motions for high-risk prostate cancer patients. Abbreviation: tgt = target, SV = seminal 

vesicles, PTV1 = CTVprostate + PTV margin of CTVprostate and PTV2 = CTVSV + PTV margin of CTVSV.  The 

PTV margins used in FM for all the patients are empirically determined based on literature.  Here, 5mm 

for PTV1 and 8mm for PTV2 are an example for the study to accommodate interfraction organ deformable 

motions.   
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intended to accommodate GUs for CTVprostate and CTVSv, both OM and FM rely on PTV 

structures (PTV1 and PTV2 for CTVprostate and CTVSv, respectively) and the DVH objectives.  

COP does away with PTVs and utilizes the pDVH objectives for dose optimization. 

FM is a basic PTV-based treatment planning technique similar to the conventional 

margin-based planning method where pre-defined PTV margins are determined empirically.  In 

the following studies, PTV margins for CTVprostate and CTVSV are determined by either a 

published work (as shown in Figure 19) or van Herk margin formula (van Herk et al. 2000).  

 

Compared to FM, OM is an advanced PTV-based planning technique which was proposed 

(Gordon and Siebers 2009) to optimize the uniform PTV margin(s) for each patient to meet the 

target dose at prescribed coverage D98,95.  As Figure 20 shows, OM used in this dissertation starts 

with 0 PTV margins for CTVprostate and CTVSV and iteratively increases PTV margin(s) 

uniformly by increment 1mm until both CTVs achieves prescribed D98,95.  In each iteration, 

 

Figure 20. Flow diagram of margin iteration of the OM planning technique used in this dissertation. The 

PTV margins for CTVprostate and CTVSV are initialized as 0mm and then iteratively adjusted to achieve 

prescribed D98,95 for both CTVprostate and CTVSV.   PTV margin is increased by 1mm for the next iteration 

for any CTV whose D98,95 is lower than the prescribed value.  If one CTV achieves prescribed D98,95 while 

the other fails, PTV margin for the CTV with desirable D98,95 remains the same in the next iteration.  
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D98,95 values are estimated based on the dosimetric consequences of 1000 virtual treatment 

courses with GU model incorporated.  In the contrast that COP considers OAR coverage 

probability and generates dosimetric margins which are often only achieved by non-uniform 

PTV margins, OM is less complicated and more emphasized on CTV coverage when adjusting 

PTV margins. 

4.4 Sensitivity of coverage estimates to treatment courses sampling 

In the COP studies of this dissertation, probabilistic evaluation of treatment plans are 

based on the 1000 virtual treatment course simulations.  The inherent assumption is that the 

resulting pDVH and associated dose coverage metrics estimated from 1000 virtual treatment 

course is of acceptable accuracy and precision.  This section shows the testing results to 

consolidate this assumption.   

4.4.1 Accuracy tests 

The estimation accuracy of the metric Dv,q (dose delivered to volume v at coverage 

probability q) is tested via checking how Dv,q value converges using different number of virtual 

treatment courses.  Denote Dv,q_Ntx the estimated Dv,q based on Ntx virtual treatment courses.  

|Dv,q_1000|, the absolute percentage difference of Dv,q_Ntx  relative to Dv,q_1000  is calculated as 

tx, _1000 , _ N

, _1000

, _1000

D D
| D | 100%

D

v q v q

v q

v q


    

(33) 

The smaller |Dv,q_1000|  is, the better Dv,q_Ntx converges to Dv,q_1000. 

 In terms of target structures CTVprostate and CTVSV of two patients with ID A and S, 

|D98,95_1000| has been calculated for the zero-PTV-margin plans and COP plans evaluated via 
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Ntx = 10, 100, 200 and 500 virtual treatment courses with PCA or ASSD model
5
 incorporated.  

As Figure 21 illustrates, |D98,95_1000| is reduced to 0.2% or lower when Ntx increases from 0 to 

500, which reveals an acceptable convergence relative to Ntx = 1000. 

  For OAR, |Dv,q_1000| is plotted in  Figure 22 when Ntx = 500 is used for the zero-PTV-

margin plans and the COP plans evaluated with PCA or ASSD model incorporated for patient A 

and S.  In the high dose region where v of Dv,q is small, |Dv,q_1000| remains within 1% and 

mostly < 0.5%.   In general, |Dv,q_1000|  of COP plan is smaller than that of zero-PTV-margin 

plan.  In the low dose region where v of Dv,q is large, |Dv,q_1000|  tends to be larger.  As low dose 

                                                 
5
 PCA (principal component analysis) and ASSD (average-surface-of-standard-deviation) are two methods 

for modeling organ deformation (chapter 5) and delineation uncertainties (chapter 6).  Readers are referred to section 

5.2.2 and 6.1.1 for the details of these models.  

 

 

Figure 21. |D98,95_1000| of CTVprostate (red) and CTVSV (green) as a function of Ntx (number of simulated 

virtual treatment courses) for the zero-PTV margin plan ((a),(c)) and the COP ((b),(d)) plan of patient A 

(solid lines) and S (dashed lines).  The patient-specific PCA model is incorporated to consider deformable 

motions in (a) and (b) while the patient-specific ASSD model in incorporated to consider delineation 

uncertainties. 
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region is of less interest in terms of dose sparing and OAR toxicity, OAR Dv,q_1000 shows 

acceptable convergence for the test cases.  

 

4.4.2 Precision tests 

The precision of the Dv,q value calculated previously is tested via checking the 

reproducibility of Dv,q values repeatedly estimated by 1000 virtual treatment courses.  Denote 

Dv,q_No.n the Dv,q based on n
th

 repeated estimation.  v,q,precision| D | , the absolute difference of 

Dv,q_repeat,n relative to one estimated Dv,q,  is calculated as 

v,q v,q_No.n

v,q,precision
v,q

| 100%
D D

ΔD |
D




  
(34) 

The smaller v,q,precision| ΔD |  is, the more precise/reproducible Dv,q is.  Here, Dv,q = Dv,q_No.1.   

 The maximum v,q,precision| D | ( maxv,q,precision| D | ) among all the repeated estimated 

v,q,precision| D |  is calculated for the zero-PTV-margin and COP plans with PCA or ASSD model 

incorporated for patient A and S in Table VIII.  The maxv,q,precision| D |  of CTVprostate/CTVSV 

remains lower than 0.2% / 0.3% while ranges from 0.0% to 3.5% for OAR.  In general, Dv,q  is 

 

 Figure 22. |Dv,q_1000| of OAR of Patient A (left) and S (right) when Ntx = 500.  |Dv,q_1000| is obtained for 

COP plan (blue) and zero-PTV-margin plan (red) with the PCA model incorporated consider deformable 

motions, and COP plan (green) and zero-PTV-margin plan (purple) with the ASSD model incorporated to 

consider delineation uncertainties.  |Dv,q_1000| is small in the high dose region and gets larger in the low 

dose region.  
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more precise in high dose regions.  Dv,q  for the COP plan is more precise than that for the zero-

PTV-margin plan.   

Table VIII.  The maxv,q,precision| D |   based on repeated estimation of Dv,q for 7-10 times for the zero-PTV-

margin plan and the COP plan with PCA/ASSD model incorporated for Patient A and S. 

 
maxv,q,precision| D |  (%) 

 Deformable motions (PCA) Delineation uncertainties (ASSD) 

 zero-PTV COP zero-PTV COP 

 A S A S A S A S 

CTVprostate D98, 95 0.1 0.1 0.1 0.1 0.1 0.3 0.1 0.3 
CTVSV D98, 95 0.0 0.2 0.0 0.0 0.2 0.1 0.1 0.0 
Bladder D2,5  0.2 1.0 0.1 0.0 0.8 0.2 0.1 0.1 
Bladder D9,5 0.2 1.7 0.1 0.1 1.1 0.3 0.1 0.2 
Bladder D14,5  0.3 1.8 0.2 0.1 0.3 0.4 0.1 0.2 
Bladder D20,5 0.4 1.6 0.3 0.2 0.1 0.1 0.1 0.2 
Bladder D30, 5 0.6 1.6 0.5 0.7 0.1 0.1 0.6 0.2 
Bladder D50, 5 0.6 3.5 1.0 1.4 0.3 0.6 0.5 0.0 
Bladder D70, 5 0.1 0.7 0.1 0.1 0.3 0.3 0.2 0.1 
Rectum D2, 5 0.2 0.9 0.1 0.2 0.2 0.3 0.1 0.1 
Rectum D5, 5 0.4 0.7 0.2 0.3 0.0 0.1 0.1 0.1 
Rectum D20, 5 0.2 0.9 0.3 0.9 0.0 0.1 0.1 0.0 
Rectum D30, 5 0.2 1.0 0.3 1.4 0.1 0.2 0.1 0.0 
Rectum D50, 5 0.1 0.1 0.1 0.1 0.1 0.3 0.1 0.3 

  

 

Figure 23.  The repeated estimated pDVHs 95% (solid lines) and 5% (dashed lines) of CTVprostate (red), 

CTVSV (green), bladder (yellow) and rectum (magenta) based on the simulations using 1000 virtual 

treatment courses repeated for 7 times.  The differences between the repeated pDVHs  are very small. 

Example.   
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The repeated estimated pDVHs 95% and 5% with PCA model incorporated for zero-

PTV-margin plan for patient S are plotted in Figure 23.  Even with relatively large 

maxv,q,precision| D |  in the low dose region, the difference between the repeated pDVHs is hardly 

noticeable, so the reproducibility of coverage estimation using 1000 virtual treatment courses is 

acceptable. 

 Based on the above testing results, the assumption that the pDVH and associated dose 

coverage metrics estimated from 1000 virtual treatment course is acceptably accurate and precise 

is consolidated. 
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5 COP to account for interfraction deformable motions 

For prostate cancer, interfraction organ displacement and deformation occur due to the 

bladder and rectal filling and are seemingly random as no expansion/shrinkage occurs due to 

disease progression/regression.  The uncertainties caused by interfraction deformable motion 

were found to be common and can be significant during the treatment course. (Mah et al. 2002, 

van Herk 2004, Byrne 2005, Kerkhof et al. 2008, Peng et al. 2010) 

In conventional margin-based planning, there is not a recommended method determine 

the size of PTV margin to account for CTV and OAR interfraction organ variations.  The 

commonly used margin recipes (Stroom et al. 1999, van Herk et al. 2000) derived for the 

assumed rigid motion are not applicable to deformable organ motion, which are of a much higher 

dimensionality than the six parameters of shifts and rotations.  The dosimetric consequence of a 

margin may vary with factors such as localization and immobilization methods, patient anatomy, 

treatment protocol, plan quality and beam arrangement.  Although CTV-to-PTV margin size for 

prostate and seminal vesicles has been suggested in some studies (Meijer et al. 2008, Mutanga et 

al. 2011), they should be used with caution.    

Compared with the conventional margin-based planning, COP may have the potential to 

either further improve the target coverage probability by raising OAR doses within tolerance or 

reducing OAR normal tissue toxicity with comparable target coverage in the presence of 

different GUs. (Gordon and Siebers Unpublished, Gordon et al. 2010)  This chapter concentrates 
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on the application of COP to account for organ interfraction deformable motion in the clinical 

scenario where IGRT for prostate centroid alignment is utilized.  The prostate plans and GU 

models used for this study are described first.  Then the research results of dosimetric effect and 

plan optimization with GU model incorporated are discussed to explore potential clinical benefit 

of COP. 

5.1 Prostate plans 

As previously mentioned, 19 NKI patients are involved in this study.  For each patient, 

one of the bony aligned FBCT images was selected as reference image set for planning.  On this 

image set, a series of 7-beam IMRT plans were generated either based on COP or the two 

margin-based techniques for comparison. Other details of patient database and IMRT plans are 

referred to section 4.1 (page 52). 

Two CTVs, CTVprostate (= prostate) and CTVSV (= seminal vesicles), are for treatment, 

since all the patients are assumed with high-risk prostate cancer.  The prescription dose to the 

prostate is 2.6 Gy/fraction for 30 fractions, which is biologically equivalent (equation (27)) to 

2 Gy/fraction for 43 fractions used in a VCU protocol.  The optimization criteria are listed in 

(Table III, page 22).  The two critical OARs are the bladder and the rectum. The 

norm_tissue_ring is an artificial structure extending from 7 to 30 mm from CTVprostate and 

CTVSV to force a steep dose drop-off.  CTV_neighborhood is another artificial structure 

extending by 12mm from the union volume of CTVprostate and CTVSV on all image sets.  This 

structure is purely used to set initial beam fluence for COP implementation in Pinnacle
3
 (See 

section 2.5.2).  During optimization, CTV_neighborhood has no contribution to the objective 

functions as its objective function weight is set to 0.   
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The statistics of the patient-specific ROI volume changes based on the delineations on the 

multiple image sets for each NKI patient are summarized in Table IX.  Large percentage SD 

relative to mean (%SD) indicates large magnitude of deformable motions involved in different 

treatment fractions. 

Table IX. The mean and the percentage SD relative to mean (%SD) of ROI volumes over all image sets for 

each patient with ID A-S of the patient database   

 
CTVprostate CTVSV Bladder Rectum 

ID mean %SD mean %SD mean %SD mean %SD 

A 37 12 17 22 277 45 106 24 

B 69 7 14 14 287 31 132 34 

C 50 9 28 14 220 34 84 22 

D 29 10 10 15 230 38 71 25 

E 44 6 10 11 176 54 74 37 

F 27 12 11 9 110 31 54 23 

G 76 14 9 16 412 18 72 32 

H 39 13 17 14 224 45 103 44 

I 40 10 15 15 142 29 84 30 

J 97 7 19 11 127 26 67 24 

K 45 8 12 10 211 35 59 29 

L 46 5 7 17 212 50 78 28 

M 24 6 13 6 160 56 65 25 

N 33 9 13 3 174 26 104 30 

O 30 6 8 9 128 46 55 29 

P 46 5 8 11 109 21 83 30 

Q 46 7 19 8 166 37 60 37 

R 75 5 18 8 237 49 87 27 

S 52 5 11 11 143 31 77 11 

5.2 GU models for deformable organ motions 

Two candidate models to represent deformable organ motions are studied in this work. 

Both models intend to predict ROI voxel positional offsets in the patient coordinates caused by 

deformable motion under the condition that CTVprostate centroid is aligned.  The simpler one is 

called the simple surface variation (SSV) model. The more sophisticated one is based on 

principal component analysis (PCA).  The SSV model is constructed first to see if it represents 
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the characteristics of variations of patient database.   If not, the PCA model is then constructed 

for modeling. 

5.2.1 Simple surface variation (SSV) model 

The SSV model is intended to give a first-order estimation of ROI geometry variability 

using few variables as input.  This rough model, dependent on a linear correlation between the 

ROI centroid locations and volume, is used to guide necessity of finer linear model, i.e., PCA 

model. 

 

How the SSV model predicts an ROI surface position change due to deformable motions 

is illustrated in Figure 24.  The SSV model relies on a strong correlation (and therefore a simple 

function) between the ROI-CTVprostate centroid distance (CDROI-P) and the ROI volume (VROI) as  

 

Figure 24.  An illustration of how to obtain a new position of surface voxel of a ROI (other than CTVprostate) 

(SROI’) based on a SSV model. As CTVprostate-centroid alignment is assumed, the centroid position of 

CTVprostate, old as CCTVprostate and new as CCTVprostate’, is always known.   By sampling a new position of the 

ROI centroid (CROI’), the new centroid distance between ROI and CTVprostate` (CDROI-P’) and ROI centroid 

offset (ΔCROI) can be calculated.  Assume that ROI volume change (ΔVROI) is a function of CDROI-P’, ΔVROI, 

and ΔCROI can be used to estimate the surface point change relative to old position (SROI) so that SROI’ can be 

therefore determined.  Abbreviation: P = CTVprostate 
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ROI ROI-PV (CD )ba c d    
(35) 

where , , ,a b c d  are the parameters to fit using correlation and least-square fitting based on 

information from the patient database.  On each image set for each patient, CTVprostate volume 

(VCTVprostate), ROI volume (VROI) and the position of ROI surface voxel (
ROIS ), ROI centroid 

(
ROIC I), CTVprostate centroid ( CTVprostateC ) and their difference (CDROI-P) are known and can be 

used to determine , , ,a b c d .  Therefore, the ROI volume change between the reference and the 

fractional image sets becomes 

ROI ROI-P ROI-PΔV [(CD ) (CD ' ) ]b ba c c     
(36) 

where '  means a new value on the fractional image set.  The SSV model also assumes that the 

ROI radius 3
ROI ROIr ΔV , so the new ROI surface voxel position 'ROIS  can be estimated by  

3
ROI' ( ) ( ΔV )v u


   



ROI ROI

ROI ROI ROI ROI

ROI ROI

S ' C '
S S C ' C

| S ' C ' |
 

(37) 

where ,u v  are the parameters to fit based on data variation from the patient database.  

Equation (37) means that  'ROIS  is determined by three components: (1) the old position of ROI 

ROIS  , (2) the ROI centroid position change ROI ROIC ' C , and (3) the radius changes in direction 

pointing from 'ROIS  to  
ROIC ' .  Assume the direction of 

ROIS  relative to  
ROIC  remains unchanged 

and substitute equation (36) into equation (37), we have 

3
ROI-P ROI-P' ( ) ( [(CD ) (CD ' ) ]) )b bv u a c c


      



ROI ROI

ROI ROI ROI ROI

ROI ROI

S C
S S C ' C

| S C |
 

(38) 

For a CTVprostate-centroid-aligned treatment, the new CTVprostate centroid position ( 'CTV-centroidC ) is 

always “known”.   By sampling ROI centroid position (
ROIC ' ) from a PDF based on the patient 

database, the new ROI surface voxel position 'ROIS  can be calculated.   



 

72 

 

To test if the SSV is valid for deformable organ motion, the mean and SD of correlation 

coefficients of different volume and different centroid distance relative to CTVprostate across 19 

patients are calculated in Table X.  Only the bladder-CTVprostate centroid distance and bladder 

volume show strong correlation (> 0.9), when parameter b  = 1.  Similar coefficient calculations 

have been done for bladder wall and rectal wall, but none of them showed strong correlations.   

When b  is replaced by 2 and 3, the correlation coefficient does not change significantly for all 

the structures.  For example, patient E has correlation coefficients of 0.947 for bladder 

volume (VB) and bladder-CTVprostate centroid distance (CDB-P,z), 0.950 VB and CDB-P,z
2
 and 0.939 

VB and CDB-P,z
3
.  Based on the correlation coefficient, the SSV model has limited applications 

for prostate cancer modeling and is only potentially useful to predict bladder deformable motion. 

Table X: The mean and SD values of the correlation coefficients between volumes and centroid distances of 

ROI for 19 NKI patients.  Highly correlated variables are highlighted.  

 mean SD 

VB, CDB-P,z 0.943 0.039 

VB, CDB-P 0.923 0.064 

VR, CDR-P 0.427 0.447 

VR, CDR-P,y 0.183 0.461 

VB, CDR-P 0.149 0.425 

VR, CDB-R 0.125 0.395 

VR, CDR-P,z 0.100 0.426 

VB, CDR-P,y 0.075 0.374 

VR, VB 0.029 0.454 

VB, VP -0.063 0.369 

VR, VP -0.164 0.283 

Abbreviations:  VB: bladder volume;  VR: rectum volume;  VP: CTVprostate volume;  CDB-P,z: centroid distance 

between bladder and CTVprostate in z axis;  CDB-P: centroid distance between bladder and CTVprostate;  CDR-P: centroid 

distance between rectum and CTVprostate;  CDR-P,y: centroid distance between rectum and CTVprostate in y axis. 

For the bladder SSV model, the residual error of bladder volume in equation (35) with 

fitted parameters based for an individual patient can be significant.  In Figure 25 (a), the bladder 

volume residual error using fitted parameters specific for patient E is about 50 cc for a 200 cc VB 

and therefore the surface position error, if comparable to radius difference, is approximately 

3mm.  For each patient, the residual error as a result of each patient-specific fitting is plotted into 
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a population-based histogram and fitted by a normal distribution.  The SD of this fitted normal 

distribution is 27 cc, so the uncertainty for VB is ±54 cc for a 95% confidence interval.  Based on 

these numbers, the SSV model is oversimplified and not representative for modeling organ 

deformable surface positions for prostate cancer patients.  A higher dimensional model, i.e., PCA 

model, is needed to represent more realistic organ deformable motions in the prostate cancer 

studies.   

 

5.2.2 Principal component analysis (PCA) model 

PCA is a mathematical procedure that uses an orthogonal transformation to convert large 

complex data sets of possibly correlated variables into a set of values of linearly independent 

variables called principal components.  Based on a few deformable-registration-based 

displacement vector fields (DVFs) of organ geometry, PCA can create a low-dimensional 

parametric statistical organ deformation model to generate a synthetic DVF (Söhn et al. 2005b), 

which is representative of the possible organ deformation on a virtual treatment fraction.  The 

 

Figure 25. (a) (Upper panel) The linear, quadratic and cubic fitting of centroid distance between bladder 

and prostate in z axis CDB-P,z to bladder volume VB. (Lower panel) The corresponding residual error for 

the three types of fitting. (b) Histogram of the distribution of residual error over 19 patients and its 

general Gaussian fit. 
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residual errors of a PCA model for prostate, bladder and rectum were small, e.g., less than 2mm 

when eigenmodes representing more than 86% overall variability were used. (Söhn et al. 2005b)  

As an earlier study stated (Söhn et al. 2012), PCA is a practical model to generate DVFs used to 

simulate anatomies for a large number of virtual treatment courses, thereby allowing the 

comprehensive assessment of dosimetric effects caused by deformable GUs (i.e., for the 

applications of COP or probabilistic plan evaluation in this dissertation).   

 

The DVF created by PCA is a vector field that matches corresponding ROI voxel 

positions in a reference image set R to a synthetic fractional image set F.  As Figure 26 shows, a 

DVF grid on the reference image set needs to be determined first to store a displacement vector 

for each DVF voxel. (The DVF grid used here is a little different from image grid and dose grid, 

so interpolation is required during conversion of the grids.)  The DVF between R and F is 

computed by a deformable registration algorithm called Small Deformation Inverse Consistent 

Linear Elastic (SICLE) (Christensen and Johnson 2001).  Based on the information of CT 

 

Figure 26. Illustration of a DVF between reference image set R and fractional image set F and dose 

mapping process.  Due to the effects of GUs, the shape and position of a ROI change on different image 

sets (i.e., elliptical on R and triangle on F).  Image R and F are not necessarily in the same domain.  

Denote g and h the coordinates in image R and F, respectively.  The geometric transformation between g 

and h are represented by DVF(g) in the equation g + DVF(g) = h, which relates the intensity R(g) and 

F(h).  For the dose mapping, dose to h is mapped back to g for i.e., dose accumulation of a multi-

fractional treatment course. 
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intensity and ROI delineation, SICLE matches ROI coordinates in R and F, thereby determining 

the DVF for the whole DVF grid.  Let g  and h  denote the coordinates of voxels on R and F.  

The relationship between g and h  and DVF( )g  is 

DVF( )h g g   
(39) 

The DVF( )g  accounts for both affine and deformable transformations with respect to anatomies 

represented in R.  

 

 

Figure 27.  Workflow of construction of a patient-specific PCA model. KDE=kernel density estimator. 

See the following text for detailed description. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INPUT: 

DVF
N  bony-aligned DVFs, 

each with vox
N  Voxels, written 

as matrix 
mat

DVF  

(equation (40)) 

 

 

 

 

 

 
Systematic DVF 

DVF
syst

 

(equation (41)) 

Random DVF: DVF
rand

(equation (42)) 

Covariance C (equation (43)) 

Get eigenvector EV  and eigenvalue   

Determine L  for top EV  (equation (46)) 

Sample c  for EV  from PDF based on KDE 

OUTPUT: 

Synthetic bony-aligned DVF:  

DVF
syn

 (equation (50)) 

or  

Synthetic GTV-aligned DVF: 

_
DVF

syn Paligned
 (equation (51)) 
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The workflow of a patient-specific PCA model is illustrated in Figure 27.  The purpose of 

using the PCA model is to create synthetic DVFs that represent anatomical deformable motions 

likely to occur in virtual treatment courses.  For a patient with 
FBCTN  (= 9-13) FBCT images, the 

number of training set DVFs is 
DVFN  (=

FBCTN –1) for (
FBCTN –1) repeat FBCT images mapping to 

the reference planning FBCT image.  These 
DVFN  DVFs, each with 

voxN  DVF voxels, are written 

into a matrix 
matDVF 

3 vox DVFN N  as a practical way for coding.  3 vox DVFN N  means that the size of 

matrix matDVF  is 3 voxN (rows) by DVFN (columns) as follows, 

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

1,1 1,2 1,

2,1 2,2 2,

mat

,1 ,2 ,

1,1 1,2 1,

2,1 2,2 2,

...

...

... ... ... ...

...

...

...
DVF

... ... ... ...

...

...

...

... ... .

DVF

DVF

vox vox vox DVF

DVF

DVF

vox vox vox DVF

DVF

DVF

N

N

N N N N

N

N

N N N N

N

N

x x x

x x x

x x x

y y y

y y y

y y y

z z z

z z z



,1 ,2 ,

.. ...

...
vox vox vox DVFN N N Nz z z

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(40) 

where , ,x y z  are the displacement vector field components or magnitude in the x,y,z directions 

for each DVF voxel.  matDVF  is then divided into a systematic component DVFsyst 
3 1voxN   and a 

random component DVFrand 
3 vox DVFN N .  DVFsyst  is the mean DVF of the DVFN  DVFs for a given 

voxel.  DVFsyst  represents the DVF which relates the patient’s average anatomy relating to the 

reference image set.  DVFrand  is obtained via subtracting DVFsyst  from each fractional DVF 
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(
matDVF ( )i ) , which is i

th
 column data of  

matDVF .  As Figure 27 illustrates, PCA manipulation is 

performed on DVFrand
.  The equations to determine DVFsyst  and DVFrand

 are  

1,

1

2,

1

,

1

1,

1

2,

1mat

1

,

1

1,
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1 1
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(41) 

and 

 DVF ...,DVF ( ),... ,  DVF ( )  DVF ( ) DVFrand rand rand mat systi i i    
(42) 

DVF( )i  denotes DVF in i
th

  column (for i
th

 repeat FBCT) while 1,2,..., DVFi N .  For DVFrand , the 

implicit covariance matrix C DVF DVFN N  that generalizes the notion of variance to dimensions 

DVF DVFN N  (Murakami and Kumar Sept., Lorenz and Krahnstöver 2000) is 

1

1
DVF DVF

DVFN
T

rand rand

iDVF

C
N 

   
(43) 
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where ( )T  denotes the transpose of the matrix and ( ) ( )T   represents the outer product of the two 

matrices.  Then C  is diagonalized as diagC  

1 2( , ..., )
DVFdiag NC diag     

(44) 

where 
l  1 1  (with index l ) is called an eigenvalue.  During this diagonalization, each 

eigenvector ( )EV l 
3 1voxN   corresponding to each eigenvalue is obtained.  An eigenvector is 

also called an eigenmode as it represents a DVF of correlated displacements of 
voxN  voxels.  All 

the eigenvectors are mutually independent vector fields and the maximum number of 

eigenmodes that exist is 1DVFN  .  Therefore, the whole eigenvector matrix is EV 
3 ( 1)vox DVFN N  .  

To measure the fraction of overall geometric variability (present in the input 
matDVF ) represented 

by an eigenmode with index l , the relative eigenvalue l  is calculated as 

1,2,...,

100%

DVF

l
l

ii N







 


 
(45) 

which means the larger the eigenvalue is, the more dominating eigenmode it is due to capturing 

more geometric variability in matDVF .  The total fraction of geometric variability   of L  most 

“principal” eigenmodes is  

1,2,..., ii L
 


  

(46) 

For each eigenvector, coefficients are found in a matrix Coeff 
( 1)DVF DVFN N  , which is the 

product of DVF T

rand 
3DVF voxN N  and EV 

3 ( 1)vox DVFN N  , 

1,1

1,

1,

(DVF ) ( )

   

DVF

T
irand

N

c

cCoeff EV

c




 





,1

,

, DVF

l

l i

l N

c

c

c

1

1

,1

,

1,

DVF

DVF

DVF DVF

N

N i

N N

c

c

c
















 
(47) 
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where i  and l  are the row and the column index of Coeff  corresponding to DVF ( )rand i  and 

( )EV l . Based on this finite data sample of eigenvector coefficients Coeff , a PDF for the l
th

 

eigenvector can be estimated by kernel density estimation (KDE) (Rosenblatt 1956, Parzen 

1962).   With a Gaussian kernel, each coefficient sample is made into a Gaussian, of SD,  .  

The PDF is a continuous function as a result of superposition (sum) of Gaussians of all the 

samples.  An example of a KDE-based PDF and the Gaussians of samples is given in Figure 28.  

For l
th

 eigenvector, the PDF lP  of random variable  t  ranging from a  to b  is represented as 

 
2

,

22

1

1
[ ]

2

i l
DVF

l

t c
N

l

iDVF l

P a t b e
N



 

 



  
 

  (48) 

where ,i lc  is the matrix Coeff  element in the i
th

 row and the l
th

 column in equation (47),  and 

the Gaussian SD l  is expressed as a rule of thumb equation (Silverman 1986)   

2

, ,

0.2

1
( )

1.06

1

DVF DVFN N

i l i l

i iDVF
l

DVF DVF

c c
N

N N
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With known eigenvectors and their PDFs of coefficients, a synthetic DVF, DVFsyn 
3 1voxN  , is  

DVF DVF ( )
L

syn syst l

l

c EV l    
(50) 

where lc  is the sampled coefficient for l
th

 eigenmode sampled from the PDF in the form of 

equation (48) based on rejection sampling.  To create a DVFsyn  that represent at least 90% overall 

geometric variability, L  is determined by 90%   (Figure 29 (a)) and consequently ranges from 

4 to 7 for 19 NKI patients (Figure 29 (b)).   Since the input DVF are calculated for bony-aligned 

anatomies on FBCT images, DVFsyn  in equation (50) represents the interfraction deformable 

motions relative to aligned bones.    
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 One concern of planning on a reference image of bony aligned anatomy is that large 

margin for CTVprostate is often required to account for prostate motion and deformation relative to 

bones.  To effectively reduce the fractional anatomical deformation, a reference image set of the 

average patient anatomy is preferred for planning.  However, this is unlikely to happen.  It is 

nearly impossible to find the patient in such a state for imaging, or it requires repetitive imaging 

prior to therapy which is not feasible in clinic.  With the development of IGRT, a prevalent 

 

Figure 28. An example of coefficient PDF (black thicker line) for l
th

 eigenvector based on KDE using 

Gaussian kernels of the coefficient data samples (dashed lines). (Modified from Douglas Vile, VCU 

graduate student) 

 

 

Figure 29. (a) The total fraction of geometric variability   as a function of top eigenmode number with 

90% threshold line to determine L . (b) Top eigenmode number L  used for PCA model for 19 patients. 
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image-guided technique provides alternative solution for more precise target localization — 

prostate centroid alignment.  This technique is clinically feasible and widely used since 

implanted gold markers or Calypso beacons are safe and reliable for tracking the centroid 

prostate on a fractional or even real-time basis.  Because of this, the deformable motion to be 

considered during treatment planning is reduced for the prostate.  As Figure 30 shows, in a 

CTVprostate-centroid-alignment based plan, the dosimetric degradation and variability due to 

deformable motion on CTVprostate is smaller than the bony-aligned plan and mean geometry-

based plan. This technique, however, does not necessarily reduce the dosimetric degradation or 

variability for CTVSV or OARs.   

To simulate deformable organ motions for treatment with CTVprostate-centroid-aligned, the 

bony-aligned DVFsyn  in equation (50) needs to be modified.  Let the vector element of DVFsyn  

represented by , , ,( , , ) where 1,2,...,syn i syn i syn i voxx y z i N  and denote synthetic , , ,, ,syn P syn P syn Px y z  as 

displacement vector of CTVprostate centroid.  The synthetic DVF for CTVprostate-centroid-aligned 

anatomies _DVFsyn Paligned 
3 1voxN   is   

,1 ,

,2 ,

, ,

,1 ,

,2 ,

_

, ,

,1 ,

,2 ,

, ,

...

DVF
...
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 To highlight the effect of small versus large random DVF variations on the dose coverage 

probability, the dosimetric effect of using original PCA modeled DVF ( _DVFsyn Paligned ) versus 5-

times magnified DVF ( _5DVFsyn Paligned ) is compared in Figure 31.  

 

Figure 30. A patient example of pDVH comparisons of zero PTV-margin plans planned (upper) on the 

CTVprostate centroid aligned anatomy (COM: thick lines) versus on the mean geometry (Mean: thin lines), 

and (lower) on the CTVprostate centroid aligned anatomy (COM: thick lines) versus bony aligned anatomy 

(Bony: thin lines).  pDVH is obtained from 1000 virtual treatment courses.  For target structures 

CTVprostate (red) and CTVSV (green), pDVH 95% is desired to lie upper or right to the objective values 

which are denoted by right triangle of corresponding color. For rectum (magenta) and bladder (orange), 

pDVH 5% is desired to lie lower or left to the objective values which are denoted as the right triangle of 

corresponding color. pDVH 95% and pDVH 5% are both plotted for each structure to examine the 90% 

confidence interval of DVH distribution with PCA model incorporated. 
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In the following COP study,  _DVFsyn Paligned  is utilized to simulate the synthetic ROI voxel 

offset under the influence of organ deformable motions. 

5.3 Decision flow to use COP 

With a constructed PCA model, prostate plans can be evaluated and optimized to account 

for the effects of interfraction deformable organ motion.  To investigate the clinical value of 

COP in terms of the resulting coverage probability and TCP/NTCP distribution, a treatment 

planning decision flow shown in Figure 32 was designed.  This decision flow exists to address 

two concerns: (1) COP may not be necessary when dosimetric effect of GUs is insignificant and 

(2) how to determine the clinical advantages of a COP plan relative to the PTV-based plans using 

empirically determined PTV margins and optimized PTV margins based on target coverage 

probability.   

 

Figure 31.  A patient example of pDVH 95%(solid) and pDVH 5% (dashed) of zero PTV-margin plans 

obtained from 1000 virtual treatment courses using 1 times (thick) versus (thin) 5 times magnitude of 

PCA-modeled synthetic DVF for a CTVprostate-centroid-aligned anatomy.   
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Figure 32 shows the flow used for each patient.  First, the dosimetric effect of PCA-

modeled deformable organ motion is evaluated for the CTVprostate-centroid-aligned daily 

fractions.  A zero-PTV-margin IMRT plan is created based on optimization criteria for PTV-

based plan in Table III (page 22) where PTV1 = CTVprostate and PTV2 = CTVSV.   By simulating 

1000
6

 virtual treatment courses (30 fractions per treatment course) with PCA model 

incorporated, the DVCM is constructed and the target dose-volume metric D98 at prescribed 

coverage probability 95% (D98,95) is computed for both CTVprostate and CTVSV.  Bladder and 

rectum are excluded in the zero-PTV-margin evaluation because they are assumed to be 

                                                 
6
 The analysis of accuracy and precision of ROI coverage estimated by 1000 virtual treatment courses has 

been presented in chapter 4, section 4.4. 

 

Figure 32. Decision flow of COP to optimize treatment plans to consider organ deformable motions for 

prostate cancer patients compared with optimized margin (OM) and fixed margin planning techniques. 
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maximally spared relative to the non-zero PTV or COP plans.  Denote 98,95,RxD  as the prescribed 

dose 78 Gy for CTVprostate and 66 Gy for CTVSV.  If D98,95  98,95,RxD  for both CTVprostate and 

CTVSV, the dosimetric effect of deformable organ motions for this patient will be regarded as 

insignificant since target coverage probability is resistant to anatomical variability.  Otherwise, 

replanning the plan to further improve target coverage probability is required.  In this case, COP, 

OM and FM are performed.  Here, FM utilizes fixed PTV margins for all the patients — 5 mm 

for CTVprostate and 8 mm for CTVSV based on a published work (Mutanga et al. 2011).  The best 

plan among COP, OM and FM plans is determined by comparing their coverage probabilities 

primarily. If the target coverage probabilities of these plans are very close, TCP/NTCP 

distributions are examined for a secondary comparison.  

5.4 Results 

5.4.1 Dosimetric effects on zero-PTV-margin plans 

The dosimetric effect of deformable organ motions reflected on the zero-PTV-margin 

plans for 19 patients with prostate-centroid alignment is not insignificant.  For the static plans 

which are motion-free, the dose-volume based optimization criteria are not difficult to be 

satisfied by a simple IMRT optimization.  For the non-static plans when deformable motions are 

considered and simulated in 1000 virtual treatment courses, the pDVH objective criteria for both 

CTVprostate and CTVSV are not easy to achieve.  The pDVH evaluation of each patient is shown in 

Figure 49, in Appendix I.a.  In Figure 33, the average pDVHs of 19 zero-PTV-margin plans are 

plotted.  Even with prostate centroid alignment, the mean CTVprostate D98,95 (red solid line) is still 

lower than prescribed value (red triangle marker).  Such dose degradation of CTVSV is even 

more severe.  For bladder and rectum, the pDVH 5% (orange and magenta dashed lines) 
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indicates some dose slack relative to OAR objective criteria can be exploited for margin 

expansion to improve target coverage probabilities, though a few rectal Dv,5 have reached their 

upper limit.  According to the 90% confidence interval of the DVH (the gap between pDVH 95% 

and 5%), DVH variability due to deformable motion for all ROIs are not large, probably due to 

the blurring nature of random motions around the mean positions modeled by PCA.   

 

 To determine the necessity of replanning using COP, OM or FM for each patient, the 

percentage dose degradation 98,95% D is calculated.   

98,95,Rx 98,95

98,95 98,95,Rx

98,95,Rx98,95

100%               ( )

0                                                    ( )

D D
D D

D% D

Else




 






  
(52) 

where 98,95,RxD  and 98,95D  represent prescribed and achieved 98D  at 95% coverage probability.  

The percentage DVH variability 98,5-95% DVH

 

achieved 98D  at 95% and 5% coverage 

probability is  

 

Figure 33. The average pDVHs 95% (solid) and pDVHs 5% (dashed) evaluated on zero-PTV-margin 

plans through 19 high-risk  prostate cancer patients for anatomies CTVprostate (prostate) (red), CTVSV 

(green), bladder (orange) and rectum (magenta) with optimization objectives (triangle markers). The 

PCA model is incorporated to show the dosimetric consequence of organ deformable motions. 
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98,5 98,95

98,5-95

98,5 98,95

100%
D D

% DVH
(D D ) / 2




 


 (53) 

Both 98,95% D
 
and

 98,5-95%ΔDVH  for 19 zero-PTV-margin plans are displayed in Figure 34.  

The 98,95% D
 
and

 98,5-95%ΔDVH

 

values are well correlated (Figure 35), with the correlation 

coefficients 0.86 for CTVprostate and 0.90 for CTVSV.   

 

On a patient-specific basis, the dosimetric effect of organ deformable motions is not 

insignificant: 0/19 patients satisfy the 98,95,RxD  objective for both CTVprostate and CTVSV as one or 

 

Figure 34. (a) Percentage degraded dose (%ΔD98,95) and (b) DVH variability (%ΔDVH98,5-95) at 

prescribed dose of CTVprostate (red bins) and CTVSV (green bins) for 19 zero-PTV-margin plans with 

organ deformable motions considered (using PCA model). 
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the other 98,95% D > 0%.  The 98,95% D
 
and

 98,5-95%ΔDVH

 

vary widely across the 19 patients.  

The range of 98,95% D  is 0.7-10.5% for CTVprostate and 0.0-28.3% for CTVSV. The range of 

98,5-95%ΔDVH  is 0.2-2.3% for CTVprostate and 1.4-16.3% for CTVSV. Based on these results, 

replanning using COP, OM or FM is required to achieve satisfactory 98,95D  for the patients.  In 

other words, margins or some other accommodation must be made to account for the dosimetric 

effects of deformable motions. 

 

 

5.4.2 COP plans vs. OM plans vs. FM plans  

Among the COP, OM, FM plans generated for each patient, either (12/19) OM plans or 

(7/19) COP plans are preferred, while the relative advantages between each other are patient 

specific. This comparison result is based on the achieved dose at specified coverage probabilities 

primarily and P+ (probability of complication free control) value secondarily.  As a single-

number substitute to represent complicated statistics of TCP/NTCP distribution, P+ is expressed 

as 

 

Figure 35. Scatter plot of percentage degraded dose (%ΔD98,95) versus DVH variability (%ΔDVH98,5-95) for 

(a) CTVprostate (red dots) and (b) CTVSV (green dots) on 19 zero-PTV-margin plans evaluated with PCA 

model incorporated for each patient. 
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     prostate rectum bladderP  E TCP   1  E NTCP   1  E NTCP         (54) 

where E[] signifies the mean (i.e., expectation) value from the 1000 treatment course 

simulations.  The details of dosimetric/biological metric comparison between COP, OM and FM 

are summarized in Table XI.  The pDVH comparison of each individual patient is shown in 

Figure 50 of Appendix I.b. 

Table XI. Patient ID, percentage target dose degradation %ΔD98,95 for CTVprostate (P) and CTVSV (S), the 

optimized PTV margins obtained by OM technique, and best planning technique and its gain relative to the 

other two plans in terms of target dose coverage(D98,95) , normal tissue coverage (Dv,5) and probability of 

complication free control P+. ID with */ † / ‡ denotes COP / OM / FM plan that fails to achieve target D98,95 

ID %ΔD98,95(%) OM PTV (mm) best plan  Gain relative to the other plans 

A* P: 4.9     S: 14.5 P: 2     S: 8 OM   COP (target D98,95)   FM (+6.5% P+) 

B*†‡ P: 5.8     S: 6.4 P: 10   S: 5 OM  COP (target D98,95)   FM (target D98,95) 

C* P: 5.3     S: 1.3 P: 5     S: 3 OM   COP (target D98,95)   FM (+2.8% P+) 

D*‡ P: 7.7     S: 14.4 P: 5     S: 3 OM    COP (target D98,95)   FM (target D98,95) 

E* P: 1.3     S: 8.5 P: 2     S: 6 OM   COP (target D98,95)   FM (+11.9% P+) 

F* P: 0.8     S: 8.5 P: 1     S: 3 OM   COP (target D98,95)   FM (+21.5% P+) 

G P: 2.2     S: 0.0 P: 2     S: 0 COP  OM  (OAR, Dv,5) FM (+4.2% P+) 

H* P: 1.7     S: 0.0 P: 4     S: 3 OM   COP (target D98,95)   FM (+0.9% P+) 

I*†‡ P: 2.9     S: 16.9 P: 6     S: 18 OM   COP (target D98,95)   FM (target D98,95) 

J*†‡ P: 11.1   S: 24.7 P: 7     S: 15 COP  OM (target D98,95)   FM (target D98,95) 

K‡ P: 9.5     S: 0.0 P: 9     S: 0 COP  OM  (+5.9% P+) FM (target D98,95) 

L†‡ P: 7.5     S: 9.8 P: 9     S: 5 COP  OM  (target D98,95) FM (target D98,95) 

M P: 2.7     S: 31.4 P: 5     S: 4 OM COP (+2% P+) FM (+3.1% P+) 

N P: 0.8     S: 32.9 P: 4     S: 8 OM   COP (OAR, Dv,5)   FM (+3.3% P+) 

O* P: 0.8     S: 0.0 P: 1     S: 0 OM   COP (target D98,95)   FM (+22.8% P+) 

P‡ P: 2.4     S: 0.0 P: 2     S: 2 COP  OM  (+ 1.7% P+) FM (target D98,95) 

Q* P: 3.1     S: 24.8 P: 3     S: 5 OM   COP (target D98,95)   FM (+9.5% P+) 

R*†‡ P: 2.6     S: 4.6 P: 4     S: 4 COP  OM  (target D98,95) FM (target D98,95) 

S P: 0.7     S: 0.0 P: 2     S: 0 COP  OM  (OAR, Dv,5) FM (+6.4% P+) 

  

For the 7 best COP plans and the 12 best OM plans, the clinical benefit with respect to 

the other plans is patient-specific, and is due to either target coverage or OAR sparing.  Relative 

to FM plans, 5/7 COP plans and 3/12 OM plans improve target D98,95 value, and 2/7 COP and 

9/12 OM plans achieve better OAR sparing.  When COP and OM compete with each other, 3/7 
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COP plans versus 10/12 OM plans have better target D98,95 values.  4/7 COP plans versus 2/12 

OM plans reduce more OAR dose.    

As to the primary plan comparison metric coverage probabilities, 7/19 COP plans, 14/19 

OM plans and 11/19 FM plans meet the optimization criteria of target coverage probability 

D98,95. COP is most likely to fail the prescribed D98,95 because the target dosimetric margins are 

constrained by the bladder and rectum, whose dose tolerance is often pursued in the expense of 

degrading the target dose.  After COP optimization using the pre-selected objective weights, the 

target D98,95 is sometimes compromised at some level below 98,95,RxD  to minimizes the composite 

objective value (equation (2)) when the OAR Dv,5 terms are non-zero.  The %ΔD98,95 of a COP 

plan is mostly within 1% but can be up to 4.1% for CTVprostate and 9.3% for CTVSV.  The 

relatively poorer target coverage probability is also reflected in the planning results using 

COPOM, which generates COP plans starting from OM plans.  In Table XII, the originally 

satisfied target D98,95 values in 7 of 14 OM plans end up below 98,95,RxD  after COPOM 

optimization.  About half of 19 COPOM plans further spare bladder and rectum with a P+ gain up 

to 9.8%.          

Table XII.  Good, moderate and bad changes resulting from COPOM relative to OM  

Changes Target OAR 

Good Push D98,95 up to 
98,95,RxD  : 0/5 Satisfy more Dv,5 criteria: 8/19 

P+ gain: 9/19 

Moderate D98,95 remains 
98,95,RxD : 8/14 

D98,95 remains below 
98,95,RxD : 5/5 

Minor change in Dv,5 criteria: 4/19 

Bad Degrade the achieved D98,95 : 6/14 Violate more Dv,5 criteria: 7/19 

P+ loss: 10/19 
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 It seems surprising that 5/19 OM plans (for patient ID with † in Table XI) failed to 

achieve target D98,95 criteria as the termination condition of OM iteration (Figure 20 on page 61)  

should ensure target 98,95 98,95,RxD D . However, the result is reasonable as the large OM PTV 

margins result in larger overlap volume of the PTV and bladder/rectum and consequently a tough 

tradeoff needs to be balanced between these structures.  Figure 36 shows the tendency of the 

competing target and OAR dose at each prescribed coverage probability using different PTV 

margins.  Due to this challenge, increasing uniform PTV margins is not the universal solution to 

ensure target coverage probability.  

  

 

Figure 36. An example of increasing competition between target and OAR criteria with increasing PTV 

margins during OM optimization.  The target prescribed dose or the OAR tolerance dose is highlighted 

in the same color as the achieved dose curve for each ROI criterion. 
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In FM plans, the fixed PTV margins — 5 mm and 8 mm selected for CTVprostate and 

CTVSV — fails to achieve target 98,95,RxD for 8/19 cases.  This failure is caused by the sub-

optimal margin size without considering patient-specific response to GUs.  To avoid undesirable 

target coverage probability or excessive OAR dose, a patient-specific margin is required to 

customize individualized characteristics of patient anatomy, deformable organ motions, plan 

quality, and etc. 

On a population basis, COP and OM plans are comparable and both are better than FM 

plans.  As the average pDVH 95% for CTVprostate, CTVSV and average pDVH 5% for bladder, 

rectum shown in Figure 37, COP spares more rectal dose while OM spares more bladder dose 

relative to FM.  The average P+ gain of COP and OM relative to FM is 1.1% and 3.1%, 

respectively.  This concludes that for the high-risk prostate cancer patients with prostate centroid 

aligned, using the pre-selected objective weights from this study, the benefit of COP in treatment 

planning is limited when patient-specific coverage-based uniform PTV margins can be 

determined (via OM).  Uniform PTV margins iteratively optimized from 0 during OM 

optimization are preferred over COP since COP fails to achieve target coverage probability due 

to the concern of OAR coverage probability for deformable organ motions.  The bottleneck of 

COP relative to OM may be overcome by more advanced IGRT strategies.  These strategies 

effectively reduce the time scale, magnitude and effect of deformable organ motions be 

accounted for during treatment planning (Jaffray 2007, Bujold et al. 2012), thereby allowing 

smaller target margins, geometrically (PTV margins) or dosimetrically (DMs), to achieve 

desirable target coverage probability and OAR sparing.   
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Figure 37. For a population-based comparison, the average pDVHs of (upper) COP vs. OM plans and 

(lower) COP vs. FM plans to account for deformable motions.  For target structures CTVprostate and CTVSV, 

pDVH 95% are the lower bound of target dose-volume metrics.  For OAR structures bladder and rectum, 

pDVH 5% are the upper bound of OAR dose-volume metrics.   
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5.5 Conclusions 

  This chapter explores of dosimetric effect of patient-specific deformable organ motions 

(via a PCA model) on 19 patients with prostate-centroid aligned throughout the treatment course 

and describe the implementation of COP with the PCA model incorporated.  For the purpose of 

evaluating the clinical benefit of COP, the PCA model is also incorporated into plan evaluation 

and OM technique for parallel planning comparison.   

The dosimetric effect of deformable organ motions on 19 zero-PTV-margin plans are not 

insignificant, so treatment replanning using COP, OM and FM techniques is performed.  

Compared with FM technique that uses empirical fixed PTV margins for each patient, COP or 

OM techniques result in either better achieved target dose coverage or less toxicity of normal 

tissues because of using coverage-probability metrics as optimization criteria.  The relative 

advantage between COP and OM are patient-specific. For some patients, COP has limited 

clinical benefit relative to OM due to poorly selected objective weights and consequently 

compromised target coverage probability in the presence of deformable organ motions.  The 

bottleneck of COP may be compensated in a more advanced clinical scenario where deformable 

organ motions are effectively reduced.   
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6 COP to account for delineation uncertainties  

As the “weakest link” of GUs (Njeh 2008), delineation (contouring) uncertainties can 

have a large impact on target coverage probabilities and protection of surrounding OAR for 

prostate cancer patients.  Though site and application-specific, systematic tumor delineation 

errors cause an offset from the true target to be hit for treatment (van Herk 2004).  Such effect 

persists during the treatment course of radiation therapy and is “for some tumor locations 

probability the largest factor contributing to geometric inaccuracy” (Weiss and Hess 2003).  

Therefore, potential delineation uncertainties should be considered adequately during treatment 

planning.  However, this is challenging (Njeh 2008) since the magnitude of delineation 

uncertainties depends on many complicated factors including image quality and delineator’s 

expertise, training experience and subjective preference.  

COP is potentially very useful to account for delineation uncertainties for prostate cancer 

patients.  It is still ambiguous whether delineation uncertainties can be reduced by advanced 

techniques such as IGRT (Njeh et al. 2013).  The components of safety margins for target 

volumes can be reduced based on improved patient setup and organ variability information 

provided by IGRT, but it is inappropriate to overly reduce margins without considering 

delineation uncertainties.  The residual errors and probabilities involved in delineation 

uncertainties can be compensated by using COP.     
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This chapter focuses on the implementation of COP for prostate cancer treatment in the 

presence of simulated delineation uncertainties.  The so-called delineation uncertainties are 

referring to the difference in voxel locations between the true ROI and the delineated ROI.  Like 

chapter 5, an introduction of prostate plans and GU model for delineation uncertainties is given 

first in the section 6.1 and 6.2.  Then the dosimetric effect of delineation uncertainties and 

treatment plans using COP and OM, FM techniques will be investigated in the section 6.3 and 

6.4. 

6.1 Prostate plans 

The NKI patient database has been described in detail in section 4.1 and 5.1.  Same 

reference image sets used in chapter 5 are used per patient.  Delineation accuracy is limited by 

the CT image resolution is 0.094   0.094   3 mm
3
.  The dose grid is 2  2  2 mm

3
 for both plan 

evaluation and optimization.   

With a delineated ROI contour used for treatment planning, delineation uncertainties are 

modeled to predict their dosimetric and biologic metric consequences to the possible true ROI in 

a virtual treatment course simulation.  Here, an average-surface-of-standard-deviation (ASSD) 

model is constructed to simulate the delineation uncertainties involved in EBRT for high-risk 

prostate cancer.  

6.1.1 ASSD model 

Inspired by a population-based model of surface segmentation uncertainties for 

uncertainty-weighted deformable image registrations (Wu et al. 2010b), the ASSD model is 

developed to represent the delineation uncertainties involved in a treatment course.  By using 
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ASSD, the true ROI volume (with no delineation uncertainties) can be estimated based on the 

delineated ROI location on the reference image set of patient database. 

The idea of ASSD model is described as follows.  In the eye of the tumor, the effect of 

delineation uncertainties is very similar to organ motion and setup errors — to introduce 

displacement of ROI voxels.  The difference between these GUs in terms of voxel displacement 

is the voxel-to-voxel distance after displacement. This distance is the same for setup errors, 

magnified/demagnified equidistantly for the delineation uncertainties to be modeled here and 

non-equidistantly for organ deformable motion.  Assume that the possible true ROI surface can 

be estimated by expanding or contracting the delineated surface.  (The expansion or contraction 

corresponds to conservative or aggressive delineators who tend to delineate larger or smaller 

ROI contours.)  The magnitude of delineation uncertainties for each voxel is scaled by a voxel-

specific delineated-to-true-location displacement vector, in analogy of the vector in the DVF 

used for the PCA model.  This displacement vector for an ROI surface voxel is assumed as a 

function of a population-based Gaussian distribution and an individualized variable quantified by 

the image intensity gradient on the location of this voxel.   The mean of Gaussian distribution is 

zero because the delineated ROI surface is assumed to be the best available estimate of the 

average of the possible true ROI surfaces.  The SD values of the Gaussian distribution in right-

left (RL), posterior-anterior (PA) and superior-interior (SI) are determined empirically based on 

literature in Table XIII.  The image intensity gradient, or CT gradient in this study, determines 

the voxel-specific component of delineation uncertainties caused by different image contrast.  

Lower gradient (= poor image contrast) is associated with a larger displacement vector.  After the 

delineated-to-true-location displacement vectors of the ROI surface voxels are known, the 

displacement vectors for an ROI interior voxel is determined by a simple interpolation algorithm 
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between two nearest surface voxels to this voxel so that all ROI voxels are deformed in an 

equispaced way.   

Table XIII: SD values in (mm) of in RL (x), PA (y) and SI (z) direction used in ASSD model for ROIs of 

prostate cancer patients 

ROI xSD  ySD  
zSD  reference 

CTVprostate 1.7  2  2.5 (van Herk 2004) 

CTVSV 1.7 2  3 (Fiorino et al. 1998)  

(Rasch, Steenbakkers, and Van Herk 2005) 

bladder 0.7 0.7 3  (Weiss et al. 2010) 

rectum 1.3 1.3 3  (Weiss et al. 2010) 

 

  

 

 

Figure 38. Flow of ASSD model to get voxel displacement due to delineation uncertainties.  See text for details. 
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The detailed workflow of ASSD model is shown in Figure 38.  Mathematically, the 

displacement vector DT  from a delineated (D) to true (T) ROI for a voxel is written as  

( , , )x y zDT DT DTDT  
(55) 

where , ,x y zDT DT DT  are RL( x ), PA( y ), SI( z ) components of DT .  Use r  to represent 

,  or x y z  direction generally, then each component of DT  is generalized as rDT .  For the ROI 

voxel with index i , ,( )r i kDT  of treatment course k  is assumed to be a function of factors of thw 

Gaussian SD ,( )CT r kF and the CT gradient ,( )SD r iF  in the r  direction  

, , ,( ) ( ) ( )r i k SD r k CT r iDT F F   (56) 

,( )SD r kF  varies with the treatment course as 

 ,( ) norminv ( ) ,0,SD r k Rand k rF p SD  (57) 

where norminv()  is an inverse standard normal cumulative density function (CDF). ( )Rand kp  is a 

random probability sampled for the treatment course k .  0 and rSD  are the Gaussian mean and 

the SD in r  direction.  (As mentioned before, the rSD  values of each ROI used in ASSD model 

is listed in Table XIII.)  If voxel i  is a surface voxel of ROI, its CT-gradient dependent 

factor ,( )CT r iF  is written as 

,

,

( )
| ( ) |

CT r i

CT r i

a
F

grad a



 

(58) 

where ,( )CT r igrad  is the CT number gradient of voxel i  in r  component, | | denotes its absolute 

value, and a  is a normalization factor used to ensure that ,( )CT r iF  ranges from 0 to 1 (Figure 39).  
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For all the patients, a = 50 is arbitrarily used here.  The voxel-specific ,( )CT r igrad  is obtained 

from equation 

, , , ,

,( )
2

r i r i r i r i

CT r i

i i r

CT CT CT CT
grad

r r VoxelSize

   

 

 
 

 
 

(59) 

which is the ratio of CT number difference ( , ,r i r iCT CT  ) and position difference (
i ir r  ) of 

neighboring voxels in positive (+) and (negative (-) side of voxel i  in r  direction.  (
i ir r  ) is 

equivalent to 2 times the voxel size in the r  direction.   When voxel i  is an interior voxel, its 

CT-gradient dependent factor ,( )CT r iF  is interpolated from its two nearest surface voxels, 

_i surf   and _i surf  , in the positive and the negative r  direction. 

, _ , _

, , _ _

_ _

(( ) ( ) )
( ) ( ) + ( )

CT r i surf CT r i surf

CT r i CT r i surf i i surf

i surf i surf

F F
F F r r

r r

 

 

 


  


 

(60) 

An illustration of CTF -dependent vectors on a transverse slice of rectum is shown in Figure 40.  

The different dosimetric effects of delineation uncertainties simulated using CTF -dependent 

versus CTF -independent vectors (with CTF =1 as a result of a ~ ) are reflected in the different 

pDVHs (Figure 41). 

 

 

Figure 39.  FCT as a function of CT gradient when different parameter a is used. 
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Figure 40.  CT image slice in transverse plane for rectum (magenta contour) and corresponding FCT 

vectors, using a=50. 

 

Figure 41.  A patient example of pDVH 95% and 5% using ASSD model using CT-gradient factor: 

(thick lines) FCT calculated using a = 50 versus (thin lines) FCT  = 1 when a is very large.  
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6.2 Decision flow to use COP 

With an ASSD model, a prostate plan can be evaluated and optimized to account for 

effects of the delineation uncertainties.  Like the COP study for deformable organ motions in 

chapter 5, a treatment planning decision flow (in Figure 32, page 84) is also used here.  This 

decision flow is for two concerns: (1) COP may be not essential when dosimetric effect of GUs 

is insignificant and (2) how clinically advantageous a COP plan is relative to the PTV-based 

plans using empirically determined PTV (FM) and optimized PTV based on target coverage 

probability (OM).     

The first concern is investigated by calculating the target dose-volume D98 at prescribed 

coverage probability 95% (D98,95) on a zero-PTV margin IMRT plan with ASSD model 

incorporated.  Denote RxD  as the prescribed dose 78 Gy for prostate and 66 Gy for seminal 

vesicles.  By simulating 1000 virtual treatment courses, D98,95 is compared with D98,95,Rx to 

determine whether dosimetric effect of modeled delineation uncertainties is insignificant (i.e., 

D98,95   D98,95,Rx).  The second concern is researched by optimizing the prostate plans using 

COP, OM, FM techniques (whose workflows are shown in Figure 19, page 60).  The best plan 

among COP, OM and FM plans is determined by comparing their coverage probabilities and P+ 

values in the presence of modeled delineation uncertainties.  

The PTV margins used in the FM plans to account for delineation uncertainties are 

different as noted in Figure 19.  Here, PTV margins are based on van Herk margin formula 

(VHMF): a PTV margin is equivalent to 2.5 SD of systematic errors plus 0.7 SD of random 

errors. As delineation uncertainties introduce systematic errors only, the PTV margins rM  in 

direction r  for CTVprostate and CTVSV are simply expressed as  
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2.5r rM SD   (61) 

where 
rSD  values are listed in Table XIII.  Accordingly, PTV margins in RL, PA, SI directions 

are 4, 5, 6 mm for CTVprostate and 4, 5, 7 mm CTVSV. (The precision of margin setting in 

Pinnacle
3
 is mm.) Therefore, FM uses fixed but non-uniform PTV margins while OM still 

optimizes uniform PTV margins based on target coverage probability. 

6.3 Results 

6.3.1 Dosimetric effects on zero-PTV-margin plans 

The dosimetric impact of delineation uncertainties modeled by ASSD model is non-

negligible on target coverage probability for zero-PTV-margin IMRT plans.  Therefore, 

replanning using COP, OM or FM is determined as needed to achieve better target coverage 

probability.  In Figure 42, with 1000 virtual treatment courses simulated, 0/19 zero-PTV-margin 

plans achieves RxD  for both the CTVprostate and the CTVSV.  The resulting dose degradation 

98,95% D  calculated based on equation (52) ranges from 3.2-12.2% for CTVprostate and 0-12.9% 

for CTVSV.  The consequential 98,5-95% DVH  is 2.9-13.6% for CTVprostate and 3.8-13.8% for 

CTVSV.  The 98,95% D  and 98,5-95% DVH

 

values are well correlated (Figure 43) with high 

correlation coefficients 0.96 for CTVprostate and 0.83 for CTVSV.  
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Figure 43. Scatter plot of percentage degraded dose (%ΔD98,95) versus DVH variability (%ΔDVH98,5-95) for 

(a) CTVprostate (red dots) and (b) CTVSV (green dots) on 19 zero-PTV-margin plans evaluated with ASSD 

model incorporated for each patient. 

 

 

Figure 42. (a) Percentage degraded dose (%ΔD98,95) and (b) DVH variability (%ΔDVH98,5-95) at prescribed 

dose of CTVprostate (red bins) and CTVSV (green bins) for 19 zero-PTV-margin plans with delineation 

uncertainties considered (using ASSD model). 
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The evaluation of zero-PTV-margin plans shows the potential benefit in target coverage 

probability by using COP, OM or FM technique.  The individual patient pDVH evaluation 

results are shown in Figure 51 of Appendix I.c.  Based on the average pDVHs shown in Figure 44, 

the average impact of delineation uncertainties on OAR volumes are smaller than target volumes.  

The Dv,5 criteria are mostly satisfied for OAR volumes.  The slack between Dv,5 values and their 

objective values, large for bladder and small for rectum, provides room to be exploited for the 

increase of target coverage probability.   

    

6.3.2 COP plans vs. OM plans vs. FM plans 

Among the COP, OM, FM plans generated for each patient, either (11/19) OM plan or 

(8/19) COP plans are preferred, as Table XIV shows.  For the 8 preferred COP plans and the 11 

 

Figure 44.  The average pDVHs 95% (solid) and pDVHs 5% (dashed) evaluated on zero-PTV-margin 

plans for 19 high-risk  prostate cancer patients for anatomies CTVprostate (prostate) (red), CTVSV 

(green), bladder (orange) and rectum (magenta) with optimization objectives (triangle markers). The 

ASSD model is incorporated to show the dosimetric consequence of delineation uncertainties for 

prostate cancer patients. 
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best OM plans, the clinical benefit relative to FM plans are mostly in OAR sparing: 2/8 COP 

plans and 3/11 OM plans improve target D98,95 value while 6/8 COP and 8/11 OM plans achieve 

better OAR sparing.  When COP and OM compete with each other, COP is more likely to 

compromise the target D98,95 value as a result of balancing the weighted OAR objectives.  Only 

2/8 COP plans (in contrast of 9/11 OM plans) have better target coverage probability while 6/8 

COP plans (compared with 2/11 OM plans) gain P+ values.  The relative advantages between 

three plans are patient-specific.  The pDVH comparison of each individual patient is shown in 

Figure 52 of Appendix I.d. 

Table XIV . Patient ID, percentage target dose degradation %ΔD98,95 for prostate (P) and seminal vesicles (S), 

the optimized PTV margins obtained by OM technique, and best planning technique and its gain relative to 

the other two plans in terms of target dose coverage(D98,95) and probability of complication free control P+. 

Patient with */ † / ‡ are those COP / OM / FM plans that fails to achieve target D98,95 

ID %ΔD98,95(%) OM PTV (mm) best plan  Gain relative to the other plans 

A* P: 7.4     S:12.9  P: 3     S: 2 OM   COP (target D98,95)   FM (+6.4% P+) 

B†‡ P: 4.1     S:7.1 P: 5     S: 2 COP  OM  (target D98,95)   FM (target D98,95) 

C P: 7.9     S: 5.8 P: 4     S: 3 COP   OM  (+4.8% P+)   FM (+9.2% P+) 

D*‡ P: 7.9     S: 10.0 P: 3     S: 2 OM    COP (target D98,95)   FM (target D98,95) 

E P: 4.9     S: 4.2 P: 3     S: 2 OM   COP (+1% P+)   FM (+7.1% P+) 

F* P: 3.2     S: 0.0 P: 2     S: 2 OM   COP (target D98,95)   FM (+19.6% P+) 

G* P: 4.2     S: 0.0 P: 3     S: 0 OM  COP (target D98,95)   FM (+10.8% P+) 

H P: 6.7     S: 0.0 P: 3     S: 2 COP  OM  (+6.5% P+)   FM (+12.6% P+) 

I*‡ P: 12.2   S: 3.6 P: 5     S: 2 OM  COP (target D98,95)   FM (target D98,95)  

J* P: 6.8     S: 4.3 P: 5     S: 2 OM  COP (target D98,95)   FM (+1.9% P+) 

K* P: 6.8     S: 3.3 P: 3     S: 3 OM  COP (target D98,95) FM (+7.9% P+) 

L*†‡ P: 5.4     S: 9.2 P: 5     S: 2 COP  OM  (target D98,95) FM (target D98,95) 

M P: 5.8     S: 4.7 P: 5     S: 2 COP OM  (+13.4 P+) FM (+14.4% P+) 

N P: 8.0     S: 3.6 P: 3     S: 2 COP   OM  (+5.0 P+) FM (+16.1% P+) 

O P: 4.2     S: 2.3 P: 4     S: 3 COP   OM  (+5.7% P+)   FM (+8.6% P+) 

P P: 4.7     S: 4.0 P: 3     S: 2 COP  OM  (+7.0% P+) FM (+16.4% P+) 

Q P: 3.8     S: 5.4 P: 3     S: 2 OM   COP (+0.2% P+)   FM (+10.4% P+) 

R*‡ P: 6.0     S: 3.6 P: 5     S: 4 OM  COP (target D98,95) FM (target D98,95) 

S* P: 3.4     S: 2.8 P: 2     S: 2 OM  COP (target D98,95) FM (+5.8% P+) 

 

As to the target coverage probabilities, 9/19 COP plans, 17/19 OM plans and 14/19 FM 

plans meet the optimization criteria at D98,95,Rx, but the dose degradation %ΔD98,95 values for 

CTVprostate and CTVSV are small.  For the CTVprostate of COP plans, the maximum %ΔD98,95 is less 
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than 3% and %ΔD98,95 of 7/10 COP plans is smaller than 0.3%.  For CTVSV, only 2/10 COP 

plans fail to achieve the prescribed D98,95.  For 2/19 OM plans with a degraded target D98,95, one 

has CTVprostate  %ΔD98,95  = 0.3% and the other has CTVSV  %ΔD98,95  = 0.8%.  For FM plans 

using VHMF-based margins, CTVprostate D98,95 fails to meet the criterion in 5/19 plans, with  

%ΔD98,95  less than 0.9% , while CTVSV D98,95 on all FM plans is larger than D98,95,Rx. 

 For CTVprostate, the VHMF-based margin does not guarantee that 90% (here, > 17/19) of 

patients in the population receive a minimum cumulative CTV dose of at least the prescribed 

dose at 95% coverage probability. 

On a population-based comparison between COP, OM and FM plans in Figure 45, COP 

maximally satisfies bladder and rectum 5% coverage probability-based limits while ensuring 

target coverage probability comparable to plans using OM and FM.  The comparable target 

coverage probability is achieved by taking advantages of OAR Dv,5 slack in lower dose region 

(e.g., <65 Gy for bladder and <45 Gy for rectum).  Therefore, the target dose at prescribed 

coverage that is compromised in the high dose region of an OAR is reasonably increased in the 

low dose region within the OAR tolerance.  As to PTV margin-based planning, OM is better than 

FM in terms of sparing more bladder and rectal dose and achieving more desirable target 

coverage probability.  The fixed PTV margin based on van Herk formula is often oversized for 

CTVSV and suboptimal for CTVprostate, which causes excessive dose delivered to OARs, as 

indicated by higher Dv,5 values of FM plans in the high dose region (e.g., > 70 Gy) .  To sum up 

these results, even in the simplest uniform style, the patient-specific margins optimized using 

OM are helpful to create more robust plans than those developed with VHMF-based margins.  

Relative to the OM-based margins, the dosimetric margins generated by COP can further reduce 
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excessive OAR dose in the high dose region to efficiently achieving acceptable target coverage 

probability.   

 

 

 

 

Figure 45. For a population-based comparison, the average PDVHs of (upper) COP vs. OM plans and 

(lower) OM vs. FM plans to account for delineation uncertainties. For target structures CTVprostate and 

CTVSV, pDVH are of 95% to show the lower bound of target dose-volume metric values of 95% chances.  

For OAR structures bladder and rectum, pDVH are of 5% to show the upper bound of OAR dose-volume 

metric values of 95% chances.   
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6.4 Conclusions 

This chapter described the dosimetric effect of patient-specific delineation uncertainties 

(via an ASSD model) on 19 patients and the implementation of COP with the ASSD model 

incorporated.  For the purpose of evaluating the clinical benefit of COP, the ASSD model is also 

incorporated into plan evaluation and OM technique for planning comparison.   

The dosimetric effect of delineation uncertainties on 19 zero-PTV-margin plans are not 

insignificant, so the treatment replanning using COP, OM and FM techniques is performed. 

Compared with FM technique that uses empirical fixed PTV margins for each patient, COP or 

OM techniques result in either better achieved target dose coverage or less toxicity of normal 

tissues because of using coverage-probability metrics as optimization criteria.  The relative 

advantage between COP and OM are patient-specific. In general, COP shows a clinical benefit 

relative to OM in efficiently reducing excessive OAR dose in the high dose region while 

maintaining acceptable target coverage probability.   
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7 Discussion, conclusions and future directions 

This chapter serves a summary of the clinical value of COP in terms of multi-fractional 

EBRT treatment for high-risk prostate cancer (7.1) and future directions to further extend usage 

of COP, especially for clinical application (7.2).   

7.1 Discussion and Conclusions of COP studies 

7.1.1 Discussion   

For multi-fractional EBRT treatment of high-risk prostate cancer, COP has been studied 

to account for two GUs, deformable organ motions (chapter 5) and delineation uncertainties 

(chapter 6), respectively.  Because of the non-negligible dosimetric consequences, each of the 

two GUs has been modeled and incorporated into the probabilistic optimization/evaluation 

process to perform/compare treatment techniques — COP and two margin-based treatment 

planning techniques, OM and FM.  The results show that the beneficial dosimetric consequences 

gained from COP is limited for deformable motions but promising for delineation uncertianties. 

The goal of COP, OM and FM is to achieve a desirable treatment outcome by creating a 

treatment plan dose distribution that can absorb ROI GUs through the whole treatment course.  

COP directly optimizes the dose distribution based on the dosimetric margin incorporating GU 

models evaluated in possible virtual treatment courses, while both OM and FM are based on a 

pre-defined surrogate volume PTV.  PTV size in FM is empirally determined and in OM is 
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optimized based on target coverage probabiltiy.  FM represents the conventional clinical method 

which is convenient to be practiced clinically but faces a fundamental problem of how to 

determine the optimal PTV margins tailored to each patient’s characteristics.   OM represents a 

simple form of coverage-probability based treatment planning to optimize patient-specific PTV 

margins.  The optimized PTV margins are uniform, without being shaved for OARs.  OM and 

FM are “lower-level” treatment planning techiniques compared with COP and are designed to 

determine the relative benefit and cost of COP.  The monitor unit perfraction after plan 

optimization using COP, OM or FM techinqiue when accomodating deformable motions or 

delineation uncertainties is listed in Table XV.  Larger number indicate an increased number of 

segments neededfor delivery.  In most cases, OM plan is least complex among the three. 

 Table XV. Monitor unit per fraction for COP, OM or FM plan for patients with ID A to S when 

accommodating deformable motions (modeled by PCA) or delineation uncertainties (modeled by ASSD). 

 
w/ PCA w/ ASSD 

ID COP OM FM COP OM FM 

A 483 422 444 572 412 444 

B 448 580 536 662 524 550 

C 636 594 631 601 559 629 

D 531 491 515 552 473 505 

E 489 487 503 589 458 500 

F 401 376 417 442 379 459 

G 406 385 430 401 386 412 

H 361 398 464 400 377 421 

I 440 746 476 477 449 460 

J 537 563 501 498 481 503 

K 478 637 634 544 524 600 

L 565 537 579 559 534 508 

M 555 500 592 601 489 500 

N 541 485 515 461 442 505 

O 434 398 480 441 442 448 

P 441 421 503 451 435 441 

Q 552 537 579 600 503 577 

R 476 505 587 567 536 543 

S 405 410 445 417 404 432 
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It is inappropriate to state for granted that OM and FM are a subset of COP as 

implemented in this dissertation.  The dose distribution of COP can be very different from OM 

and FM.  As Figure 46 shows, the 0 Gy isodose difference surface between OM and FM plans 

are around CTVprostate volume while this is not the case for the dose distribution difference 

between COP and FM plans.  In this example, COP tends to increase dose to the non-OAR 

region adjacent to the target to ensure target coverage and OAR sparing.  The biggest difference 

between OM, FM and COP is that COP considers coverage probaiblity for both the CTVs and 

the OARs during optimization, while the PTV margin sizes in OM and FM techniques are 

determined without considering the OAR criteria.  The modification of the DM during COP 

optimization is constrained by the OAR probablistic critera while PTV in OM can be 

continuously enlarged to meet the target coverage constraint.  It is very normal that the DMs of 

COP can only be expanded within a limited range due to the competing target and OAR 

objectives.  (One example is illustrated in Figure 47, where COP result in smaller DM between 

CTVprostate and TV 78Gy in the region of bladder.) Starting from a zero-PTV-margin plan where 

no PTV-OAR-overlapping volume is involved, COP may face the dilemma that how to expand 

dosimetric margins for the low target D98,95 in the presence of some high OAR Dv,5 values.  (See 

rectal pDVH 5% and CTVprostate or CTVSV pDVH 95% in Figure 33 on page 86 and Figure 44 on 

page 105).   As a result, to spare more OAR dose,  COP often has to compromise a certain level 

of target coverage probability in order to minimize the composite objective value.  This is why 

CTVprostate or CTVSV in COP often fails the D98,95,Rx criteria after balancing the conflicts of CTV 

and OAR coverage.  In contrast, thanks to the large range of PTV margin size in OM and FM, 

target D98,95,Rx of OM and FM plans are much easier to achieve.  As long as no tough 
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competition between PTV and OAR involved (illustrated in Figure 36, page 91), the target 

D98,95 ≥ D98,95,Rx as a result of resonably large PTV margins is possible.  

 

 

Figure 46. The dose distribution difference as COP minus FM (left column) and OM minus FM (right 

column) in SI, RL and PA slice for patient S when deformable motions are accommodated. ROIs 

displayed as colorwash are CTVprostate (red), CTVSV (green), bladder (yellow) and rectum (magenta). The 

dose distribution around CTVprostate in COP plan is quite different from that on OM and FM plans.  
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 When treatment for a high-risk prostate cancer patient is planned, it is inadequate to use 

empirical PTV margins without considering the patient-specific response to coverage 

probability.  This has been proved for setup errors (Gordon et al. 2007, Gordon and Siebers 

2009, Xu et al. 2011).  The intrafraction motions can be excluded due to their insignificant 

dosimetric effect. (Langen et al. 2012)  For interfraction deformable motion and delineation 

uncertainties in this dissertation, the PTV margins determined by a published work (Mutanga et 

al. 2011) or VHMF fail to generate desirable plans that are immune to the influence of GUs.   

Coverage probability is a useful metric for treatment plan optimization.  In general, the 

planning techinques that considers coverage probability (COP or OM) are more beneficial to 

account for GUs than FM.  For setup errors, the advantages of COP and OM relative to VHMF-

based FM have been investigated via two published works. (Gordon and Siebers 2009, Gordon 

et al. 2010)  The improved target dose and/or reduced OAR dose at specified coverage 

probability were pronouced compared with the corresponding VHMF-FM plans for 

intermiediate-risk prostate cancer patients.  Using OM for translation setup errors following 

Gaussian distribution with systematic and random SD 2 mm,  the total volume of normal tissue 

   

Figure 47. Dose distribution of COP versus OM versus FM plans on one slice for patient H when 

delineation uncertainties are considered. The thick isodose surface are TVs for of 78Gy (seashell) for 

CTVprostate (red colorwash) and of 66Gy (aquamarine) for CTVSV (green colorwash). The yellow and 

magenta colorwash are bladder and rectum. The other isodose surfaces are 75 Gy (maroon), 69 Gy 

(slateblue) and 57 Gy (lightblue).  The smaller DMs of COP plan in some directions due to the 

compromise of OAR are sometimes more likely to fail to achieve the target coverage. 
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receiving dose higher than 65 Gy was reduced on average by 19.3% or about 48 cc.(Gordon and 

Siebers 2009)  Using COP for translation setup errors following Gaussian distribution with 

systematic and random SD 3mm, rectal NTCP got reduced by 10%.  In this dissertation, 

COP/OM also present dosimetric advantages relative to FM when compensating PCA modeled 

interfraction deformable organ motion and ASSD-modeled delineation uncertainties (Table XI 

and Table XIV).  These relative advantages reveal the inadequacy of using population-based 

empirical margins and emphasize the the necessity and potential of coverage-based treatment 

planning to account for all types of GUs.   

For the parameters used in this study, the benefit of COP relative to OM is patient-

specific and varies with different GUs.  In the study to account for deformable motions, OM is 

more likely to be preferrable than COP in most patient cases because the better achieved target 

coverage probability with comparable OAR sparing. (Table XI, page 89)  In at least half of these 

cases, COP compromises target D98,95 (with dose degradation more than 2%) to ensure OAR 

(especially rectal) dose sparing.  Whether COP is advantageous over OM for these cases when 

COP target coverage is given a higher priority (weight) is the subject of future study.  The 

neccessity for COP and OM plans may be reduced by advanced IGART strategies, where the 

reduced alignment errors and accomodation for deformable motions via adaptive corrections 

result in less stringent target-OAR tradeoff and better treatment outcomes.  In the study to 

account for delineation uncertainties, COP shows promising potential in efficiently sparing both 

bladder and rectal dose. (Table XIV, page 106)  The p+ gain is 5.5% on average and up to 18.7% 

relative to OM plans. (If little compromise of target coverage probability (e.g., 1%) is acceptable, 

at least 3 more COP plans other than OM plans become the best plans.)  This clinical benefit of 
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COP in terms of delineation uncertainties is probably significant since the advanced IGART 

strategies are of limited usefulness for reducing delineation uncertainites.  (Njeh et al. 2013) 

Dose delivered to lymph nodes (as treatment target) and small bowel (as dose limiting 

OAR) may show more benefit of COP related to OM and FM, though these two structures are 

not included in the prostate cancer studies of this dissertation.  To date, a growing body of data 

have suggested that IMRT provides greater advantages over conventional and 3DCRT for pelvic 

nodes irradiation than localized prostate irradiation, when attempting sparing surrounding normal 

tissues. (Shih et al. 2005, Wang-Chesebro et al. 2006)  This reveals the complex geometry of 

lymph nodes and the necessity of more conformal radiation, which indiates the greater sensitivity 

of lymph nodes to GUs.   For the small bowel, the risk of irradiated toxicity may be boosted 

when some dose limits (Kavanagh et al. 2010) are exceeded as a result of large PTV margins of 

CTVprostate or CTVSV used in OM or FM.  COP may result in more desirable lymph nodes 

coverage or small bowel sparing by savvily creating an optimized DM.   

The clnical value of COP may also change with many factors.  COP is expected to be 

more beneficial when e.g., using proton therapy and/or treating cites of some stage that are more 

likely to require non-uniform margins, like the findings for the PTP techniques reported by the 

researchers in Massachusetts General Hospital and Harvard Medical School.(Unkelbach et al. 

2007, 2009)   The advantage of COP may be reduced by e.g., implementing more advanced 

IGART strategies and/or planning on structures which are less senstive to dose.  Different 

treatment protocols with loose or tight criteria may affect the outcome of COP too.  Some of 

these factors will be discussed later for the future COP studies.  
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7.1.2 Conclusions 

In order to ensure if a treatment plan is immune to the degraded effects of GUs, coverage 

probability is a critical metric to be calculated and compared during planning optimization and 

evaluation process. The dosimetric effects of deformable organ motion and delineation 

uncertainties involved in high-risk prostate cancer treatment are not insignificant in terms of the 

specified target coverage probability 95%. 

For high-risk prostate cancer patients treated by multi-fractional EBRT, treatment 

planning techniques (COP and OM) based on coverage probability metrics shows dosimetric 

advantages relative to conventional margin-based techniques — FM.  Empirical PTV margins 

face the risk of undesirable target coverage probability and/or excessive dose to surrounding 

OAR. 

In this dissertation, the clinical value of COP is limited to compensate deformable organ 

motions due to the frequently compromised target coverage probabilities for the concern of 

normal tissue dose sparing. (caveat page 115)  For the objective weights and criteria used here, 

the OM technique and more advanced clinical strategies can provide preferred solutions to 

compensate and/or reduce the dosimetric effect of deformable organ motions for high-risk 

prostate cancer patients. 

The clinical role of COP is potentially significant in terms of delineation uncertainties.  

COP spares excessive OAR dose in high dose regions while exploiting the slack in low dose 

regions within the tolerance to maintain acceptable target coverage probability. (caveat page 

115)  Compared to less decent OM plans and IGART strategies, COP offers a good solution to 

adequately consider delineation uncertainties for treatment planning. 
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7.2 Future directions of COP studies 

7.2.1 Realistic clinical implementation issues 

COP still has hurdles to overcome before being implemented in clinical practice.  These 

hurdles can be investigated in the future to improve the clinical feasibility of COP. 

First, COP may fail to achieve target coverage probability due to the OAR dose-limiting 

criteria.  It may be helpful to solve this potential problem by increasing the objective weights for 

the target criteria.  One possible way is to utilize the “constraint” function in Pinnacle
3
 to make 

the target objective weight effectively infinitely large.  Another possible way is to reduce the 

relative OAR objective weights in the hope that the target dose is less tightened.   How to specify 

appropriate OAR objective weights adaptive to each patient is an interesting topic for future 

research.  Inappropriate weight reduction may result in undesirable OAR toxicity, as Figure 48 

illustrates. 

 

 

Figure 48. An example of the pDVHs of the COP plan that uses inappropriately reduced OAR objective 

weights (dashed) in the contrast to that uses original OAR objective weights (solid). The pDVHs are of 95% 

for CTVprostate (red) and CTVSV (green) and 5% for bladder (orange) and rectum (magenta). 

Inappropriately reduced OAR objective weights may result in high OAR dose beyond the tolerance.  
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Second, GU models used in COP and the probabilistic planning optimization need 

verification and improvement of their representativeness for realistic patient cases.  Though the 

modeling uncertainties can be absorbed to some extent in the large number of simulated virtual 

treatment course, the inadequate GU models may affect COP and probabilistic evaluation.  The 

PCA model and ASSD model can be tested on a large sample of patient image sets and 

differently delineated ROI contours. 

Third, for organ anatomical/contour variability between treatment fractions, it is almost 

impossible to obtain sufficient patient-specific GU information before treatment planning is 

performed.  Thus, without known GU PDFs, COP cannot be used in the initial treatment 

planning process.  A possible solution is to build a reasonably representative patient-specific GU 

model after several (e.g., 5) fractions.  With this model, COP can be performed in sequential 

fractions and compensate GUs that occur in these fractions.   

Fourth, COP is still too slow to be executed in the clinic.  For a 50-iteration optimization, 

the run time for COP on a 2.93 GHz Quad Core Processor Core i7-870 is 3-4 hours for 

deformable organ motions and delineation uncertainties.  The run times are based on simulating 

100 * 30  virtual treatment fractions on a 333 mm
3
 dose grid  (for deformable organ motions) 

or 1000* 1 virtual treatment fractions for COP on a 222 mm
3
 dose grid (for delineation 

uncertainties).  It is necessary to optimize/parallelize COP code and/ or use more efficient COP 

parameters (e.g., fewer treatment course number) to speed up COP. 

7.2.2 COP in different IGART strategies 

 The advanced clinical strategies, such as IGART utilizing daily re-planning (Sharma et 

al. Unpublished), may have dosimetric advantages over conventional IMRT for critical 

structures without compromising target coverage.  When these strategies are clinically practical, 
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the future role of COP will become to compensate their residual uncertainties.  Some Pinnacle
3
 

plugins have been developed (Appendix II.a) and may be used to simulate different frequencies 

of IGART.  Therefore, the residual benefit of COP in different clinical scenarios can be 

investigated.  

7.2.3 Bladder and rectal wall as OAR for prostate cancer  

According to the recommendation of  ICRU report 83 (ICRU Report 83 2011), bladder 

wall and rectal wall instead their whole volume should be used as the critical OARs for prostate 

cancer study.  However, delineation of bladder wall and rectal wall is complicated due to poor 

image quality for real patient cases, which is limited by the realistic concerns such as imaging 

dose constraints, image data size and medical cost.  Inappropriate delineation or image 

registration of bladder wall during planning and treatment of EBRT may result in incorrect OAR 

dose evaluation.  This may lead to suboptimal OAR sparing or missed opportunities for target 

coverage due to overrepresentation of the OAR dose during the planning process.  As there is no 

guidance on how to delineate deformed walls as the filling of hollow organs changes, the base 

characteristics of the bladder wall changes as a function of bladder filling was studied using pig 

bladders. (See Appendix II.d.)  That study concludes that it is adequate to assume a constant 

bladder wall volume as the bladder fills/empties (and wall thins/thickens).  This assumption can 

be used to assist and test wall delineations as well as image registration for multi-fraction EBRT.  

For the future prostate cancer studies, wall structures should be involved.    

7.2.4 Different treatment sites 

The benefit of COP may be more pronounced for the treatment cites other than prostate 

cancer.  Due to quasi-isotropic anatomical shape of CTVprostate and its quasi-isotropic pattern of 
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GUs, uniform PTV margins (e.g., optimized by OM technique) are often good enough to ensure 

target coverage probabilities as well as excessive OAR dose sparing.   The potential advantages 

of dosimetric margins derived in COP equivalent to using non-uniform PTV margins are limited 

in prostate cancer cases.  Treatment sites with complex tumor shape (e.g., head and neck cancer) 

and/or irregular GU pattern (e.g., lung cancer) may have more clinical benefit from COP 

techniques. 
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Appendix I. Patient-specific pDVH results of COP studies 

a. pDVH evaluation with deformable motion model (PCA) incorporated 

For each one of the 19 patients, pDVH 95% and 5% for CTVprostate, CTVSV, bladder and 

rectum on a zero-PTV-margin plan are plotted below.  The dosimetric effect of deformable organ 

motions reflected on the plot is patient-specific.  

Though the CTVprostate-centroid is always aligned, none of the patients is immune to the 

degradation effect of target coverage due to deformable organ motions.  The target dose 

deviation from the objective values at 95% coverage probability can be relatively small (e.g., 

patient G, H, O, P and S) or large (e.g., patient A, D, I, J, L, M and N), but all indicate the 

necessity of larger PTV margin or DM to improve the target coverage.   

When it comes to the OARs, the rectum is more likely to be overdosed than the bladder. 

The rectal dose at 5% coverage probability of more than half patient cases already exceeds the 

dose limits before larger margin is used, which shows the potential conflict of rectal sparing and 

target coverage improvement.  In contrast, the bladder dose at 5% coverage probability is mostly 

within the dose tolerance for most patients, except patient B, E, J, O, R whose bladder dose is a 

little beyond one or two objective values.  The slack between the current bladder dose and the 

corresponding bladder dose limits, which is large for more than half of patients, provides room 

for margin expansion.  
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Figure 49. The patient-specific pDVHs 95% (solid) and pDVHs 5% (dashed) evaluated on zero-PTV-

margin plans for patient with ID A to S(continued below) for anatomies CTVprostate (prostate) (red), 

CTVSV (green), bladder (orange) and rectum (magenta) with optimization objectives (triangle markers). 

The PCA model is incorporated to show the dosimetric consequence of organ deformable motions. 
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b. Optimized plan comparison with deformable motion model (PCA) incorporated 

  For each one of the 19 patients, pDVH 95% for CTVprostate and CTVSV, and pDVH 5% 

for bladder and rectum on COP, OM and FM plans are plotted below.  The benefit of COP 

relative to the other two margin-based planning techniques when accommodating organ 

deformable motions is patient-specific.  For the patient cases (G, J, K, L, P, R, S) whose COP 

plan is preferred, some show the improved target coverage and the others get more decent OAR 

sparing.  The best case for COP pDVH is patient P, as both target coverage and OAR sparing get 

effectively improved.  However, advantages brought from COP are more limited for the other 

patients.  When the COP plan fails to meet the target coverage criteria due to the competing 

OAR coverage criteria, the OM plan is more likely to be preferred. 
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Figure 50. The pDVHs 95% of CTVprostate (red) and CTVSV (green) and the pDVHs 5% bladder (orange) 

and rectum (magenta) for the patient-specific comparison of COP(solid), OM (dashed) and FM (dot) plans 

for the patient with ID A to S (continued below), with optimization objectives (triangle markers). The PCA 

model is incorporated to show the dosimetric consequence of organ deformable motions. 
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c. pDVH evaluation with delineation uncertainties model (ASSD)  incorporated 

For each one of the 19 patients, pDVH 95% and 5% for CTVprostate, CTVSV, bladder and 

rectum on a zero-PTV-margin plan are plotted below.  The dosimetric effect of delineation 

uncertainties is patient-specific and non-negligible.   

As the target dose at 95% coverage probability is more or less degraded from the 

objective values, larger PTV margin or DM is needed to improve the target coverage.  For 

OARs, the rectum is more likely to be overdosed than the bladder.  The rectal dose of each 

patient at 5% coverage probability exceeds at least one dose limits before margin is used, which 

shows the potential conflict of rectal sparing and target coverage improvement.  In contrast, the 

bladder dose at 5% coverage probability is mostly within the dose tolerance for most patients, 

except patient B, I, L, N, R.  The slack between the current bladder dose and the corresponding 

bladder dose limits, which is large for most patients, provides room for margin expansion. 
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Figure 51. The patient-specific pDVHs 95% (solid) and pDVHs 5% (dashed) evaluated on zero-PTV-

margin plans for patient with ID A to S(continued below) for anatomies CTVprostate (red), CTVSV (green), 

bladder (orange) and rectum (magenta) with optimization objectives (triangle markers). The PCA model is 

incorporated to show the dosimetric consequence of organ deformable motions. 
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d. Optimized plan comparison with delineation uncertainties model (ASSD) incorporated 

For each one of the 19 patients, pDVH 95% for CTVprostate and CTVSV, and pDVH 5% 

for bladder and rectum on COP, OM and FM plans are plotted below.  When delineation 

uncertainties are accommodated, the benefit of COP relative to the other two margin-based 

planning techniques is patient-specific.  For the patient cases (B, C, H, L, M, N, O, P) whose 

COP plan is preferred, most show more decent OAR sparing.  The best case for COP pDVH is 

patient C, whose dose sparing for bladder and rectum relative to OM and FM pDVHs is most 

pronounced.  Compared to the study for deformable motions, COP plan is more beneficial when 

delineation uncertainties are accommodated. 

 

 

Figure 52. The pDVHs 95% of CTVprostate (red) and CTVSV (green) and the pDVHs 5% bladder (orange) 

and rectum (magenta) for the patient-specific comparison of COP(solid), OM (dashed) and FM (dot) plans 

for the patient with ID A to S (continued below), with optimization objectives (triangle markers). The 

ASSD model is incorporated to show the dosimetric consequence of delineation uncertainties. 
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Appendix II. Related projects 

a. Plugins developed for IGART plan evaluation 

Three Pinnacle
3
 plugins have been developed for future IGART plan evaluation.  The 

plugins are the dynamic libraries to extend the functionality of Pinnacle
3
.  Each plugin is 

responsible for one main step for a complete plan evaluation.   First plugin copies a plan created 

on one image set to sequential image set(s).  The second plugin does dose mapping and 

accumulation.  The third plugin calculates metrics such as DVH, EUD, TCP and NTCP.   These 

plugins can be called by a simple click on a script list once they are loaded in the TPS. 

The first plugin is named as “HXCopyBeamComputeDose” (HXCBCD).  The workflow 

of HXCBCD for plan copying is summarized in the Table XVI.  Three things need to be noted 

here.  First, the treatment plan is copied by matching the centroid of prostate, assuming that 

prostate is reliably tracked before being treated in each fraction.  Second, a plan is copied mainly 

by copying beam settings and recomputing the dose.  This can be simplified as copying dose 

only, according to the assumption of dose-shift variance.  The dose difference between dose 

copying and beam copying is within 2%. (Sharma et al. 2012)    Third, some functions that have 

been extended from HXCBCD are not included in the Table XVI.  An example is that the 

optimization criteria (Table III, page 22) for either COP or PTV-based plans based on VCU or 

other protocols can be loaded by calling the functions in HXCBCD plugin.   
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Table XVI. Workflow of HXCBCD plugin for copying plan to treatment fractions. 

Prior manipulation 

 Delete extra trials, beams, beam iso-center for resetting (No more included) 

TPS would crash when executing this task.  The reason is unknown. Scripts are written to execute this 

task. 

 Check the image set name for each trial in the TrialList. 

Errors will be returned if any trial for treatment shares the same reference image set. 

On the reference trial  associated with the reference image set 

 Delete beams on reference trial and add seven beams for IMRT  

Default beam settings: 

I. Machine 21EX;  

II. Energy 18 MV;  

III. Beam type: Static;  

IV Gantry Angle:  

V: Isocenter: GTV(prostate) centroid  

VI Beam Collimator: 90;  

VII: Initialize and unlock Beam Weight: ~14.28 ~ (100/7);  

VIII: Set dose prescription as 1.80 Gy/fraction * 44 fractions.) 

 Load criteria for optimization 

Default  criteria protocol: RTOG 0126 

Two structures are created if inexistent: PTV = GTV1+1cm margin. LNT = GTV1 ring 2-4 cm.  

This is optional for other protocol. 

 Perform IMRT optimization 

I. Set dose grid for dose calculation: as large to cover skin  

II. IMRT setting: DMPO, Allow Jaw Motion, Split beam if necessary  

On each fractional trial that is associated with fractional image set 

     Set beam isocenter as the centroid of GTV on this image set  

     Delete beams and copy the beam settings from the reference image set  

    I. Dose grid 

II. Beam weight 

III. Beam monitor unit (MU) after optimization 

     Compute copied beams 
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The second plugin is named as “HXVolumeWarpingPlugin” (HXVWP).  HXVWP 

performs dose mapping between reference image set and fractional image sets in the region 

within the dose grid and create an accumulated dose on the reference image. (Readers are 

referred to Figure 26, page 74 for a graphical illustration.)  The input data for this plugin are the 

DVF from the reference to the fractional image set dose.  Based on this DVF, any voxel within a 

pre-defined dose grid on the reference image set can find its corresponding coordinate on the 

fractional image set.  (As the resolution of dose grid and DVF may be different, interpolation 

calculations may be involved in the process.)  The voxel dose on the fractional image set is read 

and then mapped back to the reference image set.  Often, the actual delivered dose distribution is 

degraded compared with the static dose distribution planned on the reference image set.  The 

accuracy of the dose mapping algorithm remains a concern for this tool.  Though many test cases 

(e.g, on a homogeneous or heterogeneous phantom) have been carried out, verification of dose 

mapping for real patient is challenging due to no metric being upon which to base the accuracy 

of the dose accumulation. (Schultheiss et al. 2012)  

Compared to the other plugins, HXVWP has been developed to be more user-friendly.  

Figure 53 shows the graphical user interface (GUI) of HXVWP. Users can select dose mapping 

algorithm, DVF type according to their need.  An attached application called “TrialStoreEditor” 

can record the dose mapping parameters.   
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 The third plugin is named as “HXRoiDVHPlugin” (HXRDP).  This plugin first calculates 

a DVH (for either physical dose or BED) and then transfers the DVH to biological metrics EUD, 

TCP and NTCP.  A workflow of this plugin is shown in Figure 54.  The equations and their 

parameters for biological metric calculation are those mentioned in chapter 3. 

  

  

Figure 53. Interfraces of the GUI to launch HXVWP and the application to store the information of dose 

mapping. Note the mapping type for HXVWP is Plugin-based RCF DoseMapping. (Copyright JV Siebers 

2011©) 

 

 

Figure 54. Workflow of DVH calculation of HXRDP 
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b. Coverage estimates vs. dosimetric margin distribution sampling parameters 
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c. Interobserver contour variations with respect to margin size 
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d. Bladder wall characteristics 
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