
Virginia Commonwealth University
VCU Scholars Compass

Theses and Dissertations Graduate School

2013

MULTIPLE-INSTANCE AND ONE-CLASS
RULE-BASED ALGORITHMS
Dat Nguyen
Virginia Commonwealth University

Follow this and additional works at: http://scholarscompass.vcu.edu/etd

Part of the Computer Sciences Commons

© The Author

This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in
Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.

Downloaded from
http://scholarscompass.vcu.edu/etd/3059

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VCU Scholars Compass

https://core.ac.uk/display/51290019?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fetd%2F3059&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fetd%2F3059&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu?utm_source=scholarscompass.vcu.edu%2Fetd%2F3059&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F3059&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/gradschool?utm_source=scholarscompass.vcu.edu%2Fetd%2F3059&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F3059&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarscompass.vcu.edu%2Fetd%2F3059&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd/3059?utm_source=scholarscompass.vcu.edu%2Fetd%2F3059&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu

© Dat Nguyen 2013
All Rights Reserved

i

MULTIPLE-INSTANCE AND ONE-CLASS RULE BASED ALGORITHMS

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of
Philosophy at Virginia Commonwealth University.

by

DAT TIEN NGUYEN

B.S., University of Science, HoChiMinh city, Vietnam, 1991

M.S., University of Science, HoChiMinh city, Vietnam, 1997

Director: KRZYSZTOF J. CIOS

PROFESSOR AND CHAIR

DEPARTMENT OF COMPUTER SCIENCE

Virginia Commonwealth University

Richmond, Virginia

May, 2013

ii

Acknowledgement

I would like to express my sincere gratitude to my advisor Dr. Krzysztof J. Cios for

his continuous help and comments during the entire period of my graduate studies. It would

have been impossible to complete my dissertation without his guidance. I am grateful to all

of my doctoral committee members, Drs. Hobson, Kecman, Arodz, Kurgan and Ventura,

for their helpful comments and also to Dr. Cao Nguyen.

I would also like to thank all professors from whom I have learned a lot of valuable

knowledge during my time as a Ph.D. student: Drs. Cios, Kecman, Arodz, Najarian and

Hobson. I am grateful to all of them and am sure that this knowledge will help me in my

future career.

Most of all, I would like to dedicate this thesis to my parents and my family. I could

not have invested the valuable time needed to complete my dissertation without their

continued support.

iii

Table of Contents
Page

List of Tables ...v

List of Figures ... ix

Abstract ... xi

Introduction ...1

Chapter

1 Inductive Machine Learning .. 3

1.1 Inductive rule learners ... 3

1.2 Classical rule learners ... 6

2 Multiple-Instance Learning Algorithm: mi-DS .. 11

2.1 State of the art .. 11

2.2 mi-DS algorithm .. 18

2.3 Experiments ... 28

2.3.1 Experiment I... 31

2.3.2 Experiment II ... 36

2.4 Summary .. 43

3 One-class Learning Algorithm: OneClass-DS ... 44

3.1 State of the art ... 44

3.1.1 Density estimation methods .. 46

3.1.2 Boundary methods .. 46

3.1.3 Reconstruction methods .. 48

iv

3.1.4 Rule-based methods .. 49

3.2 OneClass-DS algorithm ... 50

3.3 Experiments ... 59

3.3.1 Experiments I .. 60

3.3.2 Experiments II .. 70

3.3.3 Experiments III .. 73

3.3.4 Experiments IV .. 77

3.4 Summary .. 83

4 Conclusions .. 84

Bibliography ... 86

Appendix

A Measures Used For Evaluating Goodness of Generated Models 96

A.1 General .. 96

A.2 Statistical .. 98

Wilcoxon Signed-Ranks Test ... 98

Friedman Test ... 101

B mi-DS and OneClass-DS Algorithms Implementation Details 105

v

List of Tables
Page

Table 2.1 Similarity matrix constructed in phase II. Mij is the number

 of the rules covering the bags bi and bj; (n+1)th row and (n+1)th

 column are used during the subsequent prediction. ...20

Table 2.2 Five training data bags. ..23

Table 2.3 POSITIVE and NEGATIVE tables. ..24

Table 2.4 POSITIVE and NEGATIVE tables (after remove inconsistent instances).25

Table 2.5 RULEPOS and RULENEG tables; * indicates any value of a feature.26

Table 2.6 Similarity matrix M obtained in phase II. ..27

Table 2.7 Test bag B with 5 instances in it. ...27

Table 2.8 Similarity matrix M with scores for the test bag B, with R=2 and C=2.28

Table 2.9 Description of the data sets used in comparisons. ...31

Table 2.10 Accuracy measures of mi-DS and 9 comparison MIL algorithms.

 10-FCV is used to calculate accuracy (%). The best results are

 shown in bold with rank shown below in brackets. ...33

Table 2.11 MCC measures of mi-DS and 9 comparison MIL algorithms.

 10-FCV is used to calculate MCC. The best results are

 shown in bold with rank shown below in brackets.. ..34

Table 2.12 Wilcoxon and Friedman test results for comparing 9 MIL

 algorithms on 13 data sets. ...35

vi

Table 2.13 Comparison with 9 MIL (in term of accuracy) algorithms

 on Text and Corel Images data; the best results for each data

 set are shown in bold..39

Table 2.14 Comparison with 9 MIL algorithms (in terms of MCC)

 on Text and Corel Images data; the best results for each data set

 are shown in bold. ..40

Table 2.15 Wilcoxon and Friedman test results for comparing 9 MIL

 algorithms on Text and Corel Images data. ...41

Table 3.1 Training data instances. ...54

Table 3.2 Summed-up values for features shown in Table 3.1. ...55

Table 3.3 Instances in one-class training data set covered by (F1 =1).55

Table 3.4 Summed-up values for features shown Table 3.3. ...56

Table 3.5 Training data instances that remain after deleting the instances

 covered by the first rule. ..56

Table 3.6 Summed-up values for features shown in Table 3.5. ...57

Table 3.7 Instances in Table 3.5 covered by (F1 =1). ..57

Table 3.8 Summed-up values of features (for instances in Table 3.7).57

Table 3.9 Training data instances after deleting instances covered by the first two rules.58

Table 3.10 Data sets used in experiments. ...61

Table 3.11 Results of OneClass-DS algorithm on 11 data sets. ..62

vii

Table 3.12 Comparison of OneClass-DS with five other algorithms

 in terms of accuracy. ..64

Table 3.13 Comparison of OneClass-DS with five other algorithms

 in terms of the IPR and FAR measures. ...65

Table 3.14 Wilcoxon and Friedman tests results for comparing OneClass-DS

 with five algorithms on 11 data sets. ...69

Table 3.15 Comparison of OneClass-DS with OneClass SVM, OCC-Gauss

 and OCC-EM. ..71

Table 3.16 Wilcoxon and Friedman tests results for comparing OneClass-DS

 with 3 algorithms on 9 data sets. ..72

Table 3.17 Data sets with missing values. ...73

Table 3.18 OneClass-DS results on data with missing values. ..74

Table 3.19 Comparison of OneClass-DS with REP-Tree, Decision Stump

 and Random Tree on four missing value data sets. ...76

Table 3.20 Letter and digits data sets. ..78

Table 3.21 Results on the Pen digits data set. ..79

Table 3.22 Results on the Optical digits data set. ..80

Table A.1 Misclassification matrix. ..96

Table A.2 Most often used measure calculated from the confusion matrix.97

Table A.3 Results, in terms of accuracy, of algorithms A and B on 13 data sets.99

Table A.4 Part of Wilcoxon test table. ..101

viii

Table A.5 Results of 6 algorithms on 11 data sets. ...102

Table A.6 Ranking of the 6 algorithms on 11 data sets. ...103

Table A.7 Part of the chi-squared (χ2) distribution table..104

ix

List of Figures
Page

Figure 1.1 Pseudocode of DataSqueezer algorithm. .. 8

Figure 2.1 Pseudocode of mi-DS algorithm. .. 18

Figure 2.2 Pseudocode, PredictTestingBag, for labeling test bag B. 22

Figure 2.3 Dinosaurs from Corel’s data: before preprocessing

 (left column) and after preprocessing (right column). .. 37

Figure 2.4 Images in Corel’s data sets after preprocessing. ... 37

Figure 2.5 Accuracy of mi-DS on data with missing values. ... 42

Figure 3.1 Training and test scenarios.. 51

Figure 3.2 Pseudocode of OneClass-DS algorithm. ... 53

Figure 3.3 Influence of changing the four parameters values on the

 Target rate, Precision, IPR and FAR, on the Heart data set................................. 63

Figure 3.4 Possible outcomes of a test in terms of Precision &

 Target rate (y-axis) vs. MaxAttribute (x-axis). .. 67

Figure 3.5 Possible outcomes of a test in terms of Precision&

 Target rate (y-axis) vs. MaxAttribute (x-axis). .. 75

Figure 3.6 Precision of letter A with different values of MaxAttribute

 and MinCoverTarget. .. 81

Figure 3.7 Target Rate of letter A with different values of MaxAttribute

 and MinCoverTarget. ... 81

x

Figure 3.8 Relation between Precision and Target Rate for different

 values of the MaxAttribute (Letter A). .. 82

Figure B.1 Data Mining Tools web page. ..105

Figure B.2 WEKA packages’ web page. ...106

Figure B.3 Menu Package manger in WEKA. ...107

Figure B.4 Package Manager window… ...107

Figure B.5 Choose the package to install. ..108

Figure B.6 Installing chosen package in WEKA. ..109

Figure B.7 Open data set in WEKA. ..109

Figure B.8 Choose data set in WEKA. ..110

Figure B.9 Musk 1 data set. ...110

Figure B.10 Select mi-DS and setting values of parameters. ...111

Figure B.11 Results using 10-FCV. ...112

Figure B.12 Results using 90% of instances for training and 10% for testing.112

xi

Abstract

MULTIPLE-INSTANCE AND ONE-CLASS RULE-BASED ALGORITHMS

By Dat Tien Nguyen, Ph.D.

A dissertation submitted in partial fulfillment of the requirements for the degree of Degree of
Doctor of Philosophy in Engineering (Computer Science track) at Virginia Commonwealth

University.

Virginia Commonwealth University, 2013

Major Director: Krzysztof J. Cios
Professor and Chair, Department of Computer Science

In this work we developed rule-based algorithms for multiple-instance learning and

one-class learning problems, namely, the mi-DS and OneClass-DS algorithms. Multiple-

Instance Learning (MIL) is a variation of classical supervised learning where there is a

need to classify bags (collection) of instances instead of single instances. The bag is labeled

positive if at least one of its instances is positive, otherwise it is negative. One-class

learning problem is also known as outlier or novelty detection problem. One-class

classifiers are trained on data describing only one class and are used in situations where

data from other classes are not available, and also for highly unbalanced data sets.

Extensive comparisons and statistical testing of the two algorithms show that they

generate models that perform on par with other state-of-the-art algorithms.

1

Introduction

Supervised machine learning is an important branch of artificial intelligent where

instances are labeled as positive or negative by a teacher during the training task. However,

in practice it is not always possible for the teacher to provide labels for all training

instances. In classical supervised learning, there are two main drawbacks in the labeling

task. First, the teacher does not know the label of an individual instance and second, the

teacher has only instances for a single class (positive or negative) of labels.

The first problem is modeled as multiple instance learning (MIL) and is becoming

increasingly important within machine learning. Unlike traditional supervised learning in

which each individual instance is labeled, in multiple instance learning model a bag of

instances is labeled as to whether any single instance is positive. This model was

encountered by Dietterich et al. (1997) in the task of the drug activity prediction problem

where each instance is a possible configuration for a molecule of interest and each bag

contains all low-energy configurations for the molecule. To date, there are many in

interesting applications in use of MIL scenario in addition to Dietterich’s work. For

examples, the learning simple description of a person from a series of images containing

that person, the stock selection from highest return stocks and so on.

2

The problem in the second drawback is the one-class classification which is to

formulate a target set of instances in a training dataset and to detect new instances similar

to the training set. As such, the difference with traditional classification is that in one-class

classification only instances of one class (target) are available. All other instances are the

outliers.

In this thesis, we hypothesize that the above two problems can be solved using

traditional supervised learning methods such as support vector machine, neural networks,

Bayesian networks and/or classical rule-based learners. The motivation of the present

study is to investigate and solve the issues raised by introducing multiple instance learning

and one class problems into rule-based algorithms, in particular DataSqueezer (Kurgan et

al., 2006) .

The thesis is organized as follows. Chapter 1 introduces and defines Inductive

Machine Learning methods. Chapter 2 presents the novel Multiple-Instance Learning

Algorithm: mi-DS. Chapter 3 details the novel OneClass-DS learning algorithm in solving

One-class classification. The last Chapter is dedicated to Conclusions.

3

CHAPTER 1 Inductive Machine Learning

1.1 Inductive rule learners

 Over last few years ML attracted considerable attention due to the demand for

reliable and useful data mining techniques in the information technology, medical, decision

making, and gaming industries, to name but a few. Machine learning (ML) is frequently

used to solve classification problems, perform intelligent data analysis, and in development

of diagnostic, decision support, and knowledge-based systems (Langley and Simon, 1995;

Paliouras et al., 2001). ML methods are divided into two major groups, supervised and

unsupervised (like clustering). Here we deal only with supervised methods.

ML methods are frequently used in the knowledge discovery process because of

their many desired characteristics. We define knowledge discovery as a nontrivial process

of identifying valid, novel, potentially useful, and ultimately understandable patterns from

large collections of data (Fayyad et al., 1996). In view of this definition ML is one of the

key tools used to perform data mining tasks (Fayyad et al., 1996) (Cios and Kurgan, 2004).

ML is often defined as the ability of a computer program to improve its own performance

at some task based on past experience, and as such is a very attractive vehicle for

discovering patterns in the data and classification.

4

There is a class of ML algorithms called rule induction systems (or rule learners)

and they are the subject of the work presented here. A rule induction system takes as input

a set of training examples, and produces a set of production rules in the form IF conditions

THEN actions. Rule induction is distinct from decision trees. It is easy to write a set of

production rules, each specifying a path from the root to a leaf node, from a generated

decision tree. However, a set of IF…THEN… rules generated by a rule learner cannot be

converted into a decision tree (it forms only a graph). Rule learners exhibit a number of

desirable properties:

– They generate rules that are easy for people to understand, which is a desirable

property since they are more comprehensible than decision trees (Chisholm and

Tapedalli, 2002). People often learn from the hypotheses generated by a rule learner,

provided the hypothesis is in a human-comprehensible form. In this case, experts

can participate in the learning process by critiquing or improving the learned

hypotheses.

– Rule learners often outperform decision trees in some domains (Pagallo and Haussler,

1990).

 – The output of a rule leaner can easily be translated into a first-order logic

representation, or embedded within the knowledge-based systems (Cohen, 1995;

Cios and Kurgan, 2004).

– Certain types of prior knowledge can be easily incorporated into rule learners

(Pazzani and Kibler, 1992).

5

– The rules can be modified and analyzed because of their modularity, i.e., a single rule

can be understood without reference to other rules (as is the case with decision

trees), which is important when a decision maker needs to understand and validate

the generated rules, for example in medical application (Holsheimer and Siebes,

1994).

Supervised rule learners can be sub-divided into three scenarios, depending on the

type of training data available. In the first scenario, the “classical” one, each instance in

training data set belongs to only one of the classes. For instance, we may have data

describing patients with diseases 1, 2 and 3; thus training data pairs are (patient1, disease1),

(patient 2, disease3), etc.

In the second scenario, called Multiple Instance Learning (MIL), the training data

are very different (Dietterich et al., 1997). Namely, instead of each patient having only one

diagnosis he/she can have many diagnoses over a period of time. These diagnoses put

together form a “bag” of diagnoses for this patient. Now, the task is to come up with a

model to be used later for predicting whether a new patient has a certain disease (among

several other diseases). We developed a new algorithm for this scenario and it is discussed

in Chapter 2.

In the third scenario, known as one-class learning or outlier detection, we have data

representing only one class, say of some unique disease (Cohen et al, 2004). Our task is to

come up with a model to be used for predicting whether a new patient has or not this

6

particular disease. In Chapter 3 we describe the algorithm developed for this learning

scenario.

1.2 Classical rule learners

There are dozens of classical inductive rule learner algorithms that can be grouped

into decision tree algorithms such as C4.5 (Quinlan, 1993), CART (Breiman et al., 1984),

ID3 (Quinlan, 1986),… and the “true” rule learners such as RIPPER (Cohen, 1995), DLG

(Webb and Agar, 1992), IREP (Furnkranz and Widmer, 1994)…

Below we describe one classical rule learner, namely DataSqueezer (Kurgan et al.,

2006), which induces a set of production rules from a training data set as it constitutes a

basis for the developed algorithms: for MIL problems and the other for one-class learning

problems. The main advantages of DataSqueezer are its log-linear complexity and

robustness to missing values, which commonly are present in big data. Below we review in

some detail the DataSqueezer algorithm because it is used as a component of the developed

new algorithms for more difficult learning tasks of one-class and MIL classification

problems.

Let us denote training data set by D. It consists of s instances and k features. D

includes two sets: positive set – DP and negative set DN. Both these set must satisfy

conditions: DP ∪ DN = D , DP ∩ DN = ∅ , DP ≠∅ , DP ≠∅. From the training data set D,

we distribute all instances into table POS that contains only positive instances and table

NEG that contains only negative instances. DataSqueezer algorithm has two steps. First, it

calls function DataReduction with table POS and then table NEG to generalize information

7

stored in these two tables. In the second step, it creates RULES which contains rules for

positive instances in data set. Pseudocode of DataSqueezer is shown in Figure 1.1. Vectors

and matrices (tables) are denoted by capital letters, while their elements are denoted by

lower-case letters (Kurgan et al., 2006).

8

DataSqueezer

Input: POS, NEG, k , s

Step 1.

GPOS = DataReduction(POS,k);

GNEG= DataReduction(NEG,k);

Step 2.

2.1 Initialize RULES=[] ; i=1;

2.2 Create LIST = List of all columns in GPOS

2.3 Within every GPOS column that is on LIST, for every non missing value a from

selected column j compute sum, Saj, of values of gposi[k+1] for every row I, in

which a appears and multiply Saj, by the number of values the feature j has.

2.4 Select maximal Saj, remove j from LIST, add “j=a” selector to rulesi

2.5 If rulei does not described any rows in GNEG

2.6 then Remove all rows described by rulei from GPOS, i=i+1;

2.7 If GPOS is not empty go to 2.2 else terminate

2.8 else go to 2.3

Output: RULES

DataReduction // data reduction procedure for D=POS or D=NEG

Input: D, k

Initialize G = []; i = 1; tmp = d1; g1 = d1; g1[k+1] = 1;

for j=1 to ND //for positive/negative set: ND is NPOS or NNEG

for kk=1 to k // for all features

if (dj[kk]<>tmp[kk] or d j[kk]=’*’) // ‘*’ : missing “do not care” value

then tmp[kk]=’*’;

if (number of non-missing values in tmp>=2) then gi = tmp; gi[k+1]++;

else i++; gi = dj; gi[k+1] = 1; tmp = dj;

Output: G

Figure 1.1 Pseudocode of DataSqueezer algorithm

9

where

POS: Table of positive instances
NPOS: number of positive instances
NEG: Table of negative instances
NNEG: number of positive instances
GPOS: Table store results of POS after DataReduction
GNEG: Table store results of NEG after DataReduction
Saj : number of times value a in column j occurred
k: number of features in data set
s: number of instances
RULES: rule for positive instances
di: i

th row of table D (similarly for gi, gposi, rulesi)
di[j] : jth column of ith row in table D (similarly for gi[j])
tmp[i] : ith column of row tmp

In step 1, the learner performs data reduction to generalize information stored in the

original data (Kurgan et al., 2006). Its algorithm performs data reduction to generalize

information stored in the original data via use of the prototypical concept learning, which is

based on the Find algorithm of Mitchell (Mitchell, 1997). It is performed for both positive

and negative data and results in generation of the tables. The reduction procedure is also

related to the least generalization, as used by the DLG learner (Webb and Agar, 1992). The

main difference is that the least generalization is applied multiple times for the entire

positive set through a beam search procedure, while DataSqueezer performs it once in a

linear fashion by generalizing consecutive examples. Also, the DLG learner does not

generalize the negative set.

In step 2, the learner generates rules by performing greedy hill-climbing search on

the reduced data: A rule is generated by applying the search procedure starting with an

empty rule, and adding selectors until the termination criterion fires. The rule, while being

generated, consists of selectors generated using data set, and is checked against the data set.

10

If the rule covers any data in the data set, a new selector is added to the rules making it

more specific, and thus able to better distinguish between positive and negative data. Next,

the examples covered by the generated rule are removed, and the process is repeated. For

more details the reader is referred to (Kurgan et al., 2006).

In Chapters 2 and 3 we describe the developed algorithms for MIL and one-class

learning problems, respectively.

11

CHAPTER 2 Multiple-Instance Learning Algorithm: mi- DS

2.1 State of the Art

The multiple-instance learning (MIL) problem was introduced by (Dietterich et al.,

1997). It is concerned with classifying bags of instances instead of single instances. A bag

is labeled positive if at least one instance within it is positive and negative if all instances

are negative. The goal of MIL algorithms is to correctly label new test bags. Standard

supervised learning classifiers do not work on the MIL problems because although they can

learn all correct negative bag instances, they cannot distinguish between the true- and false-

positive instances in the positive bags. Several MIL scenarios exist:

• a positive bag can include one or more different true positive instances

• the number of true positive instances in a positive bag may be greater or smaller

than the number of false positive instances

• the true positive instances may have similar or quite different feature values.

To illustrate MIL consider the locksmith problem which a locksmith must

determine if a keychain is useful. The keychain is assumed positive (useful) if at least one

of the keys opens the door, otherwise it is negative (useless). Dietterich et al. formalized

MIL for the classification of aromatic molecules for drug design. The goal was to classify

each molecule, represented by a bag of possible conformations, according to whether or not

12

it was musky. MIL methods have been developed and used in applications such as image

retrieval and annotation (Qi and Han, 2007; Chiang and Cheng, 2009; Zhang et al., 2008),

failure prediction (Murray et al., 2005), and bioinformatics for protein-ligand docking

(Mizianti et al., 2010). Key MIL algorithms are briefly reviewed below.

Many approaches for solving MIL problems are based on probabilistic models. One

of them, the Diverse Density (MI-DD) algorithm (Maron and Lozano-Perez, 1998)

attempts to find a concept point in the feature space that is close to at least one instance

from every positive bag but far away from instances in the negative bags. The optimal

concept point has maximum diversity density (“a measure of how many different positive

bags have instances near that point, and how far the negative instances are from that point”,

(Maron and Lozano-Perez, 1998)). Thus, the concept point describes a region of the

instance space that is dense in terms of instances from the positive bags. Another

algorithm, the Expectation Maximization and Diverse Density (MI-EMDD) (Zhang and

Goldman, 2001) extends the MI-DD method and forms a generic framework that can be

used to convert a MIL problem into a single-instance setting by using the Expectation

Maximization (EM) algorithm. The label of a bag is determined by the instance with the

highest likelihood of being positive among all instances in that bag. The authors use a set

of hidden variables that are estimated using the EM approach to find out which instance

determines the label of a given bag. Starting with an initial guess of the concept point h,

obtained by checking points from the positive bags, the MI-EMDD iteratively performs the

following two steps. 1) E-step: the current hypothesis h is used to select one instance from

13

each bag which is the most likely to be responsible for the label given to the bag. 2) M-

step: a new instance h' is estimated to maximize the diverse density of the hypothesis h by

using a gradient search. The two steps are repeated until the algorithm converges (when the

diverse density of the hypothesis is h' < h). Also within the framework of probabilistic

approach a linear logistic regression algorithm was long used in standard single-instance

supervised machine learning to fit a linear model to the log-odds of the class probabilities.

At classification time a new instance is assigned to the class which corresponding linear

function value achieves maximum among all the classes. However, for the MIL problems

the standard logistic regression model cannot be directly used thus an indirect estimate of

the logistic model (MI-LR) was proposed by (Xu and Frank, 2004). They extended the

standard instance-based logistic regression model to a bag-level model under the

assumptions indicating how the instance-level class probabilities were combined to form

the bag-level probability so that the actual class label for each instance was not required.

A different approach is based on support vector machine (SVM) classifiers. SVM is

a supervised learning algorithm (by Vapnik, 1995) and it was used for solving MIL

problems as follows. In the standard single-instance SVM the training data is provided as a

set of instance-label pairs (bi, yi), where bi is an instance and yi is its label, which are then

non-linearly mapped to a higher-dimensional space F. The SVM algorithm aims to find the

maximum margin hyperplane in F that linearly separates two classes. Sequential Minimal

Optimization (MI-SMO) method (Platt, 1998) extended the standard SVM for MIL

problems by using a bag-level multi-instance kernel function. First, the bag-level kernel is

14

defined and the bag-label pairs (Bi, Yi) can then be used instead of instance-label pairs (bi,

yi). (Andrews et al., 2002) introduced another SVM-based approach, the MI-SVM

algorithm. The main idea was to transform the multi-instance data setting into a single-

instance setting by properly assigning the unobserved class label to each individual

instance in the positive bags. Then the standard single-instance SVM learning scheme was

used for assigning the labels. The goal was to find the maximum-margin multi-instance

separating hyperplane in which all instances in each negative bag are located on one side of

the hyperplane and at least one positive instance from all positive bags is located on the

other side of the hyperplane.

Another way to solve MIL problem is based on using distance measures. MI-

OptimalBall method (Auer and Ortner, 2004) was introduced as a weak learner

implemented within the boosting framework. The main idea was to find an optimal ball in

the feature space such that all negative bags were outside of this ball. In other words, the

surface of the ball separates positive and negative instances/concepts. The center of the

optimal ball is an instance from a positive bag and the radius of the ball is determined

based on the training data. During classification, if all instances in a test bag lie outside of

the optimal ball then the bag is classified as negative, otherwise as positive. The authors of

Citation-KNN (Wang and Zucker, 2000) used the K-nearest neighbor (KNN) algorithm to

compute the shortest distance between any two instances of each bag. Specifically, they

used Hausdorff metric at the bag-level to calculate the distance:

15

Dist (A,B) = Min (Dist(ai,bj)) = Min Min ||a-b||

 1≤ i ≤ n , 1≤ j ≤ m a ∈A , b∈B

where: A and B denote bags;

n and m are the total number of instances in bags A and B, respectively;

ai, bj are instances in each bag.

The new bags are labeled using the KNN algorithm. However, in the MIL scenario,

the majority label of the k nearest neighbors of an unlabeled bag is not always the true label

of that bag. This is because the majority voting scheme may not work in the presence of

false positive instances in the positive bags. This weakness was overcome by adding a

citation approach which considered not only the bags as the nearest neighbors (known as

references) of a given bag B, but also the bags that count B as their neighbors (known as

citations). Hence, the Citation-KNN predicts the label of a bag based on the labels of both,

the references and citers, of that bag. The performance of Citation-KNN was on par with

MIL algorithms such as Diverse Density (Maron and Lozano-Perez, 1998) and Axis

Parallel Rectangle (Dietterich et al., 1997). Unfortunately, Citation-KNN cannot be used to

predict the labels of all individual instances. The Multiple-Instance Nearest Neighbor with

Distribution Learner (MI-NND) method (Xu and Li, 2007) assumes that each bag contains

enough instances and that all dimensions of the data are equally relevant to classification.

Under these assumptions a distribution is derived for each dimension of each bag and the

obtained distributions are used directly for classification, instead of doing it on the original

16

data. MI-NND operates in two steps. The first step formulates distribution for each bag

based on the training data by deriving a Gaussian model for each dimension of each bag.

These Gaussian distributions are then used to represent the original data. The second step

finds the nearest neighbors for a test bag where the test bag is also represented by the

Gaussian distributions for each dimension. Next, the testing and training distributions are

compared using Kullback-Leibler distance and the category is decided based on the closest

match (classification process is just the same as in the standard KNN algorithm).

More recently, several other MIL algorithms were proposed. One, the Multiple-

Instance Learning via Embedded instance Selection (MILES) (Chen et al., 2006) converted

MIL problem to standard supervised learning by mapping each bag into a feature space

defined by the instances in the training bags using instance similarity measure and the 1-

norm SVM (Zhu et al., 2003) to solve it. Other two methods were also based on the SVM

but used deterministic annealing for identifying all labels (AL-SVM) and for identifying

the witness (AW-SVM) (Gehler and Chapelle, 2007). Based on the extended Random

Forest algorithm (Breiman, 2001), the mi-Forest defined labels of all instances in every

positive bag as random variables and used deterministic annealing procedure to find the

true labels (Leistner et al., 2010).

The above methods were developed using either the probabilistic EM approaches,

or nearest-neighbor approaches, or regression, or by extending the SVM classifier. Here,

we propose a new learner, mi-DS, based on our rule classifier called DataSqueezer (Kurgan

et al., 2006). mi-DS uses rules generated by DataSqueezer as a metric to measure the

17

distance between two bags in the training data. Our main goal was to develop a method that

builds predictive models that perform better or on par with the existing MIL methods.

Importantly, the proposed approach can be used as a generic framework to transform other

rule-based algorithms for solving MIL problems.

18

2.2 mi-DS algorithm

Pseudocode of the mi-DS is shown in Figure 2.1

mi-DS
Input: training bags {bi}, number of features k, total number of instances s

ScanInRuleTable
Input: Training bag bk, rule table RULE, matrix M

FOR (every instance i in bag bk)

FOR (each rule r in RULE)

IF (instance i covered by rule r)

FOR (each bag bj IN covered bags of the rule r) AND (k<>j)

then M[i,j]++

SimilarityMatrix
Input: List of training bags {bi}
Initialize the matrix M with n+1 rows and n+1 columns

FOR (k=1 to n)

 ScanInRuleTable(bi, RULEPOS, M)

 ScanInRuleTable(bi, RULENEG, M)

Output: Similarity matrix M

Step 1
Create POSITIVE table that contains all instances of all positive bags

Create NEGATIVE table that contains all negative instances of negative bags

Remove inconsistent instances from POSITIVE table and update s.

Step 2
RULEPOS � DataSqueezer (POSITIVE, NEGATIVE, k, s)

RULENEG � DataSqueezer (NEGATIVE, POSITIVE, k, s)

M � SimilarityMatrix ({bi}, RULEPOS, RULENEG)

Output: RULEPOS, RULENEG, similarity matrix M

Figure 2.1 Pseudocode of mi-DS algorithm.

19

mi-DS algorithm consists of two major steps that are described in detail below.

In Step 1 tables for positive and negative instances are created. Namely, we create

POSITIVE table that contains all instances of all positive bags and all of them (every

instance in this table) are labeled as positive. We also create NEGATIVE table that

contains all instances of all negative bags and all of them (every instance in this table) are

labeled as negative. We then convert all bags into two tables containing positive instances

and negative instances, respectively, like in a classical binary classification problem.

Inconsistent instances (identical instances that appear in both negative and positive bags)

are then removed from the POSITIVE table.

In Step 2 mi-DS calls DataSqueezer to generate the Positive (RULEPOS) and

Negative (RULENEG) rule tables. The RULEPOS table thus contains rules for “positive”

instances that, in fact, cover both the true positive and false positive instances because of

the MIL definition of the positive bag. RULENEG table, however, covers only true

negative instances. After performing data reduction, a rule is generated by incrementally

adding features by checking the POSITIVE table against the NEGATIVE table for

RULEPOS, and vice versa for the RULENEG. A feature with the highest summed up value,

which is computed using the number of occurrence of that particular feature multiplied by

the number of distinct values of the feature, is selected and added incrementally to a rule as

a selector until the rule does not describe any rows in the NEGATIVE table. Similarly for

the NEGATIVE table. Next, the rows described by the generated rule are removed from the

20

POSITIVE table and the process repeats. During this phase of rule generation the rules are

collected along with the information about which bags are covered by the rules.

Two thresholds are used to address the bias-variance dilemma. First, a pruning

threshold is used to control the rule generation process to keep the rulesfrom becoming too

specific. This was done by not allowing a rule to add more selectors than the number

specified by the threshold’s value. Second, a generalization threshold is used to allow for

generation of rules that cover a small number of negative examples.

After the RULEPOS and RULENEG tables are generated we build a similarity

matrix M that measures the similarity between two bags, as explained in Table 2.1. The

similarity matrix has n+1 rows and n+1 columns, where n is the number of bags in the

training data set. The value Mij stored in this matrix represents the total number of positive

and negative rules such that the bags bi and bj are covered by the rules. In other words, the

bag bi refers Mij times to the bag bj or the bag bj is cited Mij times by the bag bi. (n+1)th row

and the (n+1)th column are used to store the numbers of References and Citations, which

are used later to make a decision about a test bag label.

Table 2.1 Similarity matrix constructed in step 2. Mij is the number of the rules covering the bags bi
and bj; (n+1)th row and (n+1)th column are used during the subsequent prediction.

Row/Col 1 2 3 ... n n+1

1 0 M12 M13 ... M1n
2 M21 0 M23 ... M2n
.... 0 ...
n Mn1 Mn2 Mn3 ... 0

n+1

21

A measure was created to quantify similarity between the test bag and the training

bags and decide a label for the new bag. This was achieved by modification of the

measures described in (Wang and Zucker, 2000), so that it can be used within the rule-

based models. Specifically, instead of using the metric distances between the bags, the

number, uij, of rules that cover all the bags is used. For a given test bag, first fill the (n+1)th

row and the (n+1)th column in the similarity matrix, in the same way as in phase II but only

for the last row and the last column of the similarity matrix (see Table 2.1). To make a

decision about class of a test bag both the number of References (R) and the number of

Citations (C)must be used. To do so, first count, in row (n+1), the bags that have R

maximum values. The purpose is to find bags (both positive and negative) that the test bag

most often referred to. Similarly, next scan all rows of the similarity matrix and count the C

maximum values with the restriction that one of them must come from column (n+1), the

rule that covers the Test bag. The purpose is to find bags which the test bag B most often

cited.

P= Rp + Cp

N= Rn + Cn

where Rp (Rn) is the number of positive (negative) bags in the R selected bags and

Cp (Cn) is the number of positive (negative) bags in the C selected bags. The test bag is

predicted as positive if P > N, otherwise it is negative. When P = N there are different

ways of labeling unknown bags. A simple algorithm was developed for this purpose.

The pseudocode for the just described procedure is given in Figure 2.2.

22

PredictTestingBag

Input: test bag B, RULEPOS, RULENEG, matrix M)

CalculateSimilarityofTestingBag(B, RULEPOS,RULENEG, matrix M)

IF (P > N) then B is positive

ELSE IF (P < N) then B is negative

ELSE IF (Rp > Rn) then B is positive

ELSE IF (Rp < Rn) then B is negative

ELSE IF (Cp > Cn) then B is positive

ELSE IF (Cp < Cn) then B is negative

ELSE IF (# of positive bags > #number of negative bags in {b1,b2,..,bn})

THEN B is positive

ELSE B is negative

Output: Predicted label of testing bag B.

CalculateSimilarityofTestingBag

Input: Testing bag B, Rule tables RULEPOS and RULENEG, matrix M.

Set (n+1)th row and (n+1)th column in the similarity matrix M to 0

ScanInRuleTable(B,RULEPOS)

ScanInRuleTable(B,RULENEG)

Build list REF of bags which include the top R nearest references to B

Build list CITER of bags which include the top C nearest citers of B

Calculate P, N, Rp, Rn, Cp and Cn from REF and CITER

Output: P,N,Rp, Rn, Cp, Cn

Figure 2.2 Pseudocode, PredictTestingBag, for labeling test bag B.

Computational complexity of the mi-DS is analyzed next. In Step 1, the mi-DS

requires O(NposNneg) computations, where Npos is the number of instances in the positive

bags and Nneg is the number of instances in the negative bags. The complexities of Step 2,

23

(see Kurgan et al., 2006) are O(RposKNposlogNpos) for generating the RULEPOS table and

O(RnegKNneglogNneg) for generating the RULENEG table, where Rpos and Rneg are the total

numbers of rules in the RULEPOS and RULENEG, respectively, N is the total number of

instances, and K is the number of features. The construction of the similarity matrix takes

O(NRtotalK), where Rtotal is the total number of rules. Therefore, the computational

complexity of the algorithm is approximately O(Rtotal KN logN).

Data shown in Table 2.2 are used to illustrate the working of the mi-DS algorithm.

Table 2.2 Five training data bags.

Bag #
Features

Class label
Shape Color Width

1
Rect Green 200

+ Circle Blue 400
Circle Green 300

2
Circle Green 300

- Rect Blue 200
Triangle Blue 200

3
Rect Green 200

+ Circle Red 300
Triangle Blue 200

4
Rect Blue 200

-
Triangle Blue 200

5
Rect Green 200

+ Circle Blue 300
Rect Blue 200

Step 1
Create POSITIVE and NEGATIVE tables from the given training bags. Results are

shown in Table 2.3.

24

Table 2.3 POSITIVE and NEGATIVE tables.

POSITIVE table
Features Number of

times
occurred

Bag #
Shape Color Width
Rect Green 200 1 1

Circle Blue 400 1 1
Circle Green 300 1 1
Rect Green 200 1 3

Circle Red 300 1 3
Triangle Blue 200 1 3

Rect Green 200 1 5
Circle Blue 300 1 5

Rect Blue 200 1 5

NEGATIVE table

Features Number of
times

occurred
Bag #

Shape Color Width
Circle Green 300 1 2
Rect Blue 200 1 2

Triangle Blue 200 1 2
Rect Blue 200 1 4

Triangle Blue 200 1 4

Inconsistent instances are shown in bold in Table 2.3 (i.e., (Circle, Green, 300),

(Triangle, Blue, 200) and (Rect, Blue, 200)) are removed from the POSITIVE table but are

kept in the NEGATIVE table. Results are shown in Table 2.4. The bag number and the

count of the number of occurrences of each instance are also shown in Table 2.4.

25

Table 2.4 POSITIVE and NEGATIVE tables (after remove inconsistent instances).

POSITIVE table
Features Number of

times
occurred

Bag #
Shape Color Width
Rect Green 200 1 1

Circle Blue 400 1 1
Rect Green 200 1 3

Circle Red 300 1 3
Rect Green 200 1 5

Circle Blue 300 1 5

NEGATIVE table

Features Number of
times

occurred
Bag #

Shape Color Width

Circle Green 300 1 2
Rect Blue 200 1 2

Triangle Blue 200 1 2
Rect Blue 200 1 4

Triangle Blue 200 1 4

Step 2

In this step, RULEPOS and RULENEG tables are generated, see Table 2.5; the

table also shows bag numbers covered by these rules.

26

Table 2.5 RULEPOS and RULENEG tables; * indicates any value of a feature.

RULEPOS
Features Number

of times
occurred

Bags
Shape Color Width
Rect Green * 3 {1,3,5}

Circle Blue * 2 {1,5}
Circle Red * 1 {3}

RULENEG

Features Number
of times
occurred

Bags
Shape Color Width

* Blue 200 4 {2,4}
Circle Green * 1 {2}

Now we construct the similarity matrix (as seen in Table 2.6) as follows. For

example, bag 1 in Table 2.2 has three instances. Instance 1 (Rect,Green,200) is covered by

rule (Rect,Green,*) in RULEPOS table; because this rule also covers bags 3 and 5 thus

increase M[1,3] and M[1,5] . Instance 2 (Circle,Blue,400) is covered by rule

(Circle,Blue,*) in RULEPOS; because it also covers bag 5 M[1,5] is increased. Instance 3

(Circle,Green,300) is covered by rule (Circle,Green,*) in RULENEG; because it also

covers bag 2 we increase M[1,2] is increased. This results in the first row in Table 2.6

being (0,1,1,0,2).

27

Table 2.6 Similarity matrix M.

Bag# (label) 1(+) 2(-) 3(+) 4(-) 5(+) Test bag
1(+) 0 1 1 0 2
2(-) 0 0 0 2 0

3(+) 1 1 0 1 2

4(-) 0 2 0 0 0
5(+) 2 1 1 1 0

Test bag

Next, classification of a test bag B is performed shown in Table 2.7. First, every

instance in the bag is scanned to see whether it is covered by any rule from either

RULEPOS or RULENEG tables. If an instance in bag B is covered by a rule then the

values of M[n+1,j] and M[j,n+1] are incremented for every bag j in the bag lists (shown

in the last column of Table 2.4) for both RULEPOS and RULENEG tables.

Table 2.7 Test bag B with 5 instances in it.

Shape Color Width
Rect Green 300

Circle Green 100
Rect Blue 200

Circle Blue 100
Rect Green 100

For example, the instance (Rect, Green, 300) in bag B is covered by rule (Rect,

Green, *) from the RULEPOS table, so increase M[n+1,j] and M[j,n+1] is increased by 1

with bag numbers being j = 1,3,5. The last row and the last column of the similarity matrix

are updated as shown in Table 2.8. Finally, the algorithm shown in Figure 2.2 is used with

R=2 and C=2, and the resulting Rset and Cset values are:

28

Rset = {bag1(+), bag5(+)}

Cset = {bag1(+), bag2(-), bag3(+), bag4(-), bag5(+)}.

Label of the test bag B is then predicted based on the labels of bags in Rset and Cset.

Since Rp=2, Rn=0, Cp=3, Cn=2, P=Rp+Cp=5, and N=Rn+Cn=2, the test bag B is predicted as

positive.

Table 2.8 Similarity matrix M with scores for the test bag B, with R=2 and C=2.

Rule
covering

bag# (label)
1(+) 2(-) 3(+) 4(-) 5(+)

Test bag
B

1(+) 0 1 1 0 2 3
2(-) 0 0 0 2 0 2
3(+) 1 1 0 1 2 2
4(-) 0 2 0 0 0 1
5(+) 2 1 1 1 0 3

Test bag B 3 2 2 1 3 0

2.3 Experiments

The mi-DS’s performance is evaluated by comparing its performance with several

MIL algorithms using accuracy. For that purpose a diverse set of 26 benchmark data sets

are used: Musk1 and Musk2 (Dietterich et al., 1997), three data sets concerning

mutagenicity (Srinivasan et al., 1994), three data sets concerning content-based image

retrieval (Andrews et al., 2002), one data set for protein identification problem (Wang et al.

2004), two data sets to predict whether a train is eastbound or westbound (Michalski and

29

Larson, 1977), two artificial data sets and three data sets for text categorization (Ray and

Craven, 2005), and on Corel Corp. preprocessed image data. The data sets are summarized

in Table 2.9. They are characterized by different number of features ranging from 3 to 231,

number of instances ranging from 213 to 118,417, and different ratios of positive to

negative instances, ranging from 0.08 to 3.3.

The Musk data sets, from UC Irvine repository (Asuncion and Newman, 2007) are

often used in evaluation of MIL algorithms: the task is to predict whether a given molecule

emits a musky odor, where each bag describes one molecule (Dietterich et al., 1997). The

mutagenesis data concern analysis of drug activity with the goal of predicting whether a

given drug molecule is mutagenic or non-mutagenic: the molecules are represented by

atoms, atomic bonds, and chains (Srinivasan et al., 1994). The next three data sets concern

identification of the intended target objects in images. They include bags representing

photographs of animals from a Corel data set (Andrews et al., 2002). An image is

represented by a set of segments (pixel regions) that are characterized by color, texture, and

shape descriptors. A bag represents an image and instances in a bag represent individual

segments of that image. We use image data of elephants, foxes, and tigers; a positive bag is

based on an image that contains a given animal. Data set Trx was used to solve protein

identification problem (Wang et al. 2004). The data sets EastWest and WestEast are used to

predict whether a train is eastbound or westbound (Michalski and Larson, 1977). Two

artificial data sets are also used, Artificial 1 includes 200 bags with 100 positive and 100

negative bags; each bag has 20 instances with 12 features uniformly assigned as 0 or 1

30

(Chevaleyre and Zucker, 2001). The concept is described by the first three features, (1,0,1),

namely, if there exists in a bag at least one instance with the format of (1,0,1) with the

remaining features taking on any value, then the bag is a positive. The second artificial data

set includes 100 positive and 100 negative bags, each with 20 instances. Each instance has

2 features which were drawn randomly from a [0,100] x [0,100] in R2. An instance is

labeled as positive if the features fell in the square 5x5 in the middle of the domain,

namely, in [48,52] x [48,52]. The bag is labeled as positive if at least one instance fells

within this region and as negative otherwise (Maron and Lozano-Perez, 1998). Ray and

Craven introduced text categorization data. Given a name of a protein and a full-text article

from a biomedical journal, the task is to determine whether this protein-article pair can be

annotated with a particular Gene Ontology (GO) term. For MIL setting each article is

represented as a bag. An instance in a bag refers to a paragraph in the corresponding article.

Each paragraph is represented as a set of word occurrence frequencies plus data about the

nature of the protein-GO relationship. The assumption is that if there is at least one instance

(paragraph) that is related to the protein-GO relationship, the bag is positive, otherwise it

negative. There are three data sets that correspond to three categories of the GO terms,

namely, the Component, Function, and Process.

31

Table 2.9 Description of the data sets used in comparisons.

Experiment
Data sets #

features

of bags/
Positive bags/
Negative bags

of instances/
Positive instances/
Negative instances

I

Musk1 167 92/47/45 476/207/269
Musk2 167 102/39/63 6598/1017/5581
Atoms 11 188/125/63 1618/1073/545
Bonds 17 188/125/63 3995/2955/1040
Chains 25 188/125/63 5349/4116/1233
Elephant 231 200/100/100 1391/762/629
Fox 231 200/100/100 1320/647/673
Tiger 231 200/100/100 1220/676/544
Trx 8 193/25/168 26611/3341/23270
East-West 24 20/10/10 213/81/132
West-East 24 20/10/10 213/81/132
Artificial 1 13 200/100/100 4000/2000/2000
Artificial 2 3 200/100/100 4000/2000/2000

II

Corel Corp. image
data sets 9 250/50/200 variable

Component 200 3130/423/2707 36894/9104/27790
Function 200 5242/443/4799 55536/5543/49993
Process 200 11718/757/10961 118417/9272/109145

2.3.1 Experiment I

The mi-DS algorithm with MI-DD (Maron and Lozano-Perez, 1998), MI-EMDD

(Zhang and Goldman, 2001), MDD (Dietterich et al., 1997), MI-LR (Xu and Frank, 2004),

MI-SVM (Andrews et al., 2002), MI-SMO (Platt, 1998), MI-OptimalBall (Auer and

Ortner, 2004), Citation-KNN (Wang and Zucker, 2000) and MI-NND (Xu and Li, 2007) on

the first 13 data sets are compared. Weka (Witten and Frank, 2005) is used for

implementations of those algorithms. All experiments are performed on a 2.4 GHz CPU

with 3GB RAM and each algorithm is parameterized to maximize its accuracy using 10-

fold cross validation.

32

Table 2.10 shows performance of these algorithms in terms of accuracy. It is worth

noting that discretization was performed only on 8 training data sets (out of 13). Results of

each method on each data set are ranked according to accuracy. It is easy to observe that no

method is universally best. The average rank, over all data sets, of mi-DS is 6.4, which is

the second best after MI-DD with 6.2. The third best method, MI-SMO, has average

accuracy rank of 7.3. Interestingly, mi-DS performed best 4 times on the 13 data sets while

other methods were best at most once. The Citation-KNN algorithm on the Elephants,

Tigers and Fox data sets, as well as MI-SVM on the three mutagenesis data sets, generate

only positive labels, which explains their low accuracies.

Table 2.11 shows performance comparison in terms of the MCC (Matthews

Correlation Coefficient); see Appendix A for its definition. It shows that mi-DS performed

best on 7 out of 13 data sets, and the second best in 2 out of the remaining 6. Average rank

of mi-DS is the smallest (value of 2.8), while the next best is MI-SMO (value of 4.3).

33

Table 2.10 Accuracy measures of mi-DS and 9 comparison MIL algorithms. 10-FCV is used to calculate accuracy (%). The best results
are shown in bold with rank shown below in brackets.

Alg /
Data set

Musk
1

Musk
2

Ele-
phan

t
Fox Tiger Atoms Bonds Chains Trx East

West
West
East

Artifi-
cial 1

Artifi-
cial 2

Avg.
Rank

1 mi
DS

86.7
[5]

77
[8]

80
[1]

74.7
[6]

79.5
[3]

79.5
[5]

64.5
[2]

64.3
[9]

89
[2]

64.2
[5]

60
[3]

100
[1]

68.8
[1] 3.9

2 Citation
KNN

90.4
[1]

84.6
[3]

73.2
[4]

75.4
[4]

74.1
[7]

50
[10]

50
[8]

50
 [10]

87.6
[4]

45
[10]

50
[4]

60.5
[3]

67
[2] 5.4

3 MI
DD

84.7
[6]

80.4
[6]

72.9
[5]

76
[3]

79.9
[2]

81.5
[3]

59.4
[4]

72.2
 [4]

90
[1]

64.5
[4]

36
[8]

76.1
[2]

43.2
[10] 4.5

4 MDD 77.6
[8]

73
[9]

71.7
[6]

72.5
[8]

77.1
[5]

78.4
[7]

64.8
[1]

67.7
[6]

87.1
[5]

56.5
[8]

49
[5]

51.3
[10]

51.8
[4] 6.3

5 MI
EMDD

83.6
[7]

85.6
[1]

68.9
[8]

73.4
[7]

71.5
[8]

75.3
[8]

59.7
[3]

71.4
[5]

87.9
[3]

64
[6]

38
[7]

56
[6]

51.8
[4] 5.6

6 MI
NND

75.1
[9]

72.8
[10]

45.6
[10]

31.2
[10]

41.2
[10]

74.8
[9]

58.5
[5]

66.5
 [7]

87
[6]

57
[7]

74
[1]

55.2
[8]

45.9
[8] 7.7

7 MI-
SMO

87
[4]

84.9
[2]

71
[7]

82.4
[1]

85.2
[1]

82.4
[1]

55.2
[7]

80.3
 [1]

86.1
[8]

74
[2]

74
[1]

54.3
[9]

49.1
[7] 3.9

8 MI-
SVM

89.2
[2]

83.9
[4]

66.5
[9]

66.5
[9]

66.5
[9]

81.6
[2]

49.4
[9]

75.7
 [2]

87
[7]

52
[9]

22
[10]

55.5
[7]

50
[6] 6.5

9 MI-
LR

73.5
[10]

78.5
[7]

74
[3]

76.6
[2]

78.3
[4]

78.9
[6]

57.4
[6]

75.3
[3]

85.3
[9]

67
[3]

35.5
[9]

57.8
[5]

52.7
[3] 5.4

10
MI-

Optimal
Ball

87.5
[3]

83.2
[5]

75.3
[2]

75.3
[5]

75.3
[6]

79.6
[4]

48.7
[10]

66.3
 [8]

84.9
[10]

79
[1]

45.5
[6]

58.7
[4]

43.6
[9] 5.6

34

Table 2.11 MCC measures of mi-DS and 9 comparison MIL algorithms. 10-FCV is used to calculate MCC. The best results are shown in
bold with rank shown below in brackets.

Alg /
 Data set

Musk
1

Musk
2

Ele-
phant

Fox Tiger Atoms Bonds Chains Trx
East
West

West
East

Artifi-
 cial 1

Artifi-
cial 2

Avg.
Rank

1 mi
DS

0.877
[2]

0.521
[7]

0.802
[1]

0.731
[1]

0.731
[1]

0.58
[1]

0.589
[2]

0.561
[1]

0.204
[8]

-0.14
[6]

0.201
[4]

1
[1]

0.402
[1] 2.8

2 Citation
KNN

0.878
[1]

0.645
[3]

0
[10]

0
[9]

0
[10]

0.434
[3]

0.317
[6]

0.331
[7]

-0.204
[10]

0
[4]

0.011
[10]

0.214
[3]

0.381
[2] 6.0

3 MI
DD

0.858
[3]

0.356
[10]

0.653
[2]

0.315
[3]

0.531
[3]

0.332
[6]

0.413
[5]

0.445
[3]

0.301
[5]

-0.2
[7]

0.527
[1]

0.531
[2]

-0.138
[8] 4.5

4 MDD
0.59
[5]

0.478
[8]

0.607
[4]

0.411
[2]

0.492
[5]

0.237
[8]

0.278
[8]

0.426
[4]

0.25
[7]

0.218
[2]

0.187
[5]

0.026
[10]

0.039
[4] 5.5

5 MI
EMDD

0.795
[4]

0.807
[1]

0.477
[8]

0.218
[5]

0.455
[8]

0.375
[5]

0.306
[7]

0.389
[5]

0
[9]

-0.502
[9]

0.108
[8]

0.12
[7]

0.039
[4] 6.2

6 MI
NND

0.503
[10]

0.369
[9]

0.593
[5]

0.09
[8]

0.526
[4]

-0.109
[10]

-0.069
[10]

-0.02
[10]

0.408
[2]

0.104
[3]

0.108
[8]

0.103
[9]

-0.144
[9] 7.5

7 MI-
SMO

0.506
[9]

0.658
[2]

0.61
[3]

0.203
[6]

0.636
[2]

0.29
[7]

0.673
[1]

0.494
[2]

0.4
[3]

0.4
[1]

0.187
[5]

0.111
[8]

-0.041
[7] 4.3

8 MI-
SVM

0.584
[6]

0.56
[4]

0.559
[6]

-0.003
[10]

0.477
[6]

0
[9]

0
[9]

0
[9]

0.333
[4]

-0.436
[8]

0.187
[5]

0.14
[6]

0
[6] 6.8

9 MI-
LR

0.559
[8]

0.54
[6]

0.559
[6]

0.194
[7]

0.456
[7]

0.508
[2]

0.538
[3]

0.379
[6]

0.301
[5]

0
[4]

0.291
[2]

0.16
[5]

0.058
[3] 4.9

10
MI-

Optimal
Ball

0.572
[7]

0.548
[5]

0.469
[9]

0.258
[4]

0.365
[9]

0.38
[4]

0.432
[4]

0.324
[8]

0.436
[1]

-0.524
[10]

0.204
[3]

0.192
[4]

-0.157
[10] 6.0

35

The rank provides information about relative performance of the algorithms.

However, to test whether mi-DS performs significantly different than other algorithms two

statistical tests are used, the Wilcoxon signed-ranked test (Demsar, 2006) and the Friedman

test (Friedman, 1940; Demsar, 2006). Both are described in detail, including toy examples

how to use them in Appendix A. The results are summarized below.

Wilcoxon test is used to investigate statistical significance of the differences

between pairs of algorithms, one always being mi-DS and the other, in turn, each of the

remaining nine MIL algorithms. Friedman test is used to compare many algorithms at the

same time. The tests are performed using Table 2.10 (accuracies) and Table 2.11 (MCC).

The results are shown in Table 2.12.

Table 2.12 Wilcoxon and Friedman test results for comparing 9 MIL algorithms on 13 data sets.

 Accuracy α = 0.05, N = 13 MCC α = 0.05, N = 13

Wilcoxon
Test
(See

Appendix A
for details)

The null-hypothesis that a given pair of
algorithms performs equally well is rejected
when T ≤≤≤≤17 (in 5 cases). In other words, mi-DS
performs better than 5 algorithms.

Pair of compared
algorithms

R+ R–
T=min(R+,

R-)
mi-DS vs. Citation-

KNN
79 12 12

mi-DS vs. MI-DD 59 32 32
mi-DS vs. MDD 84 7 7

mi-DS vs. MI-EMDD 75 16 16
mi-DS vs. MI-NND 81 10 10
mi-DS vs. MI-SMO 43 48 43
mi-DS vs. MI-SVM 76 15 15
mi-DS vs. MI-LR 70 21 21

mi-DS vs. MI-Optimal
Ball

63 28 28

The null-hypothesis that a given pair of
algorithms performs equally well is rejected when
T ≤≤≤≤17 (in 8 cases). In other words, mi-DS
performs better than 8 algorithms.

Pair of compared
algorithms

R+ R–
T=min(R+,

R-)
mi-DS vs. Citation-

KNN 83 8 8
mi-DS vs. MI-DD 78 13 13
mi-DS vs. MDD 77 14 14

mi-DS vs. MI-EMDD 83 8 8
mi-DS vs. MI-NND 82 9 9
mi-DS vs. MI-SMO 64 27 27
mi-DS vs. MI-SVM 86 5 5
mi-DS vs. MI-LR 75 16 16

mi-DS vs. MI-Optimal
Ball

83 8 8

Friedman
test
(See

Appendix A
for details)

The null hypothesis that all algorithms perform at
the same level is rejected because the calculated
Fr value (18.10) is bigger than the critical value
(16.92). In other words, mi-DS is performing
significantly different than other algorithms.

The null hypothesis that all algorithms perform at
the same level is rejected because the calculated
Fr value (22.87) is bigger than the critical value
(16.92). In other words, mi-DS is performing
significantly different than other algorithms.

36

From Table 2.12 it can be concluded that in terms of Wilcoxon test, using accuracy

as the performance measure, mi-DS performs significantly better than Citation-KNN,

MDD, MI-EMDD, MI-NND and MI-SVM. It performs on par with the MI-DD, MI-SMO,

MI-LR and MI-OptimalBall algorithms.

When comparing MCC as the performance metric, Wilcoxon test tells us that mi-

DS performs better than other 8 algorithms except MI-SMO.

While Friedman tests does not determine which algorithm is better or worse, it can

show significant difference between MIL algorithms’ performances. That is to say the mi-

DS is significantly different from the other 9 algorithms, when analyzing performance in

terms of both the accuracy and the MCC.

While the Wilcoxon and Friendman tests perform different comparisons, the same

conclusion can be drawn, mi-DS performs better than or on par with the other MIL

algorithms.

2.3.2 Experiment II

In the following experiments, the MIL algorithms are used on the three text data

sets (see Table 2.9). Note that the positive and negative class distributions in these data sets

are highly unbalanced. However, to balance the classes during training the same number of

positive and negative bags are used, namely, 359 for Component, 385 for Function, and

620 for Process data sets. The remaining bags are used for testing, namely, 64 positive and

2348 negative bags for Component, 58 positive and 4414 negative for Function, and 137

positive and 10341 negative for Process.

37

The mi-DS algorithm is also tested on preprocessed Corel Corp. image data sets.

After preprocessing, images are considered as bags, each containing from 3 to 13 instances

of the same object (e.g., dinosaur), and are described by 9 features extracted from the

images by (Chen and Wang, 2004). Images belong to 10 categories, with 100 images per

category, and are stored in the JPEG format; sizes of the images are 384x256 or 256x384.

Example dinosaurs’ images, both unprocessed and processed, are shown in Figure 2.3.

Figure 2.3 Dinosaurs images from Corel’s data: before preprocessing (left column) and after
preprocessing (right column).

Figure 2.4 Images in Corel’s data sets after preprocessing.

38

The training and testing data are created as follows: Choose randomly 5 categories

and then select randomly 50 images from each category this constitutes the training data

set, namely, total of 250 bags for training and the remaining 250 bags for testing. Next, we

take 50 images of one category and mark it Positive, while the rest (200) is marked

Negative. This is done for both training and testing. Table 2.5 summarizes performance of

10 algorithms for one case in which Africa, Beach, Building, Bus, and Dinosaur, were

chosen.

Because of the high unbalance between the positive and negative bags we assess the

performance of the algorithms in terms of both accuracy and MCC measures.

The performance of mi-DS and other algorithms in terms of accuracy on these data

sets (text and image) are shown in Table 2.13. Text categorization experiments show that

mi-DS performed on par with MDD, MI-SMO and MI-Optimal Ball algorithms. Average

rank (last row in Table 2.13) shows that mi-DS performed better than the other 6

algorithms: Citation-KNN, MDD, MI-EMDD, MI-NND, MI-SMO and MI-SVM.

The performance of mi-DS and other algorithms in terms of the MCC (see details in

Appendix A) are shown in Table 2.14.

Text categorization experiments show that mi-DS performed best, while on image

data sets it achieved only average rank. The average rank (last row in Table 2.13) shows

that mi-DS performed better than the same 6 algorithms as when using accuracy (Citation-

KNN, MDD, MI-EMDD, MI-NND, MI-SMO and MI-SVM).

39

Table 2.13 Comparison with 9 MIL (in term of accuracy) algorithms on Text and Corel Images
data; the best results for each data set are shown in bold.

Data set
mi-
DS

Citation
-

KNN

MI-
DD

MDD
MI-

EMDD
MI-

NND
MI-
SMO

MI-
SVM

MI-
LR

MI-
Opti
mal
Ball

Component
Train: 359 Pos,
359 Neg bags
Test: 64 Pos, 2348
Neg bags

84.1
[3]

63.8
[9]

74.8
[7]

91
[1]

61.4
[10]

77.5
[6]

82.3
[5]

67.1
[8]

86.2
[2]

84.1
[3]

Function
Train: 385 Pos,
385 Neg bags
Test: 58 Pos, 4414
Neg bags

97.1
[1]

71.9
[8]

92.2
[5]

95.6
[3]

78.1
[7]

93.8
[4]

91.4
[6]

62.5
[10]

68.2
[9]

97.1
[1]

Process
Train: 620 Pos,
620 Neg bags
Test: 137 Pos,
10341 Neg bags

87.3
[5]

80.1
[9]

91.4
[3]

96.8
[1]

86.2
[7]

85.7
[8]

91.3
[4]

78.6
[10]

93.8
[2]

87.3
[5]

Africa
Test and Train has
50 Positive bags,
200 Negative bags

87.6
[5]

85.2
[6]

92.8
[1]

84
[7]

90.8
[2]

78.4
[10]

83.6
[8]

80*
[9]

90.4
[3]

88.4
[4]

Beach
Test and Train has
50 Positive bags,
200 Negative bags

82.8
[7]

88
[2]

86
[4]

84
[6]

88.8
[1]

32.8
[10]

80*
[8]

80*
[8]

86
[4]

88
[2]

Building
Test and Train has
50 Positive bags,
200 Negative bags

84
[5]

85.6
[3]

91.2
[1]

84.4
[4]

87.6
[2]

43.6
[10]

80*
[8]

80*
[8]

82
[7]

82.4
[6]

Bus
Test and Train has
50 Positive bags,
200 Negative bags

92.4
[3]

91.2
[5]

93.2
[2]

80.8
[9]

89.2
[7]

89.2
[7]

94.4
[1]

80*
[10]

92.4
[3]

90
[6]

Dinosaur
Test and Train has
50 Positive bags,
200 Negative bags

98
[6]

99.6
[3]

100
[1]

80*
[8]

100
[1]

58.8
[10]

88.4
[7]

80*
[8]

99.6
[3]

99.2
[5]

Average Rank 4.4 5.6 3.0 4.9 4.6 8.1 5.9 8.9 4.1 4.0

* Algorithm assigns all bags into one class only.

40

Table 2.14 Comparison with 9 MIL algorithms (in terms of MCC) on Text and Corel Images data;

the best results for each data set are shown in bold.

Data set
mi-
DS

Citation
-

KNN

MI-
DD

MDD
MI-

EMDD
MI-

NND
MI-

SMO
MI-

SVM
MI-
LR

MI-
Opti
mal
Ball

Component 0.3
[1]

0.136
[6]

0.131
[7]

0.09
[10]

0.118
[8]

0.11
[9]

0.15
[4]

0.182
[2]

0.166
[3]

0.138
[5]

Function 0.608
[1]

0.108
[5]

0.165
[2]

0.08
[9]

0.119
[4]

0.09
[6]

0.127
[3]

0.08
[9]

0.09
[6]

0.09
[6]

Process 0.517
[1]

0.129
[7]

0.179
[4]

0.11
[10]

0.125
[8]

0.122
[9]

0.177
[5]

0.185
[2]

0.167
[6]

0.185
[2]

Africa
0.127
[9]

0.573
[6]

0.764
[1]

0.4
[7]

0.693
[2]

0.273
[8]

0.648
[4]

0
[10]

0.677
[3]

0.601
[5]

Beach
0.037
[8]

0.535
[3]

0.497
[5]

0.402
[6]

0.615
[1]

-0.071
[10]

0.064
[7]

0
[9]

0.51
[4]

0.585
[2]

Building
0.067
[8]

0.502
[3]

0.706
[1]

0.421
[4]

0.567
[2]

-0.197
[10]

0.387
[5]

0
[9]

0.375
[6]

0.361
[7]

Bus 0.987
[1]

0.652
[6]

0.778
[3]

0.18
[10]

0.631
[7]

0.437
[8]

0.872
[2]

0.22
[9]

0.75
[4]

0.665
[5]

Dinosaur
0.953
[5]

0.951
[6]

1
[1]

0
[10]

1
[1]

0.164
[9]

0.735
[8]

0.78
[7]

0.988
[3]

0.975
[4]

Average
Rank

4.3 5.3 3 8.3 4.1 8.6 4.8 7.1 4.4 4.5

The Wilcoxon and Friedman tests are performed using Table 2.13 (accuracies) and

Table 2.14 (MCC). The results are shown in Table 2.15.

41

Table 2.15 Wilcoxon and Friedman test results for comparing 9 MIL algorithms on text and Corel
images data.

 Accuracy α = 0.05, N = 8 MCC α = 0.05, N = 8

Wilcoxon
Test
(See

Appendix A
for details)

The null-hypothesis that a given pair of algorithms
performs equally well is rejected when T ≤≤≤≤4 (in 2
cases). In other words, mi-DS performs better than
2 algorithms.

Pair of compared
algorithms

R+ R–
T=min(

R+,
R-)

mi-DS vs. Citation-KNN 26 10 10
mi-DS vs. MI-DD 13 23 13
mi-DS vs. MDD 22 14 14

mi-DS vs. MI-EMDD 19.5 16.5 16.5
mi-DS vs. MI-NND 36 0 0
mi-DS vs. MI-SMO 29 7 7
mi-DS vs. MI-SVM 36 0 0
mi-DS vs. MI-LR 11.5 24.5 11.5

mi-DS vs. MI-Optimal
Ball

16 20 16

The null-hypothesis that a given pair of algorithms
performs equally well is rejected when T ≤≤≤≤4 (in 2
cases). In other words, mi-DS performs better than 2
algorithms.

Pair of compared
algorithms

R+ R–
T=min(

R+,
R-)

mi-DS vs. Citation-KNN 18 18 18
mi-DS vs. MI-DD 14 22 14
mi-DS vs. MDD 27 9 9

mi-DS vs. MI-EMDD 14 22 14
mi-DS vs. MI-NND 34 2 2
mi-DS vs. MI-SMO 22 14 14
mi-DS vs. MI-SVM 36 0 0
mi-DS vs. MI-LR 17 19 17

mi-DS vs. MI-Optimal
Ball

18 18 18

Friedman
test
(See

Appendix A
for details)

The null hypothesis that all algorithms perform at
the same level is rejected because the calculated Fr
value (26.60) is bigger than the critical value
(16.92). In other words, mi-DS is performing
significantly different than other algorithms.

The null hypothesis that all algorithms perform at
the same level is rejected because the calculated Fr
value (27.95) is bigger than the critical value
(16.92). In other words, mi-DS is performing
significantly different than other algorithms.

From Table 2.15 we conclude that in terms of Wilcoxon test, using accuracy as the

performance measure, mi-DS is significantly better than MI-NND and MI-SVM. It

performs on par with the Citation-KNN, MI-DD, MDD, MI-EMDD, MI-SMO, MI-LR and

MI-OptimalBall algorithms.

When using MCC as the performance measure, Wilcoxon test tells us that mi-DS

performs better than MI-NND and MI-SVM. The mi-DS performs on par with other 7

algorithms.

42

While the Wicloxon and Friendman tests perform different comparisons, the same

conclusion can be drawn, mi-DS performs better than or on par with the other MIL

algorithms.

An important feature of the mi-DS algorithm, in contrast to other MIL algorithms,

is that it works well on data with missing values, which are treated as “do not care” values.

To test this scenario we introduced missing values into Musk 1, Atoms, Bonds, Elephants,

Fox and Artificial 1 data sets. It was done by randomly deleting 5%, 10%, 15%, 20%, 25%

and 30% of the feature values. mi-DS was then run using 10FCV and the results are shown

graphically in Figure 2.5. They indicate that mi-DS performs quite well up to 10% of

missing values. This result could not be compared with other MIL algorithms because no

published results were available at the time of this writing.

Figure 2.5 Accuracy of mi-DS on data with missing values.

50.0

60.0

70.0

80.0

90.0

100.0

0% 5% 10% 15% 20% 25% 30%

Missing value (%)

A
cc

u
ra

cy

Musk 1

Atoms

Bonds

Elephants

Fox

Artificial 1

43

2.4 Summary

A new rule-based MIL algorithm is created, called mi-DS, and compared with 9

state-of-the-art MIL algorithms on 26 diverse data sets that ranged from numerical data, to

text, to image data. The results indicated that although there was no single generally best-

performing algorithm, however on all data sets the mi-DS performed very well and had

very desirable characteristics that distinguished it from the rest.

First, on average, it showed very good predictive accuracy on most data sets, as

measured by both accuracy and MCC criteria. In particular, it exhibited good performance

on challenging image and textual data. Second, the differences in performance between mi-

DS and the other algorithms were statistically significant for the six of them . Third, mi-DS

also performed quite well on data with missing values.

Important to note is that the approach taken in the mi-DS algorithm can be used as a

generic framework for converting other rule-based algorithms so they can be used to solve

MIL problems. This can be done in phase I of mi-DS, as the rule generation process can be

done by any rule learner, while the construction of the similarity matrix in phase II, and the

prediction procedure used in phase III would remain the same.

44

CHAPTER 3 One-class Learning Algorithm: OneClass-DS

3.1 State of the Art

In classical learning problems, training data are available for all classes. In such

cases the learning algorithm can use all this information to discriminate between classes.

However, there are many problems where only a single class of instances is known at the

training time. At prediction time, new instances, with unknown class labels, can either

belong to the target class (learned during training) or to some other class that was not seen

during training. In this scenario, two different predictions are possible: Target, meaning an

instance belongs to the class learned during training or Unknown, where the instance does

not belong to the previously learned Target class. This type of a learning problem is known

as one-class classification. One-class classification problem is also known as an

outlier/novelty detection problem because the learning algorithm differentiates between

target data (normal) and the rest (abnormal) using information about distribution of training

data.

There is a wide variety of application domains for one-class algorithms such as a

strange traffic patterns in a computer network (that can be caused by a hacked computer

which sends sensitive data to an unauthorized destination), abnormal patterns in patient

medical records (that could be symptoms of a new disease), outliers in credit card

45

transaction data (that could indicate credit card theft), an unusual change in satellite images

of the enemy area (that could indicate enemy troop movements), and many more.

In many other cases it is advantageous to convert a binary classify problem to one-

class problem to obtain better results. For example, Nosocomial infections (Nis) is one of

the major causes of increased mortality among hospitalized patients. The goal is to identify

patients with one or more Nis on the basis of clinical data and data collected during a

survey. It is a two-class classification problem (one has Nis or not) but there is a significant

imbalance in data stored in database, namely, between the positive (infected) cases (11%)

and the negative (non-infected) cases (89%). A shown by Cohen et al (Cohen et al, 2004),

solving this problem as a binary classification problem results in sensitivity of 50.6%.

However, if this is converted into one-class classification problem, where “Target” means

non-infected patients and solve it as one-class classification it increases the sensitivity to

92.6% (Cohen et al, 2004).

Several methods have been proposed to solve the one-class classification problem.

The most popular approaches can be divided into four categories: the density estimation,

boundary, reconstruction methods, and rule-based methods. For each of these approaches

different algorithms can be constructed. Each of these one-class classification methods

differs in its ability to cope with or exploit, different characteristics of the data. The most

salient characteristics when considering these problems are the scaling of features in the

data, grouping of objects into clusters, convexity of data distribution and their position

46

based on a set of prototypes as defined with reconstruction error. An overview of the

categories of classification methods is presented in the next sections.

3.1.1 Density estimation methods

The most straightforward method is to estimate density of the training data

(Tarassenko et al., 1995) and then use some threshold to encompass the data. When data

are sufficiently large and a density model, such as Parzen, is used this approach works

quite well. The drawback, however, is that it requires a large number of instances to

overcome the challenge of dimensionality (Duda and Hart, 1973). If the dimensionality of

data and complexity of the density model are restricted, then a large bias may be

introduced, resulting in a model that does not fit the data well. Finding the right model to

describe the target data distribution is a typical bias-variance dilemma. Using the density

approach one needs to assume a distribution type such as Gaussian (Bishop, 1995; Ullman,

1978), or mixture of Gaussians (Duda and Hart, 1973; Bishop, 1995), or Parzen (Parzen,

1962; Kraaijveld and Duin, 1991). Hempstalk et al. (Hempstalk et al., 2007) developed an

algorithm which builds a density function from a chosen distribution and then combines

this function with a class probability to form an adjusted estimate of the density function of

the target class, which is then used for constructing a decision tree.

3.1.2 Boundary methods

In boundary methods a closed boundary around the target data set is defined first

and then optimized. Those methods rely heavily on distances between instances and are

sensitive to feature scaling (Vapnik, 1998). Although the volume of data is not always

47

minimized, most methods have a strong bias towards a minimal-volume solution. The size

of the volume is depends on the model. The advantage of boundary methods is that the

number of instances required for training is smaller than the number required in density

methods. The difficulty is shifted into defining appropriate distance measures. One such

method is the k-center method that covers the data with k small balls with equal radii

(Ypma and Duin, 1998). The ball centers, µk, are placed on training instances such that the

maximum of all minimum distances between training instances and the centers is

minimized. In fitting the model the following error is minimized:

ε������� = 	max
�

�min
�

‖x� − μ�‖	�

The method uses a greedy search strategy starting with random initialization. The

radius is determined by the maximum distance to the instances that the corresponding ball

captures. This method is sensitive to outliers, possibly present in the data, but works well

when data have good (compact) clustering structure. The user, however, needs to specify a

priori both the number of balls, k, and the maximum number of tries (the number of runs

with random initialization), which are a weaknesses. Another method is the nearest-

neighbor method, NN-d, which is designed from local density estimation by the nearest

neighbor classifier (Duda and Hart, 1973). It avoids explicit density estimation and uses

only distances to the first nearest neighbors. It is similar to the methods of (Knorr et al.,

2000) and (Breunig et al., 2000) used for outlier detection in large databases. In the nearest

neighbor density estimation a cell, often a hypersphere in a d dimensional space, is

centered around the training instance z. The volume of this cell is grown until it captures k

48

instances of training data. Support vector machine (SVM) with RBF kernel was also used

for anomaly detection (Ratsch et al., 2002). For each new instance, the method determines

if it falls within the learned region: if it does then the instance is considered as Target,

otherwise as an outlier. A similar approach, called Robust SVM, was used for intrusion

detection (Hu et al., 2002).

3.1.3 Reconstruction methods

Reconstruction methods use prior knowledge about the data and make assumptions

about the data-generating process to build a classifier fitting the data. One typical

assumption is that a compact representation of the target data can be obtained to decrease

noise influence (Bishop, 1995; Carpenter et al., 1991). The reconstruction methods assume

that outlier instances do not satisfy assumptions about the target class distribution. During

testing, a new instance may have low or high noise component and thus a corresponding

low or high reconstruction error calculated as a distance to the target data set. Users need

to choose appropriate thresholds when using these methods. Other reconstruction methods

require a priori and/or predetermined suitable parameter values in order to create a

successful classifier. For example, in learning vector quantization (Carpenter et al., 1991)

and k-means clustering (Bishop, 1995) it is the number of clusters. In self-organizing

feature maps (Kohonen, 1995) it is the dimensionality of the manifold, the number of

prototypes per manifold and the learning rate. In PCA (Bishop, 1995) it is the mean and

basis vectors for each of the subspaces, and the noise variance outside the subspaces. In

diabolo networks (Hertz et al., 1991; Baldi and Hornik, 1989) and auto-encoder networks

49

(Japkowicz et al., 1995) it is the number of layers and neurons, learning rates, and stopping

criteria.

3.1.4 Rule-based methods

Rule based techniques generate rules that capture target behavior of a system

(Skalak and Rissland, 1990; Salvador and Chan, 2005). Instances that are not covered by

any of the rules are considered outliers. Different techniques generate rules in different

ways. Classification techniques such as IREP and RIPPER (Cohen, 1995) learn rules from

noisy data by accommodating outliers present in the training data. An outlier class is

artificially generated so the classifier (RIPPER) can learn the boundaries between the two

classes. (Fan et al., 2001) introduced a supervised outlier detection method to detect

network intrusions. (John, 1995) adapted the C4.5 algorithm to detect outliers in the data.

A similar approach was used by (Abe et al., 2006) where the authors utilized a Query by

Bagging method.

Another approach is to use association rule mining to generate rules, which requires

a user to provide a minimum support threshold (Barbará et al., 2001; Tandon and Chan,

2007). The advantage of this approach is that it utilizes the fact that outliers occur very

rarely in the data, and are dealt with by careful choosing of the support threshold to ensure

that outliers are not taken into account in the process of rule generation. To ensure that

rules correspond to strong patterns only rules with low support value are pruned. An

application of this technique for intrusion detection was used in the ADAM (Audit Data

Analysis and Mining) system (Barbara et al., 2001), and by (Otey et al., 2003) for intrusion

50

detection embedded on the Network Interface Card (NIC). LERAD (Mahoney and Chan,

2002) method generates association mining rules from data of the form P(notW | U), which

is a conditional probability of one subset of attributes taking a particular set of values

(denoted by notW) given that a disjoint subset of attributes takes on a particular set of

values (denoted by U). In order to deal with high number of rules that can be generated,

they used sampling and randomization techniques. A similar approach was used for credit

card fraud detection by (Brause et al., 1999) and for fraud detection in spacecraft house-

keeping data by (Yairi et al. 2001). (Zengyou et al., 2004) proposed an outlier detection

algorithm for categorical data sets by making the observation that an outlying transaction

occurs in fewer frequent itemsets as compared to a normal transaction. They also proposed

a measure called Frequent Pattern Outlier Factor (FPOF) that ranked the transactions based

on the number of frequent itemsets they occur in.

3.2 OneClass-DS algorithm

In a binary-classification problem there are positive and negative instances

(representing two classes) available for training. When rules for the positive (or negative)

class are generated, they are found based on comparisons of positive instances with the

negative (or positive) instances. During testing an instance is assigned to either the

positive or negative class. This simple scheme cannot be used for solving one class

classification problem since instances representing only (one) Target class are available.

Moreover, Target instances may contain noise so they can be true targets or false outliers

51

(FO), which is shown in the left rectangle in Figure 3.1. Similarly, the Outlier instances

(known only during testing) can be true outliers or false targets, shown in the right

rectangle in Figure 3.1.

Figure 3.1 Training and test scenarios

It is required by many inductive learning algorithms, such as decision trees, that the

data are discretized before they are used. OneClass-DS algorithm also requires

discretization as a pre-processing step.

The OneClass-DS algorithm generates rules by performing greedy hill-climbing

search in a manner similar to the DataSqueezer algorithm (Kurgan et al., 2004), thus the

name OneClass-DS. However, DataSqueezer works only on binary (and multi-class)

classification problems and generates rules by comparing the positive (one class) instances

against the negative (other class) instances. Thus, to design an algorithm able to generate

rules from one-class data only, the OneClass-DS uses four user-specified heuristic

parameters to guide the rule generation process: Threshold, MinCoverTager, MinAttribute

and MaxAttribute. The generated rules are accepted only if the total number of selectors in

52

a rule is in the range between MinAttribute and MaxAttibute. The rules are in the format IF

(Feature x = value a) and (Feature y = value b)… THEN Target instance. All selectors in a

rule must satisfy two conditions: they must cover minimum number of target instances

(MinCoverTarget) and have the summed-up value equal to or larger than the Threshold.

The summed-value of a selector is calculated by multiplying the number of values a feature

takes on by the number of times it appears in the entire target training data set. The

pseudocode of the OneClass-DS algorithm is shown in Figure 3.2

53

OneClass-DS

Input: TargetTable, MinAttribute,MaxAttribute, MinCoverTarget, Threshold

Rules � []

While TargetTable ≠ empty

Create list L of selectors, s, each selector satisfying two conditions:

its summed-up-value ≥Threshold and

its cover ≥ MinCoverTarget

If (list L= empty) break;

rule r � []

Select s from L which has the maximum summed-up-value and add it to rule r, and

delete s from L

While (total number of selectors in rule r < MinAttribute) and (list L not empty)

Choose the next selector, s, and add it to rule r : r � r U {s}

Delete s from L

If (total number of selectors in rule r = MaxAttribute) break

End While

Delete all instances in TargetTable covered by rule r

Rules � Rules U { r}

End While

Output: Rules (for Target class)

Figure 3.2 Pseudocode of OneClass-DS algorithm.

The process of generating rules is repeated several times with different settings of

the four parameters. To choose the best model from the generated ones, the Target rate

(sensitivity) measure is used:

54

Target	Rate = True	Targets	�TT�
Total	Targets	�TT + FO� = Sensitivity

Target Rate is used in the following way. Although Target data is supposed to

consist only of true targets, in reality it often contains false outliers, as shown in Figure 3.1.

To identify the FO we use 10-FCV in the following way. The model is built from 9/10 of

the target data but when testing it on the 1/10 of the data, some of its instances may not be

recognized as (true) targets, and thus they are identified as false outliers, FO. At the end of

the 10-FCV process all the instances that were recognized as FO are subtracted from the

Target data. The model that has the largest Target Rate is chosen as the best one.

Choosing higher values of parameters results in creation of “strong rules” and such

rules would predict new test target instances with higher accuracy. Conversely, using lower

values of the parameters would result in generating “weaker” rules.

Computational complexity of OneClass-DS algorithm is approximately

O(RKNlogN), where R is the number of rules in Rules, N is the number of instances, and K

is the number of attributes.

Data shown in Table 3.1 are used to illustrate the working of the OneClass-DS

algorithm.

Table 3.1 Training data instances.

F1 F2 F3 F4 Class
1 1 1 1 T
1 2 1 2 T
1 4 2 2 T
1 4 4 1 T
4 5 5 4 T

55

Suppose we choose the following values of the parameters: MinCoverTarget=25%,

MaxAttribute=2, MinAttribute=2, Threshold=0. The summed-up values (vij) are calculated

in Table 3.2, where i refers to the value of the feature, j refers the feature number, and (vij)

= (the number of times that value appears)*(the total number of different values) for each

feature, are calculated as depicted in Table 3.2

Table 3.2 Summed-up values for features shown in Table 3.1.

Feature Total number of values Summed-up values

F1 2 values {1,4} v11=4x2, v41=1x2

F2 4 values {1,2,4,5} v12=1x4, v22=1x4,v42=2x4,v52=1x4
F3 4 values {1,2,4,5} v13=2x4, v23=1x4,v43=1x4,v53=1x4
F4 3 values {1,2,4} v14=2x3, v24=2x3, v44=1x3

We notice that F1, F2, and F3 have the same maximal summed-up values, namely,

v11 = v42 = v13 = 8.

We choose the first feature, F1, and add selector “F1=1” to start creating the first

rule, which results in:

IF F1=1

Table 3.3 shows instances covered (all but one) by (F1=1). We continue calculating

summed-up values of the remaining features (except for F1), as shown in Table 3.4, in

order to choose the next selector for the first rule.

Table 3.3 Instances in one-class training data set covered by (F1 =1).

F1 F2 F3 F4 Class
1 1 1 1 T
1 2 1 2 T
1 4 2 2 T
1 4 4 1 T

56

Table 3.4 Summed-up values for features shown in Table 3.3.

Feature Total number of values Summed-up values

F2 3 values {1,2,4} v12=1x4 v22=1x4,v42=2x4

F3 2 values {1,2,4} v13=2x4, v23=1x4,v43=1x4
F4 2 values {1,2} v14=2x3, v24=2x3

Now features F2 and F3 have the same max summed-up values, namely, v42 = v13

= 8 so we choose F2 with value 4 as the next selector and add it to the first rule:

IF F1=1 AND F2=4

After choosing the second selector the process stops because MaxAttribute=2.

Thus, the final version of the first rule is:

IF F1=1 AND F2=4 THEN CLASS = T (it covers 40% of Target data)

To generate the remaining rules we delete all instances covered by the first rule; the

reduced data set is shown in Table 3.5.

Table 3.5 Training data instances that remain after deleting the instances covered by the first rule.

F1 F2 F3 F4 Class
1 1 1 1 T
1 2 1 2 T
4 5 5 4 T

We again calculate the summed-up values (vij) for each feature, as shown in Table

3.6.

57

Table 3.6 Summed-up values for features shown in Table 3.5.

Feature Total number of values Summed-up values

F1 2 values {1,4} v11=2x2, v41=1x2

F2 3 values {1,2,5} v12=1x3, v22=1x3,v52=1x3
F3 2 values {1,5} v13=2x2, v53=1x2
F4 3 values {1,2,4} v14=1x3, v24=1x3, v44=1x3

We notice that F1 and F3 have the same maximum summed-up values, namely, v11

= v13 = 4. Thus, we choose the first feature, F1, and add selector “F1=1” to start creating

the second rule:

IF F1 = 1

Table 3.7 shows instances covered (all but one) by (F1=1). We continue calculating

summed-up values of the remaining features (except for F1), as shown in Table 3.8, in

order to choose the next selector for the second rule.

Table 3.7 Instances in Table 3.5 covered by (F1 =1).

F1 F2 F3 F4 Class
1 1 1 1 T
1 2 1 2 T

Table 3.8 Summed-up values of features (for instances shown in Table 3.7).

Feature Total number of values Summed-up values

F2 2 values {1,2} v12=1x2, v22=1x2

F3 1 values {1} v13=2x1
F4 2 values {1,2} v14=1x2, v24=1x2

Features F2, F3 and F4 have the same max summed-up values, namely, v12 = v22 =

v13 = v14 = v24 =2. In this case, F3=1 is the best selector because this selector covers all

58

instances in Table 3.7. Thus, we choose F3 with value 1 as the next selector and add it to

the second rule:

IF F1=1 AND F3=1

After adding the second selector the process stops because MaxAttribute=2. Thus,

the final version of second rule is:

IF F1=1 AND F3=1 THEN CLASS = T (it covers 40% of Target data)

After deleting all instances (in Table 3.5) covered by the second rule we are left

with data shown in Table 3.9.

Table 3.9 Training data instances after deleting instances covered by the first two rules.

F1 F2 F3 F4 Class
4 5 5 4 T

Since there is only one remaining instance, and MinCoverTarget=25% of target

instances, the OneClass-DS algorithm stops generating rules.

Thus, only these two rules were generated from the target training instances:

IF F 1 = 1 AND F2 = 4 THEN CLASS = T

(covers instances 3 and 4 , or 40% of target instances)

IF F1 = 1 AND F3 = 1 THEN CLASS = T

(covers instances 1 and 2 , or 40% of target instances)

Notice that by choosing the specified initial parameters it allowed for mot covering

one instance.

59

3.3 Experiments

The OneClass-DS algorithm was implemented as a function for the WEKA

software to allow for standard testing of all the experiments described below.

To compare OneClass-DS with other algorithms false alarm rate (FAR) and

imposter pass rate (IPR) measures were used. They are defined (Hempstalk et al., 2007) as:

FAR =
False	Outliers(FO)

True	Outliers�TO� + False	Outliers(FO)

IPR =
False	Targets	(FT)

True	Targets�TT� + False	Targets(FT)

The FAR specifies the number of true Target instances incorrectly identified as

outliers (false negatives). The IPR specifies the number of outlier instances that are

wrongly classified (false positives) as belonging to the Target class. Notice that a higher

FAR corresponds to a lower IPR, and vice versa. Additionally common measures of

Precision and Accuracy are calculated:

Precision =
True	Targets	(TT)

True	Targets�TT� + False	Targets(FT)

Accuracy =
True	Targets�TT� + True	Outliers(TO)

Total	instances	in	testing	data	set	(TT + FO + TO + FT)

as well as the Area Under Curve (AUC) of the receiver operating characteristics (ROC)

graph, which is calculated by WEKA.

60

In all four types of experiments described below, the results are reported using a

modified 10-fold cross-validation procedure. Namely, after the data are divided into ten

parts, all instances not belonging to Target class are deleted from the nine parts used for

training (representing the Target class). For example, if the data instances represent three

categories (One, Two and Three), if the current Target is category One, all instances

belonging to categories Two and Three are deleted from the 9 training sets. Next, models

for categories Two and Three are generated, and finally the average of the three runs is

reported as the final result.

The experiments described below consist of four parts. First, we run and compare

OneClass-DS with the other five algorithms in WEKA environment. Second, OneClass-DS

is compared with OneClass SVM, OCC-Gauss and OCC-EM algorithms but using only the

published (Hemstalk et al., 2007) results for the latter three algorithms. Third, experiments

using OneClass-DS, REP-Tree, Decision Stump and Random Tree algorithms on missing

value data sets are performed. Fourth, OneClass-DS is used to solve a multi-class problem

by converting them into one-class problems on three large data set.

3.3.1 Experiments I

In these experiments we use 11 data sets from the UCI repository

(http://www.ics.uci.edu/~mlearn/MLRepository.html). Four data sets have nominal

features. The number of instances ranges from 151 to 12,960, the number of features from

5 to 23, and the number of classes from 2 to 5. Details are shown in Table 3.10.

61

Table 3.10 Data sets used in experiments.

Name Description # of # of # of
instances features classes

Car Car Evaluation-Nominal 1728 7 4
Mrm Mushroom -Nominal 8124 23 2

Nur Nursery-Nominal 12960 9 5
Bre Breast Cancer 699 10 2
Sca Balance Scale Weight 625 5 3
Bup BUPA livers disorder 345 7 2
Hea Heart Data set 270 14 2
Pim Pima Indians Diabetes Database 768 9 2

Spc SPECT heart data-Nominal 267 23 2

Cmc Contraceptive Method Choice 1473 10 3
Tae Teaching Assistant Evaluation 151 6 3

Evaluating performance of a one-class classifier on a data set with N classes is

performed by treating each class as the Target class, with all other classes treated as one

“outlier” class. The results are shown in Table 3.11

62

Table 3.11 Results of OneClass-DS algorithm on 11 data sets.

 Class name
of

targets
of

outliers

Time to
build
model
(sec)

of
rules

Target
rate

Accu-
racy

Precision FAR IPR AUC

Car

unacc 1210 518 0.02 11 0.97 0.91 0.91 0.09 0.09 0.876
acc 384 1344 0.01 11 0.80 0.55 0.30 0.11 0.70 0.639
vgood 65 1663 0.01 1 0.02 0.95 0.05 0.04 0.95 0.502
good 69 1659 0.01 2 0.42 0.88 0.15 0.03 0.85 0.661

Average Weight 0.87 0.82 0.60 0.05 0.40 0.670

Mrm
Class p 3916 4208 0.22 31 0.89 0.91 0.91 0.10 0.09 0.908
Class e 4208 3916 0.34 32 0.96 0.95 0.95 0.05 0.05 0.954

Average Weight 0.93 0.93 0.93 0.07 0.07 0.931

Nur

recom 2 12958 No test (too small)
prior 4266 8694 0.48 139 0.98 0.60 0.45 0.02 0.55 0.696
not_recom 4320 8640 0.34 54 0.96 0.32 0.33 0.82 0.67 0.484
very_recom 328 12632 0.12 27 0.89 0.80 0.10 0.00 0.90 0.841
spec_prior 4044 8916 0.45 124 0.99 0.66 0.48 0.01 0.52 0.750

Average Weight 0.98 0.59 0.38 0.02 0.62 0.693

Bre
Class 2 458 241 0.04 26 0.95 0.93 0.95 0.10 0.05 0.784
Class 4 241 458 0.02 7 0.98 0.98 0.98 0.01 0.02 0.935

Average Weight 0.96 0.96 0.96 0.04 0.04 0.860

Sca

Class B 49 576 0.1 13 0.67 0.66 0.14 0.04 0.86 0.666
Class R 288 337 0.01 29 0.88 0.69 0.61 0.16 0.39 0.702
Class L 288 337 0.01 28 0.91 0.69 0.61 0.14 0.39 0.708

Average Weight 0.88 0.68 0.51 0.10 0.49 0.692

Bup
Class 1 145 200 0.03 1 0.94 0.46 0.43 0.28 0.57 0.526
Class 2 200 145 0.05 1 0.95 0.59 0.59 0.40 0.41 0.527

Average Weight 0.94 0.53 0.52 0.33 0.48 0.527

Hea
Class 1 150 120 0.05 4 0.71 0.69 0.73 0.35 0.27 0.691
Class 2 120 150 0.05 4 0.67 0.68 0.63 0.28 0.37 0.680

Average Weight 0.69 0.69 0.69 0.31 0.31 0.686

Pim
Class 0 500 268 0.4 7 0.99 0.66 0.66 0.30 0.34 0.499
Class 1 268 500 0.39 7 0.97 0.35 0.35 0.54 0.65 0.508

Average Weight 0.99 0.50 0.50 0.43 0.50 0.504

Spc
Class 0 55 212 0.1 2 0.87 0.45 0.26 0.09 0.74 0.609
Class 1 212 55 0.1 4 0.96 0.76 0.79 1.00 0.21 0.481

Average Weight 0.94 0.61 0.57 0.17 0.43 0.545

Cmc

Class 1 629 844 0.02 9 0.99 0.43 0.43 0.44 0.57 0.500
Class 2 333 1140 0.01 10 0.99 0.25 0.23 0.10 0.77 0.510
Class 3 511 962 0.02 8 0.99 0.37 0.35 0.13 0.65 0.513

Average Weight 0.99 0.35 0.34 0.15 0.66 0.508

Tae

Class 1 49 102 0.17 7 0.94 0.42 0.35 0.15 0.65 0.553
Class 2 50 101 0.01 7 0.96 0.43 0.36 0.11 0.64 0.564
Class 3 52 99 0.01 7 0.96 0.42 0.37 0.13 0.63 0.546

Average Weight 0.95 0.42 0.36 0.13 0.64 0.554

63

0

0.2

0.4

0.6

0.8

1

1 3 5 7

Target rate

Precision

FAR

The four parameters in the OneClass-DS algorithm, namely, the Threshold,

MaxAttribute, MinAttribute, and MinCoverTarget are varied to achieve the best target rate.

Figure 3.3 shows the impact of varying one parameter while the other three parameters

remain fixed; for the Heart data set. The purpose is to show that it is possible to obtain a

better model by modifying these parameters during training.

 MinCoverTarget
With Min Attribute=8 MaxAttribute=8

Threshold=5

 MinAttribute
With MaxAttribute=8 MinCoverTarget=5

Threshold=5

 MaxAttribute
With MinAttribute=8 MinCoverTarget=5

Threshold=5

 Threshold
With MinAttribute=8 MaxAttribute =8

MinCoverTarget=5

Figure 3.3 Influence of changing the four parameters values on the Target rate, Precision, IPR and

FAR, on the Heart data set.

To compare OneClass-DS with other algorithms WEKA’s OneClass Classifier

package was used. It is based on the OCC algorithm of (Hemstalk et al., 2007) and it

builds density function from a chosen distribution (can be Gauss or EM) and then combines

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8

Target rate Precision

FAR IPR

0

0.2

0.4

0.6

0.8

8 9 10 11 12 13

Target rate Precision

FAR IPR

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40

Target rate Precision

FAR IPR

64

it with a class a priori probability to form the adjusted estimate of the density function of

the Target class. In their approach the model is learned from the Target data and the

artificially created uniformly distributed data that constitutes the Outlier class. In this way

they could use a two-class classifier for solving a one-class classification problem.

The comparison of results is shown in Tables 3.12 and 3.13, while Figure 3.4

illustrates the results in a graphical form.

Table 3.12 Comparison of OneClass-DS with five other algorithms in terms of accuracy.

Data
Set

REP-
Tree J48 Random

Tree
Decision
Stump

Random
Forest

OneClass-
DS

Car 0.89 0.92 0.76 0.92 0.8 0.82

Mrm 0.97 0.89 0.97 0.75 0.9 0.93

Nur 0.61 0.6 0.68 0.67 0.66 0.59

Bre 0.5 0.5 0.63 0.89 0.8 0.96

Sca 0.47 0.45 0.42 0.63 0.45 0.68

Bup 0.51 0.51 0.5 0.52 0.51 0.53

Hea 0.61 0.54 0.65 0.63 0.68 0.69

Pim 0.52 0.51 0.52 0.51 0.53 0.5

Spc 0.71 0.7 0.65 0.71 0.71 0.61

Cmc 0.44 0.42 0.41 0.47 0.44 0.35

Tae 0.41 0.42 0.42 0.39 0.44 0.42

65

Table 3.13 Comparison of OneClass-DS with five other algorithms in terms of the IPR and FAR
measures.

Data set

IPR
REP-
Tree J48 Random

Tree Decision Stump Random
Forest

OneClass-
DS

Car 0.28 0.20 0.49 0.20 0.43 0.40
Mrm 0.02 0.04 0.01 0.30 0.00 0.07
Nur 0.62 0.62 0.62 0.58 0.58 0.62
Bre 0.50 0.50 0.42 0.10 0.25 0.04
Sca 0.62 0.63 0.64 0.53 0.63 0.49
Bup 0.49 0.49 0.50 0.49 0.50 0.48
Hea 0.41 0.47 0.39 0.41 0.37 0.31
Pim 0.49 0.50 0.49 0.49 0.48 0.50
Spc 0.34 0.36 0.40 0.34 0.35 0.43
Cmc 0.64 0.65 0.65 0.63 0.63 0.66
Tae 0.65 0.67 0.65 0.66 0.64 0.64

Data set
FAR

REP-
Tree J48 Random

Tree Decision Stump Random
Forest

OneClass -
DS

Car 0.03 0.03 0.04 0.04 0.03 0.05
Mrm 0.04 0.17 0.04 0.14 0.17 0.07
Nur 0.05 0.06 0.02 0.05 0.04 0.02
Bre 0.53 0.50 0.10 0.11 0.12 0.04
Sca 0.16 0.18 0.18 0.13 0.16 0.10
Bup 0.44 0.45 0.49 0.41 0.47 0.33
Hea 0.33 0.46 0.21 0.23 0.19 0.31
Pim 0.40 0.45 0.42 0.46 0.37 0.43
Spc 0.18 0.16 0.20 0.19 0.16 0.17
Cmc 0.18 0.24 0.23 0.17 0.17 0.15
Tae 0.28 0.33 0.26 0.24 0.19 0.13

The graphs in Figure 3.4 show Precision and Target Rate (Sensitivity) versus

MaxAttribute. In Figure 3.4 Precision (red line) and Target Rate (blue line) are shown for

the OneClass-DS algorithm while varying values of the MaxAttribute (number of features

66

to be used in a rule). The results of precision (red triangles) and true targets (blue triangles)

for the best performing algorithm chosen among REP-Tree, J48, Random Tree, Decision

Stump, or Random Forest algorithms are shown.

As can be noticed in Figure 3.4 in the case of the Cmc data (upper left graph),

Random Forest gave the best result with precision of 0.27 (red triangle) and target rate of

0.91 (blue triangle). OneClass-DS achieved good balance between precision (0.24) and

target rate (0.94) with the MaxAttribute fixed at 3. Note that MaxAttribute if set to 6 obtains

a precision rate higher than Random Forest but lower target rate. Alternatively,

MaxAttribute if set to 2 gives a better target rate but at the cost of lower precision.

Upper right graph (for Bre data set) shows that Decision Stump gave the best results

with precision of 0.95 (red triangle) and target rate of 0.88 (blue triangle), for OneClass-DS

model: we can choose many values of MaxAttribute, such as: MaxAttribute=7 (precision

rate=0.86, target rate=0.89), MaxAttribute=4 (precision rate=0.77, target rate=0.97),

MaxAttribute=5 (precision rate=0.82, target rate=0.93) , to balance target rate and precision

rate. Similarly for Mrm data (lower left graph): choosing MaxAttribute=7, OneClass-DS

model will give value of 0.89 in precision rate and 0.95 in target rate (comparing with the

best of other 5 algorithms is Random Tree with 0.97 in precision rate and 0.95 in target

rate).

In case of Spc data set (lower right graph), We can choose MaxAttribute=5 with

precision rate=0.34, target rate=0.84 when comparing with REP Tree (precision=0.39,

target rate=0.78)

67

Figure 3.4 Possible outcomes of a test in terms of Precision &Target rate (y-axis) vs. MaxAttribute (x-axis).

Cmc

Bre

Mrm

Spc

0.94

0.45

0.380.24 0.37

0.45

0.91

0.27

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9

Target Rate

Precision

Target Rate (Random Forest)

Precision (Random Forest)

0.97
0.93

0.89

0.84
0.77

0.82
0.86

0.870.88

0.95

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9

Target Rate

Precision

Target Rate (Decision Stump)

Precision (Decision Stump)

0.95

0.89
0.84

0.89
0.91 0.93

0.95
0.97

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10 11 12

Target Rate

Precision

Target Rate (Random Tree)

Precision (Random Tree)

0.84

0.55
0.34

0.56

0.78

0.39

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Target rate

Precision

Target Rate (REP Tree)

Precision (REP Tree)

68

The Wilcoxon and Friedman tests are performed on the results in terms of

accuracies (Table 3.12) and IPR and FAR measures (Table 3.13). The results are shown in

Table 3.14. From Table 3.14 we notice that in terms of Wilcoxon test, using accuracy and

IPR, OneClass-DS performs on par with other algorithms. In terms of the FAR measure,

however, OneClass-DS performs better than J48 and Decision Stump, and on par with the

remaining algorithms.

Friedman tests show that OneClass-DS performs at the same level as the other

algorithms in terms of all three measures: the accuracy, IPR, and FAR.

69

Table 3.14 Wilcoxon and Friedman tests results for comparing OneClass-DS with five algorithms
on 11 data sets.

 Accuracy α = 0.05, N = 11 IPR α = 0.05, N = 11

Wilcoxon
Test
(See

Appendix
A for

details)

The null-hypothesis that a given pair of algorithms
performs equally well is rejected when T ≤≤≤≤ 11 (in
0 cases). In other words, OneClass-DS performs

equal with other algorithms.

Pair of compared

Algorithms
R+ R–

T=min(R+,

R-)

OneClass-DS
vs.

REP-Tree
34 32 32

OneClass-DS
vs.
J48

26.5 39.5 26.5

OneClass-DS
vs.

Random Tree
30 36 30

OneClass-DS
vs.

Decision Stump
35.5 30.5 30.5

OneClass-DS
vs.

Random Forest
33 33 33

The null-hypothesis that a given pair of algorithms

performs equally well is rejected when T ≤≤≤≤11 (in 0
cases). In other words, OneClass-DS performs equal

with other algorithms.

Pair of compared

algorithms
R+ R–

T=min(R+,

R-)

OneClass-DS
vs.

REP-Tree
30.5 35.5 30.5

OneClass-DS
vs.
J48

27 39 27

OneClass-DS
vs.

Random Tree
19.5 46.5 19.5

OneClass-DS
vs.

Decision Stump
29 37 29

OneClass-DS
vs.

Random Forest
31 35 31

Friedman
test
(See

Appendix
A for

details)

The null hypothesis that all algorithms perform at
the same level is accepted because the calculated Fr
value (4.3) is smaller than the critical value (11.07).
In other words, OneClass-DS is performing on par
with other algorithms.

The null hypothesis that all algorithms perform at the
same level is accepted because the calculated Fr
value (8.25) is smaller than the critical value
(11.07). In other words, OneClass -DS is performing
on par with other algorithms.

 FAR α = 0.05, N = 11

Wilcoxon
Test

The null-hypothesis that a given pair of algorithms performs equally well is rejected when T ≤≤≤≤11 (in 2
cases). In other words, OneClass -DS performs better than J48 and Decision Stump algorithms.

Pair of compared Algorithms R+ R– T=min(R+, R-)

OneClass-DS vs. REP-Tree 13 53 13
OneClass-DS vs. J48 3 63 3
OneClass-DS vs. Random Tree 19.5 46.5 19.5
OneClass-DS vs. Decision Stump 11 55 11
OneClass-DS vs. Random Forest 20 46 20

Friedman
test

The null hypothesis that all algorithms perform at the same level is accepted because the calculated Fr value
(10.58) is smaller than the critical value (11.07). In other words, OneClass -DS is performing on par with
other algorithms.

70

3.3.2 Experiments II

We compared OneClass-DS with One-Class SVM and the OCC (One-Class

Classification by Combining Density and Class Probability Estimation) with two different

density functions, one based on Gaussian density (called OCC-Gauss) and other on EM

density (OCC-EM). The results are shown in Table 3.15. Results of SVM and OCC

algorithms are repeated based on (Hemstalk et al., 2007). In addition, we compared the

time and average number of rules needed to construct a model using OneClass-DS,

OneClass SVM, OCC-Gauss and OCC-EM algorithms. As expected, it shows that

OneClass SVM was the fastest while OCC-EM was the slowest. The total number of rules

generated by OneClass-DS was smaller than for OCC-Gauss and OCC-EM algorithms on

all data sets but Ecoli and Glass.

The Wilcoxon and Friedman tests are performed using Table 3.15 (time to build

model, IPR and FAR). The results are shown in Table 3.16.

71

Table 3.15 Comparison of OneClass-DS with OneClass SVM, OCC-Gauss and OCC-EM.

 FAR IPR

Data
set

of
fea-
tures

of in-
stances

of
classes

OneClass
-DS

OneClass
SVM

OCC-
Gauss

OCC-
EM

OneClass
-DS

OneClass
SVM

OCC-
Gauss

OCC-
EM

Diabetes 8 768 2 0.264 0.111 0.098 0.109 0.482 0.514 0.857 0.779

Ecoli 7 336 8 0.241 0.137 0.129 0.136 0.111 0.068 0.088 0.083

Glass 9 214 7 0.064 0.154 0.147 0.18 0.473 0.412 0.434 0.331

Heart-statlog 13 270 2 0.295 0.122 0.14 0.141 0.46 0.624 0.507 0.504

Ionosphere 34 351 2 0.211 0.128 0.15 0.169 0.458 0.738 0.732 0.697

Iris 4 150 3 0.096 0.12 0.125 0.137 0.13 0.073 0.076 0.077

Sonar 60 208 2 0.282 0.12 0.123 0.163 0.455 0.705 0.815 0.751

Vehicle 18 846 4 0.208 0.103 0.109 0.13 0.342 0.629 0.645 0.494

Waveform 21 5000 3 0.126 0.103 0.075 0.11 0.451 0.307 0.411 0.354

 Time it takes to build a model (sec) Average # of rules

OneClass

-DS
OneClass

SVM
OCC-
Gauss

OCC-
EM

OneClass
-DS

OneClass
SVM

OCC-
Gauss

OCC-
EM

Diabetes 0.52 0.37 3.89 13.9 11 N/A 14 27

Ecoli 0.82 0.13 1.18 0.62 8 N/A 3 5

Glass 0.38 0.09 0.25 1.41 7 N/A 5 5

Heart-statlog 0.1 0.06 0.58 5.23 5 N/A 4 8

Ionosphere 9.9 0.08 1.65 30.64 5 N/A 3 5

Iris 0.1 0.02 0.13 0.26 4 N/A 7 14

Sonar 10.3 0.13 5.71 21.44 7 N/A 11 19

Vehicle 1.5 0.68 0.83 13.4 20 N/A 25 21

Waveform 77 4.07 47.5 106.17 12 N/A 27 71

72

Table 3.16 Wilcoxon and Friedman tests results for comparing OneClass-DS with three algorithms
on 9 data sets.

 Time to build model α = 0.05, N = 9 IPR α = 0.05, N = 9

Wilcoxon Test
(See Appendix A

for details)

The null-hypothesis that a given pair of
algorithms performs equally well is rejected
when T ≤≤≤≤ 6 (in 2 cases). In other words,
OneClass-DS performs equal only with OCC-
Gauss algorithm.

Pair of compared

Algorithms
R+ R–

T=min(

R+,

R-)

OneClass-DS
vs.

OneClass-SVM
45 0 0

OneClass-DS
vs.

OCC-Gauss
31 14 14

OneClass-DS
vs.

OCC-EM
2 43 2

The null-hypothesis that a given pair of algorithms
performs equally well is rejected when T ≤≤≤≤6 (in 0
cases). In other words, OneClass -DS performs
equal with other algorithms.

Pair of compared

algorithms
R+ R–

T=min

(R+,

R-)

OneClass-DS
vs.

OneClass-SVM
14 31 14

OneClass-DS
vs.

OCC-Gauss
11 34 11

OneClass-DS
vs.

OCC-EM
13 32 13

Friedman test
(See Appendix A

for details)

The null hypothesis that all algorithms perform
at the same level is rejected because the
calculated Fr value (21.13) is larger than the
critical value (12.59).

The null hypothesis that all algorithms perform at
the same level is accepted because the calculated Fr
value (9.93) is smaller than the critical value
(12.59). In other words, OneClass -DS is
performing on par with other algorithms.

 FAR α = 0.05, N = 9

Wilcoxon Test

The null-hypothesis that a given pair of algorithms performs equally well is rejected when T ≤≤≤≤6 (in 1
cases). In other words, OneClass -DS performs equal with OneClass-SVM and OCC-EM algorithms.

Pair of compared Algorithms R+ R– T=min(R+, R-)

OneClass-DS vs. OneClass-SVM 39 7 7
OneClass-DS vs. OCC-Gauss 40 5 5
OneClass-DS vs. OCC-EM 37 8 8

Friedman test

The null hypothesis that all algorithms perform at the same level is accepted because the calculated Fr
value (3.8) is smaller than the critical value (12.59). In other words, OneClass -DS is performing on
par with other algorithms.

From Table 3.16 we notice that in terms of Wilcoxon test, using the IPR measure,

OneClass-DS performs on par with other algorithms. Using the FAR measure, however,

OneClass-DS performs on par with the OneClass SVM and OCC-EM.

73

Wilcoxon test shows that when time to build is used as input the OneClass-DS

performs on par only with OCC-Gauss.

Friedman tests show that OneClass-DS performs on par with the other three

algorithms, both when in terms of IPR and FAR measures, but as well in terms of time to

build model measure.

3.3.3 Experiments III

OneClass-DS was next used on four data sets, from the UCI data repository, with

missing values. The data are described in Table 3.17. The number of instances ranges from

57 to 32,561 and number of features from 6 to 17. Note that these data sets are very

different in terms of the number of missing values. The OneClass-DS results are shown in

Table 3.18.

Table 3.17 Data sets with missing values.

Data set Description # of
instances

of missing
values

of
 features

of
classes

Vot US Congressional Voting 435 104 17 2
Adt Data set Adult From UCI 32561 1843 15 2

Lab Labor negotiations in
Canada 57 48 17 2

Mam Mammographic Mass 961 76 6 2

74

Table 3.18 OneClass-DS results on data with missing values.

Data
set Classes # of

targets
of

outliers
Time to build
model (sec) # of rules Target

rate
Accu-
racy

Preci-
sion FAR IPR AUC

Vot
Democrat 267 168 0.02 39 0.80 0.78 0.84 0.30 0.16 0.78

Republican 168 267 0.01 20 0.85 0.92 0.95 0.09 0.05 0.91
Average 0.02 30 0.82 0.85 0.89 0.19 0.11 0.84

Adt
Less50K 24720 7841 1253 158 0.83 0.68 0.77 0.72 0.23 0.52
Over50K 7841 24720 1225 61 0.72 0.72 0.45 0.11 0.55 0.72

Average 1239 110 0.77 0.70 0.61 0.41 0.39 0.62

Lab
Bad 20 37 0.01 6 0.70 0.74 0.61 0.18 0.39 0.73

Good 37 20 0.01 2 0.54 0.70 1.00 0.46 0.01 0.77
Average 0.01 4 0.62 0.72 0.80 0.32 0.20 0.75

Mam
0 516 445 0.03 4 0.59 0.72 0.83 0.35 0.17 0.73
1 445 516 0.02 4 0.49 0.74 0.90 0.31 0.10 0.72

Average 0.03 4 0.54 0.73 0.86 0.33 0.14 0.73

75

VOT MAM

LAB

ADT

Figure 3.5 Possible outcomes of a test in terms of Precision&Target rate (y-axis) vs. MaxAttribute (x-axis).

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 10

Target Rate Precision

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5

Target Rate Precision

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8

Target Rate Precision

0.0

0.2

0.4

0.6

0.8

1.0

2 4 6 8 10 12

Precision Target rate

76

Figure 3.5 shows the results in terms of precision and target rate versus

MaxAttribute (in the same way as presented in Figure 3.4). To choose the best model for

each data set, we ran 10-FCV with different parameter values.

In Figure 3.5, Upper left graph (using the VOT data set) shows the impact on the

target rate and precision rate while varying value of the MaxAttribute parameter and

keeping the remaining three parameters fixed. This graph shows the acceptable model at

MaxAttribute= 8 because at this point the Target rate curve and Precision curve intersect.

Similarly for MAM data (upper right graph) choosing MaxAtrribute=5 results in a

good model; for LAB data (lower left graph) with MaxAttribute=3, and for ADT data

(lower right graph) MaxAttribute=11 seem to be good choices.

OneClass-DS is also compared with three other algorithms (REP-Tree, Decision

Stump and Random Tree) when running it on four missing value data sets. The results of

are shown in Table 3.19.

Table 3.19 Comparison of OneClass-DS with REP-Tree, Decision Stump and Random Tree on four
missing value data sets.

FAR IPR

Data
set

OneClass
-DS

REP-
Tree

Decision
Stump

Random
Tree

OneClass
-DS

REP-
Tree

Decision
Stump

Random
Tree

Vote 0.19 0.17 0.21 0.54 0.11 0.26 0.10 0.38
Adt 0.41 0.77 0.70 0.75 0.39 0.23 0.19 0.24
Lab 0.32 0.36 0.34 0.33 0.20 0.35 0.43 0.47
Mam 0.33 0.54 0.38 0.53 0.14 0.45 0.47 0.45

Accuracy

OneClass

-DS
REP-
Tree

Decision
Stump

Random
Tree

0.85 0.77 0.85 0.55

0.70 0.50 0.58 0.51

0.72 0.64 0.64 0.63

0.73 0.50 0.57 0.51

77

Because of the small number of missing value data sets only the Friedman test (α =

0.05, N = 4) is used and the result is that the null hypothesis: that all algorithms perform at

the same level, both in terms of the FAR and accuracy measures, is rejected. The calculated

Fr values (5.7 for FAR and 4.5 for accuracy) are larger than the critical value of 2.569.

However, notice that OneClass-DS gives better results than the three in terms of accuracy

and FAR measures.

In terms of the IPR measure all algorithms perform at the same level (the null

hypothesis is accepted because the calculated Fr value (0.15) is smaller than the critical

value (2.569)). In other words, OneClass -DS performs on par with the three algorithms.

3.3.4 Experiments IV

Three data sets consisting of letters and digits (from the UCI data repository) were

used (Table 3.20). The Letters data set consists of 26 capital letters specified as black-and-

white rectangular images. The images are based on 20 different fonts, and each letter for

each font was randomly distorted to produce a file of 20,000 unique instances. Then, each

instance was converted into 16 numerical attributes (such as statistical moments and edge

counts) and scaled to fit into a range of integers from 0 to 15. The Optical digits data set

was created by the NIST programs to extract normalized bitmaps of handwritten digits.

32x32 bitmaps are divided into non-overlapping blocks of the size 4x4, and number of

pixels is counted in each block to generate an input matrix of 8x8, where each element is

represented as integer in the range from 0 to 15, in order to reduce dimensionality of the

data and to provide invariance to small distortions. The Pen digits data set was built by

78

collecting instances from 44 writers using a pressure sensitive tablet for coding digits,

while people wrote 250 digits at random inside boxes of 500 by 500 pixels.

In these experiments OneClass-DS is used for solving multi-class highly

unbalanced data sets. To address the problem of dealing with highly unbalanced data sets

they are transform into one-class problems in the following way. Each class is treated in

turn not as a Target class but as an Outlier class because it has very small number of

instances, while the rest of the classes are treated as the Target class. The rules are thus

generated for the Outlier classes. Thus, during testing if the rule does not cover an instance

than the instance is recognized as belonging to the Target class.

Table 3.20 Letter and digits data sets.

Data set
of

instances
of

features
of

classes
Pen digits 10,992 16 10

Optical digits 5,620 64 10
Letter 20,000 16 26

The CAIM algorithm is used (Kurgan et al., 2004) to discretize continuous features

before running the OneClass-DS algorithm. Tables 3.20 and 3.21 show the results of the

OneClass-DS algorithm.

79

Table 3.21 Results on the Pen digits data set.

Class
name

of
targets

of
outliers

of
rules

Time
to

Build
 Model
(sec)

Target
rate

Accu-
racy

Preci-
sion FAR IPR AUC

0 1143 9849 36 3.8 0.70 0.96 0.89 0.03 0.11 0.85
1 1143 9849 40 3.7 0.60 0.93 0.70 0.05 0.30 0.78
2 1144 9848 38 4.4 0.69 0.95 0.82 0.04 0.18 0.83
3 1055 9937 28 3.4 0.76 0.96 0.86 0.03 0.14 0.87
4 1144 9848 50 4.1 0.67 0.95 0.78 0.04 0.22 0.83
5 1055 9937 43 3.6 0.58 0.93 0.64 0.04 0.36 0.77
6 1056 9936 36 4.0 0.71 0.96 0.83 0.03 0.17 0.85
7 1142 9850 35 5.3 0.72 0.96 0.89 0.03 0.11 0.86
8 1055 9937 42 4.4 0.41 0.93 0.72 0.06 0.28 0.70
9 1055 9937 44 4.0 0.58 0.91 0.53 0.05 0.47 0.76

Average 39 4.1 0.64 0.94 0.76 0.04 0.24 0.81

Result in Table 3.21 show that when converting the original 10-class problem into

10 one-class problems, OneClass-DS gives acceptable results in terms of accuracy and

FAR measures for all 10 classes. This is not the case, however, in terms of the target rate,

precision and IPR measures.

In Table 3.22 OneClass-DS results are not very good, and much worse than on the

Pen digits data set. Partial explanation is that the Optical data set has structure much more

complex than Pen data set (both smaller number of instances and much higher

dimensionality).

80

Table 3.22 Results on the Optical digits data set.

Class
name

of
 targets

of
outliers

of
rules

Time
To

Build
 Model
 (sec)

Target
 rate

Accu-
racy

Preci-
sion FAR IPR AUC

0 554 5066 23 1.1 0.64 0.96 0.90 0.04 0.10 0.82
1 571 5049 15 1.0 0.71 0.94 0.68 0.03 0.32 0.84
2 557 5063 23 1.6 0.65 0.92 0.60 0.04 0.40 0.80
3 572 5048 22 1.1 0.45 0.89 0.45 0.06 0.55 0.78
4 568 5052 21 1.0 0.70 0.90 0.52 0.03 0.48 0.82
5 558 5062 23 1.1 0.60 0.94 0.73 0.04 0.27 0.79
6 558 5062 31 1.6 0.54 0.94 0.77 0.05 0.23 0.76
7 566 5054 22 1.0 0.65 0.93 0.63 0.04 0.37 0.81
8 554 5066 20 1.0 0.63 0.89 0.47 0.04 0.53 0.78
9 562 5058 18 2.5 0.64 0.91 0.53 0.04 0.47 0.79

Average 22 1.3 0.62 0.92 0.63 0.04 0.37 0.80

The prediction results shown in Tables 3.20 and 3.21 were shown after optimizing

the model in a way that is illustrated below. The following three graphs are provided to

illustrate the process of fine-tuning models during training for letter A only even though

there are 26 classes (letters A through Z). The relation between Precision and Target rates

are shown in Figures 3.6, 3.7 and 3.8. Depending on MinCoverTarget value in Figure 3.6,

the precision increases from over 0.2 to about 0.6.

Figure 3.6 Precision of letter A with different values of

Figure 3.7 Target Rate of letter A with different values of

0

0.2

0.4

0.6

2

Precision rate

0.6

0.7

0.8

0.9

1

2
3

Target rate

MaxAttribute

81

Precision of letter A with different values of MaxAttribute and
MinCoverTarget.

Figure 3.7 Target Rate of letter A with different values of MaxAttribute
MinCoverTarget.

0%

2%

3 4 5 6 7

MinCoverTarget

MaxAttribute

Precision rate (Letter A)

0%

1%

2%

4
5

6
7

MinCoverTarget

MaxAttribute

Target rate (Letter A)

0%

1%

2%

and

MaxAttribute and

MinCoverTarget
0%

1%

2%

MinCoverTarget

0%

1%

2%

82

Depending on MinCoverTarget value in Figure 3.7, the target rate decreases from

over 0.9 down to about 0.7.

Figure 3.8 Relation between Precision and Target Rate for different values of the
MaxAttribute (Letter A).

Based on Figures 3.6 and 3.7, if the MinCoverTarget=1% then setting

MaxAttribute=6 balances Precision and Target rate.

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7
MaxAttribute

Target rate

Precision

Target Rate/Precision

83

3.4 Summary

Rule-based OneClass-DS algorithm is introduced and compared to eight one- class

algorithms on 27 data sets. The data sets ranged from numerical, to nominal, to images.

The experiments showed that OneClass-DS performs on par with other algorithms in terms

of three measures: the accuracy, IPR (Impostor Pass Rate) and FAR (False Alarm Rate).

However the OneClass SVM algorithm, in contrast to OneClass-DS, cannot work

on data with missing values. OneClass-DS also gave better results than REP-Tree,

Decision Stump and Random Forest in terms of accuracy and FAR measures when tested

on missing value data sets.

In addition, OneClass-DS also performed well when used for solving multi-class

problems, which were converted into one-class problems. OneClass-DS can be easily tuned

for good performance, measured by the Target rate and Precision, by appropriate changing

of its parameters.

84

CHAPTER 4 Conclusions

The major contribution of this work is the development of two rule-based

algorithms, mi-DS and OneClass-DS, for solving challenging machine learning problems.

The mi-DS algorithm was designed for solving multiple-instance learning

classification problem where data exist for several classes. Instead of single instances one

has to deal with bags, or collections, of many instances in one bag.

The OneClass-DS was designed for solving problems when data exist only for one-

class; in other words data for other classes are not available. It was shown that the

OneClass-DS algorithm also worked well on highly unbalanced data sets when one-class

model was generated for a majority class while ignoring the much smaller minority class.

Both algorithms combined rule-based classification with greedy search algorithm

based on density of features. The algorithms’ performance was compared with many other

algorithms on dozens of data sets and the results showed that both original algorithms

performed better, or on par, with the many algorithms used in comparison.

In particular, when mi-DS was compared with nine state-of-the-art MIL algorithms

on 27 diverse data sets, which ranged from numerical data, to text, to image data, the

results indicated that although there was no single generally best-performing algorithm on

all data sets, the mi-DS performed very well and was shown to be, on average, very

efficient. It also showed good predictive accuracy on most data sets, as measured by both

85

accuracy and MCC criteria. It also exhibited good performance on challenging image and

textual data. In addition, mi-DS performed quite well on data with missing values.

Particularly noteworthy is that the approach taken in the mi-DS algorithm can be

used as a generic framework for converting other rule-based algorithms so that they can be

used to solve MIL problems. This can be done in Step 2 of mi-DS, as the rule generation

process can be done by any rule learner, while the construction of the similarity matrix in

Step 2, and the prediction procedure used in PredictTestingBag would remain the same.

When OneClass-DS algorithm was compared with eight one-class algorithms on 27

data sets (numerical, nominal, images) it performed on par with other algorithms in terms

of accuracy, IPR (Impostor Pass Rate) and FAR (False Alarm Rate) measures. Note that a

very efficient OneClass SVM algorithm, in contrast to OneClass-DS, does not work on

data with missing values. OneClass-DS also gave better results than REP-Tree, Decision

Stump and Random Forest, in terms of accuracy and FAR measures, when tested on data

with missing values.

86

Bibliography

87

Bibliography

N. Abe, B. Zadrozny, and J. Langford, “Outlier detection by active learning,” in Proceedings of
the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
2006, pp. 504-509.

S. Andrews, I. Tsochantaridis, and T. Hofmann, “Support vector machines for multiple-instance
learning,” in Advances in Neural Information Processing Systems 15, 2002, pp. 577–584.

A. Asuncion and D.J Newman. (2007) UCI Machine Learning Repository. University of
California, School of Information and Computer Science, Irvine, CA. [Online]. Available:
http://www.ics.uci.edu/~mlearn/MLRepository.html.

P. Auer and R.Ortner, “A boosting approach to multiple instance learning,” in Proceeding 15th
European Conference on Machine Learning, 2004, pp. 63-74.

P. Baldi and K. Hornik, “Neural networks and principal component analysis: learning from
examples without local minima,” Neural Networks, vol. 2, pp. 53–58, 1989.

D. Barbará, J. Couto, S. Jajodia and N. Wu, “Adam: a testbed for exploring the use of data
mining in intrusion detection, “ in Proceedings of the ACM SIGMOD 2001 International
Conference on Management of Data, 2001, pp. 15-24.

D. Barbará, N. Wu, and S. Jajodia, “Detecting novel network intrusions using Bayes estimators,”
in Proceeding of the First SIAM Conference on Data Mining, 2001.

D. Barbará, Y. Li, J.-L. Lin, S. Jajodia, and J. Couto, “Boostrapping a data mining instrusion
detection system,” in Proceeding of ACM Symposium on Applied Computing, 2003, pp. 421-
425.

C. Bishop, Neural Networks for Pattern Recognition. Oxford: Oxford University Press, 1995.

H. Blockeeel, D. Page, and A. Srinivasan, “Multi-instance tree learning,” in Proceeding of 22nd
International Conference Machine Learning , Bonn, Germany, 2005, pp. 57-64.

A. Blum and A. Kalai, “A note on learning from multi-instance examples,” Machine Learning,
vol. 30, no. 1, pp. 23-29, 1998.

R.W. Brause, T. Langsdorf, and M. Hepp, “Neural data mining for credit card fraud detection,”
in Proceedings of IEEE International Conference on Tools with Artificial Intelligence, 1999, pp.
103-106.

88

L. Breiman, “Random forests, “ Machine Learning, vol. 45, pp. 5-32, 2001.

L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and Regression Trees. London,
U.K.: Chapman & Hall, 1984.

M. Breunig, H.P. Kriegel, R. Ng, and J. Sander, “LOF: indentifying density-based local
outliers”, in Proceedings of the ACM SIGMOD 2000 International Conference on Management
of Data, 2000.

G. Carpenter, S. Grossberg, and D. Rosen, “ART 2-A: an adaptive resonance algorithm for rapid
category learning and recognition,” Neural Networks, vol. 4, no. 4, pp. 493–504, 1991.

Y. Chen and J. Wang, “Image Categorization by learning and reasoning with regions,” Journal
of Machine Learning Research , pp. 913-939, 2004.

Y. Chen, J. Bi , and J. Wang, “Miles: Multiple-instance learning via embedded instance
selection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 12, pp. 1931–1947, 2006.

Y. Chevaleyre and J.D. Zucker, “Solving multi-instance and multi-part learning problems with
decision trees and rule sets. Application to the mutagenesis problem,” Lecture Notes in Artificial
Intelligence, Springer, Berlin, pp. 204-214, 2001.

Y. Chevaleyre and J.D. Zucker, “A framework for learning rules from multiple instance data,” in
Proceeding 12th European Conf. on Machine Learning, 2001, pp. 49-60.

J.Y. Chiang and S.-R. Cheng, “Multiple-instance content-based image retrieval employing
isometric embedded similarity measure,” Pattern Recognition, pp. 158-166, 2009.

M. Chisholm and P. Tadepalli, “Learning decision rules by randomized iterative local search,” in
Proceeding 2002 International Conference Machine Learning, 2002, pp. 75–82.

K. J. Cios and L. A.Kurgan, “CLIP4: Hybrid inductive machine learning algorithm that generates
inequality rules,” in Inform. Sci., S. K. Pal and A. Ghosh, Eds., vol. 163, pp. 37–83, 2004.

K. J. Cios, W. Pedrycz, R. W. Swiniarski, and L. A. Kurgan, Data Mining A knowledge
Discovery Approach. Springer, 2007.

W. Cohen, “Fast effective rule induction,” in Proceeding 12th International Conference Machine
Learning, Lake Tahoe, CA, 1995, pp. 115–123.

J. Demsar, “Statistical Comparisons of Classifiers over Multiple Data Sets,” Journal of Machine
Learning Research, Vol. 7, pp. 1–30, 2006.

89

T.G. Dietterich, R.H. Lathrop, and T. Lozano-Perez, “Solving the multi-instance problem with
Axis-Paralell Rectangles,” Artificial Intelligence Journal, vol. 89, no. 1/2, pp. 31–71,1997.

L.Dong, “A comparision of multi-instance learning algorithms,” Thesis for degree master of
science . University of Waikato, 2006.

R. Duda and P. Hart, Pattern Classification and Scene Analysis. New York: John Wiley & Sons,
1973.

W. Fan, M. Miller, S. J. Stolfo, W. Lee, and P. K. Chan, “Using artificial anomalies to detect
unknown and known network intrusions,” in Proceedings of the 2001 IEEE International
Conference on Data Mining, 2001, pp. 123-130.

U. M. Fayyad, G. Piatesky-Shapiro, P. Smyth, and R. Uthurusamy, “Advances in Knowledge
Discovery and Data Mining, “ in AAAI, 1996.

M. Friedman, "A comparison of alternative tests of significance for the problem of m rankings,"
The Annals of Mathematical Statistics, Vol. 11, No. 1, pp. 86–92, 1940.

G. Fung, M. Dundar, B. Krishnapuram, and R. B. Rao, “Multiple instance learning for computer
aided diagnosis, “ in Neural Information Processing System, 2007.

J. Furnkranz and G. Widmer, “Incremental reduced error pruning,” in Machine Learning: Proc.
11th Annu. Conf., New Brunswick, NJ, 1994, pp. 70–77.

T. Gärtner, P. A. Flach, A. Kowalczyk, and A. J. Smola, “Multi-instance kernels,” in Proc. 19th
International Conference on Machine Learning., 2002, pp. 179–186.

P. Gehler and O Chapelle, “Deterministic annealing for multiple-instance learning, “ in
Proceeding of AISTATS, 2007.

K. Hempstalk, E. Frank, and I. H. Witten, “One-class Classification by Combining Density and
Class Probability Estimation,” Department of Computer Science, University of Waikato,
Hamilton, NZ, 2007.

J. Hertz, A. Krogh, and R. Palmer, Introduction to the theory of neural computation. Addison
Wesley, 1991.

M. Holsheimer and A. P. Siebes, “Data mining: The search for knowledge in databases,” Tech.
Rep., CS-R9406, 1994.

90

W. Hu, Y.Liao, and V. R. Vemuri, “Robust anomaly detection using support vector machines,”
in Proceedings of the International Conference on Machine Learning, 2002.

N. Japkowicz, C. Myers, and M. Gluck, “A novelty detection approach to classification,” in
Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, 1995,
pp. 518–523.

G.H. John, “Robust decision trees: Removing outliers from databases,” in Proceeding of
Knowledge Discovery and Data Mining, 1995, pp. 174-179.

S.S. Keerthi, S.K. Shevade, C. Bhattacharyya, and K.R.K. Murthy, “Improvements to Platt's
SMO algorithm for SVM classifier design,” Neural Computation, vol.13, no.3, pp. 637-649,
2001.

E. Knorr, R. Ng, and V. Tucakov, “Distance-based outliers: algorithms and applications,” VLDB
journal, vol. 8, no. 3, pp. 237–253, 2000.

T. Kohonen, Self-organizing maps. Heidelberg : Springer-Verlag, 1995.

M. Kraaijveld and R. Duin, “A criterion for the smoothing parameter for parzen-estimators of
probability density functions,“ Technical report . Delft University of Technology, 1991.

L.A. Kurgan, K.J. Cios, and S. Dick, “Highly scalable and robust rule learner: Performance
evaluation and comparison,” IEEE Systems, Man, and Cybernetics - Part B: Cybernetics, Vol.
.36, No. 1, pp.32-53, 2006.

L.A. Kurgan and K.J. Cios, “CAIM discretization algorithm,” IEEE Trans. on Knowledge and
Data Engineering, Vol.16, No. 2, pp. 145-153, 2004.

P. Langley and H. Simon, “Applications of machine learning and rule induction,”
Communications ACM, Vol. 38, No. 11, pp. 55–64, 1995.

C. Leistner, A. Saffari, and H. Bischof, “MIForests: multiple-instance learning with randomized
trees,” in Proceeding of 11th European Conference on Computer, 2010.

P.M. Long and L. Tan, “PAC-learning axis aligned rectangles with respect to product
distributions from multiple-instance examples,” in Proceedings of Conference on Computational
Learning Theory, 1996.

M.V. Mahoney and P. K. Chan, “Learning non-stationary models of normal network track for
detecting novel attacks,” in Proceedings of the 8th ACM SIGKDD international conference on
Knowledge discovery and data mining, 2002, pp. 376-385.

91

O. L. Mangasarian and E. W. Wild, “Multiple instance classification via successive linear
programming,” Journal of Optimization Theory and Applications, pp. 555-568, 2008.

O. Maron and T. Lozano-Perez, “A framework for multi-instance learning, “ In Advances
in Neural Information Processing Systems. Cambridge, MA: MIT Press, 1998

T. M. Mitchell, Machine Learning. New York: McGraw-Hill, 1997.

M. Mizianty, L.A. Kurgan, and M. Ogiela, “Discretization as the enabling technique for the
naive bayes and semi-naive bayes based classification,” Knowledge Engineering Review, vol.
25(4), pp. 421-449, 2010.

J.F. Murray, G.F. Hughes, and K. Kreutz-Delgado, “Machine learning methods for predicting
failures in hard drives: A multiple-instance application,” Journal of Machine Learning Research,
vol. 6, pp. 783 – 816, 2005.

D. T. Nguyen, C. D. Nguyen, R. Hobson., L. A. Kurgan, and K. J. Cios., “mi-DS: Multiple-
instance learning algorithm,” IEEE Systems, Man, And Cybernetics—Part B: Cybernetics, Vol.
43, No. 1, pp. 143-154, 2013.

M. E. Otey, S. Parthasarathy, A. Ghoting, G. Li, S. Narravula and D. Panda, “Towards NIC-
based intrusion detection,” in Proceedings of the 9th ACM SIGKDD international conference on
Knowledge discovery and data mining, 2003, pp. 723-728.

G. Pagallo and D. Haussler, “Boolean feature discovery in empirical learning,” Machine
Learning, Vol. 5, No. 1, pp. 71–99, 1990.

G. Paliouras, V. Karkaletsis, and C. D. Spyropoulos, Machine Learning and Its Application.
New York: Springer, 2001.

E. Parzen, “On estimation of a probability density function and mode,“ Annals of Mathenatical
Statistics, Vol. 33, pp.1065–1076, 1962.

M. Pazzani and D. Kibler, “The utility of knowledge in inductive learning,“ Machine Learning,
Vol. 9, No. 1, pp. 57–94, 1992.

T.A. Pham and A.N.Jain, “Customizing scoring functions for docking, “Journal of Computer-
Aided Molecular Design, Vol. 22, No. 5, pp. 269-286, 2008.

J. Platt. 1998. Machines using Sequential Minimal Optimization. Advances in Kernel Methods -
Support Vector Learning.

92

F. Provost and P. Domingos, “Tree induction for probability-based ranking,” Machine Learning,
Vol. 52, No.3, pp. 199–215, 2003.

X. Qi and Y. Han, “Incorporating multiple SVMs for automatic image annotation,” Pattern
Recognition, Vol. 40, No. 2, pp. 728-741, 2007.

J. R. Quinlan, C4.5 Programs for Machine Learning. New York:Morgan-Kaufmann, 1993.

J.R. Quinlan, “Induction of decision trees,” Mach. Learn., vol. 1, pp. 81–106, 1986.

G. Ratsch, S. Mika, B. Schokopf, and K.-R. Muller, “Constructing boosting algorithms from
svms: an application to one-class clasification,” Pattern Analysis and Machine Intelligence, Vol.
24, pp. 1184-1199, 2002.

S. Salvador and P. Chan, “Learning states and rules for detecting anomalies in time series,”
Applied Intelligence, Vol. 23, No. 3, pp. 241-255, 2005.

B. Scholkopf, R. Williamson, A. Smola, and J. Shawe-Taylor, “SV estimation of a distribution’s
support,” in NIPS’99, 1999.

B. Scholkopf, R. Williamson, A. Smola, J. Shawe-Taylor, and J. Platt, “Support vector method
for novelty detection, “ in Advances in Neural Information Processing Systems 12, 2000, pp.
582–588.

D. B. Skalak, and E. L. Rissland, “Inductive learning in a mixed paradigm setting,” in
Proceedings of National Conference of American Association for Artificial Intelligence, 1990,
pp. 840-847.

A. Srinivasan, S. Muggleton, R.D. King, and M.J.E. Sternberg, “Mutagenesis: ILP experiments
in a non-determinate biological domain, “ in Proceeding of ILP, 1994, pp. 217–232.

G. Tandon and P. K.Chan, “Weighting versus pruning in rule validation for detecting network
and host anomalies” in Proceedings of the 13th ACM SIGKDD international conference on
Knowlegde discovery and data mining, 2007, pp. 697-706.

L. Tarassenko, P. Hayton, and M. Brady, ” Novelty detection for the identification of masses in
mammograms,” in Proc. of the Fourth International IEE Conference on Artificial Neural
Networks, vol. 409, 1995, pp. 442–447.

N. Ullman, Elementary statistics, an applied approach. Wiley and Sons, 1978.

V. Vapnik, Statistical Learning Theory. Wiley, 1998.

93

J. Wang and J. Zucker, ” Solving the Multi-instance Problem: A lazy learning approach,” in
Proc. 17th Int'l Conf. on Machine Learning, 2000, pp. 1119-1125.

H. Y. Wang, Q. Yang, and H. Zha, “Adaptive p-posterior mixture-model kernels for multiple
instance learning,” in Proceeding 25th Int'l Conf. on Machine Learning, 2008, pp. 1136–1143.

G. I. Webb and J. Agar, “Inducing diagnostic rules for glomerular disease with the DLG machine
learning algorithm,” Artif. Intell. Med., Vol. 4, pp. 3–14, 1992.

I.H. Witten and E. Frank, Data Mining: Practical machine learning tools and techniques. San
Francisco: Morgan Kaufmann, 2005.

X. Xu and B. Li, “Multiple Class Multiple-instance learning for image categorization,” Lecture
Notes in Computer Science, pp. 155-165, 2007.

X. Xu and E. Frank, “Logistic regression and boosting for labeled bags of instances,” in
Proceedings of the Pacific Asia Conference on Knowledge Discovery and Data Mining, 2004,
pp. 779-806.

T. Yairi, Y. Kato, and K. Hori, “Fault detection by mining association rules from house-keeping
data,” in Proceedings of International Symposium on Artificial Intelligence, Robotics and
Automation in Space, 2001.

A. Ypma and R. Duin,” Support objects for domain approximation, “ in Proceedings of the
International Conference on Artificial Neural Networks 1998, Skovde, Sweden, 1998.

H. Zengyou, X. Xiaofei , J. Z. Huang, and S. Deng, “A frequent pattern discovery method for
outlier detection, “ Springer, pp. 726-732.2004

Y. Zhang, A.C. Surendran, J.C. Platt, and M. Narasimhan, “Learning from multi-topic web
documents for contextual advertisement,” in Proceedings of the 2008 ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2008, pp. 1051-1059.

Q. Zhang and S.A. Goldman, “EM-DD: An improved Multi-Instance Learning Technique,” in
Neural Information Processing System, vol. 14, 2001.

Z. H. Zhou and J. M. Xu, “On the relation between multi-instance learning and semi-supervised
learning,” in Proceeding of 24th International Conference on Machine Learning, 2007,
pp.1167–1174.

Z. H. Zhou, Y. Y. Sun, and Y. F. Li, “Multi-instance learning by treating instances as non-i.i.d.
samples, “ in Proceedings of International Conference on Machine Learning, 2009.

94

J. Zhu, S.Rosset, T.Hastie, and R. Tibshirani, “1-norm Support Vector Machines, “ in Neural
Information Processing System, 2003, pp. 16-24.

95

Appendices

96

Appendix A

Measures Used for Evaluating Goodness of Generated Models

A.1 General

Below we define the measures that are used in the dissertation for evaluating the

generated models and for comparing them with models generated by other algorithms.

 If the input and the corresponding output for each training data point is known then

one can construct a confusion matrix (also known as misclassification matrix, or

contingency table). It is defined in Table A.1 for a binary classification problem. A

multiclass classification problem can always be decomposed into several binary

classification problems (one class versus the rest), so the method is general. Notice that a

classifier almost always makes errors; they can be false negatives, or false positives, or

both.

Table A.1 Misclassification matrix.

 Classifier-predicted classification
 Positive Negative

True
(gold

standard)
classification

Total # Positive (P) cases
(P = TP)

True Positives (TP)
False Negatives (FN)

ERROR
P = TP + FN

Total # Negative (N) cases
(N = TN)

False Positives (FP)
ERROR

True Negatives (TN) N = FP + TN

Suppose that Positive (P) cases indicate sick people and Negative (N) cases

normal/healthy people. True Positives (TP) are then sick people correctly predicted by a

classifier as being sick; False Negatives (FN) are sick people incorrectly predicted as

healthy (error); True Negatives (TN) are healthy people correctly predicted by a classifier

97

as healthy; False Positives (FP) are healthy people incorrectly predicted as sick (error).

From the misclassification matrix we can calculate several types of measures, some of

which are shown in Table A.2.

Table A.2 Most often used measure calculated from the confusion matrix.

Measure Formula Meaning

Sensitivity
(also known as

Recall, or
True Positive
Rate (TPR)

TP

TP + FN

Sensitivity is the test's ability to
correctly predict TP cases. It is a
probability of a positive test
given that the patient is sick.
Sensitivity of 1 means that the
model recognizes all sick people
as sick.

Specificity
TN

FP + TN

Specificity is the ability of the
test to correctly identify TN
cases. It is a probability of a
negative test given that the
patient is healthy.
Specificity of 1 means the test
recognizes all negatives/healthy
people as healthy.

False Positive
Rate (FPR)

(also known as
False-alarm rate)

1 – specificity =
��

�����

FPR defines how many incorrect
positive cases occur among all
negative cases.

Precision
TP

TP + FP

Proportion of TP to all positive
cases (both true positives and
false positives)

Accuracy
TP + TN

TP + FN + TN + FP

proportion of true results (both
true positives and true negatives)
in the population

MCC
(Matthews
correlation
coefficient)

TP ∗ TN − FP ∗ FN

��TP + FP��TP + FN��TN + FP�(TN + FN)

A correlation coefficient
between the observed and
predicted binary classifications;
it is between −1 and +1. +1
represents a perfect prediction, 0
no better than random
prediction, and −1 indicates total
disagreement between prediction
and observation.

98

Two robust non-parametric tests for statistical comparison of predictive power of

classifiers are the Wilcoxon signed-ranks test and the Friedman test; the latter is used for

comparison of more than two classifiers over multiple data sets. Both tests do not make any

assumption about the underlying distribution of the data.

A.2 Statistical

Wilcoxon Signed-Ranks Test

The Wilcoxon signed-ranks test (Wilcoxon, 1945) is a non-parametric test that

ranks the difference in performances of two classifiers on a data set, which ignores the

signs and compares the ranks for the positive and the negative differences.

Let di be the difference between the performance scores of two classifiers on N data sets.

The differences are ranked according to their absolute values; average ranks are assigned in

case of ties. R+ is the sum of ranks for the data sets on which the first algorithm

outperformed the second, while R- is the sum of ranks for the opposite (second

outperformed the first). Ranks of di = 0 are split evenly among the two sums; if there is an

odd number of di = 0, one is simply ignored. The sums are defined as follows:

�+= � ���	(
�)
���	

+ 	1
2
	 � ���	(
�)
��
	

�−= � ���	(
�)
���	

+ 	1
2
	 � ���	(
�)
��
	

99

Let T indicate the smaller of the two sums:

T = min(R+, R-)

Then, we look up in a table a critical value for T at a certain confidence level and

compare our T with this value. If it is smaller than the null-hypothesis is accepted,

otherwise it is rejected.

We illustrate the calculations by means of the example shown in Table A.3.

Table A.3 Results, in terms of accuracy, of algorithms A and B on 13 data sets.

Data set
name

Algorithm
A
(2)

Algorithm
B
(3)

Difference
(4)= (2) – (3)

Absolute
difference

(5)=|column 4|

Rank
(6)

1 86.68 90.37 -3.69 3.69 4
2 77 84.61 -7.61 7.61 7
3 80.02 73.19 6.83 6.83 6
4 74.74 75.36 -0.62 0.62 1
5 79.5 74.06 5.44 5.44 5
6 79.5 50 29.5 29.5 12
7 64.5 50 14.5 14.5 10
8 64.28 50 14.28 14.28 9
9 89 87.63 1.37 1.37 2
10 64.17 45 19.17 19.17 11
11 60 50 10 10 8
12 100.00 60.45 39.55 39.55 13
13 68.77 66.95 1.82 1.82 3

Column 1: data set name

Column 2: 10-FCV accuracy of algorithm A

Column 3: 10-FCV accuracy of algorithm B

Column 4: difference between the two accuracies

Column 5: absolute difference

Column 6: rank (from 1 to 13) based on values in column 5

100

Null-hypothesis is H0: algorithms A and B perform at the same level (in accuracy).

Decision Rule: Reject H0 if T<=critical value at α= 0.05.

Now, using column 6, we calculate the sum of ranks for which column 4 values

were positive (red color), for the case when algorithm A performed better than algorithm

B:

Sum R+ = 6+5+12+10+9+2+11+8+13+3 = 79

Similarly we calculate the sum of ranks when algorithm B performed better than A

(blue color):

Sum R- = 4+7+1 = 12

Obviously

Sum R0 = 0

Thus, the sums are

R+ = (SumR+) + 0.5*Sum R0 = 79

R- = (SumR-) + 0.5*Sum R0 = 12

From the two we calculate:

T = min (R+, R-) = 12

Assuming confidence level α = 0.05, with the total number of data sets N = 13, we

find in the table of critical values for the Wilcoxon test (part of which is shown in Table

A.4) that the critical value is 17.

101

Table A.4 Part of Wilcoxon’s test table.

N 0.05 0.02 0.01
8 4 2 0
9 6 3 2
10 8 5 3
11 11 7 5
12 14 10 7
13 17 13 10
14 21 16 13

Using the value 17, and the calculated T=12, we see that T ≤17 so we reject the

null-hypothesis. In other words, the two algorithms do not perform at the same level.

Friedman Test

The Friedman test is used for comparing performance of two or more algorithms

over several data sets. The input is a table of results. They are ranked across the rows and

the mean rank for each column is calculated. We use the results (in terms of accuracy)

shown in Table A.5 to illustrate.

102

Table A.5 Results of six algorithms on 11 data sets.

Data
Set

Name

Algorithm
1

Algorithm
2

Algorithm
3

Algorithm
4

Algorithm
5

Algorithm
6

1 0.89 0.92 0.76 0.92 0.8 0.82
2 0.97 0.89 0.97 0.75 0.9 0.93

3 0.61 0.6 0.68 0.67 0.66 0.59

4 0.5 0.5 0.63 0.89 0.8 0.96

5 0.47 0.45 0.42 0.63 0.45 0.68

6 0.51 0.51 0.5 0.52 0.51 0.53

7 0.61 0.54 0.65 0.63 0.68 0.69

8 0.52 0.51 0.52 0.51 0.53 0.5

9 0.71 0.7 0.65 0.71 0.71 0.61

10 0.44 0.42 0.41 0.47 0.44 0.35

11 0.41 0.42 0.42 0.39 0.44 0.42

Null hypothesis is H0: All algorithms perform at about the same level in accuracy

Decision Rule: Reject H0 if Fr >=critical value at α= 0.05.

Calculations

The differences between the sum of the ranks is evaluated by calculating the

Friedman statistic (Fr) using this formula:

�� =
12

nk(k + 1)
�R�

� − 	3n(k + 1)

where:

k is # of columns (also called “treatments”)
n is # of rows (also called “blocks”)
Rj is sum of the ranks in column j.
If there is no significant difference between the sum of the ranks for each column,

then Fr is small, but if at least one column shows significant difference then Fr is larger.

From Table A.5 we find ranks for each algorithm for each data set and they are

shown in Table A.6.

103

Table A.6 Ranking of the six algorithms on 11 data sets.

Data set
Name

Algorithm
1

Algorithm
 2

Algorithm
 3

Algorithm
 4

Algorithm
 5

Algorithm
 6

1 4.0 5.5 1.0 5.5 2.0 3.0
2 5.5 2.0 5.5 1.0 3.0 4.0
3 3.0 2.0 6.0 5.0 4.0 1.0
4 1.5 1.5 3.0 5.0 4.0 6.0
5 4.0 2.5 1.0 5.0 2.5 6.0
6 3.0 3.0 1.0 5.0 3.0 6.0
7 2.0 1.0 4.0 3.0 5.0 6.0
8 4.5 2.5 4.5 2.5 6.0 1.0
9 5.0 3.0 2.0 5.0 5.0 1.0
10 4.5 3.0 2.0 6.0 4.5 1.0
11 2.0 4.0 4.0 1.0 6.0 4.0

Sum of
ranks 39 30 34 44 45 39

Sum of
(ranks)2 1521 900 1156 1936 2025 1521

of algorithms (k) 6
of data sets (n) 11
Sigma Rj

2 9059
12/(nk(k+1)) 0.026
3n(k+1) 231
Fr value 4.31

Assuming the confidence level of 0.05, we look up the critical value in the chi-

squared (χ2) distribution table with (k-1) degrees of freedom (part of which is shown in

Table A.7), and it is 11.07.

Total number of algorithms, k=6, so degree of freedom (df) is 5.

104

Table A.7 Part of the chi-squared (χ2) distribution table.

df 0.25 0.1 0.05 0.025 0.01 0.005
3 4.11 6.25 7.81 9.35 11.34 12.84
4 5.39 7.78 9.49 11.14 13.28 14.86
5 6.63 9.24 11.07 12.83 15.09 16.75
6 7.84 10.64 12.59 14.45 16.81 18.55

Because Fr = 4.31 < critical value (11.07) we accept H0 and conclude that that all

algorithms perform at the same level, i.e., none of them is significantly better than the rest.

105

Appendix B

mi-DS and OneClass Algorithms Implementation Details

We implemented OneClass-DS and mi-DS algorithms as packages in popular

WEKA software so they can be downloaded and embedded into WEKA for easy use and

testing. To download and install them go to www.cioslab.vcu.edu/alg/main.html (Figure

B.1 shows a screen shot).

Figure B.1 Data Mining Tools web page.

106

For example, if one chooses to embed the mi-DS algorithm, then a new web page

appears as shown in a screen shot in Figure B.2.

Figure B.2 WEKA packages’s web page.

The user now can choose the required package (i.e., mi-DS) to download and save

it on her/his computer. To install the downloaded package (algorithm), run the WEKA (the

assumption is that the user has the WEKA already installed on his/her computer) on your

computer and choose the “Tools: Package manager” in the main window, as illustrated in

Figure B.3.

107

Figure B.3 Menu Package manger in WEKA.

A new window will appear that lists all current packages. Then click button “File/URL” at

the upper right hand corner (see Figure B.4).

Figure B.4 Package Manager window.

And follow the three steps (shown in Figure B.5) to choose the downloaded and

saved package.

108

Step 1: Click button “Browse”.

Step 2: Search and choose downloaded package and click “Select”.

Step 3: Click button “OK”

Figure B.5 Choose the package to install.

109

WEKA will install the chosen package (mi-DS in our case), as shown in Figure B.6.

Figure B.6 Installing chosen package in WEKA.

Open a data set in WEKA by clicking button “Explorer” in the main window, as

shown in Figure B.7.

Figure B.7 Open data set in WEKA.

110

Now we need to choose a data set to be analyzed, see Figure B.8, which shows we

choose a data set named MUSK1 (benchmark for MIL testing).

Figure B.8 Choose data set in WEKA.

The selected data set will be opened and loaded into WEKA application, as shown

in Figure B.9.

Figure B.9 Musk 1 data set .

111

Now, the user can choose the mi-DS algorithm and set values for its parameters, as

shown in Figure B.10, or use the default values (they are displayed in the image on the

right hand side and appear there automatically).

Figure B.10 Select mi-DS and setting values of parameters.

mi-DS will generate the rules that are shown in Figures B.11 using 10-FCV and in

Figure B.12 using splitting technique (with 90% for training and 10% for testing).

112

Figure B.11 Results using 10-FCV.

Figure B.12 Results using 90% of instances for training and 10% for testing.

Similarly, other packages from our website can be embedded into WEKA and used.

113

VITA

Dat T. Nguyen was born in Saigon, Vietnam. He received his Bachelor and Master

degrees from Computer Science Department, School of Science, National University of Ho Chi

Minh city, Vietnam, in 1991 and 1997, respectively. In 2009 he joined Department of Computer

Science at VCU as a Graduate Research Assistant. His research interests include data mining,

machine learning, high-dimension data visualization, and pattern recognition.

List of Relevant Publications:

Journal papers

[1] D.T. Nguyen, C. Nguyen, R. Hobson, L.A. Kurgan, and K.J. Cios. mi-DS: Multiple-Instance

Learning Algorithm. IEEE Systems, Man, and Cybernetics -Part B: Cybernetics, pp. 143-154,

Vol. 43, No. 1, Feb 2013.

 [2] D.T. Nguyen and K.J. Cios. OneClass-DS Algorithm, submitted to a journal.

Conference paper

[3] D.T. Nguyen, W. Dzwinel and K.J. Cios. Visualization of Highly-Dimensional Data in 3D

Space, ISDA 2011 Conference, Còrdoba, Spain, pp. 225-230

	Virginia Commonwealth University
	VCU Scholars Compass
	2013

	MULTIPLE-INSTANCE AND ONE-CLASS RULE-BASED ALGORITHMS
	Dat Nguyen
	Downloaded from

	tmp.1404866539.pdf.MibOV

