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In this work we developed rule-based algorithms for multiple-instance learning and 

one-class learning problems, namely, the mi-DS and OneClass-DS algorithms. Multiple-

Instance Learning (MIL) is a variation of classical supervised learning where there is a 

need to classify bags (collection) of instances instead of single instances. The bag is labeled 

positive if at least one of its instances is positive, otherwise it is negative. One-class 

learning problem is also known as outlier or novelty detection problem. One-class 

classifiers are trained on data describing only one class and are used in situations where 

data from other classes are not available, and also for highly unbalanced data sets.  

Extensive comparisons and statistical testing of the two algorithms show that they 

generate models that perform on par with other state-of-the-art algorithms.
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Introduction 

Supervised machine learning is an important branch of artificial intelligent where 

instances are labeled as positive or negative by a teacher during the training task. However, 

in practice it is not always possible for the teacher to provide labels for all training 

instances. In classical supervised learning, there are two main drawbacks in the labeling 

task. First, the teacher does not know the label of an individual instance and second, the 

teacher has only instances for a single class (positive or negative) of labels.  

The first problem is modeled as multiple instance learning (MIL) and is becoming 

increasingly important within machine learning. Unlike traditional supervised learning in 

which each individual instance is labeled, in multiple instance learning model a bag of 

instances is labeled as to whether any single instance is positive. This model was 

encountered by Dietterich et al. (1997) in the task of  the drug activity prediction problem 

where each instance is a possible configuration for a molecule of interest and each bag 

contains all low-energy configurations for the molecule. To date, there are many in 

interesting applications in use of MIL scenario in addition to Dietterich’s work. For 

examples, the learning simple description of a person from a series of images containing 

that person, the stock selection from highest return stocks and so on. 
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The problem in the second drawback is the one-class classification which is to 

formulate a target set of instances  in a training dataset and to detect new instances similar 

to the training set. As such, the difference with traditional classification is that in one-class 

classification only instances of one class (target) are available. All other instances are the 

outliers.  

In this thesis, we hypothesize that the above two problems can be solved using 

traditional supervised learning methods such as support vector machine, neural networks, 

Bayesian networks and/or  classical rule-based learners. The motivation of the present 

study is to investigate and solve the issues raised by introducing multiple instance learning 

and one class problems into rule-based algorithms, in particular DataSqueezer (Kurgan et 

al., 2006) . 

The thesis is organized as follows. Chapter 1 introduces and defines Inductive 

Machine Learning methods. Chapter 2 presents the novel Multiple-Instance Learning 

Algorithm: mi-DS. Chapter 3 details the novel OneClass-DS learning algorithm in solving 

One-class classification. The last Chapter is dedicated to Conclusions. 
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CHAPTER 1 Inductive Machine Learning 

1.1 Inductive rule learners 

 Over last few years ML attracted considerable attention due to the demand for 

reliable and useful data mining techniques in the information technology, medical, decision 

making, and gaming industries, to name but a few. Machine learning (ML) is frequently 

used to solve classification problems, perform intelligent data analysis, and in development 

of diagnostic, decision support, and knowledge-based systems (Langley and Simon, 1995; 

Paliouras et al., 2001).  ML methods are divided into two major groups, supervised and 

unsupervised (like clustering). Here we deal only with supervised methods. 

ML methods are frequently used in the knowledge discovery process because of 

their many desired characteristics. We define knowledge discovery as a nontrivial process 

of identifying valid, novel, potentially useful, and ultimately understandable patterns from 

large collections of data (Fayyad et al., 1996). In view of this definition ML is one of the 

key tools used to perform data mining tasks (Fayyad et al., 1996) (Cios and Kurgan, 2004). 

ML is often defined as the ability of a computer program to improve its own performance 

at some task based on past experience, and as such is a very attractive vehicle for 

discovering patterns in the data and classification. 
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There is a class of ML algorithms called rule induction systems (or rule learners) 

and they are the subject of the work presented here. A rule induction system takes as input 

a set of training examples, and produces a set of production rules in the form IF conditions 

THEN actions. Rule induction is distinct from decision trees. It is easy to write a set of 

production rules, each specifying a path from the root to a leaf node, from a generated 

decision tree. However, a set of IF…THEN… rules generated by a rule learner cannot be 

converted into a decision tree (it forms only a graph).  Rule learners exhibit a number of  

desirable properties: 

– They generate rules that are easy for people to understand, which is a desirable 

property since they are more comprehensible than decision trees (Chisholm and 

Tapedalli, 2002). People often learn from the hypotheses generated by a rule learner, 

provided the hypothesis is in a human-comprehensible form. In this case, experts 

can participate in the learning process by critiquing or improving the learned 

hypotheses. 

– Rule learners often outperform decision trees in some domains (Pagallo and Haussler, 

1990). 

 – The output of a rule leaner can easily be translated into a first-order logic 

representation, or embedded within the knowledge-based systems (Cohen, 1995; 

Cios and Kurgan, 2004). 

– Certain types of prior knowledge can be easily incorporated into rule learners 

(Pazzani and Kibler, 1992). 
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– The rules can be modified and analyzed because of their modularity, i.e., a single rule 

can be understood without reference to other rules (as is the case with decision 

trees), which is important when a decision maker needs to understand and validate 

the generated rules, for example in medical application (Holsheimer and Siebes, 

1994). 

Supervised rule learners can be sub-divided into three scenarios, depending on the 

type of training data available. In the first scenario, the “classical” one, each instance in 

training data set belongs to only one of the classes. For instance, we may have data 

describing patients with diseases 1, 2 and 3; thus training data pairs are (patient1, disease1), 

(patient 2, disease3), etc.  

In the second scenario, called Multiple Instance Learning (MIL), the training data 

are very different (Dietterich et al., 1997).  Namely, instead of each patient having only one 

diagnosis he/she can have many diagnoses over a period of time. These diagnoses put 

together form a “bag” of diagnoses for this patient. Now, the task is to come up with a 

model to be used later for predicting whether a new patient has a certain disease (among 

several other diseases).  We developed a new algorithm for this scenario and it is discussed 

in Chapter 2. 

In the third scenario, known as one-class learning or outlier detection, we have data 

representing only one class, say of some unique disease (Cohen et al, 2004). Our task is to 

come up with a model to be used for predicting whether a new patient has or not this 
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particular disease.  In Chapter 3 we describe the algorithm developed for this learning 

scenario.  

1.2  Classical rule learners 

There are dozens of classical inductive rule learner algorithms that can be grouped 

into decision tree algorithms such as C4.5 (Quinlan, 1993), CART (Breiman et al., 1984), 

ID3 (Quinlan, 1986),… and the “true” rule learners such as RIPPER (Cohen, 1995), DLG 

(Webb and Agar, 1992), IREP (Furnkranz  and  Widmer, 1994)… 

Below we describe one classical rule learner, namely DataSqueezer (Kurgan et al., 

2006), which induces a set of production rules from a training data set as it constitutes a 

basis for the developed algorithms: for MIL problems and the other for one-class learning 

problems. The main advantages of DataSqueezer are its log-linear complexity and 

robustness to missing values, which commonly are present in big data. Below we review in 

some detail the DataSqueezer algorithm because it is used as a component of the developed 

new algorithms for more difficult learning tasks of one-class and MIL classification 

problems.     

Let us denote training data set by D. It consists of s instances and k features. D 

includes two sets: positive set – DP and negative set DN. Both these set must satisfy 

conditions: DP ∪ DN = D , DP  ∩ DN = ∅ ,  DP ≠∅ , DP ≠∅. From the training data set D, 

we distribute all instances into table POS that contains only positive instances and table 

NEG that contains only negative instances. DataSqueezer algorithm has two steps. First, it 

calls function DataReduction with table POS and then table NEG to generalize information 
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stored in these two tables. In the second step, it creates RULES which contains rules for 

positive instances in data set.  Pseudocode of DataSqueezer is shown in Figure 1.1. Vectors 

and matrices (tables) are denoted by capital letters, while their elements are denoted by 

lower-case letters (Kurgan et al., 2006). 
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DataSqueezer 

Input: POS, NEG, k , s 

Step 1. 

GPOS =  DataReduction(POS,k); 

GNEG= DataReduction(NEG,k); 

Step 2. 

2.1 Initialize RULES=[ ] ; i=1; 

2.2 Create LIST =  List of all columns in GPOS 

2.3 Within every GPOS column that is on LIST, for every non missing value a from 

selected column j compute sum, Saj, of values of gposi[k+1] for every row I, in 

which a appears and multiply Saj, by the number of values the feature j has. 

2.4 Select maximal Saj, remove j from LIST, add “j=a” selector to rulesi 

2.5 If  rulei does not described any rows in GNEG 

2.6 then Remove all rows described by rulei from GPOS, i=i+1; 

2.7   If GPOS is not empty  go to 2.2  else terminate 

2.8 else  go to 2.3 

Output: RULES 

 

DataReduction // data reduction procedure for D=POS or D=NEG 

Input: D, k    

Initialize G = [ ]; i = 1; tmp = d1; g1 = d1; g1[k+1] = 1;  

for j=1 to ND //for positive/negative set: ND is NPOS or NNEG 

for kk=1 to k  // for all features 

if (dj[kk]<>tmp[kk] or d j[kk]=’*’) // ‘*’ : missing “do not care” value 

then tmp[kk]=’*’; 

if (number of non-missing values in tmp>=2) then gi = tmp; gi[k+1]++; 

else  i++; gi = dj; gi[k+1] = 1; tmp = dj; 

Output: G 

Figure 1.1 Pseudocode of DataSqueezer algorithm 
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where 

POS: Table of positive instances 
NPOS: number of positive instances 
NEG: Table of negative instances 
NNEG: number of positive instances 
GPOS: Table store results of POS after DataReduction 
GNEG: Table store results of NEG after DataReduction 
Saj : number of times value a in column j occurred 
k: number of features in data set 
s: number of instances 
RULES: rule for positive instances 
di: i

th row  of table D  (similarly for gi, gposi, rulesi ) 
di[j] : jth column of ith row in table D (similarly for gi[j] ) 
tmp[i] : ith column of row tmp 

 
In step 1, the learner performs data reduction to generalize information stored in the 

original data (Kurgan et al., 2006). Its algorithm performs data reduction to generalize 

information stored in the original data via use of the prototypical concept learning, which is 

based on the Find algorithm of Mitchell (Mitchell, 1997). It is performed for both positive 

and negative data and results in generation of the tables. The reduction procedure is also 

related to the least generalization, as used by the DLG learner (Webb and Agar, 1992). The 

main difference is that the least generalization is applied multiple times for the entire 

positive set through a beam search procedure, while DataSqueezer performs it once in a 

linear fashion by generalizing consecutive examples. Also, the DLG learner does not 

generalize the negative set. 

In step 2, the learner generates rules by performing greedy hill-climbing search on 

the reduced data: A rule is generated by applying the search procedure starting with an 

empty rule, and adding selectors until the termination criterion fires. The rule, while being 

generated, consists of selectors generated using data set, and is checked against the data set. 
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If the rule covers any data in the data set, a new selector is added to the rules making it 

more specific, and thus able to better distinguish between positive and negative data. Next, 

the examples covered by the generated rule are removed, and the process is repeated. For 

more details the reader is referred to (Kurgan et al., 2006).  

In Chapters 2 and 3 we describe the developed algorithms for MIL and one-class 

learning problems, respectively.  
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CHAPTER 2 Multiple-Instance Learning Algorithm: mi- DS 

2.1 State of the Art 

The multiple-instance learning (MIL) problem was introduced by (Dietterich et al., 

1997). It is concerned with classifying bags of instances instead of single instances. A bag 

is labeled positive if at least one instance within it is positive and negative if all instances 

are negative. The goal of MIL algorithms is to correctly label new test bags. Standard 

supervised learning classifiers do not work on the MIL problems because although they can 

learn all correct negative bag instances, they cannot distinguish between the true- and false- 

positive instances in the positive bags. Several MIL scenarios exist: 

• a positive bag can include one or more different true positive instances  

• the number of true positive instances in a positive bag may be greater or smaller 

than the number of false positive instances  

• the true positive instances may have similar or quite different feature values. 

To illustrate MIL consider the locksmith problem which a locksmith must 

determine if a keychain is useful. The keychain is assumed positive (useful) if at least one 

of the keys opens the door, otherwise it is negative (useless). Dietterich et al. formalized 

MIL for the classification of aromatic molecules for drug design. The goal was to classify 

each molecule, represented by a bag of possible conformations, according to whether or not  



 
 

12 
 

it was musky. MIL methods have been developed and used in applications such as image 

retrieval and annotation (Qi and Han, 2007; Chiang and Cheng, 2009; Zhang et al., 2008), 

failure prediction (Murray et al., 2005), and bioinformatics for protein-ligand docking 

(Mizianti et al., 2010). Key MIL algorithms are briefly reviewed below. 

Many approaches for solving MIL problems are based on probabilistic models. One 

of them, the Diverse Density (MI-DD) algorithm (Maron and Lozano-Perez, 1998) 

attempts to find a concept point in the feature space that is close to at least one instance 

from every positive bag but far away from instances in the negative bags. The optimal 

concept point has maximum diversity density (“a measure of how many different positive 

bags have instances near that point, and how far the negative instances are from that point”, 

(Maron and Lozano-Perez, 1998)). Thus, the concept point describes a region of the 

instance space that is dense in terms of instances from the positive bags. Another 

algorithm, the Expectation Maximization and Diverse Density (MI-EMDD) (Zhang and 

Goldman, 2001) extends the MI-DD method and forms a generic framework that can be 

used to convert a MIL problem into a single-instance setting by using the Expectation 

Maximization (EM) algorithm. The label of a bag is determined by the instance with the 

highest likelihood of being positive among all instances in that bag. The authors use a set 

of hidden variables that are estimated using the EM approach to find out which instance 

determines the label of a given bag. Starting with an initial guess of the concept point h, 

obtained by checking points from the positive bags, the MI-EMDD iteratively performs the 

following two steps. 1) E-step: the current hypothesis h is used to select one instance from 
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each bag which is the most likely to be responsible for the label given to the bag. 2) M-

step: a new instance h' is estimated to maximize the diverse density of the hypothesis h by 

using a gradient search. The two steps are repeated until the algorithm converges (when the 

diverse density of the hypothesis is h' < h). Also within the framework of probabilistic 

approach a linear logistic regression algorithm was long used in standard single-instance 

supervised machine learning to fit a linear model to the log-odds of the class probabilities. 

At classification time a new instance is assigned to the class which corresponding linear 

function value achieves maximum among all the classes. However, for the MIL problems 

the standard logistic regression model cannot be directly used thus an indirect estimate of 

the logistic model (MI-LR) was proposed by (Xu and Frank, 2004). They extended the 

standard instance-based logistic regression model to a bag-level model under the 

assumptions indicating how the instance-level class probabilities were combined to form 

the bag-level probability so that the actual class label for each instance was not required. 

A different approach is based on support vector machine (SVM) classifiers. SVM is 

a supervised learning algorithm (by Vapnik, 1995) and it was used for solving MIL 

problems as follows. In the standard single-instance SVM the training data is provided as a 

set of instance-label pairs (bi, yi), where bi is an instance and yi is its label, which are then 

non-linearly mapped to a higher-dimensional space F. The SVM algorithm aims to find the 

maximum margin hyperplane in F that linearly separates two classes. Sequential Minimal 

Optimization (MI-SMO) method (Platt, 1998) extended the standard SVM for MIL 

problems by using a bag-level multi-instance kernel function. First, the bag-level kernel is 
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defined and the bag-label pairs (Bi, Yi) can then be used instead of instance-label pairs (bi, 

yi). (Andrews et al., 2002) introduced another SVM-based approach, the MI-SVM 

algorithm. The main idea was to transform the multi-instance data setting into a single-

instance setting by properly assigning the unobserved class label to each individual 

instance in the positive bags. Then the standard single-instance SVM learning scheme was 

used for assigning the labels. The goal was to find the maximum-margin multi-instance 

separating hyperplane in which all instances in each negative bag are located on one side of 

the hyperplane and at least one positive instance from all positive bags is located on the 

other side of the hyperplane. 

Another way to solve MIL problem is based on using distance measures. MI-

OptimalBall method (Auer and Ortner, 2004) was introduced as a weak learner 

implemented within the boosting framework. The main idea was to find an optimal ball in 

the feature space such that all negative bags were outside of this ball. In other words, the 

surface of the ball separates positive and negative instances/concepts. The center of the 

optimal ball is an instance from a positive bag and the radius of the ball is determined 

based on the training data. During classification, if all instances in a test bag lie outside of 

the optimal ball then the bag is classified as negative, otherwise as positive. The authors of 

Citation-KNN (Wang and Zucker, 2000) used the K-nearest neighbor (KNN) algorithm to 

compute the shortest distance between any two instances of each bag. Specifically, they 

used Hausdorff metric at the bag-level to calculate the distance:  
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Dist (A,B) =    Min (Dist(ai,bj))       =   Min Min ||a-b|| 

  1≤ i ≤ n , 1≤ j ≤ m           a ∈A , b∈B 

where:  A and  B denote bags; 

n  and  m are the total number of instances in bags A and B, respectively;  

ai, bj are instances in each bag.  

 

The new bags are labeled using the KNN algorithm. However, in the MIL scenario, 

the majority label of the k nearest neighbors of an unlabeled bag is not always the true label 

of that bag. This is because the majority voting scheme may not work in the presence of 

false positive instances in the positive bags. This weakness was overcome by adding a 

citation approach which considered not only the bags as the nearest neighbors (known as 

references) of a given bag B, but also the bags that count B as their neighbors (known as 

citations). Hence, the Citation-KNN predicts the label of a bag based on the labels of both, 

the references and citers, of that bag. The performance of Citation-KNN was on par with 

MIL algorithms such as Diverse Density (Maron and Lozano-Perez, 1998) and Axis 

Parallel Rectangle (Dietterich et al., 1997). Unfortunately, Citation-KNN cannot be used to 

predict the labels of all individual instances. The Multiple-Instance Nearest Neighbor with 

Distribution Learner (MI-NND) method (Xu and Li, 2007) assumes that each bag contains 

enough instances and that all dimensions of the data are equally relevant to classification. 

Under these assumptions a distribution is derived for each dimension of each bag and the 

obtained distributions are used directly for classification, instead of doing it on the original 
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data. MI-NND operates in two steps. The first step formulates distribution for each bag 

based on the training data by deriving a Gaussian model for each dimension of each bag. 

These Gaussian distributions are then used to represent the original data. The second step 

finds the nearest neighbors for a test bag where the test bag is also represented by the 

Gaussian distributions for each dimension. Next, the testing and training distributions are 

compared using Kullback-Leibler distance and the category is decided based on the closest 

match (classification process is just the same as in the standard KNN algorithm).  

More recently, several other MIL algorithms were proposed. One, the Multiple-

Instance Learning via Embedded instance Selection (MILES) (Chen et al., 2006) converted 

MIL problem to standard supervised learning by mapping each bag into a feature space 

defined by the instances in the training bags using instance similarity measure and the 1-

norm SVM (Zhu et al., 2003)  to solve it. Other two methods were also based on the SVM 

but used deterministic annealing for identifying all labels (AL-SVM) and for identifying 

the witness (AW-SVM)  (Gehler and Chapelle, 2007).  Based on the extended Random 

Forest algorithm (Breiman, 2001), the mi-Forest defined labels of all instances in every 

positive bag as random variables and used deterministic annealing procedure to find the 

true labels (Leistner et al., 2010).   

The above methods were developed using either the probabilistic EM approaches, 

or nearest-neighbor approaches, or regression, or by extending the SVM classifier.  Here, 

we propose a new learner, mi-DS, based on our rule classifier called DataSqueezer (Kurgan 

et al., 2006). mi-DS uses rules generated by DataSqueezer as a metric to measure the 
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distance between two bags in the training data. Our main goal was to develop a method that 

builds predictive models that perform better or on par with the existing MIL methods. 

Importantly, the proposed approach can be used as a generic framework to transform other 

rule-based algorithms for solving MIL problems. 
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2.2 mi-DS algorithm 

 
Pseudocode of the mi-DS is shown in Figure 2.1 

 
mi-DS 
Input: training bags {bi}, number of features k, total number of instances s 

 
ScanInRuleTable 
Input: Training bag bk, rule table RULE, matrix M 

FOR (every instance i  in bag bk) 

FOR (each rule r in RULE) 

IF (instance i  covered by rule r)  

FOR (each bag bj IN covered bags of the rule r) AND (k<>j)  

then  M[i,j]++ 

 
SimilarityMatrix 
Input: List of training bags {bi}  
Initialize the matrix M with n+1 rows and n+1 columns 

FOR (k=1 to n) 

 ScanInRuleTable(bi, RULEPOS, M) 

 ScanInRuleTable(bi, RULENEG, M) 

Output: Similarity matrix M 
 

Step 1 
Create POSITIVE table that contains all instances of all positive bags 

Create NEGATIVE table that contains all negative instances of negative bags 

Remove inconsistent instances from POSITIVE table and update s. 

Step 2 
RULEPOS � DataSqueezer (POSITIVE, NEGATIVE, k, s)    

RULENEG � DataSqueezer (NEGATIVE, POSITIVE, k, s) 

M � SimilarityMatrix ( {bi}, RULEPOS, RULENEG ) 

Output: RULEPOS, RULENEG, similarity matrix M 
 

Figure 2.1 Pseudocode of mi-DS algorithm. 
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mi-DS algorithm consists of two major steps that are described in detail below. 

In Step 1 tables for positive and negative instances are created.  Namely, we create 

POSITIVE table that contains all instances of all positive bags and all of them (every 

instance in this table) are labeled as positive.  We also create NEGATIVE table that 

contains all instances of all negative bags and all of them (every instance in this table) are 

labeled as negative. We then convert all bags into two tables containing positive instances 

and negative instances, respectively, like in a classical binary classification problem. 

Inconsistent instances (identical instances that appear in both negative and positive bags) 

are then removed from the POSITIVE table. 

In Step 2 mi-DS calls DataSqueezer to generate the Positive (RULEPOS) and 

Negative (RULENEG) rule tables. The RULEPOS table thus contains rules for “positive” 

instances that, in fact, cover both the true positive and false positive instances because of 

the MIL definition of the positive bag.  RULENEG table, however, covers only true 

negative instances. After performing data reduction, a rule is generated by incrementally 

adding features by checking the POSITIVE table against the NEGATIVE table for 

RULEPOS, and vice versa for the RULENEG. A feature with the highest summed up value, 

which is computed using the number of occurrence of that particular feature multiplied by 

the number of distinct values of the feature, is selected and added incrementally to a rule as 

a selector until the rule does not describe any rows in the NEGATIVE table. Similarly for 

the NEGATIVE table. Next, the rows described by the generated rule are removed from the 
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POSITIVE table and the process repeats.  During this phase of rule generation the rules are 

collected along with the information about which bags are covered by the rules.  

Two thresholds are used to address the bias-variance dilemma. First, a pruning 

threshold is used to control the rule generation process to keep the rulesfrom becoming too 

specific. This was done by not allowing a rule to add more selectors than the number 

specified by the threshold’s value. Second,  a generalization threshold is used to allow for 

generation of rules that cover a small number of negative examples. 

After the RULEPOS and RULENEG tables are generated we build a similarity 

matrix M that measures the similarity between two bags, as explained in Table 2.1. The 

similarity matrix has n+1 rows and n+1 columns, where n is the number of bags in the 

training data set. The value Mij stored in this matrix represents the total number of positive 

and negative rules such that the bags bi and bj are covered by the rules. In other words, the 

bag bi refers Mij times to the bag bj or the bag bj is cited Mij times by the bag bi. (n+1)th row 

and the (n+1)th column are used to store the numbers of References and Citations, which  

are used later to make a decision about a test bag label. 

Table 2.1 Similarity matrix constructed in step 2. Mij is the number of the rules covering the bags bi 
and bj; (n+1)th row and (n+1)th column are used during the subsequent prediction. 

 
Row/Col 1 2 3 ... n n+1 

1 0 M12 M13 ... M1n  
2 M21 0 M23 ... M2n  
.... ... ... ... 0 ...  
n Mn1 Mn2 Mn3 ... 0  

n+1       
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A measure was created to quantify similarity between the test bag and the training 

bags and decide a label for the new bag. This was achieved by modification of the 

measures described in (Wang and Zucker, 2000), so that it can be used within the rule-

based models. Specifically, instead of using the metric distances between the bags, the 

number, uij, of rules that cover all the bags is used. For a given test bag, first fill the (n+1)th 

row and the (n+1)th column in the similarity matrix, in the same way as in phase II but only 

for the last row and the last column of the similarity matrix (see Table 2.1). To make a 

decision about class of a test bag both the number of References (R) and the number of 

Citations (C)must be used. To do so, first count, in row (n+1), the bags that have R 

maximum values. The purpose is to find bags (both positive and negative) that the test bag 

most often referred to. Similarly, next scan all rows of the similarity matrix and count the C 

maximum values with the restriction that one of them must come from column (n+1), the 

rule that covers the Test bag. The purpose is to find bags which the test bag B most often 

cited. 

 
P= Rp + Cp 

N= Rn + Cn 

 
where Rp (Rn) is the number of positive (negative) bags in the R selected bags and 

Cp (Cn) is the number of positive (negative) bags in the C selected bags. The test bag is 

predicted as positive if P > N, otherwise it is negative. When P = N there are different 

ways of labeling unknown bags. A simple algorithm was developed for this purpose. 

The pseudocode for the just described procedure is given in Figure 2.2. 
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PredictTestingBag 

Input: test bag B, RULEPOS, RULENEG, matrix M) 

CalculateSimilarityofTestingBag(B, RULEPOS,RULENEG, matrix M) 

IF (P > N)    then B is positive 

ELSE IF (P < N)   then B is negative 

ELSE IF (Rp > Rn)  then B is positive 

ELSE IF (Rp < Rn)   then B is negative 

ELSE IF (Cp > Cn)   then B is positive 

ELSE IF (Cp < Cn)   then B is negative 

ELSE IF ( # of positive bags > #number of negative bags in {b1,b2,..,bn})  

THEN B is positive 

ELSE   B is negative 

Output: Predicted label of testing bag B. 

 
CalculateSimilarityofTestingBag 

Input: Testing bag B, Rule tables RULEPOS and RULENEG, matrix M. 

Set (n+1)th row and (n+1)th column in the similarity matrix M to 0 

ScanInRuleTable(B,RULEPOS) 

ScanInRuleTable(B,RULENEG) 

Build list REF of bags which include the top  R nearest references to B 

Build list CITER of bags which include the top C nearest citers of B 

Calculate P, N, Rp, Rn, Cp and Cn  from REF and CITER 

Output: P,N,Rp,  Rn, Cp, Cn 
 

Figure 2.2 Pseudocode, PredictTestingBag, for labeling test bag B. 
 

 
Computational complexity of the mi-DS is analyzed next. In Step 1, the mi-DS 

requires O(NposNneg) computations, where Npos is the number of instances in the positive 

bags and Nneg is the number of instances in the negative bags. The complexities of Step 2, 



 
 

23 
 

(see Kurgan et al., 2006) are O(RposKNposlogNpos) for generating the RULEPOS table and 

O(RnegKNneglogNneg) for generating the RULENEG table, where Rpos and Rneg are the total 

numbers of rules in the RULEPOS and RULENEG, respectively, N is the total number of 

instances, and K is the number of features. The construction of the similarity matrix takes 

O(NRtotalK), where Rtotal is the total number of rules. Therefore, the computational 

complexity of the algorithm is approximately O(Rtotal KN logN). 

Data shown in Table 2.2 are used to illustrate the working of the mi-DS algorithm.  

Table 2.2 Five training data bags. 
 

Bag # 
Features 

Class label 
Shape Color Width 

1 
Rect Green 200 

+ Circle Blue 400 
Circle Green 300 

2 
Circle Green 300 

- Rect Blue 200 
Triangle Blue 200 

3 
Rect Green 200 

+ Circle Red 300 
Triangle Blue 200 

4 
Rect Blue 200 

- 
Triangle Blue 200 

5 
Rect Green 200 

+ Circle Blue 300 
Rect Blue 200 

 
 
Step 1 
Create POSITIVE and NEGATIVE tables from the given training bags. Results are 

shown in Table 2.3. 
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Table 2.3 POSITIVE and NEGATIVE tables. 
 

POSITIVE table    
Features Number of 

times 
occurred 

Bag # 
Shape Color Width 
Rect Green 200 1 1 

Circle Blue 400 1 1 
Circle Green 300 1 1 
Rect Green 200 1 3 

Circle Red 300 1 3 
Triangle Blue 200 1 3 

Rect Green 200 1 5 
Circle Blue 300 1 5 

Rect Blue 200 1 5 

    
NEGATIVE table    

Features Number of 
times 

occurred 
Bag # 

Shape Color Width 
Circle Green 300 1 2 
Rect Blue 200 1 2 

Triangle Blue 200 1 2 
Rect Blue 200 1 4 

Triangle Blue 200 1 4 
 

Inconsistent instances are shown in bold in Table 2.3 (i.e., (Circle, Green, 300), 

(Triangle, Blue, 200) and (Rect, Blue, 200)) are removed from the POSITIVE table but are 

kept in the NEGATIVE table. Results are shown in Table 2.4. The bag number and the 

count of the number of occurrences of each instance are also shown in Table 2.4. 
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Table 2.4 POSITIVE and NEGATIVE tables (after remove inconsistent instances). 
 

POSITIVE table    
Features Number of 

times 
occurred 

Bag # 
Shape Color Width 
Rect Green 200 1 1 

Circle Blue 400 1 1 
Rect Green 200 1 3 

Circle Red 300 1 3 
Rect Green 200 1 5 

Circle Blue 300 1 5 

    
NEGATIVE table    

Features Number of 
times 

occurred 
Bag # 

Shape Color Width 

Circle Green 300 1 2 
Rect Blue 200 1 2 

Triangle Blue 200 1 2 
Rect Blue 200 1 4 

Triangle Blue 200 1 4 
 
Step 2  

In this step, RULEPOS and RULENEG tables are generated, see Table 2.5; the 

table also shows bag numbers covered by these rules. 
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Table 2.5 RULEPOS and RULENEG tables; * indicates any value of a feature. 
 

RULEPOS  
Features Number 

of times 
occurred 

Bags 
Shape Color Width 
Rect Green * 3 {1,3,5} 

Circle Blue * 2 {1,5} 
Circle Red * 1 {3} 

  
RULENEG  

Features Number 
of times 
occurred 

Bags  
Shape Color Width 

* Blue 200 4 {2,4} 
Circle Green * 1 {2} 

 
 

Now we construct the similarity matrix (as seen in Table 2.6) as follows. For 

example, bag 1 in Table 2.2 has three instances.  Instance 1 (Rect,Green,200) is covered by 

rule (Rect,Green,*) in RULEPOS table; because this rule also covers bags 3 and 5 thus 

increase M[1,3]  and M[1,5] .   Instance 2 (Circle,Blue,400) is covered by rule 

(Circle,Blue,*) in RULEPOS; because it also covers bag 5 M[1,5]  is increased. Instance 3 

(Circle,Green,300) is covered by rule (Circle,Green,*) in RULENEG; because it also 

covers bag 2 we increase  M[1,2]  is increased. This results in the first row in Table 2.6 

being (0,1,1,0,2). 
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Table 2.6 Similarity matrix M. 
 

Bag# (label) 1(+) 2(-) 3(+) 4(-) 5(+) Test bag 
1(+) 0 1 1 0 2  
2(-) 0 0 0 2 0  

3(+) 1 1 0 1 2  

4(-) 0 2 0 0 0  
5(+) 2 1 1 1 0  

Test bag       

 
Next, classification of a test bag B is performed shown in Table 2.7. First, every 

instance in the bag is scanned to see whether it is covered by any rule from either 

RULEPOS or RULENEG tables.  If an instance in bag B is covered by a rule then the 

values of M[n+1,j]   and M[j,n+1]  are incremented for every bag j in the bag lists (shown 

in the last column of Table 2.4) for both RULEPOS and RULENEG tables.   

 
 

Table 2.7 Test bag B with 5 instances in it. 
 

Shape Color Width 
Rect Green 300 

Circle Green 100 
Rect Blue 200 

Circle Blue 100 
Rect Green 100 

 
 

For example, the instance (Rect, Green, 300) in  bag B is covered by rule (Rect, 

Green, *) from the RULEPOS table, so increase M[n+1,j]  and M[j,n+1]  is increased by 1 

with bag numbers being j = 1,3,5.  The last row and the last column of the similarity matrix 

are updated as shown in Table 2.8.  Finally, the algorithm shown in Figure 2.2 is used with 

R=2 and C=2, and the resulting Rset and Cset values are:    
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Rset = {bag1(+), bag5(+)}   

Cset = {bag1(+), bag2(-), bag3(+), bag4(-), bag5(+)}.  

 
Label of the test bag B is then predicted based on the labels of bags in Rset and Cset. 

Since Rp=2, Rn=0, Cp=3, Cn=2, P=Rp+Cp=5, and N=Rn+Cn=2, the test bag B is predicted as 

positive. 

Table 2.8 Similarity matrix M with scores for the test bag B, with R=2 and C=2. 
 

Rule 
covering 

bag# (label) 
1(+) 2(-) 3(+) 4(-) 5(+) 

Test bag 
B 

1(+) 0 1 1 0 2 3 
2(-) 0 0 0 2 0 2 
3(+) 1 1 0 1 2 2 
4(-) 0 2 0 0 0 1 
5(+) 2 1 1 1 0 3 

Test bag B 3 2 2 1 3 0 
 
 

 

 

2.3 Experiments 

The mi-DS’s performance is evaluated by comparing its performance with several 

MIL algorithms using accuracy. For that purpose  a diverse set of  26 benchmark data sets 

are used: Musk1 and Musk2 (Dietterich et al., 1997), three data sets concerning 

mutagenicity (Srinivasan et al., 1994), three data sets concerning content-based image 

retrieval (Andrews et al., 2002), one data set for protein identification problem (Wang et al. 

2004), two data sets to predict whether a train is eastbound or westbound (Michalski and 
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Larson, 1977), two artificial data sets and three data sets for text categorization (Ray and 

Craven, 2005), and on Corel Corp. preprocessed image data. The data sets are summarized 

in Table 2.9. They are characterized by different number of features ranging from 3 to 231, 

number of instances ranging from 213 to 118,417, and different ratios of positive to 

negative instances, ranging from 0.08 to 3.3.  

The Musk data sets, from UC Irvine repository (Asuncion and Newman, 2007) are 

often used in evaluation of MIL algorithms: the task is to predict whether a given molecule 

emits a musky odor, where each bag describes one molecule (Dietterich et al., 1997). The 

mutagenesis data concern analysis of drug activity with the goal of predicting whether a 

given drug molecule is mutagenic or non-mutagenic: the molecules are represented by 

atoms, atomic bonds, and chains (Srinivasan et al., 1994). The next three data sets concern 

identification of the intended target objects in images. They include bags representing 

photographs of animals from a Corel data set (Andrews et al., 2002). An image is 

represented by a set of segments (pixel regions) that are characterized by color, texture, and 

shape descriptors. A bag represents an image and instances in a bag represent individual 

segments of that image. We use image data of elephants, foxes, and tigers; a positive bag is 

based on an image that contains a given animal. Data set Trx was used to solve protein 

identification problem (Wang et al. 2004). The data sets EastWest and WestEast are used to 

predict whether a train is eastbound or westbound (Michalski and Larson, 1977). Two 

artificial data sets are also used, Artificial 1 includes 200 bags with 100 positive and 100 

negative bags; each bag has 20 instances with 12 features uniformly assigned as 0 or 1 
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(Chevaleyre and Zucker, 2001). The concept is described by the first three features, (1,0,1), 

namely, if there exists in a bag at least one instance with the format of (1,0,1) with the 

remaining features taking on any value, then the bag is a positive. The second artificial data 

set includes 100 positive and 100 negative bags, each with 20 instances. Each instance has 

2 features which were drawn randomly from a [0,100] x [0,100] in R2. An instance is 

labeled as positive if the features fell in the square 5x5 in the middle of the domain, 

namely, in [48,52] x [48,52]. The bag is labeled as positive if at least one instance fells 

within this region and as negative otherwise (Maron and Lozano-Perez, 1998). Ray and 

Craven introduced text categorization data. Given a name of a protein and a full-text article 

from a biomedical journal, the task is to determine whether this protein-article pair can be 

annotated with a particular Gene Ontology (GO) term. For MIL setting each article is 

represented as a bag. An instance in a bag refers to a paragraph in the corresponding article. 

Each paragraph is represented as a set of word occurrence frequencies plus data about the 

nature of the protein-GO relationship. The assumption is that if there is at least one instance 

(paragraph) that is related to the protein-GO relationship, the bag is positive, otherwise it 

negative. There are three data sets that correspond to three categories of the GO terms, 

namely, the Component, Function, and Process.  
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Table 2.9 Description of the data sets used in comparisons. 
 

Experiment 
# Data sets # 

features 

# of bags/ 
Positive bags/ 
Negative bags 

# of instances/ 
Positive instances/ 
Negative instances 

I 

Musk1 167 92/47/45 476/207/269 
Musk2 167 102/39/63 6598/1017/5581 
Atoms 11 188/125/63 1618/1073/545 
Bonds 17 188/125/63 3995/2955/1040 
Chains 25 188/125/63 5349/4116/1233 
Elephant 231 200/100/100 1391/762/629 
Fox 231 200/100/100 1320/647/673 
Tiger 231 200/100/100 1220/676/544 
Trx 8 193/25/168 26611/3341/23270 
East-West 24 20/10/10 213/81/132 
West-East 24 20/10/10 213/81/132 
Artificial 1 13 200/100/100 4000/2000/2000 
Artificial 2 3 200/100/100 4000/2000/2000 

II  

Corel Corp. image 
data sets  9 250/50/200 variable 

Component 200 3130/423/2707 36894/9104/27790 
Function 200 5242/443/4799 55536/5543/49993 
Process 200 11718/757/10961 118417/9272/109145 

 

2.3.1 Experiment I 

The mi-DS algorithm with MI-DD (Maron and Lozano-Perez, 1998), MI-EMDD 

(Zhang and Goldman, 2001), MDD (Dietterich et al., 1997), MI-LR (Xu and Frank, 2004), 

MI-SVM (Andrews et al., 2002), MI-SMO (Platt, 1998), MI-OptimalBall (Auer and 

Ortner, 2004), Citation-KNN (Wang and Zucker, 2000) and MI-NND (Xu and Li, 2007) on 

the first 13 data sets are compared. Weka (Witten and Frank, 2005) is used for 

implementations of those algorithms. All experiments are performed on a 2.4 GHz CPU 

with 3GB RAM and each algorithm is parameterized to maximize its accuracy using 10-

fold cross validation. 
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Table 2.10 shows performance of these algorithms in terms of accuracy. It is worth 

noting that discretization was performed only on 8 training data sets (out of 13). Results of 

each method on each data set are ranked according to accuracy. It is easy to observe that no 

method is universally best. The average rank, over all data sets, of mi-DS is 6.4, which is 

the second best after MI-DD with 6.2. The third best method, MI-SMO, has average 

accuracy rank of 7.3. Interestingly, mi-DS performed best 4 times on the 13 data sets while 

other methods were best at most once. The Citation-KNN algorithm on the Elephants, 

Tigers and Fox data sets, as well as MI-SVM on the three mutagenesis data sets, generate 

only positive labels, which explains their low accuracies. 

Table 2.11 shows performance comparison in terms of the MCC (Matthews 

Correlation Coefficient); see Appendix A for its definition. It shows that mi-DS performed 

best on 7 out of 13 data sets, and the second best in 2 out of the remaining 6. Average rank 

of mi-DS is the smallest (value of 2.8), while the next best is MI-SMO (value of 4.3). 
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Table 2.10 Accuracy measures of mi-DS and 9 comparison MIL algorithms.  10-FCV is used to calculate accuracy (%).  The best results 
are shown in bold with rank shown below in brackets. 

 

# Alg  /  
Data set 

Musk 
1 

Musk 
2 

Ele- 
phan

t 
Fox Tiger Atoms Bonds Chains Trx East 

West 
West 
East 

Artifi-  
cial 1 

Artifi-  
cial 2 

Avg. 
Rank 

1 mi 
DS 

86.7 
[5] 

77 
[8] 

80 
[1] 

74.7 
[6] 

79.5 
[3] 

79.5 
[5] 

64.5 
[2] 

64.3 
[9] 

89 
[2] 

64.2 
[5] 

60 
[3] 

100 
[1] 

68.8 
[1] 3.9 

2 Citation 
KNN 

90.4 
[1] 

84.6 
[3] 

73.2 
[4] 

75.4 
[4] 

74.1 
[7] 

50 
[10] 

50 
[8] 

50 
 [10] 

87.6 
[4] 

45 
[10] 

50 
[4] 

60.5 
[3] 

67 
[2] 5.4 

3 MI 
DD 

84.7 
[6] 

80.4 
[6] 

72.9 
[5] 

76 
[3] 

79.9 
[2] 

81.5 
[3] 

59.4 
[4] 

72.2 
 [4] 

90 
[1] 

64.5 
[4] 

36 
[8] 

76.1 
[2] 

43.2 
[10] 4.5 

4 MDD 77.6 
[8] 

73 
[9] 

71.7 
[6] 

72.5 
[8] 

77.1 
[5] 

78.4 
[7] 

64.8 
[1] 

67.7  
[6] 

87.1 
[5] 

56.5 
[8] 

49 
[5] 

51.3 
[10] 

51.8 
[4] 6.3 

5 MI 
EMDD 

83.6 
[7] 

85.6 
[1] 

68.9 
[8] 

73.4 
[7] 

71.5 
[8] 

75.3 
[8] 

59.7 
[3] 

71.4  
[5] 

87.9 
[3] 

64 
[6] 

38 
[7] 

56 
[6] 

51.8 
[4] 5.6 

6 MI 
NND 

75.1 
[9] 

72.8 
[10] 

45.6 
[10] 

31.2 
[10] 

41.2 
[10] 

74.8 
[9] 

58.5 
[5] 

66.5 
 [7] 

87 
[6] 

57 
[7] 

74 
[1] 

55.2 
[8] 

45.9 
[8] 7.7 

7 MI- 
SMO 

87 
[4] 

84.9 
[2] 

71 
[7] 

82.4 
[1] 

85.2 
[1] 

82.4 
[1] 

55.2 
[7] 

80.3 
 [1] 

86.1 
[8] 

74 
[2] 

74 
[1] 

54.3 
[9] 

49.1 
[7] 3.9 

8 MI- 
SVM 

89.2 
[2] 

83.9 
[4] 

66.5 
[9] 

66.5 
[9] 

66.5 
[9] 

81.6 
[2] 

49.4 
[9] 

75.7 
 [2] 

87 
[7] 

52 
[9] 

22 
[10] 

55.5 
[7] 

50 
[6] 6.5 

9 MI- 
LR 

73.5 
[10] 

78.5 
[7] 

74 
[3] 

76.6 
[2] 

78.3 
[4] 

78.9 
[6] 

57.4 
[6] 

75.3  
[3] 

85.3 
[9] 

67 
[3] 

35.5 
[9] 

57.8 
[5] 

52.7 
[3] 5.4 

10 
MI- 

Optimal 
Ball 

87.5 
[3] 

83.2 
[5] 

75.3 
[2] 

75.3 
[5] 

75.3 
[6] 

79.6 
[4] 

48.7 
[10] 

66.3 
 [8] 

84.9 
[10] 

79 
[1] 

45.5 
[6] 

58.7 
[4] 

43.6 
[9] 5.6 
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Table 2.11 MCC measures of mi-DS and 9 comparison MIL algorithms.  10-FCV is used to calculate MCC.  The best results are shown in 
bold with rank shown below in brackets. 

 

# Alg / 
 Data set 

Musk 
1 

Musk 
2 

Ele- 
phant 

Fox Tiger Atoms Bonds Chains Trx 
East 
West 

West 
East 

Artifi- 
 cial 1 

Artifi- 
cial 2 

Avg. 
Rank 

1 mi 
DS 

0.877 
[2] 

0.521 
[7] 

0.802 
[1] 

0.731 
[1] 

0.731 
[1] 

0.58 
[1] 

0.589 
[2] 

0.561 
[1] 

0.204 
[8] 

-0.14 
[6] 

0.201 
[4] 

1 
[1] 

0.402 
[1] 2.8 

2 Citation 
KNN 

0.878 
[1] 

0.645 
[3] 

0 
[10] 

0 
[9] 

0 
[10] 

0.434 
[3] 

0.317 
[6] 

0.331 
[7] 

-0.204 
[10] 

0 
[4] 

0.011 
[10] 

0.214 
[3] 

0.381 
[2] 6.0 

3 MI 
DD 

0.858 
[3] 

0.356 
[10] 

0.653 
[2] 

0.315 
[3] 

0.531 
[3] 

0.332 
[6] 

0.413 
[5] 

0.445 
[3] 

0.301 
[5] 

-0.2 
[7] 

0.527 
[1] 

0.531 
[2] 

-0.138 
[8] 4.5 

4 MDD 
0.59 
[5] 

0.478 
[8] 

0.607 
[4] 

0.411 
[2] 

0.492 
[5] 

0.237 
[8] 

0.278 
[8] 

0.426 
[4] 

0.25 
[7] 

0.218 
[2] 

0.187 
[5] 

0.026 
[10] 

0.039 
[4] 5.5 

5 MI 
EMDD 

0.795 
[4] 

0.807 
[1] 

0.477 
[8] 

0.218 
[5] 

0.455 
[8] 

0.375 
[5] 

0.306 
[7] 

0.389 
[5] 

0 
[9] 

-0.502 
[9] 

0.108 
[8] 

0.12 
[7] 

0.039 
[4] 6.2 

6 MI 
NND 

0.503 
[10] 

0.369 
[9] 

0.593 
[5] 

0.09 
[8] 

0.526 
[4] 

-0.109 
[10] 

-0.069 
[10] 

-0.02 
[10] 

0.408 
[2] 

0.104 
[3] 

0.108 
[8] 

0.103 
[9] 

-0.144 
[9] 7.5 

7 MI- 
SMO 

0.506 
[9] 

0.658 
[2] 

0.61 
[3] 

0.203 
[6] 

0.636 
[2] 

0.29 
[7] 

0.673 
[1] 

0.494 
[2] 

0.4 
[3] 

0.4 
[1] 

0.187 
[5] 

0.111 
[8] 

-0.041 
[7] 4.3 

8 MI- 
SVM 

0.584 
[6] 

0.56 
[4] 

0.559 
[6] 

-0.003 
[10] 

0.477 
[6] 

0 
[9] 

0 
[9] 

0 
[9] 

0.333 
[4] 

-0.436 
[8] 

0.187 
[5] 

0.14 
[6] 

0 
[6] 6.8 

9 MI- 
LR 

0.559 
[8] 

0.54 
[6] 

0.559 
[6] 

0.194 
[7] 

0.456 
[7] 

0.508 
[2] 

0.538 
[3] 

0.379 
[6] 

0.301 
[5] 

0 
[4] 

0.291 
[2] 

0.16 
[5] 

0.058 
[3] 4.9 

10 
MI- 

Optimal 
Ball 

0.572 
[7] 

0.548 
[5] 

0.469 
[9] 

0.258 
[4] 

0.365 
[9] 

0.38 
[4] 

0.432 
[4] 

0.324 
[8] 

0.436 
[1] 

-0.524 
[10] 

0.204 
[3] 

0.192 
[4] 

-0.157 
[10] 6.0 
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The rank provides information about relative performance of the algorithms. 

However, to test whether mi-DS performs significantly different than other algorithms  two 

statistical tests are used, the Wilcoxon signed-ranked test (Demsar, 2006) and the Friedman 

test (Friedman, 1940; Demsar, 2006). Both are described in detail, including toy examples 

how to use them in Appendix A.  The results are summarized below.  

Wilcoxon test is used to investigate statistical significance of the differences 

between pairs of algorithms, one always being mi-DS and the other, in turn, each of the 

remaining nine MIL algorithms.  Friedman test is used to compare many algorithms at the 

same time. The tests are performed using Table 2.10 (accuracies) and Table 2.11 (MCC).  

The results are shown in Table 2.12.    

Table 2.12 Wilcoxon and Friedman test results for comparing 9 MIL algorithms on 13 data sets. 
 

 Accuracy α = 0.05,  N = 13 MCC α = 0.05,  N = 13 

Wilcoxon 
Test 
(See 

Appendix A 
for details) 

 
The null-hypothesis that a given pair of 
algorithms performs equally well is rejected 
when T ≤≤≤≤17 (in 5 cases). In other words, mi-DS 
performs better than 5 algorithms. 
 

Pair of compared 
algorithms 

R+ R– 
T=min(R+, 

R-) 
mi-DS vs. Citation-

KNN 
79 12 12 

mi-DS vs. MI-DD 59 32 32 
mi-DS vs. MDD 84 7 7 

mi-DS vs. MI-EMDD 75 16 16 
mi-DS vs. MI-NND 81 10 10 
mi-DS vs. MI-SMO 43 48 43 
mi-DS vs. MI-SVM 76 15 15 
mi-DS vs. MI-LR 70 21 21 

mi-DS vs. MI-Optimal 
Ball 

63 28 28 
 

 
The null-hypothesis that a given pair of 
algorithms performs equally well is rejected when 
T ≤≤≤≤17 (in 8 cases). In other words, mi-DS 
performs better than 8 algorithms. 
 

Pair of compared 
algorithms 

R+ R– 
T=min(R+, 

R-) 
mi-DS vs. Citation- 

KNN 83 8 8 
mi-DS vs. MI-DD 78 13 13 
mi-DS vs. MDD 77 14 14 

mi-DS vs. MI-EMDD 83 8 8 
mi-DS vs. MI-NND 82 9 9 
mi-DS vs. MI-SMO 64 27 27 
mi-DS vs. MI-SVM 86 5 5 
mi-DS vs. MI-LR 75 16 16 

mi-DS vs. MI-Optimal 
Ball 

83 8 8 
 

Friedman 
test 
(See 

Appendix A 
for details)  

 
The null hypothesis that all algorithms perform at 
the same level is rejected because the calculated 
Fr value (18.10) is bigger than the critical value 
(16.92).  In other words, mi-DS is performing 
significantly different than other algorithms.   
 

 
The null hypothesis that all algorithms perform at 
the same level is rejected because the calculated 
Fr value (22.87) is bigger than the critical value 
(16.92).  In other words, mi-DS is performing 
significantly different than other algorithms.   
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From Table 2.12 it can be concluded that in terms of Wilcoxon test, using accuracy 

as the performance measure, mi-DS performs significantly better than Citation-KNN, 

MDD, MI-EMDD, MI-NND and MI-SVM. It performs on par with the MI-DD, MI-SMO, 

MI-LR and MI-OptimalBall algorithms. 

When comparing MCC as the performance metric, Wilcoxon test tells us that mi-

DS performs better than other 8 algorithms except MI-SMO. 

While Friedman tests does not determine which algorithm is better or worse, it can 

show significant difference between MIL algorithms’ performances.  That is to say the mi-

DS is significantly different from the other 9 algorithms, when analyzing performance in 

terms of both the accuracy and the MCC. 

While the Wilcoxon and Friendman tests perform different comparisons, the same 

conclusion can be drawn, mi-DS performs better than or on par with the other MIL 

algorithms.  

2.3.2 Experiment II 

In the following experiments, the MIL algorithms are used on the three text data 

sets (see Table 2.9). Note that the positive and negative class distributions in these data sets 

are highly unbalanced.  However, to balance the classes during training the same number of 

positive and negative bags are used, namely, 359 for Component, 385 for Function, and 

620 for Process data sets. The remaining bags are used for testing, namely, 64 positive and 

2348 negative bags for Component, 58 positive and 4414 negative for Function, and 137 

positive and 10341 negative for Process.   
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The mi-DS algorithm is also tested on preprocessed Corel Corp. image data sets. 

After preprocessing, images are considered as bags, each containing from 3 to 13 instances 

of the same object (e.g., dinosaur), and are described by 9 features extracted from the 

images by (Chen and Wang, 2004).  Images belong to 10 categories, with 100 images per 

category, and are stored in the JPEG format; sizes of the images are 384x256 or 256x384. 

Example dinosaurs’ images, both unprocessed and processed, are shown in Figure 2.3.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.3 Dinosaurs images from Corel’s data: before preprocessing (left column) and after 
preprocessing (right column). 

 
 
 

 

 

 

 

 

 

 

Figure 2.4 Images in Corel’s data sets after preprocessing. 
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The training and testing data are created as follows: Choose randomly 5 categories 

and then select randomly 50 images from each category this constitutes the training data 

set, namely, total of 250 bags for training and the remaining 250 bags for testing. Next, we 

take 50 images of one category and mark it Positive, while the rest (200) is marked 

Negative. This is done for both training and testing. Table 2.5 summarizes performance of 

10 algorithms for one case in which Africa, Beach, Building, Bus, and Dinosaur, were 

chosen.   

Because of the high unbalance between the positive and negative bags we assess the 

performance of the algorithms in terms of both accuracy and MCC measures. 

The performance of mi-DS and other algorithms in terms of accuracy on these data 

sets (text and image) are shown in Table 2.13. Text categorization experiments show that 

mi-DS performed on par with MDD, MI-SMO and MI-Optimal Ball algorithms.  Average 

rank (last row in Table 2.13) shows that mi-DS performed better than the other 6 

algorithms: Citation-KNN, MDD, MI-EMDD, MI-NND, MI-SMO and MI-SVM.  

The performance of mi-DS and other algorithms in terms of the MCC (see details in 

Appendix A) are shown in Table 2.14.  

Text categorization experiments show that mi-DS performed best, while on image 

data sets it achieved only average rank.  The average rank (last row in Table 2.13) shows 

that mi-DS performed better than the same 6 algorithms as when using accuracy (Citation-

KNN, MDD, MI-EMDD, MI-NND, MI-SMO and MI-SVM). 
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Table 2.13 Comparison with 9 MIL (in term of accuracy) algorithms on Text and Corel Images 
data; the best results for each data set are shown in bold. 

 

Data set 
mi- 
DS 

Citation
- 

KNN 

MI- 
DD 

MDD 
MI- 

EMDD 
MI- 

NND 
MI-
SMO 

MI- 
SVM 

MI- 
LR 

MI-
Opti
mal 
Ball 

Component 
Train: 359 Pos, 
359 Neg bags 
Test: 64 Pos,  2348 
Neg bags 

84.1 
[3] 

63.8 
[9] 

74.8 
[7] 

91 
[1] 

61.4 
[10] 

77.5 
[6] 

82.3 
[5] 

67.1 
[8] 

86.2 
[2] 

84.1 
[3] 

Function 
Train: 385 Pos,  
385 Neg bags 
Test: 58 Pos,  4414 
Neg bags 

97.1 
[1] 

71.9 
[8] 

92.2 
[5] 

95.6 
[3] 

78.1 
[7] 

93.8 
[4] 

91.4 
[6] 

62.5 
[10] 

68.2 
[9] 

97.1 
[1] 

Process 
Train: 620 Pos,  
620 Neg bags 
Test: 137 Pos, 
10341 Neg bags 

87.3 
[5] 

80.1 
[9] 

91.4 
[3] 

96.8 
[1] 

86.2 
[7] 

85.7 
[8] 

91.3 
[4] 

78.6 
[10] 

93.8 
[2] 

87.3 
[5] 

Africa 
Test and Train has 
50 Positive bags,  
200 Negative bags 

87.6 
[5] 

85.2 
[6] 

92.8 
[1] 

84 
[7] 

90.8 
[2] 

78.4 
[10] 

83.6 
[8] 

80* 
[9] 

90.4 
[3] 

88.4 
[4] 

Beach 
Test and Train has 
50 Positive bags,  
200 Negative bags 

82.8 
[7] 

88 
[2] 

86 
[4] 

84 
[6] 

88.8 
[1] 

32.8 
[10] 

80* 
[8] 

80* 
[8] 

86 
[4] 

88 
[2] 

Building 
Test and Train has 
50 Positive bags,  
200 Negative bags 

84 
[5] 

85.6 
[3] 

91.2 
[1] 

84.4 
[4] 

87.6 
[2] 

43.6 
[10] 

80* 
[8] 

80* 
[8] 

82 
[7] 

82.4 
[6] 

Bus 
Test and Train has 
50 Positive bags,  
200 Negative bags 

92.4 
[3] 

91.2 
[5] 

93.2 
[2] 

80.8 
[9] 

89.2 
[7] 

89.2 
[7] 

94.4 
[1] 

80* 
[10] 

92.4 
[3] 

90 
[6] 

Dinosaur 
Test and Train has 
50 Positive bags,  
200 Negative bags 

98 
[6] 

99.6 
[3] 

100 
[1] 

80* 
[8] 

100 
[1] 

58.8 
[10] 

88.4 
[7] 

80* 
[8] 

99.6 
[3] 

99.2 
[5] 

Average Rank 4.4 5.6 3.0 4.9 4.6 8.1 5.9 8.9 4.1 4.0 
 

* Algorithm assigns all bags into one class only.  
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Table 2.14 Comparison with 9 MIL algorithms (in terms of MCC) on Text and Corel Images data; 

the best results for each data set are shown in bold. 
 

Data set 
mi- 
DS 

Citation 
- 

KNN 

MI- 
DD 

MDD 
MI- 

EMDD 
MI- 

NND 
MI- 

SMO 
MI- 

SVM 
MI- 
LR 

MI- 
Opti
mal 
Ball 

Component 0.3 
[1] 

0.136 
[6] 

0.131 
[7] 

0.09 
[10] 

0.118 
[8] 

0.11 
[9] 

0.15 
[4] 

0.182 
[2] 

0.166 
[3] 

0.138 
[5] 

Function 0.608 
[1] 

0.108 
[5] 

0.165 
[2] 

0.08 
[9] 

0.119 
[4] 

0.09 
[6] 

0.127 
[3] 

0.08 
[9] 

0.09 
[6] 

0.09 
[6] 

Process 0.517 
[1] 

0.129 
[7] 

0.179 
[4] 

0.11 
[10] 

0.125 
[8] 

0.122 
[9] 

0.177 
[5] 

0.185 
[2] 

0.167 
[6] 

0.185 
[2] 

Africa 
0.127 
[9] 

0.573 
[6] 

0.764 
[1] 

0.4 
[7] 

0.693 
[2] 

0.273 
[8] 

0.648 
[4] 

0 
[10] 

0.677 
[3] 

0.601 
[5] 

Beach 
0.037 
[8] 

0.535 
[3] 

0.497 
[5] 

0.402 
[6] 

0.615 
[1] 

-0.071 
[10] 

0.064 
[7] 

0 
[9] 

0.51 
[4] 

0.585 
[2] 

Building 
0.067 
[8] 

0.502 
[3] 

0.706 
[1] 

0.421 
[4] 

0.567 
[2] 

-0.197 
[10] 

0.387 
[5] 

0 
[9] 

0.375 
[6] 

0.361 
[7] 

Bus 0.987 
[1] 

0.652 
[6] 

0.778 
[3] 

0.18 
[10] 

0.631 
[7] 

0.437 
[8] 

0.872 
[2] 

0.22 
[9] 

0.75 
[4] 

0.665 
[5] 

Dinosaur 
0.953 
[5] 

0.951 
[6] 

1 
[1] 

0 
[10] 

1 
[1] 

0.164 
[9] 

0.735 
[8] 

0.78 
[7] 

0.988 
[3] 

0.975 
[4] 

Average 
Rank 

4.3 5.3 3 8.3 4.1 8.6 4.8 7.1 4.4 4.5 

 
 

 

The Wilcoxon and Friedman tests are performed using Table 2.13 (accuracies) and 

Table 2.14 (MCC).  The results are shown in Table 2.15.    
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Table 2.15 Wilcoxon and Friedman test results for comparing 9 MIL algorithms on text and Corel 
images data. 

 
 Accuracy α = 0.05,  N = 8 MCC α = 0.05,  N = 8 

Wilcoxon 
Test 
(See 

Appendix A 
for details) 

 
The null-hypothesis that a given pair of algorithms 
performs equally well is rejected when T ≤≤≤≤4  (in 2 
cases). In other words, mi-DS performs better than 
2 algorithms. 
 

Pair of compared 
algorithms 

R+ R– 
T=min(

R+, 
R-) 

mi-DS vs. Citation-KNN 26 10 10 
mi-DS vs. MI-DD 13 23 13 
mi-DS vs. MDD 22 14 14 

mi-DS vs. MI-EMDD 19.5 16.5 16.5 
mi-DS vs. MI-NND 36 0 0 
mi-DS vs. MI-SMO 29 7 7 
mi-DS vs. MI-SVM 36 0 0 
mi-DS vs. MI-LR 11.5 24.5 11.5 

mi-DS vs. MI-Optimal 
Ball 

16 20 16 
 

 
The null-hypothesis that a given pair of algorithms 
performs equally well is rejected when T ≤≤≤≤4 (in 2 
cases). In other words, mi-DS performs better than 2 
algorithms. 
 

Pair of compared 
algorithms 

R+ R– 
T=min(

R+, 
R-) 

mi-DS vs. Citation-KNN 18 18 18 
mi-DS vs. MI-DD 14 22 14 
mi-DS vs. MDD 27 9 9 

mi-DS vs. MI-EMDD 14 22 14 
mi-DS vs. MI-NND 34 2 2 
mi-DS vs. MI-SMO 22 14 14 
mi-DS vs. MI-SVM 36 0 0 
mi-DS vs. MI-LR 17 19 17 

mi-DS vs. MI-Optimal 
Ball 

18 18 18 
 

Friedman 
test 
(See 

Appendix A 
for details)  

 
The null hypothesis that all algorithms perform at 
the same level is rejected because the calculated Fr 
value (26.60) is bigger than the critical value 
(16.92).  In other words, mi-DS is performing 
significantly different than other algorithms.   

 
The null hypothesis that all algorithms perform at 
the same level is rejected because the calculated Fr 
value (27.95) is bigger than the critical value 
(16.92).  In other words, mi-DS is performing 
significantly different than other algorithms.   

 
 

From Table 2.15 we conclude that in terms of Wilcoxon test, using accuracy as the 

performance measure, mi-DS is significantly better than MI-NND and MI-SVM. It 

performs on par with the Citation-KNN, MI-DD, MDD, MI-EMDD, MI-SMO, MI-LR and 

MI-OptimalBall algorithms. 

When using MCC as the performance measure, Wilcoxon test tells us that mi-DS 

performs better than MI-NND and MI-SVM. The mi-DS performs on par with other 7 

algorithms. 
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While the Wicloxon and Friendman tests perform different comparisons, the same 

conclusion can be drawn, mi-DS performs better than or on par with the other MIL 

algorithms.  

An important feature of the mi-DS algorithm, in contrast to other MIL algorithms, 

is that it works well on data with missing values, which are treated as “do not care” values. 

To test this scenario we introduced missing values into Musk 1, Atoms, Bonds, Elephants, 

Fox and Artificial 1 data sets.  It was done by randomly deleting 5%, 10%, 15%, 20%, 25% 

and 30% of the feature values.  mi-DS was then run using 10FCV and the results are shown 

graphically in Figure 2.5. They indicate that mi-DS performs quite well up to 10% of 

missing values. This result could not be compared with other MIL algorithms because no 

published results were available at the time of this writing. 

 

 

 

 

 

 

 

 

 

Figure 2.5 Accuracy of mi-DS on data with missing values. 
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2.4 Summary 

A new rule-based MIL algorithm is created, called mi-DS, and compared  with 9 

state-of-the-art MIL algorithms on 26 diverse data sets that ranged from numerical data, to 

text, to image data. The results indicated that although there was no single generally best-

performing algorithm, however on all data sets the mi-DS performed very well and had 

very desirable characteristics that distinguished it from the rest.   

First, on average, it showed very good predictive accuracy on most data sets, as 

measured by both accuracy and MCC criteria. In particular, it exhibited good performance 

on challenging image and textual data. Second, the differences in performance between mi-

DS and the other algorithms were statistically significant for the six of them . Third, mi-DS 

also performed quite well on data with missing values.  

Important to note is that the approach taken in the mi-DS algorithm can be used as a 

generic framework for converting other rule-based algorithms so  they can be used to solve 

MIL problems. This can be done in phase I of mi-DS, as the rule generation process can be 

done by any rule learner, while the construction of the similarity matrix in phase II, and the 

prediction procedure used in phase III would remain the same. 
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CHAPTER 3 One-class Learning Algorithm: OneClass-DS 

3.1  State of the Art 

In classical learning problems, training data are available for all classes. In such 

cases the learning algorithm can use all this information to discriminate between classes. 

However, there are many problems where only a single class of instances is known at the 

training time. At prediction time, new instances, with unknown class labels, can either 

belong to the target class (learned during training) or to some other class that was not seen 

during training. In this scenario, two different predictions are possible: Target, meaning an 

instance belongs to the class learned during training or Unknown, where the instance does 

not belong to the previously learned Target class. This type of a learning problem is known 

as one-class classification. One-class classification problem is also known as an 

outlier/novelty detection problem because the learning algorithm differentiates between 

target data (normal) and the rest (abnormal) using information about distribution of training 

data. 

There is a wide variety of application domains for one-class algorithms such as a 

strange traffic patterns in a computer network (that can be caused by a hacked computer 

which sends sensitive data to an unauthorized destination), abnormal patterns in patient 

medical records (that could be symptoms of a new disease), outliers in credit card 
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transaction data (that could indicate credit card theft), an unusual change in satellite images 

of the enemy area (that could indicate enemy troop movements), and many more.  

In many other cases it is advantageous to convert a binary classify problem to one-

class problem to obtain better results.  For example, Nosocomial infections (Nis) is one of 

the major causes of increased mortality among hospitalized patients. The goal is to identify 

patients with one or more Nis on the basis of clinical data and data collected during a 

survey. It is a two-class classification problem (one has Nis or not) but there is a significant 

imbalance in data stored in database, namely, between the positive (infected) cases (11%) 

and the negative (non-infected) cases (89%).  A shown by Cohen et al (Cohen et al, 2004), 

solving this problem as a binary classification problem results in sensitivity of 50.6%. 

However, if this is converted into one-class classification problem, where “Target” means 

non-infected patients and solve it as one-class classification it increases the sensitivity to 

92.6% (Cohen et al, 2004). 

Several methods have been proposed to solve the one-class classification problem. 

The most popular approaches  can be divided into four categories: the density estimation, 

boundary, reconstruction methods, and rule-based methods.  For each of these approaches 

different algorithms can be constructed. Each of these one-class classification methods 

differs in its ability to cope with or exploit, different characteristics of the data. The most 

salient characteristics when considering these problems are the scaling of features in the 

data, grouping of objects into clusters, convexity of data distribution and their position 
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based on a set of prototypes as defined with reconstruction error. An overview of the 

categories of classification methods is presented in the next sections.  

 
3.1.1 Density estimation methods 

The most straightforward method is to estimate density of the training data 

(Tarassenko et al., 1995) and then use some threshold to encompass the data. When data 

are sufficiently large and a density model, such as Parzen, is used this approach works 

quite well. The drawback, however, is that it requires a large number of instances to 

overcome the challenge of dimensionality (Duda and Hart, 1973). If the dimensionality of 

data and complexity of the density model are restricted, then a large bias may be 

introduced, resulting in  a model that does not fit the data well. Finding the right model to 

describe the target data distribution is a typical bias-variance dilemma. Using the density 

approach one needs to assume a distribution type such as Gaussian (Bishop, 1995; Ullman, 

1978), or mixture of Gaussians (Duda and Hart, 1973; Bishop, 1995), or Parzen (Parzen, 

1962; Kraaijveld and Duin, 1991).  Hempstalk et al. (Hempstalk et al., 2007) developed an 

algorithm  which builds a density function from a chosen distribution and then combines 

this function with a class probability to form an adjusted estimate of the density function of 

the target class, which is then used for constructing a decision tree. 

3.1.2 Boundary methods 

In boundary methods a closed boundary around the target data set is defined first 

and then optimized. Those methods rely heavily on distances between instances and are 

sensitive to feature scaling (Vapnik, 1998). Although the volume of data is not always 
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minimized, most methods have a strong bias towards a minimal-volume solution. The size 

of the volume is depends on the model. The advantage of boundary methods is that the 

number of instances required for training is smaller than the number required in density 

methods. The difficulty is shifted into defining appropriate distance measures.  One such 

method is the k-center method that covers the data with k small balls with equal radii 

(Ypma and Duin, 1998). The ball centers, µk, are placed on training instances such that the 

maximum of all minimum distances between training instances and the centers is 

minimized. In fitting the model the following error is minimized: 

ε������� = 	max
�

�min
�

‖x� − μ�‖	� 

The method  uses a greedy search strategy starting with random initialization. The 

radius is determined by the maximum distance to the instances that the corresponding ball 

captures. This method is sensitive to outliers, possibly present in the data, but works well 

when data have good (compact) clustering structure. The user, however, needs to specify a 

priori both the number of balls, k, and the maximum number of tries (the number of runs 

with random initialization), which are a weaknesses. Another method is the nearest-

neighbor method, NN-d, which is designed from local density estimation by the nearest 

neighbor classifier (Duda and Hart, 1973). It avoids explicit density estimation and uses 

only distances to the first nearest neighbors. It is similar to the methods of (Knorr et al., 

2000) and (Breunig et al., 2000) used for outlier detection in large databases. In the nearest 

neighbor density estimation a cell, often a hypersphere in a d dimensional space, is 

centered around the training instance z. The volume of this cell is grown until it captures k 
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instances of training data. Support vector machine (SVM) with RBF kernel was also used 

for anomaly detection (Ratsch et al., 2002).  For each new instance, the method determines 

if it falls within the learned region: if it does then the instance is considered as Target, 

otherwise as an outlier. A similar approach, called Robust SVM, was used for intrusion 

detection (Hu et al., 2002). 

3.1.3 Reconstruction methods 

Reconstruction methods use prior knowledge about the data and make assumptions 

about the data-generating process to build a classifier fitting the data. One typical 

assumption is that a compact representation of the target data can be obtained to decrease 

noise influence (Bishop, 1995; Carpenter et al., 1991). The reconstruction methods assume 

that outlier instances do not satisfy assumptions about the target class distribution. During 

testing, a new instance may have low or high noise component and thus a corresponding 

low or high reconstruction error calculated as a distance to the target data set.  Users need 

to choose appropriate thresholds when using these methods. Other reconstruction methods 

require a priori and/or predetermined suitable parameter values in order to create a 

successful classifier.  For example, in learning vector quantization (Carpenter et al., 1991) 

and k-means clustering (Bishop, 1995) it is the number of clusters. In self-organizing 

feature maps (Kohonen, 1995) it is the dimensionality of the manifold, the number of 

prototypes per manifold and the learning rate. In PCA (Bishop, 1995) it is the mean and 

basis vectors for each of the subspaces, and the noise variance outside the subspaces. In 

diabolo networks (Hertz et al., 1991; Baldi and Hornik, 1989) and auto-encoder networks 
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(Japkowicz et al., 1995) it is the number of layers and neurons, learning rates, and stopping 

criteria. 

3.1.4 Rule-based methods 

Rule based techniques generate rules that capture target behavior of a system 

(Skalak and Rissland, 1990; Salvador and Chan, 2005).  Instances that are not covered by 

any of the rules are considered outliers. Different techniques generate rules in different 

ways. Classification techniques such as IREP and RIPPER (Cohen, 1995) learn rules from 

noisy data by accommodating outliers present in the training data. An outlier class is 

artificially generated so the classifier (RIPPER) can learn the boundaries between the two 

classes.  (Fan et al., 2001) introduced a supervised outlier detection method to detect 

network intrusions.  (John, 1995) adapted the C4.5 algorithm to detect outliers in the data. 

A similar approach was used by (Abe et al., 2006) where the authors utilized a Query by 

Bagging method. 

Another approach is to use association rule mining to generate rules, which requires 

a user to provide a minimum support threshold (Barbará et al., 2001; Tandon and Chan, 

2007).  The advantage of this approach is that it utilizes the fact that outliers occur very 

rarely in the data, and are dealt with by careful choosing of the support threshold to ensure 

that outliers are not taken into account in the process of rule generation. To ensure that 

rules correspond to strong patterns only rules with low support value are pruned.  An 

application of this technique for intrusion detection was used in the ADAM (Audit Data 

Analysis and Mining) system (Barbara et al., 2001), and by (Otey et al., 2003) for intrusion 
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detection embedded on the Network Interface Card (NIC).  LERAD (Mahoney and Chan, 

2002) method generates association mining rules from data of the form P(notW | U), which 

is a conditional probability of one subset of attributes taking a particular set of values 

(denoted by notW) given that a disjoint subset of attributes takes on a particular set of 

values (denoted by U).  In order to deal with high number of rules that can be generated, 

they used sampling and randomization techniques. A similar approach was used for credit 

card fraud detection by (Brause et al., 1999) and for fraud detection in spacecraft house-

keeping data by (Yairi et al. 2001). (Zengyou et al., 2004) proposed an outlier detection 

algorithm for categorical data sets by making the observation that an outlying transaction 

occurs in fewer frequent itemsets as compared to a normal transaction. They also proposed 

a measure called Frequent Pattern Outlier Factor (FPOF) that ranked the transactions based 

on the number of frequent itemsets they occur in. 

 

3.2 OneClass-DS algorithm 

In a binary-classification problem there are positive and negative instances 

(representing two classes) available for training. When rules for the positive (or negative) 

class are generated, they are found based on comparisons of positive instances with the 

negative (or positive) instances.  During testing an instance is assigned to either the 

positive or negative class. This simple scheme cannot be used for solving one class 

classification problem since instances representing only (one) Target class are available. 

Moreover, Target instances may contain noise so they can be true targets or false outliers 



 
 

51 
 

(FO), which is shown in the left rectangle in Figure 3.1. Similarly, the Outlier instances 

(known only during testing) can be true outliers or false targets, shown in the right 

rectangle in Figure 3.1. 

 

 
 
 
 
 
 
 

 

 

Figure 3.1 Training and test scenarios 
 

It is required by many inductive learning algorithms, such as decision trees, that the 

data are discretized before they are used. OneClass-DS algorithm also requires 

discretization as a pre-processing step.  

The OneClass-DS algorithm generates rules by performing greedy hill-climbing 

search in a manner similar to the DataSqueezer algorithm (Kurgan et al., 2004), thus the 

name OneClass-DS. However, DataSqueezer works only on binary (and multi-class) 

classification problems and generates rules by comparing the positive (one class) instances 

against the negative (other class) instances.  Thus, to design an algorithm able to generate 

rules from one-class data only, the OneClass-DS uses four user-specified heuristic 

parameters to guide the rule generation process: Threshold, MinCoverTager, MinAttribute 

and MaxAttribute.  The generated rules are accepted only if the total number of selectors in 
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a rule is in the range between MinAttribute and MaxAttibute.  The rules are in the format IF 

(Feature x = value a) and (Feature y = value b)… THEN Target instance. All selectors in a 

rule must satisfy two conditions: they must cover minimum number of target instances 

(MinCoverTarget) and have the summed-up value equal to or larger than the Threshold.  

The summed-value of a selector is calculated by multiplying the number of values a feature 

takes on by the number of times it appears in the entire target training data set. The 

pseudocode of the OneClass-DS algorithm is shown in Figure 3.2 
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OneClass-DS 

Input: TargetTable,  MinAttribute,MaxAttribute, MinCoverTarget, Threshold 

Rules � [ ] 

While TargetTable ≠ empty 

Create list L of selectors, s, each selector satisfying two conditions: 

its  summed-up-value ≥Threshold and  

its cover ≥ MinCoverTarget 

If  (list L= empty)  break; 

rule r � [] 

Select s from L which has the maximum summed-up-value and add it to rule r, and 

delete s from  L 

While (total number of selectors in rule r < MinAttribute) and (list L not empty) 

Choose the next selector, s, and add it to rule r : r � r U {s} 

Delete s from L 

If (total number of selectors in rule r = MaxAttribute) break 

End While 

Delete all instances in TargetTable covered by rule r 

Rules � Rules U { r} 

End While 

Output:  Rules (for Target class) 

Figure 3.2 Pseudocode of OneClass-DS algorithm. 
 

 

The process of generating rules is repeated several times with different settings of 

the four parameters. To choose the best model from the generated ones, the Target rate 

(sensitivity) measure is used: 
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Target	Rate = True	Targets	�TT�
Total	Targets	�TT + FO� = Sensitivity 

 
Target Rate is used in the following way. Although Target data is supposed to 

consist only of true targets, in reality it often contains false outliers, as shown in Figure 3.1.  

To identify the FO we use 10-FCV in the following way. The model is built from 9/10 of 

the target data but when testing it on the 1/10 of the data, some of its instances may not be 

recognized as (true) targets, and thus they are identified as false outliers, FO. At the end of 

the 10-FCV process all the instances that were recognized as FO are subtracted from the 

Target data.  The model that has the largest Target Rate is chosen as the best one.      

Choosing higher values of parameters results in creation of “strong rules” and such 

rules would predict new test target instances with higher accuracy. Conversely, using lower 

values of the parameters would result in generating “weaker” rules.  

Computational complexity of OneClass-DS algorithm is approximately 

O(RKNlogN), where R is the  number of rules in Rules, N is the number of instances, and K 

is the number of attributes. 

Data shown in Table 3.1 are used to illustrate the working of the OneClass-DS 

algorithm. 

Table 3.1 Training data instances. 
 

F1 F2 F3 F4 Class 
1 1 1 1 T 
1 2 1 2 T 
1 4 2 2 T 
1 4 4 1 T 
4 5 5 4 T 
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Suppose we choose the following values of the parameters: MinCoverTarget=25%, 

MaxAttribute=2, MinAttribute=2, Threshold=0. The summed-up values (vij) are calculated 

in Table 3.2, where i refers to the value of the feature,  j refers the feature number, and (vij) 

= (the number of times that value appears)*(the total number of different values) for each 

feature, are calculated as depicted in Table 3.2 

Table 3.2 Summed-up values for features shown in Table 3.1. 
 

Feature Total number of values Summed-up values 

F1  2 values {1,4}  v11=4x2, v41=1x2  

F2  4 values {1,2,4,5}  v12=1x4, v22=1x4,v42=2x4,v52=1x4  
F3  4 values {1,2,4,5}  v13=2x4, v23=1x4,v43=1x4,v53=1x4  
F4  3 values {1,2,4}  v14=2x3, v24=2x3, v44=1x3  

 
We notice that F1, F2, and F3 have the same maximal summed-up values, namely,   

v11 = v42 = v13 = 8. 

We choose the first feature, F1, and add selector “F1=1” to start creating the first 

rule, which results in:   

IF  F1=1   

Table 3.3 shows instances covered (all but one) by (F1=1). We continue calculating 

summed-up values of the remaining features (except for F1), as shown in Table 3.4, in 

order to choose the next selector for the first rule. 

Table 3.3 Instances in one-class training data set covered by (F1 =1). 
 

F1 F2 F3 F4 Class 
1 1 1 1 T 
1 2 1 2 T 
1 4 2 2 T 
1 4 4 1 T 
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Table 3.4 Summed-up values for features shown in Table 3.3. 
 

Feature Total number of values Summed-up values 

F2 3 values {1,2,4} v12=1x4 v22=1x4,v42=2x4 

F3 2 values {1,2,4} v13=2x4, v23=1x4,v43=1x4 
F4 2 values {1,2} v14=2x3, v24=2x3 

 
Now features F2 and F3 have the same max summed-up values, namely,  v42 = v13  

= 8 so we choose F2 with value 4 as the next selector and add it to the first rule: 

IF  F1=1  AND   F2=4  

After choosing the second selector the process stops because MaxAttribute=2.   

Thus, the final version of the first rule is:   

 
IF  F1=1 AND F2=4 THEN CLASS = T  (it covers 40% of Target data)  

 

To generate the remaining rules we delete all instances covered by the first rule; the 

reduced data set is shown in Table 3.5. 

Table 3.5 Training data instances that remain after deleting the instances covered by the first rule. 
 

F1 F2 F3 F4 Class 
1 1 1 1 T 
1 2 1 2 T 
4 5 5 4 T 

 
We again calculate the summed-up values (vij) for each feature, as shown in Table 

3.6. 
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Table 3.6 Summed-up values for features shown in Table 3.5. 
 

Feature Total number of values Summed-up values 

F1  2 values {1,4}  v11=2x2, v41=1x2  

F2  3 values {1,2,5}  v12=1x3, v22=1x3,v52=1x3  
F3  2 values {1,5}  v13=2x2, v53=1x2  
F4  3 values {1,2,4}  v14=1x3, v24=1x3, v44=1x3  

 

We notice that F1 and F3 have the same maximum summed-up values, namely,   v11 

=  v13 = 4. Thus, we choose the first feature, F1, and add selector “F1=1” to start creating 

the second rule:   

IF  F1 = 1   

Table 3.7 shows instances covered (all but one) by (F1=1). We continue calculating 

summed-up values of the remaining features (except for F1), as shown in Table 3.8, in 

order to choose the next selector for the second rule. 

Table 3.7  Instances in Table 3.5  covered by (F1  =1). 
 

F1 F2 F3 F4 Class 
1 1 1 1 T 
1 2 1 2 T 

 
 

Table 3.8 Summed-up values of features (for instances shown in Table 3.7). 
 

Feature Total number of values Summed-up values 

F2  2 values {1,2}  v12=1x2, v22=1x2  

F3  1 values {1}  v13=2x1  
F4  2 values {1,2}  v14=1x2, v24=1x2  

 
Features F2, F3 and F4 have the same max summed-up values, namely, v12 = v22 = 

v13 = v14 = v24 =2. In this case, F3=1 is the best selector because this selector covers all 
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instances in Table 3.7. Thus, we choose F3 with value 1 as the next selector and add it to 

the second rule: 

IF  F1=1  AND F3=1  

After adding the second selector the process stops because MaxAttribute=2.  Thus, 

the final version of second rule is:   

 
IF  F1=1 AND F3=1 THEN CLASS = T  (it covers 40% of Target data)  

 

After deleting all instances (in Table 3.5) covered by the second rule we are left 

with data shown in Table 3.9. 

Table 3.9 Training data instances after deleting instances covered by the first two rules. 
 

F1 F2 F3 F4 Class 
4 5 5 4 T 

 

Since there is only one remaining instance, and MinCoverTarget=25% of target 

instances, the OneClass-DS algorithm stops generating rules. 

Thus, only these two rules were generated from the target training instances:  

IF  F 1 = 1  AND F2 = 4 THEN CLASS = T   

(covers instances 3  and 4 , or  40% of target instances) 

IF  F1 = 1  AND F3 = 1 THEN CLASS = T  

(covers instances 1 and 2 , or 40% of target instances) 

Notice that by choosing the specified initial parameters it allowed for mot covering 

one instance. 
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3.3 Experiments 

The OneClass-DS algorithm was implemented as a function for the WEKA 

software to allow for standard testing of all the experiments described below.   

To compare OneClass-DS with other algorithms false alarm rate (FAR) and 

imposter pass rate (IPR) measures were used. They are defined (Hempstalk et al., 2007) as: 

FAR =
False	Outliers(FO)

True	Outliers�TO� + False	Outliers(FO) 

 

IPR =
False	Targets	(FT)

True	Targets�TT� + False	Targets(FT) 

The FAR specifies the number of true Target instances incorrectly identified as 

outliers (false negatives). The IPR  specifies the number of outlier instances that are 

wrongly classified (false positives) as belonging to the Target class.  Notice that a higher 

FAR corresponds to a lower IPR, and vice versa. Additionally  common measures of 

Precision and Accuracy are calculated: 

Precision =
True	Targets	(TT)

True	Targets�TT� + False	Targets(FT) 

 

Accuracy =
True	Targets�TT� + True	Outliers(TO)

Total	instances	in	testing	data	set	(TT + FO + TO + FT)
 

 

as well as the Area Under Curve (AUC)  of the receiver operating characteristics (ROC) 

graph, which is calculated by WEKA. 
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In all four types of experiments described below, the results are reported using a 

modified 10-fold cross-validation procedure. Namely, after the data are divided into ten 

parts, all instances not belonging to Target class are deleted from the nine parts used for 

training (representing the Target class). For example, if the data instances represent three 

categories (One, Two and Three), if the current Target is category One, all instances 

belonging to categories Two and Three are deleted from the 9 training sets.  Next, models 

for categories Two and Three are generated, and finally the average of the three runs is 

reported as the final result.    

The experiments described below consist of four parts. First, we run and compare 

OneClass-DS with the other five algorithms in WEKA environment. Second, OneClass-DS 

is compared with OneClass SVM, OCC-Gauss and OCC-EM algorithms but using only the 

published  (Hemstalk et al., 2007) results for the latter three algorithms. Third, experiments 

using OneClass-DS, REP-Tree, Decision Stump and Random Tree algorithms on missing 

value data sets are performed. Fourth, OneClass-DS is used to solve a multi-class problem 

by converting them into one-class problems on three large data set. 

3.3.1   Experiments I 

In these experiments we use 11 data sets from the UCI repository     

(http://www.ics.uci.edu/~mlearn/MLRepository.html).  Four data sets have nominal 

features. The number of instances ranges from 151 to 12,960, the number of features from 

5 to 23, and the number of classes from 2 to 5. Details are shown in Table 3.10. 
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Table 3.10 Data sets used in experiments. 
 

Name Description # of # of # of 
instances features classes 

Car Car Evaluation-Nominal 1728 7 4 
Mrm Mushroom -Nominal 8124 23 2 

Nur Nursery-Nominal 12960 9 5 
Bre Breast Cancer 699 10 2 
Sca Balance Scale Weight 625 5 3 
Bup BUPA livers disorder 345 7 2 
Hea Heart Data set 270 14 2 
Pim Pima Indians Diabetes Database 768 9 2 

Spc SPECT heart data-Nominal 267 23 2 

Cmc Contraceptive Method Choice 1473 10 3 
Tae Teaching Assistant Evaluation 151 6 3 

 
 

 

 

Evaluating performance of a one-class classifier on a data set with N classes is 

performed by treating each class as the Target class, with all other classes treated as one 

“outlier” class.  The results are shown in Table 3.11 
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Table 3.11 Results of OneClass-DS algorithm on 11 data sets. 
 

 Class name 
# of 

targets 
#  of 

outliers 

Time to 
build 
model 
(sec) 

# of 
rules 

Target 
rate 

Accu- 
racy 

Precision FAR IPR AUC 

Car 

unacc 1210 518 0.02 11 0.97 0.91 0.91 0.09 0.09 0.876 
acc 384 1344 0.01 11 0.80 0.55 0.30 0.11 0.70 0.639 
vgood 65 1663 0.01 1 0.02 0.95 0.05 0.04 0.95 0.502 
good 69 1659 0.01 2 0.42 0.88 0.15 0.03 0.85 0.661 

Average Weight 0.87 0.82 0.60 0.05 0.40 0.670 

Mrm 
Class p 3916 4208 0.22 31 0.89 0.91 0.91 0.10 0.09 0.908 
Class e 4208 3916 0.34 32 0.96 0.95 0.95 0.05 0.05 0.954 

Average Weight 0.93 0.93 0.93 0.07 0.07 0.931 

Nur 

recom 2 12958 No test (too small) 
prior 4266 8694 0.48 139 0.98 0.60 0.45 0.02 0.55 0.696 
not_recom 4320 8640 0.34 54 0.96 0.32 0.33 0.82 0.67 0.484 
very_recom 328 12632 0.12 27 0.89 0.80 0.10 0.00 0.90 0.841 
spec_prior 4044 8916 0.45 124 0.99 0.66 0.48 0.01 0.52 0.750 

Average Weight 0.98 0.59 0.38 0.02 0.62 0.693 

Bre 
Class 2 458 241 0.04 26 0.95 0.93 0.95 0.10 0.05 0.784 
Class 4 241 458 0.02 7 0.98 0.98 0.98 0.01 0.02 0.935 

Average Weight 0.96 0.96 0.96 0.04 0.04 0.860 

Sca 

Class B 49 576 0.1 13 0.67 0.66 0.14 0.04 0.86 0.666 
Class R 288 337 0.01 29 0.88 0.69 0.61 0.16 0.39 0.702 
Class L 288 337 0.01 28 0.91 0.69 0.61 0.14 0.39 0.708 

Average Weight 0.88 0.68 0.51 0.10 0.49 0.692 

Bup 
Class 1 145 200 0.03 1 0.94 0.46 0.43 0.28 0.57 0.526 
Class 2 200 145 0.05 1 0.95 0.59 0.59 0.40 0.41 0.527 

Average Weight 0.94 0.53 0.52 0.33 0.48 0.527 

Hea 
Class 1 150 120 0.05 4 0.71 0.69 0.73 0.35 0.27 0.691 
Class 2 120 150 0.05 4 0.67 0.68 0.63 0.28 0.37 0.680 

Average Weight 0.69 0.69 0.69 0.31 0.31 0.686 

Pim 
Class 0 500 268 0.4 7 0.99 0.66 0.66 0.30 0.34 0.499 
Class 1 268 500 0.39 7 0.97 0.35 0.35 0.54 0.65 0.508 

Average Weight 0.99 0.50 0.50 0.43 0.50 0.504 

Spc 
Class 0 55 212 0.1 2 0.87 0.45 0.26 0.09 0.74 0.609 
Class 1 212 55 0.1 4 0.96 0.76 0.79 1.00 0.21 0.481 

Average Weight 0.94 0.61 0.57 0.17 0.43 0.545 

Cmc 

Class 1 629 844 0.02 9 0.99 0.43 0.43 0.44 0.57 0.500 
Class 2 333 1140 0.01 10 0.99 0.25 0.23 0.10 0.77 0.510 
Class 3 511 962 0.02 8 0.99 0.37 0.35 0.13 0.65 0.513 

Average Weight 0.99 0.35 0.34 0.15 0.66 0.508 

Tae 

Class 1 49 102 0.17 7 0.94 0.42 0.35 0.15 0.65 0.553 
Class 2 50 101 0.01 7 0.96 0.43 0.36 0.11 0.64 0.564 
Class 3 52 99 0.01 7 0.96 0.42 0.37 0.13 0.63 0.546 

Average Weight 0.95 0.42 0.36 0.13 0.64 0.554 
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The four parameters in the OneClass-DS algorithm, namely, the Threshold, 

MaxAttribute, MinAttribute, and MinCoverTarget are varied to achieve the best target rate.  

Figure 3.3 shows the impact of varying one parameter while the other three parameters 

remain fixed; for the Heart data set. The purpose is to show that it is possible to obtain a 

better model by modifying these parameters during training. 
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With MaxAttribute=8 MinCoverTarget=5 

Threshold=5 

 MaxAttribute 
With MinAttribute=8 MinCoverTarget=5 

Threshold=5 
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With MinAttribute=8 MaxAttribute =8 

MinCoverTarget=5 

 
Figure 3.3 Influence of changing the four parameters values on the Target rate, Precision, IPR and 

FAR, on the Heart data set. 
 

To compare OneClass-DS with other algorithms WEKA’s OneClass Classifier 

package was used.  It is based on the OCC algorithm of (Hemstalk et al., 2007) and it 
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it with a class a priori probability to form the adjusted estimate of the density function of 

the Target class. In their approach the model is learned from the Target data and the 

artificially created uniformly distributed data that constitutes the Outlier class. In this way 

they could use a two-class classifier for solving a one-class classification problem.  

The comparison of results is shown in Tables 3.12 and 3.13, while Figure 3.4 

illustrates the results in a graphical form.  

Table 3.12 Comparison of OneClass-DS with five other algorithms in terms of accuracy. 
 

Data 
Set 

REP-
Tree J48 Random 

Tree 
Decision 
Stump 

Random 
Forest 

OneClass-
DS 

Car 0.89 0.92 0.76 0.92 0.8 0.82 

Mrm 0.97 0.89 0.97 0.75 0.9 0.93 

Nur 0.61 0.6 0.68 0.67 0.66 0.59 

Bre 0.5 0.5 0.63 0.89 0.8 0.96 

Sca 0.47 0.45 0.42 0.63 0.45 0.68 

Bup 0.51 0.51 0.5 0.52 0.51 0.53 

Hea 0.61 0.54 0.65 0.63 0.68 0.69 

Pim 0.52 0.51 0.52 0.51 0.53 0.5 

Spc 0.71 0.7 0.65 0.71 0.71 0.61 

Cmc 0.44 0.42 0.41 0.47 0.44 0.35 

Tae 0.41 0.42 0.42 0.39 0.44 0.42 
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Table 3.13 Comparison of OneClass-DS with five other algorithms in terms of the IPR and FAR 
measures. 

 

Data set 

IPR 
REP-
Tree J48 Random 

Tree Decision Stump Random 
Forest 

OneClass-
DS 

Car 0.28 0.20 0.49 0.20 0.43 0.40 
Mrm 0.02 0.04 0.01 0.30 0.00 0.07 
Nur 0.62 0.62 0.62 0.58 0.58 0.62 
Bre 0.50 0.50 0.42 0.10 0.25 0.04 
Sca 0.62 0.63 0.64 0.53 0.63 0.49 
Bup 0.49 0.49 0.50 0.49 0.50 0.48 
Hea 0.41 0.47 0.39 0.41 0.37 0.31 
Pim 0.49 0.50 0.49 0.49 0.48 0.50 
Spc 0.34 0.36 0.40 0.34 0.35 0.43 
Cmc 0.64 0.65 0.65 0.63 0.63 0.66 
Tae 0.65 0.67 0.65 0.66 0.64 0.64 

Data set 
FAR 

REP-
Tree J48 Random 

Tree Decision Stump Random 
Forest 

OneClass -
DS 

Car 0.03 0.03 0.04 0.04 0.03 0.05 
Mrm 0.04 0.17 0.04 0.14 0.17 0.07 
Nur 0.05 0.06 0.02 0.05 0.04 0.02 
Bre 0.53 0.50 0.10 0.11 0.12 0.04 
Sca 0.16 0.18 0.18 0.13 0.16 0.10 
Bup 0.44 0.45 0.49 0.41 0.47 0.33 
Hea 0.33 0.46 0.21 0.23 0.19 0.31 
Pim 0.40 0.45 0.42 0.46 0.37 0.43 
Spc 0.18 0.16 0.20 0.19 0.16 0.17 
Cmc 0.18 0.24 0.23 0.17 0.17 0.15 
Tae 0.28 0.33 0.26 0.24 0.19 0.13 

 
The graphs in Figure 3.4 show Precision and Target Rate (Sensitivity) versus 

MaxAttribute. In Figure 3.4 Precision (red line) and Target Rate (blue line) are shown for 

the OneClass-DS algorithm while varying values of the MaxAttribute (number of features 
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to be used in a rule). The results of precision (red triangles) and true targets (blue triangles) 

for the best performing algorithm chosen among REP-Tree, J48, Random Tree, Decision 

Stump, or Random Forest algorithms are shown.  

As can be noticed in Figure 3.4 in the case of the Cmc data (upper left graph), 

Random Forest gave the best result with precision of 0.27 (red triangle) and target rate of 

0.91 (blue triangle). OneClass-DS achieved good balance between precision (0.24) and 

target rate (0.94) with the MaxAttribute fixed at 3. Note that MaxAttribute if set to 6 obtains 

a precision rate higher than Random Forest but lower target rate. Alternatively, 

MaxAttribute if set to 2 gives a better target rate but at the cost of lower precision. 

Upper right graph (for Bre data set) shows that Decision Stump gave the best results 

with precision of 0.95 (red triangle) and target rate of 0.88 (blue triangle), for OneClass-DS 

model: we can choose many values of MaxAttribute, such as: MaxAttribute=7 (precision 

rate=0.86, target rate=0.89), MaxAttribute=4 (precision rate=0.77, target rate=0.97), 

MaxAttribute=5 (precision rate=0.82, target rate=0.93) , to balance target rate and precision 

rate.  Similarly for Mrm data (lower left graph): choosing MaxAttribute=7, OneClass-DS 

model will give value of 0.89 in precision rate and 0.95 in target rate ( comparing with the 

best of  other 5 algorithms is Random Tree with 0.97 in precision rate and 0.95 in target 

rate). 

In case of Spc data set (lower right graph), We can choose MaxAttribute=5  with 

precision rate=0.34, target rate=0.84 when comparing with REP Tree (precision=0.39, 

target rate=0.78)
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Figure 3.4 Possible outcomes of a test in terms of Precision &Target rate (y-axis) vs. MaxAttribute (x-axis). 
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The Wilcoxon and Friedman tests are performed on the results in terms of 

accuracies (Table 3.12) and IPR and FAR measures (Table 3.13).  The results are shown in 

Table 3.14.   From Table 3.14 we notice that in terms of Wilcoxon test, using accuracy and 

IPR, OneClass-DS performs on par with other algorithms. In terms of the FAR measure, 

however, OneClass-DS performs better than J48 and Decision Stump, and on par with the 

remaining algorithms. 

Friedman tests show that OneClass-DS performs at the same level as the other 

algorithms in terms of all three measures: the accuracy, IPR, and FAR. 
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Table 3.14 Wilcoxon and Friedman tests results for comparing OneClass-DS with five algorithms 
on 11 data sets. 

 
 Accuracy α = 0.05,  N = 11 IPR α = 0.05,  N = 11 

Wilcoxon 
Test 
(See 

Appendix 
A for 

details) 

 
The null-hypothesis that a given pair of algorithms 
performs equally well is rejected when T ≤≤≤≤ 11   (in 
0 cases). In other words, OneClass-DS performs 

equal with other   algorithms. 
 

Pair of compared 

Algorithms 
R+ R– 

T=min(R+, 

R-) 

OneClass-DS 
vs. 

REP-Tree 
34 32 32 

OneClass-DS 
vs. 
J48 

26.5 39.5 26.5 

OneClass-DS 
vs. 

Random Tree 
30 36 30 

OneClass-DS 
vs. 

Decision Stump 
35.5 30.5 30.5 

OneClass-DS 
vs. 

Random Forest 
33 33 33 

  

 
The null-hypothesis that a given pair of algorithms 

performs equally well is rejected when T ≤≤≤≤11 (in   0 
cases). In other words, OneClass-DS performs equal 

with other   algorithms. 
 

Pair of compared 

algorithms 
R+ R– 

T=min(R+, 

R-) 

OneClass-DS 
vs. 

REP-Tree 
30.5 35.5 30.5 

OneClass-DS 
vs. 
J48 

27 39 27 

OneClass-DS 
vs. 

Random Tree 
19.5 46.5 19.5 

OneClass-DS 
vs. 

Decision Stump 
29 37 29 

OneClass-DS 
vs. 

Random Forest 
31 35 31 

  

Friedman 
test 
(See 

Appendix 
A for 

details)  

 
The null hypothesis that all algorithms perform at 
the same level is accepted because the calculated Fr 
value (4.3) is smaller than the critical value (11.07).  
In other words, OneClass-DS is performing on par 
with   other algorithms.   

 
The null hypothesis that all algorithms perform at the 
same level is accepted because the calculated Fr 
value (8.25) is smaller   than the critical value 
(11.07).  In other words, OneClass -DS is performing 
on par with other algorithms.   
 

 FAR  α = 0.05,  N = 11 

Wilcoxon 
Test 

 
The null-hypothesis that a given pair of algorithms performs equally well is rejected when T ≤≤≤≤11 (in 2 
cases). In other words, OneClass -DS performs better than  J48 and Decision Stump algorithms. 

 
Pair of compared Algorithms R+ R– T=min(R+, R-) 

OneClass-DS vs. REP-Tree 13 53 13 
OneClass-DS vs. J48 3 63 3 
OneClass-DS vs. Random Tree 19.5 46.5 19.5 
OneClass-DS vs. Decision Stump 11 55 11 
OneClass-DS vs. Random Forest 20 46 20 

  

Friedman 
test 

 
The null hypothesis that all algorithms perform at the same level is accepted because the calculated Fr value 
(10.58) is smaller than the critical value (11.07).  In other words, OneClass -DS is performing on par with   
other algorithms.   
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3.3.2   Experiments II 

We compared OneClass-DS with One-Class SVM and the OCC (One-Class 

Classification by Combining Density and Class Probability Estimation) with two different 

density functions, one based on Gaussian density (called OCC-Gauss) and other on EM 

density (OCC-EM). The results are shown in Table 3.15. Results of SVM and OCC 

algorithms are repeated based on  (Hemstalk et al., 2007).  In addition, we compared the 

time and average number of rules needed to construct a model using OneClass-DS, 

OneClass SVM, OCC-Gauss and OCC-EM algorithms. As expected, it shows that 

OneClass SVM was the fastest while OCC-EM was the slowest. The total number of rules 

generated by OneClass-DS was smaller than for OCC-Gauss and OCC-EM algorithms on 

all data sets but Ecoli and Glass.  

The Wilcoxon and Friedman tests are performed using Table 3.15 (time to build 

model, IPR and FAR). The results are shown in Table 3.16.   
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Table 3.15 Comparison of OneClass-DS with OneClass SVM, OCC-Gauss and OCC-EM. 
 

    FAR IPR 

Data 
set 

# of 
fea- 
tures 

# of in- 
stances 

# of 
classes 

OneClass 
-DS 

OneClass 
SVM 

OCC- 
Gauss 

OCC- 
EM 

OneClass 
-DS 

OneClass 
SVM 

OCC- 
Gauss 

OCC- 
EM 

Diabetes 8 768 2 0.264 0.111 0.098 0.109 0.482 0.514 0.857 0.779 

Ecoli 7 336 8 0.241 0.137 0.129 0.136 0.111 0.068 0.088 0.083 

Glass 9 214 7 0.064 0.154 0.147 0.18 0.473 0.412 0.434 0.331 

Heart-statlog 13 270 2 0.295 0.122 0.14 0.141 0.46 0.624 0.507 0.504 

Ionosphere 34 351 2 0.211 0.128 0.15 0.169 0.458 0.738 0.732 0.697 

Iris 4 150 3 0.096 0.12 0.125 0.137 0.13 0.073 0.076 0.077 

Sonar 60 208 2 0.282 0.12 0.123 0.163 0.455 0.705 0.815 0.751 

Vehicle 18 846 4 0.208 0.103 0.109 0.13 0.342 0.629 0.645 0.494 

Waveform 21 5000 3 0.126 0.103 0.075 0.11 0.451 0.307 0.411 0.354 

    Time it takes to build  a model (sec) Average # of rules 

    
OneClass 

-DS 
OneClass 

SVM 
OCC- 
Gauss 

OCC- 
EM 

OneClass 
-DS 

OneClass 
SVM 

OCC- 
Gauss 

OCC- 
EM 

  
Diabetes 0.52 0.37 3.89 13.9 11 N/A 14 27 

  
Ecoli 0.82 0.13 1.18 0.62 8 N/A 3 5 

  
Glass 0.38 0.09 0.25 1.41 7 N/A 5 5 

  
Heart-statlog 0.1 0.06 0.58 5.23 5 N/A 4 8 

  
Ionosphere 9.9 0.08 1.65 30.64 5 N/A 3 5 

  
Iris 0.1 0.02 0.13 0.26 4 N/A 7 14 

  
Sonar 10.3 0.13 5.71 21.44 7 N/A 11 19 

  
Vehicle 1.5 0.68 0.83 13.4 20 N/A 25 21 

  
Waveform 77 4.07 47.5 106.17 12 N/A 27 71 
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Table 3.16 Wilcoxon and Friedman tests results for comparing OneClass-DS with three algorithms 
on 9 data sets. 

 
 Time to build model α = 0.05,  N = 9 IPR α = 0.05,  N = 9 

Wilcoxon  Test 
(See Appendix A 

for details) 

 
The null-hypothesis that a given pair of 
algorithms performs equally well is rejected 
when T ≤≤≤≤ 6   (in 2 cases). In other words, 
OneClass-DS performs equal only with OCC- 
Gauss algorithm. 

 

Pair of compared 

Algorithms 
R+ R– 

T=min(

R+, 

R-) 

OneClass-DS 
vs. 

OneClass-SVM 
45 0 0 

OneClass-DS 
vs. 

OCC-Gauss 
31 14 14 

OneClass-DS 
vs. 

OCC-EM 
2 43 2 

  

 
The null-hypothesis that a given pair of algorithms 
performs equally well is rejected when T ≤≤≤≤6 (in   0 
cases). In other words, OneClass -DS performs 
equal with other   algorithms. 
 
 

Pair of compared 

algorithms 
R+ R– 

T=min

(R+, 

R-) 

OneClass-DS 
vs. 

OneClass-SVM 
14 31 14 

OneClass-DS 
vs. 

OCC-Gauss 
11 34 11 

OneClass-DS 
vs. 

OCC-EM 
13 32 13 

  

Friedman test 
(See Appendix A 

for details)  

 
The null hypothesis that all algorithms perform 
at the same level is rejected because the 
calculated Fr value (21.13) is larger than the 
critical value (12.59).  

 
The null hypothesis that all algorithms perform at 
the same level is accepted because the calculated Fr 
value (9.93) is smaller   than the critical value 
(12.59).  In other words, OneClass -DS is 
performing on par with other algorithms.   
 

 FAR  α = 0.05,  N = 9 

Wilcoxon Test 

 
The null-hypothesis that a given pair of algorithms performs equally well is rejected when T ≤≤≤≤6 (in 1 
cases). In other words, OneClass -DS performs equal with OneClass-SVM and OCC-EM algorithms. 
 

Pair of compared Algorithms R+ R– T=min(R+, R-) 

OneClass-DS vs. OneClass-SVM 39 7 7 
OneClass-DS vs. OCC-Gauss 40 5 5 
OneClass-DS vs. OCC-EM 37 8 8 

  

Friedman test  

 
The null hypothesis that all algorithms perform at the same level is accepted because the calculated Fr 
value (3.8) is smaller than the critical value (12.59).  In other words, OneClass -DS is performing on 
par with   other algorithms.   
 

 

From Table 3.16 we notice that in terms of Wilcoxon test, using the IPR measure, 

OneClass-DS performs on par with other algorithms. Using the FAR measure, however, 

OneClass-DS performs on par with the OneClass SVM and OCC-EM. 
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Wilcoxon test shows that when time to build is used as input the OneClass-DS 

performs on par only with OCC-Gauss. 

Friedman tests show that OneClass-DS performs on par with the other three 

algorithms, both when in terms of IPR and FAR measures, but as well in terms of time to 

build model measure. 

3.3.3   Experiments III 

OneClass-DS was next used on four data sets, from the UCI data repository, with 

missing values. The data are described in Table 3.17.  The number of instances ranges from 

57 to 32,561 and number of features from 6 to 17. Note that these data sets are very 

different in terms of the number of missing values.  The OneClass-DS results are shown in 

Table 3.18.   

Table 3.17 Data sets with missing values. 
 

Data set Description # of  
instances 

# of missing 
values 

# of 
 features 

# of  
classes 

Vot US Congressional Voting 435 104 17 2 
Adt Data set Adult From UCI 32561 1843 15 2 

Lab Labor negotiations in 
Canada 57 48 17 2 

Mam Mammographic Mass 961 76 6 2 
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Table 3.18 OneClass-DS results on data with missing values. 
 

Data 
set Classes  # of  

targets 
# of  

outliers 
Time to build  
model (sec) # of rules Target 

rate 
Accu- 
racy 

Preci- 
sion FAR IPR AUC 

Vot 
Democrat 267 168 0.02 39 0.80 0.78 0.84 0.30 0.16 0.78 

Republican 168 267 0.01 20 0.85 0.92 0.95 0.09 0.05 0.91 
Average 0.02 30 0.82 0.85 0.89 0.19 0.11 0.84 

Adt 
Less50K 24720 7841 1253 158 0.83 0.68 0.77 0.72 0.23 0.52 
Over50K 7841 24720 1225 61 0.72 0.72 0.45 0.11 0.55 0.72 

Average 1239 110 0.77 0.70 0.61 0.41 0.39 0.62 

Lab 
Bad 20 37 0.01 6 0.70 0.74 0.61 0.18 0.39 0.73 

Good 37 20 0.01 2 0.54 0.70 1.00 0.46 0.01 0.77 
Average 0.01 4 0.62 0.72 0.80 0.32 0.20 0.75 

Mam 
0 516 445 0.03 4 0.59 0.72 0.83 0.35 0.17 0.73 
1 445 516 0.02 4 0.49 0.74 0.90 0.31 0.10 0.72 

Average 0.03 4 0.54 0.73 0.86 0.33 0.14 0.73 
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Figure 3.5 Possible outcomes of a test in terms of Precision&Target rate (y-axis) vs. MaxAttribute (x-axis). 
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Figure 3.5 shows the results in terms of precision and target rate versus 

MaxAttribute (in the same way as presented in Figure 3.4).  To choose the best model for 

each data set, we ran 10-FCV with different parameter values. 

In Figure 3.5, Upper left graph (using the VOT data set) shows the impact on the 

target rate and precision rate while varying value of the MaxAttribute parameter and 

keeping the remaining three parameters fixed. This  graph shows the acceptable model at 

MaxAttribute= 8 because at this point the Target rate curve and Precision curve intersect.   

Similarly for MAM data (upper right graph) choosing MaxAtrribute=5 results in a 

good model; for LAB data (lower left graph) with MaxAttribute=3, and  for ADT data 

(lower right graph) MaxAttribute=11 seem to be good choices.    

OneClass-DS is also compared with three other algorithms (REP-Tree, Decision 

Stump and  Random Tree) when running it on four missing value data sets. The results of 

are shown in Table 3.19. 

Table 3.19 Comparison of OneClass-DS with REP-Tree, Decision Stump and Random Tree on four 
missing value data sets. 

 

 
FAR IPR 

Data 
set 

OneClass 
-DS 

REP- 
Tree 

Decision 
Stump 

Random 
Tree 

OneClass 
-DS 

REP-  
Tree 

Decision 
Stump 

Random 
Tree 

Vote 0.19 0.17 0.21 0.54 0.11 0.26 0.10 0.38 
Adt 0.41 0.77 0.70 0.75 0.39 0.23 0.19 0.24 
Lab 0.32 0.36 0.34 0.33 0.20 0.35 0.43 0.47 
Mam 0.33 0.54 0.38 0.53 0.14 0.45 0.47 0.45 

     
Accuracy 

     
OneClass 

-DS 
REP- 
Tree 

Decision 
Stump 

Random 
Tree 

     
0.85 0.77 0.85 0.55 

     
0.70 0.50 0.58 0.51 

     
0.72 0.64 0.64 0.63 

     
0.73 0.50 0.57 0.51 
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Because of the small number of missing value data sets only the Friedman test (α = 

0.05, N = 4) is used and the result is that the null hypothesis: that all algorithms perform at 

the same level, both in terms of the FAR and accuracy measures, is rejected. The calculated 

Fr values (5.7 for FAR and 4.5 for accuracy) are larger than the critical value of 2.569.  

However, notice that OneClass-DS gives better results than the three in terms of accuracy 

and FAR measures. 

In terms of the IPR measure all algorithms perform at the same level (the null 

hypothesis is accepted because the calculated Fr value (0.15) is smaller than the critical 

value (2.569)).  In other words, OneClass -DS performs on par with the three algorithms.   

 

3.3.4   Experiments IV 

Three data sets consisting of letters and digits (from the UCI data repository) were 

used (Table 3.20). The Letters data set consists of 26 capital letters specified as black-and-

white rectangular images. The images are based on 20 different fonts, and each letter for 

each font was randomly distorted to produce a file of 20,000 unique instances. Then, each 

instance was converted into 16 numerical attributes (such as statistical moments and edge 

counts) and scaled to fit into a range of integers from 0 to 15. The Optical digits data set 

was created by the NIST programs to extract normalized bitmaps of handwritten digits. 

32x32 bitmaps are divided into non-overlapping blocks of the size 4x4, and number of 

pixels is counted in each block to generate an input matrix of 8x8, where each element is 

represented as integer in the range from 0 to 15, in order to reduce dimensionality of the 

data and to provide invariance to small distortions. The Pen digits data set was built by 
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collecting instances from 44 writers using a pressure sensitive tablet for coding digits, 

while people wrote 250 digits at random inside boxes of 500 by 500 pixels. 

In these experiments OneClass-DS is used for solving multi-class highly 

unbalanced data sets. To address the problem of dealing with highly unbalanced data sets 

they are transform into one-class problems in the following way. Each class is treated in 

turn not as a Target class but as an Outlier class because it has very small number of 

instances, while the rest of the classes are treated as the Target class. The rules are thus 

generated for the Outlier classes. Thus, during testing if the rule does not cover an instance 

than the instance is recognized as belonging to the Target class.  

 
Table 3.20 Letter and digits data sets. 

 

Data set  
# of 

instances 
# of 

features 
# of 

classes 
Pen digits 10,992 16 10 

Optical digits 5,620 64 10 
Letter 20,000 16 26 

 

The CAIM algorithm is used (Kurgan et al., 2004) to discretize continuous features 

before running the OneClass-DS algorithm. Tables 3.20  and 3.21 show the results of the 

OneClass-DS algorithm. 
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Table 3.21 Results on the Pen digits data set. 
 

Class 
name 

# of 
targets 

# of 
outliers 

# of 
rules 

Time 
to 

Build 
 Model 
(sec) 

Target 
rate 

Accu- 
racy 

Preci- 
sion FAR IPR AUC 

0 1143 9849 36 3.8 0.70 0.96 0.89 0.03 0.11 0.85 
1 1143 9849 40 3.7 0.60 0.93 0.70 0.05 0.30 0.78 
2 1144 9848 38 4.4 0.69 0.95 0.82 0.04 0.18 0.83 
3 1055 9937 28 3.4 0.76 0.96 0.86 0.03 0.14 0.87 
4 1144 9848 50 4.1 0.67 0.95 0.78 0.04 0.22 0.83 
5 1055 9937 43 3.6 0.58 0.93 0.64 0.04 0.36 0.77 
6 1056 9936 36 4.0 0.71 0.96 0.83 0.03 0.17 0.85 
7 1142 9850 35 5.3 0.72 0.96 0.89 0.03 0.11 0.86 
8 1055 9937 42 4.4 0.41 0.93 0.72 0.06 0.28 0.70 
9 1055 9937 44 4.0 0.58 0.91 0.53 0.05 0.47 0.76 

Average 39 4.1 0.64 0.94 0.76 0.04 0.24 0.81 
 
 

Result in Table 3.21 show that when converting the original 10-class problem into 

10 one-class problems, OneClass-DS gives acceptable results in terms of accuracy and  

FAR measures for all 10 classes. This is not the case, however, in terms of the target rate, 

precision and IPR measures.  

In Table 3.22 OneClass-DS results are not very good, and much worse than on the 

Pen digits data set. Partial explanation is that the Optical data set has structure much more 

complex than Pen data set (both smaller number of instances and much higher 

dimensionality).  
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Table 3.22 Results on the Optical digits data set. 
 

Class 
name 

# of 
 targets 

# of 
outliers 

# of 
rules 

Time 
To 

Build 
 Model 
 (sec) 

Target 
 rate 

Accu- 
racy 

Preci- 
sion FAR IPR AUC 

0 554 5066 23 1.1 0.64 0.96 0.90 0.04 0.10 0.82 
1 571 5049 15 1.0 0.71 0.94 0.68 0.03 0.32 0.84 
2 557 5063 23 1.6 0.65 0.92 0.60 0.04 0.40 0.80 
3 572 5048 22 1.1 0.45 0.89 0.45 0.06 0.55 0.78 
4 568 5052 21 1.0 0.70 0.90 0.52 0.03 0.48 0.82 
5 558 5062 23 1.1 0.60 0.94 0.73 0.04 0.27 0.79 
6 558 5062 31 1.6 0.54 0.94 0.77 0.05 0.23 0.76 
7 566 5054 22 1.0 0.65 0.93 0.63 0.04 0.37 0.81 
8 554 5066 20 1.0 0.63 0.89 0.47 0.04 0.53 0.78 
9 562 5058 18 2.5 0.64 0.91 0.53 0.04 0.47 0.79 

Average 22 1.3 0.62 0.92 0.63 0.04 0.37 0.80 
 

The prediction results shown in Tables 3.20 and 3.21 were shown after optimizing 

the model in a way that is illustrated below. The following three graphs are provided to 

illustrate the process of fine-tuning models during training for letter A only even though 

there are 26 classes (letters A through Z). The relation between Precision and Target rates 

are shown in Figures 3.6, 3.7 and 3.8. Depending on MinCoverTarget value in Figure 3.6, 

the precision increases from over 0.2 to about 0.6.    

  



 

 

Figure 3.6 Precision of letter A with different values of 

Figure 3.7 Target Rate of letter A with different values of 
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Figure 3.7 Target Rate of letter A with different values of MaxAttribute
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Depending on MinCoverTarget value in Figure 3.7, the target rate decreases  from 

over 0.9 down to about 0.7.    

 
 
 

 
 

Figure 3.8 Relation between Precision and Target Rate for different values of the 
MaxAttribute (Letter A). 

 

 

Based on Figures 3.6 and 3.7, if the MinCoverTarget=1% then setting 

MaxAttribute=6  balances Precision and Target rate.  
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3.4 Summary 

Rule-based OneClass-DS algorithm is introduced and compared to eight one- class 

algorithms on 27 data sets. The data sets ranged from numerical, to nominal, to images. 

The experiments showed that OneClass-DS performs on par with other algorithms in terms 

of three measures: the accuracy, IPR (Impostor Pass Rate)  and FAR (False Alarm Rate).   

However the OneClass SVM algorithm, in contrast to OneClass-DS, cannot work 

on data with missing values.  OneClass-DS also gave better results than REP-Tree, 

Decision Stump and Random Forest in terms of accuracy and FAR measures when tested 

on missing value data sets.  

In addition, OneClass-DS also performed well when used for solving multi-class 

problems, which were converted into one-class problems. OneClass-DS can be easily tuned 

for good performance, measured by the Target rate and Precision, by appropriate changing 

of its parameters. 
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CHAPTER 4 Conclusions  

 

The major contribution of this work is the development of two rule-based 

algorithms, mi-DS and OneClass-DS,  for solving challenging machine learning problems.   

The mi-DS algorithm was designed for solving multiple-instance learning 

classification problem where data exist for several classes.  Instead of single instances one 

has to deal with bags, or collections, of many instances in one bag. 

The  OneClass-DS was designed for solving problems when data exist only for one-

class; in other words data for other classes are not available.  It was shown that the 

OneClass-DS algorithm also worked well on highly unbalanced data sets when one-class 

model was generated for a majority class while ignoring the much smaller minority class.     

Both algorithms combined rule-based classification with greedy search algorithm 

based on density of features.  The algorithms’ performance was compared with many other 

algorithms on dozens of data sets and the results showed that both original algorithms 

performed better, or on par, with the many algorithms used in comparison.  

In particular, when mi-DS was compared  with nine state-of-the-art MIL algorithms 

on 27 diverse data sets, which ranged from numerical data, to text, to image data, the 

results indicated that although there was no single generally best-performing algorithm on 

all data sets, the mi-DS performed very well and was shown to be, on average, very 

efficient.  It also showed good predictive accuracy on most data sets, as measured by both 
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accuracy and MCC criteria. It also exhibited good performance on challenging image and 

textual data. In addition, mi-DS performed quite well on data with missing values.  

Particularly noteworthy is  that the approach taken in the mi-DS algorithm can be 

used as a generic framework for converting other rule-based algorithms so that they can be 

used to solve MIL problems. This can be done in Step 2 of mi-DS, as the rule generation 

process can be done by any rule learner, while the construction of the similarity matrix in 

Step 2, and the prediction procedure used in PredictTestingBag would remain the same. 

When OneClass-DS algorithm was compared with eight one-class algorithms on 27 

data sets (numerical, nominal, images) it performed on par with other algorithms in terms 

of accuracy, IPR (Impostor Pass Rate)  and FAR (False Alarm Rate) measures.  Note that a 

very efficient OneClass SVM algorithm, in contrast to OneClass-DS, does not work on 

data with missing values. OneClass-DS also gave better results than REP-Tree, Decision 

Stump and Random Forest, in terms of accuracy and FAR measures, when tested on data 

with missing values. 
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Appendix A 
 

Measures Used for Evaluating Goodness of Generated Models 

 

A.1 General 

Below we define the measures that are used in the dissertation for evaluating the 

generated models and for comparing them with models generated by other algorithms.   

 If the input and the corresponding output for each training data point is known then 

one can construct a confusion matrix (also known as misclassification matrix, or 

contingency table). It is defined in Table A.1 for a binary classification problem. A 

multiclass classification problem can always be decomposed into several binary 

classification problems (one class versus the rest), so the method is general. Notice that a 

classifier almost always makes errors; they can be false negatives, or false positives, or 

both.  

Table A.1 Misclassification matrix. 
 

  Classifier-predicted classification 
  Positive Negative 

True  
(gold 

standard) 
classification 

Total # Positive  (P) cases 
(P = TP)  

True Positives (TP) 
False Negatives (FN) 

ERROR 
P = TP + FN 

Total # Negative (N) cases 
(N = TN) 

False Positives (FP) 
ERROR 

True Negatives (TN) N = FP + TN 

 
Suppose that Positive (P) cases indicate sick people and Negative (N) cases 

normal/healthy people. True Positives (TP) are then sick people correctly predicted by a 

classifier as being sick; False Negatives (FN) are sick people incorrectly predicted as 

healthy (error); True Negatives (TN) are healthy people correctly predicted by a classifier 
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as healthy; False Positives (FP) are healthy people incorrectly predicted as sick (error). 

From the misclassification matrix we can calculate several types of measures, some of 

which are shown in Table A.2. 

Table A.2 Most often used measure calculated from the confusion matrix. 
 

Measure Formula Meaning 

Sensitivity 
(also known as 

Recall, or 
True Positive 
Rate (TPR) 

 

TP

TP + FN
 

Sensitivity is the test's ability to 
correctly predict TP cases. It is a 
probability of a positive test 
given that the patient is sick. 
Sensitivity of 1 means that the 
model recognizes all sick people 
as sick. 

Specificity 
TN

FP + TN
 

Specificity is the ability of the 
test to correctly identify TN 
cases. It is a probability of a 
negative test given that the 
patient is healthy. 
Specificity of 1 means the test 
recognizes all negatives/healthy 
people as healthy.  

False Positive 
Rate (FPR) 

(also known as 
False-alarm rate) 

1 – specificity =
��

�����
 

FPR defines how many incorrect 
positive cases occur among all 
negative cases. 

Precision 
TP

TP + FP
 

Proportion of  TP to all positive 
cases  (both true positives and 
false positives) 

Accuracy 
TP + TN

TP + FN + TN + FP
 

proportion of true results (both 
true positives and true negatives) 
in the population 

MCC 
(Matthews 
correlation 
coefficient) 

TP ∗ TN − FP ∗ FN

��TP + FP��TP + FN��TN + FP�(TN + FN)
 

A correlation coefficient 
between the observed and 
predicted binary classifications; 
it is between −1 and +1.  +1 
represents a perfect prediction, 0 
no better than random 
prediction, and −1 indicates total 
disagreement between prediction 
and observation. 
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Two robust non-parametric tests for statistical comparison of predictive power of 

classifiers are the Wilcoxon signed-ranks test and the Friedman test; the latter is used for 

comparison of more than two classifiers over multiple data sets. Both tests do not make any 

assumption about the underlying distribution of the data.  

 

A.2 Statistical 

Wilcoxon Signed-Ranks Test 

The Wilcoxon signed-ranks test (Wilcoxon, 1945) is a non-parametric test that 

ranks the difference in performances of two classifiers on a data set, which ignores the 

signs and compares the ranks for the positive and the negative differences. 

Let di be the difference between the performance scores of two classifiers on N data sets. 

The differences are ranked according to their absolute values; average ranks are assigned in 

case of ties. R+ is the sum of ranks for the data sets on which the first algorithm 

outperformed the second, while R- is the sum of ranks for the opposite (second 

outperformed the first).  Ranks of di = 0 are split evenly among the two sums; if there is an 

odd number of di = 0, one is simply ignored. The sums are defined as follows: 

�+= � ���	(
�)
���	

+ 	1
2
	 � ���	(
�)
��
	

 

 

�−= � ���	(
�)
���	

+ 	1
2
	 � ���	(
�)
��
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Let T indicate the smaller of the two sums:  

T = min(R+, R-)  

Then, we look up in a table a critical value for T at a certain confidence level and 

compare our T with this value. If it is smaller than the null-hypothesis is accepted, 

otherwise it is rejected. 

We illustrate the calculations by means of the example shown in Table A.3. 

Table A.3 Results, in terms of accuracy, of algorithms A and B on 13 data sets. 
 

Data set 
name 

Algorithm 
A 
(2) 

Algorithm 
B 
(3) 

Difference 
(4)= (2) – (3) 

Absolute 
difference  

(5)=|column 4| 

Rank 
(6) 

1 86.68 90.37 -3.69 3.69 4 
2 77 84.61 -7.61 7.61 7 
3 80.02 73.19 6.83 6.83 6 
4 74.74 75.36 -0.62 0.62 1 
5 79.5 74.06 5.44 5.44 5 
6 79.5 50 29.5 29.5 12 
7 64.5 50 14.5 14.5 10 
8 64.28 50 14.28 14.28 9 
9 89 87.63 1.37 1.37 2 
10 64.17 45 19.17 19.17 11 
11 60 50 10 10 8 
12 100.00 60.45 39.55 39.55 13 
13 68.77 66.95 1.82 1.82 3 

 
Column 1: data set name 

Column 2: 10-FCV accuracy of algorithm A 

Column 3: 10-FCV accuracy of algorithm B 

Column 4: difference between the two accuracies 

Column 5: absolute difference  

Column 6: rank (from 1 to 13) based on values in column 5  
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Null-hypothesis is H0:  algorithms A and B perform at the same level (in accuracy). 

Decision Rule: Reject H0 if  T<=critical value at α= 0.05.   

Now, using column 6, we calculate the sum of ranks for which column 4 values 

were positive (red color), for the case when algorithm A performed better than algorithm 

B:     

Sum R+ = 6+5+12+10+9+2+11+8+13+3 = 79 

Similarly we calculate the sum of ranks when algorithm B performed better than A 

(blue color):  

Sum R- = 4+7+1 = 12 

Obviously   

Sum R0 = 0 

Thus, the sums are  

R+ = (SumR+)  + 0.5*Sum R0 = 79 

R- =  (SumR- )  + 0.5*Sum R0 = 12 

From the two we calculate:   

T = min (R+, R-) = 12 

Assuming confidence level α = 0.05, with the total number of data sets N = 13, we 

find in the table of critical values for the Wilcoxon test (part of which is shown in Table 

A.4) that the critical value is 17.  
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Table A.4  Part of Wilcoxon’s test table. 
 

N 0.05 0.02 0.01 
8 4 2 0 
9 6 3 2 
10 8 5 3 
11 11 7 5 
12 14 10 7 
13 17 13 10 
14 21 16 13 

 
Using the value 17, and the calculated T=12, we see that T ≤17 so we reject the 

null-hypothesis. In other words, the two algorithms do not perform at the same level.  

Friedman Test 

The Friedman test is used for comparing performance of two or more algorithms 

over several data sets. The input is a table of results. They are ranked across the rows and 

the mean rank for each column is calculated. We use the results (in terms of accuracy) 

shown in Table A.5 to illustrate. 
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Table A.5 Results of six algorithms on 11 data sets. 
 

Data 
Set 

Name  

Algorithm 
1 

Algorithm 
2 

Algorithm 
3 

Algorithm 
4 

Algorithm 
5 

Algorithm 
6 

1 0.89 0.92 0.76 0.92 0.8 0.82 
2 0.97 0.89 0.97 0.75 0.9 0.93 

3 0.61 0.6 0.68 0.67 0.66 0.59 

4 0.5 0.5 0.63 0.89 0.8 0.96 

5 0.47 0.45 0.42 0.63 0.45 0.68 

6 0.51 0.51 0.5 0.52 0.51 0.53 

7 0.61 0.54 0.65 0.63 0.68 0.69 

8 0.52 0.51 0.52 0.51 0.53 0.5 

9 0.71 0.7 0.65 0.71 0.71 0.61 

10 0.44 0.42 0.41 0.47 0.44 0.35 

11 0.41 0.42 0.42 0.39 0.44 0.42 
 

Null hypothesis is H0: All algorithms perform at about the same level in accuracy 

Decision Rule: Reject H0 if Fr >=critical value at α= 0.05. 

Calculations 

The differences between the sum of the ranks is evaluated by calculating the 

Friedman statistic (Fr) using this formula: 

�� =
12

nk(k + 1)
�R�

� − 	3n(k + 1) 

where: 

k is # of columns (also called “treatments”) 
n is # of rows (also called “blocks”) 
Rj  is sum of the ranks in column j. 
If there is no significant difference between the sum of the ranks for each column, 

then Fr is small, but if at least one column shows significant difference then Fr is larger. 

From Table A.5 we find ranks for each algorithm for each data set and they are 

shown in Table A.6.   
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Table A.6 Ranking of the six algorithms on 11 data sets. 
 

Data set 
Name  

Algorithm 
1 

Algorithm 
 2 

Algorithm 
 3 

Algorithm 
 4 

Algorithm 
 5 

Algorithm 
 6 

1 4.0 5.5 1.0 5.5 2.0 3.0 
2 5.5 2.0 5.5 1.0 3.0 4.0 
3 3.0 2.0 6.0 5.0 4.0 1.0 
4 1.5 1.5 3.0 5.0 4.0 6.0 
5 4.0 2.5 1.0 5.0 2.5 6.0 
6 3.0 3.0 1.0 5.0 3.0 6.0 
7 2.0 1.0 4.0 3.0 5.0 6.0 
8 4.5 2.5 4.5 2.5 6.0 1.0 
9 5.0 3.0 2.0 5.0 5.0 1.0 
10 4.5 3.0 2.0 6.0 4.5 1.0 
11 2.0 4.0 4.0 1.0 6.0 4.0 

Sum of 
ranks 39 30 34 44 45 39 

Sum of 
(ranks)2 1521 900 1156 1936 2025 1521 

     
# of algorithms (k) 6 
# of data sets (n) 11 
Sigma Rj

2 9059 
12/(nk(k+1)) 0.026 
3n(k+1) 231 
Fr value 4.31 

 
Assuming the confidence level of 0.05, we look up the critical value in the chi-

squared (χ2) distribution table with (k-1) degrees of freedom (part of which is shown in 

Table A.7), and it is 11.07. 

Total number of algorithms, k=6, so degree of freedom (df) is 5.   
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Table A.7 Part of the chi-squared (χ2) distribution table. 
 

df 0.25 0.1 0.05 0.025 0.01 0.005 
3 4.11 6.25 7.81 9.35 11.34 12.84 
4 5.39 7.78 9.49 11.14 13.28 14.86 
5 6.63 9.24 11.07 12.83 15.09 16.75 
6 7.84 10.64 12.59 14.45 16.81 18.55 

 
 

Because Fr = 4.31 < critical value (11.07) we accept H0 and conclude that that all 

algorithms perform at the same level, i.e., none of them is significantly better than the rest. 
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Appendix B 
 

mi-DS and OneClass Algorithms Implementation Details 
 

We implemented OneClass-DS and mi-DS algorithms as packages in popular 

WEKA software so they can be downloaded and embedded into WEKA for easy use and 

testing. To download and install them go to www.cioslab.vcu.edu/alg/main.html (Figure 

B.1 shows a screen shot). 

 
Figure B.1 Data Mining Tools web page. 
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For example, if one chooses to embed the mi-DS algorithm, then a new web page 

appears as shown in a screen shot in Figure B.2. 

 

 

 

 

 

 

 

Figure B.2 WEKA packages’s web page. 
 

The user now can choose the required package (i.e., mi-DS) to download and save 

it on her/his computer. To install the downloaded package (algorithm), run the WEKA (the 

assumption is that the user has the WEKA already installed on his/her computer) on your 

computer and choose the “Tools: Package manager” in the main window, as illustrated in 

Figure B.3. 
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Figure B.3 Menu Package manger in WEKA. 

 

A new window will appear that lists all current packages.  Then click button “File/URL” at 

the upper right hand corner (see Figure B.4). 

 

 
 
 
 
 
 
 
 
 
 

Figure B.4 Package Manager window. 
 

And follow the three steps (shown in Figure B.5) to choose the downloaded and 

saved package.  
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Step 1: Click button “Browse”. 

 

 

 

 

 

Step 2: Search and choose downloaded package and click “Select”. 

 

 

Step 3: Click button “OK” 

 

Figure B.5 Choose the package to install. 
 

 

  



 
 

109 
 

 

 

WEKA will install the chosen package (mi-DS in our case), as shown in Figure B.6. 

 

 
 
 
 
 
 
 
 
 
 
 

 
Figure B.6 Installing chosen package in WEKA. 

 

Open a data set in WEKA by clicking button “Explorer” in the main window, as 

shown in Figure B.7. 

 

 
 
 
 
 
 
 

 
Figure B.7 Open data set  in WEKA. 

 

 

 



 
 

110 
 

 

Now we need to choose a data set to be analyzed, see Figure B.8, which shows we 

choose a data set named MUSK1 (benchmark for MIL testing). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B.8 Choose data set in WEKA. 
 

The selected data set will be opened and loaded into WEKA application, as shown 

in Figure B.9. 

 

 

 

 

 

 

 

Figure B.9 Musk 1 data set . 
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Now, the user can choose the mi-DS algorithm and set values for its parameters, as 

shown in Figure B.10, or use the default values (they are displayed in the image on the 

right hand side and appear there automatically). 

  

 

Figure B.10  Select mi-DS and setting values of parameters. 

 

mi-DS will generate the rules that are shown in Figures B.11 using 10-FCV and in 

Figure B.12 using splitting technique (with 90% for training and 10% for testing). 
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Figure B.11 Results using  10-FCV. 
 

Figure B.12 Results using  90% of instances for training and 10% for testing. 
 
 

Similarly, other packages from our website can be embedded into WEKA and used. 



 
 

113 
 

VITA  
 

Dat T. Nguyen was born in Saigon, Vietnam. He received his Bachelor and Master 

degrees from Computer Science Department, School of Science, National University of Ho Chi 

Minh city, Vietnam, in 1991 and 1997, respectively.  In 2009 he joined Department of Computer 

Science at VCU as a Graduate Research Assistant. His research interests include data mining, 

machine learning, high-dimension data visualization, and pattern recognition.  

 

List of Relevant Publications: 

Journal papers 
 
[1] D.T. Nguyen, C. Nguyen, R. Hobson, L.A. Kurgan, and K.J. Cios.  mi-DS: Multiple-Instance 

Learning Algorithm. IEEE Systems, Man, and Cybernetics -Part B: Cybernetics, pp. 143-154, 

Vol. 43, No. 1, Feb 2013. 

 [2] D.T. Nguyen and K.J. Cios. OneClass-DS Algorithm, submitted to a journal.  

  

Conference paper 

[3] D.T. Nguyen, W. Dzwinel and K.J. Cios. Visualization of Highly-Dimensional Data in 3D 

Space, ISDA 2011 Conference, Còrdoba, Spain, pp. 225-230  

 


	Virginia Commonwealth University
	VCU Scholars Compass
	2013

	MULTIPLE-INSTANCE AND ONE-CLASS RULE-BASED ALGORITHMS
	Dat Nguyen
	Downloaded from


	tmp.1404866539.pdf.MibOV

