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Abstract

UNIQUENESS OF BIPARTITE FACTORS IN PRIME FACTORIZATIONS OVER THE
DIRECT PRODUCT OF GRAPHS

By Owen Puffenberger, Master of Science.

A thesis submitted in partial fulfillment of the requirements for the degree of Master of
Science at Virginia Commonwealth University.

Virginia Commonwealth University, 2013.

Director: Dr. Richard Hammack, Associate Professor, Department of Mathematics and
Applied Mathematics.

While it has been known for some time that connected non-bipartite graphs have unique

prime factorizations over the direct product, the same cannot be said of bipartite graphs.

This is somewhat vexing, as bipartite graphs do have unique prime factorizations over other

graph products (the Cartesian product, for example). However, it is fairly easy to show that

a connected bipartite graph has only one prime bipartite factor, which begs the question:

is such a prime bipartite factor unique? In other words, although a connected bipartite

graph may have multiple prime factorizations over the direct product, do such factorizations

contain the same prime bipartite factor? It has previously been shown that when the prime

bipartite factor is K2, this is in fact true [4]. The goal of this paper is to prove that this is

in fact true for any prime bipartite factor, provided the graph being factored is R-thin. The

proof of the main result takes the same initial approach as the proof in [4] before moving

into new territory in order to prove the final result.
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Preliminaries

In this chapter we present some introductory graph theory required for later chapters. Many

definitions and results are presented without reference or proof, but may be discovered in

one or more of the texts listed in the Bibliography, especially [1] and [2].

DEFINITION 1.1. A graph G is a set of vertices, denoted V (G), and a set of edges, E(G),

where an element of E(G) is an un-ordered pair of elements of V (G), regarded as a line

segment joining the two vertices that belong to it. Vertices are usually denoted by letters,

such as u and v, while an edge is denoted by the pair of letters which correspond to the

vertices it joins (referred to as endpoints), i.e. we denote the edge running from u to v as uv.

The number of vertices in a graph is its order and the number of edges in a graph is its size.

Graphs are depicted visually by representing vertices as nodes and edges as line segments

connecting them.

Figure 1.1: Some typical graphs.

We say that two vertices u and v are adjacent if they are connected by an edge, denoted

u∼ v. An edge beginning and ending at the same vertex is called a loop. We say that two

edges are incident if they share an endpoint. The neighborhood of a vertex u, denoted N(u),

is the set of all vertices adjacent to u. When there is possibility for conufsion, we denote the

neighborhood of a vertex u in the graph G as NG(u). The number of vertices in N(u), or the
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number of vertices adjacent to u, is called the degree of u. A vertex with degree 0 is called

isolated.

A subgraph H of a graph G is a graph H where V (H)⊆V (G) and E(H)⊆ E(G). An

induced subgraph H of G is a subgraph in which pairs of vertices are adjacent whenever

they are adjacent in G, the parent graph. A spanning subgraph H of G is a subgraph in

which V (H) =V (G).

A path is a sequence of distinct vertices v1v2 . . .vn where vi ∼ v j whenever i− j =±1. A

graph consisting only of a path with n vertices is called Pn. A cycle is a sequence of distinct

vertices v1v2 . . .vnv1 where vi ∼ v j whenever i− j =±1 and v1 ∼ vn. A graph consisting of

only a cycle with n vertices is called Cn. A complete graph is a graph in which every pair of

vertices is adjacent. A complete graph with n vertices is called Kn. The trivial graph is the

graph consisting of a single isolated vertex. The graph consisting of a single vertex with a

loop is called Ks
1. If we now look at Figure 1.1, we can see that the graphs shown there are

K5, C4, and P3, respectively.

We say that a graph is connected if there exists a path between every pair of vertices.

A graph which is not connected is called disconnected. Disconnected graphs consist of

connected components, which are connected subgraphs of maximum order and size.

The disjoint union of G and H, written G+H, has vertex set V (G)∪V (H) and edge

set E(G)∪E(H) (Note: we assume V (G)∩V (H) = /0). The disjoint union of G and H is

always disconnected.

DEFINITION 1.2. A bipartite graph is a graph G for which V (G) can be separated into two

distinct sets G1 and G2 where vertices in G1 are only adjacent to vertices in G2, and vice

versa. The sets G1 and G2 are called partite sets and the pair (G1,G2) is called a bipartition.

DEFINITION 1.3. Identical graphs are said to be equal. We say that two graphs G and H are

isomorphic, written G∼= H, if there is a bijection ϕ : V (G)→V (H) which preserves both
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adjacence and nonadjacence. This means that ϕ(u)ϕ(v) ∈ E(H) if and only if uv ∈ E(G).

Such a mapping ϕ is called an isomorphism. A non-bijective mapping from V (G) to V (H)

which preserves adjacence is called a homomorphism.

DEFINITION 1.4. A graph with a finite vertex set is called finite. The class of all finite

graphs allowing loops is denoted Γ0; the class of all finite graphs without loops (called

simple graphs) is denoted Γ .

DEFINITION 1.5. A graph G ∈ Γ0 is called R-thin if none of its vertices have identical

neighborhoods, that is, N(u) = N(v) implies that u = v.

G H

v

u1

2

3

4

Figure 1.2: The graph G is bipartite–note that black vertices are only adjacent to white
vertices, and vice versa. The graph H is not R-thin, as N(u) = {1,2,3,4}= N(v).
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Graph Products

In this chapter we introduce two different graph products: the direct product and the

Cartesian product. Although there are several other types of graph products, only these two

are relevant to this paper. We will discuss many definitions and theorems that will be later

used in the main result. Unless otherwise noted, all results are taken from [2].

Generally speaking, a product of two graphs G and H always has the same vertex set:

the set-Cartesian product of V (G) and V (H). Where graph products differ is in their edge

sets; different products have different rules for how edge sets are defined. So, for any graph

product ∗, it is the case that |V (G∗H)|= |V (G)||V (H)|.

2.1 The Direct Product

DEFINITION 2.1. For graphs G and H in Γ0, the direct product of G and H is written as

G×H. It is defined as follows:

V (G×H) = V (G)×V (H)

E(G×H) = {(g,h)(g′h′) | gg′ ∈ E(G) and hh′ ∈ E(H)}.

Note: on the left-hand side, the symbol × refers to the direct product of the graphs G and H.

On the right-hand side, it refers to the set-Cartesian product of V (G) and V (H).

Figures 2.1 and 2.2 illustrate some typical examples. The direct product can be extended

to include an arbitrary number of factors, and it is both associative and commutative. In

other words, for graphs X , Y , and Z in Γ0, it is the case that X ×Y ∼= Y ×X and X ×
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P3

P4

P3×P4

Figure 2.1: The direct product of the graphs P3 and P4.

(Y × Z) ∼= (X ×Y )× Z. Also, the direct product distributes over a disjoint union, i.e.,

X× (Y +Z) = (X×Y )+(X×Z).

In later chapters, we will make frequent use of the following lemma. It allows us to swap

the left-hand components of the endpoints of an edge in the direct product of two graphs:

LEMMA 2.2. If (g,h)(g′,h′) ∈ E(G×H), then (g′,h)(g,h′) ∈ E(G×H) as well.

Proof. This follows directly from the definition of the direct product.

Notice in Figure 2.1 that the product P3×P4 is disconnected, and that both factors P3

and P4 are bipartite. This observation leads us to the following theorem:

THEOREM 2.3. Let G and H be nontrivial connected graphs in Γ0. If at most one of G or H

is bipartite, then G×H is connected. If G and H are both bipartite, G×H is disconnected

and has exactly two components. Moreover, G×H is bipartite if and only if at least one of

G and H is bipartite. Further, if H is bipartite with bipartition (X ,Y ), then G×H has partite

sets V (G)×X and V (G)×Y .

A proof of this theorem is given in Chapter 5 of [2]. Extending this to the general case

allows us to see that a direct product of connected nontrivial graphs is connected if and only

if at most one factor is bipartite, and that a direct product of connected nontrivial graphs is

bipartite if and only if at least one factor is bipartite.
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C3

P4

C3×P4

Figure 2.2: The graph C3×P4.

Note that in Figure 2.2, the factor P4 is bipartite, while the factor C3 is not. The resulting

graph C3×P4 is both connected and bipartite (the bipartitions are marked with black and

white vertices).

It turns out that the graph Ks
1 (the graph consisting of a single vertex with a loop)

acts as a "unit" for the direct product; that is, for a graph G ∈ Γ0, it is the case that

G×Ks
1
∼= G∼= Ks

1×G. This fact prompts the following definition.

DEFINITION 2.4. A nontrivial graph G ∈ Γ0 is said to be prime over the direct product if

any factoring G∼= G1×G2 where G1,G2 ∈ Γ0 implies that either G1 or G2 is Ks
1. If a graph

H is not prime, we say that H has prime factorization H ∼= H1×H2×·· ·×Hk if each of the

Hi is prime for 1≤ i≤ k. Every nontrivial graph has a prime factorization over the direct

product.

K2

G

K2×G∼=C6 K2

H

K2×H ∼=C6

Figure 2.3: Two different prime factorizations of C6.

It is a known fact that prime factorizations over the direct product are not unique in

general. This fact is stated and proved as Theorem 8.1 of [2]. However, as a consequence
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of Theorem 2.3, it turns out that if a connected bipartite graph G has prime factorization

G∼= G1×G2×·· ·×Gk, then exactly one prime factor is bipartite. Figure 2.3 illustrates two

different prime factorizations of the connected bipartite graph C6. Notice that although the

prime factorizations are different, the prime bipartite factor–K2–is the same!

This realization prompts the following conjecture. Proving it is the main goal of this

paper.

CONJECTURE 2.5. Suppose G is a connected bipartite graph in Γ0. Suppose that G factors

as G∼= A×B and G∼= A′×B′, where B and B′ are prime bipartite graphs. Then B∼= B′.

In order to prove this, we require some other background information related to graph

products, specifically, the Cartesian product.

2.2 The Cartesian Product

Along with the direct product, the Cartesian product is one of the most frequently studied

graph products. We discuss it here because unlike the direct product, connected bipartite

graphs do have unique prime factorizations over the Cartesian product (subject to a few

restrictions–but more on that later). We will be able to use this fact to our advantage in later

chapters, but first we must define the Cartesian product and explain why it possesses this

useful property.

DEFINITION 2.6. For graphs G and H in Γ , the Cartesian product of G and H is written as

G � H. It is defined as follows:

V (G � H) = V (G)×V (H)

E(G � H) = {(g,h)(g′h′) | g = g′ and hh′ ∈ E(H), or gg′ ∈ E(G) and h = h′}.

Figure 2.4 shows an example. Notice that unlike P3×P4, the product P3 � P4 is connected.

In general, the Cartesian product of connected graphs is connected, whether or not any of
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P3

P4

P3 � P4

Figure 2.4: The graph P3 � P4.

the factors are bipartite. Like the direct product, the Cartesian product is associative and

commutative, and it also distributes over a disjoint union.

The graph K1, also known as the trivial graph, is a unit for the Cartesian product in the

sense that K1 � G∼= G∼= G � K1 for all graphs G. This leads to the following definition,

which is very similar to Definition 2.4.

DEFINITION 2.7. A nontrivial graph G ∈ Γ is prime over the Cartesian product if G∼= G1

� G2 implies that either G1 or G2 is K1. If a graph H is not prime, we say that H has

prime factorization H ∼= H1 � H2 � · · · � Hk if each of the Hi is prime for 1≤ i≤ k. Every

nontrivial graph has a prime factorization over the Cartesian product.

Unlike the direct product, every connected graph has a unique prime factorization in Γ

up to order and isomorphism of factors, as proved by Sabidussi and Vizing ( [5], [6]). This

is stated in much greater detail in Theorem 6.8 of [2], and we restate it here for the sake of

completeness.

THEOREM 2.8. Let G,H ∈Γ be isomorphic connected graphs with prime factorings G∼=G1

� · · · � Gk and H ∼= H1 � · · · � Hl . Then k = l, and for any isomorphism ϕ : G→H, there

is a permutation π of {1,2, . . . ,k} and isomorphisms ϕi : Gπ(i)→ Hi for which

ϕ(x1,x2, . . . ,xk) = (ϕ1(xπ(1)),ϕ2(xπ(2)), . . . ,ϕk(xπ(k))).
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It is essential to note that this theorem only applies to graphs in Γ (in fact, it can easily

be shown to be false in Γ0).

As a result of Theorem 2.8, it is natural to associate each Hi with Gπ−1(i), which yields

the following corollary (Corollary 6.9 of [2]).

COROLLARY 2.9. If ϕ : G1 � · · · � Gk→ H1 � · · · � Hk is an isomorphism, and each Gi

and Hi is prime, then the vertices of each Hi can be relabeled so that

ϕ(x1,x2, . . . ,xk) = (xπ(1),xπ(2), . . . ,xπ(k))

for some permutation π of {1, . . . ,k}.

So, we can sum up Theorem 2.8 and Corollary 2.9 as follows: if a graph G has two

different prime factorizations over the Cartesian product, then each prime factorization must

contain the same number of factors, and the factors can be ordered so that corresponding

(i.e. similarly indexed) factors are isomorphic.
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The Cartesian Skeleton

In this chapter we introduce the notion of the Cartesian skeleton S(G) of an arbitrary graph

G in Γ0. The Cartesian skeleton S(G) shares G’s vertex set and has the important property

S(A×B) = S(A) � S(B) as long as A and B are R-thin and contain no isolated vertices. Note

that this is equality, rather than isomorphism. This will allow us to relate prime factorings

of graphs over the direct product (which are not generally unique) to prime factorings of

graphs over the Cartesian product (which have properties of uniquness as outlined in the

previous chapter). First, a definition.

DEFINITION 3.1. The Boolean square of a graph G ∈ Γ0 is denoted Gs and is defined as

follows:
V (Gs) = V (G)

E(Gs) = {uv | NG(u)∩NG(v) 6= /0}.

Figure 3.1: The graph P4 (left) and its Boolean square (right).

In other words, Gs contains a loop at every non-isolated vertex, and contains edges

between any two vertices with at least one common neighbor. Figure 3.1 shows a typical

example. Moreover, it illustrates the property that the Boolean square of a connected

bipartite graph G is disconnected and contains exactly two components–the vertex sets of

which are the two partite sets of G. This happens because vertices in a bipartite graph can

only share neighbors with vertices in the same bipartition, and because vertices in different
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bipartitions have no neighbors in common. Thus, the Boolean square of a bipartite graph G

will only have edges between vertices that are in the same bipartition in G.

The Cartesian skeleton S(G) is constructed as a specific spanning subgraph of the

Boolean square of G.

P4

P4

P4×P4
Ps

4

Ps
4

(P4×P4)
s

a b c d

x y

Figure 3.2: The graph P4×P4 (left) and its Boolean square (right).

P4

P4

P4×P4 S(P4)

S(P4)

S(P4×P4)

Figure 3.3: The graph P4×P4 (left) and its Cartesian skeleton (right).

Given any factorization G∼= A×B, an edge (a,b)(a′b′) of Gs is called Cartesian relative

to the factorization A×B if either a = a′ and b 6= b′ or a 6= a′ and b = b′. The goal is to

construct S(G) from Gs by removing the edges of Gs which are not Cartesian. We begin by
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examining Figures 3.2 and 3.3, in particular noting which edges of (P4×P4)
s which do not

appear in S(P4×P4). This will help us determine three criteria for identifying which edges

to eliminate to form the Cartesian skeleton from the Boolean square. First, let G = P4×P4.

(1) Clearly, loops are not Cartesian, as the Cartesian skeleton does not contain any. So,

we can say that if an edge uv is a loop (i.e. if u = v) then uv is not Cartesian.

(2) The edge yd of Gs is not Cartesian, and there is a vertex b ∈V (G) such that NG(y)∩

NG(d) ⊂ NG(y)∩NG(b) and NG(y)∩NG(d) ⊂ NG(d)∩NG(b). Note that ⊂ denotes strict

inclusion.

(3) The edge xc of Gs is not Cartesian, and there is a vertex a ∈V (G) such that NG(x)⊂

NG(a)⊂ NG(c).

So, we want to remove all edges from Gs that meet one of the above criteria. We can

write this as a definition.

DEFINITION 3.2. An edge uv of Gs is dispensable if u = v or there is a w ∈V (G) for which

both of the following statements hold:

(i) NG(u)∩NG(v)⊂ NG(u)∩NG(w) or NG(u)⊂ NG(w)⊂ NG(v)

(ii) NG(v)∩NG(u)⊂ NG(v)∩NG(w) or NG(v)⊂ NG(w)⊂ NG(u)

Note that both of these conditions hold if and only if at least one of conditions (2) and

(3) above hold.

This allows us to now properly define the Cartesian skeleton of a graph G.

DEFINITION 3.3. The Cartesian skeleton of a graph G is the spanning subgraph S(G) of Gs

obtained by removing all dispensable edges from Gs.
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We conclude this chapter by stating several theorems regarding certain properties of the

Cartesian skeleton. Proofs may be found in [2].

THEOREM 3.4. If A and B are R-thin graphs with no isolated vertices, then S(A×B) =

S(A)�S(B).

This has been mentioned previously. It is extremely useful, as it allows us to associate

the prime factorization of a graph over the direct product (which may not be unique) with

the prime factorization of the Cartesian skeletons of its factors over the Cartesian product

(which is unique).

THEOREM 3.5. If ϕ : G→H is an isomorphism defined as a map from V (G) to V (H), then

ϕ : S(G)→ S(H) is an isomorphism as well.

This is also very useful, since it removes any doubt as to whether taking skeletons of

graphs will affect their isomorphism.

THEOREM 3.6. Suppose G is a connected graph.

(1) If G is not bipartite, then S(G) is connected.

(2) If G is bipartite, then S(G) has two connected components, the vertex sets of which

are the two partite sets of G.

Finally, this theorem will come in handy during the proof of our main result, where we

will be specifically concerning ourselves with the Cartesian skeletons of bipartite graphs.



14

Main Result

In this chapter we set out to prove the main result of this paper: that a (connected, R-thin)

bipartite graph, while it may have several prime factorizations over the direct product,

contains a unique prime bipartite factor. So, let’s restate Conjecture 2.5 as a threorem, and

prove it.

THEOREM 4.1. Suppose G is a connected, bipartite, R-thin graph in Γ0. Suppose that G

factors as G ∼= A×B and G ∼= A′×B′, where B and B′ are prime bipartite graphs. Then

B∼= B′.

Proof. Let ϕ : A×B→ A′×B′ be an isomorphism. Then ϕ is also an isomorphism from

S(A×B) to S(A′×B′) via Theorem 3.5. Using this, along with Theorems 3.4 and 3.6, we

can generate the following diagram: (The double vertical lines indicate equality, and the

horizontal arrows are isomorphisms.)

A×B A′×B′

S(A×B) S(A′×B′)

S(A)�S(B) S(A′)�S(B′)

S(A)�(B0 +B1) S(A′)�(B′0 +B′1)

S(A)�B0 +S(A)�B1 S(A′)�B′0 +S(A′)�B′1

ϕ

ϕ

ϕ

ϕ

ϕ

S S

(4.1)
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Note that B0 and B1 are the connected components of S(B), while B′0 and B′1 are the

connected components of S(B′) (Theorem 3.6). Note also that since B is bipartite, the

connected components of S(A)�S(B), namely, S(A)�B0 and S(A)�B1, are the partite sets

of A×B. The same is true for the connected components of S(A′)�S(B′).

Therefore, since S(A)�S(B) and S(A′)�S(B′) are both disconnected graphs with two

components, the fact that they are isomorphic requires that their connected components are

isomorphic. In other words, ϕ induces two isomorphisms, ϕ0 and ϕ1, on the connected

components of S(A)�S(B) and S(A′)�S(B′):

S(A)�B0 + S(A)�B1

S(A′)�B′0 + S(A′)�B′1

ϕ0 ϕ1 (4.2)

Note: We are assuming without loss of generality that ϕ0 and ϕ1 run between similarly-

labeled components. If they do not, we can simply relable the components as necessary.

Now, let’s break down S(A), B0, B1, S(A′), B′0, and B′1 into their prime factorizations

with respect to the Cartesian product, since we know that such prime factorizations are

unique (Theorem 2.8). This will give us the following:

S(A) = A1�A2� · · ·�Ai

S(A′) = A′1�A′2� · · ·�A′l

B0 = B01�B02� · · ·�B0 j

B1 = B11�B12� · · ·�B1k

B′0 = B′01�B′02� · · ·�B′0m

B′1 = B′11�B′12� · · ·�B′1n
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With these prime factorizations in hand, we can re-draw Figure 4.2 in greater detail:

(A1�A2� · · ·�Ai)�(B01�B02� · · ·�B0 j) + (A1�A2� · · ·�Ai)�(B11�B12� · · ·�B1k)

(A′1�A′2� · · ·�A′l)�(B′01�B′02� · · ·�B′0m) + (A′1�A′2� · · ·�A′l)�(B′11�B′12� · · ·�B′1n)

ϕ0 ϕ1

S(A)︷ ︸︸ ︷ B0︷ ︸︸ ︷ S(A)︷ ︸︸ ︷ B1︷ ︸︸ ︷

︸ ︷︷ ︸
S(A′)

︸ ︷︷ ︸
B′0

︸ ︷︷ ︸
S(A′)

︸ ︷︷ ︸
B′1

(4.3)

Now, let’s define the following products of factors of S(A)�S(B) and S(A′)�S(B′). We will

be using Theorem 2.8 liberally, as it guarantees that S(A)�B0 +S(A)�B1 and S(A′)�B′0 +

S(A′)�B′1 have the same number of prime factors, and that their prime factorizations can be

rearranged so that similarly-indexed factors are isomorphic.

Define K to be the product of Ai’s that ϕ0 and ϕ1 both send to S(A′). Define α1 and β1

to be the component functions of ϕ0 and ϕ1, respectively, which act on K. Also, define

α1(K) = β1(K) = K′.

Define L to be the product of Ai’s that ϕ0 sends to factors of S(A′) and ϕ1 sends to factors

of B′1. Define α2 and β2 to be the component functions of ϕ0 and ϕ1, respectively, which act

on L. Also, define α2(L) = L′ and β2(L) = L′′.

Define M to be the product of Ai’s that ϕ0 sends to factors of B′0 and ϕ1 sends to factors

of S(A′). Define α3 and β3 to be the component functions of ϕ0 and ϕ1, respectively, which

act on M. Also, define α3(M) = M′ and β3(M) = M′′.

Define X to be the product of Ai’s that ϕ0 sends to factors of B′0 and ϕ1 sends to factors

of B′1. Define α4 and β4 to be the component functions of ϕ0 and ϕ1, respectively, which act

on X . Also, define α4(X) = X ′ and β4(X) = X ′′.
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Define P to be the product of B0 j’s that ϕ0 sends to factors of B′0. Define α6 to be the

component function of ϕ0 which acts on P, and define α6(P) = P′.

Define Q to be the product of B1k’s that ϕ1 sends to factors of B′1. Define β6 to be the

component function of ϕ1 which acts on Q, and define β6(Q) = Q′.

Define Y to be the product of A′l’s that ϕ
−1
0 sends to factors of B0 and ϕ

−1
1 sends to factors

of B1. Define α
−1
7 and β

−1
7 to be the component functions of ϕ

−1
0 and ϕ

−1
1 , respectively,

which act on Y . Also, define α
−1
7 (Y ) = Y ′ and β

−1
7 (Y ) = Y ′′.

Now, consider M′, the image of M under β3. We know that M′ is a factor of S(A), but

we haven’t yet discussed where ϕ
−1
0 sends M′. But since we have already exhausted all the

possibilities as to where ϕ0 sends the factors of S(A), it is clear that M′ is not the image

under ϕ0 of any factor of S(A). Thus, it must be the case that ϕ
−1
0 in fact sends M′ to a

factor of B0. So, we define α
−1
5 to be the component function of ϕ

−1
0 which acts on M′, and

we define α
−1
5 (M′) = M′′′.

By the same logic, it is apparent that ϕ
−1
1 must send L′ to some factor of B1. So,we define

β
−1
5 to be the component function of ϕ

−1
1 which acts on L′, and we define β

−1
5 (L′) = L′′′.

Now, we can modify Diagram 4.3, consolidating factors using the above definitions,

and illustrating exactly which factors of S(A)�B0+S(A)�B1 and S(A′)�B′0+S(A′)�B′1 are

isomorphic.

(K � L � M � X)� (M′′′� P � Y ′)+(K � L � M � X) �(L′′′� Q �Y ′′)

(K′ � L′ � M′ � Y )� (M′′� P′ � X ′)+(K′ � L′ � M′ � Y ) � (L′′ � Q′ �X ′′)

α1 α2

α3 α4

α5

α6

α7

β1

β2

β3
β4

β5

β6

β7

(4.4)
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Now, given an edge in A×B (i.e. an edge with one endpoint in S(A)�B0 and one endpoint

in S(A)�B1), we can see exactly where ϕ sends each component of each endpoint. For

example, if ((a,b,c,d)(e, f ,g))((h, i, j,k)(l,m,n)) ∈ E(A×B), then

ϕ(((a,b,c,d)(e, f ,g))((h, i, j,k)(l,m,n))) =

((α1(a),α2(b),α5(e),α7(g))(α3(c),α6( f ),α4(d)))((β1(h),β5(l),β3( j),β7(n))(β2(i),β6(m),β4(k)))

∈ E(A′×B′).

The remainder of the proof that B∼= B′ consists of two sections. First, we will show that

X ∼= X ′ ∼= X ′′ ∼= Y ∼= Y ′ ∼= Y ′′ ∼= K1, which will allow us to greatly reduce our factorings of

S(A)�S(B) and S(A′)�S(B′). This in turn will allow us to more easily see why it must be

the case that B∼= B′.

Now, the first part of our plan:

LEMMA 4.2. Given these factorings of S(A)�B0 +S(A)�B1 and S(A′)�B′0 +S(A′)�B′1, it

is the case that X ∼= X ′ ∼= X ′′ ∼= Y ∼= Y ′ ∼= Y ′′ ∼= K1.

Proof. Given our factoring of S(A)�S(B), let’s define two new graphs G and H, constructed

from the factors of S(A)�S(B) as follows:

V (G) =V (M′′′�P)∪V (L′′′�Q)

E(G) = {(m, p)(l,q) | ((∗,∗,∗,∗)(m, p,∗))((∗,∗,∗,∗)(l,q,∗)) ∈ E(A×B)},

V (H) =V (Y )

E(H) = {α7(y1)β7(y2) | ((∗,∗,∗,∗)(∗,∗,y1))((∗,∗,∗,∗)(∗,∗,y2)) ∈ E(A×B)}.
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It’s easy to see that G is bipartite, since each edge (m, p)(l,q) has one endpoint in

V (M′′′�P) and one endpoint in V (L′′′�Q). Our goal is to show that B∼= G×H, which will

force H ∼= Ks
1 (since B is prime), which will then imply that Y ∼=Y ′ ∼=Y ′′ ∼= K1. So, consider

the direct product G×H :

V (G×H) =V (G)×V (H) = [V (M′′′�P)∪V (L′′′�Q)]×V (Y )

= [V (M′′′)×V (P)×V (Y )]∪ [V (L′′′)×V (Q)×V (Y )],

E(G×H) = {((m, p),α7(y1))((l,q),β7(y2)) | (m, p)(l,q) ∈ E(G)

and α7(y1)β7(y2) ∈ E(H)}.

Now, let’s define the map ψ : V (B)→V (G×H) as follows:

ψ(a,b,c) =

 ((a,b),α7(c)) if (a,b,c) ∈ B0

((a,b),β7(c)) if (a,b,c) ∈ B1.

We can see right away that ψ is a bijection which preserves the bipartitions of B and

G×H. This means that B and G×H have the same number of vertices. So in order to show

that B∼= G×H, we must show that ψ : E(B)→ E(G×H) where ψ((m, p,y1)(l,q,y2)) =

((m, p),α7(y1))((l,q),β7(y2)) is an isomorphism.

So, suppose that (a,b,c)(d,e, f ) ∈ E(B). Then:

(a,b,c)(d,e, f ) ∈ E(B)⇒ ((∗,∗,∗,∗)(a,b,c))((∗,∗,∗,∗)(d,e, f )) ∈ E(A×B)

⇒ (a,b)(d,e) ∈ E(G) and α7(c)β7( f ) ∈ E(H)

⇒ ((a,b),α7(c))((d,e),β7( f )) ∈ E(G×H).

So ψ : E(B)→ E(G×H) is at the very least a homomorphism.

Now, suppose that ((m, p),α7(y1))((l,q),β7(y2))∈E(G×H). Then (m, p)(l,q)∈E(G)
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and α7(y1)β7(y2) ∈ E(H). Then:

((∗,∗,∗,∗)(m, p,∗))((∗,∗,∗,∗)(l,q,∗)) ∈ E(A×B) (4.5)

((∗,∗,∗,∗)(∗,∗,y1))((∗,∗,∗,∗)(∗,∗,y2)) ∈ E(A×B). (4.6)

Applying ϕ to (4.5) gives

((∗,∗,α5(m),∗)(∗,α6(p),∗))((∗,β5(l),∗,∗)(∗,β6(q),∗)) ∈ E(A′×B′).

Then by Lemma 2.2,

((∗,β5(l),∗,∗)(∗,α6(p),∗))((∗,∗,α5(m),∗)(∗,β6(q),∗)) ∈ E(A′×B′).

Applying ϕ−1 to this gives

((∗,α−1
2 β5(l),∗,∗)(∗, p,∗))((∗,∗,β−1

3 α5(m),∗)(∗,q,∗)) ∈ E(A×B),

which means that

(∗,α−1
2 β5(l),∗,∗)(∗,∗,β−1

3 α5(m),∗) ∈ E(A), (4.7)

(∗, p,∗)(∗,q,∗) ∈ E(B). (4.8)

Now, applying ϕ to (4.6) implies that

((∗,∗,∗,α7(y1))(∗,∗,∗))((∗,∗,∗,β7(y2))(∗,∗,∗)) ∈ E(A′×B′),
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and thus implies that

(∗,∗,∗,α7(y1))(∗,∗,∗,β7(y2)) ∈ E(A′). (4.9)

By definition of the direct product, (4.8) imples that

((∗,∗,∗,∗)(∗, p,∗))((∗,∗,∗,∗)(∗,q,∗) ∈ E(A×B).

Applying ϕ to this implies that

((∗,∗,∗,∗)(∗,α6(p),∗))(∗,∗,∗,∗)(∗,β6(q),∗)) ∈ E(A′×B′),

thus by definition of the direct product,

(∗,α6(p),∗)(∗,β6(q),∗) ∈ E(B′).

Combing this with (4.9) implies that

((∗,∗,∗,α7(y1))(∗,α6(p),∗))((∗,∗,∗,β7(y2))(∗,β6(q),∗)) ∈ E(A′×B′),

and by Lemma 2.2,

((∗,∗,∗,β7(y2))(∗,α6(p),∗))((∗,∗,∗,α7(y1))(∗,β6(q),∗)) ∈ E(A′×B′).

Applying ϕ−1 to this gives

((∗,∗,∗,∗)(∗, p,α−1
7 β7(y2)))((∗,∗,∗,∗)(∗,q,β−1

7 α7(y1))) ∈ E(A×B).
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In particular, this means that

(∗, p,α−1
7 β7(y2))(∗,q,β−1

7 α7(y1)) ∈ E(B). (4.10)

Now, combining (4.7) and (4.10) gives us

((∗,α−1
2 β5(l),∗,∗)(∗, p,α−1

7 β7(y2)))((∗,∗,β−1
3 α5(m),∗)(∗,q,β−1

7 α7(y1))) ∈ E(A×B).

Applying ϕ to this edge takes us to

((∗,β5(l),∗,β7(y2))(∗,α6(p),∗))((∗,∗,α5(m),α7(y1))(∗,β6(q),∗)) ∈ E(A′×B′).

Then by Lemma 2.2,

((∗,∗,α5(m),α7(y1))(∗,α6(p),∗))((∗,β5(l),∗,β7(y2))(∗,β6(q),∗)) ∈ E(A′×B′).

Finally, applying ϕ−1 takes us to

((∗,∗,∗,∗)(m, p,y1))((∗,∗,∗,∗)(l,q,y2)) ∈ E(A×B).

In particular, this implies that (m, p,y1)(l,q,y2) ∈ E(B).

It turns out that B ∼= G×H. But B is both prime and bipartite, so since G is also

bipartite (and hence nontrivial), it must be the case that H ∼= Ks
1. Then it follows that

Y ∼= Y ′ ∼= Y ′′ ∼= K1. A symmetric argument involving the factors of A′×B′ can be used to

show that X ∼= X ′ ∼= X ′′ ∼= K1.

Now that we have shown that all of the X- and Y -factors of A×B and A′×B′ are trivial,
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we can drop them from our diagram, and appropriately relabel the component isomorphisms

which make up ϕ:

(K � L �M) � (M′′′ � P) + (K � L �M) � (L′′′� Q)

(K′� L′ �M′) � (M′′ �P′) + (K′� L′ �M′) � (L′′�Q′)

α1 α2

α3 α4
α5 β1

β2

β3

β4

β5

S(A)︷ ︸︸ ︷ B0︷ ︸︸ ︷ S(A)︷ ︸︸ ︷ B1︷ ︸︸ ︷

︸ ︷︷ ︸
S(A′)

︸ ︷︷ ︸
B′0

︸ ︷︷ ︸
S(A′)

︸ ︷︷ ︸
B′1

(4.11)

Now, B and B′ look even more similar than before (recall that B0 +B1 = S(B), and

likewise for B′). It’s clear right away that P∼= P′ via α5, and similarly that Q∼= Q′ via β5.

However, upon closer inspection we can see that M′′′ ∼= M′′ via the isomorphism α3β
−1
3 α4,

and also that L′′′ ∼= L′′ via the isomorphism β2α
−1
2 β4. This means that there is a bijection

between V (S(B)) and V (S(B′)), i.e. there is a bijection between V (B) and V (B′). At the

very least, this guarantees that |V (B)| = |V (B′)|. But it also begs the question: does the

bijection from V (B) to V (B′) give an isomorphism from B to B′? If so, our proof would be

complete. In order to see this, let’s define the map Φ : V (B)→V (B′) as follows:

Φ(a,b) =

 (α3β
−1
3 α4(a),α5(b)) if (a,b) ∈ B0

(β2α
−1
2 β4(a),β5(b)) if (a,b) ∈ B1.

If we can show that Φ is an isomorphism from E(B) to E(B′), then our proof will be

complete.
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So, suppose that (m′′′, p)(l′′′,q) ∈ E(B). Then there is an edge

((∗,∗,∗)(m′′′, p))((∗,∗,∗)(l′′′,q)) ∈ E(A×B)

since A must be nontrivial (otherwise B would not be prime).

Applying ϕ to this edge takes us to the edge

((∗,∗,α4(m′′′))(∗,α5(p)))((∗,β4(l′′′),∗)(∗,β5(q))) ∈ E(A′×B′).

Then by Lemma 2.2, we know that

((∗,β4(l′′′),∗)(∗,α5(p)))((∗,∗,α4(m′′′))(∗,β5(q))) ∈ E(A′×B′)

as well. If we apply ϕ−1 to this edge, we’ll move back into A×B and get the edge

((∗,α−1
2 β4(l′′′),∗)(∗, p))((∗,∗,β−1

3 α4(m′′′))(∗,q)) ∈ E(A×B).

Applying Lemma 2.2 again yields the edge

((∗,∗,β−1
3 α4(m′′′))(∗, p))((∗,α−1

2 β4(l′′′),∗)(∗,q)) ∈ E(A×B).

Finally, applying ϕ one last time takes us to

((∗,∗,∗)(α3β
−1
3 α4(m′′′),α5(p)))((∗,∗,∗)(β2α

−1
2 β4(l′′′),β5(q))) ∈ E(A′×B′).

Then by the definition of the direct product, we know that

(α3β
−1
3 α4(m′′′),α5(p))(β2α

−1
2 β4(l′′′),β5(q)) ∈ E(B′).
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In other words, Φ is at least a homomorphism from E(B) to E(B′).

To see that Φ−1 is a homomorphism as well, suppose that (m′′, p′)(l′′,q′) ∈ E(B′). Then

there is an edge

((∗,∗,∗)(m′′, p′))(∗,∗,∗)((l′′,q′)) ∈ E(A′×B′)

since A′ must be nontrivial (otherwise B′ would not be prime).

Applying ϕ−1 to this edge takes us to the edge

((∗,∗,α−1
3 (m′′))(∗,α−1

5 (p′)))((∗,β−1
2 (l′′),∗)(∗,β−1

5 (q′))) ∈ E(A×B).

Then by Lemma 2.2, we know that

((∗,β−1
2 (l′′),∗)(∗,α−1

5 (p′)))((∗,∗,α−1
3 (m′′))(∗,β−1

5 (q′))) ∈ E(A×B)

as well. If we apply ϕ to this edge, we’ll move back into A′×B′ and get the edge

((∗,α2β
−1
2 (l′′),∗)(∗, p′))((∗,∗,β3α

−1
3 (m′′))(∗,q′)) ∈ E(A′×B′).

Applying Lemma 2.2 again yields the edge

((∗,∗,β3α
−1
3 (m′′))(∗, p′))((∗,α2β

−1
2 (l′′),∗)(∗,q′)) ∈ E(A′×B′).

Finally, applying ϕ−1 one last time takes us to

((∗,∗,∗)(α−1
4 β3α

−1
3 (m′′),α−5 1(p′)))((∗,∗,∗)(β−1

4 α2β
−1
2 (l′′),β−5 1(q′))) ∈ E(A×B).
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Then by the definition of the direct product, we know that

(α−1
4 β3α

−1
3 (m′′),α−5 1(p′))(β−1

4 α2β
−1
2 (l′′),β−5 1(q′)) ∈ E(B).

Therefore, Φ−1 is a homomorphism as well. Thus, Φ is an isomorphism, and B∼= B′,

i.e. the prime bipartite factor in the prime factorization of G is unique.

While this result may not be as powerful as Theorem 2.8, it still allows us to characterize

prime factorizations over the direct product in greater detail, and helps us to further nail

down this very abstract concept. In the future, we hope to remove the restriction that G must

be R-thin in order to produce a more general result (this has been done previously when the

prime bipartite factor is K2–see [4]).
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