
Virginia Commonwealth University
VCU Scholars Compass

Theses and Dissertations Graduate School

2013

Missing Data in the Relational Model
Marion Morrissett
Virginia Commonwealth University

Follow this and additional works at: http://scholarscompass.vcu.edu/etd

Part of the Engineering Commons

© The Author

This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in
Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.

Downloaded from
http://scholarscompass.vcu.edu/etd/3004

http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fetd%2F3004&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fetd%2F3004&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu?utm_source=scholarscompass.vcu.edu%2Fetd%2F3004&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F3004&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/gradschool?utm_source=scholarscompass.vcu.edu%2Fetd%2F3004&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F3004&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=scholarscompass.vcu.edu%2Fetd%2F3004&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd/3004?utm_source=scholarscompass.vcu.edu%2Fetd%2F3004&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu


c© Marion R. Morrissett, 2013

All Rights Reserved



Dedication

This research is dedicated to content,

data with missing values that represent the always-complete real world.

And to structure,

the relational model created and developed by the scientists, researchers, teachers,

and practitioners who populate my test case database.



MISSING DATA IN THE RELATIONAL MODEL

A dissertation submitted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy at Virginia Commonwealth

University.

by

MARION R. MORRISSETT
Bachelor of Arts, University of Virginia, 1972

Mathematical Sciences Certificate in Computer Science,
Virginia Commonwealth University, 1987

Master of Science, Virginia Commonwealth University, 1994
Doctor of Philosophy, Virginia Commonwealth University, 2013

Director: LORRAINE M. PARKER
ASSOCIATE PROFESSOR, DEPARTMENT OF COMPUTER

SCIENCE

Virginia Commonwealth University
Richmond, Virginia

May, 2013



ii

Acknowledgments

Many people have provided help and support during this work. My friends and

family listened to my dissertation status reports, the programmers among them

heard the technical details and all were patient. John Cookson, Tom Nicholls,

and Paul Bruggeman shared their experience with problems created and solved

by computers. Mac Kerfoot, Donnie Bergh, and Shin Adcox were always there

to talk about work, networks, problem solving, and life. Susan Campbell, Peter

Bacque, Randy Green, John Gibney, and Peter Kohn carried me through this with

conversation and emotional support.

My children Melissa and Jeffrey and their mother, Linda followed my progress

with interest bringing me joy and purpose. My siblings Mike, Drew, Sydney, Leslie,

and Courtney were always there for me, our many points of view and various ideas

making us the family that Evelyn and Andy parented with love and grace. Thank

you for your faith and support.

The role of the Virginia Commonwealth University School of Engineering, School

of Business, and College of Humanities and Sciences faculties is significant. I thank

all of those who teach, and especially my dissertation advisory committee for your

patience, advice and ideas.

ii



iii

Larry Williams, fellow grad student and database lab partner, thanks for walk-

ing through this with me. Dr. Charles A. Bell, VCU’s first computer science PhD,

contributed his insight, expertise and book on MySQL. Chuck, your example in-

spired me and your observations reminded me that this would be difficult. I remain

inspired, thanks.

Without Dr. Susan S. Brilliant and Dr. Lorraine M. Parker this research would

not have been possible. Dr. Brilliant encouraged me to pursue the ideas for my

master’s thesis, taught me technical writing, and showed me great teaching. Dr.

Parker contributed significant ideas to this dissertation with encouragement and

accurate criticism, improved my writing by telling me when to leave out unwarranted

explanations and when to explain the obvious, and taught me to teach. I cannot

thank you both enough.

Dr. Mary Elizabeth Glade, historian, scholar and teacher, my friend and con-

fident who patiently listens when I need to talk and hears what I say. Thank you

Betsy; for showing me how to listen and sharing life’s grand ideas.



iv

Table of Contents

Page

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . ii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xx

Chapter

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 The need to represent missing data . . . . . . 1

1.2 Unknown values in relational databases . . . . 2

1.3 Research overview . . . . . . . . . . . . . . . . 4

1.4 Contributions of this research . . . . . . . . . . 5

1.4.1 New model for missing data . . . . . . . . . 5

1.4.2 Metadata about missing data . . . . . . . . 5

1.4.3 Compatibility with existing databases . . . . 6

1.4.4 Support for application and database design 6

iv



v

1.4.5 Database metrics for missing data . . . . . . 6

2 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 The problem of incomplete information . . . . 7

2.1.1 What is the problem? . . . . . . . . . . . . . 8

2.1.2 Why is it a problem? . . . . . . . . . . . . . 8

2.2 Purpose of this research . . . . . . . . . . . . . 9

2.2.1 Why a solution is important . . . . . . . . . 9

2.2.2 What a practical solution must do . . . . . . 10

2.3 Problem context and solution space . . . . . . 11

2.3.1 Closed world assumption . . . . . . . . . . . 12

2.3.2 A truth-bearer that makes sense . . . . . . . 12

3 Types of Missing Data . . . . . . . . . . . . . . . . . . 13

3.1 Early investigation . . . . . . . . . . . . . . . . 13

3.1.1 Language Structure Group . . . . . . . . . . 13

3.1.2 ANSI DBMS model . . . . . . . . . . . . . . 14

3.1.3 CODASYL approach . . . . . . . . . . . . . 16

3.2 Relational model . . . . . . . . . . . . . . . . . 16

3.2.1 Codd’s inclusion of null in the relational model 16

3.2.2 RM/V1 . . . . . . . . . . . . . . . . . . . . 17

3.2.3 SQL and null . . . . . . . . . . . . . . . . . 17

3.2.4 RM/V2 . . . . . . . . . . . . . . . . . . . . 18



vi

3.2.5 Date’s seven types of null . . . . . . . . . . . 19

3.3 Imperfect information . . . . . . . . . . . . . . 21

3.3.1 Imprecise and vague . . . . . . . . . . . . . 22

3.3.2 Ambiguous and subjective . . . . . . . . . . 23

3.3.3 Unclear and uncertain . . . . . . . . . . . . 24

3.3.4 Inconsistent and incomplete . . . . . . . . . 25

3.4 Summary of missing data types . . . . . . . . 26

4 Background . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 Null and 3-valued logic . . . . . . . . . . . . . 28

4.2 A foundation for maybe-operators . . . . . . . 30

4.3 The problem with null . . . . . . . . . . . . . 31

4.3.1 The null debate . . . . . . . . . . . . . . . . 31

4.3.2 The null paradox . . . . . . . . . . . . . . . 32

4.4 Non-truth-functional systems . . . . . . . . . . 33

4.4.1 Denotational semantics for applicable and in-
applicable . . . . . . . . . . . . . . . . . . . 33

4.4.2 Partially known data and set-valued attributes 34

4.4.3 Statistical probability . . . . . . . . . . . . . 35

4.4.4 Fuzzy possibility . . . . . . . . . . . . . . . 36

4.4.5 Logic database and knowledge based systems 38

4.5 Defaults and special values . . . . . . . . . . . 40

4.5.1 Avoidance . . . . . . . . . . . . . . . . . . . 40



vii

4.5.2 Special values . . . . . . . . . . . . . . . . . 41

4.5.3 Default values with truth tables . . . . . . . 42

4.6 Decomposition . . . . . . . . . . . . . . . . . . 44

4.6.1 Vertical and horizontal decomposition . . . . 44

4.6.2 Iterative decomposition . . . . . . . . . . . . 45

4.7 Summary of previous work . . . . . . . . . . . 46

5 Impact of Missing Data . . . . . . . . . . . . . . . . . 47

5.1 Database design . . . . . . . . . . . . . . . . . 47

5.2 Database management systems . . . . . . . . . 48

5.3 SQL data sublanguage . . . . . . . . . . . . . 48

5.4 Application programs . . . . . . . . . . . . . . 48

6 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . 50

6.1 The KNOWN/UNKNOWN model . . . . . . . 50

6.2 Metadata for missing data types . . . . . . . . 50

6.3 KNOWN and UNKNOWN data values . . . . 51

6.4 Integrity independence . . . . . . . . . . . . . 53

6.4.1 Entity integrity . . . . . . . . . . . . . . . . 53

6.4.2 Referential integrity . . . . . . . . . . . . . . 53

6.4.3 Database integrity . . . . . . . . . . . . . . 54

6.5 Relational operations using missing data . . . 54

6.5.1 Expression evaluation . . . . . . . . . . . . . 55



viii

6.5.2 3-valued logic (unknown and MAYBE) . . . 55

6.5.3 Four test cases for missing data . . . . . . . 56

6.5.4 Cartesian Product . . . . . . . . . . . . . . . 61

6.5.5 Set Union . . . . . . . . . . . . . . . . . . . 66

6.5.6 Project . . . . . . . . . . . . . . . . . . . . . 70

6.5.7 Set Difference . . . . . . . . . . . . . . . . . 74

6.5.8 Restrict . . . . . . . . . . . . . . . . . . . . 76

6.6 Arithmetic operations using missing data . . . 81

6.6.1 Count . . . . . . . . . . . . . . . . . . . . . 81

6.6.2 Sum, Avg, Min, and Max . . . . . . . . . . . 83

7 Solution Implementation and Verification . . . . . . . . 84

7.1 Design . . . . . . . . . . . . . . . . . . . . . . 84

7.1.1 Integrated known and unknown tables . . . 85

7.1.2 Separate known and unknown tables . . . . 88

7.1.3 Missing values metadata table . . . . . . . . 91

7.2 Implementation . . . . . . . . . . . . . . . . . 92

7.2.1 MyKU client . . . . . . . . . . . . . . . . . . 92

7.2.2 MyKU intermediate results . . . . . . . . . . 97

7.2.3 MyKU duplicate removal . . . . . . . . . . . 98

7.3 Verification . . . . . . . . . . . . . . . . . . . . 99

7.3.1 Four test cases . . . . . . . . . . . . . . . . . 99



ix

7.3.2 Cartesian Product . . . . . . . . . . . . . . . 104

7.3.3 Set Union . . . . . . . . . . . . . . . . . . . 108

7.3.4 Project . . . . . . . . . . . . . . . . . . . . . 112

7.3.5 Restrict . . . . . . . . . . . . . . . . . . . . 115

8 Feasibility Study . . . . . . . . . . . . . . . . . . . . . 119

8.1 Participant recruitment . . . . . . . . . . . . . 120

8.2 Tutorial and study . . . . . . . . . . . . . . . . 120

8.3 Study results . . . . . . . . . . . . . . . . . . . 121

8.3.1 Nulls . . . . . . . . . . . . . . . . . . . . . . 122

8.3.2 KNOWN/UKNOWN MISSING data tags . 124

8.4 Feasibility study summary . . . . . . . . . . . 134

8.4.1 Context . . . . . . . . . . . . . . . . . . . . 134

8.4.2 Observations about nulls . . . . . . . . . . . 134

8.4.3 Observations about KNOWN/UNKNOWN . 135

8.4.4 Analysis of missing data using metadata . . 135

8.4.5 Study conclusion . . . . . . . . . . . . . . . 139

9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 141

9.1 Metrics . . . . . . . . . . . . . . . . . . . . . . 141

9.2 Advantages of KNOWN/UNKNOWN model . 144

9.2.1 New model avoids problems of null . . . . . 144

9.2.2 Metadata available to user and DBMS . . . 145



x

9.2.3 Backward compatibility with nulls . . . . . . 145

9.2.4 Database maintenance and application de-
velopment . . . . . . . . . . . . . . . . . . . 146

9.2.5 Database metrics for missing data . . . . . . 147

9.3 Summary . . . . . . . . . . . . . . . . . . . . . 147

10 Future Work . . . . . . . . . . . . . . . . . . . . . . . 148

10.1 Complete implementation of model in MySQL 148

10.1.1 Intermediate results . . . . . . . . . . . . . . 149

10.1.2 Duplicate removal . . . . . . . . . . . . . . . 149

10.1.3 MyKU client . . . . . . . . . . . . . . . . . . 150

10.1.4 MySQL DBMS . . . . . . . . . . . . . . . . 151

10.1.5 Set difference . . . . . . . . . . . . . . . . . 153

10.2 Query analyzer to identify tautologies . . . . . 153

10.3 Modifications identified from acceptance study 153

10.3.1 Presentation . . . . . . . . . . . . . . . . . . 153

10.3.2 MAYBE operator . . . . . . . . . . . . . . . 154

10.3.3 Query missing data by tag . . . . . . . . . . 154

10.4 Missing data types and metadata . . . . . . . 154

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161



xi

A KNOWN/UNKNOWN model using set notation . . . 162

B Requirements for software . . . . . . . . . . . . . . . . 167

B.1 Capabilities . . . . . . . . . . . . . . . . . . . 167

B.1.1 Data Definition . . . . . . . . . . . . . . . . 167

B.1.2 Data manipulation . . . . . . . . . . . . . . 171

B.1.3 Database administration . . . . . . . . . . . 175

B.1.4 Utility statements . . . . . . . . . . . . . . . 177

B.2 Constraints . . . . . . . . . . . . . . . . . . . . 177

C MyKU client component source code . . . . . . . . . . 180

D MyKU select query rewrite source code . . . . . . . . 187

E Standard SQL for derived my names relvar . . . . . . 199

F Standard SQL to define a product view . . . . . . . . 200

G Standard SQL to define a union view . . . . . . . . . 201

H Study Recruitment Flyer . . . . . . . . . . . . . . . . 202

I SQL Tutorial . . . . . . . . . . . . . . . . . . . . . . . 203

I.1 Database concepts . . . . . . . . . . . . . . . . 203

I.2 Select data from a table . . . . . . . . . . . . . 205

I.3 Join connects two tables . . . . . . . . . . . . 207



xii

I.4 Subquery intersects two tables . . . . . . . . . 208

J MyKU Tutorial . . . . . . . . . . . . . . . . . . . . . . 211

J.1 Missing data values . . . . . . . . . . . . . . . 211

J.2 Null . . . . . . . . . . . . . . . . . . . . . . . . 212

J.3 KNOWN/UNKNOWN . . . . . . . . . . . . . 212

K Feasibility Study Script . . . . . . . . . . . . . . . . . 214

L Database for Tutorial and Study . . . . . . . . . . . . 221



xiii

List of Tables

Table Number Page

1 ANSI/X3/SPARC Manifestation of Null . . . . . . . . 15

2 Metadata for missing data types . . . . . . . . . . . . . 51

3 my names KNOWN . . . . . . . . . . . . . . . . . . . 52

4 my names UNKNOWN . . . . . . . . . . . . . . . . . . 52

5 my names MISSING . . . . . . . . . . . . . . . . . . . 52

6 Case 1 (a) - complete and incomplete information in
my names . . . . . . . . . . . . . . . . . . . . . . . . . 57

7 Case 1 (b) - complete and incomplete information in
your names . . . . . . . . . . . . . . . . . . . . . . . . 57

8 Case 2 (a) - a tuple from your names KNOWN is du-
plicated in my names KNOWN . . . . . . . . . . . . . 58

9 Case 2 (b) - a tuple from my names KNOWN is dupli-
cated in your names KNOWN . . . . . . . . . . . . . . 58

10 Case 3 (a) - a tuple from your names UNKNOWN may
be duplicated in my names KNOWN . . . . . . . . . . 59

11 Case 3 (b) - a tuple from my names KNOWN may be
duplicated in your names UNKNOWN . . . . . . . . . 59

12 Case 4 (a) - tuples in your names UNKNOWN may be
duplicated in my names UNKNOWN . . . . . . . . . . 60

xiii



xiv

13 Case 4 (b) - tuples in my names UNKNOWN may be
duplicated in your names UNKNOWN . . . . . . . . . 60

14 Case 1 - Product of my names your names KNOWN . 62

15 Case 1 - Product of my names your names UNKNOWN 62

16 Case 1 - Product of my names your names MISSING . 62

17 Case 2 - Product of my names your names KNOWN . 63

18 Case 2 - Product of my names your names UNKNOWN 63

19 Case 2 - Product of my names your names MISSING . 63

20 Case 3 - Product of my names your names KNOWN . 64

21 Case 3 - Product of my names your names UNKNOWN 64

22 Case 3 - Product of my names your names MISSING . 64

23 Case 4 - Product of my names your names KNOWN . 65

24 Case 4 - Product of my names your names UNKNOWN 65

25 Case 4 - Product of my names your names MISSING . 65

26 Case 1 - Union of names . . . . . . . . . . . . . . . . . 66

27 Case 2 - Union of projection from names . . . . . . . . 67

28 Case 3 - Union of projection from names . . . . . . . . 68

29 Case 4 - Union of projection from names . . . . . . . . 69

30 Case 1 - Projection from union of names . . . . . . . . 71

31 Case 2 - Projection from union of names . . . . . . . . 72

32 Case 3 - Projection from union of names . . . . . . . . 72

33 Case 4 - Projection from union of names . . . . . . . . 73



xv

34 Case 1 - Difference between my names and your names 74

35 Case 2 - Difference between my names and your names 75

36 Case 3 - Difference between my names and your names 75

37 Case 4 - Difference between my names and your names 76

38 Case 1 - Restriction from names where mi = F . . . . . 77

39 Case 1 - Restriction from names where mi MAYBE = F 77

40 Case 1 - Restriction from names where mi = F or mi
MAYBE = F . . . . . . . . . . . . . . . . . . . . . . . 78

41 Case 2 - Restriction from product of names KNOWN
where my mi matches your mi . . . . . . . . . . . . . . 79

42 Case 2 - Restriction from product of names UNKNOWN
where my mi matches your mi . . . . . . . . . . . . . . 79

43 Case 2 - Restriction from product of names MISSING
where my mi matches your mi . . . . . . . . . . . . . . 79

44 Case 3 - Restriction from union of names where (first
= ’Chris’ and last = ’Date’) or mi MAYBE = ’J’ . . . 80

45 Case 4 - Restriction from my names where a subquery
finds an applicable missing data tag . . . . . . . . . . . 80

46 ages Relation Variable . . . . . . . . . . . . . . . . . . 81

47 Count for column age from ages relvar . . . . . . . . . 82

48 Count of age applicable unknown from tags in missing 82

49 Count of age inapplicable from tags in missing . . . . . 83

50 Sum for column age from ages relvar . . . . . . . . . . 83

51 Study Script employees table . . . . . . . . . . . . . . . 215



xvi

52 Study Script missing data types metadata . . . . . . . 215

53 Study Script person KNOWN table . . . . . . . . . . . 216

54 Study Script person UNKNOWN table . . . . . . . . . 216

55 Study Script person MISSING table . . . . . . . . . . . 217

56 Study Script Model A unknown . . . . . . . . . . . . . 218

57 Study Script Model A missing . . . . . . . . . . . . . . 218

58 Study Script Model B unknown . . . . . . . . . . . . . 219

59 Study Script Model C unknown . . . . . . . . . . . . . 220

60 Tutorial EMP table . . . . . . . . . . . . . . . . . . . . 221

61 Tutorial ASSIGN table . . . . . . . . . . . . . . . . . . 221

62 Tutorial person KNOWN table . . . . . . . . . . . . . 222

63 Tutorial person UNKNOWN table . . . . . . . . . . . 222

64 Tutorial person MISSING table . . . . . . . . . . . . . 222



xvii

List of Figures

Figure Number Page

1 3-valued logic truth tables for AND, OR, NOT, and
MAYBE . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 4-valued logic truth tables for AND, OR, NOT, and
MAYBE . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 MyKU user input component flowchart . . . . . . . . . 94

4 MyKU query rewrite component flowchart . . . . . . . 95

5 Restrict my names to middle initials that maybe ’F’ . . 96

6 Restrict my names to middle initials that maybe ’F’ . . 97

7 Case 1 (a) my names relvar . . . . . . . . . . . . . . . 100

8 Case 1 (b) your names relvar . . . . . . . . . . . . . . . 100

9 Case 2 (a) my names relvar . . . . . . . . . . . . . . . 101

10 Case 2 (b) your names relvar . . . . . . . . . . . . . . . 101

11 Case 3 (a) my names relvar . . . . . . . . . . . . . . . 102

12 Case 3 (b) your names relvar . . . . . . . . . . . . . . . 102

13 Case 4 (a) my names relvar . . . . . . . . . . . . . . . 103

14 Case 4 (b) your names relvar . . . . . . . . . . . . . . . 103

15 Case 1 product of my names and your names . . . . . . 104

xvii



xviii

16 Case 2 product of my names and your names . . . . . . 105

17 Case 3 product of my names and your names . . . . . . 106

18 Case 4 product of my names and your names . . . . . . 107

19 Case 1 set union of my names and your names . . . . . 108

20 Case 2 set union of my names and your names . . . . . 109

21 Case 3 set union of my names and your names . . . . . 110

22 Case 4 set union of my names and your names . . . . . 111

23 Case 1 project from my names union your names . . . 112

24 Case 2 project from my names union your names . . . 113

25 Case 3 project from my names union your names . . . 114

26 Case 4 project from my names union your names . . . 115

27 Case 1 restrict of middle initial ’F’ . . . . . . . . . . . 116

28 Case 1 restrict of middle initial maybe ’F’ . . . . . . . 116

29 Case 1 restrict of middle initial ’F’ or maybe ’F’ . . . . 117

30 Case 3 restrict of my names union your names on equal
and maybe . . . . . . . . . . . . . . . . . . . . . . . . . 118

31 Query results for feasibility study question 2 . . . . . . 137

32 Query results for feasibility study question 5 . . . . . . 137

33 Query results to investigate feasibility study question 7 139

34 3-valued logic truth tables {true, maybe, false} . . . . . 165

35 Feasibility Study Recruitment Flyer . . . . . . . . . . . 202



xix

36 SQL Tutorial table definition . . . . . . . . . . . . . . 204

37 SQL Tutorial database definition . . . . . . . . . . . . 204

38 SQL Tutorial column specification . . . . . . . . . . . . 205

39 SQL Tutorial table specification . . . . . . . . . . . . . 206

40 SQL Tutorial row match criteria . . . . . . . . . . . . . 206

41 SQL Tutorial joining two tables . . . . . . . . . . . . . 207

42 SQL Tutorial query results . . . . . . . . . . . . . . . . 208

43 SQL Tutorial subquery definition . . . . . . . . . . . . 209

44 SQL Tutorial query and subquery . . . . . . . . . . . . 210

45 SQL Tutorial nesting the subquery . . . . . . . . . . . 210

46 MyKU Tutorial Missing Data . . . . . . . . . . . . . . 211

47 MyKU Tutorial NULL . . . . . . . . . . . . . . . . . . 212

48 MyKU Tutorial KNOWN/UNKNOWN relvar . . . . . 213

49 MyKU Tutorial MAYBE match operator . . . . . . . . 213



Abstract

MISSING DATA IN THE RELATIONAL MODEL

By Marion R. Morrissett, Ph.D.

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2013

Director: Lorraine M. Parker
Associate Professor, Department of Computer Science

This research provides improved support for missing data in the relational model and

relational database systems. There is a need for a systematic method to represent

and interpret missing data values in the relational model. A system that processes

missing data needs to enable making reasonable decisions when some data values are

unknown. The user must be able to understand query results with respect to these

decisions. While a number of approaches have been suggested, none have been

completely implemented in a relational database system. This research describes

a missing data model that works within the relational model, is implemented in

MySQL, and was validated by a user feasibility study.

xx



1

CHAPTER 1 Introduction

1.1 The need to represent missing data

The relational model of data is based on set theory and first-order predicate logic.

The relational model provides an intuitive way to view data and serves as a spec-

ification for a relational database management system [10]. Relational databases

are time-varying collections of relation variables (relvars) that present the user with

tables (relations) of data values in columns (attributes) and rows (tuples). A rela-

tion is composed of two parts. The first is the heading, which is a set of attributes,

their domains, and domain type triples. The heading is a predicate in which the

attribute names represent a set of parameters that range over the attribute values

of the specified domains. The second part of the relation is its body, which is a

set of tuples. Each tuple is a proposition, which is true within the closed world

of the database. A tuple of attribute values not present in the database is a false

proposition. Thus a query which returns an empty results relation, shows no data

that can indicate a true proposition. This mathematical model of data makes it

possible to represent real-world objects using a consistent collection of information

and to perform operations on this information using relational algebra and relational

calculus. [23, pp.67-68]

1



2

The real world is always complete and accurate, but data used to construct a

representation of a real-world object may not be. The relational model permits data

values to be missing [15, p.39]. Data values that exist in the real world, but are not

yet available must be represented as missing until known. Data values that do not

apply to a real-world object are either inapplicable to the object and missing or the

attributes for these data values should be eliminated. Because the latter approach

is not always feasible, a distinction among the kinds of missing data is required.

If the relational model is to accurately represent real-world objects, an adequate

representation of missing data is necessary.

Missing data must not cause a database operation to produce anomalous results.

The system may report that an answer is not known within the database, but it

must be clear that this is different from a query that returns no data. A model is

needed to represent information missing from databases in a way that maximizes

completeness of representation, minimizes loss of accuracy, is consistent with the

relational model of data, and makes sense to users.

1.2 Unknown values in relational databases

Codd identified data dependence and data inconsistency as two problems in large

computer application development environments that could be solved by the rela-

tional model of data [10, p.377]. The relational model separates the logical repre-

sentation of data from its physical storage. This allows the abstraction presented

to the user to remain consistent if it is necessary to change the physical structure



3

of data storage. To support data independence, the relational model relies on a

programming language neutral data sublanguage to connect application programs

to data. This approach shifts responsibility for managing the physical data from

the application to the database management system in a way that reduces software

development cost and minimizes software maintenance [63, pp.52-53].

The relational model eliminates duplicate data through data normalization and

uses constraints to maintain data integrity during databases operations. This ap-

proach moves responsibility for managing data consistency from the application to

the database management system in a way that allows new data requirements to

be met without introducing data redundancy, contradiction, and inconsistency. [10,

pp.383-387]

While the relational model solved the problems of data dependence and data

inconsistency, the solution created an unexpected problem in the case of missing

data. Previously, system analysts identified valid data values and programs verified

these values during data input and record update. Data exceptions were processed

as necessary. If unknown data values were permitted, the application included pro-

gramming logic to identify and process each case of missing data. Otherwise, in-

valid data was rejected and an exception process issued an error message or report.

Corrected data could then be entered. When the application was responsible for

handling missing data at input it had the logic to interpret the meaning of miss-

ing data values. With the shift of responsibility for handling data verification from



4

the application to the DBMS, came the responsibility for interpretation of verified

missing data values at output.

Currently the relational model uses nulls to represent missing data values and

interprets nulls using 3-valued logic. This approach is similar to the methods used by

non-relational database management systems, but it is not fully implemented in any

relational database management system. Incomplete information in the relational

model is described in section 3.2.

1.3 Research overview

A complete problem statement is presented in chapter 2. Different kinds of missing

data are identified in chapter 3. Different theories for handling missing data are

discussed in chapter 4. While theoretical solutions are important, solutions imple-

mented in a relational database management system either as an experiment or a

commercial product are of special interest. The impact of missing data on rela-

tional database management systems and applications is considered in chapter 5.

Chapter 6 is a specification for a solution to the missing-data problem. The design,

implementation, and verification of this specification is described in chapter 7. Be-

cause user understanding is part of any solution, chapter 8 presents the results of a

feasibility study conducted with volunteer participants. Chapter 9 summarizes the

research and future work is considered in chapter 10.



5

1.4 Contributions of this research

This research examines how applications and databases share responsibility for data

interpretation to develop an improved representation for missing data that better

meets the needs of the DBMS and the user.

1.4.1 New model for missing data

The KNOWN/UNKNOWN model is a new model for representing missing data.

While an attribute missing data may contain an invalid value or no value, the

KNOWN/UNKNOWN approach stores information about what is missing and why

as data values in relations. This representation complies with the relational model.

1.4.2 Metadata about missing data

The KNOWN/UNKNOWN model is able to capture information about missing data

available at the time and point of data entry, maintain and update this information

throughout the data’s life cycle, and make it available when and where it is needed.

This metadata is a subsystem component for each relational database that imple-

ments the model. The DBMS uses the KNOWN/UNKNOWN metadata to make

missing data processing decisions. Users can rely on metadata to explain what is

missing from query results and why it is missing.



6

1.4.3 Compatibility with existing databases

The KNOWN/UNKNOWN model is backward compatible with the SQL standard

for missing data using nulls and 3-valued logic. The metadata relations may be

constructed for an existing database and over time populated with the information

needed to make them useful. During and after this transition, queries relying on nulls

will continue to return the expected results using 3VL. This provides a straightfor-

ward migration path from the SQL standard to the KNOWN/UNKNOWN model.

1.4.4 Support for application and database design

The well-defined metadata component of the KNOWN/UNKNOWN model supports

database development during application design. Documented categories for missing

data and the capability for expansion encourages planning for missing data. If

missing data is needed in the application, the use cases developed during project

planning contribute to application validation and may be used in regression testing.

1.4.5 Database metrics for missing data

The data about what is missing and why in the KNOWN/UNKNOWN model pro-

vides a way to categorically measure missing data. A set of metrics that measure the

amount of missing data in a database can be used as a benchmark of completeness

and used as a component of database status reporting. Ad hoc metrics can evaluate

the overall condition of an application’s data and help improve the methods used to

gather data.



7

CHAPTER 2 Problem

2.1 The problem of incomplete information

The missing data problem is: How should incomplete information be represented in

a relational database management system?

There are four categories of incomplete information identified in chapter 3. Data

is missing because it is applicable but unknown at this time, the value is unreliable

(invalid), it is not applicable to this entity (inapplicable), or it is unknowable for an

understood reason such as law or policy.

Applicable, invalid, and unknowable are similar and often require the same pro-

cessing. In some cases, unknowable data may be processed as if it were inapplicable.

If identified during database design, an inapplicable attribute should be eliminated

through normalization. After a database is implemented a policy change may re-

quire an attribute to be inapplicable for some tuples. In some cases, inapplicable

attributes are made applicable, but remain unknown if a data value is missing.

The most common type of missing data may be applicable but unknown 1, but all

types of incomplete information, including those not yet identified, must be available

to describe missing data in a database.

1An investigation of missing data types from the literature in chapter 3 discovered “applicable,
but unknown” to be common to all references including those that identify one type of missing
data [8][3][50][11][34][14][19][64, pp.13]. If missing data values were typed, it would be possible
to count these types and identify the most common reasons for missing data.

7



8

2.1.1 What is the problem?

The missing data problem ranges from how to represent missing data in a relational

database management system (DBMS) to how the user represents missing data in

a specific application design. On one extreme, the DBMS provides an interpreta-

tion of missing data values and at the other, interpretation of missing data is the

application’s responsibility.

The greater the distance between the physical storage of data and the user’s level

of abstraction, the more a well defined data model is needed to interpret the data’s

meaning. There should be a way to represent, process, and interpret missing data

with responsibility shared so that the DBMS returns results that the user application

can interpret correctly. The relational model is a well defined model for complete

information, but what is lacking are clear rules to interpret incomplete information.

2.1.2 Why is it a problem?

In the first version of the relational model (RM/V1) [15, p.iv] and the current SQL

standard [65, p.24], most of the responsibility for handling missing data is located

within the relational model and DBMS, with the user expected to understand nulls

and 3-valued logic (3VL). However, the use of nulls and 3VL may be counterintuitive

[19, p.233]. This results in an unbalanced division of processing responsibility which

the user is not always aware that they have agreed to when using the system. Thus

the response to a user query may be incorrect.



9

In this context, the missing data problem is a database query problem. The

DBMS must return correct answers to all queries. To do this, there must be an

equivalent accuracy for the case of complete information and for the case of incom-

plete information. A correct answer is one that is not misleading, anomalous, or

confusing from the user’s point of view. Failure to do this leaves the missing data

problem unsolved.

2.2 Purpose of this research

This research presents a practical solution to the missing data problem that can be

implemented in a DBMS to the extent possible and in the realm of the user to the

extent necessary.

2.2.1 Why a solution is important

The possibility of an incorrect answer to a query represents DBMS failure to the

user. Codd’s third rule for fully relational databases requires a systematic treatment

of null values as the solution to the missing data problem.

Codd’s Third Rule “Null values (distinct from the empty character string

or a string of blank characters or any other number) are supported in

the fully relational DBMS for representing missing information in a sys-

tematic way, independent of data type.” [36, p.133]

Existing relational DBMS products do not provide a systematic treatment of null

in a way that complies with Codd’s third rule. Null is implemented in most DBMS



10

and is used to represent both unknown data and inapplicable attributes, which is

confusing. A boolean truth value of “unknown” is not implemented in any DBMS 2.

Null is not evaluated systematically within the DBMS as it is implemented in SQL.

For example, built in functions such as COUNT and SUM treat null differently from

what might be expected. The aggregate function COUNT returns 0 if its argument is

NULL, but SUM returns NULL if its argument is NULL. Date argues both COUNT

and SUM should return zero. [21, pp.302-3] While this may be a flaw in SQL and

not the DBMS, there are queries that are known to return incorrect results when one

or more missing data values are involved in the match criteria and/or the database

[34] [19]. For these reasons, a solution to the missing data problem is important if

the relational model is to reach its full potential.

2.2.2 What a practical solution must do

A solution must be found within the constraints of the problem space defined by the

relational model. A solution to the missing data problem must determine how a re-

lational database management system represents missing data in the logical schema,

maps data to physical storage using this schema, uses this representation when pro-

cessing data and executing database operators to create a correct interpretation,

and presents this interpretation to the user interface.

2In 2013, a search of the world wide web, product documentation, and experiments using DBMS
products indicate that Microsoft SQL Server, Microsoft Access, Oracle, Ingres, PostgresSQL,
and MySQL either implement a boolean type capable of no more than 2-valued logic or have no
boolean type at all. This requires the user to designate some other data type and a set of values
to represent false, true and unknown. (see section 3.2.3)



11

Backward compatibility with RM/V1 as it is partially implemented in existing

DBMS is desirable, but it may be necessary to extend the relational model and/or

modify the DBMS. If this is the case, changes should be minimized. No change to

the relational model may interfere with the representation of data as relations, data

independence, data consistency, or the relational algebra or calculus. Codd created

his 12 rules [15, pp.500-501] [36, 99.129-142] as a way to measure compliance with

the relational model [15, p.29]. If a change to one of these rules is needed, it should

be carefully considered. Extensions to SQL should leave existing statements and

operators unchanged and functional.

A data model is sound if it is able to return correct answers, but no incorrect

answers. It is complete if it is able to return all correct answers. The DBMS

response to each query and the user’s understanding of the results must be sound

and complete.

2.3 Problem context and solution space

The problem solution space is defined by the relational model of data, the SQL stan-

dard as implemented by the MySQL DBMS, and the practical aspects of designing

and maintaining databases (i.e. enterprise models and conceptual schema revisions

caused by policy changes or new laws). The relational model is to be considered

from both the model-theoretic and proof-theoretic points of view within the frame-

work of the closed-world assumption. An extension to the relational model no more

intrusive than Codd’s solutions to the missing data problem is considered desirable



12

[11] [12].

2.3.1 Closed world assumption

The closed world assumption must be retained, where each tuple in a relation is a

proposition defined by the conjunction of its data values. Each tuple of complete

information in a relation is a true proposition. A query that returns an empty results

relation represents a false proposition. A tuple that matches search arguments but

also has one or more missing data values represents a proposition that is true, but

not entirely known. A tuple that matches some search arguments with known data

values and may match others with missing data values represents a proposition that

may be true. This last type of tuple violates the law of the excluded middle and

leads to 3-valued logic.

2.3.2 A truth-bearer that makes sense

The problem with using null to represent missing data is its dependency on 3-valued

logic. When the proposition defined by a tuple containing a null is evaluated using

3VL the result is neither true or false, its conjunctive truth-value is unknown. Date

argues that a logic based on 3VL is not intuitive and should be avoided [19, p.233].

The elimination nulls and 3-valued logic is intended to make a representation of

missing data more intuitive to the user. But what is needed is a truth-bearer that

can interpret a tuple that is missing data in a way that makes sense to the user.



13

CHAPTER 3 Types of Missing Data

There are more than one kind of missing data and it is necessary to identify them

if they are to be represented accurately. Missing data types have been identified by

published papers and standards reports.

3.1 Early investigation

3.1.1 Language Structure Group

In 1962, the Language Structure Group (LSG) of the Development Committee of the

Conference on Data Systems Languages (CODASYL) published a report towards

developing a theory of data processing. Three concepts at the center of a data

processing system were the entity, property, and value. This data processing system

model is not the relational model, but has certain similarities. An entity has one or

more properties and each property has a single value taken from an associated set

of property values. In this model, property value sets function like domains in the

relational model and are the source of an entity’s property values. At a minimum a

property value set must include two values to represent “non-applicable data” using

Omega (Ω) and “missing data” using Theta (Θ). Representing incomplete data with

symbols provides consistency and avoids confusion with data values such as spaces

or zero. [8, p.191]

13



14

3.1.2 ANSI DBMS model

The American National Standards Institute (ANSI) Computers & Information Pro-

cessing (X3) Standards Planning and Requirements Committee (SPARC) for Data

Base Management System (DBMS) created a study group to investigate and docu-

ment an architecture for database management systems. This report concentrates on

interface specifications between system components and user roles. It uses a 3-level

DBMS design with an internal schema at the physical layer, a conceptual schema

as the logical database design, and an external schema as the user and application

interface.

The data administrator creates a conceptual schema of an enterprise that the

database is to represent. Domains are defined as components of the conceptual

schema and each domain of eligible values has a list of characteristics. The list of

domain characteristics includes a name, meaning, type, rules for edit, comparison,

or validity, and the “manifestation of null.” Missing data classifications identified in

the “manifestation of null” in Table 1 are a collection of ideas from the committee

and allow for expansion. [3, pp.55-56]

Table 1 identifies several kinds of imperfect information, but not all of these are

incomplete information. One classification, “available, but of suspect validity” is

uncertain with various explanations as to why the data may not be trustworthy, but

the data is not necessarily missing. Other classifications may be combined into one

using the notion of data values that are not known or are unknowable for the time



15

being.

Table 1: ANSI/X3/SPARC Manifestation of Null

not valid for this individual
e.g. maiden name of male employee

valid, but does not yet exist for this individual
e.g. married name of female unmarried employee

exists, but not permitted to be logically stored
e.g. religion of this employee

exists, but not knowable for this individual
e.g. last efficiency rating of an employee who worked for another company

exists, but not yet logically stored for this individual
e.g. medical history of newly hired employee

logically stored, but subsequently logically deleted

logically stored, but not yet available

available, but undergoing change (may be no longer valid)
change begun, but new values not yet computed
change incomplete, committed values are part new, part old, may be inconsistent
change incomplete, but part of new values not yet committed
change complete, but new values not yet committed

available, but of suspect validity (unreliable)
possible failure in conceptual data acquisition
possible failure in internal data maintenance

available, but invalid
not too bad
too bad

secured for this class of conceptual data

secured for this individual object

secure at this time

derived from null conceptual data (any of the above)



16

3.1.3 CODASYL approach

The CODASYL data model uses an internal literal called null to represent missing

data. Programmers are expected to test for this literal and use appropriate logic

to process missing data. [50, pp.186-187] This is a simple mechanism using a single

value to represent all kinds of missing data.

3.2 Relational model

Although other databases used null to represent missing data, there was no repre-

sentation for missing data in Codd’s first proposal of the relational model [10].

3.2.1 Codd’s inclusion of null in the relational model

In 1975 Codd answered questions about the relational model’s handling of nulls

[11]. One question 1 asked how relational retrieval operations are affected by nulls

and another 2 asked about the impact of nulls on arithmetic operations and library

functions. Codd answered with an overview of how nulls and 3-valued logic can

represent data currently unknown and described how arithmetic results should be

determined when values are null.

1“Little attention has been given to the treatment of null values in relations when retrieval
operations are being executed. Is it not necessary to extend both the relational algebra and the
relational calculus to accommodate null values?” [11, p.24]

2“How do arithmetic operations and library functions treat this type of null value?” [11, p.28]



17

3.2.2 RM/V1

In 1979, Codd extended the relational model to increase the ability of relational

databases to express the meaning of data. Nulls and 3-valued logic were formally

added to the relational model as the solution to the missing-data problem. [12] This

is version RM/V1 [15, pp.169-171]. In RM/V1 the interpretation of null was limited

to “value at present unknown” [12, p.403].

3.2.3 SQL and null

The use of null to represent missing data and the resulting 3-valued logic are included

in the SQL standard [64, pp.13-14]. Although null is implemented in most database

systems, few products implement a corresponding boolean data type that includes

an unknown value to support 3-valued logic as RM/V1 and the SQL standard require

[65, p.24].

Microsoft SQL Server 2012 documents a bit data type that takes the values of

0, 1, or NULL with an explanation that string values TRUE and FALSE can be

converted to bit-values of 1 and 0 [44]. Microsoft Office Access 2003 uses the same

approach as SQL Server [43].

Oracle does not document a boolean data type in its SQL reference [53]. However,

on its website Oracle explains that a boolean is not needed because an integer with

a function that evaluates 0 or 1 as FALSE or TRUE gives the same results [51].

Ingres accepts literals TRUE or FALSE for boolean columns [2, p.78] and defines



18

a boolean variable using an integer that represents unknown using NULL [2, p.86-

88].

PostgresSQL represents a boolean using a byte and allows it to contain literal

values true, t, yes, y, on, or 1 for true, literal values false, f, no, n, off, or 0 for false,

with a NULL meaning unknown [57, p.133].

MySQL has BOOL and BOOLEAN data types which are synonyms for a TINYINT

(signed char) with values on [-128,127] [52, pp.798-799]. Boolean literals defined as

case insensitive are TRUE as 1 and FALSE as 0 [52, p.726]. A boolean variable that

can be NULL may represent a truth-valued 3VL as TRUE, FALSE, and a NULL

for unknown.

These DBMS products approach 3-valued logic using some data type that takes

on one of two states and maps literals for true and false to these states. If this

variable is declared as nullable, unknown is represented by a NULL. SQL users now

have another interpretation of null stored for a boolean data type. A stored null

can represent either missing data or the unknown boolean state. For example, if

a survey asks for a response of true, false or unknown to a question, null meaning

unknown is a valid response. In this case, the application needs logic that interprets

null as data (i.e. a valid response) rather than missing data.

3.2.4 RM/V2

In 1986, Codd proposed an expanded solution to the problem of missing data and

added support for the case where properties were inapplicable to some items in a



19

relation. The term null was deprecated and missing data is identified by marks. The

missing data “value at present unknown” (previously null) became an A-mark and

“property not applicable to this object” is an I-mark. [14] The relational model now

had two kinds of missing data, but not a 4-valued logic (4VL) [14, p.62]. According

to Codd, using the A-mark and I-mark in place of null required an evolutionary path

for the relational model from RM/V1 to RM/V2 [15]. Part of this path required that

users accept responsibility for learning to use the more complex 4VL of RM/V2. So

far, the advance of relational DBMS beyond partial implementation of RM/V1 has

been halted by inertia and the burden of 4VL.

3.2.5 Date’s seven types of null

Date [19] determined that a systematic solution to the missing data problem needed

to account for more than one kind of missing data and identified seven distinct types

of null.

1. Value not applicable

This data value is not and should not be present. This instance of the attribute

should be ignored because it represents a property that its object does not have.

For example, the attribute for sales commission does not apply to non-sales

people. This is equivalent to Codd’s I-mark in RM/V2.

2. Value unknown

This data value is missing. The property represented by the attribute is appli-



20

cable to the object represented by this tuple. For example, the attribute salary

is unknown for a newly hired employee until supplied by the employee’s de-

partment. This is equivalent to Codd’s null in RM/V1 and A-mark in RM/V2.

3. Value does not exist

In this case when the attribute is applicable and the data is not yet known,

it does not exist. For example, all employees are expected to have an indi-

vidual taxpayer identification number as a requirement for employment. If an

employee is hired before applying for this identifier, the missing data is appli-

cable, but does not exist. Once the id number is issued, the data value exists

and can be known.

4. Value undefined

This is the case when an attribute’s data value is assigned by a computation

that depends on other data values in other attributes. For as long as a divisor

used in this computation is equal to zero, its result is undefined.

5. Value not valid

This is the case when a data value outside of a permissible range might be

stored with the expectation of being corrected later. For example, an employee

age exceeds the mandatory retirement age. This data is not missing, but

it requires exception processing before it can be considered a valid, known,

and applicable data value. Either the data is corrected or the data integrity



21

constraint must be revised before a data value can be present for this property.

6. Value not supplied

This is the case when a data value was withheld. It may be anticipated that

it will be supplied later. This data is missing and it is unknown. This could

be the case where the property is applicable, but the data value is unknown

or it may be the case of data not being supplied because it is inapplicable.

7. Value is the empty set

This is the case when a relational operator creates a new relation that is

missing one or more data values. For example, an outer join may create tuples

with missing attributes. SQL fills in these missing values with nulls, but the

correct interpretation of this missing data is an empty set.

3.3 Imperfect information

Zadeh invented fuzzy logic to deal with imperfect information in a way humans

would understand using terms such as imprecise, uncertain, incomplete, unreliable,

vague, and partially true [73]. The data elements in fuzzy logic are often described

as being imprecise, vague, ambiguous, subjective, unclear, uncertain, inconsistent,

or incomplete. Definitions for these words and a background search of the published

literature on fuzzy logic places the meaning of these terms in context and suggests the

kinds of information that are well expressed using fuzzy concepts. Selecting precise

definitions, in combination with fuzzy data, provides a set of working definitions



22

that can be used to define fuzzy domains to extend the relational database model.

[71] [41] [56]

Ma presents five classifications of imperfect data (i.e. inconsistent, imprecise,

vague, uncertain, and ambiguous) for use when modeling fuzzy data [40, p.47]. An

analysis of these five classifications and the eight commonly used terms to describe

fuzzy data suggests using pairs of descriptive terms where one describes the data and

the other the data query. This works well for terms that are fuzzy in the context

of imperfect information, but fails for terms that have precise definitions in the

relational model of data (i.e. inconsistent data and incomplete data). Care must be

taken not to confuse inconsistent data and incomplete or missing data with other

kinds of imperfect information.

3.3.1 Imprecise and vague

Imprecise was the first term used by Zadeh to describe fuzzy data. Imprecise is

defined as not exact; vague or indefinite in nature. Both imprecise and vague describe

values that may be known approximately, but not exactly. There may be an exact

data value in the real-world, but it could not be obtained and may be unmeasurable

using existing technology. Imprecise numeric input is best represented as a data

range that is likely to contain the accurate, but undetermined value. These imprecise

numeric values are fuzzy numbers that are represented as approximations mapped

within a minimum/maximum range. An indeterminable value is not missing, but

it cannot be measured accurately and a fuzzy number may be the most accurate



23

representation possible. [71] [49, p.12-13]

Given imprecise data, vague querying is necessary. Vague is defined as being

stated in general or indefinite terms; not having an exact or precise meaning. There

are other definitions implying that the cause of vagueness is a lack of understand-

ing, clouded thoughts or a hazy mental state. While the first definition describes

imprecise data, the latter describes the mental state of the user who is searching the

data. If identified natural language terms can be mapped to approximated ranges of

values, imprecise data input and vague querying can be defined using these specific

natural language terms. The user intuitively knows if an answer is close or accept-

able and can judge the query results. A vague query is the search for something

similar to the query match criteria. A vague value is not missing because it exists

and the user will recognize it when he sees it. [40, p.47]

3.3.2 Ambiguous and subjective

Ambiguous is defined as capable of being classified in two or more categories, which

reflects subjectivity. Membership in one, another or both sets is a matter of opinion.

Ambiguity is closely related to subjectivity, opinion, and perception. [40, p.48]

Subjective is defined as being determined from opinions, intuition, or feelings

rather than observation and reason. Subjectivity represents preconceptions derived

from within the observer; not necessarily based on the external environment. This

is similar to the idea that vagueness may originate in the mind of the user rather

than within the data. In the context of a database query, this suggests that the user



24

may have expectations that acceptable results must match.

If applications are to support data ambiguity and user subjectivity, data may

require multiclass classification. An ambiguous domain is represented by a data value

of some appropriate type and one or more fuzzy membership weights associated with

the attribute as classifications. [71] Each classification is a set in which the data

value has partial membership. Subjective querying allows the user to search for

an object using multiple classifications in a way that resolves data ambiguity, but

ambiguous data values are known values, not missing data.

3.3.3 Unclear and uncertain

Unclear is defined as ambiguous (explained above), but also means not explicitly

defined (lacking a value), or indecipherable. Undefined data may be missing until its

value is known. This definition suggests a missing data category. [19, p.220] Data

may be indecipherable if there is confusion on the part of the person who gathered

and/or added the data to the database. If data is not understood well enough to

add to the database, it may be considered undefined, lacking a value, and missing.

This definition suggests a missing data category.

Uncertain has a number of relevant definitions that depend on context. A fact

may be uncertain if it is doubtable (i.e. the source of the data is not trusted). If

data values are valid, this is an opinion and must be resolved outside of the database

before data input. Database integrity relies on data and referential integrity rules

to enforce database consistency by constraining data values to those allowed by the



25

database design. If data values are invalid and do not comply with integrity con-

straints, they may be applicable, but uncertain and missing. This is a category of

missing data. Events in the past are certain and are either known or unknown. For

example, while everyone living has a date of birth, for some this may be approxi-

mately known and for others it may be unknown. This is a category of missing data.

[34] Events in the future are uncertain with an indefinite date and time because they

may or may not occur. These events may be possible with an unknowable possibility

or inevitable with an unknowable date and time. For example, everyone dies and a

date of death for a living person is applicable, but does not exist. This is a category

of missing data. [40, p.48] [49, p.13]

Application design and queries must consider data clarity and certainty. Entity

properties that may be undefined represent potential missing data. A search for

those who are no longer living, is a query for those whose date of death is equal-to-

or-less than the current date. A search for those who are still living, is a query for

those whose date of death is missing and undefined.

3.3.4 Inconsistent and incomplete

Inconsistent is defined as showing contradiction (i.e. a proposition with component

propositions that cannot all be true). Data inconsistency is a problem solved in

the relational model by allowing relations to be normalized in a way that eliminates

data redundancy. If applications need information from a single entity and duplicate

this entity in different databases, a failure to update all copies of the data creates



26

data inconsistency. Correct database design can eliminate this problem and allow

all applications to share one copy of the data. [40, p.47] [49, p.12]

After a database is designed and implemented it is possible that a change in

enterprise policy may cause a change in applicability of a property. If the change

applies to all entities, the attribute can be removed from the database. If the

change applies to some entities, the attribute must allow “data value missing because

property inapplicable.” [34]

Incomplete is defined as not being finished or not having all of its components.

Incomplete information is missing data and is often identified as unknown or inap-

plicable. Incomplete information must be stored using a meaningful representation

until the missing data is available. It is necessary for the database management sys-

tem and the application to process this representation while actual data is absent.

[12]

3.4 Summary of missing data types

Applicable, but unknown data values must be included as one of the missing data

types. This type appears to occur most often.

Invalid data values believed to be known, but not able to pass input verification

or comply with data integrity constraints are missing. In this case, rather than drop

the data value and record missing data “applicable, but unknown,” the invalid value

could be stored in the database and used in the data correction process. The DBMS

must process this data value as if it were not present, by definition it is not correct



27

and is not known.

Inapplicable data values must be included as one of the missing data types. This

type is important because it must be processed and interpreted in a way that is

fundamentally different than many other types. If it is not possible to mark an

attribute as not applicable, it is likely to be treated as unknown. This can cause an

error in a query result set.

Unknowable data values are of two types. A restriction by law or policy is a

security issue, but it could be a reason to remove data values from a database to

meet a security mandate. A missing result from an SQL operator such as an outer

join must be clearly indicated.



28

CHAPTER 4 Background

4.1 Null and 3-valued logic

Codd represented a missing data value as a null stored in the database [11, p.24]. A

null is a missing data indicator rather than a value [11, p.25]. Component attributes

of a primary key must be data values, while other attributes may be null [12, p.403].

The evaluation of missing data by the DBMS and its interpretation by the user relies

on 3-valued logic (3VL) (see Figure 1) [11, p.25] [12, p.403]. If one or more data

values compared using a relational operator is null, the truth value is “unknown.”

When the result of 3VL evaluation is “unknown,” Codd’s “null substitution princi-

ple” [12, p.404] allows a null to stand for any valid domain value while not being

part of that domain and relational operations can include tuples that may match

(“maybe-tuples” [7, p.608]) in the result set. The null substitution principle includes

a non-duplication rule that allows one null be equal to another for the purpose of

duplicate removal. [11, p.26] 1 The first version of the relational model (RM/V1)

included this approach to processing missing data using a “truth-functional” [67,

p.163] system.

Codd defined RM/V1 as a preliminary treatment of missing data. Nulls repre-

1The ANSI SQL standard allows duplicate rows as a default requiring users to specifically
request duplicate removal from query results [65, p.263]. While a relation is a set of tuples, a
table with duplicate rows is a multiset. Codd and Date agree that the relational model does not
include duplicate tuples [10] [24].

28



29

AND t u f OR t u f NOT MAY BE
t t u f t t t t t f t f
u u u f u t u u u u u t
f f f f f t u f f t f f

Figure 1: 3-valued logic truth tables for AND, OR, NOT, and MAYBE

sent “value at present unknown,” but “property inapplicable” is also missing data.

Queries that embed a tautology (see section 4.3.2) return an incorrect result that

confuses users. The “outer” variants of relational operators union and join can create

an inapplicable missing value. [12, p.403].

The theory behind the relational model provides a practical foundation for data

management and programmer productivity [13]. Codd described a relational pro-

cessing capability as relationally complete when it included support for 2-valued logic

without nulls and as having a fully relational algebra when it supported a 3-valued

predicate logic using a single kind of null [13, p.112]. This definition describes the

RM/V1 model for missing data. Codd defines a relational system as fully relational

when it has better support for domains and primary keys [13, p.113]. This makes

support for RM/V1 in existing relational DBMS products a necessary benchmark in

the evolution of the relational model. Yet existing DBMS products do not support

nulls to the extent required by the 1999 SQL standard [65] (see section 3.2.3), and

most databases have missing data [11, p.24].

Codd’s extension of RM/V1 to RM/V2 represented missing data using a “mark”



30

instead of null. An applicable, but missing data value (null) is an A-mark and data

missing because it does not apply to an item is an I-mark. Attributes are now

described as either marked or unmarked and the term null is no longer used. [14,

pp.56-58] Replacing null with marks leads to 4-valued logic (4VL) (see Figure 2).

[15] There has been no migration from RM/V1 to RM/V2 in the implementations

of relational DBMS.

AND t a i f OR t a i f NOT MAY BE
t t a i f t t t t t t f t f
a a a i f a t a a a a a a t
i i i i f i t a i f i i i f
f f f f f f t a f f f t f f

Figure 2: 4-valued logic truth tables for AND, OR, NOT, and MAYBE

4.2 A foundation for maybe-operators

Biskup [7] provides a formal foundation for Codd’s RM/V1 representation of missing

data using nulls (“value at present unknown”), maybe-tuples determined by the null

substitution principle, and rules for processing nulls. His foundation is built on three

fundamental assumptions. The first is the “appropriate scheme assumption” that

the real-world is time-independent and can be represented by attributes which take

values from a domain to characterize real-world events as tuples in a time-varying

relation. Next, the “incomplete information assumption” states it is appropriate that

a relation scheme describe real-world events, but detailed knowledge of this scheme



31

is not always be complete. This means the time-varying relation must represent

missing data. Finally, the “closed world assumption” [58] assumes that a tuple that

cannot be derived from a relation by appropriate application of the null substitution

principle does not hold in the real world.

Biskup’s method extends Codd’s representation for missing data by adding a

special attribute to each tuple indicating “definite” or “maybe” status to support

maybe-tuple processing. Definite-tuples contain only known data values. Maybe-

tuples include attributes represented as missing data values.

Codd referred to Biskup’s published work in his 1981 ACM Turing Award Lecture

[13, p.116] as an example of research leading to improved handling of nulls, but there

is no indication that Biskup’s ideas were tested or implemented.

4.3 The problem with null

Grant [34] identified two problems with Codd’s null and 3VL approach to missing

data.

4.3.1 The null debate

Grant [34] determined that there were at least two kinds of null. While Codd

addressed the problem of data values applicable yet unknown, Grant suggested that

another null be included for data values missing and not applicable.

Date [18] asserted that nulls should not be supported in the relational model

because null is not a value. Date and Darwen [24, p.193] observed that relations



32

are created from tuples and attributes that contain values, but null is not a value.

The Structured Query Language (SQL) allows DBMS tables to contain nulls, but

the relational model does not [64, p.13].

Codd includes a requirement for systematic support of missing data in the re-

lational model that does not store a representation for the missing data as a value

in the represented attribute using any kind of default or special value [15, p.39-40].

This requirement is one of Codd’s twelve rules for relational database. This clearly

shows that Codd supported the use of nulls or marks to represent missing data.

4.3.2 The null paradox

A second problem identified by Grant [34] is the paradox for queries with an embed-

ded tautology. These queries should match all data values in a domain and return

all tuples with a domain value or an applicable missing data value. But the truth

table for the Kleene 3VL used by Codd does not allow a tautology when one of the

variable values is “unknown” [33, p.222]. For example, a query for people age fifty or

younger, or older than fifty should includes every person in the relation. All living

people should match this query, even if a person’s age is not known, missing from

the database, and marked with a null. However, people with a null date of birth

will not be retrieved when using 3VL.

Codd observed that excluding individuals of unknown age is reasonable because

the DBMS reports what it knows about the real world, not necessarily what is true

about the real world [12, pp.403-408]. Another suggestion was to to warn users not



33

to write queries that are tautologies [15, p.385].

Grant’s solution is a “non-truth-functional” 3VL [34, p.156] that substitutes

domain values for the null and if a 2-valued logic (2VL) tautology is detected, the

expression containing a null is true otherwise it is unknown [33, pp. 222-223]. This

approach ensures that if an expression is a tautology in 2VL, it is also a tautology in

3VL. There is no evidence of Grant’s method for evaluating queries was implemented

in a DBMS.

4.4 Non-truth-functional systems

Non-truth-functional systems do not use truth tables to determine the veracity of

comparisons made using relational operators. This approach attempts to resolve the

paradox caused by missing data and many-valued logics. [33]

4.4.1 Denotational semantics for applicable and inapplicable

Vassiliou [67] proposed a “non-truth-functional” system based on denotational se-

mantics to interpret missing data within the relational model. Denotational seman-

tics use an approximation function to map a data type from one interval to another

data type in a more precise interval. There are data types for which no finite approx-

imation is possible. Approximations of these data types define the domain limits as

the greatest lower bound and the lowest upper bound. These limits are used to ex-

tend attribute domains to include missing values that are applicable, but unknown

or inapplicable. Additionally, the approximation function can detect queries with



34

embedded tautologies.

4.4.2 Partially known data and set-valued attributes

Grant [35] suggested a modified relational model that allowed partially known data

values stored as numeric ranges, partially given strings, or set-valued attributes. This

data model does not allow duplicates of tuples when each attribute contains a single

value, but duplication of tuples is implicit for the case of partially known values.

Nulls are allowed for information that is not known, but partially known values can

be stored as a range over an entire domain. While predicates may take the truth

values “true,” “unknown,” and “false,” the unknown truth value is a placeholder so

that there is no truth-functional 3-valued logic. Grant’s true-predicate and maybe-

predicate correspond to Lipski’s external interpretation of the real world and internal

interpretation of real world modeled by the data [38, p.263].

The primitive predicates in Grant’s model include negation so there is no need

for a boolean NOT. If P is a predicate for all possible values in an attribute, a true-

predicate, PT , is defined as the predicate that holds true for all proper substitutions

for the entries in P and a maybe-predicate, PM , is defined as the predicate that

holds true for at least one proper substitution for the entries in P. [35]

Using Grant’s representation of partially known data a person whose age is un-

known would be inserted into the database as a null. A constraint on the represen-

tation of age would record this information as a null, but in the range of 1 to 110.

Using Grant’s notation, such a data value for AGE appears as <null, (1,110)>. From



35

Grant’s definition of a true-predicate, tautology (AGE ≤ 50 ∨ AGE > 50) evaluates

an unknown AGE attribute as true because every substitution in the range of 1 to

110 is less than, equal to, or greater than 50.

Others [1] [61] [17] have suggested models for partially known data to represent

missing data values. This allows the unusual case where a data value is known to

be one of number of values. The usual case is that unknown data is completely

unknown. A set-valued attribute creates a predicate that is both conjunctive and

disjunctive. This characteristic violates the set-theoretic model used by the rela-

tional model of data. These ideas have not been implemented and can be considered

beyond the scope of database [67].

4.4.3 Statistical probability

Wong [69] proposed a statistical approach to determine probable values for missing

data using statistical inference and prior information stored in a separate database.

In the case of missing attributes (i.e. applicable but unknown), a probability dis-

tribution could be used to determine the mean or median as an approximate data

value, but missing data (i.e. inapplicable) is flagged so that it can be ignored. This

system was implemented using the INGRES relational database system and QUEL

data sublanguage. This approach uses large datasets of raw data or samples rather

than determining specific missing data values. While theoretically sound, Wong

concluded that the source of data used to create the prior distribution information

was a potential database implementation problem.



36

Others [31] [4] [26] [27] have suggested probabilistic models for incomplete and

missing data. These probabilistic system use statistical models that make a general

estimation from specific details in large data samples rather than being database

management systems that use the relational model to store and retrieve data.

4.4.4 Fuzzy possibility

Fuzzy logic generalizes the truth value of a proposition from a 2-valued logic {0,1}

to a many-valued logic using the interval [0,1]. A membership function determines a

value from the interval [0,1] to indicate a weight or degree of membership of a data

value in a fuzzy set. Using fuzzy set theory to define fuzzy domains, allows fuzzy

databases a flexible way to represent imperfect information in a database. In simple

terms, fuzzy sets allow objects to have a varying weight of truth and/or to belong

to more than one classification.

A fuzzy-weight attribute may provide a mechanism to represent missing data.

Zadeh gives an example of 3-valued logic built on a fuzzy set using two value levels

α and β [71]. These value levels create three ranges; from 0 to β, between β and α,

and from α to 1. This function shown in Equation (1), returns “true,” “false,” or

“unknown” for the value in attribute u of domain F using the membership weight

from function µF () and the α and β level values associated with the attribute type



37

of domain F.

3VL truth value for fuzzy domain F =


false when µF (u) = [0, β]

unknown when µF (u) = (β, α)

true when µF (u) = [α, 1]

(1)

While the meaning of the three values may be application specific, this approach

could allow applications to define the necessary processes for an n-valued logic de-

rived from a fuzzy-weight attribute. An application could determine how to process

each case of missing data by matching a classification weight to an α-cut at a level

appropriate for the needs of the application. In this case, the criteria for member-

ship in a fuzzy unknown classification is an application responsibility. If the DBMS

is to generalize processing of missing data using an n-valued logic, there is a need

to supply relevant parameters to the process.

Medina [42] proposed the generalized fuzzy relational database (GEFRED) model

of data. Its representation for missing data is based on an equivalency between de-

gree of membership in fuzzy sets and possibility distributions [72]. Missing data

values that are applicable to an object are UNKNOWN with a possibility distribu-

tion of 1 indicating certainty that a value from the domain represents the missing

data. Missing data values that are inapplicable to an object are UNDEFINED with

a possibility distribution of 0 indicating that no value from the domain possibility

represents the missing data. Dubois and Prade [29] extended Zadeh’s possibility



38

theory to include the concept of necessity. de Tre [25] built on GEFRED, modeling

unknown information as uncertainty about its propositional truth using possibility

theory.

4.4.5 Logic database and knowledge based systems

Reiter [59] argues that logic provides a way to represent database relations, integrity

constraints, and queries using well-formed formulas of first order predicate logic. The

relation heading represents a predicate and each tuple in the relation body represents

a proposition that is true within the closed world of the database. This approach

supports query languages able to reason deductively.

Reiter [60] developed a method based on first-order logic for querying relational

databases that have missing data represented by nulls. This method is sound and in

certain cases complete, but in all cases compatible with the relational model of data.

This approach is essentially a specification of a predicate logic for a knowledge based

system that is complete for two classes (i.e. positive and universally conjunctive)

queries of databases with missing data values defined as null (i.e. applicable, but

unknown) and for databases not missing data values.

The relational model implemented in existing DBMS is complete for databases

with complete information. The problem of missing data are the cases of incom-

pleteness when a query result does not include all correct answers and the user is

not able to accurately interpret the query result.

Yuan et al. [70] proposed an extension to the relational model and Reiter’s



39

algorithm to support sound and complete query evaluation for relational databases

containing nulls. Completeness requires tuples to include disjunctive data. This

is achieved using attributes that contain relations of data values one of which may

make the tuple a true predicate. This is a model of a non-first-normal form database.

Lipski [38] proposed a mathematical model to study the semantics of incomplete

information in databases. This model, called an “information system,” was based

on modal logic, stored information about properties of objects, and allowed this

information to be incomplete. Incomplete information extended the notion of a null

value and was represented by a subset of an attribute’s domain. Lipski’s information

system was not based on the relational model of data, but it is similar to a relation. It

used a single table where columns represent properties and rows represent objects. In

the case of incomplete information, it may not be known if an object has a particular

property (i.e. property is inapplicable) or it may be known that the object has a

property, but its particular value is not known (i.e. property applicable, but value

unknown). If a property is applicable, the missing information must be a value from

a subset of the property’s domain and the property may hold a set of possible values.

An information system has a query language and can answer questions in either

of two ways. It can find and list the set of objects that match a property. It

can also determine if it is true or false that a particular object has a property.

Queries may have one of two interpretations. An external interpretation is about

the real world as it is incompletely modeled by the information system. An internal



40

interpretation refers to the information system’s data content. In terms of modal

logic, an external interpretation is what is necessary and an internal interpretation is

what is possible. This follows modal logic, the external interpretation is that which

is true and necessary while the internal interpretation is that which may or may not

be and is possible.

Others [39] [66, pp.100-115] have suggested how logic and knowledge based sys-

tems might represent and process missing data. Datalog [62] is a subset of Prolog

that can reason deductively, is designed to serve as an SQL query sublanguage,

and has been implemented using Prolog as an experimental learning system. Logic

databases and knowledge based systems may be similar to database management

systems, but use data and rules to infer the specific from the general rather than be-

ing database management systems that use the relational model to store and retrieve

data.

4.5 Defaults and special values

4.5.1 Avoidance

A current introductory guide to SQL suggests that nulls be avoided. The recom-

mended approach is to set each attribute in the database as NOT NULL unless data

is expected to be initially missing, but supplied later. This approach suggests the

origin of special values and encapsulates the missing data problem in a nutshell. [5,

pp.44-50].



41

4.5.2 Special values

Date [19] [22] proposed an alternative to nulls and 3VL which uses a special data

value selected to represent missing data. This method requires a valid, but unused

domain value for each type of missing data. One of these special values may be con-

figured as the SQL attribute default value to be inserted when no value is supplied.

While users and applications must be aware of each missing data type, interpret the

meaning of each special value, and dedicate actual data values from the domain to

serve as special values, using a domain data value to represent missing data elim-

inates the need for 3VL [22]. The advantage of this approach and the elimination

of 3-valued logic is that comparison operators always return true or false even when

a special value is compared to a data value or another special value [20, p.245].

Arithmetic operations will always return meaningful values, but only if the special

value for a missing data type was carefully chosen. This could also simplify DBMS

processes that rely on the results of comparisons and arithmetic [19, pp.223-231].

This approach can be easily implemented in current database systems with support

from the DBA.

An issue with Date’s approach is its focus on a single type of missing data

(i.e. applicable, but unknown) provides an overly simplified model. Although Date

suggests that special values can be extended to deal with other missing data types

[22, p.351] and this seems feasible, each type of missing data requires an unused

value from the attribute’s domain and it is not clear that it will always be possible



42

to dedicate these data values to represent missing data.

In The Third Manifesto, Date and Darwen observe that null is not a value and

while SQL allows its tables to contain null, this is a violation of the relational model

because relations are created from tuples and attributes that contain values [24,

p.193]. Using null to represent missing data is a simple solution to a complex problem

caused by data that is unavailable or inapplicable. While bad database design may

result in an attribute inapplicable to an object, data that is not yet available is

supported by the relational model. For this reason, The Third Manifesto excludes

nulls from the relational model and recommends user selected default values instead.

4.5.3 Default values with truth tables

Gessert [32] extended the concept of replacing nulls with special values in a way

that allows an existing DBMS to implement 4VL using 2VL. This approach uses a

logical status table in parallel with each data table that allows missing data. Both

tables use identical attribute names and data values as a primary key. Data tables

store non-key missing data values as user selected default values. Logical status

tables store a validity code for each non-key attribute in the data table. These

codes indicate if the data is valid, invalid, unknown or inapplicable.

A summary of theses validity codes (truth values) follows:

1. Not applicable (NA) stored value 0

This is an RM/V2 I-mark (the attribute does not apply to the object and



43

should be ignored).

2. Applicable and false (AF) stored value 1

A value in the attribute’s domain failed input validation and is to be corrected.

3. Applicable and maybe true (AM) stored value 2

This is an RM/V1 null or RM/V2 A-mark and the data value is unknown.

4. Applicable and true (AT) stored value 3

The stored data value is complete information.

This method eliminates the need for nulls, requires no modification to the DBMS,

and allows an application to determine 4VL interpretations for missing data using

2VL. This is a practical concept that may have been used in a real application. How-

ever, it doubles the size of each relation and requires user applications to implement

all processing logic for missing data. The default values used in this approach are

supplied by the user rather than the DBMS.

The DBMS considers the data table and the logical status table both to be data.

The application must manage both tables correctly to manage missing data. If two

application programs use the same database, each must be configured to manage

the missing data information in the same way. If there is a need to explain missing

data using metadata, this must be implemented in the application.

There is no transparent support for nulls that can be used with this method.

If the data table stores a non-key missing data value as null, the application must



44

handle the null as a default value.

4.6 Decomposition

The binary relation led to the n-ary relation in the relational model. A binary

relation with a primary key and a single data value cannot be incomplete [16, p.6].

The notion of an irreducible relation suggests a technique to eliminate attributes

that do not have data values. Advocates for decomposition reject the use of nulls

and 3VL to represent missing data, consider inapplicable data not to be missing, and

solve the problem of missing data by iteratively decomposing a relation into smaller

relations until there are no attributes missing a value. In the following sections

decomposition of a relation using normalization is explored as a method to remove

nulls from attributes.

4.6.1 Vertical and horizontal decomposition

Darwen [16] relies on a tuple being a proposition with the relation’s heading as its

predicate. Attributes in a tuple are conjunctive propositions connected by a logical

AND. Tuples in a relation are disjunctive propositions separated by a logical OR.

Using these characteristics, the missing data values in a relation can be eliminated

by a normalization process. Recomposition of the original relation by querying the

decomposed relations is essential if this method is to work.

Vertical decomposition uses projection to eliminate attributes of unknown values

or inapplicable properties. An attributes with missing data values is decomposed



45

into a relation of just the key. This relation is named to indicate which attribute it

represents and why data is missing (e.g. unknown or inapplicable).

Horizontal decomposition uses restriction to collect propositions with different

meaning into separate relations. Tuples with incomplete information necessarily

have an abbreviated meaning (loss of information) when unknown or inapplicable

attributes are removed.

4.6.2 Iterative decomposition

Pascal [54] proposed an approach in which the database stores only what it knows

about the real world. An item in the real world may have properties that exist in

the real world, but are not known to the database. An item in a database that does

not have a particular property belongs in a relation that does not have an attribute

for this property. This method requires the application include logic to construct

an interpretation from this collection of relations.

As more becomes known, the model is updated and at any time it can be queried

about what it does know. The results of a query may be a collection of relations each

of which is either a subset or superset of another and of a different degree. However,

each tuple in each relation is unequivocally a true proposition and its approach to

missing data uses 2VL. Pascal describes this approach as feasible and implies that

it may be implemented [54, p.25], but there is no indication when this may be.



46

4.7 Summary of previous work

Codd’s third rule establishes a need for systematic representation of missing data.

RM/V1 provides a specification for how to do this using nulls and 3-valued logic.

Biskup’s formal foundation for RM/V1 describes how it might work if implemented.

The SQL standard includes the features needed by RM/V1, but existing relational

DBMS do not fully implement this standard.

The proposed solutions to the missing data problem focus on eliminating or miti-

gating the impact of 3-valued logic required by a representation of missing data that

uses NULL. However, the existing DBMS have not implemented these approaches

either. In this context, the problem of representing missing data values in relational

DBMS is an unsolved problem.



47

CHAPTER 5 Impact of Missing Data

Missing data impacts relational database design as well as the application soft-

ware and users that rely on the design. The issues identified in chapter 4 con-

tribute to a better understanding of the broad impact of missing data on relational

databases. A complete analysis of missing data’s effect on the relational model is

necessary before a workable solution to the problem can be fully identified.

5.1 Database design

Database design creates a schema or view of data at the logical level. At this level

incomplete information must be represented so that a relational DBMS can correctly

execute relational operators and the results of processing can be correctly interpreted

when presented to the user.

The realization that data must be allowed to be absent is made during database

design. The user’s application requirements identify attributes that may be tem-

porarily unknown. The database design process determines if it is feasible to main-

tain database integrity when a particular data value is missing. This is the case for

an attribute that is always applicable to its entity and while the data value is cur-

rently unknown, it is expected to be available later. If an attribute is not applicable

to its entity in some cases, the need to flag the attribute as missing should be elim-

47



48

inated by further data normalization. Once made, these decisions are incorporated

in the database and application implementation.

5.2 Database management systems

Database management systems bind the logical data schema to the physical data

definitions used by storage devices. The DBMS must store the database schema

and use the metadata from this representation to process relational operators and

return results.

A DBMS that supports missing data values, must check each attribute involved

in an operation and if the attribute allows missing values, adjust processing to the

extent that it can.

5.3 SQL data sublanguage

Missing data should require the DBMS to process data comparisons and arithmetic

operations as special cases. When a database is designed for a new system of appli-

cation programs, use cases for the application should be examined to identify SQL

queries that will refer to attributes allowed to be represented by missing data. These

queries are expected to be used by the applications and are part the application’s

verification testing.

5.4 Application programs

The user’s view of the data is an interface at the logical level. Access to this interface

may be through an application program or through an end user query tool. The user



49

must be able to determine a correct interpretation of data defined by the schema

and processed by the DBMS.

Data that was identified as potentially incomplete must be documented in the

application’s detailed design specification.

When it becomes necessary to alter a database to add support for missing data,

the change is transparent to the user if the database management system is respon-

sible for processing all kinds of missing data. But if the application program is

responsible for processing missing data, the application must be reengineered.

The change may require support for data that is temporarily unavailable or

for data that is not always applicable to an entity. Each kind of change requires

modification to the database and to the application programs.



50

CHAPTER 6 Hypothesis

The solution to the missing data problem is specified in this chapter. The in-

terpretation of missing data uses information stored in database tables. There are

clearly defined roles for the DBMS, database administrator, and user. This solution

has been implemented in a client interface using an embedded MySQL server.

6.1 The KNOWN/UNKNOWN model

In this model, attributes which are part of keys must contain data values. Other

attributes are allowed to have missing data values of various types. Values that are

unknown may be applicable and missing, or invalid. Values that are optional may

be inapplicable or unknowable.

6.2 Metadata for missing data types

The missing data types described in chapter 3 are summarized in Table 2. The four

classes determine how a DBMS processes missing data, the seven types indicate

how the application or user derives an interpretation, and the class-type “tag” is a

unique representation for the kinds of missing data. This metadata is used by the

KNOWN/UNKNOWN missing-data model. It can be expanded or customized for

a given database, and is available to applications and users.

Properties that are applicable to an item are expected to have values. A missing

50



51

Table 2: Metadata for missing data types

Class Name Type Description Class Type Tag

Applicable property applicable - value unknown 1 2 UNK
Applicable property applicable - value does not yet exist 1 3 NYE
Invalid property applicable - value is undefined 2 4 UND
Invalid property applicable - value input is invalid 2 5 INV
Invalid property applicable - value withheld at input 2 6 MIS
Inapplicable property not applicable to this item 3 1 N/A
Unknowable value declared unknowable; withheld or removed 4 3 REM
Unknowable value result from SQL operation is empty set 4 7 NIL

value that is unknown may exist in the real world, but not in the database. A value

that does not yet exist in the real world cannot exist in the database at this time.

Invalid values can be corrected by the data input/update process, but until made

valid these values must be processed as if unknown.

Inapplicable data values are significant because they must be processed and in-

terpreted in a way that is fundamentally different from applicable or invalid data.

These data are not expected to exist in the real world or the database. A missing

result from an SQL operation such as an outer join must be clearly indicated as

unknowable. While unknowable values are processed as if the attributes are inap-

plicable, it is important that users know why these values are missing.

6.3 KNOWN and UNKNOWN data values

A relation variable (relvar) which allows missing data uses three relations to repre-

sent complete and incomplete information. This relvar has a name by which it may



52

be referenced (e.g. my names) and its constituent relations are named by appending

a qualifier (i.e. KNOWN, UNKNOWN, and MISSING). The KNOWN relation

stores only tuples with complete information (see Table 3). The KNOWN relation

has a shadow that stores tuples that are missing data values as the UNKNOWN re-

lation (see Table 4). Information about what data is missing from the UNKNOWN

relation is stored in the MISSING relation (see Table 5) with a class-type tag giving

a foreign key to the metadata in Table 2.

Table 3: my names KNOWN

first middle last

Edgar F Codd
Chris J Date

Table 4: my names UNKNOWN

first middle last

Hugh Darwen
Andrew Warden

Table 5: my names MISSING

key attr tag

Darwen middle UNK
Warden middle N/A

The key of the UNKNOWN relation, the name of the attribute that is missing



53

data, and the missing data class-type tag are stored in the MISSING relation. These

attributes form the key of the MISSING relation.

6.4 Integrity independence

The KNOWN/UNKNOWN missing-data representation must be enabled for the

entire database. By default, all non-key attributes may contain incomplete informa-

tion. Attributes may be flagged to disallow missing data. If data can be missing, the

database allows each type of missing data represented by the class and type from

Table 2. It would also be possible to implement a DBMS system for which allowed

missing data types are specified during table creation. However, this is not in the

scope of this research.

6.4.1 Entity integrity

Because no data value may be missing from a primary key component, both the

KNOWN and UNKNOWN relations will have primary keys that are complete. The

KNOWN/UNKNOWN model requires that no key value be duplicated in the two

relations. An attempt to insert a tuple with complete information into the KNOWN

relation will fail if its key is present in the UNKNOWN relation and vice-versa.

6.4.2 Referential integrity

Referential integrity is represented as a dependency between a referenced relvar

(parent) and a referencing relvar (child). Constraints are defined on the foreign keys



54

in child relvars and refer to the primary key of the parent relvar. The semantics of

referential integrity require that foreign keys not be missing as invalid, inapplicable

or unknowable. If a constraint sets a child tuple’s foreign key to a missing value it

is “applicable, but does not yet exist.”

6.4.3 Database integrity

The Golden Rule [23, p.261] requires that all relations in a database remain con-

sistent with the integrity constraints defined for the database at all times. The

KNOWN/UNKNOWN missing-data model maintains the Golden rule for its con-

stituent relations. This requires that the conjunction of all integrity constraints over

the KNOWN and UNKNOWN relations must not evaluate to false. The KNOWN

relation will evaluate to true. The UNKNOWN relation will evaluate to true, maybe-

true (unknown) or inapplicable, but not to false.

6.5 Relational operations using missing data

There are five primary operations required by the relational model: Cartesian prod-

uct, set union, project, set difference, and restrict. All other operations can be

defined in terms of these [66, p.55] [23, p.192]. This section uses the four test cases

described in section 6.5.3 to illustrate these five primary relational operations.



55

6.5.1 Expression evaluation

If a relational operation requires the evaluation of missing data in an expression,

it is possible to compare known and unknown values of the same data type when

the missing data class is either applicable or invalid. For example, a known integer

and an applicable, but unknown integer may be equal or one may be less/greater

than the other. However, if the missing data class is inapplicable or unknowable, a

comparison is meaningless.

If a relational operation requires the evaluation of missing data for duplicate

removal, one missing value may be a duplicate of another when the metadata in the

MISSING relation indicates that attribute, class, and type are the same.

6.5.2 3-valued logic (unknown and MAYBE)

In the case of the KNOWN relation, the comparison operators are truth-valued

functions that depend on data values and return either true or false. In the case of

the UNKNOWN relation, a non-truth-valued function is needed to compare missing

data values. The value of an unknown but applicable attribute is some value from the

attribute’s domain and within the database’s integrity constraints. Until this missing

data value is known, an evaluation using a truth-valued function is “unknown,”

but a non-truth-valued function can determine if a maybe-match is possible. The

KNOWN/UNKNOWN missing-data model supports querying for tuples that are

maybe-matches.



56

A DBMS that uses 3-valued logic can be made more intuitive by including a

MAYBE modifier for its comparison operators. While the SQL comparison operator

“IS NULL” is used to select attributes that do not have data values, the MAYBE

match modifier is different. The MAYBE modifier relaxes comparisons allowing

applicable and invalid unknown values from a domain to match known values and

other applicable missing data from the same domain. Maybe-matches expand the

UNKNOWN relation in a result set.

6.5.3 Four test cases for missing data

Four variants of the my names and your names relvars are used to examine the

behavior of relational operations.

The test cases are shown in Tables 6 through 13. They are designed to demon-

strate how a DBMS applies the relational operations using the KNOWN/UNKNOWN

missing-data model.

Sequence numbers are used as pseudo-keys. The KNOWN/UNKNOWN rep-

resentation for missing data depends on keys to connect the missing data in the

UNKNOWN relation with its metadata in the MISSING relation. Result sets re-

quire keys to reference a missing data value’s metadata. These keys may be domain

keys composed from the relation’s attributes or pseudo-keys generated sequentially

during querying. Equivalent pseudo-keys do not indicate matching tuples nor do

unequal pseudo-keys indicate mismatching tuples.



57

Table 6: Case 1 (a) - complete and incomplete information in my names

my names KNOWN my names UNKNOWN my names MISSING
key first mi last key first mi last key attr tag

1 Edgar F Codd 3 Hugh Darwen 3 mi UNK
2 Chris J Date 4 Andrew Warden 4 mi N/A

Table 7: Case 1 (b) - complete and incomplete information in your names

your names KNOWN your names UNKNOWN your names MISSING
key first mi last key first mi last key attr tag

5 Jeffrey D Ullman 7 Fabian Pascal 7 mi UNK
6 Margo I Seltzer 8 David ? McGoveran 8 mi INV

My names in Table 6 and your names in Table 7 are a database that includes

both complete and incomplete information. Data is missing for various reasons,

but there are no duplicate or possibly duplicate names in these relvars.



58

Table 8: Case 2 (a) - a tuple from your names KNOWN is duplicated in
my names KNOWN

my names KNOWN my names UNKNOWN my names MISSING
key first mi last key first mi last key attr tag

1 Edgar F Codd 3 Hugh Darwen 3 mi UNK
2 Jeffrey D Ullman 4 Andrew Warden 4 mi N/A

Table 9: Case 2 (b) - a tuple from my names KNOWN is duplicated in
your names KNOWN

your names KNOWN your names UNKNOWN your names MISSING
key first mi last key first mi last key attr tag

5 Jeffrey D Ullman 7 Fabian Pascal 7 mi UNK
6 Margo I Seltzer 8 David ? McGoveran 8 mi INV

My names in Table 8 and your names in Table 9 have the name “Jeffrey D

Ullman” common to both KNOWN relations. These are exact duplicate names,

but the pseudo-keys created by the DBMS do not indicate knowledge of this

duplication.



59

Table 10: Case 3 (a) - a tuple from your names UNKNOWN may be duplicated in
my names KNOWN

my names KNOWN my names UNKNOWN my names MISSING
key first mi last key first mi last key attr tag

1 Edgar F Codd 3 Hugh Darwen 3 mi UNK
2 Chris J Date 4 Andrew Warden 4 mi N/A

Table 11: Case 3 (b) - a tuple from my names KNOWN may be duplicated in
your names UNKNOWN

your names KNOWN your names UNKNOWN your names MISSING
key first mi last key first mi last key attr tag

5 Jeffrey D Ullman 7 Chris Date 7 mi UNK
6 Margo I Seltzer 8 David ? McGoveran 8 mi INV

My names in Table 10 and your names in Table 11 have a name with an

unknown middle initial that may be a duplicate of a name with a known middle

initial. The name “Chris Date” in the UNKNOWN relation of the your names

relvar is a maybe-match with the name “Chris J Date” in the KNOWN relation of

the my names relvar.

It is possible, but not certain that these are the same person because the key

for each relvar is a pseudo-key created by sequential number generators. If the keys

matched and were a domain key (e.g. employee ID number), it would be certain

that “Chris Date” and “Chris J Date” are the same person.



60

Table 12: Case 4 (a) - tuples in your names UNKNOWN may be duplicated in
my names UNKNOWN

my names KNOWN my names UNKNOWN my names MISSING
key first mi last key first mi last key attr tag

1 Edgar F Codd 3 Hugh Darwen 3 mi UNK
2 Chris J Date 4 Andrew Warden 4 mi N/A

Table 13: Case 4 (b) - tuples in my names UNKNOWN may be duplicated in
your names UNKNOWN

your names KNOWN your names UNKNOWN your names MISSING
key first mi last key first mi last key attr tag

5 Jeffrey D Ullman 7 Hugh Darwen 7 mi UNK
6 Margo I Seltzer 8 Andrew Warden 8 mi MIS

My names in Table 12 and your names in Table 13 have names common to

both UNKNOWN relations. “Hugh Darwen” is missing the middle initial for the

same reason (applicable, but unknown) in both relvars. It is possible that this

name is a duplicate, but the assumption that “Hugh Darwen” is one person cannot

be determined without more information.

The name “Andrew Warden” is missing the middle initial for different reasons

(inapplicable vs. applicable but withheld) in each relvar. It must be assumed there

is a person named “Andrew Warden” who has no middle initial and an “Andrew

Warden” who did not provide his middle initial.

These test cases show how the inclusion of the MISSING metadata in

KNOWN/UNKNOWN model provides useful information about possible tuple

matches to users and the DBMS when data is missing. Involvement with the

meaning of missing data encourages data gathering and supports accurate data

analysis.



61

6.5.4 Cartesian Product

The Cartesian product of two relvars, shows each tuple from the first relvar paired

with each tuple from the second relvar. Cartesian products using the four test cases

for my names and your names are shown in Tables 14 through 25.

If the product for case 1 shown in Table 15 is used to project and select my names

and your names on middle initial, there are maybe-matches on middle initial in the

derived UNKNOWN table.

If the product for case 2 shown in Table 17 is used to project and select my names

and your names on middle initial, there is an exact match on first name, middle

initial and last name for “Jeffrey D Ullman.”

If the product for case 3 shown in Table 20 is used to project and select my names

and your names on middle initial, there is an exact match on first name and last

name between “Chris J Date” in my names KNOWN relation and “Chris Date”

whose middle initial is missing in your names UNKNOWN, a maybe-match on mid-

dle initial implying these may be the same “Chris Date.”

If the product for case 4 shown in Table 24 is used to project and select my names

and your names on middle initial, there are exact matches on first name and last

name for “Hugh Darwen” and “Andrew Warden” in the derived UNKNOWN re-

lation. But “Andrew Warden” is missing a middle initial for two different reasons

(i.e. it is missing because it is known not to exist or because it is non-applicable)

and is not a match.



62

Table 14: Case 1 - (my names × your names)KNOWN

derived KNOWN
m key m first m mi m last y key y first y mi y last

1 Edgar F Codd 5 Jeffrey D Ullman
1 Edgar F Codd 6 Margo I Seltzer
2 Chris J Date 5 Jeffrey D Ullman
2 Chris J Date 6 Margo I Seltzer

Table 15: Case 1 - (my names × your names)UNKNOWN

derived UNKNOWN
m key m first m mi m last y key y first y mi y last

1 Edgar F Codd 7 Fabian Pascal
1 Edgar F Codd 8 David ? McGoveran
2 Chris J Date 7 Fabian Pascal
2 Chris J Date 8 David ? McGoveran
3 Hugh Darwen 5 Jeffrey D Ullman
3 Hugh Darwen 6 Margo I Seltzer
3 Hugh Darwen 7 Fabian Pascal
3 Hugh Darwen 8 David ? McGoveran
4 Andrew Warden 5 Jeffrey D Ullman
4 Andrew Warden 6 Margo I Seltzer
4 Andrew Warden 7 Fabian Pascal
4 Andrew Warden 8 David ? McGoveran

Table 16: Case 1 - MISSING

derived MISSING
m key y key attr tag

1 7 y mi UNK
1 8 y mi INV
2 7 y mi UNK
2 8 y mi INV
3 5 m mi UNK
3 6 m mi UNK
3 7 m mi UNK
3 7 y mi UNK
3 8 m mi UNK
3 8 y mi INV
4 5 m mi N/A
4 6 m mi N/A
4 7 m mi N/A
4 7 y mi UNK
4 8 m mi N/A
4 8 y mi INV



63

Table 17: Case 2 - (my names × your names) KNOWN

derived KNOWN
m key m first m mi m last y key y first y mi y last

1 Edgar F Codd 5 Jeffrey D Ullman
1 Edgar F Codd 6 Margo I Seltzer
2 Jeffrey D Ullman 5 Jeffrey D Ullman
2 Jeffrey D Ullman 6 Margo I Seltzer

Table 18: Case 2 - (my names × your names) UNKNOWN

derived UNKNOWN
m key m first m mi m last y key y first y mi y last

1 Edgar F Codd 7 Fabian Pascal
1 Edgar F Codd 8 David ? McGoveran
2 Jeffrey D Ullman 7 Fabian Pascal
2 Jeffrey D Ullman 8 David ? McGoveran
3 Hugh Darwen 5 Jeffrey D Ullman
3 Hugh Darwen 6 Margo I Seltzer
3 Hugh Darwen 7 Fabian Pascal
3 Hugh Darwen 8 David ? McGoveran
4 Andrew Warden 5 Jeffrey D Ullman
4 Andrew Warden 6 Margo I Seltzer
4 Andrew Warden 7 Fabian Pascal
4 Andrew Warden 8 David ? McGoveran

Table 19: Case 2 - MISSING

derived MISSING
m key y key attr tag

1 7 y mi UNK
1 8 y mi INV
2 7 y mi UNK
2 8 y mi INV
3 5 m mi UNK
3 6 m mi UNK
3 7 m mi UNK
3 7 y mi UNK
3 8 m mi UNK
3 8 y mi INV
4 5 m mi N/A
4 6 m mi N/A
4 7 m mi N/A
4 7 y mi UNK
4 8 m mi N/A
4 8 y mi INV



64

Table 20: Case 3 - (my names × your names) KNOWN

derived KNOWN
m key m first m mi m last y key y first y mi y last

1 Edgar F Codd 5 Jeffrey D Ullman
1 Edgar F Codd 6 Margo I Seltzer
2 Chris J Date 5 Jeffrey D Ullman
2 Chris J Date 6 Margo I Seltzer

Table 21: Case 3 - (my names × your names) UNKNOWN

derived UNKNOWN
m key m first m mi m last y key y first y mi y last

1 Edgar F Codd 7 Chris Date
1 Edgar F Codd 8 David ? McGoveran
2 Chris J Date 7 Chris Date
2 Chris J Date 8 David ? McGoveran
3 Hugh Darwen 5 Jeffrey D Ullman
3 Hugh Darwen 6 Margo I Seltzer
3 Hugh Darwen 7 Chris Date
3 Hugh Darwen 8 David ? McGoveran
4 Andrew Warden 5 Jeffrey D Ullman
4 Andrew Warden 6 Margo I Seltzer
4 Andrew Warden 7 Chris Date
4 Andrew Warden 8 David ? McGoveran

Table 22: Case 3 - MISSING

derived MISSING
m key y key attr tag

1 7 y mi UNK
1 8 y mi INV
2 7 y mi UNK
2 8 y mi INV
3 5 m mi UNK
3 6 m mi UNK
3 7 m mi UNK
3 7 y mi UNK
3 8 m mi UNK
3 8 y mi INV
4 5 m mi N/A
4 6 m mi N/A
4 7 m mi N/A
4 7 y mi UNK
4 8 m mi N/A
4 8 y mi INV



65

Table 23: Case 4 - (my names × your names) KNOWN

derived KNOWN
m key m first m mi m last y key y first y mi y last

1 Edgar F Codd 5 Jeffrey D Ullman
1 Edgar F Codd 6 Margo I Seltzer
2 Chris J Date 5 Jeffrey D Ullman
2 Chris J Date 6 Margo I Seltzer

Table 24: Case 4 - (my names × your names) UNKNOWN

derived UNKNOWN
m key m first m mi m last y key y first y mi y last

1 Edgar F Codd 3 Hugh Darwen
1 Edgar F Codd 8 Andrew Warden
2 Chris J Date 3 Hugh Darwen
2 Chris J Date 8 Andrew Warden
3 Hugh Darwen 5 Jeffrey D Ullman
3 Hugh Darwen 6 Margo I Seltzer
3 Hugh Darwen 3 Hugh Darwen
3 Hugh Darwen 8 Andrew Warden
4 Andrew Warden 5 Jeffrey D Ullman
4 Andrew Warden 6 Margo I Seltzer
4 Andrew Warden 3 Hugh Darwen
4 Andrew Warden 8 Andrew Warden

Table 25: Case 4 - MISSING

derived MISSING
m key y key attr tag

1 7 y mi UNK
1 8 y mi MIS
2 7 y mi UNK
2 8 y mi MIS
3 5 m mi UNK
3 6 m mi UNK
3 7 m mi UNK
3 7 y mi UNK
3 8 m mi UNK
3 8 y mi MIS
4 5 m mi N/A
4 6 m mi N/A
4 7 m mi N/A
4 7 y mi UNK
4 8 m mi N/A
4 8 y mi MIS

Once a Cartesian product is computed, restriction can be used to choose rows
based on exact matches or maybe-matches (see section 6.5.8).



66

6.5.5 Set Union

The result of set union relies on duplicate removal. RM/V1 evaluates one null as

equal to another and a duplicate [12, p.405]. The KNOWN/UNKNOWN model

evaluates missing data values using metadata from the MISSING relation and if

missing values for an attribute have the same class and type, they are considered

duplicates. The union of my names and your names relvars using the four test cases

are shown in Tables 26 through 29.

Table 26: Case 1 - my names ∪ your names

derived KNOWN derived UNKNOWN derived MISSING
key first mi last key first mi last key attr tag

1 Edgar F Codd 3 Hugh Darwen 3 mi UNK
2 Chris J Date 4 Andrew Warden 4 mi N/A
5 Jeffrey D Ullman 7 Fabian Pascal 7 mi UNK
6 Margo I Seltzer 8 David ? McGoveran 8 mi INV

The result shown in Table 26 includes all tuples from the my names relvar in

Table 6 and the your names relvar in Table 7. There are no duplicate or possibly

duplicate tuples with or without including the keys in the set union result.



67

Table 27: Case 2 - (πfirst,mi,last(my names) ∪ πfirst,mi,last(your names))

derived KNOWN derived UNKNOWN derived MISSING
first mi last pseudo-key first mi last key attr tag

Edgar F Codd 101 Hugh Darwen 101 mi UNK
Jeffrey D Ullman 102 Andrew Warden 102 mi N/A
Margo I Seltzer 103 Fabian Pascal 103 mi UNK

104 David ? McGoveran 104 mi INV

The result shown in Table 27 is a relvar created using the projection onto first

name, middle initial, and last name from the my names relvar in Table 8 and the

your names relvar in Table 9. A duplicate of “Jeffrey D Ullman” from the

KNOWN relation was removed. See section 6.5.6 for explanation of pseudo-key in

UNKNOWN and MISSING.



68

Table 28: Case 3 - (πfirst,mi,last(my names) ∪ πfirst,mi,last(your names))

derived KNOWN derived UNKNOWN derived MISSING
first mi last pseudo-key first mi last key attr tag

Edgar F Codd 101 Hugh Darwen 101 mi UNK
Chris J Date 102 Andrew Warden 102 mi N/A
Jeffrey D Ullman 103 Chris Date 103 mi UNK
Margo I Seltzer 104 David ? McGoveran 104 mi INV

The result shown in Table 28 is a relvar created using the projection onto first

name, middle initial, and last name from the my names relvar in Table 10 and the

your names relvar in Table 11. There is a possibly duplicated tuple.

“Chris J Date” from my names KNOWN identifies a single specific individual.

“Chris Date” from your names UNKNOWN identifies one or more individuals

with a middle initial from the domain of ‘A’ through ‘Z’. If the former is removed,

the result set is less specific. If the latter is removed, the information content of

the result set is reduced. These tuples may be duplicates, but the user must

determine if these are the same person.



69

Table 29: Case 4 - (πfirst,mi,last(my names) ∪ πfirst,mi,last(your names))

derived KNOWN derived UNKNOWN derived MISSING
first mi last pseudo-key first mi last key attr tag

Edgar F Codd 101 Hugh Darwen 101 mi UNK
Chris J Date 102 Andrew Warden 102 mi N/A
Jeffrey D Ullman 103 Andrew Warden 103 mi MIS
Margo I Seltzer

The result shown in Table 29 is created using the projection onto first name,

middle initial, and last name from the my names relvar in Table 12 and the

your names relvar in Table 13.

A duplicate of “Hugh Darwen” from the UNKNOWN relation was removed

because his middle initial is missing for the same reason. “Andrew Warden”

appears in both UNKNOWN relations and twice in the set union result because

his middle initial is missing for different reasons. In the case of “Andrew Warden,”

each occurrence of the name appears to be distinct. If these tuples are duplicates,

it is the result of a data entry error and can be corrected.



70

6.5.6 Project

Projection onto attributes from a KNOWN/UNKNOWN relvar is consistent with

the relational model. If the key is projected, duplicate tuples are not possible. If

the key is not projected, missing data values in the UNKNOWN relation must be

supported by metadata in the MISSING relation using generated pseudo-keys. Using

known data values and the metadata, duplicate tuples identified as exact matches

or maybe-matches are removed. Projection onto middle initial using set union of

my names and your names with the four test cases are shown in Tables 30 through

33.



71

Table 30: Case 1 - (πmi(πfirst,mi,last(my names) ∪ πfirst,mi,last(your names)))

derived KNOWN derived UNKNOWN derived MISSING
mi pseudo-key mi key attr tag

F 101 101 mi UNK
J 102 102 mi N/A
D 103 ? 103 mi INV
I

The result shown in Table 30 projects attribute mi from the union of

my names and your names in Table 26. The missing the middle initial of “Hugh

Darwen” is applicable, but unknown. In the projected relvar “Hugh Darwen” is

represented in the UNKNOWN and MISSING relations by pseudo-key 101. A

projected middle initial for “Fabian Pascal” duplicates this tuple and is also

represented by pseudo-key 101. “Andrew Warden” is a fictional person who does

not have a middle initial (inapplicable) and is identified by pseudo-key 102. The

question mark represents applicable, but invalid input for “David McGoveran.”



72

Table 31: Case 2 - (πmi(πfirst,mi,last(my names) ∪ πfirst,mi,last(your names)))

derived KNOWN derived UNKNOWN derived MISSING
mi pseudo-key mi key attr tag

F 101 101 mi UNK
D 102 102 mi N/A
I 103 ? 103 mi INV

The result shown in Table 31 projects attribute mi from the first name, middle

initial, last name union of my names and your names in Table 27. A duplicate of

“Jeffrey D Ullman” was removed by the set union operation from the KNOWN

relation. The representation of missing data values in the UNKNOWN and

MISSING relations is the same as above in Table 30.

Table 32: Case 3 - (πmi(πfirst,mi,last(my names) ∪ πfirst,mi,last(your names)))

derived KNOWN derived UNKNOWN derived MISSING
mi pseudo-key mi key attr tag

F 101 101 mi UNK
J 102 102 mi N/A
D 103 ? 103 mi INV
I

The result shown in Table 32 projects attribute mi from the first name, middle

initial, last name union of my names and your names in Table 28. Some of the

data values in this test case have changed, but the projection onto middle initial is

identical to those shown above in Table 31.



73

Table 33: Case 4 - (πmi(πfirst,mi,last(my names) ∪ πfirst,mi,last(your names)))

derived KNOWN derived UNKNOWN derived MISSING
mi pseudo-key mi key attr tag

F 101 101 mi UNK
J 102 102 mi N/A
D 103 103 mi MIS
I

The result shown in Table 33 projects attribute mi from the first name, middle

initial, last name union of my names and your names in Table 29. A duplicate

tuple for “Hugh Darwen” was removed by the set union operation. The missing

middle initial of “Hugh Darwen” is applicable, but unknown. In the projected

relvar “Hugh Darwen” is represented in the UNKNOWN and MISSING relations

by pseudo-key 101. The middle initial for “Andrew Warden” is projected twice.

“Andrew Warden” is a fictional person who does not have a middle initial

(inapplicable) and is identified by pseudo-key 102. Another “Andrew Warden” has

a middle initial, but withheld it and is identified by pseudo-key 103.



74

6.5.7 Set Difference

The set difference between two relvars, is created by duplicate removal. If a tuple

in the first relvar is duplicated in the second, it is removed. KNOWN values are

compared for equality and UNKNOWN values are evaluated using metadata from

the MISSING relation. The difference between my names and your names relvars

using the four test cases are shown in Tables 34 through 37.

Table 34: Case 1 - (my names− your names)

derived KNOWN derived UNKNOWN derived MISSING
key first mi last key first mi last key attr tag

1 Edgar F Codd 3 Hugh Darwen 3 mi UNK
2 Chris J Date 4 Andrew Warden 4 mi N/A

The result shown in Table 34 includes all tuples from the my names relvar in

Table 6 because both keys and names are unique it is not possible for a tuple to be

duplicated in the your names relvar from Table 7.



75

Table 35: Case 2 - (πfirst,mi,last(my names)− πfirst,mi,last(your names))

derived KNOWN derived UNKNOWN derived MISSING
first mi last pseudo-key first mi last key attr tag

Edgar F Codd 101 Hugh Darwen 101 mi UNK
102 Andrew Warden 102 mi N/A

The result shown in Table 35 is derived using the projection onto first name,

middle initial, and last name from my names in Table 8. “Jeffrey D Ullman” is an

exact match with a tuple in the projection onto first name, middle initial, and last

name from your names in Table 9 and is removed.

Table 36: Case 3 - (πfirst,mi,last(my names)− πfirst,mi,last(your names))

derived KNOWN derived UNKNOWN derived MISSING
first mi last pseudo-key first mi last key attr tag

Edgar F Codd 101 Hugh Darwen 101 mi UNK
Chris J Date 102 Andrew Warden 102 mi N/A

The result shown in Table 36 is the projection onto first name, middle initial,

and last name from the my names relvar in Table 10. No tuple in your names from

Table 11 matches a tuple in my names.

The result includes “Chris J Date” from my names KNOWN because “Chris

Date” in your names UNKNOWN is a maybe-match, but not a duplicate in the

KNOWN/UNKNOWN model. The user may use external information or domain

keys to determine these tuples are duplicates and correct the your names database.



76

Table 37: Case 4 - (πfirst,mi,last(my names)− πfirst,mi,last(your names))

derived KNOWN derived UNKNOWN derived MISSING
first mi last pseudo-key first mi last key attr tag

Edgar F Codd 101 Andrew Warden 101 mi N/A
Chris J Date

The result shown in Table 37 is derived using the projection onto first name,

middle initial, and last name from my names in Table 12 and from your names in

Table 13.

“Hugh Darwen” in my names UNKNOWN is a duplicate of a tuple in

your names UNKNOWN with the same first name, last name, and reason for a

missing middle initial and is removed. “Andrew Warden” is also in both

UNKNOWN relations, but is not removed as a duplicate because the middle initial

is missing for different reasons.

6.5.8 Restrict

Restriction of tuples in a KNOWN/UNKNOWN relvar can be constrained to exact

matches (consistent with the relational model) or a MAYBE comparison operator

can be used to select only maybe-matches. If exact matches and maybe-matches are

specified by a query, the result set includes both kinds of matches. Restrictions of

my names or the union of my names and your names from the four test cases are

shown in Tables 38 through 45.



77

Table 38: Case 1 - (σmi = ′F ′(my names))

derived KNOWN derived UNKNOWN derived MISSING
key first mi last key first mi last key attr tag

1 Edgar F Codd

The result shown in Table 38 restricts tuples from my names in Table 6 to

those with middle initials equal to ’F’. “Edgar F Codd” has the middle initial ’F’

and is an exact match. “Hugh Darwen” has an unknown middle initial and

“Andrew Warden” does not have a middle initial (inapplicable).

Table 39: Case 1 - (σmi MAY BE = ′F ′(my names))

derived KNOWN derived UNKNOWN derived MISSING
key first mi last key first mi last key attr tag

3 Hugh Darwen 3 mi UNK

The result shown in Table 39 restricts tuples from my names in Table 6 to

those with middle initials that may be equal to ’F’. “Hugh Darwen” has an

unknown middle initial that could be ’F’ and is a maybe-match. “Andrew

Warden” does not have a middle initial (inapplicable) and cannot match.



78

Table 40: Case 1 - (σmi = ′F ′ ∨ mi MAY BE = ′F ′(my names))

derived KNOWN derived UNKNOWN derived MISSING
key first mi last key first mi last key attr tag

1 Edgar F Codd 3 Hugh Darwen 3 mi UNK

The result show in Table 40 shows that a restriction of tuples that are exact

matches or maybe-matches gives the set union of the two result sets in Tables 38

and 39.



79

Table 41: Case 2 - (σm mi = y mi(my names × your names)) KNOWN

derived KNOWN
m key m first m mi m last y key y first y mi y last

2 Jeffrey D Ullman 5 Jeffrey D Ullman

Table 42: Case 2 - (σm mi = y mi(my names × your names)) UNKNOWN

derived UNKNOWN
m key m first m mi m last y key y first y mi y last

1 Edgar F Codd 7 Fabian Pascal
1 Edgar F Codd 8 David ? McGoveran
2 Jeffrey D Ullman 7 Fabian Pascal
2 Jeffrey D Ullman 8 David ? McGoveran
3 Hugh Darwen 5 Jeffrey D Ullman
3 Hugh Darwen 6 Margo I Seltzer
3 Hugh Darwen 7 Fabian Pascal
3 Hugh Darwen 8 David ? McGoveran

Table 43: Case 2 - MISSING

derived MISSING
m key y key attr tag

1 7 y mi UNK
1 8 y mi INV
2 7 y mi UNK
2 8 y mi INV
3 5 m mi UNK
3 6 m mi UNK
3 7 m mi UNK
3 7 y mi UNK
3 8 m mi UNK
3 8 y mi INV

The result shown in Table 41 restricts tuples from the Cartesian product of

my names and your names in Table 17 to those with a middle initial in my names

that is equal or maybe equal to a middle initial in your names. “Jeffrey D Ullman”

is in both relvars and is the only exact match. “Andrew Warden” does not have a

middle initial and cannot match.



80

Table 44: Case 3 - (σfirst =′Chris′ ∧ last=′Date′ ∨ mi MAY BE = ′J ′(my names ∪ your names))

derived KNOWN derived UNKNOWN derived MISSING
key first mi last key first mi last key attr tag

2 Chris J Date 3 Hugh Darwen 3 mi UNK
7 Chris Date 7 mi UNK
8 David ? McGoveran 8 mi INV

The result shown in Table 44 restricts tuples in the set union of names and

keys from my names in Table 10 and your names in Table 11 to those with a first

name equal to “Chris” and a last name equal to “Date” or those with a middle

initial that may be ’J’.

Including the key in the union means there can be no duplicate tuples, but the

user may determine from the metadata in the MISSING relation that “Chris J

Date” and “Chris Date” are the same person.

Table 45: Case 4 - (σmy names.key = πkey(σattr = ′mi′ ∧ tag = ′N/A′ (my names MISSING))(my names))

derived KNOWN derived UNKNOWN derived MISSING
key first mi last key first mi last key attr tag

4 Andrew Warden 4 mi N/A

The result show in Table 45 restricts the names from my names in Table 12 to

those that do not have a middle initial. These are the names missing a middle

initial because the attribute mi does not apply to the name. “Andrew Warden”

matches the query because he is a fictional character and does not have a middle

initial.



81

6.6 Arithmetic operations using missing data

There are five SQL aggregate functions: count, sum, avg, min, and max. While data

values may be missing for different reasons and for different attributes, aggregate

values are determined using the known values for a specified attribute from the

KNOWN and the UNKNOWN relations. Using the metadata from the MISSING

relation applicable, invalid, inapplicable and unknowable missing data values can be

counted, but cannot be used in a meaningful way to determine a summation, average,

minimum or maximum value. All missing data values are ignored in arithmetic.

The relvar triple “ages” shown in Table 46 contains test data for the SQL aggregate

functions.

Table 46: ages Relation Variable

ages KNOWN ages UNKNOWN ages MISSING
first last age first last age key attr tag

Edgar Codd 79 Hugh Darwen Darwen age UNK
Chris Date 71 David McGoveran -1 McGoveran age INV
Margo Seltzer 49 Parker 27 Parker first UNK
Jeffrey Ullman 69 Fabian Pascal Pascal age UNK

Andrew Warden Warden age N/A

6.6.1 Count

The known data values can be counted for the column age from the ages KNOWN

and ages UNKNOWN relations giving Table 47.

The unknown data values can be counted for the attribute age using metadata



82

Table 47: countage(ages)

count KNOWN(age) count UNKNOWN(age) count MISSING(age)
5

“Parker” is missing a first name and is in the unknown relation, but has a

known age. There are five rows with known age values.

from the MISSING relation giving Table 48 or a similar query can count those who

have no age giving Table 49

Table 48: counttag(σattr =′age′ ∧ tag 6= ′N/A′(ages MISSING))

count KNOWN(tag) count UNKNOWN(tag) count MISSING(tag)
3

There are three rows with a tag that indicates an applicable but unknown age

value. “Parker” is missing a first name with an ’UNK’ tag, but has a known age.



83

Table 49: counttag(σattr =′age′ ∧ tag = ′N/A′(ages MISSING))

count KNOWN(tag) count UNKNOWN(tag) count MISSING(tag)
1

There is one row with a tag that indicates an inapplicable age value. “Andrew

Warden” is a fictional character who does not have a date of birth or age.

More complex queries to match missing data values can be written selecting

tags for classes of missing data using system metadata from Table 2.

6.6.2 Sum, Avg, Min, and Max

The known age attributes in the “ages” relvar are totaled using the five rows with

known age values as shown in Table 50 .

Table 50: sumage(ages)

sum KNOWN(age) sum UNKNOWN(age) sum MISSING(age)
295

The average derived from the count and summation of known data values and the

minimum or maximum selected from known values work in a similar way giving

only a known result using known data values.



84

CHAPTER 7 Solution Implementation and

Verification

In order to implement the research hypothesis described in chapter 6, SQL needs

an enhanced comparison operator to select rows with unknown data values as pos-

sible matches (maybe-matches). Other enhancements are needed to create, update,

and delete tables using the KNOWN/UNKNOWN model. The capabilities and

constraints of an implementation of these extensions are specified in Appendix B.

7.1 Design

The KNOWN/UNKNOWN model for missing data can be implemented using either

one table to hold both known and unknown rows of data or separate tables that

closely follow the hypothesis model. The metadata for missing data values must be

stored in a separate table. Either approach will meet the conceptual model from the

user’s point of view, but there is a difference in processing one table twice versus

each of two smaller tables once.

Each approach can be implemented to produce a result set of three relations.

The advantages and disadvantages relate to performance and compatibility with

MySQL, the target DBMS. In all cases database client programs must be aware

of the model and able to process a relation variable result set containing the three

relations. The integrated known and unknown table design requires less intrusive

84



85

modification to MySQL because it allows changes to be made at a higher level of

abstraction requiring fewer changes to MySQL’s implementation.

7.1.1 Integrated known and unknown tables

An implementation that uses one table to store the complete and incomplete data is

well suited for the case when queries for exact matches are prevalent. If there are no

missing data values in a result set, the unknown and missing relations are returned

as empty tables. This approach may also reduce the necessity for temporary tables

used to hold intermediate results.

1. Initialize query result set relvar

• Create empty integrated table for result KNOWN and result UNKNOWN

• Create empty result MISSING table

2. Check for Attributes Projected

• Compare the columns specified in the query to the attributes defined for

the integrated table.

• Create a list of columns to be projected.

• Create a list of columns not to be projected.

• Restrict the missing data table using the list of columns to be projected

and store these rows in the result MISSING table.



86

3. Check for Exact match Restrictions

• If the search query has an exact match criteria, search the integrated

table for exact matches.

• Use the list of projected attributes to eliminate columns in each exact

match row.

• Store exact match rows not missing any data values and exact match rows

with missing data values in the integrated known and unknown table of

the result set.

4. Check for Maybe-match Restrictions

• If the search query has a maybe-match criteria, the missing table is

searched by attribute name for appropriate missing data tags and keys

which are retrieved for maybe-matches.

• Use these keys to retrieve maybe-match rows from the integrated table

and store the key, attribute, and tag triples in the result MISSING

table.

• Use the list of projected attributes to eliminate columns in each row of

maybe-matches.

• Store these rows in the integrated known and unknown table of the result

set.



87

5. Check for additional processing in the case of intermediate results

• If the integrated and missing tables are an intermediate result, continue

processing the query.

• If the integrated and missing tables are a complete result set, return the

results to the user.

6. Return result set relvar to the user

• Select rows from the integrated known and unknown table without a key

in the result MISSING table as the result KNOWN table.

• Select rows from the integrated known and unknown table with a key in

the result MISSING table as the result UNKNOWN table.

• The missing table created by this process is the result MISSING table.

The additional processing to present data to the user as separate tables is done

once. Separate tables of complete information and incomplete information are pre-

sented to the user as derived tables. Using this approach, the extensions to SQL

may be implemented in MySQL or its client by automated rewriting of the queries

into standard SQL.

Advantages

Queries search a single table for both exact matches and maybe-matches. If an item

is updated and made complete, it does not have to be deleted from the unknown table

and added to the known table. It is possible and straightforward to support both



88

the KNOWN/UNKNOWN model and SQL nulls in the same database. Backward

compatibility with missing data represented using null provides a migration path

for databases in which existing queries function indefinitely.

Disadvantages

All query result sets must be separated into known and unknown derived tables for

presentation to the user even for the case when the entire relvar is retrieved. If the

extensions to SQL are implemented in the client and rewritten into standard SQL,

intermediate results must be managed outside of MySQL.

7.1.2 Separate known and unknown tables

An implementation that strictly follows the conceptual model stores rows with miss-

ing data values in a table separate from known data values. This requires more

processing than the integrated table approach.

1. Initialize query result set relvar

• Create empty result KNOWN table

• Create empty result UNKNOWN table

• Create empty result MISSING table

2. Check for Attributes Projected

• Compare the columns specified in the query to the attributes defined for

the known and unknown tables.



89

• Create a list of columns to be projected.

• Create a list of columns not to be projected.

• Restrict the missing data table using the list of columns to be projected

and store these rows in the result MISSING table.

3. Check for Exact match Restrictions in the known table

• If the search query has an exact match criteria, search the known table

for exact matches.

• Use the list of projected attributes to eliminate columns in each exact

match row.

• Store exact match rows in the result KNOWN table.

4. Check for Exact match Restrictions in the unknown table

• If the search query has an exact match criteria, search the unknown table

for exact matches.

• Use the list of projected attributes to eliminate columns in each exact

match row.

• Use the result MISSING table’s key, attribute, and tag information to

determine if there is a missing data column and store the row in the

result KNOWN table or result UNKNOWN table.

5. Check for Maybe-match Restrictions



90

• If the search query has a maybe-match criteria, the metadata table is

searched by attribute name for appropriate missing data tags and keys

are retrieved for maybe-matches.

• Use the list of projected attributes to eliminate columns in each maybe-

match row.

• Use the result MISSING table’s key, attribute, and tag information to

determine if there is a missing data column and store the row in the

result KNOWN table or result UNKNOWN table.

6. Check for additional processing in the case of intermediate results

• If the known, unknown and missing tables are an intermediate result,

continue processing the query.

• If the known, unknown and missing tables are a complete result set,

return the results to the user.

7. Return result set relvar to the user

• result KNOWN table in the result set is presented to the user.

• result UNKNOWN table in the result set is presented to the user.

• result MISSING table in the result set is presented to the user.

Advantages

The separate table model is less complex once the required modifications that imple-



91

ment it are made to MySQL. MySQL efficiently manages intermediate result tables

needed for duplicate removal and subquery. If the key columns are not part if the

table projection and not in the result, synchronizing the required pseudo-keys shared

by the unknown and missing tables is less complex. Data presentation is straight-

forward. The modified MySQL will accept a single query and return a result set of

known, unknown, and missing tables even when one or more of these is empty.

Disadvantages

Storing known and unknown information in separate tables and managing both

tables as a single data store requires modification to MySQL. The separate table

method depends on keys being unique across both the known and unknown tables

and in the case of a key that auto increments, it must be shared by both tables. If

a column of missing data is removed from a table many rows of data may need to

be moved from the unknown table to the known table. Queries that do not rely on

table indexes must scan two tables for rows that match the search criteria. If missing

data values are classified as non-applicable or unknowable for security reasons, all

rows are in the unknown table and represented by one or more rows in the missing

data table. In this case, storage requirements for the database increase and may

impact performance.

7.1.3 Missing values metadata table

There is a tuple in this relation for each attribute with a missing data value. In-

formation explaining the classification of the missing data and why it is missing is



92

part of the database schema. Creating and maintaining this relvar component can

be done using either the integrated table or the separate table approach.

7.2 Implementation

A subset of the KNOWN/UNKNOWN model for missing data using the MySQL

embedded server was implemented using the C programming language [6]. This

implementation integrates the known and unknown tables in a single relation and

allows either an invalid data value or the SQL standard null as a place holder for

missing data. For tables that allow only null as a missing data indicator, queries

that refer to null as well as those that use the metadata in the MISSING table are

supported. The default for non-key attributes is to allow missing data including an

invalid value. The MISSING metadata table is available as a component of each

relvar and result. SQL is extended to include a MAYBE modifier for comparison

operators to allow the user to include maybe-matches in the query result set.

7.2.1 MyKU client

MyKU is a client program with a user interface that accepts SQL for exact and/or

maybe-matches and presents results as a KNOWN/UNKNOWN relvar or a single

relation for tables that use nulls. It has a lexical scanner generated using Flex [55]

and a parser generated using Bison [28] for SQL select statements derived from a

grammar written for a subset of SQL [37]. As SQL statements are parsed, MyKU

builds an abstract syntax tree (AST) which is used by the MyKU select query



93

rewrite logic to transform extended SQL into standard SQL. For every extended SQL

statement entered MyKU sends one, two or three queries to the MySQL embedded

server. A query may be for the KNOWN/UNKNOWN model’s relvar triple or

for one of its component relations. The result relvar for the KNOWN/UNKNOWN

model is presented to the user as a relvar triple which may include empty component

relations. MyKU appears to users much like the MySQL client with output in the

same basic format [30].

The MyKU flowchart for client component input and result presentation is shown

in Figure 3 and the source code is given in Appendix C. At program start, MyKU

connects to the embedded MySQL server and enters an input loop that continues

until an exit statement is entered. Each user statement is sent to the scanner and

parsed to determine if it is extended SQL. If the input is not extended SQL, it

is sent unchanged to MySQL. Otherwise, the input is sent to the query rewrite

component of MyKU and transformed into multiple SQL statements that are each

sent to MySQL. MyKU accepts the result tables from MySQL and presents the

output to the user.

The MyKU flowchart for select query rewrite is shown in Figure 4 and the source

code is given in Appendix D. To transform extended SQL into standard SQL,

branches of the AST for select, from, and where are visited and information is

gathered about columns, tables, and rows. All queries that return data have columns

for projection and may or may not restrict rows. Unions and products have more



94

than one table input and require additional handling. The rewritten queries for the

known, unknown, and missing tables are returned to be sent to MySQL.

MyKU client component flowchart

connect
MySQLstart input

data inputexit ?exit

parse input

extended
SQL?

rewrite std SQL

MySQLresults?error

print resultsinput

yes

no

yes
no

yes

no

Figure 3: MyKU user input component flowchart



95

MyKU select query rewrite flowchart

SQL query
rewrite

visit AST nodes return queries

select expression

where expression

from references

table 1 names

table 2 names

known SQL

unknown SQL

missing SQL

union?
create
union

product?
create
product

create
restrict

yes

no

yes

no

Figure 4: MyKU query rewrite component flowchart



96

Extended SQL using standard SQL

The KNOWN/UNKNOWN model uses the term “maybe” to modify the relational

comparison operators if possible matches between query search terms and attributes

missing data values are sought. These maybe-matches only make sense for missing

values that are applicable and could match once the missing data is known. This is

implemented using the keys returned from a search of the MISSING table for the

attribute named in the query with appropriate missing data tag values in order to

retrieve maybe-matches for the UNKNOWN table.

The extended SQL query for the test case from Table 39 in section 7.3.5 is shown

in Figure 5.

select * from my_names where mi MAYBE = ’F’;

Figure 5: Restrict my names to middle initials that maybe ’F’

The match criteria of this query is for middle initial (mi) values that are missing,

but could be equal to ’F’ if they were known. All rows that may match are in

the integrated known and unknown data table, but to find these rows a key value

is needed from the MISSING table where the missing attribute is “mi” and the

missing data tags match UNK, NYE, UND, INV or MIS. These rows are used to

create the UNKNOWN table in the result. The rows from the MISSING table are

also selected using the same attribute and tags to create the MISSING table in the

result. There are no exact matches so the KNOWN table in the result is empty.



97

The tags UNK, NYE, UND, INV and MIS are used to select applicable missing

data and to avoid inapplicable or unknowable data represented by tags N/A, REM

or NIL. A query that can find these keys is used as a subquery in standard SQL

shown in Figure 6 and the MyKU result of this query from section 6.5.8 is shown in

Figure 28.

# result_UNKNOWN
select * from my_names
where pk in (select pk from my_names_missing

where attr = ’mi’
and tag in (’UNK’, ’NYE’, ’UND’, ’INV’, ’MIS’));

# result_MISSING
select * from my_names_missing
where attr = ’mi’ and

tag in (’UNK’, ’NYE’, ’UND’, ’INV’, ’MIS’));

Figure 6: Restrict my names to middle initials that maybe ’F’

7.2.2 MyKU intermediate results

Each extended SQL query processed by MyKU needs to be rewritten as a query

for the KNOWN table, as a similar query for the UNKNOWN table, and as a

query for the MISSING table often with a subquery. In some cases more than one

subquery result may be needed as part of an intermediate results, but the extended

SQL query processing functions are not recursive.

One solution to this problem is to have MyKU generate standard SQL queries

that create derived tables (see Appendix E) and views (see Appendices F and G)

to serve as intermediate results, but this has the potential to create tables out of



98

synch with the MySQL integrated and missing tables. While MyKU was under

development, these tables were created using SQL scripts and changed as needed,

but were not incorporated into the MyKU program. This approach works well when

MyKU is used to search for matches without subqueries, but will not be feasible

when the integrated KNOWN/UNKNOWN relvar is to be updated using inserts

and deletes. The fix for the intermediate results problem is planned as future work

in chapter 10.1.1 and requires implementing the KNOWN/UNKNOWN model at a

lower level within the DBMS.

7.2.3 MyKU duplicate removal

While SQL does not require tables to have a key, the KNOWN/UNKNOWN model

requires a primary key for each table and it depends on the key to connect rows

with missing data values to the MISSING table.

The presence of unique keys in MyKU’s intermediate results means all rows are

unique during duplicate removal. Using projection to remove key attributes breaks

the connections between the rows in the UNKNOWN and MISSING tables. To

avoid this problem, if not present in a query, the primary key is forced into the

projection and results include duplicate rows. What is needed to solve this problem

is an implementation of the KNOWN/UNKNOWN model within the DBMS server

where the intermediate results are stored in data structures easily accessible by the

C programming language. This approach would allow actual keys or pseudo-keys

to be stored with intermediate results, but not processed as data during duplicate



99

removal. The fix for the duplicate removal problem is planned as future work in

chapter 10.1.2 and requires implementing the KNOWN/UNKNOWN model at a

lower level within the DBMS.

7.3 Verification

The verification of the KNOWN/UNKNOWN implementation compares the results

defined in chapter 6 to results from MyKU using the same test data shown in section

6.5.3 and as queried by MyKU in Figures 7 through 14 below.

Four of the five basic relational operations implemented in MySQL are imple-

mented in MyKU and are represented in the verification process. The missing op-

eration is set difference.

MySQL does not have a set difference operator and there is no reference to set

difference in the MySQL manual [52]. A search of the Internet for how to take the

difference between two tables using MySQL found several suggested workarounds,

but the INTERSECT and EXCEPT options for SQL JOIN [65] are not available in

MySQL. Set difference is an issue to be resolved as future work.

7.3.1 Four test cases



100

Figure 7: Case 1 (a) my names relvar

Figure 8: Case 1 (b) your names relvar



101

Figure 9: Case 2 (a) my names relvar

Figure 10: Case 2 (b) your names relvar



102

Figure 11: Case 3 (a) my names relvar

Figure 12: Case 3 (b) your names relvar



103

Figure 13: Case 4 (a) my names relvar

Figure 14: Case 4 (b) your names relvar



104

7.3.2 Cartesian Product

Figure 15: Case 1 product of my names and your names

The Cartesian product for case 1 shown in Figure 15 is the correct result for

Tables 14, 15, and 16.



105

Figure 16: Case 2 product of my names and your names

The Cartesian product for case 2 shown in Figure 16 is the correct result for

Tables 17, 18, and 19.



106

Figure 17: Case 3 product of my names and your names

The Cartesian product for case 3 shown in Figure 17 is the correct result for

Tables 20, 21, and 22.



107

Figure 18: Case 4 product of my names and your names

The Cartesian product for case 4 shown in Figure 18 is correct the result for

Tables 25, 24, and 25.



108

7.3.3 Set Union

MyKU is verified correct for set union using the first three test cases. The fourth

test case fails to correctly remove duplicate rows. The solution to this problem is

described with Figure 22.

Figure 19: Case 1 set union of my names and your names

The set union for case 1 shown in Figure 19 is the correct result for Table 26.



109

Figure 20: Case 2 set union of my names and your names

The set union for case 2 shown in Figure 20 is the correct result for Table 27.



110

Figure 21: Case 3 set union of my names and your names

The set union for case 3 shown in Figure 21 is the correct result for Table 28.



111

Figure 22: Case 4 set union of my names and your names

The set union for case 4 shown in Figure 22 is not the correct result for Table

29. MyKU failed to correctly create the set union using first, mi, and last columns

because it must have a key to connect the UNKNOWN rows to MISSING rows.

To ensure that the key is available, the query rewrite logic adds the key to any

projection of unknown and missing if it is not included. In this case “Hugh

Darwen” is not identified as a duplicated row because each row has a unique key.

Correcting this problem requires the fix for the duplicate removal problem

described in section 7.2.3.



112

7.3.4 Project

The test cases for projection rely on set union as an intermediate result. The rows in

the derived union of tables are created before columns are projected and duplicate

rows are not removed from the results. MyKU fails to correctly project attributes

from an intermediate set union for the reasons described in sections 7.2.2 and 7.2.3.

Additional explanation of the duplicate removal problem for set union can be found

with Figure 22.

Figure 23: Case 1 project from my names union your names

The projection of attributes from my names for case 1 shown in Figure 23 is

not the correct result for Table 30. MyKU did not remove the duplicate rows from

tables result UNKNOWN and result MISSING where PK is equal to 7.



113

Figure 24: Case 2 project from my names union your names

The projection of attributes from my names for case 2 shown in Figure 24 is

not the correct result for Table 31. MyKU did not remove the duplicate rows from

tables result KNOWN where mi is ’D’ or result UNKNOWN and

result MISSING where PK is equal to 7.



114

Figure 25: Case 3 project from my names union your names

The projection of attributes from my names for case 3 shown in Figure 25 is

not the correct result for Table 32. MyKU did not remove the duplicate rows from

tables result UNKNOWN and result MISSING where PK is equal to 7.



115

Figure 26: Case 4 project from my names union your names

The projection of attributes from my names for case 4 shown in Figure 26 is

not the correct result for Table 33. MyKU did not remove the duplicate rows from

tables result UNKNOWN and result MISSING where PK is equal to 7.

7.3.5 Restrict

MyKU is verified correct for row restriction for test cases one and three. MyKU

failed on test case two in which the restriction was to be applied to each table

in a derived KNOWN/UNKNOWN relvar. MyKU failed on test case four which

required the standard SQL rewritten from extended SQL to include a subquery on

the KNOWN and UNKNOWN tables.



116

Figure 27: Case 1 restrict of middle initial ’F’

The restriction shown for case 1 in Figure 27 is the correct result for Table 38.

Figure 28: Case 1 restrict of middle initial maybe ’F’

The restriction for case 1 shown in Figure 28 is an example of the MAYBE

modifier in the KNOWN/UNKNOWN model matching applicable, but missing

middle initials. This is the correct result from chapter 6 for test case 1 in Table 39.



117

Figure 29: Case 1 restrict of middle initial ’F’ or maybe ’F’

The restriction for case 1 shown in Figure 29 is an example of query that

combines exact matches and maybe-matches in the KNOWN/UNKNOWN model.

This is the correct result from chapter 6 for test case 1 in Table 40.

MyKU failed to correctly restrict the Cartesian product of my names and your names

to rows where middle initials in the product are equal as shown for test case 2 in

Tables 41, 42, and 43. In this case the match criteria must be applied to each com-

ponent of a derived intermediate result relvar. While SQL can be written to do this

specific query, MyKU does not support the necessary recursive query rewrite capa-

bility to create a correct result. The fix for the recursive querying (subqueries) (see

section 7.2.2) is planned for future work in section 10.1.1 and requires implementing

the KNOWN/UNKNOWN model at a lower level within the DBMS.



118

Figure 30: Case 3 restrict of my names union your names on equal and maybe

The restriction shown for case 3 in Figure 30 is the correct result for Table 44.

The query select a row by known first and last names or those whose middle initial

may be ’J’.



119

CHAPTER 8 Feasibility Study

The feasibility study evaluates user perception and understanding of missing data

and its representation. First, standard SQL and the KNOWN/UNKNOWN SQL

extensions were introduced and explained in a tutorial using hands-on examples (see

Appendices I and J). Next, the users executed a series of database queries from a

script (see Appendix K). This script recorded query results and answers to questions

about the results. The final script questions solicited participant opinions about the

clarity of the KNOWN/UNKNOWN model and alternative results presentations.

The goal was to evaluate the KNOWN/UNKNOWN model’s ability to represent

missing data in a meaningful way that makes it understandable and solves the

problem of providing adequate information about missing data.

The Virginia Commonwealth University (VCU) Institution Review Board (IRB)

evaluated the study proposal and determined it to be exempt from federal regu-

lations requiring documented informed consent. Participation was optional, risks

and benefits were clear, and participants were allowed to leave the study when they

chose.

119



120

8.1 Participant recruitment

Study participants were offered an SQL tutorial and a chance to participate in a

research study. Recruitment efforts included a brief presentation to undergraduate

computer science and information system classes where flyers were distributed pro-

moting SQL training for those willing to assist with database research (see Appendix

H). Flyers were posted on bulletin boards in the School of Engineering and the Busi-

ness School. Fifty-five students voluntarily attended one of three SQL tutorials and

thirty-six participated in this study.

There was a two-fold purpose for the SQL tutorial. First to attract feasibility

study participants. Secondly to ensure sufficient proficiency with SQL to successfully

participate in the study.

8.2 Tutorial and study

The topics of the standard SQL tutorial are described in Appendix I. Essential SQL

query operations needed answer questions were covered. The KNOWN/UNKNOWN

model and its extended SQL are described in Appendix J. The tutorial materials

include example queries presented with explanation, tutorial database tables, and

sample exercises. While the tutorial and the feasibility study use the same database,

the tutorial examples and the study script were different. Participants emailed the

completed script documents to the researcher.



121

8.3 Study results

Study results were collected from thirty-six scripts (see Appendix K) returned by

email. Fifteen script documents were either blank or essentially incomplete. Twenty-

one scripts were essentially complete and were used to document the study. This

section summarizes the responses to nine questions/query requests that could be

answered by the following methods:

• A text answer typed by the user.

• Marking a Yes, No, or Unsure.

• Entering a value on a scale of 1 (strong negative) to 5 (strong affirmative).

• The result of a user written query, cut from the client screen and pasted into

the script document.

• Commenting about one of the questions or answers in the script.

The test database (see Appendix L) has a table emp of employees in which missing

data is marked using null and a table person of the same employees (people) which

uses the KNOWN/UNKNOWN model. The first three questions are related to miss-

ing data represented using nulls and the last six refer to the KNOWN/UNKOWN

model. The emp table and the person relation variable are shown in the script with

missing data represented by blanks. The tables in the database use the representa-

tion being evaluated, either null or MISSING.



122

8.3.1 Nulls

Tables that use null and do not have the KNOWN/UNKNOWN MISSING table

to represent missing data values are supported transparently by the MyKU client

program. In the feasibility study the emp table was used for this section of the

study.

1. Which columns are missing a data value?

The purpose of this question was to develop familiarity with the script data by asking

participants to examine the emp table on paper and/or in the database. Thirteen of

the twenty-one answered this question correctly. The columns first, mi, and dob had

rows with blanks in the printed table and NULL in the database. Two answered

incorrectly, one identified two columns and another listed four. Six did not enter an

answer.

2. Using emp and IS NULL find employees whose middle initial is missing.

The goal of this question was to verify that participants could write a basic SQL

query to find rows with nulls. The notion that null is not a value and cannot

be matched using comparison operators that depend on values was covered in the

tutorial. Proof of success was a cut and paste of the results into the script document.

Nineteen of of twenty-one participants created the correct results. One selected

all rows in emp rather than only those with nulls in the mi column. Another typed

that “It gives me an error.”



123

3. Do you know why these middle initials are missing? How do you know?

The tutorial on missing data indicated that nulls mean a value is missing without an

identified reason. The purpose of this question was to determine if the user would

either state the obvious or go beyond what is known and make an assumption.

All participants showed an understanding of null and answered this pair of ques-

tions with a meaningful answer. A representative list follows:

• “No”

• “No. Information not known”

• “The ‘mi’ column is NULL”

• “I don’t know why”

• One answered that from the emp table it is not known why the middle initial

is missing except that they are not there and that he or she did not know how

to make the MISSING table appear.

Part 3.a. of this question asked for an opinion about the participant’s expecta-

tions for nulls on a scale from 1 (no) to 5 (yes). Thirteen answered that nulls met

expectations as the strongest yes with 5. Two answered as a strong yes with 4.

There was one 3 and three 2 suggesting that null only met or barely met expecta-

tions. Two did not answer this question.



124

8.3.2 KNOWN/UKNOWN MISSING data tags

The person relation variable includes person MISSING which is supported by the

MyKU client program. To validate the model study participants need to use the

extended SQL, write queries that can match missing data, and interpret the results.

In the feasibility study the person relvar tables were used for this section of the

study.

4. Using person find people whose middle initial is ’F’

This question started participants using a standard SQL query that works for both

nulls and the KNOWN/UNKNOWN model.

One of the twenty-one participants did not enter results or a comment for ques-

tions (4), but the other twenty were able to write a correct query and pasted correct

results into the script document.

5. Using person and MAYBE find people whose middle initial may be ’F’

This question asked participants to write an extended SQL query that searched the

UNKNOWN and MISSING tables for individuals who have a middle initial that

is not known, but not for those who do not have a middle name or initial. This

distinction has a role in question (7).

The purpose of this question was to write a KNOWN/UNKNOWN query equiv-

alent to the query for NULL in question (2).

Twenty participants were able to write this query and pasted correct results into



125

the script document.

6. Combine queries (4) and (5) to match middle initials that are or may be ’F’

This question asked participants to write an extended SQL query that combined

data from the representation of complete information in the KNOWN table with

data from the incomplete information in the UNKNOWN table using what is known

about the incomplete information from the MISSING table.

The purpose of this question was to encourage an understanding of how com-

plete and incomplete information are separated in the KNOWN/UNKNOWN model

before asking the participants to make judgments and offer opinions.

Twenty participants were able to write this query and pasted correct results into

the script document.

7. Why does the question (2) query return more rows than the question (5) query?

The goal of this question was to provoke thought about the query results from the

KNOWN/UNKNOWN model compared to the same basic query results from a table

using nulls. This is not a simple question with an obvious answer. The number of

rows in each query was the same, but the rows were different. While 95% of partic-

ipants had answered the previous questions and pasted the data needed to answer

this question, only two answers were completely accurate. A list of representative

answers follows:

• “Not sure”



126

• “I do not know”

• “They are equal”

• “I do not know, they seem to be the same.”

• “My 2 queries have the same number of rows (6)”

• “I got the same number, but I am guessing that one would be longer than the

other because the attribute value ’?’ is added to the group that has the null

attributes.”

• “While they have the same number of rows, the rows appear to be different.

EKEY 24 is not listed in query (2) and the mi is labeled ?. In query(2),

Andrew is listed twice as EKEY 14 and 26, in query (5), only once.”

• “False, they have the same number of rows (but different rows).”

An evaluation of this question, its goals, and the success of the best answers is

included in the summary of this chapter (see section 8.4).

8. Compare three different representations of equivalent results for one query.

The goal of this question was to determine the adequacy of the KNOWN/UNKNOWN

representation of missing data using the UNKNOWN and MISSING relations. The

script database is sufficiently small that it fits on a single page making it clear what



127

is missing and what is not, but the intent of asking for an evaluation of three models

is to see how well different models fit the participant’s knowledge framework.

The query results are for “All persons for whom the middle initial is missing.”

Each of the following three representations described below are shown in the script

document in Appendix K. The study participants were asked to rate how easy it is

to understand the data in the results on a scale where 1 is low and 5 is high clarity.

An invitation for comments was included.

Part 8.a. Model A

Model A is the KNOWN/UNKNOWN representation of missing data using the

UNKNOWN and MISSING relations. This representation is fully compliant with

the relational model. The presentation format is identical with the two relations

represented in the database.

1. Lowest clarity (1 participant rating)

2. Low clarity (3 participant ratings)

• “The Question mark doesn’t belong in this data set. It should be a null

area”

• “Having 2 different data sets makes it a little more difficult to interpret

the data.”

3. Clear (7 participant ratings)



128

• “It’s easy to read on inspection, but confusion might stem from table

headers in ”UNKNOWN” becoming attribute fields in ”MISSING””

• “It’s easier to know why it’s missing”

4. High clarity (6 participant ratings)

• “...[Model] A with the two tables is more descriptive as in what is missing

and what is tagged. Has more than one way to find [an explanation]”

• “The top table is showing all of the people who have unknown middle

initials. The bottom is showing why it is missing whether it is unknown,

N/A, etc. To me, it is pretty easy to understand.”

5. Highest clarity (4 participant ratings)

• “I think it’s extremely easy to understand. It’s clear enough why the

results came out the way they did (mi either missing or having a question

mark), and as long as you have some sort of reference to understand the

tags (though they’re still relatively clear) it seems anyone could figure

out what data is missing and for what reason.”

• “Model A had two tables but the tables seemed to go together a little bit

better.” [than the other cases]

• “It is pretty intuitive how the comparison between tables works; having

ekey”



129

Part 8.b. Model B

Model B is the UNKNOWN relation with the tag from the MISSING relation

projected as a column next to the column for which data is missing. The table

in this representation is compatible with the relational model, but is not union

compatible with the KNOWN relation. This means that it is an acceptable query

result, but it does not comply with the KNOWN/UNKNOWN model for missing

data.

1. Lowest clarity (no participant ratings)

2. Low clarity (no participant ratings)

3. Clear (8 participant ratings)

• “Easier because you’re showing the column that explains what classifica-

tion the missing mi falls under.”

• “[Model] B is better because the information is within in one table which

is more convenient.”

4. High clarity (8 participant ratings)

• “Better than model A”

• “It is better than [Model] A because it puts the information into one

table.”



130

• “I think it’s easier to understand just because it puts all the information

on one table instead of splitting it into two.”

• “I feel like Model B is the clearest of them all because it shows the

relationship of the mi and why they’re missing.”

• “This model is easier to understand because the information for why it

is missing is included right here on the table.”

• “Better because it is more compact, you can’t just look to the right on

your corresponding row.”

• “... Having both the mi and the mi TAG is helpful”

• “Better, they are right next to each other so its easier to see why”

5. Highest clarity (5 participant ratings)

• “Yes, yes, because it’s cleaner and reduces unnecessary data”

• “Better, it presents the explanation of the missing mi in a more visually

accessible way.”

• “Better than Model A. Model B provides the attribute to the missing

data within the table, making it easier to read.”

• “I like model B the best. Model C makes me think that UNK, N/A, or

INV are the actual middle names. Also, in cases like ekey 24, I think I’d

like to know what the invalid input is.”



131

Part 8.c. Model C

Model C is the UNKNOWN relation with the tag from the MISSING relation

projected in place of the column of missing data. This representation replaces a

missing data value of some domain type with a string of three characters which may

be an acceptable presentation for a query result, but if these tuples were in the same

relation as complete information, the mi domain would have to support multiple

data types (i.e. a single character and a string of three characters). The relational

model requires that all values in a domain be of the same type.

1. Lowest clarity (4 participant ratings)

• “Mi intuitively would signify middle initial, but instead you had symbols

in as the attributes implying some kind of code.”

• “Worse since this replaces the mi with the type of unknown it is. Thus

it would be confusing when comparing to something with an actual mi.”

2. Low clarity (1 participant rating)

• “Worse than model A and B”

3. Clear (3 participant ratings)

• “Better because that ’?’ is gone and the mi just displays the status of

the missing mi.”



132

• “Worse, does not specify attributes missing which makes person have to

do more reference”

4. High clarity (5 participant ratings)

5. Highest clarity (8 participant ratings)

• “This is by far my favorite; I like the fact that it tells you why the data

is missing in the very spot the data should be.”

• “It is better than both Model A and B. The table already includes the

values such as ”Unknown,” etc in those fields. We only have have to look

at one column.”

• “It’s better than both because the data is compactly organized and the

inclusion of the mi field seems almost useless in this case.”

• “About the same, collapsing the two columns together offers about the

same readability.”

9. Participant opinions requested as “Observations:”

This part of the study solicited the opinion of the participant as an SQL user based

on all previous knowledge and experience as well as participation in the tutorial and

feasibility study.

Question 9.a. asked if missing data tags provided more information than nulls.

• Yes (19 participant responses)



133

• No (1 participant response)

• Unsure (1 participant response)

Question 9.b. asked if the participant saw a benefit to representing missing data

with tags in a DBMS.

• Yes (19 participant response)

• No (1 participant response)

• Unsure (1 participant response)

Question 9.c. asked the participant how intuitive he or she found the MAYBE

modifier.

1. Lowest intuitiveness (no participant ratings)

2. Low intuitiveness (1 participant rating)

3. Clear (6 participant ratings)

4. High intuitiveness (8 participant ratings)

5. Highest intuitiveness (6 participant ratings)



134

8.4 Feasibility study summary

The goal of this study was to determine if the KNOWN/UNKNOWN model is able

to represent the available information about missing data values in a way that is

understandable to users and meets their needs.

8.4.1 Context

There is not sufficient data from the feasibility study to reach statistically significant

conclusions, but study participant responses suggest reasonable observations. The

study allows comparisons between the experiences of novice SQL users with the

representation of missing data using the standard SQL null and the KNOWN/

UNKNOWN model. These comparisons are significant.

8.4.2 Observations about nulls

Study participants quickly grasped the idea that a null represents a missing data

value in a table row and column. A majority of participants were able to correctly

answer questions about null, write queries to match null, express that it cannot be

known why a data value marked by null is missing, and accept that standard SQL

cannot be used to query why data is missing. Four participants did indicate that

null did not meet expectations. One participant tried to find the data he or she

knew would be in the MISSING table of the KNOWN/UNKNOWN model, the

emp table could not provide this information.



135

8.4.3 Observations about KNOWN/UNKNOWN

Study participants grasped the idea that the metadata in the MISSING table

identified which data values were missing and explained why the data was miss-

ing. Ninety-five percent were able to incrementally write correct queries using the

MAYBE modifier a short time after a brief introduction. Most had opinions about

the best presentation for incomplete information metadata that varied from a prefer-

ence for short, concise reports in one table to a preference for complete and accurate

information about what was missing and why, even if it was more difficult to inter-

pret.

8.4.4 Analysis of missing data using metadata

Two of the twenty-one participants were able to determine the correct answer to a

complex and confusing question expressed in a simple form.

Question (7):

“Why does the question (2) query return more rows than the question (5) query?”

To answer this question, study participants needed to analyze the differences between

a query for nulls from table emp and a query for attributes that MAYBE equal an

unknown value from relvar person. Using the KNOWN/UNKNOWN model an

attribute that may be one value may be any value, if it is unknown, but its attribute

is applicable.

There were two good answers, but the best answer to question (7):



136

“False, they have the same number of rows (but different rows).”

Question (7) is an indirect question. It is a false statement because query results

for questions (2) and (5) have the same number of rows, but they are not the same

rows. The real question is, if the results for questions (2) and (5) do not represent

the same information, why not?

The study participant who entered the best answer also included a comment at

the end of the script document describing his or her efforts to investigate the differ-

ence between two fundamentally similar queries for missing data. This individual

intuitively knew that investigation was necessary, knew where to start, and tried the

following:

In question 2, I couldn’t figure out how to get the reasons
for being null to show up. I tried the queries:

select EKEY, FIRST, MI, LAST from EMP where MI maybe IS NULL;
select EKEY, FIRST, MI, LAST from EMP where MI maybe = NULL;
select EKEY, FIRST, MI, LAST from EMP where MI maybe = NULL;

To no avail.

A tutorial on investigation techniques for the KNOWN/UNKNOWN metadata

would train both participants who gave correct answers to question (7) how to fully

explain why their answers were correct. An example of how this would be done

follows below.

An analysis of question (2)

The query from question (2) shown in figure 31 has six rows and includes “Andrew

Warden” twice, but “David McGoveran” who has an invalid middle initial (i.e. a

question mark ‘?’ instead of a null) is not included.



137

Figure 31: Query results for feasibility study question 2

An analysis of question (5)

Figure 32: Query results for feasibility study question 5

The query from question (5) shown in figure 32 also has six rows and includes



138

“David McGoveran” whose middle initial is tagged as an invalid data value for an

attribute that is applicable to the row, but “Andrew Warden” appears once with a

middle initial tagged as withheld at input. An awareness that null is not a value and

a careful comparison of the two results sets can explain why “David McGoveran”

does not appear in the answer to question (2). The question mark is not a middle

initial and was probably used as a sentinel value during data entry to indicate that

the middle initial was missing. This is an example of information lost between data

collection and data reporting in a way that is confusing.

An analysis of question (7)

Investigation as shown in figure 33 is necessary to determine why “Andrew Warden”

appears twice in the question (2) query and only once in the question (5) query. A

query for ekey, first, mi, last columns for all rows in the person UNKNOW table

shows results with both instances of “Andrew Warden” and conflicting reasons for

the missing middle initial. This is also confusing, but it includes enough information

to suggest a resolution to the problem (i.e. each row represents the same individual,

”Andrew Warden” was entered into the database twice, he does not have a middle

initial for one of two possible reasons, and when it is determined what his middle

initial is or why he has no middle initial, the problem can be corrected).



139

Figure 33: Query results to investigate feasibility study question 7

8.4.5 Study conclusion

The ability of study participants to learn SQL querying in less than an hour and

use it as needed to answer questions about missing data in standard SQL tables

using nulls and in KNOWN/UNKNOWN relvars using extended SQL and metadata

indicates that the participants were capable and qualified to compare the two models

for missing data and offer opinions.

Ninety-five percent were able to work with missing data and answer questions

(see section 8.3.2). Twenty of the twenty-one participants who completed the study



140

script used the KNOWN/UNKNOWN model to write correct queries for questions

(4), (5), and (6) and answered question (9.c) indicating that the maybe modifier

was clearly intuitive. Nineteen of the twenty-one participants answered “yes” to

questions (9.a) agreeing “tags” provide more information than “nulls” and (9.b)

acknowledging the representation of missing data with “tags” to be beneficial.

Ten percent were able to see the subtle difference between nulls and metadata.

Two of the twenty-one participants who completed the study script correctly identi-

fied the issue raised by question (7) and attempted to determine why matching nulls

in the emp table and matching maybe-tuples in the person relvar retrieved rows

representing different people (see section 8.4.4). The study suggests that a majority

of participants found the KNOWN/UNKNOWN model sufficiently intuitive to un-

derstand it and use it while a small group showed the potential to use its represent

ion of missing data to resolve complex problems related to incomplete information.



141

CHAPTER 9 Conclusion

If a database permits missing data, it should be supported and its representa-

tion must be natural for the user. This requires a coherent implementation in the

DBMS with a clear demarcation between the system’s responsibilities and the user’s

responsibilities.

The relational database model in this research allows complete information and

incomplete information to exist in the same relation variable, but places missing

data values in a separate category. Metadata that can explain what is missing and

why, is included in the system catalog and in the relvar. It is possible to write

queries for exact matches, maybe-matches or both. Additionally, users can query

the MISSING table to learn more about the missing data.

9.1 Metrics

One of the problems with using null to represent missing data values is that users

become aware of nulls in a database when a query result is confusing. SQL nulls

are known to give incorrect results [68, p.510]. Statistics that compare complete

information to incomplete information in relational databases and query results are

not available. 1 Most databases are missing some values [11, p.24] [18, p.314], but the

1An extensive search of the Internet and literature found matches to search terms such as
relational DBMS statistics, frequency of query, missing or incomplete data, and null, but no
study of or reference to complete information contrasted with missing data.

141



142

focus for database usage is queries written to match known information and answer

questions. To take advantage of a better representation for incomplete databases,

a method to investigate the impact of missing data on query results is needed.

In addition to the main purpose of the KNOWN/UNKNOWN model, it can also

provide missing data metrics that show how much information is missing from a

relation variable. These metrics are calculated using SQL and are a first step in

investigating missing data’s impact on results.

A relvar’s lack of completeness can be measured as value in the range [0, 1]

using equation (2) where function Card() returns the cardinality of a relation. The

smaller this value, the more complete the specified relvar.

Relvar incompleteness (R) =
Card(R unknown)

Card(R known) + Card(R unknown)
(2)

A measurement of how many data values may be missing from the relvar ranges

from a minimum of zero to a maximum of all possible missing attributes in the

UNKNOWN relation. The range of this measurement depends on the function

Degree() to return the number of attributes in a tuple or a tuple’s key. The smallest

degree of a relation is one because relations require keys, but no key may have a

missing value therefore the minimum number of attributes that can have a missing

value is zero. The minimum and maximum number of possible missing data values



143

in a tuple are defined in equation (3).

Tuple metrics :


min tuple(R) = 0

max tuple(R) = Degree(R) − Degree(R key)

(3)

The actual current number of missing data values in a relation variable is the car-

dinality of the MISSING relation. This measurement and the range from the min-

imum of zero to the maximum possible number of missing values in a relvar are

defined by the functions in equation (4).

Relvar metrics :


min relvar(R) = min tuple(R)

cur relvar(R) = Card(R missing)

max relvar(R) = max tuple(R) × Card(R unknown)

(4)

The ratio of the number of tuples in the missing relation to the total number of

tuples in the known and unknown relations is the average number of missing data

values for each tuple in the relvar as shown in equation (5). This measures a level of

how incomplete a relvar is at any moment. A value of zero indicates that the relvar

is complete. A value above zero indicates that data is missing. This measurement’s

upper bound is the max tuple(R). As the value of this metric approaches its upper



144

bound, the more incomplete the relvar. The smaller this metric is the better.

Tuple avg (R)


0 when Card(R unknown) = 0

=
Card(R missing)

(Card(R known) + Card(R unknown))

(5)

Use of these metrics allows the user to be aware of missing data’s possible impact

on query answers.

9.2 Advantages of KNOWN/UNKNOWN model

The KNOWN/UNKNOWN model is an improved representation for missing data

that complies with the relational model.

9.2.1 New model avoids problems of null

In the SQL standard, null is an indicator rather than a value. A query for IS NULL

can find attributes that do not have a data value, but there is no interpretation

beyond missing data.

In the KNOWN/UNKNOWN model an attribute missing data may contain an

invalid value or no value, but metadata about what is missing and why is stored as

data values in relations.

The KNOWN/UNKNOWN model supports searching for attributes that do not

have a data value by category (class and type). Class explains the relationship

(applicable, invalid, non-applicable or unknowable) of the missing data to the item

the known data would describe. Types explain why the data is missing (unknown,



145

not yet known, withheld by user, not applicable, or removed for reason).

9.2.2 Metadata available to user and DBMS

More information about missing data is available at data entry than can be rep-

resented in other missing data models. A data entry application able to capture

information about missing data can use the KNOWN/UNKNOWN model to store

this information as metadata. This metadata is a component of each relational

database that implements the KNOWN/UNKNOWN model.

The DBMS uses the metadata to make processing decisions related to missing

data.

For database users, the advantage of using metadata is two-fold. First, complete

information about missing data allows the user to interpret query results and reach

a meaningful conclusion or determine why a conclusion is not possible. Second, by

knowing all that was known at data entry, the user may determine how to seek the

missing data and update the database.

9.2.3 Backward compatibility with nulls

The KNOWN/UNKNOWN model is backward compatible with the SQL standard

for missing data using nulls and 3-valued logic. Legacy databases, queries, and

applications that rely on null can remain in use during the transition from the SQL

standard to the KNOWN/UNKNOWN model.

If there are no metadata tables, the DBMS processes missing data using nulls



146

returning a single table in the result set. There is a need for a technique that allows

database users to select between models when there is a choice (see chapter 10).

While the choice between null and metadata is always available, its purpose is to

provide a straightforward migration path from the SQL standard to the KNOWN/

UNKNOWN model.

9.2.4 Database maintenance and application development

The primary purpose of metadata is to increase the information content of query

results, but metadata can be used to evaluate the state of a database.

Queries that combine exact matches and maybe-matches can be used to find

duplicates inserted using generated keys instead of domain keys. If an item is added

to the database before all data values are available, it must be updated later. When

an update is inserted as if it is new data, there is now a maybe-duplicate item in

the database. The KNOWN/UNKNOWN metadata can be used to find this kind

of error.

If an attribute is no longer applicable to any database item, it may be feasible to

delete the attribute from the database. Being aware that a query creates result sets

with SQL generated missing values allows the user to develop a different query for

the same information or modify the presentation of the result set to reduce confusion.

The well-defined metadata component of the KNOWN/UNKNOWN model sup-

ports database development during application design. Documented categories for

missing data and the capability for expansion encourages planning for missing data.



147

If missing data is needed in the application, the use cases developed during project

planning contribute to application validation and may be used in regression testing.

9.2.5 Database metrics for missing data

There is not enough information about missing data in the SQL standard null rep-

resentation to support database metrics. The capability to measure missing data

by category provides a method to check database completeness and offers addition

research opportunities.

9.3 Summary

The KNOWN/UNKNOWN model provides an improved representation for data

values that are missing from a relational database. This representation maps to

a presentation that is intuitive to use and supports the interpretation of missing

data (see section 8.4.5). The separate categories for complete and incomplete data

model the real world in a way that is consistent with the relational model and the

closed-world assumption. The metadata in this model helps explain the incomplete

information. Understanding what is missing and why improves data administra-

tion and can facilitate database update by identifying data values that need to be

retrieved from the real world.



148

CHAPTER 10 Future Work

This research identifies an improved representation for missing data in the rela-

tional model, but it is only a start towards a useful DBMS implementation.

10.1 Complete implementation of model in MySQL

The MySQL embedded server was initially used to implement a query only version

of the KNOWN/UNKNOWN model and not a complete DBMS. Implementing the

full model in the server requires changes to MySQL’s threading structure and its

subsystem. To do this requires a detailed knowledge of MySQL’s internal data

structures and functions.

MyKU has served as a prototype which will be replaced by a complete solution.

Brooks [9, p.116] suggests programmers should expect to throw away the first version

of any system. A plan for a complete implementation of the KNOWN/UNKNOWN

model begins with an evaluation of what works in the MyKU client and query

rewrite components, what failed in the initial MyKU implementation (i.e. access to

intermediate results and problems with duplicate removal), and what is needed in a

full implementation. The second version of the system will build from MyKU using

step-wise refinement towards a complete integrated model in the MySQL DBMS. As

each MyKU refinement is developed, the MySQL internal data structures, processes,

148



149

and functions will be investigated and documented.

10.1.1 Intermediate results

The steps required to create a KNOWN/UNKNOWN result using an integrated

known and unknown table (see section 7.1.1) indicate the need for intermediate

result tables. These table may be temporary, but must persist during both iterative

and recursive processing by complex queries that project from a union or a product

and for queries that rely on subqueries. In some cases more than one subquery result

may be needed requiring more than one stage for an intermediate result.

This approach is a refinement towards an implementation in the MySQL DBMS.

If it is feasible to create multiple temporary tables using SQL written by MyKU, an

implementation of a KNOWN/UNKNOW relvar in MySQL is also feasible.

10.1.2 Duplicate removal

While SQL does not require tables to have a key, the KNOWN/UNKNOWN model

requires a primary key for each table and it depends on the key to connect rows

with missing data values to the MISSING table. The current approach of MyKU

forces the primary key into any projection of rows with unknown values represented

in the MISSING table to maintain the connection between unknown and missing

tables. This makes duplicate removal a problem.

The presence of unique keys in MyKU’s intermediate results means all rows are

unique and not duplicated, it is necessary to manage an intermediate result using



150

a different approach. A projection of a join without keys from UNKNOWN and

MISSING into a temporary intermediate result table would eliminate duplicates in

the intermediate results. The pseudo-key could then be added when the result relvar

is projected from this intermediate result. Another way to do this is to project only

specified columns into a temporary table in which all columns are part of the key

and use the duplicate key constraint to eliminate duplicate rows as they are inserted.

Using one of these approaches is a refinement towards an implementation in

the MySQL DBMS. If it is feasible to create multiple temporary tables using SQL

written by MyKU, an implementation in MySQL using its method for duplicate

removal is also feasible.

10.1.3 MyKU client

The MyKU program’s client components accept SQL statements from the user, send

SQL statements to the scanner/parser, send SQL statements to the MySQL DBMS,

and present either a KNOWN/UNKNOWN relvar or single relation result to the

user. Each of these components is needed in an improved MyKU and as part of a

DBMS version of the KNOWN/UNKNOWN model.

Query parser

The abstract syntax tree representation of SQL statements in MyKU is created once

and may be used many times. After using the AST, its allocated memory is freed

before the next statement is parsed. During initial development of MyKU it was



151

useful to visit the AST nodes to determine how queries could be rewritten. Now

the AST is only visited once and storing only what is needed as it is parsed is a

more efficient approach. This is the method used by MySQL. Replacing the AST

in MyKU is another step toward moving the KNOWN/UNKNOWN model into the

DBMS.

Information schema

Information from the database schema is needed to expand MyKU’s ability to man-

age intermediate results and rewrite queries. In the next iteration of MyKU schema

data will be read using SQL and stored in MyKU data structures. Backward com-

patibility with nulls should be implemented using the schema and a first step is to

determine if a table has a MISSING relation or not. This is a step toward moving

the KNOWN/UNKNOWN model into the DBMS where direct access to the schema

is possible.

10.1.4 MySQL DBMS

The complete solution to the missing data problem implementing the KNOWN/

UNKNOWN model in MySQL uses the integrated known and unknown table design

(see section 7.1.1). This design option marks attributes missing data values using

the null bit and metadata from a corresponding MISSING table. This is the second

version of the KNOWN/UNKNOWN model.



152

Lexical scanner

MySQL uses a hand-written scanner which will have to be modified to add tokens

needed for the MAYBE operator and missing data tags for table definitions.

Statement parser

MySQL uses a parser generated by Bison [28] and its SQL grammar will require

changes to add the KNOWN/UNKNOWN extensions to SQL. Some of these changes

can be taken from the grammar used in the MyKU embedded server subset, but

MySQL’s grammar is significantly more complex. Adding the KNOWN/UNKNOWN

model to the MySQL thread structure during statement parsing is a necessary step.

Backward compatibility

A modification to allow standard SQL nulls to represent missing data or the MISSING

table in a way that makes sense to the user is needed. The current version evaluates

a query and if it includes the IS NULL string or if the table is identified as using

nulls only, a single query is passed to MySQL. What is needed is a check in MySQL

for the existence of the MISSING table and a check for a preferred mode of either

NULLS or KNOWN/UNKNOWN. Using a mode switch for queries supports selec-

tion of a missing data representation in a way that allows both missing data models

to coexist.



153

10.1.5 Set difference

MySQL does not provide set difference. If this can be implemented for the KNOWN/

UNKNOWN model, it will have to be done in the MySQL server. A workaround

for set difference using a test for EXIST/NOT EXIST with a subquery is feasible

when support for recursive queries (subquerying) is implemented in MySQL server

for the KNOWN/UNKNOWN model.

10.2 Query analyzer to identify tautologies

The query parser can use resolution to reduce complex queries to a simpler logic.

Removing complexity and representing a query as predicate that is a conjunction

or a disjunction is a method that can identify some tautologies. Some research

will be required to determine if this is feasible. Codd asserted that this problem is

unsolvable in a general way using predicate logic [14, p.64].

10.3 Modifications identified from acceptance study

10.3.1 Presentation

A significant number of feasibility study participants expressed a preference for query

results presented in a single table with missing data tags either next to or in place of

the missing data column (see section 8.3.2). While not compliant with the relational

model or the KNOWN/UNKNOWN model, it is feasible to include these alternate

presentations as query options in a database client program. This feature is part of

the user application, but if it is used often the DBMS could support it as an option.



154

10.3.2 MAYBE operator

Querying for maybe-tuples using the MyKU implementation requires that the com-

parison operators include a MAYBE modifier. This modifier indicates missing data

matches by class and type (i.e. tag) using metadata in the MISSING table. Feasi-

bility study participants often incorrectly used MAYBE as an operator. This makes

sense intuitively. There is no difference between the concept of missing data values

being MAYBE equal and being MAYBE not equal. Changing MAYBE to a com-

parison operator is feasible and does not change the KNOWN/UNKNOWN model.

10.3.3 Query missing data by tag

Feasibility study participants learned to search for null using the IS NULL and

attempted to search for KNOWN/UNKNOWN missing data using IS UNK or IS

N/A as match criteria. This kind of match criteria is possible, but is constrained by

flexible support for missing data types (see section 10.4).

10.4 Missing data types and metadata

The KNOWN/UNKNOWN model is designed to allow modifications to the types

of missing data in the metadata. It is necessary to allow the range of missing data

types to be established when tables are created or altered. It should be possible to

allow, restrict, or expand missing data types as required by database design.



Bibliography

155



156

Bibliography

[1] Serge Abiteboul and Nicole Bidoit. Non first normal form relations to repre-
sent heirarchically organized data. In Proceedings of the Third ACM SIGACT-
SIGMOD Symposium on Principles of Database Systems, (Waterloo, Apr.1984),
pages 191–200, New York, NY, USA, 1984. ACM.

[2] Actian. Ingres 10.0 SP1 SQL Reference Guide. Actian Corporation, Redwood
City, CA, 2012.

[3] ANSI SPARC/DBMS Study Group. Reference model for dbms standardization
(interim report). ACM SIGMOD Record, 7(2):1–140, 1975.

[4] Daniel Barbara, Hector Garcia-Molina, and Darl Porter. The management of
probabilistic data. IEEE Transactions on Knowledge and Data Engineering,
4:487–502, 1992.

[5] Lynn Beighley. Head First SQL. O’Reilly, Sebastopol, CA, 2007.

[6] Charles A. Bell. Expert MySQL. Apress, Berkeley, CA, 2007.

[7] Joachim Biskup. A foundation of Codd’s relational maybe-operations. ACM
Transactions on Database Systems, 8:608–636, 1983.

[8] Robert Bosak, Richard F. Clippinger, Carey Dobbs, Roy Goldfinger, Renee B.
Jasper, William Keating, George Kendrick, and Jean E. Sammet. An Informa-
tion Algebra: Phase 1 Report—Language Structure Group of the CODASYL
Development Committee. Communications of the ACM, 5:190–204, 1962.

[9] Frederick P. Brooks. The Mythical Man-Month: Essays on Software Engineer-
ing. Addison-Wesley, Boston, MA, 1995. 2nd Edition (Anniversary Edition).

[10] E. F. Codd. A Relational Model of Data for Large Shared Data Banks. Com-
munications of the ACM, 13(6):377–387, 1970.

[11] E. F. Codd. Understanding Relations (Installment #7). ACM SIGMOD Record,
7(3-4):23–28, 1975.

[12] E. F. Codd. Extending the Database Relational Model to Capture More Mean-
ing. ACM Transactions on Database Systems, 4(4):397–434, 1979.



157

[13] E. F. Codd. Relational Database: A Practical Foundation for Productivity.
Communications of the ACM, 25(2):109–117, 1982.

[14] E. F. Codd. Missing Information (Applicable and Inapplicable) in Relational
Databases. ACM SIGMOD Record, 15(4):53–78, 1986.

[15] E. F. Codd. The Relational Model for Database Management: Version 2.
Addison-Wesley, Reading, MA, 1990.

[16] Hugh Darwen. How To Handle Missing Information Without Using NULL.
First presented at Warwick University 2003 updated 2006, September 2006.
http://www.dcs.warwick.ac.uk/ hugh/TTM/Missing-info-without-nulls.pdf.

[17] S. K. Das. Modal logics in the theory of relational databases. Information
Processing Letters, 57(1):1–7, 1996.

[18] C. J. Date. ‘Null Values in Database Management’ in Relational Database:
Selected Writings. Addison-Wesley, Reading, MA, 1986.

[19] C. J. Date. ‘NOT Is Not “Not”!’(Notes on Three-Valued Logic and Related
Matters) in Relational Database Writings 1985-1989. Addison-Wesley, Reading,
MA, 1990.

[20] C. J. Date. ‘Notes Toward a Reconstituted Definition of the Relational Model
Version 1 (RM/V1)’ in Relational Database Writings 1989-1991. Addison-
Wesley, Reading, MA, 1992.

[21] C. J. Date. ‘Oh No Not Nulls Again’ in Relational Database Writings 1989-
1991. Addison-Wesley, Reading, MA, 1992.

[22] C. J. Date. ‘The Default Values Approach to Missing Information’ in Relational
Database Writings 1989-1991. Addison-Wesley, Reading, MA, 1992.

[23] C. J. Date. An Introduction to Database Systems. Pearson Education, Boston,
MA, 2004. 8th edition.

[24] C. J. Date and Hugh Darwen. Databases, Types, and the Relational Model: The
Third Manifesto. Addison-Wesley, Reading, MA, 2007. 3rd edition.

[25] Guy de Tre, Rita de Caluwe, and Henri Prade. Null values in fuzzy databases.
Journal of Intelligent Information Systems, 30(2):93–114, 2008.

[26] Debabrata Dey and Sumit Sarkar. A probabilistic relational model and algebra.
ACM Transactions on Database Systems, 21:339–369, 1996.



158

[27] Debabrata Dey and Sumit Sarkar. A probabilistic relational model and algebra.
IEEE Transactions on Knowledge and Data Engineering, 14:485–497, 2002.

[28] Charles Donnelly and Richard Stallman. GNU Bison version 2.4.1 (Manual).
Free Software Foundation, Boston, MA, 2008.

[29] Didier Dubois and Henri Prade. Necessity Measures and the Resolution Prin-
ciple. IEEE Transactions on Systems, Man, and Cybernetics, SMC-17(3):474–
478, 1987.

[30] Paul DuBois. MySQL (Developer’s Library). Addison-Wesley, Reading, MA,
2008. 4th edition (first printing).

[31] Norbert Fuhr. A probabilistic framework for vague queries and imprecise in-
formation in databases. In Proceedings of the 16th International Conference on
Very Large Data Bases, VLDB ’90, pages 696–707, San Francisco, CA, USA,
1990. Morgan Kaufmann Publishers Inc.

[32] G. H. Gessert. Handling Missing Data by Using Stored Truth Values. ACM
SIGMOND Record, 20(3):30–42, 1991.

[33] John Grant. A Non-Truth-Functional 3-Valued Logic. Mathematics Magazine,
47(4):221–223, 1974.

[34] John Grant. Null Values in a Relational Data Base. Information Processing
Letters, 6(5):156–157, 1977.

[35] John Grant. Incomplete information in a relational database. Annales Societalis
Mathematicae Polonae, 3(3):363–378, 1980.

[36] Jan L. Harrington. Relational Database Design Clearly Explained. Morgan
Kaufmann, San Francisco, CA, 2002. 2nd edition.

[37] John R. Levine. flex & bison. O’Reilly, Sebastopol, CA, 2009.

[38] Witold Lipski, Jr. On Semantic Issues Connected with Incomplete Information
Databases. ACM Transactions on Database Systems, 4(3):262–296, 1979.

[39] Ken-Chih Liu and Rajshekhar Sunderraman. A Generalized Relational Model
for Indefinite and Maybe Information. IEEE Transactions on Knowledge and
Data Engineering, 3(1):65–77, 1991.

[40] Zongmin Ma. Fuzzy Database Modeling of Imprecise and Uncertain Engineering
Informations. Springer, Berlin, 2006.



159

[41] Daniel McNeill and Paul Freiberger. Fuzzy Logic. Simon & Schuster, New York,
NY, 1993.

[42] J. M. Medina, M. A. Vila, J. C. Cubero, and O. Pons. Towards the implemen-
tation of a generalized fuzzy relational database model. Fuzzy Set and Systems,
75:273–289, 1995.

[43] Microsoft. Microsoft Office Access 2003. Microsoft Corporation, Redmond,
WA, 2003. Office Help System.

[44] Microsoft. Transact-SQL Reference. Microsoft Corporation, Redmond, WA,
2012. http://msdn.microsoft.com.

[45] Marion R. Morrissett and Lorraine M. Parker. Handling missing data in rela-
tional databases: A survey. Submitted for publication, unpublished manuscript.

[46] Marion R. Morrissett and Lorraine M. Parker. Implementation of a new
model for missing data in relational databases. In preparation, unpublished
manuscript.

[47] Marion R. Morrissett and Lorraine M. Parker. A new model for missing data
in relational databases. Submitted for publication, unpublished manuscript.

[48] Marion R. Morrissett, Larry R. Williams, Jr., and Lorraine M. Parker. A
survey of fuzzy data with respect to its storage and retrieval. Submitted for
publication, unpublished manuscript.

[49] Amihai Motro. Sources of uncertaintiy, imprecision, and inconsistency in in-
formation systems. In Amihai Motro and Philippe Smets, editors, Uncertainty
Management in Information Systems from Needs to Solutions. Kluwer Aca-
demic Publishers, Boston, MA, 1996.

[50] T. William Olle. The Codasyl Approach to Data Base Management. John Wiley
& Sons, Chichester, UK, 1978.

[51] Oracle. ask Tom. Internet, January 2012. http://asktom.oracle.com.

[52] Oracle. MySQL 5.1 Reference Manual. Oracle Corporation, Redwood Shores,
CA, 2012.

[53] Oracle. Oracle Database SQL Reference 11g Release 2. Oracle Corporation,
Redwood City, CA, 2012.



160

[54] Fabian Pascal. The Final Null in the Coffin: A Proposed Rela-
tional Solution to Missing Data. Internet, pages 1–29, January 2011.
http://www.dbdebunk.com/publications.html.

[55] Vern Paxson. Flex, version 2.5 (Manual). University of California, Berkeley,
CA, 1995.

[56] Frederick E. Petry. Fuzzy Databases Principles and Applications. Kluwer Aca-
demic Publishers, Boston, MA, 1996.

[57] PostgreSQL Global Development Group. PostgresSQL 9.2.3 Documentation.
PostgreSQL Global Development Group, Internet Community, 2013.

[58] Raymond Reiter. On Clossed World Databases. In H. Gallaire and J. Minker,
editors, Logic and Databases. Plenum Press, New York, NY, 1978.

[59] Raymond Reiter. Data bases: A logical perspective. ACM SIGMOD Record,
11(2):174–176, 1980.

[60] Raymond Reiter. A sound and sometimes complete query evaluation algorithm
for relational databases with null values. Journal of the ACM, 33(2):349–370,
1986.

[61] Mark A. Roth, Henry F. Korth, and Abraham Silberschatz. Extended Algebra
and Calculus for Nested Relational Databases. ACM Transactions on Database
Systems, 13(4):389–417, 1988.

[62] Fernando Sanez-Perez. Datalog Educational System V2.4 User’s Manual. Uni-
versidad Complutense de Madrid, Madrid, Spain, 2011.

[63] Margo Seltzer. Beyond Relational Databases. Communications of the ACM,
51(7):52–58, 2008.

[64] Technical Committee Group NCITS H2. ANSI/ISO/IEC 9075-1:1999
(SQL/Framework). ANSI/ISO/IEC International Standard (IS), Washington,
DC, 1999.

[65] Technical Committee Group NCITS H2. ANSI/ISO/IEC 9075-2:1999
(SQL/Foundation). ANSI/ISO/IEC International Standard (IS), Washington,
DC, 1999.

[66] Jeffrey D. Ullman. Principles of database and Knowledge-Base Systems Volume
I. Computer Science Press, Rockville, MD, 1988.



161

[67] Yannis Vassiliou. ‘Null values in data base management a denotational seman-
tics approach’ in Proceedings of the 1979 ACM SIGMOD international confer-
ence on Management of data. ACM, New York, NY, 1979. 163-169.

[68] Andrew Warden. ‘Into the Unknown’ in Relational Database Writings 1985-
1989. Addison-Wesley, Reading, MA, 1990.

[69] Eugene Wong. A Statistical Approach to Incomplete Information in Database
Systems. ACM Transactions on Database Systems, 7(3):470–488, 1982.

[70] Li Yan Yuan and Ding-An Chiang. A sound and complete query evaluation
algorithm for relational databases with null values. In Proceedings of the 1988
ACM SIGMOD international conference on Management of data, SIGMOD ’88,
pages 74–81, New York, NY, USA, 1988. ACM.

[71] L. A. Zadeh. Fuzzy Sets. Information and Control, 8:338–353, 1965.

[72] L. A. Zadeh. Fuzzy Sets as a Basis for a Theory of Possibility. Fuzzy Sets and
Systems, 100(Supplement):9–34, 1999. Reprinted from Fuzzy Sets and Systems
1 (1978) 3-28.

[73] Lotfi A. Zadeh. Position Paper: Toward extended fuzzy logic–A first step. Fuzzy
Sets and Systems, 160(21):3175–3181, 2009.



162

Appendix A KNOWN/UNKNOWN model using set

notation

The relational model of data is based on set theory and first-order predicate

logic [23, pp.67-68]. Relational databases are time-varying collections of relations

composed of tuples of attribues containing data values taken from a universe of

discourse U. The time-varying nature of this model supports addition, deletion, and

modification as necessary to improve and maintain an accurate representation of the

real world. [10]

A domain of data values as shown in equation (6) is defined from the power set

of U. A specific domain holds values of a single data type and represents all possible

values that an attribute of this domain may take on.

Domain D = {d|d ∈ D,D ∈ P (U)} (6)

The active domain as shown in equation (7) is a subset of the domain and represents

the actual values present in a domain instance of the database [10, p.380].

Active Domain Dactive ⊆ Domain D (7)

An attribute is an ordered triple represented by a name, a domain variable that

162



163

takes its values from a domain and has a data type that may be constrained to a

range of values as shown in equation (8).

Attribute A = {name | string, { domain |Domain, type | (number, string) }} (8)

A relation has two parts. The first is the heading, which is a set of attribute

triples as shown in equation (9). The heading is a predicate that ranges over the

values of its attribute’s domains. The predicate is a truth-bearer that may be

evaluated using a truth-valued or a non-truth-valued function.

Heading = {A1, A2, A3, . . . , An} (9)

The second part of the relation is its body, which is a set of tuples defined as a

subset of the Cartesian products of the attribute domains in the heading, shown in

equation (10).

Body ⊆ {D1 ×D2 ×D3 × . . . , Dn} (10)

Each tuple is a set of attribute data values as shown in equation (11) and is a

proposition that is true or possibly true within the closed world of the database.

A tuple of attribute values not present in the database is a false proposition. A

query which returns an empty results relation, shows no data that can indicate a

true proposition.

Tuple t ∈ Body (11)



164

Queries are defined by a set of values paired with an attribute variable from the

relation heading. Each query is a proposition that may be true in the closed world

of the database. Queries are matched with tuples in the relation body. Query evalu-

ation relies on a function to map query search values to data values in the database.

Each tuple in the query results set is a true proposition about the database’s knowl-

edge and representation of a real-world item.

Membership of an attribute value d in a domain D is determined by the domain’s

characteristic function which returns a truth value from {0,1}. A 0 indicates that

the element is not in the domain. A 1 indicates that the element is a member of

the domain.

CharD(d) : D → {0, 1} (12)

An attribute that does not allow missing data can use a truth-valued function as

shown in equation (13) for its truthbearer. An attribute value d that is a member

of the domain and in the active domain is true. An attribute value d that is not

a member of the domain or not in the active domain is false. This truth-valued

function is based on 2VL truth tables and the closed-world assumption.

Truth-valued(d) =


T CharD(d) = 1 ∧ d ∈ Dactive

F CharD(d) = 0 ∨ d /∈ Dactive

(13)

An attribute that allows missing data must use a more complex truthbearer. A

non-truth-valued function derived from 3VL truth table (see figure 34) and heuristics



165

determines if a data value is true, maybe-true, or false. In addition to T and F,

a truth value of M indicates that the missing data value is a MAYBE member of

the domain. Until the data value is known, it cannot be determined with certainty

that it is a member of the active domain. The non-truth-valued function shown

in equation (14) uses metadata to determine maybe-matches and to decide when

inapplicable and unknowable attributes are false matches. For the case of complete

information, the non-truth-valued function evaluates the data value using the truth-

valued function.

AND t m f OR t m f NOT MAY BE
t t m f t t t t t f t f
m m m f m t m m m m m t
f f f f f t m f f t f f

Figure 34: 3-valued logic truth tables {true, maybe, false}

Non-Truth-Valued(d) =



M applicable and value missing

M applicable and value invalid

F attribute inapplicable

F value unknowable

Truth-Valued(d) applicable and value known

(14)

The KNOWN/UNKNOWN model as shown in equation (15) eliminates the null

by replacing it with metadata. Metadata related to the entire database is stored



166

in the system catalog, but there is also metadata closely associated with a relation

that allows missing data. A relation variable (relvar) which allows missing data uses

three relations to represent complete and incomplete information. The KNOWN

relation stores only tuples with complete information. The UNKNOWN relation

stores tuples that are missing data values and may be matches. Information about

what data is missing from the UNKNOWN relation and why it is missing is stored

in the MISSING relation.

Relvar r = {r known | table, {r unknown | table, r missing | table}} (15)



167

Appendix B Requirements for software

The user needs two capabilities defined in the requirements. The first is the

ability to write database queries and understand the results when data values may

be missing. The second is an awareness of missing data with the understanding that

the databases must be updated when data becomes available.

Tasks to support these capabilities include table creation, alteration, and dele-

tion; row insertion, update, and deletion; and operations necessary to query data

tables and metadata tables. These operations must be consistent when data values

are missing and when they are not. The requirements are capabilities that extend

MySQL to support a complete implementation of the KNOWN/UNKNOWN model

for missing data.

B.1 Capabilities

B.1.1 Data Definition

1. Column Definition

DBMS shall allow a column to be designated missing data capable.

This capability corresponds to MySQL command to allow nulls.

(a) This capability should be allowed for any non-key column in a table.

(b) This capability shall be allowed at or after table creation.

167



168

(c) The MISSING data types to be allowed shall be specified.

(d) Supported MISSING data types shall be from the database’s system cat-

alog of missing data types.

2. Column Definition

DBMS shall allow a column to be designated missing data incapable.

This capability corresponds to MySQL command to disallow nulls.

The user will be warned of values that default to zero or the empty string.

(a) This capability should be allowed for any column in a table.

(b) This capability shall be allowed at or after table creation.

(c) Row columns that hold missing data values shall be set to zero or the

empty string and the user shall be warned.

(d) Metadata shall be removed from the the MISSING table.

(e) Information about the missing data shall be lost.

(f) Key attributes are missing data incapable by default.

3. Table Definition

DBMS shall create tables that support missing data.

This capability corresponds to MySQL command to create a table that allows

nulls.



169

(a) This shall be the case for base tables created as a KNOWN/UNKNOWN

relvar.

(b) The MISSING data types supported shall be those available in the database

schema.

4. Table Definition

DBMS shall not create tables that allow key columns to be missing

data capable.

This capability equates with MySQL command to identify a table key that

does not allow nulls.

(a) MySQL does not allow nulls in columns that are part of a table key.

(b) The work around is to fabricate a unique key using AUTO INCREMENT.

(c) It is not feasible to allow unknown key values.

5. Table Definition

DBMS should allow columns with missing data to be indexed.

This capability corresponds to MySQL command to index a column with nulls

enabled.

(a) If indexed or not, a column with nulls can match using “is null.”

(b) A corresponding capability shall match using “is unknown” or a similar

method defined for the KNOWN/UNKNOWN model.



170

(c) A metadata table shall exist in the database schema and include a refer-

ence to for each MISSING data column.

6. Table Deletion

DBMS shall allow tables that support KNOWN/UNKNOWN miss-

ing data to be deleted.

This capability corresponds to MySQL command to drop a table that allows

nulls.

(a) If tables can be created, the capability to drop a table is necessary to

correct some table definition errors.

(b) All references to missing data values shall be removed from the schema.

7. Table Modification

DBMS shall support all categories of missing data including those

not yet identified.

This capability corresponds to MySQL’s ability to alter tables that allow nulls.

(a) All components of a table definition should be modifiable.

(b) MISSING data types shall be part of the table definition.

(c) The database schema of missing data types is the source missing data

categories.

(d) The database schema of missing data types shall be alterable.



171

B.1.2 Data manipulation

1. Data Insert

DBMS shall allow a row that with KNOWN/UNKNOWN missing

data to be inserted into a table.

This capability corresponds to MySQL’s ability to insert a row containing a

null.

(a) This capability shall have a method to indicate that a column of a row is

to hold a missing data value.

(b) This method shall support a way to indicate a MISSING data type for a

missing data value.

(c) Each missing data type shall be a supported MISSING data type enabled

for the column.

2. Data Update

DBMS shall allow a MISSING data type to replace a data value in

a table row and column.

This capability corresponds to MySQL’s ability to replace a data value with a

null.

(a) The updated column shall be missing data capable.

(b) This capability shall have a method to indicate that a column of a row is

to hold a missing data value.



172

(c) This method shall support a way to indicate a MISSING data type for a

missing data value.

(d) Each missing data type shall be a supported MISSING data type enabled

for the table column.

3. Data Update

DBMS shall allow a valid data value to replace MISSING data type

in a table row and column.

This capability corresponds to MySQL’s ability to replace a null with a data

value.

(a) This capability is the case where missing data value is now known.

(b) The known data value must be of the data type assigned to the table

column being updated.

4. Data Query

DBMS shall support EXACT matches for queries using known data

values.

Corresponds to MySQL’s match criteria in a SELECT/WHERE statement.

(a) A known data value in the query shall be compared to a known data

value stored in a table column.

(b) The query data type to match shall be the data type assigned to the table

column being searched.



173

(c) An EXACT match shall be evaluated in the context of a query’s compar-

ison operator(s)

(<, ≤, =, 6=, ≥, >).

(d) A query shall be simple, complex, or compound.

5. Data Query

DBMS shall support MAYBE matches for queries using known data

values.

Corresponds to MySQL’s match criteria in a SELECT/WHERE statement.

(a) A known data value in the query shall be compared to an UNKNOWN

missing data value in a table column.

(b) The query data type to match shall be the data type assigned to the table

column being searched.

(c) A MAYBE match shall be evaluated in the context of a query’s compar-

ison operator(s) (<, ≤, =, 6=, ≥, >).

(d) A comparison operator should use the term “MAYBE” as a modifier in

its syntax

(i.e. “Smith” MAYBE = customer.key).

(e) If the table column holds an UNKNOWN missing data value that could

be updated to an exact data value that evaluates to true, the match shall

be true. Otherwise it shall be false.



174

(f) A query shall be simple, complex, or compound.

6. Data Query

DBMS shall support EXACT matches for queries using MISSING

data types in place of data values.

Corresponds to MySQL’s IS NULL match criteria in a SELECT/WHERE

statement.

(a) The missing data value of the query search criteria shall be represented

by an UNKNOWN missing data type.

(b) The query shall have a method to indicate the UNKNOWN missing data

type to match.

(c) An UNKNOWN missing data value in a query shall be a search of the

metadata in the MISSING table.

(d) This capability shall include a help option aliased by a Data Administra-

tion SHOW command.

7. Data Query

DBMS shall support MAYBE matches for queries using MISSING

data types in place of data values.

Corresponds to MySQL’s use of a SELECT statement without criteria for

matching.



175

(a) This capability is the case of selecting all rows in a table

(i.e. SELECT statement without the WHERE option).

8. Data Query

DBMS shall have a method of indicating a MISSING data type in

a query result table.

Corresponds to MySQL’s representation of nulls as “NULL” in a results set to

indicate missing data values.

(a) MISSING data types shall be clearly indicated and identified in query

result tables.

(b) The MISSING data type for missing data created by an SQL operator

such as in an outer join shall meet this requirement.

B.1.3 Database administration

1. Database Administration

Determine if UNKNOWN missing data is allowed.

The database user must know this to determine how to use the DBMS.

(a) The default missing data representation for MySQL shall be nulls.

(b) A database system variable shall indicate if UNKNOWN missing data is

to be used in place of nulls.



176

(c) This capability should be implemented as a Data Administration SHOW

command.

2. Database Administration

Determine if data values are missing.

The database user must know this to determine how to use the DBMS.

(a) If data is not missing, the database shall function as if all data values are

exact and known.

(b) If data values are missing, the database user shall consider missing data

as a possibility.

(c) The capability to determine if data is missing should be implemented

using SQL.

3. Database Administration

Identify MISSING data types permitted in a table column.

The database user must know this to determine how to use the DBMS.

(a) MISSING data types are stored as metadata in the database schema and

a relvar MISSING table.

(b) Metadata shall be queried using SQL.

(c) This capability should be implemented using SQL.



177

B.1.4 Utility statements

1. Utility statement

Help commands shall include information about KNOWN/UNKNOWN/

MISSING data tables.

Corresponds to MySQL’s provision of help for SQL statements.

(a) SQL statements that are modified.

(b) Tables added to the database schema.

B.2 Constraints

Constraints are non-functional requirements that may be derived from a user re-

quirement, but often originate from a domain or system requirement.

1. System Usability Constraint

Missing data should be easy to understand.

Missing data is not well understood and a new representation must be ex-

plained. The existing implementation of missing data as nulls and 3VL in

SQL creates confusing results.

(a) An experienced MySQL user shall be able to search and update a database

after a 30 minute tutorial.

(b) The tutorial shall be available in a printable electronic format.

(c) If feasible, the tutorial shall be supplemented by a help system.



178

2. Database Administration Constraint

DBMS shall create a table that is missing data capable and allows

missing data by default.

The SQL Standard and MySQL represent missing data values using nulls.

Nulls are allowed by default for non-key columns.

(a) Database default is to support missing data using nulls.

(b) Database shall allow KNOWN/UNKNOWN missing data representation

to be enabled and once enable will be used in place of nulls.

Existence of the MISSING table indicates KNOWN/UNKNOWN en-

abled.

(c) If a database is set to enable KNOWN/UNKNOWN missing data rep-

resentation will support null only if “NULL” or “IS NULL” is explicitly

used in a query.

3. Table Definition Constraint

A relation key shall not include a missing data capable attribute..

• Rationale: Table keys may not be null. A requirement that a key be

missing data capable may be motivated by the belief that a key equates

to an index.

• Specification:

• Source: RM/V1



179

4. Index Definition Constraint

Missing data indexing shall use metadata.

Columns that allows null and contain null can be indexed using MySQL. An

implementation that is compatible with MySQL must allow missing data ca-

pable attributes to be indexed.

(a) It is not possible to match a data value that is not present.

(b) If a missing data capable column is indexed,rows and columns holding

missing data values shall be found using metadata.

(c) This method should be used to simulate an index for UNKNOWN table

using the MISSING data table.



180

Appendix C MyKU client component source code

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "my_global.h"
#include "mysql.h"
#include "myku.CLI.h"
#include "myku.AST.h"
#include "myku.SEL.h"
#include "debug.h"

/* embedded server handle MYSQL and setup (ini and db location */
MYSQL *dbs;
static char *server_options[] =
{"mysql-MYKU", "--defaults-file=/myku-database/my.ini"};
int num_elements=sizeof(server_options) / sizeof(char *);
static char *server_groups[] =
{"server", "embedded", "client", NULL};

#define QUERYLENGTH 1024
char statement[QUERYLENGTH];
unsigned long query_timer;

/* parser interface handle */
YY_BUFFER_STATE yy_buffer_handle;

int empty_set_flag;

int main(void)
{

/* Initialize the server and set server options */
mysql_library_init(num_elements, server_options, server_groups);
/*
* The following call enables debugging programmatically.
* mysql_debug("d:t:i:O,/mysql-myku/client.trace");
* Debugging can be enabled in the [client] section of the my.ini file;
* if not enabled, mysql_dbug_print() commands do not log.
*/

/* Connect to embedded server. */
dbs = srv_connect("case1");
/* set input source print name in bison parser */
filename = "user query";
/* print myku info and enter query response loop */
cli_splash(dbs);
/* get and execute query statments until "exit" is entered */

180



181

while (cli_get_query(statement))
{

maybe_flag = FALSE;
anull_flag = FALSE;
select_flag = FALSE;
select_nodata_flag = FALSE;
mysql_dbug_print(statement);
yy_buffer_handle = yy_scan_string(statement);
if(yyparse() == 0)
{

#ifdef BISON_DEBUG
printf("SQL: parsed\n");

#endif
}
else
{

#ifdef BISON_DEBUG
printf("SQL: parser failed\n");

#endif
}
yy_delete_buffer(yy_buffer_handle);

#ifdef QUERY_DEBUG
if(maybe_flag) printf("SQL: MAYBE present\n");
if(anull_flag) printf("SQL: NULL present\n");
if(select_flag) printf("SQL: SELECT statement\n");
if(select_nodata_flag) printf("SQL: SELECT NODATA\n");

#endif
if((anull_flag) || (!select_flag) || (select_nodata_flag))
{
if(srv_get_result(dbs, statement, &query_timer))

cli_put_result(dbs, statement, query_timer);
}
else
{

if(strlen(query_known) > 0)
if(srv_get_result(dbs, query_known, &query_timer))
{

printf("KNOWN\n");
cli_put_result(dbs, query_known, query_timer);

}

if(strlen(query_unknown) > 0)
if(srv_get_result(dbs, query_unknown, &query_timer))
{

printf("UNKNOWN\n");
cli_put_result(dbs, query_unknown, query_timer);

}

if(strlen(query_missing) > 0)
{

if (empty_set_flag == TRUE)
{

printf("MISSING\n");



182

printf("Empty set (0.03 sec / 27 ms)\n");
empty_set_flag = FALSE;

}
else
{

if(srv_get_result(dbs, query_missing, &query_timer))
{

printf("MISSING\n");
cli_put_result(dbs, query_missing, query_timer);

}
}

}
else
{

printf("MISSING\n");
printf("Empty set (0.01 sec / 19 ms)\n");

}
}

}
/* close the server connection and tell server to shutdown. */
srv_disconnect(dbs);
mysql_library_end();
exit(EXIT_SUCCESS);

}
MYSQL *
srv_connect(const char *dbname)
{

/*
* allocate a mysql database server (dbs) handle;
* use and return the pointer to this handle
*/

MYSQL *dbs = mysql_init(NULL);
if (!dbs)

srv_terminate(dbs, "mysql_init failed: no memory");
/*
* The client and server use separate group names. This is critical.
* The server does not accept the client’s options, and vice versa.
*/

mysql_options(dbs, MYSQL_READ_DEFAULT_GROUP, "embedded");
mysql_options(dbs, MYSQL_OPT_USE_EMBEDDED_CONNECTION, NULL);
/*
* use the mysql database server handle to
* connect to an instance of mysql running on a host;
* the embedded server libmysqld.dll in this case
*/

if(!mysql_real_connect(dbs, NULL, NULL, NULL, dbname, 0, NULL, 0))
srv_terminate(dbs, "mysql_real_connect failed: %s", mysql_error(dbs));

return dbs;
}



183

void
srv_disconnect(MYSQL *dbs)
{

mysql_close(dbs);
}
static void
srv_terminate(MYSQL *dbs, char *fmt, ...)
{

va_list ap;
va_start(ap, fmt);
vfprintf(stdout, fmt, ap);
va_end(ap);
(void)putc(’\n’, stdout);
if (dbs)

srv_disconnect(dbs);
exit(EXIT_FAILURE);

}
void
cli_splash(MYSQL *dbs)
{

printf("MyKU is a DBMS built on MySQL using ");
printf("the KNOWN/UNKNOWN model of missing data.\n");
printf("Server version: %s Source distribution.\n",

mysql_get_server_info(dbs));
printf("Type ’\\c’ to clear current input statement.\n");
printf("Commands end with a semi-colon ’;’\n\n");

}
int
cli_get_query(char* statement)
{

char stmt[QUERYLENGTH] = {’\0’};
char buf[QUERYLENGTH];
char *ptr, *comment, *newline;

yycolumn = 1;
fputs("myku> ", stdout);
while (fgets(buf, sizeof buf, stdin) != NULL)
{

for(ptr = buf; isspace(*ptr); ptr++);
if(_strnicmp(ptr, "exit", 4) == 0 || _strnicmp(ptr, "quit", 4) == 0)
{

fputs("Bye\n\n", stdout);
return FALSE;

}
/* isspace spc, tab, nl */
if (strlen(ptr) == 0 && strlen(stmt) == 0)
{

fputs("myku> ", stdout);
continue;

}
if (strstr(ptr, "\\c"))
{

*stmt = ’\0’;



184

fputs("myku> ", stdout);
continue;

}
comment = strchr(ptr, ’#’);
if (comment != NULL)

memset(comment, ’\0’, strlen(comment));

newline = strchr(ptr, ’\n’);
if (newline != NULL)

*newline = ’ ’;

strcat(stmt, ptr);
if (strchr(ptr, ’;’) == NULL)

fputs(" -> ", stdout);
else

break;
}
strcpy(statement, stmt);
return TRUE;

}
void
cli_help(void)
{
}
int
srv_get_result(MYSQL *dbs, const char *stmt, unsigned long *timer)
{

DWORD TimerMS = GetTickCount();
if (mysql_query(dbs, stmt) == 0)
{

TimerMS = GetTickCount() - TimerMS;
*timer = (unsigned long) TimerMS;
return TRUE;

}
else
{

printf("ERROR %d (%s): %s\n", mysql_errno(dbs),
mysql_sqlstate(dbs), mysql_error(dbs));

printf("QUERY or Operation: %s\n", stmt);
return FALSE;

}
}
void
cli_put_result(MYSQL *dbs, const char *query, unsigned long timer)
{

MYSQL_RES *result;
MYSQL_ROW row;
MYSQL_FIELD *field;
unsigned long num_rows;
int num_fields;
unsigned int i, col_len;

empty_set_flag = FALSE;



185

/* mysql_store_result() = 0 if malloc exceeds available memory and fails */
result = mysql_store_result(dbs);
if(result)
{

num_rows = (unsigned long) mysql_num_rows(result);
if(num_rows > 0)
{

/* determine column display widths */
num_fields = mysql_num_fields(result);
mysql_field_seek (result, 0);
for(i = 0; i < mysql_num_fields (result); i++)
{

field = mysql_fetch_field (result);
col_len = (unsigned int) strlen(field->name);
if (col_len < field->max_length)

col_len = field->max_length;
if (col_len < 4 && !IS_NOT_NULL(field->flags))

col_len = 4; /* 4 = length of the word NULL */
field->max_length = col_len; /* reset column info */

}
cli_put_dash_line(result);
fputc (’|’, stdout);
mysql_field_seek(result, 0);
for(i = 0; i < mysql_num_fields(result); i++)
{

field = mysql_fetch_field(result);
printf(" %-*s |", field->max_length, field->name);

}
fputc(’\n’, stdout);
cli_put_dash_line (result);
while((row = mysql_fetch_row(result)) != NULL)
{

mysql_field_seek (result, 0);
fputc(’|’, stdout);
for (i = 0; i < mysql_num_fields(result); i++)
{

field = mysql_fetch_field(result);
if(row[i] == NULL)

printf (" %-*s |", field->max_length, "NULL");
else
if(IS_NUM(field->type))

printf(" %*s |", field->max_length, row[i]);
else

printf(" %-*s |", field->max_length, row[i]);
}
fputc(’\n’, stdout);

}
cli_put_dash_line(result);

printf("%s in set (%.2f sec / %lu ms)\n",
cli_get_row_str(num_rows),
(float) timer / 1000, timer);

}
else



186

{
empty_set_flag = TRUE;
printf("Empty set (%.2f sec / %lu ms)\n", (float) timer / 1000, timer);

}
fputc(’\n’, stdout);
mysql_free_result(result);

}
else
{

if(mysql_field_count(dbs) == 0)
if(_strnicmp(query, "use", 3) == 0)
{

const char *ptr;
for(ptr = query+3; isspace(*ptr); ptr++);
printf("Database changed\n");

}
else
{

num_rows = (unsigned long) mysql_affected_rows(dbs);
printf("Query OK, %s affected (%.2f sec / %lu ms)\n",

cli_get_row_str(num_rows),
(float) timer / 1000, timer);

}
else

srv_terminate(dbs, "mysql_store_result failed: %s [%s]",
mysql_error(dbs), query);

}
return;

}
void
cli_put_dash_line (MYSQL_RES *result)
{

MYSQL_FIELD *field;
unsigned int i, j;
mysql_field_seek(result, 0);

fputc(’+’, stdout);
for (i = 0; i < mysql_num_fields(result); i++)
{

field = mysql_fetch_field(result);
for (j = 0; j < field->max_length + 2; j++)

fputc(’-’, stdout);
fputc(’+’, stdout);

}
fputc(’\n’, stdout);

}
char*
cli_get_row_str(unsigned long num_rows)
{

static char buffer[16];
num_rows > 1 ? sprintf(buffer, "%lu rows", num_rows) : sprintf(buffer, "1 row");
return buffer;

}



187

Appendix D MyKU select query rewrite source code

#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include "myku.AST.h"
#include "myku.SEL.h"
#include "myku.SYS.h"
#include "debug.h"

char sel[256] = {’\0’};
char frm[256] = {’\0’};
char whr[256] = {’\0’};

unsigned int ftab1_known = FALSE;
unsigned int ftab1_unknown = FALSE;
unsigned int ftab1_missing = FALSE;
unsigned int join_flag = FALSE;
unsigned int ftab2_known = FALSE;
unsigned int ftab2_unknown = FALSE;
unsigned int ftab2_missing = FALSE;

char tab1_queried[64] = {’\0’};
char tab1_alias[64] = {’\0’};
char tab1_root[32] = "notab";
char tab1_key[16] = "nokey";
char tab1_known[64];
char tab1_unknown[64];
char tab1_missing[64];

char tab2_queried[64] = {’\0’};
char tab2_alias[64] = {’\0’};
char tab2_root[32] = "notab";
char tab2_key[16] = "nokey";
char tab2_known[64];
char tab2_unknown[64];
char tab2_missing[64];

char whr_attr[32] = "noatt";
char whr_expr[32] = {’\0’} ;
int maybe_done = FALSE;

char query[256] = {’\0’};
char query_known[256] = {’\0’};
char query_unknown[256] = {’\0’};
char query_missing[256] = {’\0’};

187



188

char union_known[256] = {’\0’};
char union_unknown[256] = {’\0’};
char union_missing[256] = {’\0’};

char miss_query[256];
char unk_tag[48] = "and tag in (’UNK’, ’NYE’, ’UND’, ’INV’, ’MIS’)";
char not_tag[48] = "and tag in (’N/A’, ’REM’, ’NUL’)";
char alt_missing[128];

/*
* helper functions some of which are to get information
* from MySQL information_schema tables in next release
*/

char *
primary_key(char *tbl)
{

return tab1_key;
}
void
build_select_expression(struct node *n)
{

int type;
struct sel_expr *se;
struct item *it;
struct expr *ex;

char s[32] = {’\0’};

if (n == NULL) return;

type = n->nodetype;
switch(type) {
case AST_SEL_EXPR:

se = (struct sel_expr *)n;
build_select_expression(se->expr);
if (strlen(se-> alias) > 0)
{

strcat(sel, " as ");
strcat(sel, se->alias);

}
break;
case AST_ITEM:

it = (struct item *)n;
build_select_expression(it->content);
if(it->next)

strcat(sel, ", ");
else

strcat(sel, " ");
build_select_expression(it->next);

break;
case AST_EXPRESSION:

ex = (struct expr *)n;
switch (ex->datatype) {



189

case VAL_NUM:
sprintf(s, "%d", ex->intval);
strcat(sel, s);

break;
case VAL_FLOAT:

sprintf(s, "%g", ex->floatval);
strcat(sel, s);

break;
case VAL_STR:

sprintf(s, "%s", ex->strval);
strcat(sel, s);

break;
}

break;
default: printf("exception: build_select_expression node %d\n", type);

}
}

void
build_from_references(struct node *n)
{

int type;
struct tab_ref *tr;
struct item *it;

if (n == NULL) return;

type = n->nodetype;
switch(type) {
case AST_ITEM:

it = (struct item *)n;
build_from_references(it->content);
if(it->next)
/* join = true */
{

join_flag = TRUE;
}
build_from_references(it->next);

break;

case AST_TAB_REF:
tr = (struct tab_ref *)n;
if (join_flag)

strcpy(tab2_queried, tr->name);
else

strcpy(tab1_queried, tr->name);
if(strlen(tr->alias) > 0)
{

if (join_flag)
strcpy(tab2_alias, tr->alias);

else
strcpy(tab1_alias, tr->alias);

strcat(frm, tr->alias);



190

}
/* check to see if there is one or two tables (i.e. a JOIN */
if (join_flag)

tab2_table_names();
else

tab1_table_names();
break;

default: printf("exception: build_from_table_references node %d\n", type);
}

}

void
build_where_expression(struct node *n)
{

int type;
struct oper *op;
struct expr *ex;
char wrk[128];

if (n == NULL) return;

type = n->nodetype;
switch(type) {
case AST_OPERATOR:

op = (struct oper *)n;
if(strcmp(op->op, "(") == 0)
{

/* expression of an operator tree node enclosed in parentheses */
strcat(whr, "(");
build_where_expression(op->left);
build_where_expression(op->right);
strcat(whr, ")");

}
else
{

if(op->noway)
strcat(whr, " NOT ");

if(op->maybe)
{

/* MAYBE operator that must use the left expression attribute
to find missing data in _MISSING */

build_where_expression(op->left);
strcpy(whr_attr, whr_expr);
sprintf(wrk, "%s in (select %s from %s where attr = ’%s’ %s)",

tab1_key, tab1_key, tab1_missing, whr_attr, unk_tag);
strcat(whr, wrk);
sprintf(miss_query, "select * from %s where attr = ’%s’ %s",

tab1_missing, whr_attr, unk_tag);
maybe_done = TRUE;

}
else
{

/* standard operator must be converted



191

from prefix to infix notation */
build_where_expression(op->left);
strcat(whr, whr_expr);
strcpy(whr_attr, whr_expr);
whr_expr[0] = ’\0’;
strcat(whr, op->op);
if(op->paren)

strcat(whr, "(");
build_where_expression(op->right);
if (!maybe_done)

strcat(whr, whr_expr);
sprintf(alt_missing,

"select * from %s where %s in (select %s from %s where %s = %s);",
tab1_missing, primary_key(tab1_missing),
primary_key(tab1_unknown),
tab1_unknown, whr_attr, whr_expr);

whr_expr[0] = ’\0’;
if(op->paren)

strcat(whr, ")");
}

}
break;
case AST_EXPRESSION:

ex = (struct expr *)n;
switch (ex->datatype) {
case VAL_NUM:

sprintf(whr_expr, "%d", ex->intval);
break;
case VAL_FLOAT:

sprintf(whr_expr, "%g", ex->floatval);
break;
case VAL_STR:

sprintf(whr_expr, "%s", ex->strval);
break;
}

break;
default: printf("exception: build_where_expression node %d\n", type);

}
}

void
tab1_table_names()
{

char *first;
char *last;

ftab1_known = FALSE;
ftab1_unknown = FALSE;
ftab1_missing = FALSE;

first = strchr(tab1_queried, ’_’);
last = strrchr(tab1_queried, ’_’);
if (last)



192

{
if (stricmp(last, "_known") == 0)
{

ftab1_known = TRUE;
strncopy(tab1_root, tab1_queried, last - tab1_queried);

}
else
if (stricmp(last, "_unknown") == 0)
{

ftab1_unknown = TRUE;
ftab1_missing = TRUE;
strncopy(tab1_root, tab1_queried, last - tab1_queried);

}
else
if (stricmp(last, "_missing") == 0)
{

ftab1_missing = TRUE;
strncopy(tab1_root, tab1_queried, last - tab1_queried);

}
else
{

if (first == last) /* only one underscore in table name */
{

ftab1_known = TRUE;
ftab1_unknown = TRUE;
ftab1_missing = TRUE;
strcpy(tab1_root, tab1_queried);

}
else /* error underscore in table name but not myku */
{

printf("More than one underscore in name, ");
printf("but not a MyKU table type\n");

}
}

}
else /* no underscores in table name; must be MyKU root */
{

ftab1_known = TRUE;
ftab1_unknown = TRUE;
ftab1_missing = TRUE;
strcpy(tab1_root, tab1_queried);

}

if((stricmp(tab1_queried, "emp") == 0) ||
(stricmp(tab1_queried, "assign") == 0))
anull_flag = TRUE;

strcpy(tab1_known, strundstr(tab1_root, "KNOWN"));
strcpy(tab1_unknown, strundstr(tab1_root, "UNKNOWN"));
strcpy(tab1_missing, strundstr(tab1_root, "MISSING"));

if((stricmp(tab1_root, "T") == 0) ||
(stricmp(tab1_root, "U") == 0))



193

strcpy(tab1_key, "PK");
if((stricmp(tab1_root, "my_names") == 0) ||

(stricmp(tab1_root, "your_names") == 0))
strcpy(tab1_key, "PK");

if((stricmp(tab1_root, "person") == 0) ||
(stricmp(tab1_root, "emp") == 0))
strcpy(tab1_key, "ekey");

}

void
tab2_table_names()
{

char *first;
char *last;

ftab2_known = FALSE;
ftab2_unknown = FALSE;
ftab2_missing = FALSE;

first = strchr(tab2_queried, ’_’);
last = strrchr(tab2_queried, ’_’);
if (last)
{

if (stricmp(last, "_known") == 0)
{

ftab2_known = TRUE;
strncopy(tab2_root, tab2_queried, last - tab2_queried);

}
else
if (stricmp(last, "_unknown") == 0)
{

ftab2_unknown = TRUE;
ftab2_missing = TRUE;
strncopy(tab2_root, tab2_queried, last - tab2_queried);

}
else
if (stricmp(last, "_missing") == 0)
{

ftab2_missing = TRUE;
strncopy(tab2_root, tab2_queried, last - tab2_queried);

}
else
{

if (first == last) /* only one underscore in table name */
{

ftab2_known = TRUE;
ftab2_unknown = TRUE;
ftab2_missing = TRUE;
strcpy(tab2_root, tab2_queried);

}
else /* error underscore in table name but not myku */
/* error ? under line in table name but not myku */
{



194

printf("More than one underscore in name, ");
printf("but not a MyKU table type\n");

}
}

}
else /* no underscores in table name; must be a MyKU root */
{

ftab2_known = TRUE;
ftab2_unknown = TRUE;
ftab2_missing = TRUE;
strcpy(tab2_root, tab2_queried);

}

strcpy(tab2_known, strundstr(tab2_root, "KNOWN"));
strcpy(tab2_unknown, strundstr(tab2_root, "UNKNOWN"));
strcpy(tab2_missing, strundstr(tab2_root, "MISSING"));

if((stricmp(tab2_root, "T") == 0) ||
(stricmp(tab2_root, "U") == 0))
strcpy(tab1_key, "PK");

if((stricmp(tab2_root, "my_names") == 0) ||
(stricmp(tab2_root, "your_names") == 0))
strcpy(tab2_key, "PK");

if((stricmp(tab2_root, "person") == 0) ||
(stricmp(tab2_root, "emp") == 0))
strcpy(tab2_key, "ekey");

}
void
build_select_queries()
{

/*
* rewrite extended SQL query into 3 standard SQL queries
* for known, unknown, and missing tables
*/

struct node *n;
struct select *s;
struct sel_expr *se;
struct tab_ref *tr;
struct oper *op;

/* values for creating known, unknown and missing select statements in AST */
n = root;
s = (struct select *) n;
se = (struct sel_expr *) s->select_expr_list;
tr = (struct tab_ref *) s->from_tab_ref_list;
op = (struct oper *) s->where_expr_tree;

if (union_flag)
{

if (strlen(query_known) > 0)
strcpy(union_known, query_known);

if (strlen(query_unknown) > 0)
strcpy(union_unknown, query_unknown);



195

if (strlen(query_missing) > 0)
strcpy(union_missing, query_missing);

}

/* clear known/unknown query strings before building new ones */
strclear(query_known);
strclear(query_unknown);
strclear(query_missing);
strclear(miss_query);
strclear(alt_missing);

strclear(sel);
build_select_expression((struct node *) se);

join_flag = FALSE;
strclear(tab1_queried);
strclear(tab1_alias);
strclear(tab2_queried);
strclear(tab2_alias);
build_from_references((struct node *) tr);

#ifdef QUERY_DEBUG
printf("tab1 (queried) is %s \n", tab1_queried);
printf("tab1 (aliased) is %s \n", tab1_alias);
printf("tab1 (root) is %s \n", tab1_root);
printf("tab1 (key) is %s \n", tab1_key);
printf("tab1 (known) is %s \n", tab1_known);
printf("tab1 (unknown) is %s \n", tab1_unknown);
printf("tab1 (missing) is %s \n", tab1_missing);

printf("%s join tab2 with tab1 \n", join_flag ? "Do" : "Do NOT");
if (join_flag) {
printf("tab2 (joined) is %s \n", tab2_queried);
printf("tab2 (aliased) is %s \n", tab2_alias);
printf("tab2 (root) is %s \n", tab2_root);
printf("tab2 (key) is %s \n", tab2_key);
printf("tab2 (known) is %s \n", tab2_known);
printf("tab2 (unknown) is %s \n", tab2_unknown);
printf("tab2 (missing) is %s \n", tab2_missing);
}

#endif

/* op is a pointer to AST list of optional where expressions */
strclear(whr);
maybe_done = FALSE;
if(op) strcpy(whr, " where ");
build_where_expression((struct node *) op);

if (union_flag)
select_union();

else
if (join_flag)

select_product();
else



196

select_restrict();

#ifdef QUERY_DEBUG
printf("\nMyKU user statement: %s\n\n", statement);
printf(" Query KNOWN (trn): \n%s\n\n", query_known);
printf("Query UNKNOWN (trn): \n%s\n\n", query_unknown);
printf("Query MISSING (trn): \n%s\n\n", query_missing);
printf(" SubQuery: %s\n", miss_query);
printf(" Alt SubQuery: %s\n", alt_missing);

#endif
}

void
select_product()
{

strcpy(query_known, "select * from product_known;");
strcpy(query_unknown, "select * from product_unknown;");
strcpy(query_missing, "select * from product_missing;");

}
void
select_restrict()
{

if (ftab1_known)
{

strcpy(query_known, "select ");
strcat(query_known, sel);
sprintf(frm, "from %s", tab1_known);
strcat(query_known, frm);
strcat(query_known, whr);
strcat(query_known, ";");

}
if (ftab1_unknown)
{

/* _unknown requires a key in select to connected with _missing;
check and add if needed */

if (!(stristr(sel, tab1_key) || stristr(sel, "*")))
sprintf(query_unknown, "select %s, ", tab1_key);

else
strcpy(query_unknown, "select ");

strcat(query_unknown, sel);
sprintf(frm, "from %s", tab1_unknown);
strcat(query_unknown, frm);
strcat(query_unknown, whr);
strcat(query_unknown, ";");
if (strlen(miss_query) > 0)
{

strcpy(query_missing, miss_query);
strcat(query_missing, ";");

}
else
if (strlen(whr) == 0)



197

{
sprintf(query_missing, "select * from %s;", tab1_missing);

}
else
if (strlen(alt_missing) > 0)
{

sprintf(query_missing, alt_missing);
}

}
else
if (ftab1_missing)
{

strcpy(query_missing, statement);
}

}
void
select_union()
{

char *p;

select_restrict();

if(strlen(query_known) > 0)
if(strlen(union_known) > 0)
{

p = strchr(union_known, ’;’);
if (p) *p = ’\0’;
strcat(union_known, " union ");
strcat(union_known, query_known);
strcpy(query_known, union_known);

}
else
{ /* query_known is the union */ }

else
/* union_known is the union */
if(strlen(union_known) > 0)

strcpy(query_known, union_known);

if (strlen(query_unknown) > 0)
if(strlen(union_unknown) > 0)
{

p = strchr(union_unknown, ’;’);
if (p) *p = ’\0’;
strcat(union_unknown, " union ");
strcat(union_unknown, query_unknown);
strcpy(query_unknown, union_unknown);

}
else
{ /* query_known is the union */ }

else
/* union_known is the union */
if(strlen(union_unknown) > 0)

strcpy(query_unknown, union_unknown);



198

if (stristr(union_missing, "union"))
strcpy(query_missing, union_missing);

else
if (strlen(query_missing) > 0)

if(strlen(union_missing) > 0)
{

p = strchr(union_missing, ’;’);
if (p) *p = ’\0’;
strcat(union_missing, " union ");
strcat(union_missing, query_missing);
strcpy(query_missing, union_missing);

}
else
{ /* query_known is the union */ }

else
/* union_known is the union */
if(strlen(union_missing) > 0)

strcpy(query_missing, union_missing);

strclear(union_known);
strclear(union_unknown);
strclear(union_missing);

}



199

Appendix E Standard SQL for derived my names

relvar

use case1;

create table my_names (PK smallint unsigned not null auto_increment,
first char(12) not null,
mi char(1) not null,
last char(12) not null,
primary key (PK));

insert into my_names values (1, ’Edgar’, ’F’, ’Codd’);
insert into my_names values (2, ’Chris’, ’J’, ’Date’);
insert into my_names values (3, ’Hugh’, ’ ’, ’Darwen’);
insert into my_names values (4, ’Andrew’, ’ ’, ’Warden’);

create table my_names_MISSING (PK smallint unsigned not null,
attr char(5) not null,
tag char(3) not null,
primary key (PK));

insert into my_names_MISSING values(3, ’mi’, ’UNK’);
insert into my_names_MISSING values(4, ’mi’, ’N/A’);

create table my_names_KNOWN like my_names;
insert into my_names_KNOWN

(select * from my_names
where pk not in (select pk from my_names_missing));

create table my_names_UNKNOWN like my_names;
insert into my_names_UNKNOWN

(select * from my_names
where pk in (select pk from my_names_missing));

199



200

Appendix F Standard SQL to define a product view

use case1;

drop view derived_known;
# Cartesian product view for known
create view product_known as
select m.PK as m_PK, m.first as m_first, m.mi as m_mi, m.last as m_last,

y.PK as y_PK, y.first as y_first, y.mi as y_mi, y.last as y_last
from my_names as m, your_names as y
where m.PK not in (select PK from my_names_missing)

and y.PK not in (select PK from your_names_missing)
order by m_PK, y_PK;

drop view derived_unknown;
# Cartesian product view for unknown
create view product_unknown as
select m.PK as m_PK, m.first as m_first, m.mi as m_mi, m.last as m_last,

y.PK as y_PK, y.first as y_first, y.mi as y_mi, y.last as y_last
from my_names as m, your_names as y
where m.PK in (select PK from my_names_missing)

or y.PK in (select PK from your_names_missing)
order by m_PK, y_PK;

drop view missing_keys;
# view creates keys for product_missing of Cartesian product
create view product_missing_keys as
select m_PK, y_PK from product_unknown
where m_PK in (select PK from my_names_missing)

or y_PK in (select PK from your_names_missing);

drop view derived_missing;
# Cartesian product missing uses product_missing_keys in view of product_missing
create view product_missing as
select m.PK as m_PK, y_PK, concat(’m_’,attr) as attr, tag

from my_names_missing as m, product_missing_keys
where m.PK = m_PK

union
select m_PK, y.PK as y_PK, concat(’y_’,attr) as attr, tag

from your_names_missing as y, product_missing_keys
where y.PK = y_PK

order by m_PK, y_PK, attr;

200



201

Appendix G Standard SQL to define a union view

use case1;

drop view T_known;
# create view of my_names_known and your_names_known as T_known
create view T_known as
select * from my_names_known union select * from your_names_known;

drop view T_unknown;
# create view of my_names_unknown and your_names_unknown as T_unknown
create view T_unknown as
select * from my_names_unknown union select * from your_names_unknown;

drop view T_missing;
# create view of my_names_missing and your_names_unknown as T_missing
create view T_missing as
select * from my_names_missing where pk in (select pk from T_unknown)
union
select * from your_names_missing where pk in (select pk from T_unknown);

201



202

Appendix H Study Recruitment Flyer

  SQL
  Training 

 

Volunteers are being given the opportunity to spend a little time learning about databases and 

some basic SQL while helping in the research of new database features. 

 

We’re looking for some volunteers who are willing to spend about an hour and a half to learn 

basic SQL, have some fun, win some prizes and be a part of something pretty interesting.  

 

This short class  is FREE! It’s  interactive! We won’t even give you any quizzes or exams! Learn 

something useful  just  for the  fun and benefit of  it and help us out! We want and need your 

opinions and observations! 

Sessions: 
Engineering East Computer Lab, Room E4221 

Wednesday  20 February from 10 to 11:30 
Thursday   21 February from 3:30 to 5:00 
Friday   22 February from 12:00 to 2:00  

 
Space is limited!  Bob Morrissett  Larry Williams 
To attend, please  email address  email address 
contact either:  cell.phone.number  cell.phone.number 
 

Come on! We have cookies! 
Bring Friends! 

Figure 35: Feasibility Study Recruitment Flyer

202



203

Appendix I SQL Tutorial

An SQL tutorial introduced basic database query to undergraduate volunteers

who were interested in SQL and willing to participate in a feasibility study for two

research features added to MySQL. Each of these features were described after the

tutorial with its hands-on SQL query experience. The tutorial focus was on SQL

rather than the relational model and referred to relations as “tables,” domains as

“columns,” and tuples as “rows,” with data values contained in “attributes.”

I.1 Database concepts

The tutorial described relational databases as collections of related tables. A table

is a set of rows composed of named columns that contain data values in variables

(attributes) at the intersection of each column and row. While all columns of the

same data type can be used to define a relationship between tables, columns used

as table keys with data values unique for a row are often used in this role.

203



204

A Table

Columns of data types

Key

Rows of 
items

EKEY FIRST MI LAST DOB PT

11 Edgar F Codd 1923 0

12 Chris J Date 1941 0

13 Hugh Darwin 0

14 Andrew Warden 0

15 Parker 1985 0

16 Charles W Backman 1924 0

21 Jeffrey D Ullman 1942 1

22 Margo I Seltzer 1

23 Fabian Pascal 1

24 David ? McGoveran -1 1

25 Chris Date 1941 1

25 Andrew Warden 1

Figure 36: SQL Tutorial table definition

A Database

A database is a collection of related tables.

EKEY FIRST MI LAST DOB PT

11 Edgar F Codd 1923 0

12 Chris J Date 1941 0

13 Hugh Darwin 0

14 Andrew Warden 0

15 Parker 1985 0

16 Charles W Backman 1924 0

21 Jeffrey D Ullman 1942 1

22 Margo I Seltzer 1

23 Fabian Pascal 1

24 David ? McGoveran -1 1

25 Chris Date 1941 1

25 Andrew Warden 1

EKEY PKEY PERCENT EFF_DATE

11 P1 0.50 12/13/2012

11 P3 0.50 10/01/2012

12 P1 1.00 08/16/2012

13 P1 0.75 08/01/2012

13 P2 0.25 06/15/2012

14 P2 1.00 01/12/2013

24 P3 1.00 06/01/2011

25 P2 1.00 09/13/2012

Table: EMP

Table: ASSIGN

Figure 37: SQL Tutorial database definition



205

I.2 Select data from a table

A basic SQL query was developed incrementally to select (project) columns from a

table (restricted) where an attribute in zero or more rows matches a value. Partici-

pants were shown how to start a MySQL server and client and encouraged to enter

the SQL as it was developed.

(SQL) select columns

Table: EMP
Select EKEY, FIRST, LAST

EKEY FIRST MI LAST DOB PT

11 Edgar F Codd 1923 0

12 Chris J Date 1941 0

13 Hugh Darwin 0

14 Andrew Warden 0

15 Parker 1985 0

16 Charles W Backman 1924 0

21 Jeffrey D Ullman 1942 1

22 Margo I Seltzer 1

23 Fabian Pascal 1

24 David ? McGoveran -1 1

25 Chris Date 1941 1

25 Andrew Warden 1

Figure 38: SQL Tutorial column specification



206

(SQL) from a table

Table: EMP

Select EKEY, FIRST, LAST, PT

From EMP;

EKEY FIRST LAST PT

11 Edgar Codd 0

12 Chris Date 0

13 Hugh Darwin 0

14 Andrew Warden 0

15 Parker 0

16 Charles Backman 0

21 Jeffrey Ullman 1

22 Margo Seltzer 1

23 Fabian Pascal 1

24 David McGoveran 1

25 Chris Date 1

25 Andrew Warden 1

Figure 39: SQL Tutorial table specification

(SQL) where something matches

Table: EMP

Select FIRST, LAST, AGE

From EMP

Where PT = FALSE;

EKEY FIRST LAST PT

11 Edgar Codd 0

12 Chris Date 0

13 Hugh Darwin 0

14 Andrew Warden 0

15 Parker 0

16 Charles Backman 0

Figure 40: SQL Tutorial row match criteria



207

I.3 Join connects two tables

A more complex query was developed to create a new table that used the connection

(join) between two tables where table keys are equal.

(SQL) select from two tables

Select EMP.EKEY, EMP.FIRST,
EMP.LAST, ASSIGN.PKEY,
ASSIGN.PERCENT

From EMP, ASSIGN
Where EMP.PT = FALSE

and EMP.EKEY = ASSIGN.EKEY;

Table: EMP

Table: ASSIGN

EKEY PKEY PERCENT EFF_DATE

11 P1 0.50 12/13/2012

11 P3 0.50 10/01/2012

12 P1 1.00 08/16/2012

13 P1 0.75 08/01/2012

13 P2 0.25 06/15/2012

14 P2 1.00 01/12/2013

24 P3 1.00 06/01/2011

25 P2 1.00 09/13/2012

EKEY FIRST MI LAST DOB PT

11 Edgar F Codd 1923 0

12 Chris J Date 1941 0

13 Hugh Darwin 0

14 Andrew Warden 0

15 Parker 1985 0

16 Charles W Backman 1924 0

21 Jeffrey D Ullman 1942 1

22 Margo I Seltzer 1

23 Fabian Pascal 1

24 David ? McGoveran -1 1

25 Chris Date 1941 1

25 Andrew Warden 1

Figure 41: SQL Tutorial joining two tables



208

(SQL) create a result table

EMP_FT. 
EKEY

FIRST LAST PKEY PERCENT

11 Edgar Codd P1 0.50

11 Edgar Codd P3 0.50

12 Chris Date P1 0.50

13 Hugh Darwin P1 0.75

13 Hugh Darwin P2 1.00

14 Andrew Warden P2 1.00

Select EMP.EKEY, EMP.FIRST,
EMP.LAST, ASSIGN.PKEY,
ASSIGN.PERCENT

From EMP, ASSIGN
Where EMP.EKEY = ASSIGN.EKEY;

Figure 42: SQL Tutorial query results

I.4 Subquery intersects two tables

The concept of an inner query nested within an outer query as match criteria was

presented.



209

(SQL) select the overlap in tables
Table: EMP

Table: ASSIGN

EKEY PKEY PERCENT EFF_DATE

11 P1 0.50 12/13/2012

11 P3 0.50 10/01/2012

12 P1 1.00 08/16/2012

13 P1 0.75 08/01/2012

13 P2 0.25 06/15/2012

14 P2 1.00 01/12/2013

24 P3 1.00 06/01/2011

25 P2 1.00 09/13/2012

EKEY FIRST MI LAST DOB PT

11 Edgar F Codd 1923 0

12 Chris J Date 1941 0

13 Hugh Darwin 0

14 Andrew Warden 0

15 Parker 1985 0

16 Charles W Backman 1924 0

21 Jeffrey D Ullman 1942 1

22 Margo I Seltzer 1

23 Fabian Pascal 1

24 David ? McGoveran -1 1

25 Chris Date 1941 1

25 Andrew Warden 1

Figure 43: SQL Tutorial subquery definition

Using two different tables with keys of the same data type (domain) an SQL

query that selects a table subset from the first table was shown with another SQL

query that creates a table of key values selected from the second table. The second

query is then nested in the first which matches table keys to those in the results of

the nested query.



210

Table: EMP

EKEY FIRST LAST

11 Edgar Codd

12 Chris Date

13 Hugh Darwin

14 Andrew Warden

15 Parker

16 Charles Backman

Table: ASSIGN

EKEY

12

13

14

(SQL) select from both tables

Select EKEY
From ASSIGN
Where PERCENT > 0.50;

Select EKEY, FIRST, LAST
From EMP
Where PT = FALSE;

Figure 44: SQL Tutorial query and subquery

(SQL) match values from one table to 
those in another table

EKEY FIRST LAST

12 Chris Date

13 Hugh Darwin

14 Andrew Warden

Select EKEY, FIRST, LAST
From EMP

Where PT = FALSE 
and EKEY IN (Select EKEY

From ASSIGN
Where PERCENT > 0.50);

EKEY

12

13

14

Select EKEY
From ASSIGN

Where PERCENT > 0.50;

Figure 45: SQL Tutorial nesting the subquery



211

Appendix J MyKU Tutorial

The feasibility study for the MySQL embedded server client program MyKU

that implements the KNOWN/UNKNOWN model required an introduction to rep-

resentations for missing data values. The presentation described issues related to

adding data to relational databases that use SQL.

J.1 Missing data values

Missing Information



 
NULL



 
Unknown 



 
Not applicable



 
Withheld



 
Invalid

Figure 46: MyKU Tutorial Missing Data

A presentation about data that may be missing, why it can be missing, and how

its interpretation depends why it is missing followed the SQL tutorial.

211



212

J.2 Null

NULL

Key

EKEY FIRST MI LAST DOB PT

11 Edgar F Codd 1923 0

12 Chris J Date 1941 0

13 Hugh NULL Darwin NULL 0

14 Andrew NULL Warden NULL 0

15 NULL NULL Parker 1985 0

16 Charles W Backman 1924 0

21 Jeffrey D Ullman 1942 1

22 Margo I Seltzer NULL 1

23 Fabian NULL Pascal NULL 1

24 David ? McGoveran -1 1

25 Chris NULL Date 1941 1

25 Andrew NULL Warden NULL 1

Figure 47: MyKU Tutorial NULL

The use of NULL to represent missing data as a missing value placeholder and

not a value was explained. It was made clear that because null is not a value, one null

is not equal to another. The standard SQL IS NULL match criteria was described.

J.3 KNOWN/UNKNOWN

This section of the presentation introduced the idea of a relation variable that stores

complete information in one table, incomplete information in another, and informa-

tion about what was missing and why in a third table. Using an example from the

person relvar of the feasibility study, each of the three tables was explained with

emphasis on the relationship between the UNKNOWN and the MISSING tables.



213

KNOWN/UNKNOWN Model

Table: _KNOWN

Table: _UNKNOWN

EKEY FIRST MI LAST DOB

11 Edgar F Codd 1923

12 Chris J Date 1941

EKEY FIRST MI LAST DOB

13 Hugh Darwin

14 Andrew Warden

KEY ATTR TAG

13 mi UNK

13 dob UNK

14 mi N/A

14 dob N/A

Table: _MISSING

Table: Person (Known, Unknown, and Missing)

Figure 48: MyKU Tutorial KNOWN/UNKNOWN relvar

MAYBE operator modifier



 
select ekey, first, last, dob from person 

where dob > 1923;


 
select ekey, first, last, dob from person 

where dob maybe > 1923;


 
select ekey, first, last, dob from person 

where dob > 1923 or dob maybe > 1923;


 
select ekey, attr, tag from person_missing

where attr = ‘dob’;

Figure 49: MyKU Tutorial MAYBE match operator



214

Appendix K Feasibility Study Script

Test Script

When answering a question, please consider 1 being ’low’ or ’not very much’ and 5

being ’high’ or ’a great deal’. If you have any questions, please do not hesitate to

ask.

Have fun!

Section 1.

If you have any questions, please do not hesitate to ask. The tables shown below

are for your reference. The first section asks you to use this table of employees that

represents missing values using NULL. A NULL is shown by the value being blank.

1. Table emp has six columns. Which columns are missing a data value?

2. Using table emp and IS NULL, write a query in SQL that chooses the

columns ekey, first, mi, and last for the employees whose middle initial is

missing. Cut and paste your query and the result of running it below.

3. Do you know why these middle initials are missing?

How do you know?

214



215

Table 51: emp

ekey first mi last dob pt

11 Edgar F Codd 1923 0
12 Chris J Date 1941 0
13 Hugh NULL Darwen NULL 0
14 Andrew NULL Warden NULL 0
15 NULL NULL Parker 1985 0
16 Charles W Bachman 1924 0
21 Jeffrey D Ullman 1942 1
22 Margo I Seltzer NULL 1
23 Fabian NULL Pascal NULL 1
24 David ? McGoveran -1 1
25 Chris NULL Date 1941 1
26 Andrew NULL Warden NULL 1

3.a. Did the result you received meet with your expectations?

1 is a strong no, 5 is a strong yes .

This second section of the script asks you to use the following tables. The

metadata is in a table named md, which explains the meaning of the tags.

Table 52: md (metadata)

tab name meaning

UNK Applicable property applicable - value unknown
NYE Applicable property applicable - value does not yet exist
UND Invalid property applicable - value is undefined
INV Invalid property applicable - value input is invalid
MIS Invalid property applicable - value withheld at input
N/A Inapplicable property not applicable to this item
REM Unknowable value declared unknowable; withheld or removed
NIL Unknowable value result from SQL operation is empty set



216

Person data can be queried using table person or each part of person can be

queried separately using person KNOWN, person UNKNOWN, and

person MISSING.

Table person KNOWN contains only complete information.

Table 53: person KNOWN

ekey first mi last dob pt

11 Edgar F Codd 1923 0
12 Chris J Date 1941 0
16 Charles W Bachman 1924 0
21 Jeffrey D Ullman 1942 1

Table person UNKNOWN contain rows that are missing a data value.

Table 54: person UNKNOWN

ekey first mi last dob pt
13 Hugh Darwen 0
14 Andrew Warden 0
15 Parker 1985 0
22 Margo I Seltzer 1
23 Fabian Pascal 1
24 David ? McGoveran -1 1
25 Chris Date 1941 1
26 Andrew Warden 1

Table person MISSING explains why the data in person UNKNOWN is

missing.



217

Table 55: person MISSING

ekey attr tag

13 dob UNK
13 mi UNK
14 dob N/A
14 mi N/A
15 first UNK
15 mi UNK
22 dob MIS
23 dob UNK
23 mi UNK
24 dob INV
24 mi INV
25 mi UNK
26 dob MIS
26 mi MIS

4. Use table person and write a query to choose ekey, first, mi, and last columns

for persons whose middle initial is ’F’.

Cut and paste your query and result below.

5. Use MAYBE and table person to write a query that chooses ekey, first, mi,

and last columns for persons whose middle initial may be ’F’.

Cut and paste your query and result below

6. Write a query that combines the queries in (4) and (5) above to create a result

set where middle initial is equal to or may be equal to ’F’?

Cut and paste your query and result below.

7. Refer to the result sets from query (2) and query (5) above.



218

Why does query (2) have more rows than query (5)?

8. The following query results all display the same information:

“All persons for whom the middle initial is missing.”

How easy is each result to understand?

8.a. Model A

Table 56: UNKNOWN

ekey first mi last
13 Hugh Darwen
14 Andrew Warden
15 Parker
23 Fabian Pascal
24 David ? McGoveran
25 Chris Date
26 Andrew Warden

Table 57: MISSING

ekey attr tag
13 mi UNK
14 mi N/A
15 mi UNK
23 mi UNK
24 mi INV
25 mi UNK
26 mi MIS

8.a. Is it easy to understand this data?



219

1 is low and 5 is high clarity.

Comments:

8.b. Model B

Table 58: UNKNOWN

ekey first mi mi TAG last
13 Hugh UNK Darwen
14 Andrew N/A Warden
15 UNK Parker
23 Fabian UNK Pascal
24 David ? INV McGoveran
25 Chris UNK Date
26 Andrew MIS Warden

8.b Is it easy to understand this data?

1 is low and 5 is high clarity.

Comments:

8.c. Model C

8.c Is it easy to understand this data?

1 is low and 5 is high clarity.

Comments:



220

Table 59: UNKNOWN

ekey first mi last
13 Hugh UNK Darwen
14 Andrew N/A Warden
15 UNK Parker
23 Fabian UNK Pascal
24 David INV McGoveran
25 Chris UNK Date
26 Andrew MIS Warden

9. Observations:

Please answer the following questions either Yes, No, or Unsure on a scale with

1 being low and 5 being high.

9.a Did the missing data tags provide more information than NULL?

Yes No Unsure

9.b Do you see a benefit to representing missing data with tags

(UNK, N/A, INV, etc) in database systems?

Yes No Unsure

9.c How intuitive is the MAYBE modifier for writing queries when data values are missing?

With 1 being low and 5 being high

PLEASE SAVE THIS FILE

Thank you very much for your help!



221

Appendix L Database for Tutorial and Study

Table 60: EMP

ekey first mi last dob pt

11 Edgar F Codd 1923 0
12 Chris J Date 1941 0
13 Hugh NULL Darwen NULL 0
14 Andrew NULL Warden NULL 0
15 NULL NULL Parker 1985 0
16 Charles W Bachman 1924 0
21 Jeffrey D Ullman 1942 1
22 Margo I Seltzer NULL 1
23 Fabian NULL Pascal NULL 1
24 David ? McGoveran -1 1
25 Chris NULL Date 1941 1
26 Andrew NULL Warden NULL 1

Table 61: ASSIGN

ekey pkey percent eff date

11 P1 0.50 12/13/2012
11 P3 0.50 10/01/2012
12 P1 1.00 08/16/2012
13 P1 0.75 08/01/2012
13 P2 0.25 06/15/2012
14 P2 1.00 10/12/2012
24 P3 1.00 06/01/2012
25 P2 1.00 09/13/2012

221



222

Table 62: person KNOWN

ekey first mi last dob pt

11 Edgar F Codd 1923 0
12 Chris J Date 1941 0
16 Charles W Bachman 1924 0
21 Jeffrey D Ullman 1942 1

Table 63: person UNKNOWN

ekey first mi last dob pt

13 Hugh Darwen NULL 0
14 Andrew Warden NULL 0
15 Parker 1985 0
22 Margo I Seltzer 1
23 Fabian Pascal 1
24 David ? McGoveran -1 1
25 Chris Date 1941 1
26 Andrew Warden 1

Table 64: person MISSING

ekey attr tag

13 dob UNK
13 mi UNK
14 dob N/A
14 mi N/A
15 first UNK
15 mi UNK
22 dob MIS
23 dob UNK
23 mi UNK
24 dob INV
24 mi INV
25 mi UNK
26 dob MIS
26 mi MIS



223

VITA

Marion Roberts Morrissett was born on February 3, 1950, in Roanoke, Virginia, and

is an American citizen. He graduated from Patrick Henry High School, Roanoke,

Virginia in 1968. He studyied history and received his Bachelor of Arts from the

University of Virginia, Charlottesville, Virginia in 1972. He subsequently worked

in Rare Books at Alderman Library of the University of Virginia. After learning

to program IBM mainframe computers using the COBOL programming language,

he worked for the Federal Reserve Bank of Richmond for twenty-eight years as a

programmer, network administrator, and network engineer. He received his Mathe-

matical Sciences Certificate in Computer Science in 1987 and his Master of Science

in 1994 from Virginia Commonwealth University.


	Virginia Commonwealth University
	VCU Scholars Compass
	2013

	Missing Data in the Relational Model
	Marion Morrissett
	Downloaded from


	tmp.1404866539.pdf.MN0Ct

