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The overall aim of this work was to apply HINT, an empirical scoring function based on 

the understanding of hydrophobicity, to analyze and predict the binding affinities and 

biological activities of colchicine-site anticancer agents. The second, concurrent aim 



 
 

was to improve the scoring function by incorporating tautomerism within the modeling 

process. Our belief is that proper evaluation of tautomeric forms for small molecules will 

improve performance of virtual screening.  

The novel pyrrole-based compounds targeting the colchicine site were docked into the 

receptor using HINT as a rescoring function. Two distinct binding modes dictated by the 

size and shape of a subpocket were predicted to differentiate the highly active 

compounds from the weak ones. Of the residues predicted to participate in binding for 

the active binding mode, Cys241β was revealed to form a weak but critical hydrogen 

bond with the ligand. A larger collection of colchicine-site agents, biologically tested in 

the same laboratory including our pyrrole-based compounds were subject to 3D 

quantitative structure-activity relationship (QSAR) study. Using results on docking the 

pyrrole compounds as a guide, relative binding poses and QSAR models were built to 

facilitate ligand design and optimization. A new 3D modeling approach was introduced 

to visually highlight the unique features of highly active compounds and the 

commonality of all compounds in the dataset using HINT maps and successfully tested 

on the colchicine-site agents. These results will provide valuable guidance in the future 

design and development of new colchicine-site agents. To incorporate tautomerism 

within HINT, we proposed and developed two workflow approaches: a general search 

tool using a simple and intuitive algorithm analyzing hydrogen shift patterns to identify 

and enumerate tautomeric structures, and a database that contains commonly observed 



 
 

tautomeric structures. The first approach was designed for small-scale docking studies 

and the second approach was designed for large-scale virtual screening. The tautomer 

module in HINT will give more accurate modeling results when the compound 

encountered is able to tautomerize.   
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CHAPTER 1 

Introduction to the HINT (Hydropathic INTeractions) scoring 
function and related drug discovery applications 

 

1.1 Hydrophobicity and free energy 

Hydrophobicity is a commonly observed phenomenon that can be described as the 

tendency of nonpolar molecules to form aggregates in order to reduce their surface 

contact with polar molecules. The resulting phase separation from mixing oil with water 

is one simple example. It is easily understood that polar molecules tend to stay together 

in terms of classical attraction forces among atoms, such as hydrogen bonds, 

electrostatic interactions and van der Waals’ interactions involving dipoles. The 

attractions between two nonpolar molecules, however, are not fully attributable to the 

weak London dispersion forces (also known as van der Waals’) stemming from the 

instantaneous dipoles. Kirkwood noted the additional attractions between nonpolar 

groups as early as 1954, and other studies concerning the low solubility of nonpolar 

solutes indicated the same.1 In fact, the energy that causes the association of nonpolar 

molecules is partly due to the increase in entropy when the (previously) ordered water 

molecules are scattered into solution.            

The term “hydrophobic bond” was first used by Kauzmann in 1959.2 Also, Hermann 

published three papers on hydrophobic bonds to explain how the loss of ordered water 

molecules causes the entropy increase. Clearly the description of this phenomenon as a 

“bond” is incorrect, but it is still used because of its pragmatic usefulness.3-5 



 

2 
 

Hydrophobic bonds or hydrophobic interactions are thus used to describe the tendency 

of two nonpolar atoms to associate together due to both enthalpy and entropy changes 

in the process. Comprehensive reviews of hydrophobic bonds can be found in Meyer et 

al.1 and Sarkar and Kellogg.6 

The change in Gibbs free energy ΔG is the universal determiner of the feasibility of a 

reaction or a binding process, including the association of nonpolar moieties due to 

hydrophobic interactions. The association constant Ka of a ligand to a receptor can be 

directly related to ΔG using 

ΔG = -RT lnKa 

The change in Gibbs free energy of a system is calculated as: 

ΔG = ΔH - TΔS 

Where ΔG is the change in free energy; ΔH is the change in enthalpy, which is a 

measure of the formation and deformation of non-covalent bonds in the binding 

process; ΔS is the change in entropy, a measure for the change in randomness of the 

system; and T is the constant temperature. 

 An actual ligand-receptor binding process is fundamentally more complicated, and may 

be treated as being composed of the following steps (Figure 1.1): 
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R (H2O)i + L (H2O)j R* L* + (H2O)i+j-k(H2O)k

R + L (H2O)i+j+ R*+ L* (H2O)i+j+

ΔG

ΔGdesolv

ΔGconf

R* L* (H2O)i+j+

ΔGint

ΔGsolv

 

Figure 1.1. The process of a ligand binding to a receptor. R represents the receptor; L 
represents the ligand; i is the number of water molecules inside the binding pocket of 
the receptor; j is the number of the water molecules surrounding the ligand; k is the 
number of the water molecules left in the binding pocket when the ligand is bound. * 
indicates the conformational change associated with binding. delsov, conf, int and solv 
indicate the desolvation, conformational change, interaction and solvation respectively. 

 

The total process is the interaction between R (the receptor/protein) and L (the ligand), 

both of which are solvated, to yield the R*•L* complex, also solvated. ΔG is the total 

change in Gibbs free energy for this process, which is directly related to the observed 

association constant Ka. However, computationally modeling this process directly is 

impossible, so the process is treated by separated steps. First, the ordered water 

molecules surrounding the ligand and the receptor are stripped off in the desolvation 

step. Then, the ligand and the receptor go through conformational changes to get ready 

for binding, because their most stable conformations in solution might be different from 

their bound conformations. The next step is binding, during which the ligand is anchored 

by the interactions between itself and the residues inside the binding pocket. The last 

step considered the possibility that there could be residual water molecules in the 

binding pocket that bridge between the ligand and the receptor, so these water 

molecules are placed back in the pocket. ΔGdesolv, ΔGconf, ΔGint and ΔGsolv are the free 

energy changes for these steps respectively. 
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Therefore, the change in Gibbs free energy of the binding process is 

ΔG = ΔGdesolv + ΔGconf + ΔGint + ΔGsolv 

Ideally, a computational function would calculate all these energies to get an accurate 

prediction of free energy and therefore an accurate association constant.  

 

1.2 The development of HINT (Hydropathic INTeractions) for free 
energy prediction 

HINT (Hydropathic Interactions)7 is a program developed by Kellogg and Abraham to 

quantify and visualize hydrophobic and polar interactions and to predict free energy of 

binding. The basic idea of HINT is that, since the tendency of forming hydrophobic 

aggregates is directly related to the change in free energy, we can measure the 

tendency at the atomic level using a force field. Then, we would be able to count not just 

enthalpy but also entropy in the prediction of free energy compared to the traditional use 

of only hydrogen bonding, electrostatic interactions and van der Waals’ interactions. 

The HINT score, given for the interactions between a ligand and a protein or between a 

protein and another protein, is calculated as, 

B = ∑ ∑ bij = ∑ ∑ (aiSiajSjRijTij + rij) 

where B is the HINT score, bij represents the interactions between atoms i (from ligand 

or protein) and j (from the other binding moiety);  ai and aj are the hydrophobic atom 

constants for atoms i and j derived from partition coefficient LogPo/w, a measure of 

hydrophobicity; Nonpolar atoms generally have positive constants and polar atoms 

generally have negative constants; Si and Sj are the solvent accessible surface areas 
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(SASAs) for atoms i and j; Tij is a function that discriminates between favorable 

interactions and unfavorable interactions using either “+1” or “-1” (see Table 1.1); Rij is 

the simple exponential e-r and rij is an implementation of the Lennard-Jones potential 

function, which is partly used as a penalty function to identify van der Waals’ violations 

(two atoms get too close). For reference, a higher HINT score indicates more favorable 

interactions.  

Table 1.1. The matrix for the identification of Tij’s value. 

Atom Type H (apolar) H (polar) C (apolar) Polar 
(N,O,etc.) 

H (apolar) +11 -12 +11 -12 

H (polar) -12 -13 -12 +14 

C (apolar) +11 -12 +11 -12 

Polar 
(N,O,etc.) -12 +14 -12 -15 

The value of Tij is either “+1” or “-1” depending on the atom types of the two atoms 
under evaluation. Tij is used because the hydrophobic atom constants for polar atoms 
(negative constants) can not differentiate unfavorable polar interactions from favorable 
polar interactions (i.e. if multiplying a negative constant with another negative constant 
obtains only positive values). 
1 hydrophobic-hydrophobic 
2 hydrophobic-polar 
3 acid-acid (two polar hydrogens) 
4 acid-base or hydrogen bond 
5 may depend on charge, but usually base-base and unfavorable (Tij = -1) 

 

How HINT categorizes different types of interactions is explained in Table 1.1. 

Hydrophobic interactions (favorable hydrophobic-hydrophobic interactions), unfavorable 
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hydrophobic-polar, hydrogen bonding, acid-base, unfavorable acid-acid and base-base 

are recognized by evaluating the polarities of the atoms involved in the interaction.   

The hydrophobic atom constants, a, are the key parameters in HINT. Each type of atom 

is assigned an ‘a’ constant from calculations. These constants are derived from Hansch 

and Leo’s hydrophobic fragment constants,8 which are constructed to predict the 

partition coefficient LogPo/w values of a variety of organic compounds. HINT breaks 

down the values of the fragments and assigns them on an atom basis within the 

molecule according to their connectivity factors, namely neighboring bonding, 

branching, rings and chains.6 

While the experimental observation that free energy is proportional to hydrophobic 

surface area4 supports the use of solvent accessible surface areas Si and Sj, the 

selection of the hydrophobic distance function Rij  is open to exploration. We consistently 

use the simple exponential relationship based on the Leo Polar Proximity Factors8 and 

the report stating the hydrophobic interaction is long range and decays exponentially 

with distance.9 

The partition coefficient LogPo/w in the 1-octanol/water system is an experimental 

measure of hydrophobicity. It is in reality an equilibrium constant, so it is directly related 

to the free energy change (imagine 1-octanol as the receptor and note that 2.303 is for 

the conversion from Ln to Log): 

ΔG= -2.303 R T LogP 

HINT utilizes the thermodynamic information (hydrophobic atom constants) from LogP 

to predict the interactions between atom pairs. The effects of enthalpy and entropy in 
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the desolvation, solvation, conformational change and the actual binding steps (Figure 

1.1) are inherently included in LogP measurement. Therefore, HINT scores are believed 

to be directly related to free energy changes.      

The correlation between HINT score and free energy change was first determined by 

studying 53 protein-ligand complexes of known crystal structures.10 The calculated 

HINT interactions scores were correlated with the free energy changes converted from 

experimentally measured binding constants Ki or Kd (Figure 1.2) and a linear 

relationship ΔG = -0.00195 × HINT Score – 5.543 was obtained with a standard error of 

± 2.6 kcal/mol. Better correlations with standard errors approaching ±1.0 kcal/mol can 

be obtained for data sets reporting the binding of a series of ligands to the same protein. 

Later correlations were built using 76 protein-ligand complexes (Figure 1.3)11 with 

resolutions less than 3.2 Å and the standard error was improved to ± 2.4 kcal/mol. If 

only considering the 56 complexes (Figure 1.3) with resolution less than 2.5 Å,  the 

standard error further dropped down to 1.8 kcal/mol. 

Further improvement can also be achieved by considering more details during binding, 

such as pH effects12 and explicit structural water molecules in the binding site.13 
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Figure 1.2. Experimental ΔG vs. HINT score units for 53 ligand-protein complexes.10 

 

Figure 1.3. Correlation between the experimental free energy of binding and HINT 
score units. The 56 ligand-protein complexes with resolution less than 2.5 Å are 
represented by closed diamonds. The 76 ligand-protein complexes with resolutions less 
than 3.2 Å are represented by the open and closed diamonds. 
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1.3 HINT applications 

1.3.1 Docking and scoring 

HINT scoring in docking is the important application of HINT. HINT is designed to 

evaluate the interactions between two binding moieties, usually a ligand and a protein or 

two proteins. HINT interaction scores are used to explain this binding and in many 

cases, the activities of ligands. Another very powerful application is to predict the 

binding pose of the ligand. How a newly synthesized or designed ligand interacts with 

its active site or receptor is always of special interest in drug design and development. 

Being able to visualize the residues of the receptor around the ligand greatly facilitates 

the optimization of individual interactions and can lead to the design of more active 

ligands. Generally, the structure of the receptor is known from crystallization or 

homology modeling. External docking applications, such as GOLD,14 are used to 

exhaustively generate possible conformations of the ligand inside the receptor’s binding 

pocket. HINT is then used to calculate the HINT interaction scores for all the 

conformations. The conformation with the highest HINT score is generally recognized 

as the binding pose of the ligand. The activity of the ligand or its binding free energy 

change is then correlated with the highest HINT score. 

HINT maps can be created after the HINT interaction scores are calculated. HINT maps 

provide direct visualization of the interactions. An example is shown in Figure 1.4, 

where hydrophobic interactions are indicated by green contours, favorable polar 

interactions (acid-base, hydrogen bonding and Coulombic) are indicated by blue 

contours and unfavorable polar interactions (acid/acid and base/base) by red. 
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Figure 1.4. An example of a HINT map of a pyrrole analogue binding to the colchicine 
site on microtubules. 

 

A number of studies have been published using this protocol to determine the binding 

poses of ligands and to correlate the corresponding HINT interaction scores with 

activities.6 The details about on such application of this protocol will be discussed in 

Chapter 2.      

1.3.2 3D-QSAR: HINT-CoMFA 

3D-QSAR (Quantitative Structure-Activity Relationship) is an early application of HINT. 

The concept of QSAR is to create a regression model to relate a set of predictor 

variables to the response variable (the activity measurement). In 3D-QSAR, the 

predictor variables are the interactions between a probe atom placed around the ligand 
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and the ligand itself in a “field” map. As in all forms of QSAR, a large number of ligands 

need to be collected for 3D-QSAR modeling. Their “interactions” are calculated and the 

“interactions” that have significant impact on the activities of the ligands are identified by 

regression analysis. The positions of these important “interactions” indicate the 

fragments (functional groups) of the ligands that are important for activity (Figure 1.5). 

3D-QSAR modeling is a ligand-based technique because, in principle, it does not 

require any information about the structure of the receptor.  

 

Figure 1.5. An example of 3D-QSAR maps of benzenesulfonyl-pyrazol-ester 
compounds as cathepsin B inhibitors.15 Favorable steric regions are in green and 
unfavorable steric regions are in yellow, and favorable acidic regions are in blue and 
favorable basic regions are in red. 

 

CoMFA (Comparative Moelcular Field Analysis) is the prototypical 3D-QSAR method, 

first reported by Cramer and colleagues in 1988, that calculates steric and electrostatic 
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fields (interactions) surrounding the ligands.16 In 1991, our group showed that HINT can 

create a hydrophobic/polar field by measuring HINT interactions between the ligand and 

a probe atom, using the equation shown above, that provides information in addition to 

the two fields in CoMFA.17 Thus these two methods are combined to form the HINT-

CoMFA protocol. This combined method has been used in quite a few studies and 

showed significant statistical improvement compared to using only CoMFA, especially 

when the ligands and actives were particularly hydrophobic.6 The use of HINT-CoMFA 

will be further discussed in Chapter 3. 

1.3.3 Computational titration and structural water molecules 

It is reasonable to state that improvements of free energy prediction and binding pose 

prediction can be achieved by considering more details of the binding process, such as 

the ionization states of functional groups on ligands and residues and water molecules 

in the binding site. 

Computational Titration11, 18-19 was developed to enumerate and evaluate multiple 

ionization states for both ligand and receptor in parallel (Figure 1.6). For each “state 

ensemble”, the positions of hydrogen atoms involved in hydrogen bonding are 

optimized. In addition, alternate possibilities considering different ionization states for 

acidic and basic functional groups are evaluated. The “state ensemble” that receives the 

highest HINT score is proposed to be the optimum description of binding, which can be 

used to correlate with the corresponding pKa and pH.  
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Figure 1.6. Schematic illustration of Computational Titration algorithm.11 Each filled 
circle represents a protonation of that functional group. 

 

The roles of water molecules in a binding site have been recognized as bridging the 

ligand and the receptor to stabilize or sometimes destabilize the binding. Incorporating 

their contribution in HINT scoring has been reported by our group to improve the 

correlation between HINT scores and experimentally determined binding constants.12 



 

14 
 

The incorporation is simply done by calculating the HINT scores between the explicit 

water molecules and the ligand/receptor. The equation is: 

HTotal = Hprotein-ligand + Hligand-water + Hprotein-water 

where HTotal is the final total HINT score indicating the binding of the ligand and      

Hligand-water and Hprotein-water are HINT scores between the ligand and water and the protein 

and water. 

Because water molecules are not well defined in low-resolution crystal structures, it is 

desirable to have a method to predict where the water molecules are in the binding site. 

Our group has developed a HINT function that can estimate the interactions between a 

potential water molecule and its surrounding atoms. Thus, a set of well-placed solvent 

molecules can be computationally generated for addition to the model. 

HINT scoring of water molecules can be combined with the Rank algorithm, which 

calculates the number and geometric quality of hydrogen bonds for a potential water 

molecule. A statistical model20 was built to correlate the existence of a water molecule 

at a specific position in protein binding sites with its interactions with surrounding atoms 

evaluated by HINT and Rank. The model was based on a training set of 125 water 

molecules in the binding sites of 13 proteins determined by crystallography. We then 

tested the model on an independent set of 68 water molecules in 9 proteins and 87% of 

them were correctly predicted.   

The water molecules at protein-protein interfaces were also studied recently.21 The 

understanding of their roles will be helpful for understanding these associations and for 

the design of protein-protein docking tools. 
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1.4 Specific Aims of study and overview of chapters 

HINT is a powerful tool for molecular modeling based a hydropathic force field derived 

from experimental determination of LogPo/w. The long-term goal of our group’s research 

is to gain knowledge about biological association by probing the mere hydrophobic 

effect and hydropathic interactions. The goal of this study was to answer the questions 

of whether: 1) it was possible to explain the anticancer activities of colchicine-site 

agents using computational molecular modeling techniques built upon HINT, and 2) in 

the process, can we improve the HINT scoring function and protocols, by considering 

tautomerism. 

To answer these questions, our specific aims were formed: 1) to apply existing HINT 

modeling tools to understand the binding of pyrrole-based anticancer agents 

synthesized by Dr. Gupton and co-workers to the colchicine site; 2) to generalize the 

binding features of a more comprehensive collection of colchicine-site agents including 

our pyrrole-based compounds and other structurally diverse compounds and 3) to 

develop new tools that incorporate tautomerism within HINT for the modeling of 

tautomeric structures. This latter aim is more general in scope. 

Chapter 2 describes results obtained for Aim 1.  Colchicine-site agents are the new 

rising stars of cancer treatments.22 They possess newly discovered anti-vascular 

activities that can cut off a tumor’s nutrients and have the potential to circumvent drug 

resistance related to the use of taxanes and vinca alkaloids.23 We have been 

developing a series of pyrrole-based compounds targeting the colchicine site.24 

Understanding their binding modes was one critical step for the further optimization of 
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their activities. Our modeling protocol based on the HINT scoring function would be 

tested and parameterized for colchicine-site ligands.  The background of microtubules, 

colchicine-site agents and the development of our in-house pyrrole-based compounds 

are introduced in Chapter 2. The molecular modeling protocol of docking and scoring 

with the HINT scoring function is elaborated. The modeled binding modalities, important 

features and corresponding residues on the receptor are discussed. 

Chapter 3 describes results obtained for Aim 2. After we achieved success in modeling 

the pyrrole-based compounds, we identified other colchicine-site agents with different 

scaffolds. We wanted to apply a similar modeling protocol to understand their binding 

modes and to thus have a comprehensive view of the colchicine-site agents and the 

binding site. Such model would be valuable for ligand design and optimization.  The 

colchicine-site agents that were included in modeling are shown in Chapter 3. The use 

of 3D-QSAR modeling with the CoMFA (Comparative Molecular Field Analysis), HINT-

CoMFA and CoMSIA (Molecular Similarity Indices in a Comparative Analysis) methods 

is described. The generalized features of colchicine-site agents from the models and the 

interacting residues are shown. A new approach based on the HINT maps, and without 

using regression, is introduced to visualize the important features of a pool of 

compounds. Its application is demonstrated on the colchicine-site agents.  

Chapter 4 describes results obtained for Aim 3. Tautomerism describes a situation in 

which one compound can have multiple structures different in the positions of their 

hydrogen bond donors and acceptors, i.e., the positions of hydrogens and double bonds 

shift within the molecule. Traditionally, tautomerism was not considered in virtual 

screening and only one structure for one compound was stored in the database and 
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used for docking. In the process of improving binding predictions, considering multiple 

tautomeric structures for each compound is one step forward and we have been 

adopting this idea within HINT. A new workflow plan considering tautomerism is shown 

in Chapter 4. We developed two approaches for the workflow: a general search tool for 

small-scale tasks such as docking of single ligands and use of a tautomer database for 

large-scale virtual screening. The algorithms for tautomer identification and enumeration 

and the structure of the tautomer database are detailed. The validation and use of the 

new tools are also presented. 

Chapter 5 presents the overall conclusions of the study.  
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CHAPTER 2 

Small Molecule Modeling in the Development of Pyrrole-Based 
Colchicine-site Anticancer Agents 

 

2.1 Colchicine-site agents targeting microtubules to treat cancer 

Microtubules are major cytoskeletal components in eukaryotic cells and participate in a 

variety of cell functions including maintenance of cell shape, intracellular transport, and 

forming mitotic spindles for segregating chromosomes during mitosis. Microtubules 

assemble and disassemble by a reversible process called dynamic instability involving 

discrete α/β tubulin heterodimers.1 Diverse agents suppress microtubule dynamics; in 

rapidly dividing cells they induce mitotic arrest and initiate apoptosis.2 Traditionally, 

microtubule-targeting agents are classified as microtubule stabilizing or destabilizing 

agents based on their effects on microtubule polymer mass at high concentrations. A 

more practical classification in terms of drug design divides them according to their 

binding sites on tubulin, which are the taxane domain, the vinca domain, the colchicine 

site and new sites discovered as more structurally diverse agents are developed.2 

Unlike the taxanes (paclitaxel) and vinca alkaloids (vincristine), neither colchicine 

(Figure 2.1) nor any colchicine site agents have been successful in cancer 

chemotherapy due to their severe toxicity to normal tissues.3 However, recent studies of 

one family of colchicine site agents, i.e., analogues of combretastatin A-4 (Figure 2.1), 

have reported antivascular actions leading to the rapid collapse of tumor vasculature.4 A 

number of CA4 analogues are in clinical trials refueling the search for novel colchicine 

site agents.  Emerging drug resistance due to the expression of the βIII-tubulin isotype 
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has compromised the clinical use of taxanes and vinca alkaloids.5 Resistance to 

different types of microtubule targeting agents was recently suggested to be related to 

their binding sites and that βIII-tubulin mediated drug resistance might be circumvented 

by colchicine site agents.6 Natural and synthetic compounds, e.g., podophyllotoxins, 

arylindoles, sulfonamides, 2-methoxyestradiols and flavonoids, bind within the 

colchicine site.7 This structural diversity provides many possibilities for optimization and 

new scaffold design. 
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Figure 2.1. The structures of agents that target microtubules. 

The colchicine site has been characterized with X-ray crystallography by co-

crystallization of the protein with N-deacetyl-N-(2-mercaptoacetyl)-colchicine (DAMA-
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colchicine);8 the site is at the interface between α- and β-tubulin. A simplified 

mechanism was proposed to explain the destabilizing effect of tubulin on microtubules 

based on crystallographic analysis.8-9 The dissembling conformation of microtubules is 

stabilized by colchicine binding so that the natural switch to the assembling 

conformation is blocked (Figure 2.2). 

 

Figure 2.2. The simplified mechanism of chochicine destabilizing microtubules. The 
crystal structures of microtubule unbound (top) and bound with colchicine (bottom) are 
shown with schematic representations. 

 

2.2 Identification of a pyrrole-based lead and previous studies 

JG-03-14 (3,5-dibromo-4-(3,4-dimethoxyphenyl)-1H-pyrrole-2-carboxylic acid ethyl 

ester, Figure 2.3) was synthesized along with a pool of brominated pyrrole compounds 

and it was found that the compound demonstrated potent antiproliferative activity 

against a wide range of cancer cell lines, strong microtubule-destabilizing activity and is 
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a poor substrate of the multidrug-resistant P-glycoprotein pump that effluxes taxanes 

and vinca alkaloids.10 Further studies showed that the compound disrupts multiple 

endothelial cell functions suggesting the potential for vascular-disrupting activities.11 

Since JG-03-14 inhibited the binding of [3H]colchicine,10 and a COMPARE analysis, 

which evaluates the similarity between two compounds with respect to the NCI 60-cell 

line assay,12 showed correlation between JG-03-14 and colchicine, it is highly likely that 

the compound also binds at the colchicine site. 

A previous study conducted in our group modeled JG-03-14 and a diverse set of 

analogues.13 A quantitative linear QSAR relationship between a free energy like quantity 

based on IC50 and HINT score was obtained. The HINT score, which considers 

hydrophobic and polar interactions as well as entropic effects, as described in Chapter 

1, has been shown to correlate with binding free energy for small molecule-

biomacromolecular complexes.14 Most importantly, a binding pose of JG-03-14 was 

proposed in the study. In this respect, JG-03-14 has become a valuable lead candidate 

and the five atoms on its pyrrole scaffold can be easily modified for structural-activity 

relationships (SAR) according to the proposed binding pose, providing a basis for future 

optimization and development.    
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Figure 2.3. The structure of JG-03-14. 
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2.3 Improvement to the previous binding model by studying the C-2 

compounds 

2.3.1 Introduction 

In this study, we retain the 3,4-dimethoxylphenyl at C-4 and the two bromine groups at 

C-3 and C-5 of JG-03-14 and focus on modifications to the ester at the C-2 position of 

the pyrrole core. Our collaborators Gupton and co-workers have previously reported the 

synthesis of JG-03-1415 and have utilized a similar sequence of reactions as outlined in 

Scheme 2.1 to prepare the new analogues listed in Table 2.1. 
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Scheme 1. Preparation of JG-03-14 analogues with dodifications at the 2 position. (a) 
POCl3, DMF and Heat, followed by H2O/NaPF6 (b) Glycine ethyl ester or glycine t-butyl 
ester and NaOt-Bu, DMF and Heat (c) NaOH,EtOH/H2O and Heat (d) ROH, 1,1'-
carbonyldiimidazole, DBU and DMF (e) Dibromodimethylhydantoin, CHCl3 and Heat. 
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Table 2.1. Structures, biological activity and properties of C-2 pyrrole compounds. 

N
HBr

Br
OR

O

H3CO

H3CO

1

2
3

4

5
 

Cmpd R 
Antiproliferationa 
IC50 (µM) 

Cellular microtubule 
lossb 

Binding 
Mode 

HINT 
scorec 

HINT  
logP 

ALOGPsd 

Colchicine - 0.014 100% loss at 0.5 µM - 549 3.24 1.59 
JG-03-14 
(2.1) 

Ethyl 0.036e 100% loss at 0.5 µM I 418 2.60 4.44 

2.1a methyl  0.168 50% loss at 5 µM I 524 2.06 3.87 
2.1b n-propyl  <0.050 75% loss at 5 µM I 157 3.14 4.74 
2.1c i-propyl  0.108 70% loss at 5 µM I -179 3.14 4.70 
2.1d t-butyl  2.0 No loss up to 10 µM II 187 3.24 5.02 
2.1e n-butyl  1.3 15% loss at 10 µM II 530 3.68 5.05 
2.1f n-hexyl   3.5 35% loss at 10 µM II 256 4.76 5.83 
2.1g benzyl  5.3 No loss up to 10 µM II 713 3.61 5.39 
2.1h -(CH2)3NMe2  4.6 10% loss at 10 µM II 293 2.52 4.10 
2.1i -(CH2)2NMe2 5.2 10% loss at 10 µM II 358 2.57 3.82 
2.1j -(CH2)3NMe2H+Cl– 8.0 No loss up to 10 µM II 631 0.27 0.39 
2.1k -(CH2)2NMe2H+Cl– 10.7 No loss up to 10 µM II 774 0.78 0.27 
2.1l 4-methoxylphenyl 18.3 No loss up to 10 µM II 957 4.37 5.48 

aExperiments were performed using human MDA-MB-435 cancer cells; bLoss of interphase 
microtubules was evaluated in A-10 cells;  c515 HINT score units ≈ 1 kcal mol -1 (Ref 16); dALOGPs was 
calculated at Virtual Computational Chemistry Laboratory, http://www.vcclab.org; eRef 10.  

 

Antiproliferative activities were measured by our collaborators Mooberry et al. in MDA-

MB-435 cancer cells using the sulforhodamine B assay and effects on cellular 

microtubules were evaluated in A-10 cells using immunofluorescence as previously 

described.10 Results are presented in Table 2.1.  

 

2.3.2 Materials and methods 

http://www.vcclab.org/�
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The X-ray crystal structure of αβ-tubulin complexed with DAMA-colchicine (pdbid: 

1SA0) was prepared with Sybyl 8.1.16 The stathmin-like domain, the C and D subunits, 

were deleted. Hydrogen atoms were added and their orientations were optimized by the 

Tripos force field to a gradient of 0.005 kcal mol-1 Å-1.  The docking studies were 

performed using GOLD 5.0.17 The ligands were docked in the active site, which was 

defined by the space in a 6 Å radius around DAMA-colchicine. Docking conformations 

generated with GOLD and filtered initially by GoldScore were further analyzed with 

HINT. The most active ligand JG-03-14 (2.1) was docked first with GOLD without 

constraints. The resulting conformations were rescored with HINT and the best docking 

pose of 2.1 was defined as its binding mode. This pose was then used to define a 

similarity constraint in GOLD such that other ligands (2.1a-2.1l) were docked in the way 

that best matches this shape. For these ligands, the conformations/binding modes were 

chosen based on the highest calculated HINT score. 

2.3.3 Results and discussion  

For this study, the SAR is analyzed with respect to the antiproliferative activities of 

compounds 2.1 (JG-03-14) and 2.1a–l. Antitubulin activity generally trends with 

antiproliferative activity. 2.1 remains the most active compound (36 nM). Compared to 

2.1, 2.1a had a 4-fold decrease in activity likely due to its one-carbon shorter ester. 

Similarly, the longer and bulkier alkyl substitutions n-propyl (2.1b) and i-propyl (2.1c) 

decreased antiproliferative activity. Larger groups, t-butyl (2.1d), n-butyl (2.1e) or n-

hexyl (2.1f), were tolerated but with a significant activity loss of more than 30-fold. A 

dramatic loss was also observed for aromatic substitutions (2.1g, 2.1l). The 
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incorporation of a comparatively polar amine did not increase the activity significantly 

(2.1h–k), suggesting that activity drop is related to sterics, and not to solubility. 

The observation that the protonated amines (2.1j, 2.1k) had a further 2-fold drop in 

activity compared to their free base analogues (2.1h, 2.1i) may be due to their weaker 

ability to penetrate the cell membrane. Moreover, no microtubule effects were observed 

up to 10 µM for the amine derivatives, suggesting that a different mechanism of action 

of antiproliferation might be at play. The SAR suggests that only the properly sized 

group would be favorable for activity and the ethyl group of 2.1 provides that optimum. 

To rationalize the SAR from a structure-based perspective, we performed docking 

studies with the X-ray crystal structure of DAMA-colchicine/tubulin co-crystal (pdbid: 

1sa0).8 It should be noted that the resolution of the 1sa0 structure for αβ–tubulin is poor 

(3.58 Å) and resulting modeling studies have a higher degree of uncertainty than in 

other systems. The colchicine site is mostly buried in the β-subunit surrounded by 

helices H7 and H8, loop T7, and strands S8 and S9. The T5 loop of the α-subunit also 

contributes to the pocket (see Figure 2.4). DAMA-colchicine occupies the pocket such 

that ring A fits deep within a subpocket close to H7, ring C fits into another subpocket 

close to T5, ring B is centered within the main pocket and the DAMA chain is pointing to 

the pocket‘s entrance. For convenience, we will refer to the subpockets where rings A 

and C bind as subpockets A and C. The compound 2.1 and its analogues 2.1a–l were 

docked to the colchicine site using GOLD17 and re-scored using HINT. The compounds 

can be divided into two sets based on their computationally predicted binding modes 

(Figure 2.4). In both modes, the dimethoxyphenyl ring locates in the subpocket A, 

overlapping the trimethoxyphenyl ring (ring A) of DAMA-colchicine. The positions of the 
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C-2 ester chain differ between the two modes. In mode I, the R group of the ester has 

“acceptable” size (i.e., 2.1, 2.1a–c), and fits within subpocket C and thus overlaps well 

with ring C of DAMA-colchicine, while in mode II, the entire molecule is reoriented with 

the bulkier 2.1d–l R groups extending out from the main pocket towards its opening. 

 

 

Figure 2.4. Colchicine (yellow) and binding modes of pyrrole-based C-2 analogues 
(mode I: red; mode II: purple). The extents of the colchicine site, as illustrated by 
MOLCAD, are shown in white. 

 

To illustrate the specific interactions between the ligands and site, we calculated 

intermolecular HINT interaction maps18-19 using 2.1 (Figure 2.5A) as representative of 
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mode I and 2.1e of mode II (Figure 2.5B). First, subpocket A, which fits the 

dimethoxyphenyl ring in both modes, is quite hydrophobic. In both modes, the four-

carbon side chains of Leu248β and Leu255β clamp the phenyl ring in place while 

deeper in the pocket, other residues lock the ligand’s methoxys. Polar interactions also 

play a part, as Cys241β is in proximity to these two methoxys, with distances between 

the cysteine’s sulfur and the oxygens of 3.06 Å and 3.45 Å, thus likely forming at least 

one hydrogen bond to support the binding.  Also in both modes, there is a favorable 

interaction in the main pocket between the backbone oxygen of Asn258β and the 

ligand’s pyrrole nitrogen.  

Both hydrophobic and polar residues characterize subpocket C, which fits the esters in 

mode I binding. The alkyl ends reach the hydrophobic bottom, while the carboxyl 

oxygens anchor the ester by forming hydrogen bonds with the backbone nitrogen of 

Val181α. The main pocket includes its funnel opening and is much more spacious than 

subpocket C. It easily tolerates the size of the longer esters binding with mode II by 

flipping the pyrrole core – thus exposing the ester tail to the solvent while keeping the 

dimethoxylphenyl ring in subpocket A. Our models suggest that a new hydrogen bond, 

stabilizing the ester tail in mode II, is formed between the amide nitrogen of Asn101α 

and the ligand’s carbonyl oxygen. The interactions for the various R groups of 2.1d–l 

are poorly defined as the pocket entrance broadens and has a large solvent exposure.  
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Figure 2.5. HINT interaction maps of (A) 2.1 (binding mode I) and (B) 2.1e (binding 
mode II). Green contours represent favorable hydrophobic interactions; blue contours 
represent favorable polar interactions (hydrogen bonds, acid/base, Coulombic); red 
contours represent unfavorable polar interactions. 2.1 is shown in red, 2.1e in purple 
and colchicine in yellow. 
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The compounds in mode I displayed notably higher antiproliferative activity and 

antitubulin activity than the compounds in mode II. It is clearly important to effectively 

occupy both subpockets A and C in the colchicine site. The SAR within the mode I set is 

size related: the methyl of 2.1a, n-propyl of 2.1b and the i-propyl of 2.1c may not 

position the ester carbonyl (hydrogen bonded to Val181β) as well as the ethyl of 2.1. In 

contrast, in the mode II set, the ester R extends from the pocket into (and possibly out 

of) the pocket’s entrance.  The SAR for these analogues simply may not be 

interpretable as these tails are highly flexible and thus subject to interactions with a wide 

array of residues as well as solvent. 

It is also instructive to compare, in detail, the binding of colchicine and the pyrrole-based 

compounds 2.1 and 2.1a–l: 1) depletion of ring B of colchicine retains activity, while 

rings A and C, which adopt a similar conformation as in mode I, are necessary for high 

affinity binding;20 and 2) residues Cys241β (subpocket A) and Val181α (subpocket C) 

appear to be important for antitubulin activity since the removal of any A ring methoxy 

group close to Cys241β weakens the binding to tubulin and microtubule inhibition.21 In 

the next section of this chapter we will explore the SAR of subpocket A. Also, 

isocolchicine, whose structural difference to colchicine is in the C ring (methoxy at C-9 

and keto at C-10) binds weakly and only poorly inhibits microtubule assembly,22 

probably because of a loss of hydrogen bonding to Val181α. Both residues anchor the 

ligand in the more active mode I, while only Cys241β does so in the less active mode II. 

This may largely explain the difference in activity between the binding modes. 

The HINT scores of Table 2.1 were poor in distinguishing between binding in mode I 

and II. The reasons for this failure are instructive. First, the poor resolution of the tubulin 
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crystal structure and the flexibility of the pocket, especially the T5 and T7 loops, are a 

partial explanation.  However, the binding modes themselves and the nature of the 

pocket are larger factors. Table 2.1 lists the HINT scores in terms of two fragments – 

the common dimethylphenyl plus pyrrole (ring) and the ester. Interaction types further 

differentiate the latter. The total ring score is largely invariant (580±70), excluding 2.1b 

and 2.1c, where it is lower by > 200. The ester’s HHH for mode I (750±130) is much 

higher than for mode II (280±90). Interestingly, HHH is highest for 2.1b and 2.1c, but 

accommodation of these longer esters was penalized by poorer ring interactions. For 

2.1 and 2.1a-c, hydrophobic binding in subpocket C is the key. Although the esters of 

mode II compounds appear to make productive contacts, these are in the very open 

funnel-like entrance of the pocket where dynamic solvent effects that can disrupt polar 

interactions must be assumed.  

Table 2.2.  HINT scores by fragment and interaction type. 

Cmpd Mode 
HINT scorea 
Ring Ester 
HTOTAL HHB + HAB HHH HAA + HBB HHP 

2.1 (JG-03-14) I 492 858 711 -499 -1328 
2.1a I 518 680 583 -427 -1048 
2.1b I 363 1069 855 -593 -1681 
2.1c I 321 766 833 -478 -1821 
2.1d II 570 778 226 -398 -1169 
2.1e II 626 781 225 -364 -1015 
2.1f II 435 665 387 -369 -1046 
2.1g II 589 812 284 -341 -868 
2.1h II 557 549 268 -336 -1071 
2.1i II 581 726 237 -400 -1027 
2.1j II 650 375 213 -236 -634 
2.1k II 596 847 196 -403 -755 
2.1l II 587 827 494 -240 -924 

aInteraction types: favorable polar (hydrogen-bond, HHB, and acid/base, HAB), 
hydrophobic (HHH), unfavorable polar (acid/acid, HAA, and base/base, HAB) and 
unfavorable hydrophobic-polar (HHP). 
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2.3.4. Summary: SAR of C-2 analogues 

In summary, mode I is a new binding motif observed for pyrrole compounds based on 

JG-03-14 (2.1) that is different from the previously reported binding mode,13 which was 

actually mode II in this study (Figure 2.6). The ester chain in mode I overlaps with the 

C-10 substituents of colchicine and the SAR of colchicine C-10 analogues also shows 

that increasing length of the alkyl chain causes a concomitant decrease in activity.23 We 

propose that the deeper burial of mode I ligands is more disruptive to the association of 

α- and β-tubulin subunits than is binding with mode II. The results of the study have 

been published.24 We are continuing design and development of additional JG-03-14 

(2.1) analogues by focusing on other positions of the pyrrole core as we attempt to gain 

a full view of the SAR.  

 
Figure 2.6. The previously identified binding mode of JG-03-14 (purple). Colchicine is 
shown in yellow. 
 



 

34 
 

2.4 A weak but critical hydrogen bond identified by studying the C-4 
compounds 
2.4.1 Introduction 

In this study, we retained the two bromine groups at C-3 and C-5 and the ethyl ester at 

the C-2 position and focused on modifications to the 3,4-dimethoxylphenyl ring at the C-

4 position. Previously in this chapter and in publication,24 we showed that JG-03-14’s 

ethyl ester at C-2 is an ideally suited substituent for that position and this induces the 

3,4-dimethoxylphenyl moiety of the compound to overlap with ring A of colchicine in the 

colchicine site and bind in a subpocket formed mainly by hydrophobic residues and one 

polar residue, Cysβ241. Here, we explore the electronic, hydrogen bonding and 

hydrophobic characteristics of substituents at C-4 to enrich our understanding of the 

SAR of these compounds.  

Gupton et al. have previously reported the synthesis of JG-03-14 (Compound 2.1)15 and 

have utilized a similar strategy (Scheme 2.2) to prepare analogues 2.2a-2.2i (Table 

2.3). 
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Scheme 2.2. Preparation of pyrrole C-4 analogues. 

 

 

 



 

35 
 

Table 2.3. Structures, antiproliferative and microtubule inhibitory activities of pyrrole C-4 
compounds.        

 

 

 
a 40% microtubule loss at 75 µM, EC50 ~ 75 / (2 × 0.4) = 94 µM.  bAssumed EC50 = 150 
µM. 

 

Cmpd R Antiproliferation 
IC50 (µM) 

Microtubule inhibition 
EC50 (µM) pEC50 

HINT 
score 

Colchicine  0.016 ± 0.002 0.030 7.52 549 

2.1 (JG-03-14) 3,4-dimethoxylphenyl 0.036 ± 0.002 0.490 6.31 643 

2.2a Phenyl 10.3 ± 1.3 > 75 3.82b 170 

2.2b 4-methylphenyl 2.24 ± 0.2 > 75 3.82b 579 

2.2c 4-chlorophenyl 0.919 ± 0.020 > 75 3.82b 754 

2.2d 4-bromophenyl 0.312 ± 0.020 ~ 94a 4.03 815 

2.2e 4-methoxylphenyl 0.843 + 0.090 7.0 5.15 563 

2.2f 3-methoxylphenyl 0.633 ± 0.01 2.4 5.62 558 

2.2g 3,4,5-trimethoxylphenyl 12.9 ± 1.9 > 75 3.82b 124 

2.2h 1-napthyl 3.24 ± 0.20 7.0 5.15 805 

2.2i 3-indolyl 1.98 ± 0.20 17.8 4.75 271 

2.2j 4-
trifluoromethoxylphenyl 1.70 ± 0.10 27.1 4.57 649 

2.2k 4-thiomethylphenyl 0.626 ± 0.020 18.5 4.73 541 

2.2l 3,4-dichlorophenyl 0.806 ± 0.060 9.9 5.00 1012 

2.2m 3-fluoro-4-
methoxylphenyl 0.539 ± 0.040 14.1 4.85 567 

2.2n 6-ethoxyl-2-napthyl 1.99 ± 0.20 > 75 3.82b 577 

2.2o 1,3-benzodioxol-6-yl 1.80 ± 0.20 29.7 4.53 428 

2.2p 1,4-benzodioxan-6-yl 4.36 ± 0.3 20.9 4.68 590 

2.2q 2-bromo-4,5-
dimethoxylphenyl 2.64 ± 0.30 14.0 4.85 781 

N
H

R
Br

Br

O

O
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Antiproliferative activities were measured by Mooberry et al. in MDA-MB-435 cancer 

cells using the sulforhodamine B assay and effects on cellular microtubules were 

evaluated in A-10 cells using immunofluorescence as previously described.10 Results 

are presented in Table 2.3. 

2.4.2 Materials and methods 

Sybyl 8.116 was used to prepare the X-ray crystal structure models of αβ-tubulin 

complexed with different ligands (pdbid: 1sa0, 1sa1, 3hkc, 3hkd and 3hke). For each 

structure, the procedure was the same as previously reported. The stathmin-like 

domain, the C and D subunits, were deleted. Hydrogen atoms were added and their 

orientations were optimized by the Tripos force field to a gradient of 0.005 kcal mol-1 Å-1.  

GOLD 5.117 was used for docking studies. The ligands were docked in the active site, 

which was defined by the space in a 6 Å radius around the complexed small molecule. 

One hundred GA runs generated one hundred docking conformations for each ligand 

with GOLD and filtered initially by GoldScore. They were further analyzed with HINT. 

First, the ligands were docked to all five tubulin structures with GOLD without 

constraints. The resulting conformations were rescored with HINT and the best docking 

poses were indicated by the highest HINT score. Next, the differences between ligand 

binding to the five receptors for each ligand were checked and it was found that binding 

with 3hkc generally gave higher scores. The resulting 3hkc-ligand complexes were 

further minimized with the Tripos force field and rescored again. The minimized 

conformation and the new HINT score were defined as the docking 

conformation/binding mode and binding score of the ligand. 
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2.4.3 Results and discussion 

The structural-activity relationship is discussed first. All structural modifications for this 

study were at the C-4 position of the pyrrole core. Antiproliferative activities as well as 

microtubule depolymerizing activities were measured (Table 2.3). Compounds 2.2a-

2.2d showed very weak or barely any effect on microtubule polymerization with EC50 

values of 75 µM or higher.  Compound 2.2a, the unsubstituted ring analog, showed 

negligible antiproliferative activity, while this activity for 2.2b-2.2d (especially 2.2c with 

an IC50 of 0.919 µM) likely indicates a different mechanism of action, although some 

form of microtubule inhibition may still be responsible. For the rest of the compounds, 

2.1 and 2.2e-2.2q (and colchicine), the microtubule inhibitory activity correlates well with 

the antiproliferative activity (pEC50 = 1.10×pIC50 – 1.57, r2 = 0.79, Fig. 2.7).  

Interestingly, for these compounds, pEC50 – pIC50 = 1.00 ± 0.43 µM, which indicates 

that microtubule inhibition is consistently one order of magnitude weaker than overall 

inhibition of proliferation.  
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Figure 2.7. Correlation of pEC50 and pIC50. Compounds indicated by closed circles are 
not included in correlation.  They have high antiproliferative activity but negligible 
microtubule inhibition, which may indicate an alternative mechanism of action. 

 

The SAR was analyzed for C-4 analogues with respect to the EC50. The active lead 

compound 2.1 (0.490 µM) bore two methoxy groups on the phenyl ring attached at the 

C-4 position. Removing either of the methoxys showed a significant decrease in activity 

by 14-fold (2.2e, 7.0 µM) and 5-fold (2.2f, 2.4 µM), respectively; as noted above, a 

complete loss of microtubule inhibitory activity was observed when all ring substitutions 

were eliminated (2.2a), suggesting the significance of both methoxys with a particular 

preference for the meta-methoxy group. When compared to 2.2e, replacing the 
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hydrophobic methyl with a more polar trifluoromethyl while retaining the acceptor ether 

oxygen (2.2j) or with the weaker sulfur acceptor (2.2k) resulted in minor losses in 

activity by 4-fold and 2.5-fold, respectively. Furthermore, attempting to recover activity 

with hydrophobic groups at the para-position with 2.2b (methyl), 2.2c (chloro) and 2.2d 

(bromo) was completely ineffective with respect to microtubule inhibition, although the 

antiproliferative activity for these analogues increases with substituent hydrophobicity. 

Overall, these results suggest that the hydrogen bonding properties of the C-4 ring 

substituents play the more critical role in microtubule inhibition, although clearly the 

ether oxygen in –OMe may also serve to place the hydrophobic methyl in a more ideal 

position.  

Addition of a second chlorine at the meta-position recovered activity (2.2l, 9.9 µM). This 

may be partially explained by the weak hydrogen bond accepting character of chlorine, 

but also its placement in the meta-position is a factor – as was seen in the comparison 

between 2.2f and 2.2e. Probably because fluorine is less hydrophobic and smaller than 

chlorine (although a stronger acceptor), the fluorinated compounds, 2.2m, was no more 

effective as a microtubule inhibitor than its des-fluoro analogue 2.2e.      

The inhibitory activity observed for large aromatic rings as C-4 substituents (2.2h and 

2.2i) can be attributed to their hydrophobicities and also the hydrogen bond acceptor 

character of the aromatic π-clouds in napthyl and indolyl. To further investigate this 

putative hydrogen bonding, the H-bond acceptor was repositioned with 6-ethoxyl-2-

napthyl at C-4 (2.2n) with negative effect. 
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Restriction of the rotation of two methyl groups was achieved by first forming a 

methylene bridge between two oxygens (2.2o), which led to a 60-fold decrease in 

activity compared to 2.1. Secondly, an ethylene bridge (2.2p) fared somewhat better 

with only a 40-fold activity decrease. Interestingly, addition of a third methoxy to the 

phenyl ring at its 5-position, as in 2.2g, did not lead to the expected increase, but, 

instead, a total loss in activity; however, placing a bromine at the ring’s 2-position and 

removing the 3-methoxy (2.2q) produced a >5-fold activity increase over 2.2g. 

Modeling was performed to rationalize the observed SAR. The colchicine site is located 

at the interface of α- and β-tubulin and mostly buried in β-tubulin. It is surrounded by 

helices H7 and H8, loop T7 and strands S8 and S9 of β-tubulin and loop T5 of α-tubulin. 

Comparison of crystal structures of αβ-tubulin heterodimers complexed with different 

ligands reveals the flexibility of the colchicine site, especially for loops T7 and T5. To 

understand the movement of the sidechains and backbones surrounding the site, we 

performed docking studies with five crystal structures (PDBIDs: 1sa0, 1sa1, 3hkc, 3hkd 

and 3hke). Docking poses were generated by GOLD and the resulting complexes were 

minimized in Sybyl with the Tripos forcefield and rescored with HINT. These results 

showed that the compounds tended to bind most favorably to the 3hkc model as 

indicated by higher HINT scores. While 1sa0 is complexed with colchicine and is thus 

frequently used for docking colchicine site agents, 3hkc, is co-crystallized with the 

structurally unrelated N-{2-[(4-hydroxylphenyl)amino]pyridin-3-yl}-4-methoxybenzene-

sulfonamide (Figure 2.8).  In docking compounds 2.1 and 2.2a-2.2q, however, the T5 

loop of 3hkc appears to adapt and benefit from hydrogen bonding between the 

backbone carbonyl of Thr179α and the pyrrole nitrogen, while in colchicine binding, T5 



 

41 
 

yields to colchicine’s amide chain as seen in 1sa0 (Figure 2.9).  This binding mode is 

the same as we previously reported.24 The ester chain of 2.1 and 2.2a-2.2q partially 

overlaps with ring C of colchicine, fitting into subpocket C with the carbonyl oxygen 

forming a hydrogen bond with the backbone nitrogen of Val181α. The pyrrole core 

locates in the center of the site, forming hydrogen bonds with Asn258β and Thr179α. 

The phenyl moiety overlaps with ring A of colchicine, inserting into the hydrophobic 

subpocket A, which is formed by Tyr202β, Val238β, Thr239β, Leu242β, Leu248β, 

Leu252β, Ile378β and Val318β, with Leu248β and Leu255β clamping the phenyl 

moiety. One polar residue, Cys241β, donates to the ligand in the presence of an 

appropriately positioned acceptor. The presence of this latter residue in subpocket A 

explains the importance of hydrogen bond accepting character in C-4 substituents 

observed in the SAR studies. 

N

HNNHHO S
OO

O
 

Figure 2.8.  N-{2-[(4-hydroxylphenyl)amino]pyridin-3-yl}-4-

methoxybenzenesulfonamide. 
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Figure 2.9. Colchicine (green) and binding modes of pyrrole-based C-4 analogues in 
red (JG-03-14 in heavy sticks). The extents of the colchicine site, as illustrated by 
MOLCAD, are shown in grayish white. 

 

Detailed analysis of the binding conformations assists further interpretation of the SAR 

(Figure 2.10). In the case of 2.1, the thiol hydrogen of Cys241β is pointed towards the 

methoxy at the meta-position and away from the para-position. This was observed for 

all other cases owing to the steric clashes that the thiol hydrogen could encounter if 

oriented in the other direction. The better hydrogen bonding for a meta-position 

substituent explains the activity of 2.2f compared to 2.2e and other similar cases. As for 

2.2h and 2.2i, the distal (from the pyrrole core) rings were located directly beneath the 
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thiol hydrogen, thus acting as acceptors for the weak but critical hydrogen bond, but 

pocket steric issues cancelled this advantage. The fluorine atom of 2.2m is also located 

at the meta-position, but the docking study suggested that a 180° ring flip shifted its 

position in space such that, although the fluorine was anchored by the backbone NH of 

Leu252β, it provided no additional bonding to Cys241β compared to 2.2e. In the case of 

2.2g, the detrimental effect of the third methoxy is visually apparent: the tight distance 

(3.58 Å) between the backbone of Leu252β and the phenyl ring of the ligand can lead to 

significant steric clashes with a large substituent such as the 5-methoxy. 

 

Figure 2.10. Specific hydrogen bonding (yellow) and hydrophobic (green) interactions in 
Subpocket A. Compounds 2.1 JG-03-14 (solid white), 2.2h (translucent purple), 2.2i 
(translucent green) and 2.2m (translucent red) are shown.  Notes: 1) the key H-bond 
interaction is with Cys241β, which is strongest with the O of methoxy in the ring’s meta 
position; 2) some analogues, e.g., with F, can weakly H-bond with the NH of Leu252β; 
3) the CH3 of p-methoxy has key hydrophobic interactions with Leu242β; 4) Ile378β has 
hydrophobic interactions with m-methoxy or the rings of 2.2h or 2.2i. 
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The total HINT scores of C-4 analogues fail to show a tight relationship with pEC50 

(Figure 2.11). However, isolating the HINT score for hydrogen bonding interactions 

involving Cys241β for a subset of analogues (2.1, 2.2e, 2.2f, 2.2j, 2.2k, 2.2m and 2.2q) 

that place, as separate entities, appropriately positioned hydrophobic groups and a 

hydrogen bond acceptor in the subpocket (while not inducing steric clashes), reveals a 

linear relation with respect to these compounds’ pEC50s (Figure 2.12). The implications 

are two-fold; first, the hydrogen bonding interaction with Cys241β is the key predictor, 

absent of steric clashes, for the microtubule inhibitory activity for this set of analogues; 

second, other interactions in the pocket, i.e., hydrophobic, are also necessary, but 

competitive with this weakly scored hydrogen bonding. 

 

Figure 2.11. Plot of pEC50 vs. total HINT score. The total HINT scores of C-4 analogues 
fail to show a tight relationship with pEC50. 
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Figure 2.12. HINT H-bond component score for ring interactions with Cys241β. Closed 
squares represent compounds possessing both H-bond acceptors and appropriately 
placed hydrophobic groups. These compounds generally possess superior pEC50s. 
Open triangles represent compounds with weak or no acceptors. Open circles represent 
compounds with steric issues and/or lacking key hydrophobic interactions. 

 

The importance of both hydrophobic interactions and hydrogen bonding in subpocket A 

was seen in the SAR analysis and modeling studies. The latter dictates whether the C-4 

analogues of pyrrole-based antitubulin agents display microtubule inhibitory activity and 

the strength of that activity, while the character of the pocket requires predominantly 

hydrophobic moieties. Underestimation of the Cys241β interaction was one probable 

reason that the total HINT score was a poor predictor of microtubule inhibitory activity. 

This thiol group acts as a hydrogen bond donor and while this type of hydrogen bonding 

interaction is generally regarded as weak and is thusly parameterized by HINT, it is not 



 

46 
 

even considered by many other scoring functions. For the downstream biological effect, 

inhibition of microtubules, the interaction assumed to be weak surprisingly stands out as 

a key factor. In fact, its absence might produce a different mechanism of action even 

when other portions of the structure are exactly the same, as shown particularly by 2.2d 

with potent antiproliferative activity (0.312 µM) but weaker microtubule depolymerization 

activity (~94 µM). Cys241β has been previously identified as an important target residue 

for colchicine site agents.7 In a study of 15 structurally diverse colchicine site inhibitors, 

the docked binding modes of all included hydrogen bonding to Cys241β (Cys239β in 

that study).25 Our combined SAR and modeling study confirms the importance of that 

cysteine. Interestingly,  βIII-tubulin has a mutation of Cys241β to Ser241β, and our 

scoring regimen would score H-bond donation from –OH more favorably than the -SH 

donation from Cys. 

It should be noted that there is potentially a systematic error in our procedure. As GOLD 

optimizes ligand placement with a different forcefield (set of rules) than used by HINT in 

scoring, subtle structural effects, or in this case, the interplay of several of them, are not 

well scored post-docking as none of the models generated by GOLD capture the set of 

features in a single model that HINT would score highest. This is likely to be a general 

observation in docking/rescoring studies, irrespective of utilized scoring functions, when 

subtle effects are at play. 

2.4.4 Summary: SAR of C-4 analogues 

We reported the modeling studies of C-4 analogues of pyrrole-based antitubulin agents 

targeting the colchicine site. For compounds that depolymerized microtubules, a linear 

correlation was observed between the antiproliferative activity and microtubule inhibitory 
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activity, Molecular modeling results explained the SAR very well and they both revealed 

that a weak hydrogen bond involved with Cysβ241 was the key determiner of 

microtubule inhibitory activity, but the ideal ligand must incorporate (and properly 

position) this acceptor within an otherwise hydrophobic framework. Surprisingly, just the 

loss of that particular hydrogen bonding interaction appears to shift the antiproliferative 

mechanism of action away from microtubule inhibition. This study has fairly exhaustively 

probed subpocket A; the 3,4-dimethoxyphenyl substituent at the pyrrole C-4 is – to date 

– the most ideal. This study has been published.26 The development of analogues 

focusing on other positions on the pyrrole core is in progress. 

 

2.5 Conclusions 

Microtubules have been recognized as a target for cancer treatment for a long period of 

time. Colchicine-site agents, which target microtubules, although not successful to date 

in cancer chemotherapy due to toxicity issues, are showing intriguing newly discovered 

properties such as vascular disruption and possibility of circumventing βIII-tubulin-

related drug resistance. Our lead compound, JG-03-14, showed valid evidence of being 

a colchicine-site agent. This pyrrole-based compound demonstrated potent 

antiproliferative activity and strong microtubule-destabilizing activity. Here, we studied 

its C-2 and C-4 analogues using molecular modeling techniques to explore the 

structure-activity relationship (SAR) and to understand and optimize their binding to the 

colchicine-site. We docked the analogues into different crystal structures of the 

colchicine-site and evaluated the interactions using the HINT scoring function. By 

studying the C-2 analogues, we improved the previous binding mode of the pyrrole-
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based compounds. Two distinct binding modes were identified and they clearly 

differentiate the highly active analogues from the weak ones. The generalized SAR 

agrees well with the SAR of colchicine, supporting the rationality of the two modes. The 

residues that participate in binding were also identified. By studying the C-4 analogues, 

a critical hydrogen bonding interaction involving Cys241β was revealed. Although this 

interaction was supposed to be weak, loss of it appears to shift the antiproliferative 

mechanism of action away from microtubule inhibition. We have fairly extensively 

explored the C-2 and C-4 positions and identified specific features for an optimum 

ligand and corresponding residues in the colchicine-site. The future work will be focused 

on other positions for an even more comprehensive understanding of pyrrole-based 

analogues.  
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CHAPTER 3 

Mapping of the Colchicine Site with Docking and 3D-QSAR 
Analysis of Structurally Diverse Binders 

 

3.1 Introduction 

Microtubules have been treated as a target for cancer therapies for a long period of 

time, due to the fact that they are one of the major cytoskeletal components in 

eukaryotic cells and their critical functions, such as maintenance of cell shape, protein 

trafficking, signaling and segregation of chromosomes during mitosis.1 Microtubule-

targeting agents function as interference with microtubule dynamics, a process that 

controls the balance between microtubule assembly and microtubule disassembly.2 

Four major binding sites for these agents have been identified: the taxane site and the 

laulimalide / peloruside A site, both for microtubule-stablizing agents, and the vinca site 

and the colchicine site for microtubule-destablizing agents.2-3  

Compared to taxanes and vinca alkaloids, which have been used successfully in clinical 

therapies for cancer; colchicine is restrained by its toxicity to normal tissues at effective 

drug concentrations and has only been approved for the treatment of familial 

Mediterranean fever and acute gout flares.4 However, owing to the fact that 

microtubules are important regulators of endothelial cells, recently colchicine-site agents 

or colchicine-site inhibitors (CSI) are being intensively developed as angiogenesis 

inhibitors (prevent new blood vessel formation) and vascular disrupting agents (destroy 

existing vasculature) for cancer treatment.5 Combretastatins, one family of colchicine-
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site agents, are progressing through clinical trials for this purpose.1,4 In addition, 

colchicine-site agents might be able to circumvent βIII-tubulin overexpression, which 

compromises the clinical use of taxanes and vinca alkaloids.6-7 

A large number of CSIs including natural and synthetic compounds, have been reported 

and they possess a significant structural diversity. So far, the compounds under clinical 

investigation cover at least 26 different scaffolds such as colchicine, combretastatin, 

podophyllotoxin and steganacin, and there are even more in preclinical studies.5,8 The 

ability of the colchicine site to accommodate such diversity is due to the inherent 

flexibility of the site, which has been demonstrated by X-ray crystal structures of the 

protein complexed with different agents9-11 and molecular dynamics simulations.12  

We have been developing pyrrole-based compounds as colchicine-site agents and 

identified their binding modes through ensemble docking with HINT13 rescoring and 

detailed SAR comparison to colchicine (Chapter 2 of this work and in the literature.14-17 

While we continued exploring the modifications on the pyrrole scaffold, we expanded 

our computational analyses to other scaffolds and tried to consolidate all known 

information in order to have a more comprehensive understanding of the ligands and 

the binding pocket. We used 3D-QSAR (Quantitative Structure-Activity Relationship), a 

statistical technique that identifies the significant features that affect activity from a pool 

of compounds. 3D-QSAR models also reflects the electrostatic and the topological 

features of the pocket. Here, we collected all the data for colchicine-site agents that 

were tested in the same laboratory, by Mooberry and co-workers.14-22 We performed 

ensemble docking with different crystal structures of the colchicine site to identify the 

docked modes of all agents. We then performed 3D-QSAR analyses to obtain a detailed 
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view of ligand binding. In this chapter, we also describe a new method that mines 

additional useful information from a pool of compounds. This new method takes 

advantage of HINT maps,13 which are calculated to represent the hydrophobic and polar 

features of compounds, and was applied in this case to our collection of colchicine-site 

agents. 

3.2 Materials and Methods  

3.2.1 Dataset selection 

The compounds used in this study were reported by Dr. Mooberry and co-workers as 

antitubulin agents.14-22 We set two criteria to select compounds for the study, including 

compounds for both a training set and a test set. First, to ensure the consistency of the 

activity measurements, we only selected compounds with reported antiproliferative IC50 

values measured in the MDA-MB-435 cancer cells using the SRB assay.14 Second, we 

consider a compound as a valid colchicine-site binder for modeling if: 1) the compound 

showed inhibition of radiolabeled [3H]colchicine binding to tubulin, or 2) its structurally 

similar parent compound showed the inhibition of [3H]colchicine.  

The reported cellular microtubule loss experiments evaluated in A-10 cells were verified 

to ensure that the antiproliferative activity for each compound corresponds to tubulin 

binding. In the cases where no microtubule effect was observed up to 50 μM (40 μM in 

some publications), the compounds were considered as very poor binders and the IC50 

values were arbitrarily assigned to have IC50s of 100 μM even though their true IC50 

values might be higher or lower. The reason was that these experimentally measured 
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IC50 values were probably more related to other receptors than microtubules, and they 

should not be modeled in this study. 

3.2.2 Identification of bioactive conformations and alignment 

In general, Sybyl 8.123 was used to prepare the X-ray crystal structures of αβ-tubulin 

complexed with different ligands (pdbid: 1SA0, 1SA1, 3HKC, 3HKD and 3HKE) for 

docking. The preparation and docking procedure was the same as reported 

previously.14,15 The ligands were docked using GOLD 5.124 into the active site, which 

was defined by the space in a 6 Å radius around the complexed small molecules. One 

hundred conformations were generated for each compound. They were initially 

analyzed by GoldScore and further rescored by the HINT13 scoring function. To select 

the final “active” conformation, we considered binding to all five receptor structures, and 

we picked the conformation with both a high HINT score and a high degree of similarity 

to the conformation of the complexed small ligand in the crystal. Because the resolution 

of the tubulin crystal structures is so poor, around 3.5 Å, the crystallographic models for 

the bound ligands are only guides to their actual conformations.    

The semi-ligand-based approach was performed by the “Fit Atoms” and the “Align 

Database” functions in Sybyl 8.1. First, for different scaffolds, the most active 

compounds (compound 3.1 DAMA-colchicine, compound 3.2 for pyrrole analogues, 

compound 3.39 combretastain A-4 and compound 3.54 for pyriminide analogues) were 

docked to the receptor. The pharmacophores were identified by analyzing the common 

functional features of the docked conformations of the highly active compounds and the 

complementary receptor structures. Then these representatives (the most active 
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compound) of the different scaffolds were superimposed on each other according to the 

pharmacophores. Other compounds were aligned to the corresponding representatives 

based on the common substructure. In the alignment step, all conformations, including 

those for the representatives, were optimized by the Tripos force field with Gasteiger-

Hückel charges to a gradient of 0.005 kcal mol-1 Å-1.       

3.2.3 3D-QSAR modeling 

Sybyl 8.1 was used to perform the 3D-QSAR analysis. The basic concept of 3D-QSAR 

is to correlate activity with the interaction fields surrounding the ligands. Such fields are 

calculated by measuring the interactions between a probe atom placed on a grid point 

around the ligand and the atoms of the ligand. Machine learning techniques are then 

applied to find a set of interaction values that are related to the activity changes. The 

partial-least-squares (PLS) regression method was used to derive the model in this 

study. The leave-one-out (LOO) cross-validation with the sample-distance PLS 

(SAMPLS) algorithm was used to identify the optimum number of components. The 

leave-one-out (LOO) method predicts the activity of each compound using the QSAR 

model built by all the other compounds except the predicted one. It evaluates the 

predictability and over-fitting of a regression model, and indicates the quality of the 

model with a cross-validated correlation coefficient called q2. The optimum number of 

components was the smallest number that gave the largest value of q2 as long as there 

was an increase of least 5% from the previous q2 value. The non-cross-validated model 

was then built with the identified optimum number of components and using the entire 

training set. The statistics for evaluation included the cross-validated correlation 

coefficient (q2), the non-cross-validated correlation coefficient (r2), standard error of 
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estimate (SEE) and the F test value. The resulting model was further validated using the 

external test set compounds and gave a predictive r2 (rpred
2) indicating the difference 

between the predicted activities and the experimental activities of the test set. 

For field calculations, we selected the steric and electrostatic fields for CoMFA, and the 

steric, electrostatic, hydrophobic, hydrogen bond donor and hydrogen bond acceptor 

fields for CoMSIA. Gasteiger-Hückel charges were assigned to all compounds. The grid 

resolution was set to 1.0 Å. Other settings were default. 

3.2.4 HINT fields and HINT maps 

The hydrophobic/polar field of HINT was combined with the steric and electrostatic 

fields of CoMFA for 3D-QSAR analysis. The HINT (Hydropathic INTeractions) scoring 

function13 evaluates atom-atom interactions using a set of parameters derived from the 

solvation partition coefficients, LogPs, measured in a 1-octanol/water system (see 

Chapter 1).  

The HINT program calculates a hydrophobic/polar field and an acid/base field. The test 

atom has a hydrophobic atom constant (at) and solvent accessible surface area (St) 

both equal to one. The field value A of each grid point is given by 

At = ∑aiSiRit 

where ai and Si are for the atom i, and Rit is a function of the distance between the atom 

i and the test atom t. We used a resolution of 0.5 Å to calculate all the HINT fields in this 

study. 
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The HINT map for a molecule is the grid map containing the HINT field values described 

above.  Two types of HINT maps, the hydrophobic/polar map and the acid/base map, 

were generated for all the compounds. To generate an overall map to represent all the 

compounds, the maps were linearly combined with weights related to their activity 

values (IC50). In this study, we applied 0.1 (μM)/IC50 (μM) as the map weight for each 

compound.  

3.3 Results and Discussion 

3.3.1 Dataset for modeling 

Of the final selected 62 compounds, three different scaffolds could be categorized, 

namely pyrrole analogues, combretastatin analogues and pyrimidine analogues (Table 

3.1). Fifty-three compounds covering all three scaffolds were used for the training set 

and the remaining 9 compounds were used for the test set based on random selection. 

Colchicine, whose comparatively large structure occupies most of the binding space 

(Figure 3.1), was tested as a reference compound in the experimental assays and 

therefore it was included into the test set. The pIC50 values for both the training set and 

the test set compounds covered a range of more than 3 log units. The final structures 

and pIC50 values for modeling are shown in Table 3.1. 
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Table 3.1. Structures and activities of compounds in the training set and the test set. 

 

N
HBr

Br
O

O

H3CO

H3CO R1

2-14

O

OCH3

H3CO

H3CO
NHCCH2SH

O
H3C

O

1 (DAMA-colchicine)

A B

C

2
3

5 6

7

8

9

10

1

4

11

12
N
H

R1

Br

Br
O

O

15-30  
Cmpd R1 IC50 (µM) pIC50 
3.1*  0.014 7.70 
3.2 Ethyl 0.036 7.44 
3.3 Methyl 0.168 6.21 
3.4 n-Propyl 0.050 7.17 
3.5 i-Propyl 0.108 6.96 
3.6 t-Butyl 1.82 5.74 
3.7 n-Butyl 1.3 5.89 
3.8 n-Hexyl 3.5 5.48 
3.9 Benzyl 5.3 5.28 
3.10 -(CH2)3NMe2 4.6 5.34 
3.11 -(CH2)2NMe2 5.2 5.28 
3.12 -(CH2)3NMe2H+Cl– 8.0 5.10 
3.13* -(CH2)2NMe2H+Cl– 10.7 4.97 
3.14 4-Methoxyphenyl 18.3 4.74 
3.15 Phenyl 10.3 4.99 
3.16* 4-Methyphenyl 2.24 5.65 
3.17 4-Chlorophenyl 0.919 6.04 
3.18 4-Bromophenyl 0.312 6.51 
3.19 4-Methoxyphenyl 0.843 6.07 
3.20* 3-Methoxyphenyl 0.633 6.20 
3.21 2-Bromo-4,5-dimethoxyphenyl 2.64 5.58 
3.22 1-Napthyl 3.24 5.49 
3.23* 3-Indolyl 1.98 5.70 
3.24 4-Trifluoromethoxyphenyl 1.70 5.77 
3.25 4-Thiomethyphenyl 0.626 6.20 
3.26 3,4-Dichlorophenyl 0.806 6.09 
3.27 3-Fluoro-4-methoxylphenyl 0.539 6.27 
3.28 6-Ethoxyl-2-napthyl 1.99 5.70 
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3.29 1,3-Benzodioxol-6-yl 1.80 5.74 
3.30* 1,4-Benzodioxan-6-yl 4.36 5.36 

 

N
H

R2

R4

R3

R1

31-33

N

O

O

H3CO
OCH3

OCH3

OCH3

H3CO

H3CO

N
H

O

OO

Br
H3CO

OCH3

37 38

N
H

R3

OCH3

R1

34-36

O

OCH3

 
Cmpd R1 R2 R3 R4 IC50 (µM) pIC50 
3.31* Ethoxycarbonyl 4-Methoxyphenyl H Cl 5 5.3 
3.32 4-Methoxyphenyl Ethoxycarbonyl 4-Methoxyphenyl H 100 4.00 
3.33 Ethoxycarbonyl 4-Methoxyphenyl 4-Methoxyphenyl H 100 4.00 
3.34 Ethoxycarbonyl  H  2.6 5.52 
3.35 Ethoxycarbonyl  4-Methoxyphenyl  100 4.00 
3.36 4-Methoxyphenylcarbonyl  4-Methoxyphenyl  100 4.00 
3.37*     100 4.00 
3.38     100 4.00 

 
H3CO

H3CO
OCH3

OCH3

OH R1

H3CO

H3CO
OCH3

H3C O

39 (Combretastatin A4) 40-42  
Cmpd R1 IC50 (µM) pIC50 
3.39  0.003 8.52 
3.40 4-Methoxyphenyl 0.35 6.46 
3.41 4-Methylphenyl 0.095 7.02 
3.42 3-Hydroxy-4-methoxyphenyl 0.182 6.74 

 

N

N N
H

N
R1

H3C

OCH3

N

N

N
R1

H3C
R3

R2

N

N

H
N

N
R1

R4

R3

R2

N

N

H
N

N

H3C

OCH3

43-44 45-52 54-58 (S) 59-63 (R)53  
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Cmpd R1 R2 R3 R4 IC50 (µM) pIC50 
3.43* Methyl    0.183 6.74 
3.44 H    100 4.00 
3.45 Methyl 4-Methoxy H Methyl 0.096 7.02 
3.46 Methyl 4-Methoxy H H 0.193 6.71 
3.47 Methyl H H Methyl 100 4.00 
3.48 H 4-Methoxy H Methyl 100 4.00 
3.49* H 2,4-

Dimethoxy 
H Methyl 100 4.00 

3.50 Methyl 4-Methoxy Methyl Methyl 0.030 7.52 
3.51 Methyl 4-Methoxy Methyl NH2 0.298 6.53 
3.52 H 4-Methoxy Methyl NH2 100 4.00 
3.53     0.043 7.37 
3.54 Methyl 4-Methoxy Methyl  0.012 7.92 
3.55 H 4-Methoxy Methyl  100 4.00 
3.56 Methyl 3-Methoxy Methyl  0.095 7.02 
3.57 Methyl 2-Methoxy Methyl  100 4.00 
3.58 Methyl H Methyl  100 4.00 
3.59 Methyl 4-Methoxy Methyl  0.051 7.29 
3.60 H 4-Methoxy Methyl  100 4.00 
3.61 Methyl 3-Methoxy Methyl  0.402 6.40 
3.62 Methyl 2-Methoxy Methyl  100 4.00 
3.63 Methyl H Methyl  100 4.00 

 

The test set are the 10 compounds indicated by *. The other 53 compounds are in the 
training set. IC50s are antiproliferative activities tested using human MDA-MB-435 cancer 
cells. pIC50s are the negative log of the IC50s.  
The activities of compounds 55-58 and 60-63 were reported for racemic mixtures. For 
the compounds that did not have microtubule effect up to 40 μM, both enantiomers were 
assigned 100 μM. The ratio of the IC50 of compound 61 (the R enantiomer) over the IC50 
of compound 56 (the S enantiomer) was assumed to be the same as the ratio of 
compound 59 (R) over compound 54 (S), which was experimentally tested. 

 

3.3.2 Overview of the colchicine site and prediction of binding modes from 

docking 

The colchicine site is located at the interface of α-tubulin and β-tubulin and is mostly 

buried in the β-tubulin subunit as indicated by the crystal structures (Figure 3.1). It is 



 

61 
 

surrounded by helices H7 and H8, loop T7, and strands S8 and S9 of β-tubulin, and 

loop T5 of α-tubulin (the nomenclature of the secondary structures can be referred to 

literature [25]). DAMA-colchicine occupies the pocket with it’s A ring fitting into the 

subpocket A close to H7,  the C ring in the subpocket C close to T5 and the B ring in the 

center of the pocket. As different ligands bind, the T7 and T5 loops can move to adapt 

to the changes, as shown by the crystal structures (Figure 3.1). To take this flexibility 

into account, we performed ensemble docking using five available crystal structures 

(PDBID: 1SA0, 1SA1, 3HKC, 3HKD and 3HKE), while 3HKB is the unliganded.In the 

latter structure, the T7 loop closes the entrance and thus occupies most of the site. It 

was not used in the docking study. 
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Figure 3.1. The colchicine site complexed with DAMA-colchicine (yellow). The loops of 
different colors from different crystal structures represent the flexibility of the pocket 
(1SA0: cyan; 3HKC: magenta; 3HKB: green; 3HKE: brown; 3HKD: red; 1SA1: blue).     

 

The pyrrole compounds (3.2-3.38) adopted two distinct binding modes, which have 

been reported in our previous studies,2 and in the previous chapter of this work. Mode I, 

represented by the most active compound, compound 3.2, binds most favorably to the 

3hkc model (Figure 3.2). The ester chain fits into the subpocket C with the carbonyl 

oxygen forming a hydrogen bond with the backbone nitrogen of Val181α, and the alkyl 

ends reaching the hydrophobic bottom. The pyrrole core is located in subpocket B, with 
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its NH forming hydrogen bonds with the side chain C=O of Asn258β and the backbone 

C=O of Thr179α. The dimethoxyphenyl group is clamped by the four-carbon side chains 

of Leu248β and Leu255β in subpocket A, and the two methoxys are locked by other 

residues that are deeper in the pocket. In addition, the polar residue Cys241β uses its 

SH group to form a weak hydrogen bond with either one of the two oxygens from the 

dimethoxyphenyls. Mode II, represented by compound 3.7, tends to bind the 1SA0 

structure more favorably (Figure 3.2). The dimethoxyphenyl group and the pyrrole core 

are located in the similar positions as they are located in the previous mode. The ester 

chain, however, shifts significantly away from the subpocket C due to its larger size. The 

chain exposes itself to the solvent and is anchored by a new hydrogen bond with 

Asn101α. 

Mode I (compound 3.2) and the complexed colchicine overlap well. The 

dimethoxyphenyl group of mode I is located near the trimethoxylphenyl A ring of 

colchicine and the ester chain of mode I mimics the combination of the methoxy and the 

carboxyl oxygen of colchicine’s C ring. The pyrrole core coincides with half of the A ring 

and half of the B ring. Compared to mode I, the only portion where mode II (compound 

3.7) and colchicine overlap is 3.7’s dimethoxyphenyl and colchicine’s trimethoxylphenyl.   
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Figure 3.2. The two binding modes of the pyrrole compounds (Compound 3.2: red; 
Compound 3.7: purple) and colchicine (yellow) in the colchicine site (1SA0: cyan; 
3HKC: magenta). 

 

The combretastatin analogues (compounds 3.39-3.42) and the pyrimidine analogues 

(compound 3.43-3.68) were predicted to bind most favorably to 3HKC. They adopt a 

similar binding mode as compound 3.2 (mode I) and colchicine do, as shown in Figure 

3.3 using the most active compound in each category. Subpocket A is occupied by a 
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hydrophobic moiety with hydrogen bond acceptors interacting with Cys241β. This 

moiety for compound 3.39 (combretastatin A-4) is its trimethoxyphenyl group with the 

oxygens as hydrogen bond acceptors, and for compound 3.54 (representing the 

pyrimidines) is its cyclopentapyrimidine group with one aromatic nitrogen as the 

acceptor. Subpocket C is occupied by the other end of these ligands. Compound 3.39 

uses the methyl from the methoxy group to interact with the hydrophobic bottom of 

subpocket C, and the oxygen from the hydroxyl group to form a hydrogen bond with 

Val181α. Compound 3.54’s methoxy group is also located inside subpocket C, but not 

as deep as is the methoxy of compound 3.39. It can interact with the hydrophobic 

bottom (using the methyl) and Val181α (using the oxygen) at the same time. Subpocket 

B is occupied by the phenyl rings of both compound 3.54 and 3.39.      
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Figure 3.3 The binding modes of the combretastatin A-4 analogues and the pyrimidine 
analogues (compound 3.39 (combretastatin A-4): blue; compound 3.54: green) in the 
colchicine site (1SA0: cyan; 3HKC: magenta). 

 

The pharmacophore model (Figure 3.4) generalized from the binding modes identified 

above contains one hydrogen bond acceptor interacting with Cys241β, another 

hydrogen bond acceptor interacting with Val181α, and three hydrophobic centers in the 

subpockets A, B and C, respectively. Colchicine, compound 3.2 (mode I for the 

pyrroles), 3.39 and 3.54 are good examples that contain all the pharmacophore 
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features. Compound 3.7 (mode II for the pyrroles), however, only partially matches the 

model. 

The logic of building a 3D-QSAR model relies on the assumption that the variations of 

activity can be fully explained by the variations in structure. Therefore, the identification 

of each compound’s conformation and how to align the conformations with each other to 

generate the structural differences are two of the most important aspects. Here, we 

adopted two different approaches: 1) a docking-based approach, meaning that we used 

the docked poses (as described above) for 3D-QSAR modeling, and 2) a semi-ligand-

based approach, meaning that we simply aligned structures of the different scaffolds 

based on the common features (pharmacophores) they adopted when interacting with 

the receptor. A traditional ligand-based 3D-QSAR approach was not used in this study 

because the substructure that was common to all the scaffolds was only a small portion 

of the chemical space, so that not enough information was available for a full alignment 

description.      

The conformations of the compounds aligned according to the pharmacophore 

description are shown in Figure 3.4. The docked conformations are shown, as                  

comparison, in Figure 3.5. The major difference between the two sets of conformations 

originates from the basis of the two approaches. The semi-ligand-based approach 

aligned all ligands of the same scaffold according to their common structures but 

aligned ligands from different scaffolds according to the defined pharmacophores. 

These two steps of alignment superimposed each subset of similar structures well, 

while structural differences between templates were comparatively maximized. The 

docking-based approach, however, allowed the ligands to move around according to 
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their individual interactions and complementarities with respect to the receptor. 

Therefore, the docking-based approach spreads the ligands evenly in the binding 

pocket and the ligand placement and conformations from the semi-ligand-based 

approach are concentrated in a more step-like manner.          

 

Figure 3.4. The pharmacophores and the aligned poses shown in the colchicine-site. 
The hydrogen bond acceptors are in red circles and the hydrophobic centers are in 
green circles.  
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 Figure 3.5. The docked poses of the colchicine site agents. The ligands predicted to 
not bind to the pocket due to steric clashes are not shown. 

 

3.3.3 Analysis of QSAR statistics  

Both docking-based poses and semi-ligand-based poses were used for QSAR 

modeling. Note that, in the cases where the ligand was unable to fit into the binding 

pocket due to strong steric clashes (compounds 3.32, 3.33, 3.35, 3.36, 3.38), the 

docked pose was replaced by the aligned pose in the docking-based approach. In 

addition to the traditional CoMFA and CoMSIA methods, the hydrophobic/polar HINT 



 

70 
 

fields were added to the CoMFA fields which we call HINT-CoMFA. These field 

combinations have been used with previous success for hydrophobic datasets.26 The 

QSAR models were evaluated based on the cross-validated correlation coefficient (q2), 

the non-cross-validated correlation coefficient (r2), standard error of estimate (SEE) and 

the F test value.  

The statistical results listed in Table 3.2 and the experimental and predicted activity 

plots in Figure 3.6 indicate that the models built upon diverse scaffolds are reliable. The 

q2 values were in the range of 0.500 to 0.621 and the r2 values were all above 0.900. 

The predictability for the external test set was indicated by rpred
2 and these values were 

in the range of 0.481 to 0.679.  Compared to the CoMFA models, the combined HINT-

CoMFA models gave better statistics. For the docking-based approach, HINT-CoMFA 

had an r2 of 0.961 and a q2 of 0.621, while CoMFA was somewhat less robust with an r2 

of 0.951 and a q2 of 0.525. For the semi-ligand-based approach, HINT-CoMFA had an 

r2 of 0.934 and a q2 of 0.515, and CoMFA had an r2 of 0.912 and a q2 of 0.500. The 

HINT-CoMFA models did use more components compared to the CoMFA models (7 vs. 

6 for docking-based and 7 vs. 5 for semi-ligand-based). As indicated by the higher q2 

values (0.621 vs. 0.525 for docking-based, 0.515 vs. 0.500 for semi-ligand-based), the 

additional components did not over-fit the model but picked up “real variance” generated 

by the HINT hydrophobic/polar field. The result from the external test set also 

demonstrated the improvement of HINT-CoMFA over CoMFA alone. HINT-CoMFA had 

rpred
2 values of 0.638 for docking-based and 0.679 for semi-ligand-based. Standard 

CoMFA had rpred
2 values of 0.566 and 0.481 correspondingly. The CoMSIA models 

were not significantly different from the HINT-CoMFA models in terms of statistics. But 
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their q2, r2 and rpred
2 values were generally more or less higher than the corresponding 

values of the CoMFA models, indicating a slightly enhanced performance due to the 

additional fields provided in CoMSIA.   

Table 3.2. Summary of the statistics of the 3D-QSAR models. 
 Docking-Based  Semi-Ligand-Based 
 CoMFA HINT-CoMFA CoMSIA CoMFA HINT-CoMFA CoMSIA 
NOC 6 7 6 5 7 8 
q2 0.525 0.621 0.566 0.500 0.515 0.513 
r2 0.951 0.961 0.935 0.912 0.934 0.949 
SEE 0.300 0.272 0.346 0.399 0.353 0.313 
F value 150.020 157.000 110.199 97.344 91.005 103.006 
rpred

2 0.566 0.638 0.637 0.481 0.679 0.652 
NOC: number of components. q2: cross-validated correlation coefficient from leave-one-out. r2: 
non-cross-validated correlation coefficient. SEE: standard error of estimate. F-value: from the F-
test. rpred

2: the predictive r2 for the external test set. 

 

Figure 3.6. The scatter plots of the predicted pIC50 values verses the experimental 
pIC50 values. The CoMFA, HINT-CoMFA and CoMISA models based on either the 
docking-based approach or the semi-ligand-based (pharmacophore) approach are 
shown. The training set contains 53 compounds (blue) and the test set contains 10 
compounds (red). 
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The docking-based and ligand-based approaches represent two scenarios in 3D-QSAR 

modeling. One is used when the structure of the receptor is known from experiments or 

homology modeling, so that the putative bioactive conformations of the ligands can be 

obtained from docking. The other scenario is when the structure of the receptor is 

unavailable or unsuitable for docking, so that the bioactive conformations of ligands 

have to be obtained from conformational search combined with energy minimization; the 

resulting conformations are overlaid based on substructure similarity and “experience”. 

The ligand-based approach is generally regarded as better detecting the real “signals” 

from the real variance in the structures of the different ligands, while docking-based 

approach may confuse the regression method with “noise”, i.e., the variation in the 

coordinates of a common substructure. See, for example, Figure 3.5, where the same 

functional groups seem to be “shaking” in the pocket. However, for structurally diverse 

ligands, the docking-based approach is more practical because the comparisons 

between different scaffolds are clearly indicated by their docked poses, while simple 

substructure similarity may not be enough for alignment using ligand-based 

approaches, as clearly shown in this study. 

Here, in this particular study, we adopted a semi-ligand-based approach, wherein we 

took information from the docking to align the different scaffolds, and thus treated all 

ligands of the same scaffold with alignment rules based on common substructures to 

remove “noise”. See Figure 3.4 where the variance in structure is clear. The resulting 

statistics from both approaches are comparable (Table 3.2). No significant preference 

can be made towards either one approach although the docking-based alignment 

slightly outperformed the semi-ligand-based alignment in q2, which was probably due to 
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the fact that docking placed individual functional groups more precisely in the pocket, 

especially those that were not identified as part of the pharmacophore. In addition, the 

“noise” from the docking-based approach did not seem to affect the detection of “signal” 

as seen with the satisfactory q2 and rpred
2 values.  

 

3.3.4 Analysis of QSAR contour maps 

The statistics from Table 3.2 suggest the reliability of all 3D-QSAR models based on 

CoMFA, HINT-CoMFA and CoMSIA using either the docking-based approach or the 

semi-ligand-based approach. The docked poses of the ligands already revealed several 

residues that interact with the ligands and were expected to significantly affect activity. 

We analyzed the resulting contour maps of the 3D-QSAR models to see if the same 

features were detected and if other features were important.       

The contour maps of the CoMFA, HINT-CoMFA and CoMSIA models based on the 

docking approach are shown in Figure 3.7-3.11. These maps identified regions that had 

significant impact on the activities according to the scalar products of standard 

deviations and coefficients used in the regression models. DAMA-colchicine is shown 

with the maps to facilitate spatial analysis. The evident fragmentation in contours is a 

result of complications in modeling due to the different scaffolds.  

The CoMFA map for the docking-based models (Figure 3.7) suggests a favorable steric 

interaction (green) exists around the substitution at the ether oxygen on top of the ring C 

of colchicine, and beside it, a negatively charged group (red), such as the carbonyl 

oxygen of colchicine, would be favorable as well. Good examples from the ligand set 
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are the pyrrole compounds with the two distinct binding poses. The mode with higher 

activity (compound 3.2) places the ester chain into the two regions with the carbonyl 

oxygen in the red region and the alkyl group in the green region. The mode with lower 

activity (compound 3.7) places the ester chain away from the two regions because a too 

bulky chain could not fit as indicated by docking. From the view of the receptor, these 

two features correlate with the two regions. The small subpocket C correlates with the 

green region, so that a properly sized group would be favorable for activity but a too 

large group would not fit into the pocket. And the backbone NH of the residue Val181α 

points to the negatively charged red region to form hydrogen bonds.  
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Figure 3.7. The contour map of the CoMFA model based on docked poses. Colchicine 
is shown in yellow. Green and yellow indicates favorable and unfavorable steric 
interactions, respectively. Blue regions favor electropositive groups and red regions 
favor electronegative groups. 

     

The large green region around the B ring of colchicine suggests favorable steric 

interactions with the receptor. The pyrimidine analogues 3.43, 3.45, 3.51 and 3.54 that 

possess a methyl substitution on the amino nitrogen showed significantly higher activity 

than the corresponding analogues 3.44, 3.48, 3.52 and 3.55 that do not have the methyl 
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group. The methyl group lies over the ring B of colchicine and is surrounded by the four-

carbon-atom-long side chain of Lys254β, which explains the favorable impact on 

activity. The red region right next to the green region favors negatively charged groups. 

The carbonyl oxygens of compounds 3.40, 3.41 and 3.42 found in this region and they 

were predicted to interact with the backbone NH of Leu255β of the protein.    

The contour map around the trimethoxylphenyl group (the A ring) of colchicine are 

mainly composed of two major green regions favorable for steric interactions, and 

several red regions favoring negatively charged groups and blue regions favoring 

positively charged groups.  The two green regions represent the higher activity of 

combretastatin analogues that have a third methoxyl group (such as compound 3.39) 

and the pyrimidine analogues that have a five-membered ring (such as compound 3.54) 

beyond the third methoxyl. The available crystal structures confirm the flexibility of this 

portion of the pocket.10 Ligands with distinct shapes can go further into the pocket, 

providing room for exploration and development of better binders. The red regions 

represent the importance of hydrogen bond acceptors commonly observed for good 

colchicine-site binders. The blue regions are actually complementary to the red regions 

because they can constrain the hydrogen bond acceptors in a hydrophobic 

environment. We explored this hydrogen bonding functionality by testing compounds 

with strong and weak hydrogen bond accepting ability in our previous study (Chapter 2) 

and the hydrogen bond donating ability of Cys241β has been related to it.14 βIII-tubulin 

possess a serine mutation to the Cys241β residue.27 The stronger hydrogen bond 

donating ability of serine provides an opportunity for the colchicine site agents to be 

selective for βIII-tubulin, an isoform overexpressed in cancer.        



 

77 
 

The few yellow regions around the ligand indicate unfavorable steric interaction. One 

notable yellow region is the space between ring A and ring C of colchicine. Residues 

from the receptor push against the ligand, leaving no room for a bulky substitution. The 

methoxyphenyl group at the C-3 position of compound 3.33 is predicted by docking to 

intrude into the protein. No antiproliferative activity or microtubule effect was observed 

for this compound. While Compound 3.34, which moves the bulky methoxylphenyl to 

the C-5 position, remained active.       

The HINT-CoMFA model generated a similar map showing the steric and electrostatic 

fields compared to the map generated by the CoMFA model (Figure 3.8). In general, 

the similar regions that could impact activity were identified, although the sizes and 

shapes of contours were somewhat different. We focus here on the map showing the 

HINT field (Figure 3.9), which provides additional hydrophobic/polar information about 

the model. Green contours suggest favorable hydrophobic interaction. The regions are 

related to the partially hydrophobic subpocket C (the alkyl side chain of Val181α), the 

hydrophobic alkyl side chain of Lys254β around the ring B of colchicine and the 

hydrophobic subpocket A surrounded by Leu248β and Leu255β. The yellow regions 

indicate favorable polar interactions. They are related to the hydrogen bond donors from 

the receptor: the backbone NH group of Val181 and the SH group of Cys241β.   
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Figure 3.8. The CoMFA contour map of the HINT-CoMFA model based on docked 
poses. The contours represent the steric and electrostatic fields are shown. Colchicine 
is shown in yellow. Green and yellow indicates favorable and unfavorable steric 
interactions respectively. Blue regions favor electropositive groups and red regions 
favor electronegative groups. 

 



 

79 
 

 

Figure 3.9. The HINT contour map of the HINT-CoMFA model based on docked poses 
with the contours representing the HINT hydrophobic/polar field. Colchicine is shown in 
yellow. Green indicates favorable hydrophobic interactions and yellow indicates 
favorable polar interactions. 

 

Although differences exist, the contour map (Figure 3.10) of the CoMSIA model shows 

similar features as the maps of the CoMFA and HINT-CoMFA do: the favorable steric 

region (green) on top of ring C of colchicine, unfavorable steric region (yellow) in the 

space between ring C and ring A, favorable electronegative regions (red) around the 
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carbonyl oxygen and the trimethoxylphenyl group of ring A, favorable polar regions 

(black) around the same carbonyl oxygen and trimethoxyl group, favorable hydrophobic 

regions (purple) around ring B and the trimethoxyphenyl group of ring A. 

Figure 3.10. The contour map of the CoMSIA model based on docked poses. The 
contours represent the steric, electrostatic and hydrophobic fields from CoMSIA. 
Colchicine is shown in yellow. Green and yellow indicates favorable and unfavorable 
steric interactions respectively. Blue regions favor electropositive groups and red 
regions favor electronegative groups. Purple and black indicate favorable hydrophobic 
and polar interactions respectively.  

 

The CoMSIA hydrogen bond donor and acceptor field types that CoMFA and HINT-

CoMFA lack provide additional information (Figure 3.11). The blue region around the 
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backbone carboxyl oxygen of Thr179α represent a favorable hydrogen bond donating 

feature of  the pyrrole compounds (such as compound 3.2) which contain a NH group 

on the pyrrole core. The red region next to it can be related to the favorable hydrogen 

bond accepting feature of the other binding mode (compound 3.7), whose carbonyl 

oxygen interacts with the side chain NH2 of Asn101α.  The other regions provide the 

same information as the other models do.  

 

Figure 3.11. The contour map of the CoMSIA model based on docked poses. The 
contours represent the hydrogen bond donor and acceptor fields from CoMSIA. 
Colchicine is shown in yellow. Blue and cyan represent regions that favor and not favor 
hydrogen bond donors. Red and magenta represent regions that favor and not favor 
hydrogen bond acceptors. 
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The maps of the CoMFA, HINT-CoMFA and CoMSIA models based on the semi-ligand 

approach (Figure 3.12-3.16) agreed with maps based on the docking-based approach 

and did not show significant differences. Most of the features that were identified by the 

docking-based approach appeared on the maps based on the semi-ligand approach as 

well.  

 

Figure 3.12. The contour map from CoMFA based on the semi-ligand approach. 
Colchicine is shown in yellow. Green and yellow indicates favorable and unfavorable 
steric interactions respectively. Blue regions favor electropositive groups and red 
regions favor electronegative groups. 
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Figure 3.13. The contour map from the HINT-CoMFA model based on the semi-ligand 
approach. The contours represent the steric and electrostatic fields from CoMFA are 
shown. Colchicine is shown in yellow. Green and yellow indicates favorable and 
unfavorable steric interactions respectively. Blue regions favor electropositive groups 
and red regions favor electronegative groups. 
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Figure 3.14. The contour map from the HINT-CoMFA model based on the semi-ligand 
approach with the contours representing the HINT hydrophobic/polar field. Colchicine is 
shown in yellow. Green indicates favorable hydrophobic interactions and yellow 
indicates favorable polar interactions. 
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Figure 3.15. The contour map from the CoMSIA model based on the semi-ligand 
approach. The contours represent the steric, electrostatic and hydrophobic fields from 
CoMSIA. Colchicine is shown in yellow. Green and yellow indicates favorable and 
unfavorable steric interactions respectively. Blue regions favor electropositive groups 
and red regions favor electronegative groups. Purple and black indicate favorable 
hydrophobic and polar interactions respectively. 
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Figure 3.16. The contour map from the CoMSIA model based on the semi-ligand 
approach. The contours represent the hydrogen bond donor and acceptor fields from 
CoMSIA. Colchicine is shown in yellow. Blue and cyan represent regions that favor and 
not favor hydrogen bond donors. Red and magenta represent regions that favor and not 
favor hydrogen bond acceptors. 

The contour maps of all 3D-QSAR models correlate very well with the structure of the 

colchicine site. Most identified regions that had significant impact on activity can be 

explained by the functions of the neighboring residues, which indicates the binding 

poses of the compounds were most likely correctly predicted. Another important 

observation is that the phamacophores of the colchicine-site binders were validated by 

the 3D-QSAR models. The hydrogen bond acceptors related to Cys241β and Val181α, 



 

87 
 

and the three hydrophobic centers in subpockets A, B and C, are all shown on the 

contour maps. 3D-QSAR analysis is a technique based on statistical correlation. It 

means that these pharmacophores are not only present in the highly active colchicine-

site binders, as we see them in the docking study; removing them can also decrease 

activity, as indicated in 3D-QSAR by analyzing the activity change for compounds with 

and without these pharmacophores in the dataset. The other features on the maps were 

also identified to have significant impact on activity. They are particularly important for 

improving the activities of the highly active compounds because it is possible that these 

features have not been consolidated in one or more to these compounds as of yet. One 

such feature will be discussed later.   

The docking-based and the semi-ligand-based approaches generated reliable models 

and the two types of models were comparable in terms of statistics and contour maps. 

The similarity was due to the fact that the semi-ligand-based approach adopted the 

information from the docked poses to align different scaffolds, which proved to be 

effective because both model generated satisfying statistics and explainable contour 

maps. The “noise” present in the docked poses did not affect the statistics or generate 

significant differences in contour maps compared to the semi-ligand-based approach.   

It can be explained by: 1) most compounds followed their representatives, the most 

active compounds in different categories, to adopt similar docked poses (Figure 3.2 and 

Figure 3.3). Their shapes were complementary to the binding pocket so little room was 

left for them to move around to create “noise”; 2) the docked poses that were 

significantly different from the others due to serious steric clashes were replaced by the 

aligned poses (Compound 3.32, 3.33, 3.35, 3.36, 3.38); and 3) the abundant structural 
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changes across different scaffolds significantly outweighed the “noise”. In fact, as more 

residues were involved in binding than indicated by the pharmacophores identified for 

the semi-ligand-based approach, docking was able to place the ligands more delicately 

in the colchicine site, which might contribute to the better performance (higher q2, r2, etc.) 

in the model validations. 

3.3.5 Highlight important features of compounds using an overall HINT map 

The previously mentioned CoMFA, HINT-CoMFA and CoMSIA models and 

corresponding contour maps were based on statistical analysis. The success of a 

statistical model depends on many factors including accuracy of the input data and 

variance in the training set and test set compounds. In the case of a selection of unique 

compounds, where the features of any compound that affect activity significantly are not 

covered by any other compounds in the dataset, a statistical analysis based on cross-

validation would disqualify the model. The uniqueness of each compound, however, 

may be valuable for drug design ideas. Thus, we introduced a simple linear combination 

of HINT maps of compounds to highlight the combination of uniqueness and 

commonality. 

The idea is to calculate the HINT maps that contain a hydrophobic/polar field and an 

acid/base field for each compound. Then a “weight” that corresponds to the activity of 

individual compound is applied to each of these maps. An overall HINT map that 

represents the whole set is constructed by a linear combination of the individual 

weighted maps by addition of field values. Two types of information are highlighted by 

the method. First, the highly active compounds would have higher weights against 
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weaker compounds, so that the unique features of the highly active compounds would 

be shown to be more significant. Second, the common features of the maps would also 

be significant due to this addition. Two factors are critical for constructing a useful 

overall HINT map. The weight should be able to distinguish active compounds from 

weak compounds. As the number of weak compounds increases, the field values from 

the addition of weak compounds can exceed the field values of the highly active 

compounds. Mathematical operations such as exponentiation can be used to expand 

the distance between the weight of a highly active compound and the weight of a 

weaker compound. In this study, we simply applied a one order operation, using 0.1 

(μM)/IC50 (μM) as the weight for each compound. Another important factor is the choice 

of contour values for the display of the final overall HINT map. The selection of contour 

values can be iteratively obtained, with the aim of obtaining desired features from the 

map.   

The overall HINT map based on all the colchicine site agents from the entire dataset is 

shown in Figure 3.17. The map agrees with the contour maps from the 3D-QSAR 

analysis. The features shown on the HINT overall map include the hydrogen bond 

acceptors related to Cys241β and Val181α, and the large hydrophbobic area covering 

subpocket A, B and C of the site. These features agree with the pharmacophores 

identified from docking, representing the commonality of the highly active compounds 

and the whole dataset. One unique feature shown on the map belongs to the most 

active pyrrole analogue compound 3.2 (also common to most of the pyrrole analogues). 

This feature is the hydrogen donating ability of the NH on the pyrrole core interacting 

with Thr179α. Another unique feature is the large green region next to the beta strands, 
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which is extended from the boundary of the trimethoxyphenyl ring A of colchicine 

(Figure 3.18). The extension was generated partially by the cyclopentapyridine groups 

of the highly active pyrimidine analogues such as compound 3.54 (Figure 3.18), and 

was also identified by the statistical 3D-QSAR models (as favorable steric green regions 

surrounding the trimethoxyphenyl group of colchicine in Figure 3.7 and 3.8, and in a 

clearer view in Figure 3.19), the same information is directly shown in the overall HINT 

map.  

 

Figure 3.17. The overall HINT map based on the whole set of colchicine-site agents. 
Colchicine is shown in yellow. Green and yellow represent hydrophobic and polar 
regions of the compound set. Blue and red represent acidic and basic regions of the 
compound set.  
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Figure 3.18. The overall HINT map based on the whole set of colchicine-site agents (a 
different view compared to Figure 3.17). Colchicine is shown in yellow and compound 
3.54 in purple. The green region not covered by the trimethoxylphenyl group of 
colchicine indicates room for exploration. 
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Figure 3.19. A different view of the contour map of the HINT-CoMFA model based on 
docked poses (Figure 3.8). Colchicine is shown in yellow. Green and yellow indicates 
favorable and unfavorable steric interactions respectively. Blue regions favor 
electropositive groups and red regions favor electronegative groups. 

 

 

Compared to the overall HINT map approach, a statistical 3D-QSAR model possesses 

the following advantages. First, the important features of compounds identified by 

statistics have a higher chance being the ones that affect activity. In the case of the 

non-statistical HINT map, however, the features identified are dominated by those 

present in the highly active compounds. Whether removing them would affect activity is 

not tested. As shown in the contour maps of 3D-QSAR models, identified contours are 

usually fragmented, indicating how specific features in specific areas affect activity 
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(Figure 3.7). In the overall HINT map, features that may or may not affect activity are 

gathered together, usually giving smooth contours (Figure 3.17). Second, due to the 

same reason, the features that can be detected by comparing a modestly-active 

compound and a weaker compound may not be detected by the HINT map approach. 

However, as stated before, the success of 3D-QSAR modeling depends on many 

factors. In the cases of compounds having multiple scaffolds, especially when different 

compounds are not tested in the same lab, a slight disagreement among scaffolds on 

how one functional group affects activity might generate unattractive statistics and 

therefore confuse users of whether to use the results such as the contour maps. The 

overall HINT map approach is more relaxed on statistical validation but more focused 

on hypothesis generation. Its advantages are mostly shown when dealing with an 

unstructured dataset with multiple scaffolds and inconsistent activity measurements.    

The overall HINT map approach represents an alternative to the statistical 3D-QSAR 

approach whose success relies heavily on the quality of the data set. Combining the two 

approaches would provide valuable information in both the early-stage and late-stage of 

drug design. 

3.3.6 Summary of features identified by 3D-QSAR analysis for colchicin-site 

agents  

We summarize here in Figure 3.20 the features identified by 3D-QSAR analysis for the 

colchicine-site agents. Colchicine is shown as the binding ligand in the site. A favorable 

ligand would have four hydrogen bond acceptors interacting with Val181α, Asn101α, 

Leu255 β and Cys241β, a hydrogen bond donor interacting with Thr179α, three 
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hydrophobic centers interacting with three hydrophobic subpockets and an extra 

hydrophobic group for the empty volume next to strands S8 and S9 as indicated in the 

figure. Colchicine lacks the hydrogen bond acceptors for Asn101α and Leu255 β, the 

hydrogen bond donor for Thr179α and the extra hydrophobic group for the room, which 

could be considered for optimization. 

 

Figure 3.20. The summary of features identified by 3D-QSAR analysis for colchicine-
site agents. HA indicates a favorable hydrogen bond acceptor and HD indicates a 
favorable hydrogen bond donor. The oval circles the favorable functional group and the 
interacting residue. Solid lines indicate that the interaction is present for colchicine and 
dashed lines indicate that the interaction is not present. The curves indicate the shape 
of the colchicine site. 

 

3.4 Conclusions 

A number of selected colchicine-site agents tested in the same laboratory were studied 

in order to understand their interactions with the colchicine site on microtubules. By 
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applying ensemble docking using the HINT scoring function, the binding conformations 

of the compounds and the related receptor structures were identified. The 

pharmacophore model for the ligands contains a hydrogen bond acceptor interacting 

with Cys241β, another hydrogen bond acceptor interacting with Val181α, and three 

hydrophobic centers in the subpockets  A, B and C, respectively.  

The docked conformations as well as the aligned conformations based on the 

pharmacophores were then used to construct 3D-QSAR models. In addition to the 

traditional CoMFA and CoMSIA methods, a hydrophobic/polar HINT field was combined 

with CoMFA to form the HINT-CoMFA method, and the HINT field proved to be a good 

supplement to the CoMFA fields. The cross-validated correlation coefficients (q2) using 

the leave-one-out (LOO) method, the non-cross-validated regression correlation 

coefficients (r2) and  the predictive r2 (rpred
2) using an external test set were 0.525, 0.951 

and 0.566 for the CoMFA model, 0.621, 0.961 and 0.638 for the HINT-CoMFA model, 

and 0.566, 0.935 and 0.637 for the CoMSIA model, all based on the docked 

conformations. The corresponding statistics based on the aligned conformations were 

0.500, 0.912 and 0.481 for the CoMFA model, 0.515, 0.934 and 0.679 for the HNT-

CoMFA model, and 0.513, 0.949 and 0.652 for the CoMSIA model. The contour maps 

of the 3D-QSAR models were analyzed and compared with the binding site of the 

protein. The regions indicating favorable and unfavorable interactions can be directly 

related to the specific residues. The statistics and the agreement between the contour 

maps and the structure of the receptor demonstrated the robustness and the reliability 

of the models.  
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In addition to the statistical 3D-QSAR approach, we introduced the overall HINT map 

approach, which is a linear combination of weighted HINT maps of individual 

compounds. The overall HINT map highlights the uniqueness of the highly active 

compounds and the commonality of all the compounds in the data set. In this study, the 

HINT overall map agrees well with the receptor and the 3D-QSAR models.  

By combining different approaches, including statistical 3D-QSAR methods and 

constructing a non-statistical HINT overall map, detailed insights for how the ligand 

structure affects activity and interactions with the colchicine site were understood. The 

models will be a help for optimization and design of colchicine-site agents. 
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CHAPTER 4 

Incorporation of Tautomerism within HINT  

4.1 Introduction 

4.1.1 Background of tautomers 

Tautomerism is defined as the transfer of a chemical group and the rearrangement of 

single and double bonds. For the most common and simple cases of prototropic 

tautomers that belong to the same compound, the differences are the positions of 

certain hydrogen atoms that can shift between carbons and heteroatoms, and the 

positions of related single and double bonds. Frequent examples are keto-enol, imine-

enamine forms and nitrogen-containing aromatic heterocycles. In this chapter, 

tautomers only refer to prototropic tautomers unless stated otherwise, because these 

isomers are most relevant to our goal of improving virtual screening. 

4.1.2 Tautomers in drug discovery 

For a given compound that can tautomerize, different tautomeric forms can exist. The 

most obvious difference that medicinal chemists interested in drug discovery note is 

probably the change of positions of hydrogen bond donors and acceptors, which may 

have significant impact on the interactions with a receptor. This, in turn has an important 

impact on molecular modeling of protein-drug interactions. Docking is a commonly used 

and very effective modeling technique to evaluate receptor-ligand interactions for 

binding mode prediction of specific compounds or for virtual screening of hits targeting 
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the receptor.  Traditionally, one compound is treated as one structure in docking and 

this simplification has not seemed to impede the success of the technique in practical 

drug discovery and development projects. However, as more accurate predictions of 

ligand binding are needed, more detailed descriptions of the complex structures in 

modeling seem to be emergent as critical issues, and medicinal chemists would not 

want to miss a hit compound whose tautomeric forms are predicted to be good binders 

in virtual screening, while its “database” encoded structure is not.   

When dealing with a compound that can tautomerize, modeling its multiple tautomeric 

structures should be more comprehensive and computationally expensive than 

considering just the one structure that represents the most energetically favorable form 

in aqueous solution. Moreover, as reported by Milletti et al., 29% of the compounds in 

commercial databases are potentially tautomeric and 7.8% of them are not even 

represented by the most stable form predicted in water.1 In addition to docking, 

pharmacophores, chemical descriptors and structure searches are all affected by 

tautomerization. Recently, the issues related to incorporating tautomerisim into 

molecular modeling have been highlighted in a number of review articles.2-4  

4.1.3 Existing approaches that deal with tautomers  

A number of software tools have been developed to deal with tautomers, both open-

source and commercial. Regardless of the additional functions these programs have, 

the first step is identification and enumeration. TauTGen5 is an application that 

enumerates tautomeric forms from a given structure. The user has to manually provide 

input information such as which heavy atoms the hydrogens should be attached to and 
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the minimum and maximum number of hydrogens allowed. The application is written in 

the C programming language and the source code is available online.6 CACTVS7 uses 

a more automated approach, and contains a set of 21 predefined SMIRKS-based (a 

language based on SMILES) transformations and an engine to generate corresponding 

tautomers without user manipulation.  ChemProp8 takes information from the InChI 

code of a structure to generate tautomers. The InChI code recognizes the hydrogen 

atoms that can shift among heteroatoms as mobile H atoms. ChemProp uses such 

information as the key input for its algorithm. TauThor1 generates tautomers recursively 

according to the general scheme of tautomerization, from HX-Y=Z to X=Y-ZH, where X, 

Y and Z represent C, N, O or S. TauThor is expected to be more comprehensive than 

the approaches using predefined transformations, but is also more computationally 

intensive. Other commercially available applications include Pipeline Pilot (Accelrys), 

LigPrep (Schrödinger) and Marvin (ChemAxon). 

For the same compound, different tautomeric forms possess different internal energies, 

thus affecting their populations in solution and thereby their contributions to the binding 

of the compound. While it is a challenge to predict their energies and populations 

accurately,2-4 some form of penalty needs to be applied to the high-energy tautomers, 

as false positives have been related to energetically unreasonable tautomeric forms 

being recognized as hits in virtual screening studies with tautomer-enriched 

databases.9-11 To compensate and correct, different levels of quantum chemistry 

calculations,5,8 empirical rules (such as tautomers with more aromatic structures are 

favorable),7 and penalties based on the predicted pKa values of the moveable 
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hydrogens1 are combined with identification and enumeration tools in various different 

application packages.  

4.1.4 The HINT approach 

The HINT (Hydropathic INTeraction)12 software package contains multiple applications 

for cheminformatics and molecular modeling research.13 It has solid software 

infrastructure being built from a toolkit of functions, includes abundant atom types and 

bond types representing different chemical structures and useful built-in functions that 

can handle structural changes. More importantly, the HINT scoring function has been 

successfully applied to evaluate protein-ligand interactions for docking in many 

systems.13 With a tautomer function written as part of HINT, our expectation was that 

more accurate prediction of binding would be possible. In addition, incorporation of 

tautomerism within other HINT tools would be more convenient; e.g., as part of the 

Computational Titration suite, an application that considers multiple ionization states in 

binding.14 The aim of this present study was to construct a workflow and related 

applications to incorporate tautomers into the HINT infrastructure. The potential uses of 

such a tool range from docking/virtual screening, QSAR, and into other modeling areas.  

4.2 Materials and Methods 

4.2.1 HINT infrastructure 

HINT (Hydropathic INTeractions) is a compilation of applications13 designed for 

quantifying and visualizing molecular interactions. It contains a powerful system that 

handles input, output and representation of small molecule and macromolecule 

structures. The representation of a structure in HINT is based on the descriptions of 



 

103 
 

atoms. Such information includes atom types, connection tables indicating how the 

atoms are connected, and the corresponding bond types. The information provides the 

key input for the associated algorithms to work. The workflow can be described as: 1) 

the HINT infrastructure reads the original molecular structure files; 2) builds a molecule 

object from these data; 3) passes the molecule information to our algorithms; 4) our 

algorithms identify the tautomers and generate the respective tautomeric structures; and 

5) passes the new information back to HINT as new molecule objects for further 

processing; i.e., partitioning, scoring, etc.        

4.2.2 HINT binding score 

The HINT scoring function evaluates atom-atom interactions using a set of parameters 

derived from the solvation partition coefficients, LogPs, measured in a 1-octanol/water 

system, as described in Chapter 1. HINT calculated hydropathic interactions include 

hydrophobic interactions, hydrogen bonding, acid-base interactions and Coulombic 

interactions. In this study, the crystal structures were taken from the PDB database and 

prepared in Sybyl 8.1.15 The hydrogen atoms were added and optimized using the 

Tripos force field with Gasteiger-Hückel charges to a gradient of 0.005 kcal mol-1 Å-1. 

The ligand was then extracted, leaving only the protein structure. To get the binding 

poses of the tautomeric forms, the tautomeric structures were placed back into the 

protein according to the coordinates of the original ligand, and a minimization was then 

conducted for each pose using the Tripos force field with the atoms from the protein 

constrained. A HINT binding score was calculated for each tautomeric form binding to 

the protein structure.  Although we ultimately plan to structurally incorporate water into 
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these calculations, in the present, proof-of-concept, study, all water molecules were also 

deleted from the complex model.   

4.2.3 Tautomer energy prediction  

The energies of the small molecule tautomers were predicted by using the calculated 

heat of formation ΔHf from the semiempirical quantum chemistry method, PM3, 

implemented in the MOPAC module in SYBYL 8.1.15 Before PM3 optimization and 

calculation, the molecular structures were optimized by the Tripos force field with 

Gasteiger-Hückel charges to a gradient of 0.005 kcal mol-1 Å-1.     

4.3 Results and Discussion 

4.3.1 General workflow 

The general workflow of our incorporation of tautomerism within HINT is shown in 

Figure 4.1. First, the molecular structure files that HINT recognizes (such as Sybyl 

.mol2 files) are read by HINT and converted to an internal molecule structure objects. 

Then, the tautomer module analyzes these molecule structure objects and recognizes 

structures that can tautomerize. The prospective tautomeric forms are then generated 

by the module as new molecule objects, while the corresponding penalty scores are 

assigned to these new forms as well as the original one. The penalty scores can be 

derived from experimental measurements stored in a database or obtained through 

quantum chemistry calculations. They are next converted to HINT score units to 

facilitate HINT scoring for simple docking and large-scale virtual screening. 
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The identification, enumeration and penalty assignment are the core steps of the 

tautomer module. We developed two separate approaches to handle these functions. 

The general search tool uses an algorithm based on intuitive hydrogen shifts to 

recognize and enumerate tautomers. The penalty-related energy prediction is 

performed by an outside quantum chemistry application. Ultimately, these penalty 

calculations will be incorporated within the module. The second approach uses a 

database that contains commonly observed tautomeric structures, with the 

corresponding penalty scores having been pre-calculated. The tautomer database 

method runs notably faster than the general search tool as it was designed for large-

scale computing tasks such as virtual screening. The general search tool is able to find 

tautomeric patterns that are not stored in the tautomer database and is best applied to 

small-scale computing tasks such as the simple docking of analogues.   

 

Figure 4.1. The general workflow of tautomer processing in HINT. 
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4.3.2 Tautomer identification and enumeration for the general search tool  

The algorithm to identify tautomers is based on the recognition of hydrogen shifts 

between heavy atoms. The process is simple and intuitive as shown in Figure 4.2. We 

only consider the hydrogen shifts between heteroatoms. The shifts can cross fused 

rings. Aromatic bonds are considered as alternating single and double bonds; i.e., as in 

the Kekule formalism. Compound 4.1 contains two moveable hydrogen atoms. The 

hydrogen attached to the oxygen can go through a 1,3-shift to form compound 4.2 and a 

1,9-shift to form compound 4.5. The hydrogen attached to the nitrogen can go through 

two different 1,5-shifts to form compounds 4.3 and 4.4. If two hydrogen atoms shift 

together, compound 4.6 can be formed.   

N

N
H

N

OH

1

2

3

4

5
6 7

8

9

HN

N
H

N

O

N

N
NH

OH

HN

N
N

OH

N

N
H

NH

O

HN

N
NH

O

1, 3-shift

1, 5-shift

1, 9-shift

1, 3-shift+1, 5-shift

4.1

4.2

4.3 4.4

4.5

4.6  



 

107 
 

Figure 4.2. The shifts of the movable hydrogen atoms of compound 4.1 and 
corresponding tautomeric forms. The paths of the shifts are shown in red. 

 

The algorithm contains 4 steps: 

Step 1: Identify the patterns of shifts from the original structure. The general scheme is 

described as: 

HA B C D E
n  

where A is an sp3 N, O or S; B, C and D are sp2 N or C; E is sp2 N, O or S; n is equal to 

0 to 3 representing (1,3), (1,5), (1,7) and (1,9)-shifts respectively; and the bond types 

are alternating single and double. The algorithm processes all atoms of the structure to 

identify the atoms that have the same atom types and connections as described in the 

shift patterns. In the case of compound 4.1, we found 4 different shifts (one 1,3-shift, 

two 1,5-shifts and one 1,9-shift). It is worth mentioning that although longer-range shifts 

exist in large rings and very long chain systems, we only considered the most 

commonly seen shifts, which are those up to (1,9)-shifts.   

Step 2: Create a binary matrix to represent the combinations of shifts. We applied a 

brute-force attack method to exhaustively list all the possible combinations using an 

m×n binary matrix (Figure 4.3). In the matrix, 0 is used to indicate a specific shift is not 

performed and 1 indicates it is performed. The columns represent different shifts and 

the rows represent the tautomeric forms that are composed of the shifts. The number of 

all possible tautomeric forms, m, is equal to 2n
, where n is the number of shifts.   
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Figure 4.3. The m×n (m=2n) binary matrix representing the combinations of the shifts. 
Each column indicates one shift. 0 indicates the shift is not performed and 1 indicates it 
is performed. Each row represents one tautomeric form with shifts that do or do not 
occur.   

 

Step 3: The binary matrix is verified to ensure the prospective tautomeric forms can 

actually exist. The potential problems we consider are purely based on the scheme we 

use in the algorithm and not at this point based on energy. Errors will occur in the cases 

(see Figure 4.4) where a) two or more shifts that share the same moveable hydrogen 

occur at the same time; b) two or more shifts that share the same end hetero atom 

occur at the same time; c) two or more shifts that share the same double bond in the 
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path occur at the same time. Thus, the algorithm checks for the generalized situation. If 

one prospective tautomeric form contains two or more potential shifts that share any 

atom, the entry (row) corresponding to that tautomeric form will be removed from the 

matrix. In the case of compound 4.1, the initial matrix contains 24=16 rows. After the 

filter of step 3, the matrix is reduced to 6 rows representing 6 tautomeric forms including 

the original one.            
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Figure 4.4. Cases where errors will occur if identified shifts are performed 

simultaneously.  

 

Step 4: Enumerate the prospective tautomeric forms based on the matrix. The internal 

structural information of the resulting tautomeric forms is generated in this step. The 

original molecule structure objects are copied to give the new structure objects. Within 

these, only the substructures related to the shifts are changed (Figure 4.5), while the 

remainder of the structure is kept the same. The appropriate single bonds are changed 

to double bond types and double bonds to single bond types, accordingly. The two end 

atoms of the shift change their atom types from sp3 to sp2 and sp2 to sp3. The 

coordinates of the moved hydrogen are then regenerated and the connection tables 

associated with the move are reconstructed thourg operations on the molecule object 

for that tautomer.   
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Figure 4.5. The changes occur during a hydrogen shift. 

The general algorithm to identify and enumerate prospective tautomeric forms is simple 

and intuitive. It detects up to 1,9-hydrogen shifts between heteroatoms and uses the 

information for enumeration. If necessary, long-range shifts that exceed 1,9-shifts can 

be easily added to expand the algorithm to handle larger systems.  

4.3.3 Energy prediction and HINT penalty scores  

The tautomeric forms after the general search should then be converted to external 

mol2 files and subjected to Molecular Mechanics (MM) optimization and then PM3 

calculations in Sybyl 8.1 (or another modeling suite). In our implementation of this tool, 

we assumed that the heat of formation ΔHf from PM3 represents the energy of each 

tautomer. Then, the relative energies compared to the most stable form in the group 

were calculated. The most stable form would get no penalty and the rest of the forms 

would receive penalty scores directed correlated to the relative PM3 energies. In 

previous studies, around 515 HINT units were correlated to 1 kcal mol-1 of binding 

energy.16 However, we found the penalty scores resulting from this relationship were far 

too high for most of the tautomeric forms, considering that HINT binding scores in the 

range of 500-2000 are commonly seen, and 5 and 28 kcal mol-1 are both suggested as 

cut-offs for high-energy tautomers.17,18 For the remainder of this work, 100 HINT units/ 

kcal mol-1 has been arbitrarily used. Further studies are needed to find the more 

optimum relationship.  
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4.3.4 Kekule structure assignment for aromatic molecules 

One required step before a molecular structure is processed by the general search 

algorithm is to assign a Kekule structure to the molecule if it is aromatic. This is because 

the general tautomer search algorithm is based on the recognition and manipulation of 

shift patterns, which are represented by alternating single and double bonds and sp2 

and sp3 atom types. Aromatic molecules, however, usually use only one bond type 

(normally “ar” indicating “aromatic” or “1.5” indicating a bond between single and 

double) instead of single and double bond types to represent the delocalized nature of 

bonding, and, while formally sp2, use aromatic atom types in molecular mechanics force 

fields instead of sp2. Considering how common aromatic molecules are tautomers (such 

as compound 4.1 in Figure 4.2), we developed an algorithm to assign a Kekule 

structure with alternating single and double bonds to preprocess each aromatic 

molecule (Figure 4.6). The algorithm is similar to an algorithm developed to create 

molecular skeletons to meet valence rules.8 Following are the steps of this algorithm:  

Step 1: remove all atoms that are not aromatic from the structure and treat all the 

connected bonds as single bonds. Each atom is defined as a node as in graph theory. 

Step 2: Find the atom that has the minimum number of connected neighbors (the node 

with the minimum degree). In the case of more than one atom meeting this criterion, any 

of them can be selected. Assign a double bond between the selected atom and one of 

its neighbors. 

Step 3: Temporarily remove the two paired atoms and the bonds connected to them 

from the structure.  
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Step 2 and 3 are repeated until all the aromatic atoms are paired using double bonds, 

and no atom is left in the structure. Then the structure is reconstructed by tracing back 

how the double bonds are assigned.   
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Figure 4.6.  The algorithm for assigning a Kekule structure formalism to an arbitrary 
aromatic molecule.   

 

4.3.5 Case study on pterin binding to the ricin toxin-A chain 

Pterin (Figure 4.7) represents the type of structures that are able to tautomerize. Pterin-

based compounds have been shown to bind to the ricin toxin-A chain (RTA).19 What 

tautomeric form pterin uses to bind to the protein is of interest and has been previously 

studied by crystallographic analysis combined with molecular mechanics and quantum 

mechanics.20,21 Here, we applied the workflow developed for tautomers described to 

answer the question of which tautomer binds best to the active site and rationalize the 

energetic thereof. The crystal structure of ricin toxin-A chain complexed with a pterin-

based compound PTA (pteroic acid) was taken from PDB (pdbid: 1BR6). The ligand 
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was extracted and the pterin part of the structure was subjected to our workflow (Figure 

4.7). The original pterin structure (Pterin_aromatic) was assigned a Kekule structure, 

processed by our general search algorithm and then each tautomer was analyzed by 

PM3 calculations to determine its internal energy. Then, all the tautomeric structures 

were merged back to the protein’s pocket based on the original coordinates of the 

complex Their positions were optimized by the Tripos force field and their binding 

interactions were scored by HINT. The resulting 10 tautomeric structures including the 

original (Pterin2 and Pterin5 are the same molecule) and their corresponding energies 

and scores are shown in Figure 4.7 and Table 4.1. HINT scores summarize different 

types of energy of binding, including hydrophobic interactions, hydrogen bonding, acid-

base interactions and Coulombic interactions. We focus on the relative HINT scores in 

order to compare different tautomeric forms and answer the question of which forms 

should be bound. 
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Figure 4.7. Tautomer identification and enumeration for pterin. 

 

Table 4.1. Summary of all the tautomeric forms of pterin.   

Structure Δ(ΔHf)a Penaltyb Relative HINT 
Binding Scorec 

Corrected Relative 
HINT Scored 

Pterin1 0 0 0 0 
Pterin2 1.32 132 -703 -835 
Pterin3 3.11 311 337 26 
Pterin4 2.68 268 123 -145 
Pterin5 1.32 132 -703 -835 
Pterin6 26.73 2673 -800 -3473 
Pterin7 12.99 1299 -1179 -2478 
Pterin8 18.09 1809 -793 -2602 
Pterin9 8.66 866 85 -781 
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Pterin10 26.15 2615 -872 -3487 
a: The heat of formation ΔHf (kcal mol-1) was calculated by PM3. The relative energy 
Δ(ΔHf) (kcal mol-1) was the energy compared to the most stable form of pterin.  
b: HINT penalty score = 100×Δ(ΔHf). 
c: The HINT binding scores relative to the score of Pterin1. 
d: Corrected Relative HINT Score = Relative HINT Binding Score – Penalty. 

 

More stringent computational studies and crystallographic analysis have suggested that 

Pterin3 is preferred over Pterin1 in binding to the ricin toxin-A chain, although Pterin1 

is the most stable form in solution. Our data agrees with this suggestion, as Pterin3 

received a higher HINT binding score due to notably better hydrogen bonding network 

(Figure 8), which is compensated by a penalty score due to its higher internal energy 

compared to Pterin1. The combination of the binding scores and the penalty scores 

made Pterin1 and Pterin3 stand out as the most reasonable models as they had the 

highest corrected HINT scores. Other forms were either poorly bound or were predicted 

to have too high energies. This case study illustrates the idea that considering 

tautomerism in virtual screening, in which a compound with good tautomeric binding 

forms could be missed because the most energetically accessible form was not a good 

match for the site. 
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Figure 4.8. Two favorable tautomeric forms of pterin binding to the ricin toxin-A chain. 
Pterin3 shown on the right tend to satisfy more hydrogen bonds and thus binds better 
than Pterin1 does shown on the left.  

  

4.3.6 Tautomer database 

The tautomer database is designed to speed up the process of tautomer identification, 

enumeration by bypassing the quantum chemistry calculations for relative energies. The 

general search algorithm as described above identifies and enumerates all possible 

tautomeric forms based on hydrogen shifts with no concern of energy. Whether the 

forms have too high energy to exist, such that they are not contributing to binding is not 

considered until the quantum chemistry calculation is performed, which is by far the 

slowest part of the procedure. The basic idea of a tautomer database is that it is a 

collection of commonly observed tautomeric structures. These structures will be 

matched to the input molecular structure as substructures. Each tautomeric structure is 

related to only a handful of other structures that belong to the same category (Figure 

4.9) and have tolerable energies, and/or are regularly considered by researchers. The 
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penalty scores corresponding to the forms are calculated in the same way as the 

general search tool does and they are stored in the database so that the time needed 

for quantum chemistry calculation can be saved.   

Our proof-of-concept database contains 69 tautomeric forms belonging to 25 annular 

tautomeric systems (Figure 4.9). Most of the forms were collected from a published 

annular tautomerism study and have been identified as populated in public structural 

databases such as CSD and PDB.22 Five-membered, six-membered and bicyclic rings 

with nitrogen form the majority of the database, including pyrazole(4a-b), imidazole (5a-

b), triazoles (1a-c and 2a-c), tetrazoles (3a-b) and their fused rings such as indazole 

(8a-b). These heterocyclic rings are frequently used in organic synthesis as building 

blocks and therefore they are common in organic compounds.    

The structures in the tautomer database are matched as exact substructures (atom 

types, bond types and connections) to the input molecule. It may seem that there are 

duplicate structures in the database. 1a and 1b, for example, appear to be the exact 

same structure. However, because they are matched to the input molecule as 

substructures, if the parent compound (the input) is not symmetrical with respect to the 

middle nitrogen (for example, two different substitutions on the two carbon atoms), 1a 

and 1b are actually two different forms.  
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Figure 4.9. The annular tautomeric forms in the initial tautomer database. 
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The identification and enumeration using the tautomer database are performed as 

follows (Figure 4.10):  

Step 1: the tautomeric structures in the database are matched as substructures to the 

input molecule (e.g., compound 4.7).  

Step 2: if a match is found (5a and 9a, Figure 4.9), relate the substructures within the 

same family (i.e., 5b and 9b) to the prospective tautomers. 

Step 3: the prospective tautomer list includes the combinations of all the substructures. 

A matrix with iteration numbers similar to that of the binary matrix (Figure 4.3) is 

constructed to facilitate enumeration. 4 tautomeric structures as new molecule objects 

(compound 4.7-4.10) including the original 4.7 are the output from the database search 

algorithm.                    
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Figure 4.10. The prospective tautomeric forms of compound 4.7 generated by the 
tautomer database search algorithm. The identified tautomeric substructures are shown 
in red.  
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The penalty scores of the substructures in the database are pre-calculated by 

converting the heat of formation ΔHf values to HINT scores (Table 4.2). The parent 

structures from the input are assigned with the summation of the penalty scores of their 

tautomeric substructures. For example, compound 4.8 is composed of the substructures 

5a and 9b. Its penalty score is the penalty score of 5a plus the penalty score of 9b.      

Table 4.2. Penalty scores and relative energies of the structures in the tautomer 
database. 

Structure Δ(ΔHf)a Penaltyb Structure Δ(ΔHf)a Penaltyb Structure Δ(ΔHf)a Penaltyb 
1a 0 0 10a 0 0 19d 8.76 876 
1b 0 0 10b 6.98 698 20a 0 0 
1c 2.81 281 11a 0 0 20b 0.67 67 
2a 0.03 3 11b 6.8 680 20c 11.08 1108 
2b 0 0 12a 0 0 20d 3.61 361 
2c 0 0 12b 3.42 342 21a 3.56 356 
3a 0 0 13a 0 0 21b 0 0 
3b 2.16 216 13b 3.56 356 21c 10.04 1004 
4a 0 0 14a 0 0 21d 5.5 550 
4b 0 0 14b 0.12 12 22a 0 0 
5a 0 0 15a 0 0 22b 8.06 806 
5b 0 0 15b 0 0 22c 5.1 510 
6a 0 0 15c 7.59 759 22d 2.15 215 
6b 8.11 811 16a 0 0 22e 11.97 1197 
6c 1.24 124 16b 3.83 383 22f 10.59 1059 
7a 0 0 16c 9.88 988 23a 0 0 
7b 7.64 764 17a 0 0 23b 6.95 695 
7c 1.83 183 17b 6.46 646 24a 0 0 
8a 1.88 188 18a 0 0 24b 6.63 663 
8b 1.05 105 18b 8.43 843 24c 4.55 455 
8c 0 0 19a 0 0 25a 0 0 
9a 0 0 19b 4.64 464 25b 3.19 319 
9b 4.97 497 19c 10.76 1076 25c 4.02 402 
a: The heat of formation ΔHf (kcal mol-1) was calculated by PM3. The relative energy 
Δ(ΔHf) (kcal mol-1) was the energy compared to the most stable form in the same 
category.  

b: HINT penalty score = 100×Δ(ΔHf). 
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4.3.7 Tautomer enrichment in a virtual screening benchmarking database 

DUD (Directory of Useful Decoys) is a database of active compounds against specific 

protein targets and decoy compounds with similar physical properties to the actives but 

no activity.23 The database is commonly used for benchmarking docking algorithms for 

virtual screening. Recently, it has also been used to test the effect of considering 

tautomerism in virtual screening because the active compounds in the database, as well 

as the large number of decoys, contain tautomers. In order to test our application and to 

demonstrate the enrichment of tautomeric structures in the commonly used database, 

we applied our tautomer database search to a total of around 3000 active compounds 

and 100,000 decoys against a total of 40 targets from the DUD database. If a structure 

in DUD contains a substructure that is the same as any tautomeric structure in our 

tautomer database, the structure is considered tautomeric. The results are listed in 

Table 4.3. The overall enrichment was low. 7% of the active compounds and 4% of the 

decoy compounds were determined to have substructures that matched to the 

tautomeric structures in our database. However, in some specific systems, the ratios 

were considerably larger. In fact, 7 out of 40 targets (ADA, CDK2, COX2, HIVPR, 

HSP90, P38, VEGFr2) had more than 15% of actives as potential tautomers. And 2 of 

the 40 had over 30% (HSP90: 54%; P38: 33%). The tautomer ratio for decoys was 

more consistent across different targets. The range was from 1% to 12%. In addition, 

the tautomeric structures identified in DUD were determined to be commonly observed 

or “significant” in our tautomer database. Considering their corresponding prospective 

tautomeric counterparts is certainly a reasonable step in order to achieve better 

interpretation of a binding event.  Moreover, our tautomer database only partially covers 
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the types of tautomers existing in chemistry. We would expect higher enrichment if the 

general search tool was applied.    

Table 4.3. Tautomer counts and ratios of active and decoy compounds from the DUD 
database. 

Target Actives Tautomers Ratio Decoys Tautomers Ratio 
ACE 49 0 0.00 1727 42 0.02 
ACHE 105 0 0.00 3714 53 0.01 
*ADA 23 6 0.26 821 21 0.03 
ALR2 26 0 0.00 918 62 0.07 
AmpC 21 0 0.00 732 24 0.03 
AR 74 0 0.00 2628 75 0.03 
*CDK2 50 9 0.18 1779 124 0.07 
COMT 11 0 0.00 430 10 0.02 
COX1 25 0 0.00 849 49 0.06 
*COX2 348 62 0.18 12464 220 0.02 
DHFR 201 0 0.00 7145 826 0.12 
EGFr 444 12 0.03 14894 546 0.04 
ER_agonist 67 0 0.00 2355 145 0.06 
ER_antagonist 39 0 0.00 1395 13 0.01 
FGFr1 118 1 0.01 4205 128 0.03 
FXa 142 1 0.01 5095 260 0.05 
GART 21 0 0.00 753 15 0.02 
GPB 52 0 0.00 1850 53 0.03 
GR 78 0 0.00 2797 21 0.01 
*HIVPR 53 9 0.17 1885 36 0.02 
HIVRT 40 0 0.00 1437 63 0.04 
HMGR 35 0 0.00 1241 38 0.03 
*HSP90 24 13 0.54 860 73 0.08 
InhA 85 0 0.00 3035 99 0.03 
MR 15 0 0.00 535 16 0.03 
NA 49 0 0.00 1745 39 0.02 
*P38 256 85 0.33 8387 352 0.04 
PARP 33 0 0.00 1176 82 0.07 
PDE5 51 6 0.12 1809 28 0.02 
PDGFrb 157 0 0.00 5614 154 0.03 
PNP 25 2 0.08 882 94 0.11 
PPARg 81 2 0.02 2906 49 0.02 
PR 27 0 0.00 967 12 0.01 
RXRa 20 0 0.00 708 17 0.02 
SAHH 33 0 0.00 1159 63 0.05 
SRC 155 1 0.01 5793 259 0.04 
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Thrombin 65 0 0.00 2292 67 0.03 
TK 22 0 0.00 784 30 0.04 
Trpsin 44 0 0.00 1544 48 0.03 
*VEGFr2 74 17 0.23 2641 191 0.07 
Total 3238 

 
226 0.07 113951 4497 0.04 

Only the substructures that match to the tautomeric forms in our tautomer database 
were counted. When counting the totals, duplicate structures from different target sets 
were not removed. 
* : the targets that have more than 15% tautomers in actives. 
 

4.3.8 Potential use in virtual screening and in combination with Computational 

Titration 

One of the main applications that we have planned for the tautomer module in HINT is 

docking for virtual screening. It has been shown in the pterin case that a tautomeric 

form with a higher energy may have better binding than the most stable form. Virtual 

screening workflows should be expected to provide higher accuracy if tautomerism is 

considered when such structures are present. During the docking of a compound in 

virtual screening, its tautomeric forms generated by our general search algorithm or the 

tautomer database are also docked to the same target in addition to the original form. 

The HINT score of each form is the HINT docking score minus the HINT penalty score. 

The final HINT score representing the compound is the best HINT score among the 

scores of all the forms. In this way, a potential good binder of the target would not be 

missed if one of its tautomeric forms binds well but the default form does not. Also, the 

tautomeric forms that bind well but have intolerable high energy would be penalized to 

prevent them from causing false positives, which several researcher have encountered 

when not using penalty scores.9-11      
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Computational titration is a module in HINT that iterates the ionization states of the 

residues on protein and the ligand in a binding pocket, to find the optimum combination 

of states.14 When treating a pocket with multiple ionizable residues and a ligand with 

multiple tautomeric forms, combining the computational titration module and the 

tautomer module would provide more accurate description of binding. The combination 

of the two approaches would generate an ensemble of different complexes for HINT 

scoring. The complex ensemble with optimized ionization states possessing the highest 

HINT interaction score (corrected by penalty scores) would be considered to be ideal 

and subject to further analysis. Considering both ionization states and tautomerism is a 

further step towards accurate prediction of binding, which has been reported in several 

studies9,10, 24-26 and is an on-going project of our group.    

4.4 Conclusions 

In this study we proposed and developed a workflow to incorporate tautomerism within 

HINT. A simple and intuitive algorithm is used to identify and enumerate tautomeric 

forms based on hydrogen shifts of the input structure. A penalty score is assigned to 

each tautomeric form based on the energy calculated by the PM3 method. The workflow 

was tested on pterin, a structure that can tautomerize and bind to ricin toxin-A chain. 

The favorable binding forms were identified and the results agree with more stringent 

computational studies and crystallographic analysis.  

In the second part of the study, a database containing commonly observed tautomeric 

structures and their pre-calculated penalty scores was built to speed up the workflow 

and to facilitate large-scale computing such as virtual screening. The use of the 
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database was illustrated in the determination of the tautomer enrichment for a popular 

virtual screening benchmarking database, DUD.  Although the overall tautomer ratio 

was low, specific protein targets that had considerable enrichment were identified and 

attention should be paid when conducting benchmarking virtual screening studies.  

Incorporation of tautomerism represents an on-going process of improving the docking 

of small molecule ligands to proteins. Our workflow provides a computationally efficient 

way to achieve the proof-of-concept goal. Future studies will be focused on the virtual 

screening using the DUD database to evaluate the impact of considering tautomers on 

the hit rate and the false-positive rate, and the combination of the tautomerism 

algorithms with Computational Titration, which considers the ionization states during 

binding, should prove to be very beneficial for computer-aided drug design.    
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CHAPTER 5 

Conclusions 

The hydrophobic effect is a universal phenomenon that describes the tendency of 

nonpolar moieties to stay together.  The concept has been successfully applied in the 

HINT (Hydropathic INTeractions) scoring function, which uses the hydrophobic atom 

constants derived from the experimentally measured partition coefficient (LogPo/w) 

values to evaluate hydrophobic interactions, hydrogen bonding, acid-base interactions 

and Coulombic interactions for ligand-protein and protein-protein binding. We wanted to 

test the HINT scoring function and related applications to see if they could be used to 

model the binding of tubulin colchicine-site anticancer agents and provide guidance for 

design and optimization; and how we could incorporate tautomerism in order to improve 

prediction of binding in general. 

Microtubules have been treated as a target for cancer therapies for a long period of 

time, due to the fact that they are one of the major cytoskeletal components in 

eukaryotic cells and their critical functions, such as maintenance of cell shape, protein 

trafficking, signaling and segregation of chromosomes during mitosis. Owing to the fact 

that microtubules are important regulators of endothelial cells, recently colchicine-site 

agents are being intensively developed as angiogenesis inhibitors (prevent new blood 

vessel formation) and vascular disrupting agents (destroy existing vasculature) for 

cancer treatment. Combretastatins, one family of colchicine-site agents, are progressing 

through clinical trials for this purpose. In addition, colchicine-site agents might be able to 
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circumvent βIII-tubulin overexpression, which compromises the clinical use of taxanes 

and vinca alkaloids. 

The in-house developed pyrrole-based compounds targeting the colchicine site were 

studied first. Docking these compounds into the colchicine site with HINT predicted two 

distinct binding modes. The mode that overlapped very well with colchicine 

corresponded to the highly active compounds. The other mode only partially overlapped 

with colchicine and belonged to the weaker compounds. Of the residues that were 

identified to participate in binding, Cys241β was revealed to form a critical hydrogen 

bond with the ligand. Although this interaction was supposed to be weak, loss of it 

appeared to shift the antiproliferative mechanism of action away from microtubule 

inhibition.        

We further analyzed a collection of colchicine-site agents with different scaffolds 

including the pyrrole-based compounds. These compounds were tested for 

antiproliferative activities and microtubule effects in the same laboratory. By applying 

the same docking procedure, their binding modes were predicted and a pharmacophore 

model was generalized to have a hydrogen bond acceptor interacting with Cys241β, 

another hydrogen bond acceptor interacting with Val181α, and three hydrophobic 

centers in the subpockets A, B and C respectively. 3D-QSAR (Quantitative Structure-

Activity Relationship) models were constructed based on the binding modes to correlate 

structural changes with antiproliferative activities. The reliability of the models was 

indicated by good statistics and the observation that the contour maps showing the 

favorable and unfavorable functional groups for activity were directly related to the 

residues around them. We also introduced a new approach, a linear combination of 
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weighted HINT maps of individual compounds, to highlight the unique features 

(functional groups) of highly active compounds and the commonality of all compounds 

in the dataset. The new method was successfully applied to colchicine-site agents and 

the generated maps agreed with the contours maps of the 3D-QSAR models and may 

provide guidance for later drug design efforts.  

In the process of improving binding prediction of HINT, considering tautomerism was 

also recently highlighted. We proposed and developed a workflow to incorporate 

tautomerism within HINT scoring. A simple and intuitive algorithm based on hydrogen 

shift patterns was developed for a general search tool to identify and enumerate 

tautomeric structures. The HINT penalty scores for the tautomeric structures were 

designed to be converted from energies predicted by the semi-empirical PM3 method 

for quantum chemistry calculations. The workflow was successfully tested on the 

prediction of pterin binding to ricin toxin-A chain, with the correct tautomeric forms of 

pterin identified.   A database containing a number of commonly observed tautomeric 

structures and pre-calculated penalty scores was also built to facilitate large-scale 

computing tasks such as virtual screening. The database approach was tested on a 

virtual screening benchmarking database DUD, to identify DUD’s tautomer enrichment. 

Overall, we have answered the question of whether and how we can use molecular 

modeling techniques based on HINT to explain the activities of colchicine-site agents. 

We predicted their binding modes in the colchicine site and understood how structural 

changes would affect activity. Tautomerism has also been incorporated within HINT to 

consider more details about ligand binding and to improve the prediction results. The 

models and insights we obtained for the colchicine-site agents and the tautomer module 
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in HINT will provide valuable guidance and better modeling results in the design and 

development process.  
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