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Abstract 

 

REGULARITIES IN THE AUGMENTATION OF FRACTIONAL FACTORIAL DESIGNS 

 

By Lisa Kessel 

 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science 

at Virginia Commonwealth University. 

 

Virginia Commonwealth University, 2013 

 

Major Director:  Dr. David Edwards, Assistant Professor, Department of Statistical Sciences and 

Operations Research 

 

 

Two-level factorial experiments are widely used in experimental design because they are 

simple to construct and interpret while also being efficient.  However, full factorial designs for 

many factors can quickly become inefficient, time consuming, or expensive and therefore 

fractional factorial designs are sometimes preferable since they provide information on effects of 

interest and can be performed in fewer experimental runs.  The disadvantage of using these 

designs is that when using fewer experimental runs, information about effects of interest is 

sometimes lost.  Although there are methods for selecting fractional designs so that the number 

of runs is minimized while the amount of information provided is maximized, sometimes the 

design must be augmented with a follow-up experiment to resolve ambiguities.   

Using a fractional factorial design augmented with an optimal follow-up design allows for 

many factors to be studied using only a small number of additional experimental runs, compared 

to the full factorial design, without a loss in the amount of information that can be gained about 

the effects of interest.  This thesis looks at discovering regularities in the number of follow-up 

runs that are needed to estimate all aliased effects in the model of interest for 4-, 5-, 6-, and 7-

factor resolution III and IV fractional factorial experiments.     
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From this research it was determined that for all of the resolution IV designs, four or fewer 

(typically three) augmented runs would estimate all of the aliased effects in the model of interest.  

In comparison, all of the resolution III designs required seven or eight follow-up runs to estimate 

all of the aliased effects of interest.  It was determined that D-optimal follow-up experiments 

were significantly better with respect to run size economy versus fold-over and semi-foldover 

designs for (i) resolution IV designs and (ii) designs with larger run sizes.   
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Chapter 1 

Introduction 
 

When doing any experiment, one must first consider the balance that exists between 

maximizing the information that can be gained from the experiment and minimizing the cost and 

the resources that are required for its successful execution.  Excelling in either of these areas 

often comes with a penalty to the other, as experimental runs can be expensive and time 

consuming yet cutting them results in a loss of information.  When information is gained for all 

main effects and interactions (especially for large numbers of factors), the size of the experiment 

grows exponentially, which is often times not affordable or the time required to complete all of 

the required runs is not feasible.  Therefore, a compromise must be made between these two 

goals of the experiment, and one solution is to run a fractional factorial design instead of the 

possible full factorial design. 

Whereas the full factorial design looks at all possible combinations of levels for all of the 

factors in the experiment, the fractional factorial designs only looks at a subset of these possible 

factor combinations and chooses a combination of runs that allows for the estimation of some of 

the lower order effects (main effects and two-factor interactions).  For example, a full factorial 

design for a 7-factor experiment with two levels for each factor would require 128 runs.  This 

design would allow for the estimation of all main effects and interactions (through the 7-factor 

interaction).  In contrast, a quarter fraction of the same experiment only requires 32 runs and all 

of the main effects and some of the two-factor interactions are estimable.  Only some of the two-
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factor interactions will be estimable since with this design two-factor interactions are fully 

confounded (aliased) with other two-factor interactions, and therefore only one two-factor 

interaction per alias chain will be estimable.   

Since a typical assumption is that not all multi-factor interactions will be necessary in the 

model of interest, a fractional factorial can be a good alternative to the full factorial design if the 

full factorial will be expensive or time consuming to execute.  Due to the loss of information that 

is caused by the aliasing of effects, a follow-up design can be utilized to de-alias effects that may 

be present in the model of interest.  This allows for some of the information about effects of 

interest that was previously lost due to aliasing to be regained at a smaller cost than if this same 

information had been found using the full factorial design.   

There are many methods for choosing an optimal and appropriate follow-up experiment 

that balances the cost of the additional runs with the information they provide that is not given by 

the original fractional factorial experiment.  It is the goal of this thesis to determine regularities 

in the minimum number of follow-up runs that are needed to estimate all of the effects of interest 

for 4-, 5-, 6-, and 7-factor resolution III and IV fractional factorial experiments.   

The remainder of this thesis will have the following organizational structure.  Chapter 2 

will contain an overview of factorial and fractional factorial designs, follow-up designs, and 

strategies for choosing follow-up experiments.  In addition, it will include a thorough discussion 

of the literature that is currently available on these topics.  Chapter 3 will outline a plan to 

analyze the initial experiments used for this study as well as discuss how the optimal number of 

follow-up runs that are needed to estimate the effects in a model of interest will be determined.  

Chapter 4 will discuss the results of this study as well as summarize the study and its findings.  
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Chapter 5 will present recommendations, conclusions, and future work that is recommended in 

this area of research.   
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Chapter 2 

Literature Review 
 

2.1:  Two-Level Full Factorial and Fractional Factorial Designs 

Two-level factorial designs are widely used in the design of experiments.  They are 

designs in which all factors in the experiment are explored at two levels, typically a high level 

and a low level.  For example, to study the effect of sunlight on plant growth using a two-level 

factorial design, the experiment could be designed so that the plant receives either 4 hours of 

sunlight per day (the low level) or 8 hours of sunlight per day (the high level).   

These two-level experiments are presented as 2
k
 designs, where k designates the number 

of factors in the experiment and 2
k
 is equivalent to the number of runs in the experiment.  These 

designs have k degrees of freedom to estimate main effects and n-k-1 degrees of freedom for 

estimating two-factor interactions and higher order effects.  For example, a two-level experiment 

with 4 factors would be written as a 2
4
 design with 16 runs (          ).  This full 

factorial design would have four degrees of freedom for estimating the main effects and eleven 

degrees of freedom for estimating the two-factor and higher order interaction terms (16 – 4 – 1 = 

11).  Table 2.1 on the next page is an example of a 2
4
 full factorial experiment with the high and 

low levels of the factors coded as +1 and -1, respectively.  In this table it can be seen that all 

combinations of the high and low levels are given for all four factors. 
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Table 2.1:  2
4
 Full Factorial Experiment 

 

 

The disadvantage of using a full factorial experiment is that it carries a high cost as the 

number of factors increases.  For 4, 5, 6, and 7 factors, a two-level full factorial experiment 

requires 16, 32, 64, and 128 runs, respectively.  This illustrates how it can quickly become 

inefficient, time consuming, and/or expensive to use these designs.  Full factorials become even 

more inefficient when only the main effects and two-factor interactions are of interest.  When an 

experimenter is not interested in all of the possible interactions that are estimable with the full 

factorial design, it becomes more advantageous to use an experimental design that is less taxing 

on time and resources that will still provide information for the lower order effects using fewer 

experimental runs.  

 In these situations, a good option is to utilize a fractional factorial design.  These are 

orthogonal designs that allow experimenters to study the main effects and select interaction 

terms of interest in fewer experimental runs than a full factorial design (Antony 2003).  Although 

more efficient, the reduced number of runs in the fractional factorial design is a result of aliasing 

A B C D 

1 1 1 1 

1 1 1 -1 

1 1 -1 1 

1 1 -1 -1 

1 -1 1 1 

1 -1 1 -1 

1 -1 -1 1 

1 -1 -1 -1 

-1 1 1 1 

-1 1 1 -1 

-1 1 -1 1 

-1 1 -1 -1 

-1 -1 1 1 

-1 -1 1 -1 

-1 -1 -1 1 

-1 -1 -1 -1 
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lower order terms with higher order interactions.  This aliasing allows for the estimation of the 

lower order (and more likely significant) effects, assuming that the higher order effects are 

negligible.   

 Aliasing refers to the scenario when columns in the design matrix representing different 

effects are equivalent, creating linear dependencies among effects.  Designs in which lower order 

effects are aliased with three-factor and higher order effects are preferred, since this allows 

estimability of the lower order (and more likely significant) effects.  Consider the following 

example, where Table 2.2 below is the one-half fraction of the experiment given previously in 

Table 2.1. 

Table 2.2:  Half Fraction of 2
4
 Experiment 

A B C D 

1 1 1 1 

1 1 -1 -1 

1 -1 1 -1 

1 -1 -1 1 

-1 1 1 -1 

-1 1 -1 1 

-1 -1 1 1 

-1 -1 -1 -1 

 

 In this design, factor D is equivalent to A*B*C, which means that in the one-half 

fractional factorial design, factor D is aliased with the three-factor interaction ABC.  This is 

written as I = ABCD and is known as the defining relation.  The defining relation is all of the 

columns in the design matrix that are equal to the identity column I, where I is always the 

column of all +1s in the design matrix. Each element of the defining relation is called a word, 

and defining relations with longer words are preferable.  From this defining relation, all aliased 

effects can be determined by multiplying the left side of the equation by all factor combinations.  

For this example, all of the aliased effects are presented in Table 2.3 on the next page. 
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Table 2.3:  Aliased Effects in Half Fraction Example 

Effect Alias 

A A
2
BCD = BCD 

B AB
2
CD = ACD 

C ABC
2
D = ABD 

D ABCD
2
 = ABC 

AB A
2
B

2
CD = CD 

AC A
2
BC

2
D = BD 

AD A
2
BCD

2
 = BC 

 

To determine which terms to include in a model for a fractional factorial experiment, the 

experimenter operates under the principle of effect hierarchy.  This principle states that the main 

effects are more important than two-factor interactions and two-factor interactions are more 

important than three-factor and higher order interactions.  Since the main effects and two-factor 

interactions are more likely to be significant in the model, three-factor and higher order 

interactions can be considered negligible, which allows for lower order terms that are aliased 

with higher order terms to be estimated.   

 Two-level fractional factorial designs are written as 2
k-p

, where k is the number of factors 

and (
 

 
)
 

 is the fraction of the full factorial.  For example, a quarter fraction (
 

 
)
 

 of a design 

with 6 factors is written as 2
6-2

 and would have 16 runs (2
6-2

 = 2
4
), compared to a full factorial 

with 6 factors which would have 64 runs (2
k
 = 2

6
).  This fractional factorial experiment would 

have 15 degrees of freedom, of which 6 would be dedicated to estimating main effects and the 

other 9 degrees of freedom could be used for estimating two-factor interactions.     

Consider the possible aliasing structure of E = BCD and F = ACD to create a 2
6-2

 design 

from a full 2
6
 design.  These aliased effects are the generators for the 2

6-2
 fractional factorial 

design and it can be seen from this aliasing structure that the main effects E and F would be 

aliased with three-factor interactions, which can be considered negligible, and therefore would be 
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estimable.  The defining relation for this design would be I = BCDE = ACDF = ABEF where the 

last word in the defining relation is the product of the first two words (BCDE*ACDF = 

ABC
2
D

2
EF = ABEF).   

From the words in the defining relation, word length is used to determine the resolution 

of the design.  The word length is determined by counting the number of letters in each word in 

the defining relation and setting the length of the shortest word as the resolution of the design.  In 

the example above, using the 2
6-2

 design with the defining relation I = BCDE = ACDF = ABEF, 

all the words in the defining relation have four letters and therefore have a word length of four.  

This means that this 2
6-2

 design is a resolution IV design.   

Designs with the largest number of clear main effects and two-factor interactions are 

considered to be better designs, where clear effects are defined as those that are either not aliased 

or aliased with three-factor or higher interactions.  This implies that higher resolution designs are 

preferable since with these designs the lower order effects are aliased with higher order terms 

that are less likely to be significant in the model of interest.  It also implies that for a given 

fractional factorial design, if two resolution designs are possible, the higher resolution design 

will be chosen.   

Consider the following example for a 2
6-2

 fractional factorial design.  For this design, two 

sets of possible generators are E = ABC, F = ABD and E = AB, F = ACD.  For the first set of 

generators, the defining relation would be I = ABCE = ABDF = CDEF and for the second set of 

generators, the defining relation would be I = ABE = ACDF = BCDEF.  From the first defining 

relation, the shortest word has length four, which would result in a resolution IV design.  The 

shortest word in the second defining relation has length three, which would result in a resolution 
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III design.  The first set of generators would be preferred to create the design since they would 

results in a higher resolution design. 

The disadvantage of using fractional factorial designs is that there is a loss of information 

that accompanies reducing the full number of needed runs.  Two-level fractional factorial 

experiments do not possess all of the possible factor combinations; hence there are no longer 

enough degrees of freedom to estimate all of the main effects and interaction terms that could 

possibly be significant in the model.  Aliasing sacrifices some higher order terms in order for the 

lower order terms to be estimable.  In resolution III designs, aliasing can confound both main 

effects and two-factor interactions with other two-factor interactions.  In resolution IV designs, 

aliasing can confound two-factor interactions with other two-factor interactions.  Only in 

resolution V and higher designs are all aliased main effects and two-factor interactions estimable, 

as they can only be confounded with three-factor and higher order interactions.   

When main effects or two-factor interactions are aliased with other two-factor 

interactions, only one of the effects in each alias chain can be estimated without augmenting the 

design with more experimental runs.  The decision of which effect to estimate often depends on 

the opinion of the experimenter and which effect they consider to be more important in the 

model of interest.  For an example, consider the 2
5-2

 fractional factorial design that is given on 

the next page in Table 2.4.  All three-factor and higher order interactions are omitted in the 

aliasing pattern.   
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Table 2.4:  2
5-2

 Fractional Factorial Experiment and Aliasing Pattern 

2
5-2

 Design Aliasing Pattern 

A B C D E I = ABCD = BCE = ADE 

-1 -1 -1 -1 1 A = DE 

-1 -1 1 1 -1 B = CE 

-1 1 -1 1 -1 C = BE 

-1 1 1 -1 1 D = AE 

1 -1 -1 1 1 E = AD = BC 

1 -1 1 -1 -1 AB = CD 

1 1 -1 -1 -1 AC = BD 

1 1 1 1 1  

 

The main effects and two-factor interactions that are aliased with other two-factor 

interactions in the resolution III 2
5-2

 fractional factorial design can be seen above in Table 2.4.  

Since aliasing results in design columns being shared by effects, without additional runs only one 

effect from each alias chain can be included in the model.  This means that of the 15 possible 

main effects and two-factor interactions, only seven can be included in the model.  Effect 

hierarchy suggests that the main effects are more significant than the two-factor interactions, but 

without prior information it is unknown which two-factor interaction(s) from each alias chain 

should be included in the model.  It could also be possible that the two-factor interactions aliased 

with the main effects should be included in the model, or that both two-factor interactions in an 

alias chain should be included.   

In situations such as those presented above when main effects and two-factor interactions 

are confounded with other two-factor interactions and the experimenter does not have knowledge 

that would allow them to choose between aliased effects, follow-up runs are used to allow for the 

aliased effects to be de-aliased so that all of the confounded terms of interest can be estimated.  

For more information on the construction and analysis of full and fractional factorial 

designs, please reference Box and Hunter (1961).  
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2.2:  Follow-Up Designs 

 Follow-up designs are often needed when there is a need to resolve ambiguity that results 

from the use of a fractional factorial design (Meyer et al. 1996).  Occasions often arise when 

there is not a clear picture of which effects are significant from the original experiment, and in 

those instances additional runs help clarify which of the aliased effects of interest are indeed 

significant.  There are three methods for choosing follow-up designs that will be discussed in this 

thesis:  fold-over designs for resolution III and IV fractional factorial experiments, semi-foldover 

designs for resolution IV fractional factorial experiments, and optimal follow-up designs.   

 

2.2.1:  Fold-Over Follow-Up Designs 

Fold-over designs can be used when either (i) all of the main effects or (ii) one main 

effect and all the two-factor interactions involving that main effect need to be de-aliased (Wu 

and Hamada 2009).  The idea behind these designs is that in every 2
k
 full factorial experiment 

there exist 2
p
-1 additional fractions from the same grouping as the 2

k-p
 fractional factorial 

experiment that was chosen.  If an additional fraction from this group is added, it will break the 

alias chains in half and allow for one or more of the confounded effects to become estimable.   

There are several strategies for folding-over a fractional factorial.  There are 2
k
 ways to 

generate a fold-over design, with various reasons behind the method of construction for these 

designs.  If the analysis of the initial design reveals a set of main effects and two-factor 

interactions that are significant, a fold-over design should be chosen to resolve confounding 

issues with these effects (Li and Lin 2003).  For resolution III designs, reversing the sign of all 

the factors increases the resolution of the experiment.  For resolution IV designs, reversing one 
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factor allows for the estimation of the k – 1 two-factor interactions for that factor (Mee and 

Peralta 2000).   

Consider the 2
5-2

 fractional factorial design previously presented in Table 2.4 in Section 

2.1.  A full fold-over on all factors of this design is given below in Table 2.5. 

Table 2.5:  Full Fold-Over of 2
5-2

 Design 

O
ri

g
in

a
l 

D
es

ig
n

 

A B C D E Aliasing Pattern (Initial) 

-1 -1 -1 -1 1 I = ABCD = BCE = ADE 

-1 -1 1 1 -1 A = DE 

-1 1 -1 1 -1 B = CE 

-1 1 1 -1 1 C = BE 

1 -1 -1 1 1 D = AE 

1 -1 1 -1 -1 E = AD = BC 

1 1 -1 -1 -1 AB = CD 

1 1 1 1 1 AC = BD 

F
o
ld

-O
v
er

 D
es

ig
n

 1 1 1 1 -1 Aliasing Pattern (Combined) 

1 1 -1 -1 1 AD = BC 

1 -1 1 -1 1 AC = BD 

1 -1 -1 1 -1 AB = CD 

-1 1 1 -1 -1  

-1 1 -1 1 1  

-1 -1 1 1 1  

-1 -1 -1 -1 -1  

 

After the design is augmented with the eight fold-over runs, only six effects remain 

aliased.  All of the main effects have been de-aliased, which means that now those effects as well 

as the two-factor interactions they were aliased with are now estimable.  The remaining aliased 

effects are the confounded two-factor interactions AB = CD and AC = BD as well as the two-

factor interactions that were previously aliased with main effect E.  In the original design, only 

seven effects could be included in the model, but after the fractional factorial is augmented with 

the fold-over runs, 12 effects can be included in the model.  In addition, the original design was 

resolution III but after the eight fold-over runs are added, the new design is resolution IV. 
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 The advantage of using these fold-over designs is that they de-alias lower order terms that 

are more likely to be active than higher order interactions.  The full factorial design also allows 

for the estimation of the main effects and two-factor interactions; however, it dedicates many 

degrees of freedom to the estimation of higher order effects that are considered negligible under 

the hierarchy principle.  The fold-over design allows for the experiment to be conducted in fewer 

runs yet still gain information about the main effects and two-factor interactions that the 

experimenter prefers to estimate.   

 Another advantage of this design is the simplicity of its construction.  Since building this 

follow-up design only involves reversing the signs of the design column for the factor(s) on 

which the design is being folded-over, an experimenter can easily decide which levels of the 

factors to use for the follow-up design without complicated methods or the use of software.    

 The disadvantage of using fold-over designs is that not all of the alias chains can be 

broken with one fold-over.  In addition, two-factor interactions cannot always be de-aliased with 

a fold-over design.  For a resolution III design, folding over on all factors will increase the 

resolution, but Li and Mee (2002) found that this is often an inferior method of fold-over since it 

only estimates odd-length words from the defining relation.  In addition, they also found that 

while this standard fold-over design for resolution III experiments will de-alias main effects from 

two-factor interactions, it will not resolve aliasing among two-factor interactions and it will only 

provide fewer than 2
k-p

 degrees of freedom for estimating two-factor interactions.  For resolution 

IV designs, folding over on all factors is not applicable since the augmented design will have the 

same number of length four words (Li and Lin 2003).  When folding over a resolution IV design, 

the fold-over will only add at most k – l degrees of freedom for two-factor interactions (Mee and 

Peralta 2000).   
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2.2.1.1:  Fold-Over Designs for Resolution III Fractions 

 Since a resolution III fractional factorial design confounds some of the main effects with 

two-factor interactions, it is common practice that to de-alias the confounded effects the original 

fractional factorial is augmented with another fractional factorial design in such a way that the 

final augmented design becomes a resolution IV design.  To accomplish this, the original 

resolution III fractional factorial design is augmented with its mirror image, which is constructed 

by reversing the signs of the elements in the design matrix for all of the factors.  By conducting 

another 2
k-p

 experiment using the same number of factors and factor levels, the combined 

experiments now form a 
 

   
 

     fraction of the original 2
k
 full factorial experiment (Mee 

2009).  There are several benefits of augmenting a resolution III fractional factorial with its 

mirror-image fractional factorial: 

1. All confounded main effects are de-aliased from two-factor interactions. 

2. Two-factor interactions previously confounded with main effects are now estimable. 

3. The precision of the estimates is increased.  Assuming the error variance is unchanged, 

the standard error for coefficients decreases by a factor of (
 

 
)
   

 (Mee 2009). 

For most resolution III designs, the mirror-image fraction is the only design that will increase 

the resolution by reversing the sign of length three words in the defining relation.  However, in 

instances when the number of factors k is larger than N/2 where N is the number of experimental 

runs, there exist other follow-up designs that perform better than the mirror-image follow-up 

design (Mee and Peralta 2000).   
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2.2.1.2:  Fold-Over and Semi-Foldover Designs for Resolution IV Fractions 

Although foldover designs are simple to construct and analyze, these designs are degree- 

of-freedom inefficient for    
   

factorial experiments.  Mee and Peralta (2000) state that for these 

designs of size N, augmenting the design with a full foldover adds fewer than N/2 additional 

degrees of freedom for estimating two-factor interactions in the following cases: 

1. Any design in which the foldover is obtained by reversing a single factor. 

2. Any    
   

 design of size N ≤ 32. 

3. Any    
   

 design with only even-length words. 

4. Any design with k < 12 for N = 64 or in general ( 
 
)   .   

In addition, the number of two-factor interactions that these designs typically estimate is 

less than half the size of the follow-up design (Mee and Peralta 2000).  They are a good choice 

when the goal is increasing precision but an inefficient choice of follow-up design when the goal 

is estimation of effects of interest.  For this reason, a better option to consider is semi-fold 

designs, which generally allow for the estimation of the same number of effects as the full fold-

over design.  Assuming three-factor interactions are negligible, resolution IV fractional factorial 

designs typically have only a few alias chains that include effects of interest.  For that reason, it 

is often not necessary to add another fraction of the same size as the original fractional factorial 

experiment.   

When a full fold-over would require more experimental runs than needed, a more 

practical method to gain information on confounded effects is to use semi-folding, which is 

augmenting the original experiment with a second fraction that is half the size of the original 

fraction.  The two decisions that must be made for this follow-up design are (i) on which 

columns to reverse the sign and (ii) which half of the new fraction to use as the follow-up design.  
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Reversing a single factor is sufficient for designs with alias chains of length two or three, 

although for designs with alias chains of length four or more, more than one factor must be 

reversed.     

Generally, the choice of sub-setting level of a factor depends on the preferred level for a 

highly significant effect.  For even resolution IV designs, using any of the factors will result in 

the semi-fold fraction performing as well as the full fold-over would.  The designs for which 

semi-folding is most appropriate are even designs with k > (5/16)N where k is the number of 

parameters and N is the number of experimental runs.  The resolution IV designs that were used 

in this study are summarized by these criteria below in Table 2.6.   

Table 2.6:  Resolution IV Designs 

Design k (5/16)N 

2
4-1 

4 (5/16)(8) = 2.5 

2
6-2 

6 (5/16)(16) = 5 

2
7-2 

7 (5/16)(32) = 10 

2
7-3 

7 (5/16)(16) = 5 
 

  Although from Table 2.6 it can be seen that semi-folding would be a good option for the 

majority of these designs, it would add 4, 8, 16, and 8 runs, respectively, to the original fractional 

factorial experiments.  It is the purpose of this thesis to determine if the number of follow-up 

runs could be reduced to less than that, especially since resolution IV designs have no aliased 

main effects and typically have a relatively low number of aliased two-factor interactions.   

Semi-fold designs have the following advantages over D-optimal designs (which will be 

discussed in section 2.2.2.2): 

1. They are simple to construct and don’t require the use of software.  

2. They produce an irregular  (
 

 
)       design for which the analysis is well-understood. 
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3. They can be followed by the remaining N/2 foldover to create a full foldover design if the 

semi-foldover is not sufficient (Mee and Peralta 2000).   

Semi-folded resolution IV designs are recommended in cases where there are several aliased 

two-factor interactions and the significant effects need to be determined.  When more precision 

is needed, it is better to use the full fold-over design.     

 

2.2.2:  Optimal Follow-Up Designs 

 After the initial fractional factorial experiment is completed, there are often many 

equivalent models that can explain the results.  This ambiguity is a result of the decreased 

number of run sizes that is a characteristic of fractional factorial designs.  When there are 

multiple equivalent models, adding follow-up designs can help to resolve some of this 

ambiguity.  The goal of these follow-up designs, however, is not just gaining information on 

effects that were identified as significant in the original fractional factorial experiment, but also 

acquiring this information with as few experimental runs as possible, so as not to unduly tax the 

resources and time needed to complete the follow-up design.  Optimal follow-up designs are a 

good choice of follow-up experiment because they allow an experimenter to fit the model of 

interest without drastically increasing the total run size (Goos and Jones 2011).      
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2.2.2.1:  Optimal Follow-Up Methodology 

An optimal follow-up design starts with a model that includes significant effects from the 

original experiment.  This model also includes any effects that are aliased with any of the 

significant effects but are also determined to be potentially significant in the model of interest.  

Since the augmented optimal runs are done after the original experiment, a block term is also 

included in the model to account for any significant differences in the average response between 

the two sets of experimental runs.  After this model is chosen, factor settings can be chosen to 

optimize a specified design criterion.  The design criterion provides a way to measure the 

performance of the combined factor settings for the given model.  For these reasons, the results 

achieved with these follow-up design methods are very much dependent on the model that is 

chosen based on the initial experiment as well as the optimal design criterion that is selected to 

determine the augmented experimental runs (Wu and Hamada 2009).   

There are several different design criteria that can be used to determine the factor settings 

for the optimal follow-up design.  They are presented below in Table 2.7. 

Table 2.7:  Optimal Design Criteria 

Design Criteria 

A – Optimality 
Minimizes the trace of the inverse of the information matrix X’X.  This 

minimizes the average variance of the coefficient estimates.  

C – Optimality 
Minimizes the variance of the best linear unbiased estimator (BLUE) of a 

predetermined linear combination of model parameters. 

D – Optimality 
Minimizes  (   )   , which is the determinant of the inverse of the 

information matrix.  This maximizes the differential Shannon information 

content of the parameter estimates.  

E – Optimality Maximizes the minimum eigenvalue of the information matrix. 

T – Optimality Maximizes the trace of the information matrix. 

G – Optimality 
Minimizes the maximum entry in the diagonal of the matrix  (   )    .  

This minimizes the maximum variance of the predicted values.  

I – Optimality Minimizes the average prediction variance over the design space. 

V – Optimality Minimizes the average prediction variance over a set of m specific points. 
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 From all of the possible optimal criteria, D-optimality will be the focus of this section as 

this optimality criterion was used to construct the follow-up runs in the analyses done for this 

thesis.  For more information on the other optimal design criteria, please reference Abd El-

Monsef and Seyam (2011), Galil and Kiefer (1977), and Mandal et al. (2012).   

 

2.2.2.2:  D-Optimal Follow-Up Designs 

The D-optimal design criterion is the most important and popular design criterion for 

several reasons.  Firstly, an experimenter can apply the criterion and check the optimality of a 

design much more easily with the D-optimal criterion than with any of the other optimal follow-

up techniques, as many statistical software packages have the capacity to construct these follow-

up experiments.  Secondly, this optimality criterion is the most effective in optimizing the 

parameter efficiency and model robustness via minimization of the variance-covariance matrix.  

Thirdly, this design provides reliable results since it puts an emphasis on the quality of the 

parameter estimates (Abd El-Monsef and Seyam 2011).    

The purpose of the additional D-optimal experimental runs is to resolve ambiguities that 

exist between effects in the model of interest.  In addition to adding sufficient runs to allow for 

the estimation of all the effects in this model, a block effect needs to be added to the model.  If 

the average response has shifted between the original fractional factorial experiment and the 

follow-up experiment, this block effect will capture that change in the mean response.   

A D-optimal follow-up experiment is a design in which the augmented runs minimize the 

determinant of the variance-covariance matrix.  Thus, it can be said that these designs minimize 

the determinant of (X’X)
-1

, where X is the model matrix.  If the determinant is positive, this 
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suggests that the design contains sufficient information to estimate all of the effects in the model 

(Goos and Jones 2011).   

 The interpretation of the D-optimality criterion is easily understood in terms of the 

confidence region.  The confidence region for a set of parameters can be derived from the 

variance-covariance matrix much like a confidence interval is calculated for a single parameter 

in the model of interest.  For a fixed number of treatments, the volume of this confidence region 

is proportional to the determinant of the variance-covariance matrix.  Thus, the smaller the 

determinant of the variance-covariance matrix, the smaller the volume of the confidence region 

and the smaller the error associated with our parameter estimates (Mead et al. 2012).   

To minimize this confidence region, the determinant of the variance-covariance matrix, 

which is also known as the generalized variance, must also be minimized (Mead et al. 2012).   

For       , the least squares matrix is 

    [
 ∑ 

∑ ∑  
] 

and the generalized variance is  

    

{ ∑   (∑ ) }⁄  

Minimizing G is equivalent to minimizing the variance of  ̂, which can be written as  

   ( ̂)    

∑ (    ̅) 
 

⁄  

From this it follows that by using D-optimal follow-up experiments, the error that is associated 

with the parameter estimates in our model of interest is minimized.   

To construct the follow-up design, the first step is to create the model matrix that 

corresponds to the new design, which has the same number of rows as the model matrix for the 
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original fractional factorial design but instead of only having columns for the main effects, also 

includes columns for the effects of interest and the block effect that need to be estimated in the 

fitted model.  The next step in the augmentation process is to add one row to the model matrix 

for each additional experimental run and find values for the levels of each factor that will 

maximize the determinant of X’X for the augmented design.   

Let X1 designate the model matrix for the original experiment and X2 designate the model 

matrix for the follow-up experiment.  Then the model matrix for the augmented design can be 

expressed as: 

    [
  

  
]
 

[
  

  
]     

   
  [

  

  
]    

      
    

It can be seen from the equation above that the information matrix for the augmented design is 

simply the sum of the information matrix for the original fractional factorial design and the 

information matrix for the D-optimal follow-up experiment.  The values chosen for the levels of 

the factors must therefore maximize the following determinant of the information matrix across 

all levels of X2: 

         
      

     

 A coordinate exchange algorithm is used to find the values for the levels of the factors 

that will maximize the determinant of the information matrix for the augmented design.  This 

algorithm starts by generating random variables on the interval [-1, 1] for each of the elements in 

the X2 model matrix.  For n follow-up runs in k factors, the coordinate exchange algorithm will 

need to calculate nk elements in the overall model matrix.  The algorithm goes through each 

element individually, repeatedly selecting a value from the interval [-1,1] that optimizes the D-
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optimality criterion.  If the D-optimality criterion improves with a successive selected value, the 

algorithm exchanges the previous value that was used for the new value.  This process continues 

until no more coordinates need exchanging in place of a value that better maximizes the 

determinant of the augmented design model matrix (Goos and Jones 2011).  For this thesis, JMP 

was used to compute all of the D-optimal follow-up designs in the analyses.     
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Chapter 3 

Design and Research Methods 
 

The purpose of this thesis is to use optimal follow-up experiments to augment fractional 

factorial designs to discover regularities that exist in the number of follow-up runs that are 

needed to estimate all aliased effects in the model of interest for 4-, 5-, 6-, and 7-factor resolution 

III and IV fractional factorial experiments.  If regularities can be identified, this thesis will 

provide insight to researchers as to when an optimal follow-up design could be a better 

alternative to other follow-up methods, such as fold-over and semi-foldover designs, for 

estimating aliased effects in the fractional factorial experiments presented in this thesis.      

   

3.1:  Full Factorial Experiments 

 The data for this thesis involved a collection of 26 published engineering experiments 

that included 59 responses, referenced in the paper Regularities in Data from Factorial 

Experiments by Li et al. (2006).  This paper conducted an analysis of 113 published factorial 

experiments to quantify regularities among main effects and multi-factor interactions.  In 

addition to observing the regularities of effect sparsity, hierarchy, and heredity, their analyses 

suggested the existence of a fourth regularity, titled “Asymmetric Synergistic Interaction 

Structure”, which determined the degree to which the sign of main effects determined the likely 

sign of interactions.   
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The data for this thesis consisted of 4-, 5-, 6-, and 7-factor two-level full factorial 

experiments that came from a variety of disciplines, including biology, chemistry, materials 

science, mechanical engineering, and manufacturing.  There were 22 four-factor experiments 

with a total of 51 responses, 2 five-factor experiments with a total of five responses, 1 six-factor 

experiment with two responses, and 1 seven-factor experiment with one response.   

All of the data sets had coded explanatory variables so that the low level of the factor was 

represented as -1 and the high level was represented as +1.  The coding of the variables as ±1 

allows for the comparison of the variables on an even scale, so that the magnitude of the effect is 

not affected by the scale on which the variable is measured.  All of the experiments had 

continuous response variables.       

Consider Table 3.1 on the next page, which gives a 2
4
 full factorial design that was 

analyzed for this thesis.  This table begins an example that will continue through section 3.4 to 

demonstrate the methodology that was used for the analyses completed for this thesis.  Note that 

all sixteen possible factor combinations are represented in this design. 
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Table 3.1:  2
4
 Full Factorial Experiment 

A B C D Response 

1 1 -1 -1 3.55 

1 1 1 -1 5.52 

1 -1 -1 -1 2.17 

1 -1 1 -1 3.94 

-1 1 -1 -1 5.91 

-1 1 1 -1 8.67 

-1 -1 -1 -1 3.94 

-1 -1 1 -1 7.29 

1 1 -1 1 2.37 

1 1 1 1 3.94 

1 -1 -1 1 1.97 

1 -1 1 1 2.76 

-1 1 -1 1 2.76 

-1 1 1 1 5.72 

-1 -1 -1 1 2.76 

-1 -1 1 1 3.94 

 

3.2:  Fractional Factorial Construction 

The 59 original full factorial experiments were used to construct 203 fractional factorial 

experiments.  Table 3.2 below shows how many fractional factorial designs were analyzed for 

each number of factors, as well as which fractions were analyzed. 

Table 3.2:  Fractional Factorial Analyses 

# of Factors 
Fraction 

1/2 1/4 1/8 1/16 Total 

4 51 - - - 51 

5 - 40 - - 40 

6 - 16 32 - 48 

7 - 16 16 32 64 

Total 51 72 48 32 203 
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In Table 3.2, there are nine factor sub-setting levels (fractions) that are missing from the 

analyses.  The one-half fraction for 5-, 6-, and 7-factor designs was not included in the analyses 

as these would be resolution V or higher designs, which would not require follow-up runs for the 

estimation of the main effects or two-factor interactions.  In the cases of the other six excluded 

fractions, these designs would have been too small for the number of factors that were being 

considered.  For example, a one-quarter fraction of a 2
4
 design would not even allow for 

estimation of the main effects, and would never be a design chosen in practice.  For these six 

fractions, all would have had only four, two, or one runs, and would be inefficient and 

impractical designs for fractional factorial experiments.   

For these analyses, only resolution III and IV designs were considered.  Resolution III 

designs have no main effects confounded with other main effects, but main effects and two-

factor interactions can be aliased with other two-factor interactions.  Resolution IV designs have 

no main effects confounded with other main effects or two-factor interactions, but two-factor 

interactions are aliased with each other (Antony 2003).   

The purpose behind this was that higher resolution designs would have significant 

degrees of freedom to estimate all main effects and two-factor interactions, and since the purpose 

of this thesis was to determine how many follow-up runs are needed to estimate these effects 

when they are aliased with other two-factor interactions, higher resolution designs need not be 

considered.  The generators that were used to construct the fractional factorials came from three 

sources: 

1. JMP 10 Software 

2. A Catalogue of Two-Level and Three-Level Fractional Factorial Designs with 

Small Runs by Chen et al. (1993) 
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3. Experiments:  Planning, Analysis, and Optimization by Wu and Hamada (2009) 

The design generators that were used for constructing the fractional factorial experiments are 

presented below in Table 3.3. 

Table 3.3:  Design Generators 

Design Generators 

2
4-1 D = ABC    

2
5-2 D = ± ABC E = ± BC   

 D = ± AB E = ± AC   

2
6-2 E = ± BCD F = ± ACD   

 E = ± ABC F = ± ABD   

2
6-3 D = ± ABC E = ± BC F = ± AC  

 D = ± AB E = ± AC F = ± BC  

2
7-2

 F = ± CDE G = ± ABDE   

 F = ± ABC G = ± ABDE   

 F = ± ABC G = ± ADE   

 F = ± ABC G = ± ABD   

2
7-3 E = ± BCD F = ± ACD G = ± ABD  

 E = ± ABC F = ± ABD G = ± ACD  

2
7-4 D = ± ABC E = ± BC F = ± AC G = ± AB 

 D = ± AB E = ± AC F = ± BC G = ± ABC 
 

For any design generator, there exist 2
p
-1 other generator options for selecting the 

fractional factorial experiment.  Therefore, in addition to the generators recommended by the 

three given sources, the negative generators were also used in order to create more possible 

fractional factorial experiments.  For example, for the 2
5-2

 design, JMP recommended D = ABC 

and E = BC as design generators.  This led to also using the following generators: 

1. D = ABC and E = -BC 

2. D = -ABC and E = BC 

3. D = -ABC and E = -BC 

Thus it is more appropriate to say that instead of just using D = ABC and E = BC as 

generators, D = ± ABC and E = ± BC were used as generators for this design, which is how the 
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generators are presented in Table 3.3.  This method was used only for the 5-, 6-, and 7-factor 

experiments since there were only 5, 2, and 1 full factorial experiments at these levels, 

respectively.  There were 51 four-factor experiments in the original data set, which was deemed 

a sufficient number of analyses using only one generator per experiment.   

Additionally, for each fraction in each number of factors, only generators that would 

allow for the best resolution design were used.  For example, if a certain fractional factorial 

design had a generator that would produce a resolution IV design, generators that would produce 

a resolution III design were not considered. 

To continue with the example from the analysis that was presented in Table 3.1, the 

resolution IV one-half fractional factorial design that was extracted from that original data set is 

given below in Table 3.4.  The generator that was used for this 2
4-1

 fractional factorial design is 

D = ABC, which results in the following aliasing pattern:  AB = CD, AC = BD, and AD = BC.  

Table 3.4:  2
4-1

 Fractional Factorial Experiment 

A B C D Response 

1 -1 -1 1 1.97 

-1 1 -1 1 2.76 

-1 -1 -1 -1 3.94 

-1 -1 1 1 3.94 

-1 1 1 -1 8.67 

1 -1 1 -1 3.94 

1 1 1 1 3.94 

1 1 -1 -1 3.55 
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3.3:  Model of Interest Determination 

Once all of the fractional factorial designs and responses from the original full factorial 

experiments had been extracted, the effects in the model of interest needed to be determined.  

This was done by specifying a model that included all of the main effects and two-factor 

interactions as candidate terms in JMP.  All possible subsets regression was then utilized to fit all 

of the models that could be built using the specified main effects and two-factor interactions.  

These models were built under the principle of effect heredity, which implies that interactions 

are only significant if one of the parent (included) factors is significant.  This significantly 

reduced the number of models that could be built since models were only included in the all 

subsets regression if at least one of the parent factors for each of the interaction terms in the 

model was also included in the model.  Additionally, this principle is advantageous to use in 

situations where aliasing is present as it enables experimenters to more easily identify likely two-

factor interactions (Li et al. 2006).     

The model of interest for a follow-up experiment was considered to be the union of the 

models from the all-subsets regression that best fit certain model selection criteria.  This was 

done under the assumption that including all of the terms from a set of equivalent models would 

reveal the best of many competing models.  The model selection criteria that were used to rank 

the possible best models were the Coefficient of Determination (R
2
), Root Mean Square Error 

(RMSE), corrected Akaike Information Criterion (AICC), and Bayesian Information Criterion 

(BIC).  The candidate models that best fit these criterions were considered to be the models that 

maximized R
2
 while minimizing RMSE, AICC, and BIC.   
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The Akaike Information Criterion (AIC) is one of the most popular strategies used for 

model selection.  However, Shibata (1980) showed that while AIC is efficient, it is not 

consistent.  Many researchers have also found that for small samples, AIC tends toward over 

fitting the model.  To improve AIC, Sugiura (1978) and Hurvich and Tsai (1989) found AICC by 

estimating the Kullbach-Leibler distance directly in regression models (Rao and Wu 2001).  For 

this study, corrected AIC (AICC) was used since it is AIC with a correction for finite sample size.  

The formulas for AIC and AICC are given below: 

   ( )        ( )     

and  

    ( )      
  (   )

     
 

where n is the sample size and k is the number of independent parameters in the model. 

From this equation it can be seen that AIC is a penalized log-likelihood criterion that 

offers a balance between good fit (which would be seen with high values of the log-likelihood) 

and complexity (more complex models will have a higher penalty than simple models).  A model 

that minimizes AICC will also be the model that minimizes information loss (Claeskens and 

Hjort 2008).   

 The reasoning behind using AICC instead of just using the maximum likelihood to select 

the best model is that more complex models need to be penalized.  Under the effect sparsity 

principle, the number of active effects in a factorial experiment is relatively small compared to 

the number of possible model effects.  Using maximum likelihood would result in choosing the 

model with the most parameters.  However, AICC punishes models for being too complex 

(having too many parameters) and therefore allows for simpler models to be considered that still 

do an equally sufficient job of fitting the data (Li et al. 2006).  
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 The Bayesian Information Criterion (BIC) is another technique very similar to AIC that is 

used for model selection.  The equation for BIC is given below. 

   ( )       ( )       ( ) 

where n is the sample size and k is the number of independent parameters in the model. 

It can be seen that BIC is very similar to AIC in that it balances good fit with model complexity.  

Like AIC, there is still a term that penalizes a model for having more parameters.  The “best” 

simple model with good fit will have a large maximum likelihood and a smaller penalty term, 

which will minimize both BIC and AIC.  It can also be seen from this equation that in cases 

where n ≥ 8, the BIC imposes a harsher penalty for model complexity than AIC does. 

 In addition to AIC and BIC, R
2
 and RMSE were used to determine the best models.  

RMSE measures the differences between the model’s predicted and actual values so that it can 

be determined how good a model’s predictive capabilities are.  Small RMSE indicates that the 

model is accurately predicting new responses.  R
2
 is also a measure of the predictive capabilities 

of a model.  It can be used to determine how much of the variation in the response can be 

explained by the regression model.  Higher values of R
2
 indicate better predictive capabilities 

and therefore a better model.  However, the disadvantage of R
2
 is that it carries no penalty for 

model complexity and thus will increase until the model is saturated.  Both RMSE and R
2
 were 

used in determining the best model as they are some of the most common goodness-of-fit 

measures used in model selection.     

Table 3.5 on the next page is a continuation of the analysis example in Table 3.4, with 

Table 3.5 showing the “best” candidate models from the all subsets regression.  Note that the 

four candidate models are equivalent in terms of the model selection criteria R
2
, RMSE, AICC, 

and BIC.   
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Table 3.5:  Results of All Subsets Regression 

Model # of Terms R
2
 RMSE AICC BIC 

X1, X2, X3, X4, X1*X3, X1*X4 6 0.9824 0.6965 -127.72 16.9160 

X1, X2, X3, X4, X1*X3, X2*X3 6 0.9824 0.6965 -127.72 16.9160 

X1, X2, X3, X4, X1*X4, X2*X4 6 0.9824 0.6965 -127.72 16.9160 

X1, X2, X3, X4, X2*X3, X2*X4 6 0.9824 0.6965 -127.72 16.9160 
   

From the all subsets regression, the “best” candidate models are unioned together to 

determine the model of interest for the follow-up experiment.  This is done under the assumption 

that including all of the terms from a set of equivalent models will reveal the best of many 

competing models.  In the example given in Table 3.5, four models stood out as “best” models in 

terms of R
2
, RMSE, AICC, and BIC.   

However, the unioned model of interest in this example would include the terms X1, X2, 

X3, X4, X1*X3, X1*X4, X2*X3, and X2*X4.  Since X1*X3 is confounded with X2*X4 and 

X1*X4 is confounded with X2*X3, without additional follow-up runs the model of interest 

cannot be fit while including all of these aliased terms.  Using only the original fractional 

factorial experiment, there are seven degrees of freedom to estimate main effects and two-factor 

interactions.  However, the model of interest includes four main effects and four two-factor 

interactions, which would require at least eight degrees of freedom to estimate.  Without adding 

follow-up runs, the fitted model can only include one effect from each alias chain.  Since there 

are four aliased effects (two alias chains) in the model of interest that need to be estimated and 

none of them can be considered negligible, this example clearly demonstrates a scenario when 

there is a need for follow-up runs to collect important information that was lost due to aliasing.  
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3.4:  Follow-Up Experiments 

 After determining and unioning the best candidate models, a follow-up experiment was 

constructed in such a way that the aliased terms in the model of interest could be estimated.  This 

was done by using JMP 10 software to augment the original fractional factorial designs with D-

optimal follow-up experiments.   

The number of required follow-up runs was considered to be the minimum number of 

experimental runs that would eliminate all linear dependencies among factors as well as allow 

for the estimation of a block effect in the model of interest.  In determining the number of runs 

for the follow-up experiment, it was permitted for a saturated model to be fit, since the purpose 

of this thesis was maximizing the estimability of effects, not the precision of the estimates.     

After the fractional factorial experiment was augmented with the D-optimal follow-up 

design, linear regression was used to fit the model of interest to ensure that all aliased terms had 

been de-aliased and that all effects, including the block effect, were estimable.  These linear 

regression analyses were performed under the normal assumptions of linear regression, 

including: 

1. Xi are nonrandom and observed without error 

2.  (  )    

3.    (  )     for all i 

4. εi are uncorrelated 

5. Yi are normally distributed 
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Table 3.6 below shows a 2
4-1

 fractional factorial experiment augmented with a D-optimal 

follow-up experiment as a continuation of the example given in Table 3.5 in section 3.3.  Note 

that the last three rows of Table 3.6 show the D-optimal follow-up design.     

Table 3.6:  2
4-1

 Fractional Factorial Augmented with D-Optimal Follow-Up Design 

A B C D Block Response 

1 -1 -1 1 1 1.97 

-1 1 -1 1 1 2.76 

-1 -1 -1 -1 1 3.94 

-1 -1 1 1 1 3.94 

-1 1 1 -1 1 8.67 

1 -1 1 -1 1 3.94 

1 1 1 1 1 3.94 

1 1 -1 -1 1 3.55 

-1 1 -1 -1 2 5.91 

-1 -1 1 -1 2 7.29 

-1 1 1 1 2 5.72 
 

 Linear regression showed that the additional runs effectively de-aliased the two alias 

chains of X1*X3 = X2*X4 and X1*X4 = X2*X3.  All main effects and two-factor interactions 

were estimable, as well as the included block effect.  The aliased terms could have also been 

completely de-aliased with a full fold-over or a semi-foldover of any one of the factors.  

However, a full fold-over would require eight follow-up runs and a semi-foldover would require 

four follow-up runs, whereas this D-optimal follow-up design allowed for the estimation of the 

same effects of interest but only required three additional runs.  Thus, this example clearly 

demonstrates that there are situations where an optimal follow-up design can be an efficient 

method for gaining information about aliased effects of interest without significantly increasing 

the total run size of the experiment.   
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Chapter 4 

Results 

 

The purpose of this thesis was to use optimal follow-up experiments to augment 

fractional factorial designs to discover regularities that existed in the number of follow-up runs 

that were required to estimate all of the aliased effects in the model of interest for 4-, 5-, 6-, and 

7-factor resolution III and IV fractional factorial experiments.  The following section outlines the 

results for the 203 analyses that were completed for this thesis, identifies the significant 

regularities that were discovered through the analyses, and demonstrates how the D-optimal 

follow-up designs performed compared to other follow-up design methods such as fold-over and 

semi-foldover. 

The first significant result was that all 203 analyses resulted in fitted models with all 

confounding resolved and estimates for all effects, including the block effect.  Only three of 

these analyses required a follow-up design that was larger than the initial fractional factorial 

design.  In all three of these cases, the initial design was a 2
5-2

 design with eight runs where the 

model of interest was the saturated model that included all 15 possible main effects and two-

factor interactions.  All of these designs had eight alias chains to de-alias as well as a block effect 

to estimate, which required a follow-up design of nine experimental runs.   

Excluding these three analyses, the other 200 analyses all required no more than eight 

follow-up runs to de-alias all of the effects of interest from the original experiment and to 
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estimate a block effect.  This suggests that D-optimal follow-up runs have better run size 

economy on average than fold-over designs, while guaranteeing the estimability of the effects of 

interest.  

The second significant result from the analyses provided insight on determining the 

number of required follow-up runs for resolution III and IV designs.  It was expected that 

resolution IV designs would require fewer follow-up runs than resolution III designs since these 

designs have no main effects aliased with two-factor interactions and often have relatively few 

aliased two-factor interactions.  Figure 4.1 below presents the number of runs required of a 

follow-up experiment to estimate the model of interest as categorized by factor size and 

resolution.  It is significant to note that fewer follow-up runs were required, on average, for the 

resolution IV designs than for the resolution III augmented fractional factorial designs.     

 

Figure 4.1:  Follow-Up Runs by Resolution and Number of Factors 
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 From Figure 4.1, it can clearly be seen that typically the resolution IV designs require 

fewer follow-up runs to de-alias all of the effects than resolution III designs.  For resolution IV 

designs, the 4- and 6-factor experiments required at most four follow-up runs, with the 4-factor 

experiments typically requiring only three follow-up experimental runs.  For the 7-factor 

resolution IV designs, typically three follow-up runs are needed to resolve any issues with 

confounding, but up to six needed runs were seen in these analyses.  Comparatively, the 5-factor 

resolution III experiments typically required either two or eight follow up runs, with three of the 

experiments requiring nine follow-up runs, which were discussed previously.  The 6- and 7-

factor resolution III experiments typically required seven or eight and seven follow-up runs, 

respectively.   

The model of interest was the cause of the discrepancy in the number of needed runs for 

the 5-factor experiments.  Of the forty 5-factor experiments that were analyzed, 15 experiments 

had eleven or more terms in the model of interest, which required five or more follow-up runs to 

resolve all of the confounding issues.  Twenty-five of the experiments had eight or fewer terms 

in the model, which required three or fewer follow-up runs to de-alias all confounded effects.     

 Thus it can be seen that the resolution IV designs primarily required fewer follow-up runs 

than the resolution III designs, which was the expected result since resolution IV designs have no 

main effects aliased with two-factor interactions and relatively low confounding among two-

factor interactions.  There were no situations where the same number of follow-up runs could be 

used to de-alias all effects of interest in both the resolution III and IV designs for the same factor 

except for the 7-factor experiments, where the upper bound of six required follow-up runs for the 

resolution IV design is greater than the lower bound of five follow-up runs for the resolution III 
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design.  However, the 7-factor resolution IV design typically only needs three follow up runs, 

whereas the resolution III design typically requires seven follow-up runs.   

 Conclusions can also be made from Figure 4.1 about the number of required follow-up 

runs for each of the different fractional factorial designs that were analyzed.  Additionally, 

consider Table 4.1 below, which shows the fractional factorial designs that are represented for 

each resolution and factor size. 

Table 4.1:  Fractional Factorial Designs by Resolution and Number of Factors 

Resolution # of Factors Fraction Design # of Runs 

III 4 - - - 

 5  
 ⁄       8 

 6  
 ⁄       8 

 7  
  ⁄       8 

IV 4  
 ⁄       8 

 5 - - - 

 6  
 ⁄       16 

 7  
 ⁄       16 

 7  
 ⁄       32 

 

From Table 4.1, it can be seen that for the graphs presented in Figure 4.1, all but the 

graph representing the 7-factor designs had only one fraction per factor.  This allows for Figure 

4.1 to also be used for identifying regularities about the number of follow-up runs needed for 

each fractional factorial design.   

For the resolution III 2
5-2

 designs, the number of follow-up runs needed in these analyses 

heavily depended on the number of aliased terms in the model, which resulted in a bi-modal 

distribution of required follow-up runs.  Thus, these designs will typically require two or eight 
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follow-up runs.  At best, they perform better than a semi-foldover or full fold-over design, and at 

their worst they perform equivalently with a full fold-over design.  Depending on the aliasing 

structure, they may even perform better than a full fold-over since the fold-over design will not 

necessarily resolve confounding among all two-factor interactions.   

For the resolution III 2
6-3

 and 2
7-4

 designs, the number of required follow-up runs was at 

most 8 and 7, respectively.  Both of these designs performed equally well or better than a full 

fold-over design in terms of run size economy and estimability of confounded effects of interest.  

A full fold-over would require eight follow-up runs, and may not resolve aliasing among two-

factor interactions included in the model.  While the 2
6-3

 design typically needed eight follow-up 

runs, all of the analyses for this design completely resolved the confounding between all of the 

effects of interest.  The 2
7-4

 design performed better than a full fold-over would in terms of run 

size economy and estimability of aliased effects as it completely resolved all of the confounding 

issues with only seven follow-up experimental runs.  If there was a semi-foldover design that 

could resolve the aliasing for these designs, it would be the preferable design as it would only 

require four follow-up runs instead of the seven or eight required by these two designs.  

However, the only design for which a single semi-foldover design could potentially resolve all of 

the confounding issues among the effects of interest would be for a 2
7-4

 fractional factorial 

design.   

For the resolution IV 2
4-1

 and 2
6-2

 experiments, Figure 4.1 shows that both of these 

designs would require no more than four follow-up runs to completely resolve any confounding 

issues, with the 2
4-1

 design typically needing only three additional runs.  The 2
4-1

 design would 

require four runs for a semi-foldover design and eight additional runs for a full fold-over design.  

Thus, the optimal follow-up design is much more efficient for this design in terms of run size 
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economy than the other two methods discussed.  The 2
6-2

 design would require eight runs for a 

semi-foldover design or sixteen additional runs for a fold-over design, so with a maximum of 

four additional runs to completely resolve confounding issues, this is a significant improvement 

in run size economy over both the fold-over and semi-foldover methods.  

For the graph of the resolution IV 7-factor experiments in Figure 4.1, the represented 

designs are the 2
7-2

 and 2
7-3

 fractional factorial designs.  This graph shows that typically three 

follow-up runs are needed to resolve any confounding issues, but as many as six additional runs 

could be needed.  For full fold-over designs, the 2
7-2

 experiments would require 32 additional 

runs and the 2
7-3

 experiments would require 16 additional runs.  For semi-foldover designs, the 

2
7-2

 designs would require 16 additional runs and the 2
7-3

 designs would require 8 additional 

runs.  This suggests that in terms of run size economy, the optimal follow-up design would be 

more efficient than both the full fold-over and semi-foldover designs for these 7-factor 

experiments.  

Another interesting perspective on the needed number of follow-up runs is in terms of the 

different run sizes that were used in the analyses.  Figure 4.2 on the next page presents the 

distributions for the number of needed follow-up runs as classified by fractional factorial run size 

and resolution.    
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Figure 4.2:  Follow-Up Runs by Run Size and Resolution 

 

In Figure 4.2, the graph of the 8-run resolution III experiments shows that typically either 

two, seven, or eight additional runs are needed to resolve any confounding issues among the 

effects of interest.  The 8-run resolution III designs represented in Figure 4.2 are the 2
5-2

, 2
6-3

, 

and 2
7-4

 experiments, and from the previous discussion it was determined that these designs 

would typically require two or eight, seven or eight, and seven follow-up runs, respectively, to 

estimate all aliased main effects and two-factor interactions.  It was determined that the 2
5-2

 

design is responsible for the discrepancy, which is a result of the optimal follow-up method 

being heavily dependent on the model of interest that is determined from the original fractional 

factorial design.  Other than this discrepancy, it can be seen that an experiment with a run size of 
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eight typically needs approximately seven or eight follow-up runs to estimate all of the main 

effects and two-factor interactions in the model of interest.      

Since a full fold-over design for these experiments would require eight additional runs 

and would not necessarily resolve the confounding among two-factor interactions, it can be 

concluded that the D-optimal follow up designs were more efficient in terms of run size 

economy and potentially allow for the estimability of more effects of interest than the full fold-

over method would.  A semi-foldover for these designs would only require four follow-up runs, 

and therefore if a semi-foldover pattern could be identified that would completely resolve any 

confounding issues, it would have better run size economy than the D-optimal follow-up 

experiment.  However, it may be difficult to find one fold-over or semi-foldover design that 

completely resolves any confounding issues in the model of interest, and in these cases the D-

optimal design would also be preferable because of its estimation capabilities.   

As an example, consider a 2
5-2

 experiment from the analyses.  The model of interest was 

determined to include X1, X2, X3, X4, X5, X1*X2, X1*X3, X1*X4, X1*X5, X2*X4, X2*X5, 

X3*X4, and X3*X5 and had the following alias structure:  X2 = X3*X5, X3 = X2*X5, X4 = 

X1*X5, X5 = X1*X4, X1*X2 = X3*X4, and X1*X3 = X2*X4.  For this design, there are six 

alias chains that need broken, suggesting that a semi-foldover design will not provide a sufficient 

number of runs to estimate all of the aliased effects.  Also, there is no fold-over on any number 

of factors that will completely de-alias all of the confounded effects of interest.  Therefore, this 

example suggests that in scenarios such as these, the optimal follow-up design would be a better 

alternative since with only seven additional runs (one for each alias chain plus one for the block 

effect) it would allow for the estimation of all of the aliased effects in the model of interest.         
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Continuing with the results from Figure 4.2, the graph of the 8-run resolution IV 

experiments shows that typically only three follow-up runs are needed and no more than four 

additional runs were ever needed to de-alias the confounded effects of interest.  Since the only 8-

run resolution IV designs analyzed in this thesis were 2
4-1

 fractional factorial experiments, the 

interpretation of this graph follows with the interpretation of 4-factor resolution IV designs 

discussed from Figure 4.1.  It was determined that these designs have better estimation 

capabilities and run size economy than the full fold-over designs and in these terms also perform 

as well as or better than the semi-foldover designs, since the optimal follow-up designs require 

no more than four follow-up runs and guarantee the estimation of all aliased effects in the model 

of interest.    

In Figure 4.2, the graph of the 16-run resolution IV experiments represents 2
6-2

 and 2
7-3

 

fractional factorial designs.  This graph shows that three follow-up runs are required, although as 

many as six were sometimes needed to completely de-alias the effects of interest.  Whenever 

more than four additional runs were required, they were needed for the 2
7-3

 design, which is 

intuitive as this design has one more factor than the 2
6-2

 design yet both designs have the same 

number of experimental runs.  This causes additional aliasing since the 2
7-3

 designs have seven 

more possible effects than the 2
6-2

 designs.   

 Compared to the full fold-over designs, the optimal follow-up designs perform better in 

terms of effect estimability and run size economy.  Whereas the fold-over design would require 

sixteen additional runs, the optimal follow-up requires, on average, three additional runs and at 

most, six additional runs.  Compared to the semi-foldover designs, the optimal follow-up designs 

would still perform better, since the semi-foldover design would require eight additional runs.  In 

addition, the optimal follow-up design guarantees estimability of the aliased effects from the 
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fractional factorial design, whereas that guarantee cannot be made for all fold-over and semi-

foldover designs.   

 In Figure 4.2, the final graph depicts the 32-run resolution IV designs, which only 

represents the 2
7-2

 experiments.  For these designs, no more than four additional runs are needed 

to estimate all of the effects of interest, which supports the fact that resolution IV designs have 

no aliased main effects and relatively few aliased two-factor interactions.  Optimal follow-up 

experiments for these designs are significantly better in terms of run size economy than the other 

discussed follow-up methods, as a fold-over design would require 32 additional runs and a semi-

foldover design would require 16 additional runs.      

 From these analyses, it can be seen that optimal follow-up designs often perform better 

than fold-over designs and semi-foldover designs in terms of estimability of effects and run size 

economy.  In addition, several regularities were discovered from the analyses conducted in this 

thesis.  First, it was shown that across number of factors and run size, resolution III designs 

require more follow-up runs than resolution IV designs.  The specific regularities found in this 

thesis are tabulated in Table 4.2 on the next page.  Note that the given numbers of required D-

optimal follow-up runs are the typical number needed as seen in the analyses. 



45 
 

  Table 4.2:  Regularities in Augmented Fractional Factorial Designs 

 Typical Number of Augmented Runs by Follow-Up 

Method 

Resolution Design Range D-Optimal Fold-Over Semi-Foldover 

III 2
5-2 

2 – 9 2 or 8 8 4 

 2
6-3 

7 – 8 8 8 4 

 2
7-4 

5 – 7 7 8 4 

IV 2
4-1 

2 – 4 3 8 4 

 2
6-2 

3 – 4 4 or less 16 8 

 2
7-3 

2 – 6 3 16 8 

 2
7-2 

2 – 4 3 32 16 

Run Size      

8 runs (Resolution III) -  7 or 8* 8 4 

8 runs (Resolution IV) -  3 8 4 

16 runs (Resolution IV) -  3 16 8 

32 runs (Resolution IV) -  4 or less 32 16 

*Fewer runs possible if using a 5-factor experiment. 

 

From Table 4.2, it should be noted that optimal follow-up designs have the most 

improvement over fold-over and semi-foldover designs for (i) resolution IV designs and (ii) 

designs with greater run sizes.  Although there are situations in the above analyses where the 

optimal designs appears to perform at or below the level of the fold-over and semi-foldover 

designs, it should also be noted that only the D-optimal follow-up experiments guarantee 

estimability of all of the aliased effects in the model of interest.   
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Chapter 5 

Conclusions 
 

5.1:  Recommendations 

 Although there are a plethora of follow-up designs and techniques, for each experiment 

that is done there will be a goal which will be satisfied by some methods better than others.  

There may be issues with resources, time, cost or different goals such as effect estimability, run 

size economy, or estimation precision.  The purpose of this thesis was to use optimal follow-up 

experiments to augment fractional factorial designs to discover regularities that existed in the 

number of follow-up runs that were required to estimate all of the aliased effects in the model of 

interest for 4-, 5-, 6-, and 7-factor resolution III and IV fractional factorial experiments.   

From this research and as presented in Table 4.2, it was determined that for all of the 

resolution IV designs, four or fewer (typically three) augmented runs would estimate all of the 

aliased effects in the model of interest.  In comparison, all of the resolution III designs required 

seven or eight follow-up runs to estimate all of the aliased effects.  It was determined that D-

optimal follow-up experiments were significantly better than fold-over and semi-foldover 

designs for (i) resolution IV designs and (ii) designs with larger run sizes.   

While fold-over and semi-foldover designs are simple for researchers to construct and 

analyze, they often provide many more additional runs that what is needed to estimate the aliased 

effects in the model of interest.  In addition, these designs are often degree of freedom inefficient 
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and do not necessarily resolve all of the confounding issues among the effects of interest.  In 

comparison, D-optimal follow-up designs require software to construct but are still simple to 

analyze and interpret.  In addition, their run size is based on the number of aliased effects in the 

model of interest from the original fractional factorial design and guarantees the estimability of 

all of the aliased effects of interest.   

Given the information in this thesis, it is suggested that D-optimal follow-up designs 

therefore be considered as a simple and efficient method for constructing follow-up designs to 

resolve confounding among effects in the model of interest when the original design does not 

allow for the complete estimation of these effects.     

5.2:  Future Research 

 Future research that could be done in this field would be to see if regularities such as 

these found for regular fractional designs can be found for non-regular fractional designs, such as 

Plackett-Burman designs.  These designs have complex aliasing and are often used for estimating 

main effects only, but can be used to estimate some two-factor interactions when the number of 

main effects is low.   

 In addition, it would be of interest to not only compare the performance of D-optimal 

follow-up designs to fold-over and semi-foldover designs in terms of run size economy and 

estimability of effects, but to also consider the performance of D-optimal designs in comparison 

to semi-foldover designs in terms of D-efficiency of the designs.   
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5.3:  Conclusion 

 In the field of experimental design, a wide spread goal of experimenters is to be able to 

maximize the amount of information they can receive from an experiment while minimizing the 

costs, resources, and time needed to complete it.  While this is often a difficult balance to 

maintain, fractional factorial designs augmented with optimal follow-up experiments are a useful 

method to achieve this balance.  They allow for large experiments to be done in far fewer 

experimental runs than a full factorial would permit, and while there is a loss of information at 

the initial stage of the process, that can easily be corrected by performing a simple, optimal 

follow-up experiment to regain the lost information without requiring a huge strain on resources, 

time, or money.  These designs are easy to construct, simple to analyze, efficient, and full of 

needed information about the effects in the model of interest.  While these designs are not always 

the best alternative, they should definitely be considered as a viable option when considering an 

experimental design. 
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