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Abstract

SURREAL NUMBERS

By Joshua Daniel Hostetler, Master of Science.

A thesis submitted in partial fulfillment of the requirements for the degree of Master of
Science at Virginia Commonwealth University.

Virginia Commonwealth University, 2012.

Director: Richard Hammack, Associate Professor, Department of Mathematics and Applied
Mathematics.

The purpose of this thesis is to explore the Surreal Numbers from an elementary, con-

structivist point of view, with the intention of introducing the numbers in a palatable way

for a broad audience with minimal background in any specific mathematical field. Created

from two recursive definitions, the Surreal Numbers form a class that contains a copy of

the real numbers, transfinite ordinals, and infinitesimals, combinations of these, and in-

finitely many numbers uniquely Surreal. Together with two binary operations, the surreal

numbers form a field. The existence of the Surreal Numbers is proven, and the class is

constructed from nothing, starting with the integers and dyadic rationals, continuing into the

transfinite ordinals and the remaining real numbers, and culminating with the infinitesimals

and uniquely surreal numbers. Several key concepts are proven regarding the ordering and

containment properties of the numbers. The concept of a surreal continuum is introduced

and demonstrated. The binary operations are explored and demonstrated, and field properties

are proven, using many methods, including transfinite induction.
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Disclaimer

Unless otherwise cited, the main definitions and concepts in this thesis can be found and

verified in a combination of the sources listed in the bibliography (though with notational

differences). The theorems and proofs, however, are all the original work of the author, even

in cases where a proof is very similar to one from the source material.

The above statement notwithstanding, this thesis has been a solo project of the author.

No outside assistance was received from any source at any time regarding the contents or

development of this thesis, aside from stylistic suggestions from his thesis committee.



vi



vii

Foreword

A personal note, explaining the journey behind and the scope of this thesis:

When I first started studying the Surreal Numbers (ages ago), I picked up John Conway’s

On Numbers and Games [1], (commonly abbreviated “ONAG”) with its roughly 67 (small)

pages dedicated to Numbers (and the rest dedicated to Games), and I thought I had it made.

Little did I know that those 67 pages would be so dense with complex material that it would

take me over a year to even begin to truly understand it. Conway does a wonderful job of

making everything seem so easy, with his disarmingly casual prose and notation, that it is

very easy to be lulled into a false sense of security—at least, that is how it was for me. I

read the book and did many exercises and believed I knew what was going on.

So, I decided I would write an amazing thesis that explored every single aspect of the

Surreal Numbers in great detail, and that it would be an easy thing to do.

But, when I started trying to write, I realized that, even after so much work and explo-

ration, I could not explain a thing. There were many roadblocks in my way (all limitations

of my own) keeping me from “getting it.”

Some were simple and easy to overcome, like my initial inability to understand that a

statement requiring arithmetic on an element of the empty set was discardable. (I could not

seem to wrap my head around that idea for a long time, because I was tempted to label such

a statement as undefined, thereby rendering whatever original statement had invoked the

operation undefined as well. . . the algebra teacher in me was holding back the mathematician
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in me.)

Once the minor roadblocks were overcome, the major ones presented themselves. The

most difficult concept for me was transfinite induction. Conway uses transfinite induction to

prove just about everything in ONAG. Transfinite induction is an extremely powerful proof

tool that quite often allows for one-line proofs, because, unlike traditional induction, it often

allows the prover to completely throw out the idea of an initial base case (on the Surreal

Numbers, anyway). That is why there are only 67 pages. The problem was, because of the

nature of transfinite induction, I often found myself suspicious of it because I was highly

skeptical about the arguments used in conjunction with it.

In short, I just did not trust transfinite induction. I understood the reason it was valid,

(that every number is “built” out of 0, though that alone doesn’t technically justify the use

of transfinite induction), but when it came down to analyzing the arguments in proofs that

relied on it, I often simply couldn’t see that it could be justifiably invoked because of them.

This proved to be a problem of incredible magnitude for me because, as I said, Conway

uses it constantly. As a result, I found myself obsessively trying to convince myself that

the proofs in ONAG were, in fact, valid. Of course, I trusted Conway’s judgment, and I

assumed he knew what he was talking about, but that didn’t help me to understand, which I

desperately needed to do before I could even think about writing a thesis on the subject (in

spite of advice given to me by some of my mentors).

After quite a long time spent (night and day, regardless of what else was going on around

me) obsessing over the ideas in Conway’s book, I decided to see if there was any way around

the use of transfinite induction to prove the same concepts. In many cases, I was successful

(as you will see soon enough). In many other cases, I was not. Luckily for me (and for you,

perhaps), I eventually discovered that in almost all of the cases where I could not find a way

around transfinite induction (most of the theorems involving binary operations), there was a

way to (relatively) quickly and clearly see that its use was justified.
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I also referred to other source material for insight. Eventually, each source had something

within it that was enlightening for me. At first, however, the other sources available were

just as difficult for me to understand, either because of vastly different notation that seemed

unrelated to Conway’s numbers (everyone seems to have their own. . . even the notation I use

within is unique, based on a combination of some of the other notations used in the source

material), or because of a very high level of rigor and technicality, particularly involving set

theory and topology, which were, at least at first, a bit over my head.

Then, the philosopher Alain Badiou published his book, Number and Numbers [2].

Badiou, as expected (based on all the other source material), has his own unique notation

style. He also has a very unique perspective on the Surreal Numbers. Badiou talks of a

number as a cut in a continuum (analogous to Theorem 4.7 within), each one defined by its

matter, form, and residue. All the while, Badiou relates the Surreal Numbers to philosophy,

politics, and sociology in interesting and enlightening ways.

This proved to be just the thing I needed to understand what I was dealing with, and I

felt ready to get back into writing.

Because of my initial struggle to understand this material, I decided it would be best for

me to limit the scope of this thesis. Instead of doing a thorough investigation of every aspect

of the Surreal Numbers, as I originally thought I would do, I decided to stick to the basics,

in hopes of helping other interested parties to understand the subject.

Thus, what follows is as elementary a discussion on the Surreal Numbers as I could

manage. It does not require a great deal of specialized background in any particular field

of mathematics. Instead, I have tried to explain the basic concepts as thoroughly as I can

without turning readers away due to prerequisite knowledge requirements. Many times, this

elementary approach is accomplished at the expense of brevity, but I believe it is worthwhile

to sacrifice brevity in lieu of comprehension. When higher order concepts are needed, I

explain them as simply and completely as I can, hopefully easing the reader in so that
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nobody feels left behind.

Because of this goal of simplicity, there will be much left out, particularly full discussions

on higher-order arithmetic operations. Also because of this goal, there are some key elements

I will ask the reader to accept on faith, referring the reader to other sources for proof. (For

instance, I will not prove that any part of the Surreal Numbers is isomorphic to any part

of the Real Numbers, though, after a while, the reader will be asked to accept that it is

so. Proving the relevant isomorphisms would be far outside the scope I have set for this

work, as it would involve either a large amount of background information on set theory

and topology, or, in instances where there is a way around using fields that are not under

discussion, very many cases to prove and many pages of proof. I hope the reader is willing

to accept these things as true on faith or refer to source material in order to be convinced of

their truth, as using the concepts will be considerably helpful in maximizing understanding.)

I hope that I have accomplished my goal of making the Surreal Numbers at least slightly

more accessible to the average reader. The subject is fascinating and rich, and it would be a

shame not to share it with as many people as possible.

-JH
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Introduction

Building on and combining the works of Dedekind, Cantor, and Von Neumann, J. H. Con-

way constructed a class of numbers containing the real numbers, infinite ordinals, infinitesi-

mals, and arithmetic combinations of these. This class of numbers was first exposed to the

world by a friend of Conway’s, Donald Knuth, in his book Surreal Numbers: How Two Ex-

Students Turned on to Pure Mathematics and Found Total Happiness [3], a short work of

fiction in which a couple, stranded on an island, discovers a stone on which the basic

definitions of the numbers, along with some of their properties and hints at proofs, are

etched.

The term "Surreal Numbers" was coined by Knuth for this book, and became the

name this class is commonly given, despite how little the numbers have to do with sur-

realism (they have absolutely nothing to do with surrealism, actually). Conway, in his

book On Numbers and Games, states that he prefers to omit the adjective "surreal" and refer

instead to No, "the class of all numbers." (To avoid confusion in this document, the term

"Surreal Numbers" will be henceforth reserved mostly for references to the entire class,

while the term "number" will mostly be used when referring to individual elements of the

class. Symbolically, the class of Surreal Numbers will be denoted by No.)

This document will explain and explore the Surreal Numbers and their basic algebraic

properties.
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Basic Definitions and Conventions

The Surreal Numbers are constructed using a set of two recursive definitions:

DEFINITION 2.1. Definition of “number”:

Let L, R be two sets of numbers such that for all xL ∈ L,xR ∈ R,xL 6≥ xR. Then {L |R} is

a number. All numbers are created in this way.

DEFINITION 2.2. Let x, y be two numbers. Then x≥ y (equivalently, y≤ x) if and only if

(∀xR ∈ R, xR 6≤ y and ∀yL ∈ L, x 6≤ yL).

From this point forward, the following notational conventions will be used:

If x = {L |R} is a typical number, xL will represent a typical element of its left set and

xR will represent a typical element of its right set. The left and right sets of x will often be

denoted XL and XR , respectively, when necessary. However, more often than not, the phrase

∀xL will be used to imply ∀xL ∈ XL . The right set will be implied similarly by its elements.

In general, curly brackets will not surround a number’s left and right sets. For example,

a number will appear as { a,b,c | d,e, f }, rather than { { a,b,c} | {d,e, f}}. Nested curly

brackets will be reserved for cases where expanding a number within L or R is necessary.

Additionally, if either set of a number is empty, nothing will appear on the empty side. So,

a number {∅ | R} will instead be written {| R} . (To be clear, L and R are not elements

of x = |{L|R} themselves. Instead, the elements of L are the elements of the left set of X ,



3

and the elements of R are the elements of the right set of X . For instance, if L = {1,2,3},

R = {4,5,6}, and x = {L|R}, then the elements of the left set of x are 1,2, and 3, and the

elements of the right set of x are 4,5, and 6.)

The term "number" will generally be used to describe a single element of the Surreal

Numbers, and in any case where a different number system might be in use, the system

will be specified. The term "Surreal Numbers" will be used most often when referring to

the entire class of Surreal Numbers. Symbolically, the class of Surreal Numbers will be

signified by No, in keeping with the tradition of Conway (and others before him, for that

matter, when referring to the class of ordinals).

Conway adopts the seemingly strange convention of using the terms "no" and "some"

directly within expressions, as a shorthand denotation of nonexistence or existence of an

element within satisfying the expression. For example, "no xL > xR" would mean "there

does not exist an xL ∈ XL and xR ∈ XR such that xL > xR". This convention is surprisingly

handy, and I will therefore adopt it as well.

Using these conventions, the definitions of numbers given above could be rewritten in

the following way:

DEFINITION 2.1 Let L,R be two sets of numbers such that no xL ≥ xR . Then {L |R} is a

number. All numbers are created in this way.

DEFINITION 2.2 Let x, y be two numbers. Then x≥ y (equivalently y≤ x) and only if

(no xR ≤ y and x≤ no yL).

Some other basic definitions are needed before beginning to construct the surreal num-

bers. These will be discussed and explored more fully in later chapters.
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DEFINITION 2.3. The statement x = y will be taken to mean x≥ y and x≤ y.

DEFINITION 2.4. The statement x < y will be taken to mean x≤ y and x 6≥ y.

DEFINITION 2.5. The statement x > y will be taken to mean y < x.

DEFINITION 2.6. If x = { xL | xR }, then −x is defined as {−xR |−xL }.

DEFINITION 2.7. If the left and right sets of x and y are identical, then x and y are said to be

identical, rather than equal. This is denoted x≡ y. (This is a distinction that Conway makes,

but one which we will not often need.)

The basic definitions for the binary operations on surreal numbers follow. Although these

may seem nonsensical at this point, they will be needed during the process of constructing

the Surreal Numbers, and will be fully explored in a later chapter.

DEFINITION 2.8. Addition of surreal numbers is defined by

x+ y = { xL + y, x+ yL | xR + y, x+ yR }.

DEFINITION 2.9. Subtraction of surreal numbers is defined by

x− y = x+(−y).

DEFINITION 2.10. Multiplication of surreal numbers is defined by

xy =
{

xLy+ xy
L
− xLyL , xRy+ xyR− xRyR | xLy+ xyR− xLyR, xRy+ xyL− xRyL

}
.

The usual alternative representations x ·y and x(y) will be used in place of xy on occasion,

and where appropriate.

(Note: Division will not be defined here. Instead, it will be discussed in Chapter 9. Also

note that the properties of addition and multiplication will be discussed in chapters 8 and

9, respectively. However, in examples prior to those chapters, some of those properties,

particularly commutativity and associativity, will be assumed in order that the examples

may go smoothly.)
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Existence and Beginning Construction of the Surreal Numbers

At first glance, the definition of number given here, by referring to other numbers, may

seem (as it first did to me) to presuppose and assert its own validity. Pondering the matter

reveals no such assertion is at play after all. In fact, questioning the validity of the definition

immediately begins the construction of the class.

If we assume that the definition is invalid, then there are no numbers, and thus a collection

of numbers would necessarily have nothing in it, that is, the collection would be the empty

set, ∅.

Using ∅ as the sole candidate for the left and right sets of {L |R} gives us { | } . By

virtue of having no elements in either set to compare, { | } vacuously satisfies the comparison

used in the definition (regardless of how such a comparison is done), and thus is itself a

number, contradicting the assertion that the definition is invalid.

If we had assumed the existence of numbers defined in this way in the first place, we

could still use ∅ as the left and right sets of a number-candidate, and verify the result as a

number.

Conway names this number 0, that is, 0 = { | } . This choice of names turns out to be an

appropriate one, which will be demonstrated later.

Now that we have 0 defined, we can begin constructing other numbers. With 0 being the

only candidate for a set element, we have a few choices for new numbers: {0 |} ,{|0}, and

{0 |0}.
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The first two candidates above fit the definition of number. Since there are no elements

in the right set of {0|} to compare to the 0 in the left set, the comparison required in the

definition of number is vacuously fulfilled. By similar argument, {|0} is also a number.

With {0 | 0}, however, it has to be established whether or not 0≥ 0. It may seem obvious

that 0 = 0, but nothing can be taken for granted at this point.

Now, 0 = 0 unless some 0L ≥ 0R or some 0R ≥ 0L Since there are no elements in either

set to compare, this is satisfied vacuously, and so, as expected, 0 = 0. Similarly, the lack of

elements in the left and right sets of 0 means that −0 = 0 as well, (a fact that we will need

very soon).

Since 0 = 0, the expression {0 |0} does not fit the definition of number. This leaves us

with just the two new numbers, {0|}, and {|0}, which we will name 1 and −1, respectively,

for reasons that will become clear later.

In the next chapter, the construction process will be interrupted in order to establish

some basic information about numbers in general, including some facts about the ordering

of the numbers. For now, though, since these facts have not been established, and since

nothing can be taken for granted, it seems a good idea to prove a few facts about the numbers

we have so far. If nothing else, these exercises will serve as some concrete examples of the

behavior of the numbers.

PROPOSITION 3.1. −1 =−(1)

Proof. Recall the definition of negation, −x = {−xR |−xL }.

Since −(1) =−{0|}= {|−0},

and since it has already been established that −0 = 0,

−(1) = {| 0}=−1.
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PROPOSITION 3.2. 0 < 1

Proof. This is true if 0≤ 1 and 0 6≥ 1.

By definition, 0≤ 1 unless some 0L ≥ 1 or 0≥ some 1R.

Since 0L =∅, the former is ruled out.

Likewise, since 1R =∅, the latter is false as well.

Thus, 0≤ 1.

By definition, 0 6≥ 1 since 0 ∈ 1L and 0≤ 0.

Therefore, 0 < 1.

The statements −1 < 0 and −1 < 1 can be proven using similar arguments.

We should test out arithmetic on these numbers before moving on. This will serve to

show that the numbers and operations work like their real counterparts. It will also give us a

basis for inductive proofs in later chapters. Please note when viewing these examples that

the operations are assumed to be commutative, as they were designed to be (which can be

verified by looking at the structure of the definitions). The properties of the operations will

be explored and proven in a later chapter. Note also that if a term refers to the empty set,

then it will be eliminated since there is nothing to operate on within the empty set.

EXAMPLE 3.3.

0+0 = {0L +0, 0+0L |0R +0, 0+0R }

= {0L +0 |0R +0}

= {|}

= 0
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EXAMPLE 3.4.

0+1 = {0L +1, 0+1L |0R +1, 0+1R }

= {0+0 |}

= {0 |}

= 1

EXAMPLE 3.5.

0−1 = {0L +(−1), 0+(−1)L |0R +(−1), 0+(−1)R }

= {0−1R |0−1L }

= {|0−0}

= {|0}

=−1

EXAMPLE 3.6.

1−1 = {1L +(−1), 1+(−1)L |1R +(−1), 1+(−1)R }

= {0+(−1), 1−1R |1−1L }

= {−1 |1−0}

= {−1 |1}

= 0

(Note: The last step in this example may seem to be a leap in logic, but it will be proven

true in Theorem 4.7.)
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EXAMPLE 3.7.

0 ·0 =
{

0L ·0+0 ·0
L
−0L ·0L , 0R ·0+0 ·0R−0R ·0R |0L ·0+0 ·0R−0L ·0R , 0R ·0+0 ·0L−0R ·0L

}
= {|}

= 0

Notice that because the left and right sets of 0 are both empty, every term in the product

0 ·0 is eliminated. By the definition of multiplication, this should hold true for multiplying

any number by 0. This property will be discussed again in chapter 9, but was worth

mentioning now. The following example should drive the point home.

EXAMPLE 3.8.

0 ·1 =
{

0L ·1+0 ·1
L
−0L ·1L , 0R ·0+1 ·0R−1R ·1R |0L ·1+0 ·1R−0L ·1R , 0R ·1+0 ·1L−0R ·1L

}
= {|}

= 0

Now that we have (almost) exhaustively explored the numbers we have created so far, it

is time to move on. Rather than jumping straight into constructing the rest of the numbers,

the next chapter has been included to help the reader understand the numbers in general.

This should help in understanding what number goes where, and why, when the construction

continues.
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Some General Properties of Surreal Numbers and Their Order

At this point, we will take a break from construction of the numbers in order to explore

some of their basic properties. This is in an effort to allow a general understanding of the

ordering of the Surreal Numbers, to help create and maintain a sense of logic during the

construction process, especially in regards to the naming of the numbers.

Two essential facts will be established in this chapter: that each number is strictly greater

than any given member of its left set and strictly less than any member of its right set,

and that the ordering relations we have defined are transitive. There are some interesting

consequences arising directly from these two facts, and some of those will be explored here

as well.

(Note: Some preliminary work is needed for most of the proofs in the chapter to work.

The first few theorems proven here were the key components to my personal understanding

of the Surreal Numbers, and arose out of my own early limitations and skepticism regarding

transfinite induction.)

THEOREM 4.1. Let a 6≥ b. Then a = {aL |aR, b}.

Proof. Since a 6≥ b, we know that some bL ≥ a or b≥ some aR.

Let x = {aL |aR, b}.

By Definition (2.3), x = a if x≤ a and x≥ a.

By Definition (2.2), x≤ a unless some xL ≥ a or x≥ some aR.
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Assume xL ≥ a for some fixed xL . Then no aL ≥ xL . But AL = XL . This is a contradiction.

Thus, no xL ≥ a.

Assume x≥ aR for some fixed aR. Then aR ≥ no xR. But aR ∈ XR. This is a contradiction.

Thus, x≥ no aR.

Since no xL ≥ a and x≥ no aR, it follows that x≤ a.

By definition, x≥ a unless some aL ≥ x or a≥ some xR.

Assume aL ≥ x for some fixed aL . Then no xL ≥ aL . But XL = AL . This is a contradiction.

Thus, no aL ≥ x.

Assume a≥ some fixed xR.

Then a≥ b, which is false, or a≥ some aR.

By definition, a≥ aR unless aR ≥ aR, which is clearly true,

Thus, a≥ no xR.

Since no aL ≥ x and a≥ no xR, it follows that x≥ a.

Since x≤ a and x≥ a, we get x = a. Therefore a = {aL |aR, b}.

THEOREM 4.2. Let a 6≥ b. Then b = {a, bL |bR} .

Proof. We are given a 6≥ b, so, by Definition (2.2), some bL ≥ a or b≥ some aR.

Let y = {a, bL |bR} .

By definition, y = b if y≤ b and y≥ b.

By definition, y≤ b unless some yL ≥ b or y≥ some bR.

By definition, yL ≥ b if a≥ b or bL ≥ b.

We know a 6≥ b, so yL ≥ b only if bL ≥ b, which would mean no bL ≥ bL .

This is a contradiction.

Thus, no yL ≥ b.
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By definition, y≥ bR unless bR ≥ yR. But YR = BR.

This is also a contradiction.

Thus y≥ no bR.

Since no yL ≥ b and y≥ no bR, it follows that y≤ b.

By definition, y≥ b unless some bL ≥ y or b≥ some yR.

By definition, bL ≥ y unless some yL ≥ bL . But BL ⊆ YL .

Thus, no bL ≥ y.

By definition, b≥ yR unless yR ≥ some bR. But YR = BR.

Thus, b≥ no yR.

Therefore, y≥ b.

Since y≤ b and y≥ b, we get y = b. Therefore b = {a, bL |bR}.

These two theorems give us equivalent forms of the number b. In fact, there are many

equivalent forms, as you can see by imagining using the above theorems to add members to

the left and right sets at will. Because of this fact, the phrase "Let x ∈ No," by virtue of not

giving a specified form of x, allows us to jump between forms of x without consequence.

Henceforth, then, if no particular form of a given number is specified, it is safe to assume

any equivalent form of that number.

Using that concept leads us to the following:

THEOREM 4.3. If a < b then a ∈ BL .

Proof. By definition 2.4, a < b implies a 6≥ b, and thus, by Theorem 4.2, b = {a,bL |bR}.

Since no particular form of b was specified as given, we can take {a,bL} = BL in our

given b.
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THEOREM 4.4. If a > b then a ∈ BR

Proof. By definition 2.5, a > b implies a 6≤ b, and thus, by Theorem 4.1, b = {bL |bR, a}.

Since no particular form of b was specified as given, we can take {bR, a}= BL in our

given b.

Theorems 4.1 and 4.2 lead directly to the first of the essential facts about numbers and

their order: that a number is strictly greater than any member of its left set, and strictly less

than any member of its right set.

THEOREM 4.5. If x = {xL |xR }, then, for all xL ∈ L, xL < x.

Proof. Assume not. Then, by negation of Definition (2.4), some xL 6≤ x or xL ≥ x.

Assuming the first choice, fix a ∈ XL such that a 6≤ x.

By Theorem (4.1), x = {xL |xR, a}.

But, then a ∈ XL and a ∈ XR , but this contradicts the definition of number, so xL 6≤ x.

Thus, our assumption can only be true if xL ≥ x.

By Definition (2.2), xL ≥ x unless some xL ≥ xL , which is obviously true, so xL 6≥ x.

Thus, we have xL ≤ x and xL 6≥ x, and therefore, xL < x.

THEOREM 4.6. If x = {xL |xR }, then x < xR.

Proof. Assume not. Then, by negation of Definition (2.4), x 6≤ some xR or x≥ some xR.

Assuming the first choice, fix b ∈ XR such that x 6≤ b.

By Theorem 4.2, x = {b, xL |xR}.
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But, then b ∈ XL and b ∈ XR , contradicting the definition of number.

Thus, our assumption can only be true if x≤ xR.

By Definition (2.2), x≥ xR unless some xR ≥ xR, which is obviously true, so x 6≥ xR.

Thus, we have x≤ xR and x 6≥ xR, and therefore, x < xR.

These theorems have some important immediate consequences (too important to be

deemed lemmas):

THEOREM 4.7. Let x∈ No, and let A< = {a ∈ No : a < x}, and let A> = {a ∈ No : a > x}.

Then x = {A< |A> }.

Proof. By Theorem 4.3, a < x implies a ∈ XL . So, A< ⊆ XL .

By Theorem 4.5, xL < x, so xL ∈ AL , and so XL ⊆ A< .

Thus, we have A< = XL .

Similarly, by Theorem 4.4, a > x implies a ∈ XR . So, A> ⊆ XR .

By Theorem 4.6, xR > x, so xR ∈ AL , and so XR ⊆ A< .

Thus, we have A> = XR .

Therefore, {XL |XR }= {A< |A> }.

Notice that this theorem sets up the concept that every number is essentially a cut in

a continuum of numbers. (Thereby, this form of a number will henceforth be referred to

as the "cut form" of the number.) This is an important concept in the understanding of

the Surreal Numbers. (It is in fact the main idea Badiou uses in his book when talking

about numbers.) As important as this is, describing a number in this way, while a perfectly

fine thing to do, tells us very little about the value of a number. Each number has many
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different representations, as we’ve already seen. As we construct the rest of the numbers in

the following chapters, we will develop a canonical form that will define each number using

left and right sets that are basically stripped down to the bare minimum needed for defining

the number.

There are a few more essential consequences of the previous theorems regarding proper-

ties of the ordering relations.

THEOREM 4.8. If x 6≥ y, then x < y.

Proof. Let x 6≥ y.

By Theorem 4.2, x ∈ YL .

By Theorem 4.5, yL < y.

Therefore, x < y

THEOREM 4.9. (Transitivity of <)

If a < b and b < c, then a < c.

Proof. Let b < c and let a < b

By theorem 4.3, a < b implies a ∈ BL .

By definitions 2.2 and 2.4, b < c implies no bL ≥ c

Thus a 6≥ c.

Therefore, by theorem 4.8, a < c.
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THEOREM 4.10. (Transitivity of ≤)

If a≤ b and b≤ c, then a≤ c.

Proof. Let b≤ c and let a≤ b

By definition, a ≤ b implies no aL ≥ b, and so for all aL , aL < b, and so, by Theorem

4.3, AL ⊆ BL .

By definition, b≤ c implies no bL ≥ c.

Thus, no aL ≥ c.

By definition, b≤ c implies b≥ no cR , and so for all cR , b 6≥ cR , and so CR ⊆ BR .

Since a≤ b, we have a≥ no bR , and so a≥ no cR

So, we have no aL ≥ c and a≥ no cR .

Therefore, a≤ c.

A relation ≤ is a total order on a set (or class, in the case of No) if it exhibits antisym-

metry, transitivity, and totality. Antisymmetry of ≤ over the Surreal Numbers is defined by:

for all a,b ∈ No, a≤ b or b≤ a. Transitivity is defined by: if a≤ b and b≤ c, then a≤ c.

Totality is defined by: if a 6≤ b then b≤ a.

Notice that, by definition of =, ≤ is antisymmetric, and that we have just proven ≤

is transitive (by theorem 4.10) and total (by theorem 4.8). Thus, ≤ is a total order on the

Surreal Number continuum.

Hopefully, this chapter has provided perspective on the placement of the numbers we are

about to construct and how they relate to one another. This will greatly reduce the quantity

of number candidates we need to consider when constructing, because we already will know

at a glance which choices for left and right sets will not work and which will lead to numbers

equivalent to already constructed numbers.
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The Birthday Function, Integers, and Dyadic Numbers

During the construction process we have already started, each non-zero number can

be constructed using as the elements of its left and right sets only previously constructed

numbers. Whatever positive integer is created during a given iteration of the construction

process is said to be the “birthday” of all the numbers created at that step of construction,

and the iterations themselves are called “days”. The numbers constructed prior to a number

constructed on a given day are alternately referred to as “older,” “simpler,” or “more primitive”

than the numbers created on the given day, depending on the context. These three terms can

be taken as synonymous.

The number 0, recall, was created using only ∅ as its left and right sets. It is said to

have been “born on day 0”. The numbers 1 and −1 could only be constructed after day 0,

and only had {0} and ∅ to use as left and right sets. These are the only two numbers with

birthday 1. The number 0, consequently, is considered “older” than 1 and −1.

A number’s birthday gives a measurement of its primitivity and the “depth” of the

embedded sets it contains. The number 0, as constructed, contains no sets of numbers, and

so it has 0 depth. The number 1, on the other hand, contains 0 in its left set, which gives

it depth 1 (i.e. 1 = {0 |}= {{|} | }, so there is only one level of embedded set in 1). The

number 0, consequently, is considered “simpler” and “more primitive” than 1 and −1.

Another way of looking at this concept is that all numbers are built from other numbers,

and so on, until eventually they are built from 0. (i.e 0⊂ 1⊂ 2 . . .). The number of steps in
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the chain between 0 and the number in question, gives you its birthday. (i.e. 0⊂−1, so, by

virtue of there only being one link in this chain, −1’s birthday is 1.)

We shall define the birthday function, B, as taking a number as its input and returning

that number’s birthday as its output.

DEFINITION 5.1. Let B:No→No be defined by the following:

If x ∈ No was born on day n, then B(x) = n.

The idea of birthdays is an important one, because it gives us a tool to use in defining

a number’s value. A given number’s “value” is the name assigned the simplest equivalent

form of that number. As construction of the numbers continues, we will be using only

numbers born on days before the one we are working in, and the names assigned these

numbers will have a certain pattern (which will be explained shortly). Furthermore, as we

begin exploring arithmetic, especially when doing examples, it will be absolutely essential

to be able to recall this pattern in order to work with the simplest form of each number.

Some forms would prove cumbersome or even impossible to work with in conjunction with

the definitions given for the arithmetic operations, so using the most streamlined version of

the numbers available will become necessary. (As you will see after doing a few examples

of this type, even this simplest form will lead to prohibitive amounts of work, and so we

will have to employ shortcuts eventually to get around this.)

Furthermore, because each number is a cut in the Surreal Continuum, as justified by

Theorems 4.7, each number x = {L |R} is equivalent to the simplest number such that

xL < x < xR . That is, given any form of a number x = {L |R}, the value of x is the name of

x′ ∈ No such that (∀xL ∈ L,xR ∈ R, xL < x′ < xR and for all y ∈ No such that xL < y < xR

with y 6= x′, B(x′)<B(y)). (For example, {−1 |1}= 0, because there is no x 6= 0 such that

−1 < x < 1 and B(x)≤B(0). In other words, {−1 |1}= 0, because 0 is the most primitive

number between −1 and 1; it has the lowest birthday of any number in that interval.)
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Having introduced the concept of birthdays, we can now get back into the construction

process.

Previously, we constructed −1, 0, and 1. We can now use all three in constructing

additional numbers. The theorems in the previous chapter allow us to eliminate many

possible number candidates immediately. The only possibilities for new numbers are:

{|−1} ,{−1 |0} ,{0 |1} ,and{1|}

.

Using theorems from the previous chapter, we can see that since−1< 0< 1 and 0= {|},

we have 0 = {−1 |1}. Also notice that {−1 |0,1}= {−1 |0} and that {−1,0 |1}= {0 |1},

so none of these needs to be considered as a potential new number. (Generally, these

principles will be used without being mentioned to weed out bad number-candidates as we

go. This time, they are being mentioned to provide an example of the process.)

In general, there are 2n new numbers born on any given finite day n. (Note: When I say

“2n” here, I am referring to the real quantity 2n. I do not mean to imply a surreal quantity,

though there really is no distinction between the two at this point. I thought it best to clarify

nonetheless.)

On day n, there is one new positive integer (n), greater than all the numbers born on

prior days, one new negative integer (−n), less than all the numbers born on prior days, and

one new number between pair of consecutive numbers born on prior days (not necessarily

the same prior day). The phrase "pair of consecutive numbers born on prior days" means a

pair a,b ∈ No such that B(a)< n, B(b)< n, a < b, and there does not exist c ∈ No such

that B(c)< n and a < c < b. Any such pair will define a new number {a |b} with birthday
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n. Any non-consecutive pair of numbers born before day n will not produce a new number

at all, due to theorems (4.2) and (4.1).

(As long as we continue this process without allowing for infinite left or right sets, n

corresponds to some n ∈ N, and the numbers created on day n will be named to correspond

to numbers in R. More specifically, the new numbers will correspond to numbers in Q.

As we continue, the naming conventions given will be expressions in Q and should be

interpreted as such, so that the names will correspond to those of numbers in Q.)

The two integers created on day n, as has already been stated, are named n and −n. The

rest are named according to the following convention:

If a,b are a pair of consecutive numbers born prior to day n, corresponding to a,b ∈Q,

then {a |b} shall be named to correspond to a+b
2 ∈Q.

Using that convention, the numbers {|−1}, {−1 |0}, {0 |1}, and {1|} are assigned the

values −2, −1
2 , 1

2 , and 2, respectively. These are all of the numbers born on day 2.

So, at the end of day 2, the following numbers exist: −2, −1, −1
2 , 0, 1

2 , 1 and 2. These

are the numbers we have to work with on day 3.

By the naming conventions just described, the new positive numbers on day 3 are:

3 = {2|}, 3
2 = {1 |2}, 3

4 =
{ 1

2

∣∣1}, and 1
4 =

{
0
∣∣ 1

2

}
. The new negative numbers are

defined using these numbers and the definition of negation, −x = {−xR |−xL }. For example,

−1
4 =

{
−1

2

∣∣ 0
}

.

Notice that on any given day n, all of the numbers created correspond to rational numbers

with denominator no more than 2n−1, and that all the numbers created on or before day n

correspond to rational numbers that can be expressed with denominator 2n−1. As long as we

continue allowing only finite sets of previously defined numbers in the left and right sets of

newly constructed numbers, every number created corresponds to a dyadic rational, that is,

each number corresponds to p
2q , for p,q ∈ Z. Also, so long as we continue in this manner,

we can never create any number that doesn’t correspond to an integer or a dyadic rational
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number.

We will rectify that limitation in the next chapter. Before we do, though, it would be

good to demonstrate that these names are appropriately chosen so that these numbers behave

as we might expect them to behave under arithmetic (presupposing we have a predisposition

to rational arithmetic). A handful of examples follow. (Recall definitions (2.8) and (2.10) of

addition and multiplication, respectively. Notice also that the binary operations are defined

to be commutative, and will be treated as such (with proof given in later chapters). Note

also that in the beginning, all the formalities will be followed, with shortcuts included as

the process becomes more familiar. Also note that if an operation calls for a member of the

empty set, there will be no resulting number (for example, the result of {0 |1R +1} would

be {0 |}, because 1R is empty).)

EXAMPLE 5.2.

1+1 = {1L +1, 1+1L |1R +1, 1+1R }

= {0+1, 1+0 |}

= {1 |}

= 2

EXAMPLE 5.3.

1+
1
2
=

{
1L +

1
2
,1+

1
2 L

∣∣∣∣ 1R +
1
2
, 1+

1
2 R

}
=

{
0+

1
2
,1+0

∣∣∣∣ 1+1
}

=

{
1
2
,1
∣∣∣∣ 2
}

= {1 |2} by (4.2)

=
3
2
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EXAMPLE 5.4.

1
2
+

1
2
=

{
1
2 L

+
1
2
,

1
2
+

1
2 L

∣∣∣∣ 1
2 R

+
1
2
,

1
2
+

1
2 R

}
=

{
0+

1
2

∣∣∣∣1+ 1
2

}
=

{
1
2

∣∣∣∣1+ 1
2

}
=

{
1
2

∣∣∣∣ 3
2

}
= 1

EXAMPLE 5.5.

3
2
+

1
2
=

{
3
2 L

+
1
2
,

3
2
+

1
2 L

∣∣∣∣ 3
2 R

+
1
2
,

3
2
+

1
2 R

}
=

{
1+

1
2
,
3
2
+0
∣∣∣∣ 2+

1
2
,

3
2
+1
}

=

{
3
2

∣∣∣∣ {2L +
1
2
, 2+

1
2 L

∣∣∣∣ 2R +
1
2
, 2+

1
2 R

}
,

{
3
2 L

+1 ,
3
2
+1L

∣∣∣∣ 3
2 R

+1 ,
3
2
+1R

}}
=

{
3
2

∣∣∣∣ { 1+
1
2
, 2+0

∣∣∣∣ 2+1
}
,

{
1+1 ,

3
2
+0
∣∣∣∣ 2+1

}}
=

{
3
2

∣∣∣∣ { 3
2
, 2
∣∣∣∣ 3
}
,

{
2 ,

3
2

∣∣∣∣ 3
}}

=

{
3
2

∣∣∣∣ 5
2

}
= 2
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EXAMPLE 5.6.

2 ·2 = {2L ·2+2 ·2L−2L ·2L ,2R ·2+2 ·2R−2R ·2R |2L ·2+2 ·2R−2L ·2R ,2R ·2+2 ·2L−2R ·2L }

= {1 ·2+2 ·1−1 ·1|}

= {2+2−1|}

= {{2L +2|2R +2}−1|}

= {{1+2|}−1|}

= {{{1L +2 |1R +2}|}−1|}

= {{{0+2|}|}−1|}

= {{{2|}|}−1|}

= {{3|}−1|}

= {4−1|}

= {4+(−1)|}

= {{4L−1,4−1R |4R−1,4−1L}|}

= {{3−1|4−0}|}

= {{{3L−1,3−1R|3R−1,3−1L}|4}|}

= {{{2−1|3−0}|4}|}

= {{{1|3}|4}|}

= {{2|4}|}

= {3|}

= 4

(Notice that toward the end of that demonstration, the pattern that emerged when

repeatedly subtracting 1 was finally assumed. This makes a great case for transfinite

induction. This example was included to demonstrate just how quickly, using even the
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simplest form of the numbers, arithmetic becomes exceptionally cumbersome. From this

point forward, in simplifying further examples, it will be taken on faith that calculations

work as we would like them to work. Unfortunately, this is an example of a concept that,

within the scope of this thesis, cannot be proven. The Surreal Numbers that correspond to

the Real Numbers are isomorphic to the Real Numbers as we know them, but proving that

is the case requires one of two things that make it impossible to do here: a very extensive

knowledge of set theory and topology, or the space and time to break a more elementary

proof into many, many cases within this document. Since neither of those is available here,

we will need to accept it without proof, with the caveat that proofs can be found in the

source material, specifically Alling’s book [5], should one be needed.)



27

Day ω (and Beyond)

At this point in the construction process, we have created all of the dyadic rationals,

including the integers, but there is so much more to do. In order to get beyond the dyadic

rationals, we have to allow for infinite left and right sets in the numbers we construct.

The first such number we will create will take the form {L |R} = {0,1,2, . . .|}. This

certainly fits the definition of number, because no xL ≥ xR and all the members of L and R

are numbers. This infinite ordinal number is given the name ω , that is, ω = {0,1,2, . . .|},

or, more simply, ω = {N|}. Of course, that means we have reached Day ω , which turns out

to be a very fruitful day.

On Day ω , as usual, two numbers are created on the extremes of our continuum, ω and

−ω . Just as before, all previously created numbers are strictly between these two, that is, for

all n ∈ N, −ω < n < ω . (This should be easy enough to prove using the definition of ≥ that

I will leave it as an exercise for the reader, probably a quick mental exercise at this point.)

Day ω is special because it is the day when all the rest of the Real Numbers are created.

By allowing infinite left and right sets, the possibilities of potential numbers become endless,

as sets can now be sequential, and the new numbers created from such sets (under the proper

circumstances, of course) can now be defined as the limits of those sequences.

For example, if we use
{ m

2n ∈ No : m,n ∈ Z+ with m =
⌊2n

3

⌋}
as the left set and{ m

2n ∈ No : m,n ∈ Z+ with m =
⌈2n

3

⌉}
as the right set, that is, let x =

{
0, 1

4 ,
5

16 , . . .
∣∣ 1

2 ,
3
8 ,

11
32 , . . .

}
,

the result is x = 1
3 .
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Because these are infinite sets, checking this notion by evaluating 3x or x+x+x is a very

tedious task indeed. The reader is invited to try it. Instead, it can be verified by assuming

the dyadic rationals in No are isomorphic to the dyadic rationals in R, and considering the

notion that no xL ≥ 1
3 , no xR ≤ 1

3 , and verifying that ∑
∞
n=1

1
22i =

1
3 and 1

2 −∑
∞
i=1

1
22i+1 =

1
3 .

For all n ∈N, finding a multiplicative inverse is fairly easy to do intuitively by letting the

left and right sets be all the positive dyadic rationals less than 1
n and all the positive dyadic

rationals greater than 1
n , respectively (using Real Number ordering). The result is accurate,

yet cumbersome. There are other methods of coming up with a streamlined version. One is

to create the left and right sets based on sequence of dyadic rationals with the desired limit,

if one comes to mind.

The method I created to help me understand is the one used above in creating 1
3 .

That is, for all x ∈ N, let 1
x L =

{
m
2n ∈ No : m,n ∈ Z+ with m =

⌊
2n

x

⌋}
, (where

⌊
2n

x

⌋
rep-

resents the floor of 2n

x ), and let 1
x R =

{
m
2n ∈ No : m,n ∈ Z+ with m =

⌈
2n

x

⌉}
, (where

⌈
2n

x

⌉
represents the ceiling of 2n

x ). Then 1
x =

{1
x L|

1
x R

}
. The idea here is that we want the series

to include the maximum m ∈ Z for each n ∈ N such that x · m
2n < 1 in the left set and the

minimum m ∈ Z for each n ∈ N such that x · m
2n > 1 in the right set. In this way, we can

guarantee the sequence in the left set approaches 1
x from the left and the sequence in the right

set approaches 1
x from the right. We limit ourselves to positive integers for this procedure,

realizing that 1
−x =−(

1
x ), so that if we need the multiplicative inverse of a negative integer,

we can just negate the multiplicative inverse of the positive integer with the same birthday.

The fact that the dyadic rationals are dense in Q together with the fact that 1
n ·m = m

n allows

us to do this for all m
n ∈Q.

Of course, completing the rational numbers is not the entirety of Day ω . Irrational

numbers can be created with sequences as left and right sets as well, so on Day ω , all of R

is created.

In addition to the Reals, still other numbers are created on Day ω .
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For example, 1
ω
=
{

0| 1
2n : n ∈ N

}
is the smallest positive number that can be created

out of earlier numbers. Similar constructions exist that create infinitesimals on either side

of any other given number. For example, the number 137
128 +

1
ω

would be constructed to be{ 137
128

∣∣ 137
128 +

1
2n : n ∈ N

}
, and so on.

After Day ω , still more numbers can be made using the numbers from previous days.

Day ω +1 gives us ω +1 = {0,1,2, . . . ,ω|}, and −ω−1 = {|−1,−2,−3,−ω}. So far,

anyone who has studied Cantor will have recognized all of the numbers we have constructed,

but now we can also create numbers that are unique to the Surreal Numbers, which in other

systems would have been deemed nonsense.

For instance, ω−1, which in other systems would have been equal to ω . But here, it has

a unique value: ω−1 = {N|ω}. Our familiarity with the patterns of arithmetic can easily

verify that (ω−1)+1 = ω . It is interesting to note that ω−1 is strictly between the Reals

and ω , by theorems 4.5 and 4.6. Numbers with this property are unique to No.

Here are some other interesting examples of numbers that have no counterparts outside of

the Surreal Numbers: ω + 1
ω
=
{

ω|ω + 1
2k : k ∈ N

}
, ω

2 = {1,2,3, . . .|ω,ω−1,ω−2, . . .},

and
√

ω =
{

0,1,2,3, . . .
∣∣ω, ω

2 ,
ω

4 ,
ω

8 · · ·
}

. (The last three examples were borrowed from

Conway, [1].)

After creating all of this, it may occur to the reader that maybe it would be good to

see what happens by creating a number like x̌ = {x < y ∈ No |z≥ y ∈ No}. (It certainly

occurred to me one day, and the result was frightening. I thought I had just broken the

Surreal Numbers irreparably. . . and after so many years!)

It would seem that {x < y ∈ No |z≥ y ∈ No} certainly satisfies the definition of a num-

ber. But this number would have to be strictly between the elements in its left and right

sets, that is x̌L < x̌ < x̌R for all x̌L ∈ X̌L , x̌R ∈ X̌R , which is nonsensical, because if x̌ < all x̌R ,

then x̌ < y, which, by the way we defined x̌, places it firmly in its own left set, contradicting

Theorem 4.5.
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Constructions of this sort are called “gaps” in No. Conway is rather noncommittal in

ONAG [1] as to whether or not these gaps are actually numbers or not. In one sentence on

page 37 of ONAG, he talks about a "sequence of numbers and gaps," implying he does not

consider them numbers, but no further explanation is given regarding the question.

Conway declares that some gaps have special importance, and so he names them. They

are defined as: On= {No|} (the gap at the end of the number line), 1
On = {0 |x > 0 ∈ No}

(the gap between 0 and the positive Surreal Numbers), ∞ (the gap between the real numbers

and the positive infinite ordinals), and 1
∞

(the gap between the infinitesimals and the positive

Reals).[1]

It seems to me that gaps violate the definition of number by necessarily being members

of their own left or right sets, and so I do not regard them as numbers. Gaps may be a very

interesting topic for further exploration, but not here.
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Transfinite Induction on No

Transfinite induction in general is a method for proving statements consisting of elements

from well ordered sets, that is, a totally ordered set, every nonempty subset of which has a

least element. Generally, the procedure involves demonstrating that the statement is true on

the least element, then assuming it must be true for all elements ≤ some element, and then

demonstrating that it must be true for elements greater than that. [8]

In No, each x is itself a well ordered set under containment (⊂, rather than ≤) with

least element 0. Since each number can be constructed using only older numbers, each

number x ∈ No is a chain of length B(x)+1 with least element 0 (actually, a chain of chains

of length ≤B(x)+ 1 with least element 0). That is, if ⊂ is defined by x ⊂ y if x ∈ yL or

x ∈ yR , each number x consists of chains in the form 0⊂ a⊂ b⊂ . . .⊂ (xL)L ⊂ xL ⊂ x. (For

example, 5
2 = {2|3}. It consists of two chains: 0⊂ 1⊂ 2⊂ 5

2 and 0⊂ 1⊂ 2⊂ 3⊂ 5
2 .)

Because each number consists of chains containing least element 0, we can assume that

what is true about 0 must be true for all numbers born on or before some birthday (possibly

0), and then demonstrate that the property holds for younger numbers. If we can demonstrate

that a property holds for numbers born after an arbitrary birthday, then we have proven that

it holds for all numbers.

With transfinite induction on No, the base case is usually true vacuously, thereby es-

sentially allowing it to be ignored. In theory, if R is a relation between numbers in No,

we can verify R(x,y) by verifying R(xL ,y), R(xR,y), R(x,yL), R(x,yR), and, if necessary
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R(xL ,yL), R(xR,yL), R(xL ,yR), and R(xR,yR). Notice that the last sentence implies repeating

verification attempts until an actual verification is completed. This is not a problem because

of the recursive nature of the definition of number. Since every non-zero number is built

from sets of sets, eventually containing 0, which is built of nothing, one attempt to verify

that a relation holds "a level down," as it were, often results in an argument that is essentially

a repetition of the original question at hand.

For instance, in a transfinite induction proof of Theorem 4.5, one might, after some

manipulations, realize that xL < x if and only if (xL)L < xL , for all (xL)L that exist, and so,

one could conclude that, this means xL < x if and only if ((xL)L)L < (xL)L , for all ((xL)L)L that

exist and so on, with the process ending only upon reaching a number with ∅ as its left set,

at which point, the original theorem becomes vacuously true. So, once the prover runs into

the first similar argument, the prover can invoke transfinite induction, and be done with it.

Essentially, this reduces most every problem to one of comparisons to the empty set,

which can make proofs very quick and simple. However, from speaking to others, and from

my own experience, transfinite induction can be very confusing.

Conway uses it to prove just about everything in ONAG. Personally, I have tried to avoid

it as much as possible, especially in the beginning of this project. But, in certain instances,

when a proof is just starting, there will be a crystal clear indication that transfinite induction

is exactly the way to go.

For instance, in the next chapter, we will prove that addition is commutative. Almost

immediately, it becomes apparent that x and y commute under addition if x and yR (and all the

other pairs of this sort) commute under addition. This immediately leads to the realization

that this argument will continue to reappear as we dig down a little further. Eventually, of

course, the more levels we descend into a number, the closer we get to the ∅ at the bottom.

At each step, we either reach another level to ask the same question about, or we reach ∅, at

which point our original question becomes vacuously true.
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This is an example of when transfinite induction is clearly in order for finishing the

proof. (For a more concrete example of this, see Theorem 8.1 and the comments that follow

it at the beginning of the next chapter.)

(A thought: If you are having trouble with the concept of transfinite induction still, the

following analogy might help. Think of each number as being like a Russian nesting doll,

with each number containing either more numbers inside it or nothing at all, much in the

same way each doll contains either another doll or nothing. If a question is asked about your

doll that can only be answered by asking the same question about all the dolls it contains,

then you would have to keep opening dolls until you reach the point where there are no

more dolls inside, at which point you could declare the proposition true about all of the dolls

inside (since there aren’t any). Alternately, knowing you would eventually reach that point

in advance, you could have declared the proposition true as soon as you realized that the

question could only be answered by asking it again about each internal doll, knowing that if

anyone doubted you, you could challenge them to look for themselves. That is essentially

the idea behind transfinite induction. If your doll contained infinitely more dolls inside, the

latter choice would be your only choice, necessitating your use of transfinite induction, and

making your challenge to your doubters a very cruel one indeed. This is why we are forced

to use transfinite induction in some proofs. Sometimes, there is just no way around it.)
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Algebraic Properties of Addition

The goal of this chapter is to prove several properties of addition on the Surreal Numbers,

with the ultimate goal of showing that (No,+) exhibits the properties an Abelian group.

Definitions of properties and the requirements for an Abelian group can be found in [6].

Recall the definition of addition: x+ y = {xL + y, x+ yL |xR + y, x+ yR }. Using this

definition and what we know so far about numbers in general, we will now explore the

properties of addition (may of which we have been assuming until now). Note: Most of

these proofs will require the use of transfinite induction.

THEOREM 8.1. (The Additive Identity for No) For all x ∈No, 0+ x = x+0 = x.

Proof. Let x ∈ No. Then, 0+ x = {0L + x, 0+ xL |0R + x, 0+ xR }= {0+ xL |0+ yR }.

Since 0+ x = x if 0+ xL = xL and 0+ xR = xR , we can use transfinite induction and

conclude that 0+ x = x.

Likewise, x+0 = {x+0L , xL +0 |x+0R , xR +0}= {xL +0 |xR +0}.

Since x+ 0 = x if (xL + 0 = xL and xR + 0 = xR), we can use transfinite induction and

conclude that 0+ x = x.

Hopefully, the above proof makes the idea of transfinite induction clear. If we knew

every element of every left and right set of x, and every element of each of those, and so on,
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each would eventually (perhaps after infinite iterations) have an empty left or right set, and

therefore have vanishing terms upon adding 0, using the definition of addition. Realizing

that, we can see that eventually, every term would vanish, leaving us with, say, 0+ x = x

only if 0+a = a, for all a in ∅, which is vacuously true.

THEOREM 8.2. Let x,y ∈ No such that x > y. Then (i) x− y > 0, and (ii) y− x < 0.

Proof. Proof of (i):

Recall that −y = {−yR |−yL }.

So, x− y = {xL− y , x− yR |xR− y , x− yL }.

To show x− y > 0, it is sufficient to show that some (x− y)L > 0.

Thus, if (∃xL such that xL− y > 0 or ∃yR such that x− yR > 0), then x− y > 0.

Since x > y, {y |x} is a number, and x > {y |x}> y.

Assuming the cut form of x and y (so that the left and right sets of each can be assumed

non-empty), and by Theorem 4.2, {y |x} ∈ XL . Likewise, by Theorem 4.1, {y |x } ∈ YR .

Thus, there exists xL such that xL > y, (namely, {y |x}). Also, there exists yR such that

x > yR , (again, {y |x}).

Since x and y were arbitrarily chosen, we have (x− y > 0 when x > y) if (xL − y > 0

when xL > y) (and we have shown such an xL does exist).

Also, though the above is actually sufficient in itself, we have (x− y > 0 when x > y) if

(x− yR > 0 when x > yR) (and such a yR does exist).

Both statements allow us to invoke transfinite induction to declare them true.

Thus, x− y > 0 whenever x > y.

Proof of (ii):

Similarly, we have y− x < 0 if there exists (y− x)R < 0.
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Since y− x = {y− xR, yL− x |y− xL , yR− x}, we have y− x < 0 if (∃ some xL such that

y− xL < 0 or ∃ some yR such that yR− x < 0).

Again, assuming the cut form of x and y, we have y < {y |x}< x, and by Theorems 4.2

and 4.1, this means {y |x} ∈ YR and {y |x} ∈ XL . So, there does exist such and xL and yR

such that xL > y and x > yR (both namely {y |x}).

So, again we have (y− x < 0 when x > y) if (y− xL < 0 when xL > y) or (yR − x < 0

when x > yR).

Again, by transfinite induction, both conditions are true, and so y−x< 0 when x> y.

THEOREM 8.3. (Additive Inverses in No)

For all x ∈ No, x− x = 0.

Proof. Let x ∈No. Recall that −x = {−xR |−xL }.

So, x− x = {x− xR ,xL− x |x− xL , xR− x}.

Since xR > x, by Theorem 8.2, we have x− xR < 0 and xR− x > 0.

Also, since xL < x, we have xL− x < 0 and x− xL > 0.

Thus, we have all (x− x)L < 0 and all (x− x)R > 0.

So, by Theorem 4.7, we have x− x = 0.

THEOREM 8.4. (Commutativity of Addition in No)

For all x,y ∈ No, x+ y = y+ x

Proof. Let x,y ∈ No.

Since, by (8.1), we know this is true for x = 0 and y = 0, we can assume xL + y = y+ xL ,

xR +y = y+xR , yL +x = x+yL , yR +x = x+yR , for the purpose of using transfinite induction.
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We have x+y= {xL + y, x+ yL |xR + y, x+ yR }, and y+x= {yL + x, y+ xL |yR + x, y+ xR },

by the definition of addition.

Thus, we have x+y= y+x only if xL +y= y+xL , and x+yL = yL +x, and xR +y= y+xR ,

and x+ yR = yR + x.

In other words, x and y commute only if (x commutes with any elements of the left and

right sets of y, and y commutes with any elements of the left and right sets of x).

By transfinite induction, this is true.

Therefore, x+ y = y+ x.

THEOREM 8.5. (Associativity of Addition in No)

For all a,b,c ∈ No, (a+b)+ c = a+(b+ c).

Proof. For all x, let x′ denote x′ ∈ {xL ,xR}.

We know that (0+b)+c = 0+(b+c) and (a+0)+c = a+(0+c), and (a+b)+0 =

a+(b+0).

Thus, we can assume (a′+ b)+ c = a′+(b+ c) and (a+ b′)+ c = a+(b′+ c) and

(a+b)+ c′ = a+(b+ c′), for the purpose of using transfinite induction.

Let a,b,c ∈ No. Then, (a+b)+ c = {aL +b,a+bL |aR +b,a+bR}+ c =

{(aL +b)+ c,(a+bL)+ c,(a+b)+ cL |(aR +b)+ c,(a+bR)+ c,(a+b)+ cR}, and

a+(b+ c) = a+{bL + c,b+ cL |bR + c,b+ cR }=

{aL +(b+ c),a+(bL + c),a+(b+ cL) |aR +(b+ c),a+(bR + c),a+(b+ cR)}.
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So, if all of the following are true, then (a+b)+ c = a+(b+ c):

(aL +b)+ c = aL +(b+ c) and (aR +b)+ c = aR +(b+ c),

(a+bL)+ c = a+(bL + c) and (a+bR)+ c = a+(bR + c), and

(a+b)+ cL = a+(b+ cL) and (a+b)+ cR = a+(b+ cR).

Thus, we can use transfinite induction to conclude that (a+b)+ c = a+(b+ c).

THEOREM 8.6. Let a,b,c ∈ No such that a < b. Then a+ c < b+ c.

Proof. Recall that a+c= {aL + c,a+ cL |aR + c,a+ cR }, and b+c= {bL + c,b+ cL |bR + c,b+ cR }.

We need to show that (a+ c) 6≥ (b+ c), that is, some (b+ c)L ≥ (a+ c) or (b+ c) ≥

some (a+ c)R . In other words, a+ c < b+ c if bL + c ≥ (a+ c) or b+ cL ≥ (a+ c) or

(b+ c)≥ aR + c or (b+ c)≥ a+ cR .

Thus, it would be sufficient to show that a+ c < bL + c, for some bL , or aR + c < b+ c,

for some aR .

Since a < b, we know that {a |b} is a number and that a < {a |b}< b.

Assuming the cut form of a and b, this means {a |b} ∈ AR and {a |b} ∈ BL .

Because of this, there does exist an aR such that aR < b and there does exist a bL such

that a < bL .

So, we have a+c < b+c when a < b if (a+c < bL +c when a < bL) or (aR +c < b+c,

when aR < b).

Thus, we can use transfinite induction and conclude that a+ c < b+ c whenever

a < b.
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THEOREM 8.7. Let a,b ∈ No. Then a+b ∈No

Proof. Recall that a+b = {aL +b,a+bL |aR +b,a+bR }.

Recall also that a+b ∈ No if no (a+b)L ≥ (a+b)R . So, we need to show that

(i) aL +b < aR +b,

(ii) aL +b < a+bR ,

(iii) a+bL < aR +b, and

(iv) a+bL < a+bR .

We know that aL < a < aR and bL < b < bR , and so, by Theorem 8.6, aL +b < aR +b.

So, (i) is confirmed. Likewise, also by Theorem 8.6, aL +b < a+b < a+bR , and so (ii) is

also confirmed. Similarly, a+bL < a+b < aR +b, and a+bL < a+bR , so (iii) and (iv) are

also confirmed. Thus, a+b ∈ No.

Taking the above properties together, we have No exhibiting all of the properties of an

Abelian group under addition. That is, all of the following are true: all elements of No have

additive inverses, addition on No is associative, addition on No is commutative, and No is

closed under addition.

Technically, since No is a proper class (essentially, every element of No is an ordered

pair of members of the power set of No, so No is not considered a set itself [7]) it is not

appropriate to actually call No a group, but we have demonstrated that it exhibits all of the

properties of an Abelian group under addition. This will be important to remember in the

next chapter.
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Algebraic Properties of Multiplication, No is a Field

The goal of this chapter is to prove several properties of multiplication on the Surreal

Numbers, with the ultimate goal to show that (No,+,×) exhibits the properties of a field.

Definitions of properties and the requirements for a field can be found in [6]. They are also

listed at the end of this chapter.

Recall the definition of multiplication:

xy = {xLy+ xyL− xLyL , xRy+ xyR− xRyR |xLy+ xyR− xLyR, xRy+ xyL− xRyL }.

THEOREM 9.1. Let a ∈ No. Then 0 ·a = a ·0 = 0

Proof. In the definition of multiplication, each member of the left and right set of the product

of two numbers refers to an element of either the left or right set of each of the numbers

being multiplied together. Since 0 = {|}, this means that there are no elements in the left or

right sets of the products 0 ·a and a ·0. Thus, 0 ·a = a ·0 = 0.



42

THEOREM 9.2. (The Multiplicative Identity for No)

Let a ∈ No. Then 1 ·a = a ·1 = a

Proof. Recall the definition of multiplication, and that 1 = {0|}. Then,

1 ·a = {1L ·a+1 ·aL−1L ·aL , 1R ·a+1 ·aR−1R ·aR |1L ·a+1 ·aR−1L ·aR , 1R ·a+1 ·aL−1R ·aL }

= {0 ·a+1 ·aL−0 ·aL |0 ·a+1 ·aR−0 ·aR }

= {1 ·aL |1 ·aR } .

So, we have 1 ·a = a if (1 ·aL = aL and 1 ·aR = aR).

Thus, by transfinite induction, 1 ·a = a.

Similarly,

a ·1 = {aL ·1+a ·1L−aL ·1L , aR ·1+a ·1R−aR ·1R |aL ·1+a ·1R−aL ·1R , aR ·1+a ·1L−aR ·1L }

= {aL ·1+a ·0−aL ·0 |aR ·1+a ·0−aR ·0}

= {aL ·1 |aR ·1} .

So, a ·1 = a if (aL ·1 = aL and aR ·1 = aR).

Thus, by transfinite induction, a ·1 = a.

THEOREM 9.3. Let a ∈ No. Then −a =−1 ·a.

Proof. Recall the definition of negation, −a = {−aR |−aL }. Also recall −1 = {|0}.

Then, since the terms referring to (−1)L don’t really exist, and since (−1)R = 0 we have

−1 ·a = {0 ·a+(−1) ·aR−0 ·aR |0 ·a+(−1) ·aL−0 ·aL }

= {(−1) ·aR |(−1) ·aL } .
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So, (−a =−1 ·a) if (−aR =−1 ·aR and −aL =−1 ·aL).

Therefore, by transfinite induction, −a =−1 ·a.

THEOREM 9.4. Let a ∈ No. Then −(−a) = a.

Proof. By definition of −x, −(−a) = {(−a)R |(−a)L }= {aL |aR }= a.

THEOREM 9.5. (Commutativity of Multiplication on No)

Let x,y ∈ No. Then xy = yx.

Proof. (Note: Because of the sheer size of the elements of these sets, they will be listed

separately, instead of within set brackets.)

Because 0 · y = y · 0, for all y ∈ No, we can assume that, for purposes of transfinite

induction, for all x′ ∈ {xL ,xR} and z ∈ No, x′z = zx′.

The left set of xy contains elements of two forms: xLy+xyL−xLyL , and xRy+xyR−xRyR .

The left set of yx contains elements of two forms: yLx+yxL−yLxL , and yRx+yxR−yRxR .

Because addition is commutative, we can rearrange the elements of the left set of yx and

rewrite them as follows: yxL + yLx− yLxL , and yxR + yRx− yRxR .

Consequently, if xLy+ xyL− xLyL = yxL + yLx− yLxL and

xRy+ xyR− xRyR = yxR + yRx− yRxR ,then (xy)L = (yx)L .

The right set of xy contains elements of two forms: xLy+xyR−xLyR , and xRy+xyL−xRyL .

The right set of yx contains elements of two forms: yLx+yxR−yLxR , and yRx+yxL−yRxL .

Because addition is commutative, we can rearrange the elements of the right set of yx

and rewrite them as follows: yxR + yLx− yLxR , and yxL + yRx− yRxL .

Consequently, if xLy+xyR−xLyR = yxL +yRx−yRxL and xRy+xyL−xRyL = yxR +yLx−

yLxR , then (xy)R = (yx)R .

The rearrangement we performed helps us see that each member of (xy)L corresponds

to a member of (yx)L with corresponding terms matching the requirement that x′y = yx′
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or xy′ = y′x, for all x′ ∈ {xL ,xR}, y′ ∈ {yL ,yR}. This allows us to conclude, by transfinite

induction, that xy = yx.

THEOREM 9.6. (Distributivity of Multiplication over Addition on No)

Let a,b,c ∈ No. Then a(b+ c) = ab+ac.

Proof. (Note: Because of the sheer size of the elements of these sets, they will be listed

separately, instead of within set brackets.)

Because 0(b+ c) = 0b+ 0c, a(0+ c) = a · 0+ ac, and a(b+ 0) = ab+ a · 0, we can

assume, for purposes of transfinite induction, that for all a′ ∈ {aL ,aR} ,b′ ∈ {bL ,bR} ,

c′ ∈ {cL ,cR},

a′(b+ c) = a′b+a′c, a(b′+ c) = ab′+ac, a(b+ c′) = ab+ac′

The left set of (b+ c) contains bL + c and b+ cL .

The right set of (b+ c) contains bR + c and b+ cR .

The left set of a(b+ c) contains elements of the following forms:

aL(b+ c)+a(b+ c)L−aL(b+ c)L and aR(b+ c)+a(b+ c)R−aR(b+ c)R .

Substituting left and right elements of (b+ c) into [a(b+ c)]L gives us elements of the

following forms:

aL(b+ c)+a(bL + c)−aL(bL + c),

aL(b+ c)+a(b+ cL)−aL(b+ cL),

aR(b+ c)+a(bR + c)−aR(bR + c), and

aR(b+ c)+a(b+ cR)−aR(b+ cR).

The right set of a(b+ c) contains elements of the following forms:

aL(b+ c)+a(b+ c)R−aL(b+ c)R and aR(b+ c)+a(b+ c)L−aR(b+ c)L .
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Substituting left and right elements of (b+ c) into [a(b+ c)]R gives us elements of the

following forms:

aL(b+ c)+a(bR + c)−aL(bR + c),

aL(b+ c)+a(b+ cR)−aL(b+ cR),

aR(b+ c)+a(bL + c)−aR(bL + c), and

aR(b+ c)+a(b+ cL)−aR(b+ cL).

The left set of ab contains elements aLb+abL−aLbL and aRb+abR−aRbR .

The right set of ab contains elements aLb+abR−aLbR and aRb+abL−aRbL .

The left set of ac contains elements aLc+acL−aLcL and aRc+acR−aRcR .

The right set of ac contains elements aLc+acR−aLcR and aRc+acL−aRcL .

The left set of ab+ac contains elements (ab)L +(ac) and (ab)+(ac)L .

The right set of ab+ac contains elements (ab)R +(ac) and (ab)+(ac)R .

Substituting left and right elements of ab and ac into elements from the left set of ab+ac

gives us elements of the following forms:

(aLb+abL−aLbL)+(ac),

(aRb+abR−aRbR)+(ac),

(ab)+(aLc+acL−aLcL), and

(ab)+(aRc+acR−aRcR).

Substituting left and right elements of ab and ac into elements from the right set of

ab+ac gives us elements of the following forms:

(aLb+abR−aLbR)+(ac),

(aRb+abL−aRbL)+(ac),

(ab)+(aLc+acR−aLcR), and

(ab)+(aRc+acL−aRcL).
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To each (ab+ ac)L or (ab+ ac)R , we can creatively add and subtract a term without

changing the element’s value, and then rearrange the terms to match the distribution require-

ments of a corresponding [a(b+ c)]L or [a(b+ c)]L .

This gives us elements in (ab+ac)L of the following forms (with the new added and

subtracted terms in brackets for clarity):

aLb+[aLc]+abL +(ac)−aLbL− [aLc],

aRb+[aRc]+abR +(ac)−aRbR− [aRc],

[aLb]+aLc+(ab)+acL− [aLb]−aLcL , and

[aRb]+aRc+(ab)+acR− [aRb]−aRcR .

This also gives us elements in (ab+ac)R with the following forms:

aLb+[aLc]+abR +(ac)−aLbR− [aLc],

aRb+[aRc]+abL +(ac)−aRbL +(ac)− [aRc],

[aLb]+aLc+(ab)+acR− [aLb]−aLcR , and

[aRb]+aRc+(ab)+acL− [aRb]−aRcL .

After all of that, we have a(b+ c) = ab+ac if all of the following are true:

aL(b+ c)+a(bL + c)−aL(bL + c) = (aLb+[aLc]+abL +ac−aLbL− [aLc]) (9.1)

aL(b+ c)+a(b+ cL)−aL(b+ cL) = [aLb]+aLc+(ab)+acL− [aLb]−aLcL (9.2)

aR(b+ c)+a(bR + c)−aR(bR + c) = (aRb+[aRc]+abR +ac−aRbR)− [aRc] (9.3)

aR(b+ c)+a(b+ cR)−aR(b+ cR) = [aRb]+aRc+(ab)+acR− [aRb]−aRcR (9.4)

aL(b+ c)+a(bR + c)−aL(bR + c) = aLb+[aLc]+abR +ac−aLbR− [aLc] (9.5)

aL(b+ c)+a(b+ cR)−aL(b+ cR) = [aLb]+aLc+(ab)+acR− [aLb]−aLcR (9.6)

aR(b+ c)+a(bL + c)−aR(bL + c) = aRb+[aRc]+abL +ac−aRbL +(ac)− [aRc] (9.7)

aR(b+ c)+a(b+ cL)−aR(b+ cL) = [aRb]+aRc+(ab)+acL− [aRb]−aRcL (9.8)
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Let x ∈ {a,b,c}, x′ denote x′ ∈ {x,xL ,xR}.

What we have, then, by comparing corresponding terms in each equation above, is

that (9.1) will be true if a′(b′+ c′) = a′b′+ a′c′, with at least one of the following true:

a′ 6= a, b′ 6= b, or c′ 6= c. Thus, these corresponding terms all satisfy the requirements in our

assumption.

By transfinite induction, therefore, a(b+ c) = ab+ac.

THEOREM 9.7. (Associativity of Multiplication in No)

Let a,b,c ∈ No. Then a(bc) = (ab)c.

Proof. (Note: Because of the sheer size of the elements of these sets, they will be listed

separately, instead of within set brackets.)

Since for all a,b,c∈No, (0 ·b)c = 0(bc), (a ·0)c = a(0 ·c), and (ab) ·0 = a(b ·0, we can

assume that for all a′ ∈{aL ,aR} ,b′ ∈{bL ,bR} ,c′ ∈{cL ,cR}, (a′b)c= a′(bc), (ab′)c= a(b′c),

and (ab)c′ = a(bc′), for the purposes of transfinite induction.

The left set of (bc) contains bLc+bcL−bLcL and bRc+bcR−bRcR .

The right set of (bc) contains bLc+bcR−bLcR , and bRc+bcL−bRcL .

The left set of a(bc) contains aL(bc)+a(bc)L−aL(bc)L and aR(bc)+a(bc)R−aR(bc)R .

The right set of a(bc) contains aL(bc)+a(bc)R−aL(bc)R , and aR(bc)+a(bc)L−aR(bc)L .

By substituting elements from (bc)L and (bc)R into those of [a(bc)]L , we get the follow-

ing:

aL(bc)+a(bLc+bcL−bLcL)−aL(bLc+bcL−bLcL),

aL(bc)+a(bRc+bcR−bRcR)−aL(bRc+bcR−bRcR),

aR(bc)+a(bLc+bcR−bLcR)−aR(bLc+bcR−bLcR), and

aR(bc)+a(bRc+bcL−bRcL)−aR(bRc+bcL−bRcL).



48

By substituting elements from (bc)L and (bc)R into those of [a(bc)]R , we get the follow-

ing:

aL(bc)+a(bLc+bcR−bLcR)−aL(bLc+bcR−bLcR),

aL(bc)+a(bRc+bcL−bRcL)−aL(bRc+bcL−bRcL),

aR(bc)+a(bLc+bcL−bLcL)−aR(bLc+bcL−bLcL), and

aR(bc)+a(bRc+bcR−bRcR)−aR(bRc+bcR−bRcR).

The left set of (ab) contains aLb+abL−aLbL and aRb+abR−aRbR .

The right set of (ab) contains aLb+abR−aLbR , and aRb+abL−aRbL .

The left set of (ab)c contains (ab)Lc+(ab)cL− (ab)LcL , and (ab)Rc+(ab)cR− (ab)RcR .

The right set of (ab)c contains (ab)Lc+(ab)cR−(ab)LcR , and (ab)Rc+(ab)cL−(ab)RcL .

By substituting elements from (ab)L and (ab)R into those of [(ab)c]L , we get the follow-

ing:

(aLb+abL−aLbL)c+(ab)cL− (aLb+abL−aLbL)cL ,

(aRb+abR−aRbR)c+(ab)cL− (aRb+abR−aRbR)cL ,

(aLb+abR−aLbR)c+(ab)cR− (aLb+abR−aLbR)cR , and

(aRb+abL−aRbL)c+(ab)cR− (aRb+abL−aRbL)cR .

By substituting elements from (ab)L and (ab)R into those of [(ab)c]R , we get the follow-

ing:

(aLb+abL−aLbL)c+(ab)cR− (aLb+abL−aLbL)cR ,

(aRb+abR−aRbR)c+(ab)cR− (aRb+abR−aRbR)cR ,

(aLb+abR−aLbR)c+(ab)cL− (aLb+abR−aLbR)cL , and

(aRb+abL−aRbL)c+(ab)cL− (aRb+abL−aRbL)cL .

Using the distributive property established in (9.6), the elements in [(ab)c]L are:

(aLb)c+(abL)c− (aLbL)c+(ab)cL− (aLb)cL− (abL)cL +(aLbL)cL ,

(aLb)c+(abR)c− (aLbR)c+(ab)cR− (aLb)cR− (abR)cR +(aLbR)cR ,

(aRb)c+(abL)c− (aRbL)c+(ab)cR− (aRb)cR− (abL)cR +(aRbL)cR , and
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(aRbc)+(abR)c− (aRbR)c+(ab)cL− (aRb)cL− (abR)cL +(aRbR)cL .

Using the distributive property, the elements in [a(bc)]L are:

aL(bc)+a(bLc)+a(bcL)−a(bLcL)−aL(bLc)−aL(bcL)+aL(bLcL),

aL(bc)+a(bRc)+a(bcR)−a(bRcR)−aL(bRc)+−aL(bcR)+aL(bRcR),

aR(bc)+a(bLc)+a(bcR)−a(bLcR)−aR(bLc)+−aR(bcR)+aR(bLcR), and

aR(bc)+a(bRc)+a(bcL)−a(bRcL)−aR(bRc)+−aR(bcL)+aR(bRcL).

By distributing, the elements in [(ab)c]R are:

(aLb)c+(abL)c− (aLbL)c+(ab)cR− (aLb)cR− (abL)cR +(aLbL)cR ,

(aRb)c+(abR)c− (aRbR)c+(ab)cR− (aRb)cR− (abR)cR +(aRbR)cR ,

(aLb)c+(abR)c− (aLbR)c+(ab)cL− (aLb)cL− (abR)cL +(aLbR)cL , and

(aRb)c+(abL)c− (aRbL)c+(ab)cL− (aRb)cL− (abL)cL +(aRbL)cL .

Also, by distributing, the elements in [a(bc)]R are:

aL(bc)+a(bLc)+a(bcR)−a(bLcR)−aL(bLc)−aL(bcR)+aL(bLcR),

aL(bc)+a(bRc)+a(bcL)−a(bRcL)−aL(bRc)−aL(bcL)+aL(bRcL),

aR(bc)+a(bLc)+a(bcL)a(bLcL)−aR(bLc)−aR(bcL)+aR(bLcL), and

aR(bc)+a(bRc)+a(bcR)−a(bRcR)−aR(bRc)−aR(bcR)+aR(bRcR).

For all x ∈ {a,b,c}, let x′ denote x′ ∈ {x,xL ,xR}.

By careful examination, we can see that each of the members of [a(bc)]L corresponds

to a member of [a(bc)]R consisting of corresponding terms that match the requirement

(a′b′)c′ = a′(b′c′), where at least one of the three numbers in the term is a member of the

left or right sets of a,b, or c, and satisfying the assumption we originally made. Thus, each

is true and, by transfinite induction, [(ab)c]L = [a(bc)]L .

Similar comparisons show that, by transfinite induction, [(ab)c]L = [a(bc)]R .

Since each set in (ab)c is equal to its corresponding set in a(bc), we conclude that

(ab)c = a(bc).
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Regarding multiplicative inverses:

It has already been established that, for all x ∈ No, a multiplicative inverse 1
x exists and

that it is defined by 1
x = y, where xy = 1 (See page 28). During the previous discussion, we

discussed an algorithm for constructing 1
x . That method may or may not work suitably for

all x ∈ No. (To see what I mean, think about using that method to construct 1
ω−3 . If you are

very clever, you may just pull it off, but it will likely be rather difficult.)

Luckily, Conway has created a recursive definition of 1
x that will work for any x ∈ No. It

is constructed in a very unusual way, and will require some explanation.

DEFINITION 9.8. Let x ∈ No such that x > 0. There exists unique y ∈ No, such that xy = 1.

It is defined as follows:

y =
{

0,
1+(xR− x)yL

xR

,
1+(xR− x)yR

xL

∣∣∣∣ 1+(xL− x)yL

xL

,
1+(xR− x)yR

xR

}
.

Conway goes on to point out that the definition of y refers directly to yL and yR , admitting

that it might seem strange. He explains that yL and yR are considered typical “older” elements

of the left and right sets of y and that newer elements are defined in terms of the old ones.

Then, in a footnote on page 21 of ONAG, he gives an example of the use of this definition,

which is being included here verbatim (with slight changes in notation):

“To see how this definition works, take x = {0,2|} = 3. Then there is no

xR and the only xL is 2, so xL − x = −1 and the formula for y becomes y ={
0, 1

2(1− yR)
∣∣ 1

2(1− yL)
}

. The initial value yL = 0 gives us 1
2(1−0) = 1

2 for a

new yR , whence 1
2(1−

1
2) =

1
4 as a yL , then 1

2(1−
1
4) =

3
8 for a yR , and so on,

yielding y =
{

0, 1
4 ,

5
16 , . . .

∣∣ 1
2 ,

3
8 . . .

}
, which certainly looks like 1

3 .” [1]
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This definition for the multiplicative inverse of a number is certainly inventive, and I

could not hope to improve upon it by trying to describe it, which is why it was included as it

appears in Conway’s book. I should add that he then goes on immediately to prove that this

definition does indeed provide an actual multiplicative inverse for each number in No, and

refer the reader to the book in order to see that proof, should the reader indeed wish to see it.

According to Dummit and Foote in [6], a field (S,+,×) is defined as a set S, together with

two binary operations, addition (+) and multiplication (×), satisfying all of the following

conditions:

(i) (S,+) is an abelian group,

(ii) × is associative,

(iii) × distributes over + , for all a,b,c ∈ S, that is,

a× (b+ c) = a×b+a× c for all a,b,c ∈ S,

(iv) multiplication is commutative,

(v) a multiplicative identity exists in S, that is,

there exists 1 ∈ S such that1 6= 0 and 1×a = a×1 = a for all a ∈ S,

(vi) for all x ∈ S, there exists y ∈ S such that x× y = 1.

We have seen that No exhibits all of these properties under addition and multiplication.

Technically, No is a proper class, not a set, and so rather than referring to (No,+, ·) as

a field, technically speaking, we should refer to it as a proper class with field properties.

However, this distinction is truly just a technicality (and one Conway apparently considers

quite unjust).

Obviously, there is much more to explore. Definitions for higher arithmetic operations
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have been created by Conway and others. Exponents, radicals, and logarithms have all

been defined, and many other topics have been given a thorough investigation. If your

interest is piqued, please refer to the source material for more advanced material, or continue

experimenting and see what you can discover.

The purpose of this was just to give a basic, yet thorough introduction to the Surreal

Numbers and their basic properties. Hopefully, that has been accomplished.
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Vita

Josh Hostetler was born in the mid-seventies in Richmond, Virginia, where he grew up a

statistical anomaly and something of a jack-of-all-trades.

In the beginning, his elementary school was piloting an at-your-own-pace program.

By the end of first grade, he had exceeded the elementary-school level mathematics and

language skills curricula. But then he moved. . .

The new school did not have such a program. His second grade teacher vehemently

expressed her refusal to believe or act on the fact that he was, indeed, past the second-grade

level in any subject.

So, Josh stagnated for many years, bored and disgruntled.

He realized he had an affinity for mathematics during recess in the third or fourth grade,

when some of the other kids would insist on challenging him with verbal assaults like, "I bet

you don’t know what 5 times 1,000,000 is. . ." Though such challenges did not really require

any mathematical excellence to quell, they did spawn an interest in the subject for Josh.

Between sixth and seventh grades, at the beach, he read James Gleick’s Chaos: Making a

New Science[9] cover to cover, understanding very little of it, as it did not include passages

explaining what variables were or the like. Regardless, he was too fascinated by the book to

do beach things.

After that, there was more stagnation for many years.

In the seventh grade, spawned by a Social Studies lesson about the electoral college,
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Josh began occasionally mismatching his socks as a symbolic (albeit somewhat obtuse)

gesture that was surprisingly effective in expressing an utter disinterest in participating in

the norms of a society that lies to its children.

In eighth grade, Josh was not allowed to take algebra because of his seventh-grade

refusal to do homework to practice things he had learned seven years before. In pre-algebra

class one day, he noticed a pattern regarding squaring the sum of two numbers. Excited, he

wrote down an expression of the pattern, using ? as his variable (since he still had not been

introduced to them by anyone), and he took it to show his teacher. Her response was horrid,

yet typical coming from one one of his teachers:

"Oh Josh. . . That’s just algebra. . . Go sit down."

Irritating as this teacher’s attitudinally disinterested and potentially educationally stifling

statement was, it gave Josh the right to claim for the remainder of his days that he had

discovered algebra.

In ninth grade, the sock thing became permanent, and he joined the math team, which

was undefeated all year.

In tenth grade, in geometry class, Josh noticed a pattern involving right triangles, which

he painstakingly wrote up as a theorem and then proved. Though the theorem turned out to

be nothing more than a very simple corollary to Pythagorean Theorem, thereby rendering it

small beans compared to the teenage discoveries of the great mathematicians in history, it

gained him awe and respect of a handful of teachers at Henrico High School. One of those

teachers even gave him his first computer, a then fourteen-year-old Franklin Ace 1200, free

of charge, which he obsessively programmed to do all kinds of crazy things. The teacher

was impressed.

During the same period, one of Josh’s math teachers (there were two, as his guidance
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counselor had realized the error in his having not taken algebra two years before, and allowed

him to double up his math classes in tenth grade) expressed attitudinally disinterested and

potentially educationally stifling statements in the form of answers to his questions in class.

(For example: “Where did quadratic formula come from?” “Oh, I don’t know Josh. . . Some

old guy made it up hundreds of years ago.” Flippancy is always a helpful teaching aid. . .)

As a consequence, while he got a perfect score in Geometry that year, he only got a C in

Algebra II.

Despite this, the math team remained undefeated during tenth grade, and Josh received

an award for placing in the top twenty percent at the VCTM - VCU Statewide Mathematics

Contest. Some people were impressed.

In eleventh grade, Josh seriously studied acting at the Center for the Arts, started taking

Japanese, and became captain of the math team, which remained undefeated. As a project

for Japanese class that year, he created a simple yet fully functional Japanese word processor

on his Franklin. A few people were impressed.

In twelfth grade, Josh was still captain of the math team, became president of the Henrico

High chapter of the National Thespian Society, and worked at a video store to pay for gas and

car insurance (which was horrifyingly expensive due to his demographic and corporate use

of actuaries in policy-making, despite his impeccable driving record and statistical anomaly

status), and the SAT (which, in his household was optional, and therefore his responsibility).

The math team remained undefeated.

At the end of the year, Josh was given the Japanese Award, for having the highest

grade in Japanese class among anyone in the state (122%), and the Math Award, which had

been specially created for him, due to that now unimpressive theorem and the continued

undefeated status of math team, by the teacher who had given him his computer. She was

clearly impressed.

After high school, Josh went to VCU, where he floated around without declaring a major
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for a handful of years. He did not study math at all.

He took classes in a wide variety of disciplines, and started making music under the

moniker "Antmanmusic". Eventually, he decided to major in filmmaking and film history.

He made three films during his undergraduate college career (two of which won awards and

one of which traveled the East Coast in a touring festival) and graduated with a BGS in film

studies.

Then he got a job in the advertising industry which he quickly lost in a wave of layoffs

that occurred due to a sudden lack of business that was spawned by the 2000 presidential

election result. For the next five years, laid off and unable to make a film due to the expense,

he worked in various jobs, mostly as a temp, for not very much money at all and with

sporadic, unpredictable hours and job opportunities. Antmanmusic continued during this

period, making music that was often mathematical in nature and created using algorithmic

composition methods.

This reinvigorated an interest in studying math in Josh. He checked out books about

sequences (particularly the Fibonacci sequence) and elementary group theory. Eventually,

this renewed interest led him to use his alumnus status to gain entry to seek advice from Dr.

Wood at VCU about the possibility of attending graduate school for mathematics. By the

end of that meeting, Josh had inexplicably been admitted provisionally with a scholarship to

pay for a year of undergraduate math courses before he could enter graduate school.

Many years later, he finished this thesis.

Incidentally, Josh has twelve brothers and sisters (from at least five different sets of

parents. . . probably six, but who can be sure?), a huge, mostly local, close and supportive

extended family. He has a profound case of ADD/ADHD-Combined type, which went

undiagnosed until he was 32. He drinks exorbitant amounts of coffee, smokes like a chimney,

and still mismatches his socks.


	Virginia Commonwealth University
	VCU Scholars Compass
	2012

	Surreal Numbers
	Joshua Hostetler
	Downloaded from


	Signature Page
	Copyright
	Titlepage
	Acknowledgment
	Abstract
	Disclaimer
	Foreword
	Table of Contents

	Introduction
	Basic Definitions and Conventions
	Existence and Beginning Construction of the Surreal Numbers
	Some General Properties of Surreal Numbers and Their Order
	The Birthday Function, Integers, and Dyadic Numbers
	Day  (and Beyond)
	Transfinite Induction on No
	Algebraic Properties of Addition
	Algebraic Properties of Multiplication, No is a Field
	Bibliography
	Vita

