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ABSTRACT 

Introduction and methods: Hepatocellular carcinoma (HCC) remains a difficult disease to study 

even after a decade of genomic analysis.  Metabolic and cell-cycle perturbations are known, 

large changes in tumors that add little to our understanding of the development of tumors, but 

generate “noise” that obscures potentially important smaller scale expression changes in 

“driver genes”. Recently, some researchers have suggested that HCC shares pathways involving 

the master regulators of embryonic development. Here, we investigated the involvement and 

specificity of developmental genes in HCV-cirrhosis and HCV-HCC. We obtained microarray 

studies from 30 patients with HCV-cirrhosis and 49 patients with HCV-HCC and compared to 12 

normal livers.  

Differential gene expression is specific to liver development genes: 86 of 202 (43%) 

genes specific to liver development had differential expression between normal and 

cirrhotic or HCC samples. Of 60 genes with paralogous function, which are specific to 

development of other organs and have known associations with other cancer types,  none 

were expressed in either adult normal liver or tumor tissue.    

Developmental genes are widely differentially expressed in both cirrhosis and early 

HCC, but not late HCC: 69 liver development genes were differentially expressed in 

cirrhosis, and 58 of these (84%) were also dysregulated in early HCC.  19/58 (33%) had 

larger-magnitude changes in cirrhosis and 5 (9%) had larger-magnitude changes in early 

HCC. 16 (9%) genes were uniquely altered in early tumors, while only 2 genes were 



 

 

xx 
 

uniquely changed in late-stage (T3 and T4) HCC.  Together, these results suggest that the 

involvement of the master regulators of liver development are active in the pre-cancerous 

cirrhotic liver and in cirrhotic livers with emerging tumors but play a limited role in the 

transition from early to late stage HCC. 

Common patterns of coordinated developmental gene expression include:  (1) 

Dysregulation of BMP2 signaling in cirrhosis followed by overexpression of BMP inhibitors 

in HCC. BMP inhibitor GPC3 was overexpressed in nearly all tumors, while GREM1 was 

associated specifically with recurrence-free survival after ablation and transplant. (2) 

Cirrhosis tissues acquire a progenitor-like signature including high expression of Vimentin, 

EPCAM, and KRT19, and these markers remain over-expressed to a lesser extent in HCC. 

(3) Hepatocyte proliferation inhibitors (HPI) E-cadherin (CDH1), BMP2, and MST1 were 

highly expressed in cirrhosis and remained over-expressed in 16 HCC patients who were 

transplanted with excellent recurrence-free survival (94% survival after 2 years; mean 

recurrence-free survival = 5.6 yrs), while loss in early HCC was associated with early 

recurrence and (2 year). Loss of HPI overexpression was also correlated with 

overexpression of c-MET and loss of STAT3, LAMA2, FGFR2, CITED2, KIT, SMAD7, GATA6, 

ERBB2, and NOTCH2.  
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Chapter 1:  Introduction and overview 
 

1.1 Motivation 
 

Hepatocellular carcinoma (HCC) is the third most common cancer in the world [1] and 

600,000 new cases are diagnosed each year [2].  One-year survival rates remain less than 50% 

in the United States, despite advances in therapy (McGivern 2011).  Because of its poor 

prognosis, HCC is the third leading cause of cancer death worldwide [2].  Chronic Hepatitis B 

(HBV) is the dominant risk factor in China, while chronic Hepatitis C virus (HCV) is predominant 

in Japan and North America.  HCC develops over decades of chronic infection and is generally 

thought to be a multistep process resulting from hepatocyte turnover, chronic inflammation, 

regeneration, oxidative stress, DNA damage, and cirrhosis, as well as direct viral injuries. 

Unfortunately, the specific molecular mechanisms underlying carcinogenesis remain unclear. 

 In the last ten years, microarray technology has been a powerful tool to study the 

molecular basis of disease. By measuring whole-genome transcript levels, expression patterns 

associated with liver dysfunction have been examined. However, HCC remains a difficult 

disease to study, with widely variable findings between studies and several proposed non-

overlapping gene signatures [3-13].  This is likely due not only to the biological heterogeneity of 

HCC pathogenesis, but also reflects the varied clinical background of patients and variation in 
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statistical technique. There are significant statistical challenges which plague the analysis and 

interpretation of microarray experiments. Differences in technique in every stage of data pre-

processing have been demonstrated to dramatically affect the end results, including 

background correction [14], normalization [15, 16], and probe set summarization [17]. 

 Another difficulty stems from the heterogeneity of cancer processes, in which changes 

in the expression of important genes occur only in subsets of tumors. This results in skewed 

density curves (sometimes even bi-modal) that may not be easily detected by means-based 

tests. Most statistical tests in common use are based on comparing the magnitude of mean 

change relative to the variation. These tests also place focus on the largest magnitude changes 

which are often products of tumor behavior, such as increased metabolism and cell 

proliferation/turnover, rather than drivers that often have smaller fold-changes [18]. We 

suspect that there are modest changes in the expression of critical genes that may be difficult 

to distinguish from 'noise' in the data, but may have a significant impact on tumor development 

[19, 20].  

The main Aims of this study were: 

Aim 1: Show that liver cells under the stress of chronic infection, inflammation, and other 

injuries preferentially activate genes and pathways identified a priori as specifically involved in 

embryonic liver development, including those later involved in healing and regeneration, over 

genes with similar function that were not involved in liver development. 
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Aim 2: Identify recurrent patterns of activation that are either common to most tumors, or 

particular to a subset of tumors, and identify any clinical or prognostic  characteristics of those 

subsets. 

Aim 3: Compare our knowledge-driven methodology with standard approaches such as GSEA 

(Gene Set Enrichment Analysis and determine whether, in fact, the new method is more 

successful at identifying important patterns in the development and progression of liver 

tumors. 

In the remaining sections of Chapter 1, we review what is known about the molecular 

mechanisms that are important in HCV infection, liver cirrhosis, and HCC, as well as those that 

drive liver development, wound healing, and regeneration.  The genes identified from this 

review were used to create the gene sets used to explore Aims 1 and 2.  In Chapter 2, 

Microarray and data processing methods are reviewed.  Chapters 3, 4, and 5 address the 

questions in Aims 1, 2, and 3, and the results are discussed in Chapter 6. 

 

1.2 Hepatitis C infection, mechanisms of liver damage and 

hepatocarcinogenesis 
 

In this section we review the molecular mechanisms that underlie the development and 

progression of chronic HCV infection to the development of HCC.  The critical genes that drive 

these processes are identified in order to define gene sets that might be expected to 
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characterize the genetic signature of cirrhosis samples and provide a basis for comparison to 

the genetic trends identified in our data. 

Acute HCV infection is often clinically unapparent, with only about 1% of acute cases 

causing life-threatening hepatitis.  However, the majority (75-85%) of acute adult HCV 

infections result in chronic disease (defined as persistent HCV RNA in the bloodstream for at 

least 6 months after onset of acute infection) [21].   Symptoms associated with chronic 

infection may not be apparent for years, but eventually present as fatigue, malaise, and the 

symptoms of hepatitis [22].  The Hepatitis C Virus is a positive-stranded RNA virus of the 

Flaviviridae family [2] that does not integrate into the host genome [23].  As such, it is the only 

known RNA virus whose lifecycle takes place in the cytoplasm [24].   Replication occurs in the 

cytoplasm, using the endoplasmic reticulum (ER) as primary site of genomic replication and 

virion assembly.  Newly synthesized HCV RNA binds to HCV core protein and buds into the ER to 

form the viral envelope that then leaves the cell through the host cell’s secretory pathway. 

The HCV virus consists of a structural region and a non-structural region.  The structural 

region contains the core protein and envelope glycoproteins E1, E2, and p7 protease. The non-

structural region consists of six proteins that form the viral replicase complex: NS2, NS3, NS4a, 

NS4b, NS5a, and NS5b [25].  An F  (for frameshift protein) or ARFP (for alternate reading frame 

protein), generated by an overlapping reading frame in the core protein coding sequence, has 

been proposed [2].  

Because the virus does not integrate into the host DNA, mechanisms of liver damage 

and carcinogenesis are indirect. The HCV proteins have known direct interaction with over 30 
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host proteins, which over many years results in progressive damage from chronic inflammation, 

intrahepatic lipid accumulation (steatosis), fibrosis, oxidative stress, and direct oncogenic 

effects of the HCV proteins [24].  HCV core and non-structural proteins also localize in the outer 

mitochondrial membrane of the hepatocytes, which induces systemic oxidative stress and 

related mitogen-activated protein kinase (MAPK) signaling (p38, JNK, ERK, and NF-κB 

pathways).  This leads to enhanced hepatocyte proliferation [26].  Oxidative stress induces 

production of Reactive Oxygen Species (ROS),   leading to mitochondrial DNA damage [1], 

further increasing oxidative stress and insulin resistance [27].   Insulin resistance (IR) is also 

mediated directly by HCV core protein interaction with Tumor Necrosis Factor (TNF) receptors.  

Elevated insulin levels directly stimulate hepatic stellate cell proliferation and secretion of 

extra-cellular matrix (ECM) and connective tissue growth factors, contributing to fibrosis and 

cirrhosis development. The interdependence between steatosis, IR, and oxidative stress is 

important for disease progression and induces tissue damage and inflammation with activation 

of hepatic stellate cells (HSCs) and increased production of TNF and inteleukin-6 (IL6).  

Activated HSCs become responsive to both proliferative and fibrogenic cytokines and undergo 

an epithelial-mesenchymal transition (EMT) into myo-fibroblast-like cells that synthesize ECM 

components.  These accumulate over time to form fibrosis.  Eventually, regenerating 

hepatocytes become enclosed by scar tissue and form the nodules that define cirrhosis [24]. 

Cirrhosis is the end result of a long period of chronic liver disease, and eventually there 

is a decrease in hepatocyte proliferation that may be indicative of an exhaustion of the 

regenerative capacity of the liver [27].  Cirrhosis is also characterized by the continuous 

activation of hepatic stellate cells (HSC) and sustained production of cytokines, growth factors, 
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and products of oxidative stress [28].   This may in part be mediated by Toll-like receptors 

(TLRs). TLR2 and TLR4 are upregulated in the hepatocytes and Kupffer cells of patients with 

chronic HCV [1].  Molecular processes associated with cirrhosis include down-regulation of ECM 

production and cell proliferation regulators, down-regulation of genes involved in the 

regulation of differentiation [29], and up-regulation of JAG1 (pro-angiogenic factor in the Notch 

pathway), STAT1 and CXCL9-11 (involved in interferon immune response), and insulin growth 

factor [30].  Other important signaling pathways in the development of cirrhosis include PDGF 

and TGFβ dependent HSC recruitment mediated by neurophilin-1 (NRP1) [31]. 

Hepatocytes in a chronically injured liver have altered growth responses compared to 

hepatocytes in the healthy liver.  Although TFGβ is up-regulated, cirrhotic hepatocytes have 

reduced sensitivity to it and are resistant to TFGβ – induced apoptosis [32], and this may be 

partly due to increased oxidative stress [33].  Nitta et al (2008) showed that cirrhotic 

hepatocytes also resist apoptosis via a MAPK-dependent survival pathway  [32].  Cirrhotic 

hepatocytes express high levels of vimentin (VIM;  a mesenchymal marker) and decreased 

expression of E-cadherin and occludin compared to healthy hepatocytes and have a fibroblast-

like phenotype consistent with EMT (epithelial mesenchyme transition) [32].  Hepatocyte 

damage in the context of chronic liver inflammation and necrosis, such as occurs in HCV-

cirrhosis, may invoke repair mechanisms involving hepatic progenitor (stem) cells [34]. 

Pathways involved in stem cell renewal include Notch, Hedgehog, and Wnt, which may also be 

seminal events in hepatocarcinogenesis [34].  
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It is estimated that 70-90% of all HCCs develop in a cirrhotic liver [2].   The molecular 

mechanisms outlined above suggest multiple factors contributing to carcinogenesis: direct 

action of HCV proteins leading to unregulated behavior in hepatocytes or progenitor cells; 

genetic alterations or DNA repair defects that in turn may inactivate tumor suppressors, 

activate oncogenes, and lead to epigenetic alterations; and a gradually decreasing ability to 

properly balance growth and cytokine signaling.  Although the "classic" model of carcinogenesis 

requires a set of accumulated mutations, the direct effect of HCV proteins allows the pre-

neoplastic cell to skip some of these steps.  In addition, the HCV genome has hyper-variable 

regions that generate multiple quasi-species.  Different viral variants have been isolated in 

tumor and non-tumor regions of the liver, suggesting that certain quasi-species may confer 

competitive advantage for some hepatocyte populations and contribute to carcinogenesis [2]. 

The main pathways associated with  HCC development include Wnt/β-catenin, TGF-β,  

pRb, and p53 [35], Pi3K/AKT, MYC, MET, and Hedgehog [27].  pRb, p53, TGF-β, and β-catenin 

regulate cell proliferation or death, and these have been shown to have loss of heterozygosity 

due to aberrant methylation in some HCC [36].  As noted above, hepatocytes become less 

responsive to TGF-β induced apoptosis, even though TGF-β levels are increased.  This may also 

play a role in hepatocarcinogenesis [35].  p53 alterations are rarely seen in HCV-HCC, but when 

present are associated with poor prognosis [35]. 

 Wnt plays multiple roles in cell differentiation, proliferation, and apoptosis as well as 

embryogenesis, along with stem cell renewal, EMT, and cell adhesion [37].  The roles of Wnt 

and β-catenin are similarly complex in HCC, with contrasting and contradictory roles reported 



 

 

8 
 

[38]. For instance, Wnt5A has been shown to repress canonical Wnt signaling in HCC cell lines 

[39].  Geng et al (2012) report that loss of Wnt5A has been associated with elevated serum AFP 

and poor prognosis in patients with HCC [40], while increased Wnt5A expression was associated 

with poor differentiation (along with increased AFP) in HCC cell lines [41].  A July 2012 report 

indicates that during embryonic development, Wnt5A can both activate and repress Wnt/ β-

catenin depending on which receptors are expressed at various stages of development in a 

mouse model [42];  this provides a potential explanation for the complexity of Wnt signaling in 

HCC as well.  HCV core protein promotes WNT3A-induced tumor growth [43], and over-

expression of GPC3 stabilizes  β-catenin-frizzled complexes to activate signaling pathways and 

promote tumor formation [44].     Activating mutations of the CTNNB1 gene that codes for β-

catenin have been found in 20-40% of HCC in studies with mixed etiology [37].  β-catenin also 

links E-cadherin to the actin cytoskeleton, and loss of either of these molecules results in tumor 

progression and cell invasion.  As important as β-catenin is in the initiation and progression of 

HCC, determining its effects can be difficult with microarray studies because aberrant behavior 

is often a result of constitutive activation, stabilization, and/or nuclear localization as opposed 

to increased transcription [35].  

Hedgehog and Notch pathways are developmental pathways that persist into adulthood 

maintaining the self-renewal capacity of stem cell populations.  These similarities between 

embryonic and oncogenic pathways suggest that some HCCs may develop from liver stem cells 

[27, 45], or that there is a mechanism for de-differentiation of hepatocytes [46].  Although the 

existence of cancer stem cells has been controversial, current thinking is that both processes 

may occur and define prognostic sub-groups in HCC [47, 48].   
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1.3  Focus on liver development, healing, and regeneration 
 

HCV-induced HCC has been shown in multiple genetic studies to continuously and highly 

express genes associated with antigen presentation and response to infection, including 

interferon-inducible genes, immunoglobulin genes, IL-8, and inflammatory response, as well as 

dysregulation of metabolic processes [29, 30, 49].  However, these expression changes might be 

viewed as consequences of tumor activity rather than causes of tumor formation and their 

large-magnitude expression changes make it difficult in unsupervised GeneChip studies to 

identify the potentially more subtle effects of master regulatory genes. In addition, recent 

studies have shown that genes related to apoptosis, metabolic processes, and DNA damage 

repair are altered in deceased donor livers (which typically come from patients on life support) 

compared to either living donor biopsies or samples from patients with sudden death [50], thus 

care should be taken when interpreting differential expression results using deceased donor 

control groups (as many studies do, including this one).  To elucidate the roles that important 

regulators and effectors (such as those regulating liver development, maintenance, and healing) 

might play, a different approach is needed.  Previous approaches have examined the biological 

function of those genes that are "most significantly changed" (i.e., have the largest magnitude 

expression changes), or looked for enrichment of significantly changed genes in canonical 

pathways.   Instead, we proposed to a priori identify genes that have important roles in the 

development, maintenance, and health of the liver.  We hoped that an intensive examination of 

the changes in expression, and in particular the patterns of co-expression of multiple genes 

through progressive disease states, would shed light on important seminal processes whose 
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roles were obscured in the shadow of the background of response to infection, metabolic 

disarray, cell cycle dysregulation and proliferation that is typical of tumors. 

 

1.4 Developmental biology of the liver 
  

 In this section, we review the processes that direct development of the liver.  In 

particular, we identify those genes that are critical drivers of specific stages of development or 

that are markers for important cell types.   

The mechanisms that control the initiation of liver development are well conserved 

among vertebrates and hepatogenesis occurs through a progressive series of interactions 

between the embryonic endoderm and nearby mesoderm.   Fate mapping studies indicate that 

the liver originates from the ventral foregut endoderm.  The endoderm delineates the primitive 

gut and gives rise to the epithelial compartment of the gastrointestinal tract and the thyroid, 

liver, and pancreas.  The anterior portion develops into the liver while the posterior portion 

gives rise to the gall bladder and bile ducts.  There are five main stages of development as 

illustrated in Figure 1.1. Each stage has a unique combination of master regulators that 

orchestrate the proper timing and location of growth and differentiation: 

1.  Specification of hepatic fate from the endoderm (hepatic specification) 

2.  Liver bud formation (liver diverticulum) 

3. Rapid liver bud growth 
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4. Differentiation into either hepatocytes (hepatic fate) or cholangiocytes (biliary fate).   

5. Hepatocyte maturation phase continues past birth, culminating with metabolic 'zoning' 

of the liver lobes. 

 

 

 

Figure 1.1   Overview of the stages of liver development (mouse model). [51] 

 

1.4.1 Specification of hepatic fate 

 

Wnt/ β-catenin signaling promotes Nodal and Activin initiation of both endoderm and 

mesoderm formation [52].  Following Activin/Nodal signaling, a Smad2/3/4 complex 

translocates to the nucleus and stimulates expression of a core group of endoderm 

transcription factors including Sry-related HMG box SOX17 and forkhead transcription factors 
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FOXA1-3 (previously known as Hepatic Nuclear Factors α, β, γ), which regulate the signaling 

cascade driving endoderm differentiation. Matrix metalloproteinases MMP2, 4, and 24 are 

highly expressed in the mesodermal tissues and induce expression of FOX and GATA 

transcription factors.  SOX17 partners with β-catenin to transcribe Hepatic Nuclear Factor 1 

homeobox B (HNF1B), FOXA1, and FOXA2  [52].  At the same time, the gut tube is 

differentiating into the foregut, which contains the precursors of the liver, gall bladder, 

pancreas and lungs.   

At this point, the pre-hepatic endoderm is developmentally 'competent' – lineage is not 

yet specified but cells have acquired the capacity to respond to specification-inducing signals.  

In the chick model this has been shown to be via expression of Fibroblast Growth Factor (FGF) 

receptors FGFR1 and FGFR2 by the hepatic endoderm [53].  The regional identity of the 

endoderm is regulated by overlapping temporal and spatial gradients of FGF2/4 from the 

nearby heart; Wnt and Bone Morphogenic Proteins (BMP) 2 and 4 from the developing Septum 

Transversum Mesoderm (STM); and retinoic acid from the mesoderm. Only the foregut 

endoderm is able to develop into the liver.  Recent evidence suggests that FGF4 and Wnts 

secreted from the posterior mesoderm repress foregut fate and promote hindgut development, 

and FGF4 and Wnt inhibition in the anterior endoderm are required to establish foregut 

identity.  This appears to be mediated by expression of Wnt inhibitors SFRP5 and DKK1 by the 

foregut endoderm [54].  BMP signaling is required, but not sufficient, for hepatic induction and 

may act by inducing and maintaining GATA4/6 expression.  HNF1B also stimulates expression of 

FOXA1 and FOXA2 in the pre-hepatic endoderm.  FOXA1-3 and GATA4 open the compact 

chromatin and bind the promoter region of Albumin. This binding provides access for other 
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transcription factors such as nuclear factor 1 (NF1) and C/EBP-β, initiating albumin 

transcription.  In addition to the FGFs and BMPs, Wnt in the lateral plate mesoderm is required 

for hepatic specification [55].  The specific Wnt family members required for hepatic 

specification are still unknown, but WNT3A, WNT5A, and WNT9A are candidates [42, 56, 57]. 

 These factors induce hepatoblast specification, inducing expression of the earliest 

markers identifying hepatoblasts from the surrounding endoderm cells: Prox1, HHEX,  Albumin, 

transthyrein (TTR), and AFP [58]. Hepatoblasts are bi-potential cells that are morphologically 

similar to adult oval cells, and are capable of differentiating into either hepatocytes or biliary 

epithelial cells (BEC) [59].  GATA6 maintains hepatoblast differentiation [60].   

 

1.4.2 Formation of the hepatic bud 

 

Shortly after hepatic specification, the epithelium begins to express liver-specific genes 

Albumin (ALB), Alpha feto-protein (AFP), and Hepatic Nuclear Factor 4α (HNF4A), and thickens 

to form the liver diverticulum (around day 9 in mice and day 22 in humans). The liver 

diverticulum is lined by endodermal cells.   Proliferating hepatoblasts strongly express EPCAM 

and DLK1 [61] and form a tissue bud delineated by a basement membrane containing laminins, 

collagen IV, nidogen, fibronectin, and heparin sulfate proteoglycan (HSPG).  HAND2  regulates 

the gut-looping process that defines the beginning of the liver bud by remodeling the extra-

cellular matrix  (ECM) through MMP-mediated reduction of laminin deposition [62] .  
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The basal layer surrounding the hepatic endoderm begins to break down under the 

regulation of ONECUT1 and ONECUT2 expressed in the foregut endoderm and hepatoblasts.  

MMP2 is secreted from the STM and activated by MMP14,   a membrane-bound protein 

expressed exclusively by the hepatoblasts at the onset of basement membrane degradation 

[63].  At the same time, the hepatoblasts undergo a transition to a pseudostratified epithelium 

as a result of nuclear migration promoted by HHEX.  It has been proposed that T-box 

transcription factor 3 (TBX3) stimulates PROX1 expression at this point, which then functions as 

a co-receptor of liver receptor homolog 1 (NR5A2) to induce delamination and migration of the 

hepatoblasts through the weakened basement membrane into the STM (hepatic mesenchyme) 

to form the beginnings of the liver bud.  This process is similar to an epithelial-mesenchymal 

transition (EMT) in that the hepatoblasts temporarily lose their epithelial morphology and 

reduce expression of E-cadherin as they move away from the endoderm.  Isoprenylcysteine 

carboxyl methyltransferase (ICMT), basigen (BSG),  and several MMPs (1, 7, 11,12, 15, 16, 17, 

19,  23, and 25, as well as TIMP2 and TIMP4) also participate in remodeling the basement 

membrane.  During this phase, GATA4 maintains the integrity of the septum transversum, while 

GATA6 is required to maintain differentiation of the hepatoblasts and FGF1, FGF4, and FGF8 

prevent further differentiation of the hepatoblasts into hepatocytes [64].  VEGFR-2 (KDR) is 

required for blood vessel formation as hepatoblasts migrate into the stroma.  A Glial-derived 

neurotrophic factor called Neurturin may also be required for hepatoblast migration and/or 

proliferation.  Neurturin is secreted from blood vessels and acts as a hepatoblast 

chemoattractant via GFRα2 receptors on the hepatoblast surface membrane [65].  

 



 

 

15 
 

1.4.3 Liver bud growth 

 

Once the liver bud has formed, it begins to grow rapidly via hepatoblast proliferation 

under the control of multiple signaling pathways including Hepatocyte Growth Factor (HGF), 

Transforming Growth Factor β (TGFβ), Hepatoma Derived Growth Factor (HDGF), and Wnt 

(Figure 1.2).  Growth factor ligands are secreted by the hepatic mesenchyme (STM) and bind to 

receptors on  the surface of the hepatoblasts, triggering expression of transcription factors such 

as ELF5, ARF6, ATF2/7, RAF1, c-jun, TBX3 , NFκβ, FOXM1B, XBP1, and MTF-1 that control 

proliferation, migration, and survival. 

HGF is expressed by the STM, endothelial cells, and hepatoblasts.  Its receptor c-met 

(MET) is found on the hepatoblast surface, and initiates a cascade to activate ATF2 and ATF7, 

resulting in transcription of genes that initiate cell cycle progression [66].  ATF2 and ATF7 also 

dimerize with JUN and other proteins to form the AP1 transcription factor, which is essential in 

providing a negative feedback loop to protect the hepatoblasts from apoptosis [66].  HGF/MET 

also promotes hepatoblast migration in part by activating the small GTPase ADP-ribosylation 

factor 6 (ARF6) [67].  Because HGF also promotes hepatocyte differentiation,  TGFβ/TGFβ-RIII 

and Hedgehog (Hh) signaling is necessary to inhibit differentiation of the hepatoblasts during 

this stage of rapid growth [59].  TGFβ also stimulates proliferation via Smad2/Smad3 signaling.  

Hepatoma-derived growth factor (HDGF) is produced by hepatoblasts and stimulates their 

proliferation.  Once hepatoblasts mature into hepatocytes, expression of HDGF ceases.  

However, HDGF is not required for normal liver development so it may be an as yet unidentified 

compensatory pathway.  
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Wnt signaling is necessary for hepatoblast proliferation, but the complexity of the Wnt 

network in the liver makes Wnt signaling difficult to study.  For instance, 11 Wnt ligands and 8 

Frizzled receptors are expressed in the mouse liver.  Thus, the exact Wnt ligands involved in 

humans are still unknown, but WNT5A and WNT9A are candidates and are expressed by 

mesenchymal, sinusoidal, and stellate cells.   β-catenin plays a definite role in stimulating 

hepatoblast proliferation and differentiation and Wnt/β-catenin control the global liver 

morphology. β-catenin also seems to be a key node at the intersection of multiple signaling 

cascades and interacts with the HGF receptor c-MET, SMAD2/3, and ELF5.  FGF-10 (secreted by 

myofibroblastic cells) controls β-catenin activation and also stimulates proliferation of 

hepatoblasts.  

Liver bud growth also requires retinoic acid (RA) signaling, which is controlled in part by 

the zinc finger transcription factor WT1 expressed in STM and stellate cells.  The retinoic acid 

receptor RXRα  is expressed in mesodermal cells scattered between the hepatoblasts and are 

often in contact with sinusoids.  This suggests that RA stimulates hepatoblast proliferation by 

inducing production of trophic factors by the mesodermal cells rather than a direct effect on 

the hepatoblasts. 

Several transcription factors are also involved in regulating hepatoblast proliferation: 

PROX1 promotes proliferation via suppression of p16 (CDKN2A, a cyclin dependent kinase 

inhibitor) [68]. PROX1 activity is regulated by liver receptor homolog 1 (LRH1, also called 

NR5A2).  FoxM1B activates expression of CDK1 and Cyclin B, regulators of the G2/M phase of 

the cell cycle. X-box binding protein 1 (XBP1) controls the expansion of the ER surface in 



 

 

17 
 

growing hepatoblasts. Inhibitor of differentiation 3 (Id3), which may act downstream of FGF 

and/or BMP signals, is transiently expressed and enhances hepatoblast proliferation by 

inhibiting the protein TCF3.  TCF3 is a Wnt-effector TF that limits levels of several proliferation 

promoters [69].  AT-hook 2 (HMGA2) is also involved in transcriptional activation of 

proliferation genes and maintaining cells in an undifferentiated state [70]. 

The STM expresses homeobox transcription factors HLX, LHX2 and N-MYC that promote 

hepatoblast proliferation and suppress apoptosis, perhaps by regulating production of 

paracrine signals from the mesenchyme.  The exact mechanism of regulation is still unknown, 

but there is extensive cross talk.  For instance, HGF and TFGβ signaling act in parallel and 

converge on β1-integrin regulation.  FGF and HGF signaling stimulate many of the same 

intracellular kinase cascades, and both stimulate the activity of β-catenin in the liver bud. 

Lee et al (2012) [70] examined differential expression of genes at different time points in 

mouse development.  Genes expressed from GD11.5-12.5 (“early expression”) included several 

that are expressed in embryonic stem cells, including Midkine (MDK), pleiotrophin/heparin-

binding growth-associated molecule (PTN), Necdin (NDN), and Proliferation-associated 2G4 

(PA2G4).  MDK and PTN are essential for development of the catecholamine and rennin-

angiotensin pathways. MDK regulates PTN expression.  PTN may be secreted from 

mesenchymal cells as a mitogen of parenchymal cells in the embryonic liver.  NDN is expressed 

in primitive stem cells and is involved in hematopoietic stem cell regulation.  Other genes found 

highly expressed in the proliferative phase of liver development (in the mouse model) include 

MAP4K4 (which activates JNK/MAPK8), WNT9B, SRPK1 (regulates alternative splicing ), CSNK1D 
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(activates several important developmental genes including HIF1A, P53, DVL2/3, DNMT1, and 

YAP1), H19 (a long non-coding RNA that regulates expression of IGF2), and SET domain 

bifurcated 1 (SETDB1). 

 

 

 

Figure 1.2  Growth of the liver bud [51]. 

 

 

 

1.4.4 Hepatocyte/ cholangiocyte cell fate determination 

 

Mechanisms of cell fate determination have not been completely characterized.   The 

'start point' has not been accurately determined, and it appears to occur over more than one 

developmental stage.  During liver bud growth, hepatoblasts begin to express metabolic genes 

that are active in mature hepatocytes.  By the time the liver reaches full size (for the fetus), a 
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subpopulation of hepatoblasts has generated abundant rough ER and lipid vesicles, indicating 

that differentiation has begun. To complete differentiation, inhibitors of differentiation must be 

turned off, including Sonic Hedgehog (SHH) [71]. 

The differentiation of hepatoblasts into either hepatocytes or Biliary Epithelial Cells 

(BECs) begins with the expression of Hepatic Nuclear Factor 4a(HNF4A),  Albumin (ALB), CEBPA, 

and AFP in hepatocyte precursors, and  cytokeratin-19 (KRT19) and SOX9 in biliary precursors. 

Hepatoblasts in contact with the portal vein form a layer of biliary precursors that increase 

KRT19 expression.  SOX9 also is re-expressed in the cells near the portal vein branches, and in 

later developmental stages expression is limited to biliary cells.  Vimentin (VIM) is an 

intermediate filament protein of mesenchymal cells, expressed in the ductal plate and BECs but 

not hepatoblasts or hepatocytes.  Hepatoblasts that are not in contact with portal veins 

gradually differentiate into mature hepatocytes expressing HNF4A, ALB, and AFP (Figure 1.3). 

Regulators of differentiation include TBX3, TGFβ, and Onecut 1/2 (OC1, OC2).  TBX3 and 

OC1 appear to  determine the timing of hepatoblast lineage decision, but the exact mechanism 

is still unknown. TGF-β promotes differentiation of hepatoblasts to biliary cells and represses 

hepatocyte differentiation. TGF-β signaling is highest near the portal vein, most likely as a result 

of the high expression of TGF-β2 and TGF-β3 in the periportal mesenchyme and TGFB Receptor 

3 (TGFBR3) on the hepatoblasts.  OC1 and OC2 modulate the gradient of TGF-β signaling 

activity, inhibiting TGFβ signaling in the parenchyma to allow differentiation into hepatocytes 

[72]. NOTCH (JAG1 and its receptor NOTCH2) signaling is also important in biliary 
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differentiation, and induces expression of HNF1B and SOX9, which modulates TGFβ signaling 

[73]. 

These factors act in part by regulating several liver-enriched transcription factors 

including C/EBPα, HNF1α, FOXA1-3, HNF4α and nuclear hormone receptors. HGF stimulates 

expression of C/EBPα to promote differentiation toward hepatocyte lineage, while FGF2 and 

FGF7 induce differentiation towards biliary lineage in cooperation with BMP4 and ECM 

components. FGFR1 and FGFR2 expression, which disappeared after hepatic specification of the 

endoderm, reappear in the ductal plates and the developing intrahepatic bile ducts (IHBD), but 

not in hepatocytes. BMP4 may also be involved in bile duct formation by controling FGF2/7-

induced epithelial branching [53]. Wnt signaling (possibly Wnt3a) represses hepatocyte 

differentiation and promotes biliary differentiation. Specific mechanisms are still unknown but 

Smad5 is expressed at high levels in early differentiating cholangiocytes.  Type IV collagen and 

laminin are expressed in and accumulate in the basement membrane of the mesothelium, 

portal vein, and BECs.  Fibronectin (FN1) and type I collagen are expressed in connective tissues 

surrounding the bile ducts and veins.  
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Figure 1.3  Spatial dynamics in hepatocyte/cholangiocyte differentiation [51]. 

 

 

1.4.5 Hepatocyte maturation 

 

Hepatocyte maturation is a process that extends throughout development and after 

birth.  A set of six transcription factors  (HNF-1α, HNF-1β, HNF-4α1, OC1,NR5A2, and FoxA2)  

form a network of auto- and cross-regulatory loops whose interactions increase in number and 

complexity as maturation proceeds [51].  These six factors occupy the gene regulatory regions 

of each other and of other factors to form an inter-dependent network that becomes more 

stable  over time.  They also cooperate with other cofactors. For instance, OC1 and HNF-4α are 

both required to stimulate the expression of glucose-6-phophatase (G6PC), a key metabolic 

protein.  Increased levels of C/EBPα and OC1 proteins are required to stimulate association of 

these factors with the Creb Binding coactivator protein (CBP) then bind the FoxA2 promoter.  
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Co-activators which initiate expression at particular time points allow for an increasing variety 

of interactions with the transcription factors. 

These six transcription factors play important roles in metabolism in the maturing liver, 

as well as determining hepatocyte morphology.  In particular, HNF-4α is required for normal 

expression of at least 25 genes whose products are involved in cell junction assembly and 

adhesion [74], and in regulating the hepatocytes response to the accumulation of unfolded 

proteins in the endoplasmic reticulum (the endoplasmic stress response).  Battle et al (2006) 

demonstrated that over 550 genes are down-regulated more than 3.5-fold and about 25 genes 

were up-regulated >2.5 fold in HNF4α-null embryonic mouse livers [74].  These genes are 

involved in transport, signal transduction, protein folding, nucleic acid metabolism, metabolism, 

immune response, electron transport, cell adhesion, and cell death.  It acts on so many targets 

via a multitude of functional domains and several cofactors, including CITED2 and thyroid 

hormone receptor interacting protein 3 (ZNHIT3) (which also interacts with retinoid X 

receptors). 

Hepatocyte maturation also requires repression of a number of genes during the 

prenatal and postnatal periods.  Zinc finger factors ZHX2 and  ZBTB20 repress AFP and GPC3 

post-natally [75].  ZBTB20 binds to the AFP promoter to inhibit transcription.  Organization of 

hepatocytes into cord-like structures is driven by the small guanosine trphosphatase adenosine 

diphosphate-ribosylation factor 6 (ARF6).  ARF6 is activated in response to HGF.  Wnt signals are 

also involved in hepatocyte maturation.  
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A third component of hepatocyte maturation involves specialization of zones in 

response to a variety of extracellular signals.  Differentiating hepatocytes are closely associated 

with hematopoietic precursor cells which colonize the embryonic liver. Near the end of 

gestation and into the post-natal period, the hematopoietic cells leave the liver and migrate to 

the bone marrow.  These cells are essential to hepatocyte maturation because they secrete 

oncostain M (OSM), a cytokine related to IL-6 which binds the IL6ST (gp130) receptor at the 

hepatocyte membrane, inducing a STAT-3 mediated signaling cascade [51].  This stimulates 

expression of the terminal hepatocyte differentiation markers glucose-6-phosphatase (G6PC) 

and phosphoenolpyruvate carboxykinase. Jumonji is a transcription factor expressed in several 

cell types that is necessary for activation of OSM.  It also promotes morphological maturation 

into polarized epithelium via K-ras and E-cadherin.  HGF and OSM activity is balanced by TNFα, 

which inhibits maturation and maintains the proliferative capacity of the fetal hepatocytes.  

This is necessary to allow the liver to grow to the appropriate size before differentiating. TNFα 

production decreases after birth. 

The HIPPO signaling pathway is emerging as a critical regulator of proper organ size. 

Evidence suggests that it plays roles in cell contact inhibition and organ size control via cell 

proliferation inhibition and promoting apoptosis throughout the body.  YAP1 overexression 

leads to reversible liver enlargement (up to as much as 25% of body size) in embryonic mice 

(Zeng and Hong, 2008). YAP has been shown to bind to several transcription factors including 

p73, p53BP2, RUNX2, SMAD7, ERBB4, and TEAD/TEFs, resulting in (at least) upregulation of 

MKi67, c-Myc, SOX4, H19, AFP, BIRC5 (survivin), and BIRC2.  YAP1, in turn, is down regulated by 

MST1 and STK3.  Inactivation of MST1 or STK3 at any stage of development leads to multiple 
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large liver tumors via oval cell induction, and they are also required to maintain hepatocyte 

quiescence in adult livers. 

 

1.4.6 Post-natal development 

 

Hepatocyte maturation is not complete at birth.  Cytochrome p450 genes and HGF 

appear to be involved but this has not been well-studied.  In the weeks after birth, metabolic 

zonation of the hepatic lobes begins. Within each lobe a periportal and pericentral zone are 

established on the basis of their expression of different metabolism -regulating genes. HNF-4α 

contributes to this zonation by repressing periportal expression of glutamine synthase via 

deacetylase type I.  Wnt signaling also contributes to zonation.  β-catenin is found only in the 

pericentral area and its negative regulator APC is found only in the periportal hepatoctyes.  

Because APC is the key regulator of β-catenin levels along the lobular axis it has been proposed 

as the master regulator of zonation, but the identity and source of the Wnt ligand(s) are still 

unknown.  It has recently been shown that HNF4α also contributes to liver zonation, acting 

through cross-talk with the Wnt pathway [76].  

 

1.5 Molecular mechanisms in liver wound healing 

 

Wound healing is the normal response of tissue to an injury, and liver fibrosis occurs as 

a result of repeated cycles of injury and repair.  Normal hepatic wound healing involves 7 
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distinct phases:  inflammation, production of cytokines and growth factors, myofibroblast 

activation, ECM production, angiogenesis,maturation, and remodelling.  Inappropriate repair 

and scarring occurs if any element is interrupted or overactivated [77].  In this section, we 

identify the genes involved in liver wound healing that will be used to define the gene sets that 

might identify signatures of liver wound healing in our cirrhosis or tumor samples. 

Inflammation begins with the local production of MMPs at the site of injury that result 

in disruption of the basement membrane, allowing inflammatory cell infiltration, mostly 

neutrophils then macrophages and lymphocytes.  Leukocytes eliminate invading organisms and 

remove dead cells. Inflammation produces profibrogenic cytokines and chemokines which 

activate hepatic stellate cells (HSCs), causing transdifferentiation to a myofibroblast phenotype.  

Myofibroblasts are the key effectors of wound contraction and repair, and inappropriate 

activation is the central mechanism of fibrosis.  Activated myofibroblasts migrate to the site of 

injury and proliferate, producing type I and type III collagen (COL1A1,COL1A2,COL3A1), several 

MMPs and TIMPs [77]. 

Fibroblasts are mesenchymal in origin, but in the liver there are four distinct sources of 

myofibroblasts: HSCs, bone-marrow-derived mesenchymal cells, portal fibroblasts (near the 

biliary tree), and epithelial cells (hepatocytes and cholangiocytes) via EMT [77].  HSC activation 

results in their transdifferentiation into myofibrobasts in two phases. During initiation phase 

the cells become responsive to cytokines and growth factors, followed by the perpetuation 

phase. Initiation is paracrine while perpetuation is both autocrine and paracrine.  Injured 

hepatic cells produce necrotic cell debris and reactive oxygen and nitrogen species (ROS and 
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RNS).  Myofibroblasts express toll-like receptors TLR4 and TLR9.  DNA from apoptotic 

hepatocytes can activate TLR9 in HSC and contribute to activation.  HSCs are also antigen-

presenting cells to activate immune processes [77]. 

Activated HSCs develop new autocrine pathways to maintain the activated state, 

including TGF-β, Angiotensin II, PDGF, monocyte chemoattractant I (CCL2), and VEGF.  HSCs also 

express new membrane receptors that prime them to respond to inflammatory mediators and 

growth factors, including IL-6, TGF-β, and PDGF receptors. TIMP1, integrins and other adhesion 

molecules contribute to HSC survival and perpetuation of the myofibroblast phenotype. The 

activated HSC migrates to the site of injury, secreting large amounts of ECM and regulating ECM 

degradation.  In the early phases of liver injury, they transiently express MMP3, MMP13, and 

uroplasminogen activator (PLAU). In later stages of injury and activation, the cells express a 

combination of MMPs including pro-MMP2 and membrane type I MMP (MMP14), which drives 

generation of active MMP2 and local degradation of the matrix to facilitate replacement with a 

high density interstitial matrix.  TIMP1 expression is also increased [77].  

Chronic injury alters the normal healing process and prevents return of the tissue to the 

preinjury state.  Constant inflammation/infection leads to permanent myofibroblast activation, 

either directly by acting on HSCs or indirectly through paracrine-dependent factors.  During 

chronic hepatic injury, different types of liver cells also may acquire a neuroendocrine 

phenotype, which may contribute to cell growth, migration, and angiogenesis during wound 

healing.  The hepatic neuroendocrine system is upregulated in the liver following injury and can 

regulate the pattern of wound healing and regeneration in several ways.   Atypically 
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proliferating cholangiocytes, also known as reactive bile ductules, aquire a neuroendocrine 

phenotype and are major contributors to the production of a number of neuroendocrine 

factors in areas of maximal cell death and inflammation [77].  Hepatic progenitor cells (oval 

cells) lie in or adjacent to the canal of Herring and express neuroendocrine proteins including 

chromogranin-A (CHGA), neural-cell-adhesion molecule (NCAM1, NCAM2), parathyroid-

hormone-related peptide (PTHLH), S-100 protein (family of 21 proteins S100A1-16, S100B, 

S100P, S100Z), neurotrophins (NGF, BDNF, NT3, NTF5) and their receptors (NTRK1-3, NGFR).  

These cells are activated to proliferate in chronic liver damage situations where proliferation of 

hepatocytes is inhibited (NASH, cholestatic liver disease, alcoholic hepatitis and viral hepatitis).  

Progenitor cells differentiate into hepatocytes, and  newly formed intermediate hepatocytes 

continue to express CHGA [77]. 

 HSCs also express a number of neuroendocrine markers, including synaptophysin 

(SYPL1) which is correlated with neuroendorine differentiation, neutrophins and neural cell 

adhesion molecules, along with their receptors, which makes them responsive to 

neuroendocrine regulation in wound healing [77].  This neuroendocrine differentiation in the 

liver is associated with cellular stress and inflammation and is regulated by IL-6 and TNF.  

Differentiation can also be induced by interaction with type IV collagens and HSPG [77]. Once 

differentiated, the cells produce several neuropeptides including serotonin, endocannabinoids, 

opioids, and neutrophins that contribute to contraction, migration, proliferation, and ECM 

production in activated HSCs.  Activation of the serotonin receptor HTR2B on fibrogenic HSCs 

suppresses hepatocyte proliferation through augmented production of TGFβ1 [78]. 
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The Hedgehog pathway, once thought to be exclusively embryonic, is  now known to be 

activated in response to some injuries, including the growth of hepatic progenitor populations, 

hepatic accumulation of myofibroblasts, repair-related inflammatory responses, vascular 

remodeling, liver fibrosis, and hepatocarcinogenesis [79].  BMP2 and BMP4 are transiently 

expressed in the oval cells, but not Kupffer or macrophage cells in the early stage of liver injury. 

It plays an as-yet-unknown role in the proliferation and differentiation of progenitor cells in 

response to liver injury [80]. 

NFKB is recognized as a regulator of hepatic inflammation and wound healing. The 

classic pathway is induced in response to inflammatory mediators and microbial or host ligands 

of the Toll-like receptor system [81]. These stimuli activate the inhibitor of NF-KB kinase 

complex (CHUK, IKBKB, IKBKG), leading to phosphorylation of the inhibitor IκBα and nuclear 

transport of active NF-κB.  NF-κB is actually several different homo- or hetero-dimers of five 

different subunits (REL, RELA, RELB, NFKB1, and NFKB2) that have non-overlapping functions. c-

Rel (REL) is expressed in adult mouse liver and knockout mice display defects in liver wound 

healing and regeneration [81].  REL induces expression of CCL5 (RANTES), which remains 

elevated until healing is complete. CCL5 recruits neutrophils to sites of injury, and can also 

target HSC to promote their proliferation and migration. REL may also regulate expression of 

collagen I and α-SMA in HSCs [81]. 
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1.6 Molecular mechanisms in liver regeneration 
 

Regeneration of hepatocytes (liver mass) has been hypothesized to play a role in liver 

carcinogenesis.  In this section we review the molecular events that occur during regeneration 

after partial hepatectomy in order to identify genetic signatures that might indicate whether 

these processes are also occurring in our cirrhosis or tumor samples. 

Liver regeneration after loss of functional mass has three main phases: initiation or 

priming with progression of the quiescent hepatocytes to repeated division; proliferative phase, 

restoring liver volume; termination of growth and balancing functional regions of the liver [82].  

In normal tissue, hepatocytes are long lived and rarely divide, with a replication rate of 1 in 

20,000.  Under normal conditions hepatocytes are unresponsive to growth stimuli.  Triggering 

events include not only partial hepatectomy, but also blunt injury, metabolic stress due to 

toxins, disruption to intercellular contacts, or digestion of the ECM. Priming signals include 

lipopolysaccharide (LPS), produced by gut flora and released through a deteriorated intestinal 

barrier (ie surgical stress), which activates Kupffer and stellate cells to increase production of 

TNFα and IL-6. Complement factors C3a and C5a from circulating blood act as quickly as LPS.  

TNFα and IL-6 cause transcription factors NF-Κb, STAT3, c-JUN and CEBPβ to bind DNA rapidly 

by means of posttranslational modifications.  Within 30 minutes, expression of “immediate 

early release” genes are up-regulated, including c-FOS, c-JUN, c-MYC, and c-MET. HGF, TGFα, 

and Epidermal Growth Factor (EGF) allow cells to overcome the G1 restriction point and enter 

mitosis.  Priming signals also come from the pancreas (insulin), duodenum or salivary glands 

(EGF), thyroid gland (T3), and adrenal glands (norepinephrine).  Additional priming phase 
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upregulation of urokinas-type plasminogen activator (PLAU) and its receptor (uPAR) leads to 

activation of HGF and ligands for EGFR.    

The Proliferative phase is characterized by mitotic waves of hepatic cells.  Hepatocytes 

reach the S phase first, with DNA synthesis rising at about 12 hrs after injury and peaking at 

about 24 hrs. S phase occurs later in nonparenchymal cells - 48 hours for Kupffer and biliary 

cells, and 96 hours for endothelial cells. Injury via necrosis or apoptosis of hepatoctyes involves 

similar cell priming, but replicative waves are less coordinated.  During proliferative phase, 

almost all of the hepatocytes undergo mitosis (95% in young rats, 70% in old animals; unknown 

in humans).  The proportion of binucleate cells increases, and some hepatocytes become 

polyploid but undivided.  Early Growth Response Factor (EGR1) is elevated 6-fold by 12 hours 

after partial hepatectomy and may act by promoting TNF expression [83]. REL (a subunit of NF-

κB) is also required for hepatocyte DNA synthesis during hepatocyte proliferation, and may 

control the timing of FOXM1 expression, which is required for normal mitosis in both 

development and regeneration [81].  FOXM1 is a direct target of REL, but only in response to 

injury/regeneration.  Subsequent targets for transcriptional stimulation of DNA replication by 

FOXM1 are Cyclin B1 and CDC25C.  c-JUN up-regulates a hepatotrophic factor stimulating 

hepatocyte proliferation,  Human augmenter of liver regeneration (GFER), which protects 

hepatocytes from apoptosis [84].  Hepatocyte proliferation inhibitors must also be repressed 

during the proliferative phase, including CDH1, MST1, TGFB, and BMP2. 

The Termination phase is still not well-understood.  It is not yet known if onset of 

inhibitory genes or withdrawal of stimulatory genes stops regeneration.  Reappearing ECM may 
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play an important role by renewed binding of pro-HGF.  TGF-β1 has a proposed role.  

Disappearance of TGF-β1 from the periportal to pericentral region of lobules enables 

progression of hepatocyte mitotic wave in the same direction at the onset of regeneration. 

TGF-β1 released in the plasma shortly after injury is probably inactivated by binding to α2 

macroglobulin, and hepatocytes are transiently resistant to the mito-inhibitory effects of TGF-

β1 during the proliferative phase.  After the refractory period, TGF-β1 could play a role in 

ending the regeneration.  Plasminogen activator inhibitor (SERPINE1/2, SERPINB2) is induced by 

IL-6 and blocks HGF action by inhibiting cleavage of pro-HGF into active HGF.  Suppressor of 

cytokine signaling -3 (SOCS3), also upregulated by IL-6, causes down-regulation of STAT3, 

ultimately terminating the original IL-6 signal.  Apoptosis may also play a role in correcting the 

final size of the liver. 

Ho, et al (2007) studied gene expression profiles following human partial hepatectomy 

and identified a set of differentially regulated genes including immune response genes SAA1-2, 

CRP, and SOD2, cell growth genes SOCS3, RASD1 and NAMPT,  along with genes involved in 

signal transduction, biosynthesis, and metabolism [85]. 

 Many of the early response genes in liver regeneration are also critical regulators of 

embryonic development (HGF, NF-κB, STAT3, and c-JUN).  NF-κB and c-JUN protect hepatocytes 

from the apoptotic effects of TNFα during liver bud proliferation, and likely serve the same 

purpose in the regenerating liver.  STAT3 suppresses Cyclin D1 expression to control the rate of 

hepatocyte proliferation, and HGF has multiple functions throughout liver development. 
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1.7 Conclusion 
 

 In this chapter we have reviewed the important genetic changes that drive the 

processes that we suspect are involved in the development of HCC.  Using this knowledge of 

developmental and healing processes, we can define gene sets that characterize each specific 

stage of development. We will also define gene signatures from this review to identify whether 

particular processes such as hepatoblast proliferation or hepatocyte proliferation were 

occurring in our cirrhosis and tumor samples.    Our hypothesis was that these important genes 

may be working in a coordinated fashion in liver disease but that the signal strength from these 

genes in microarray experiments might be difficult to discern against the background of 

metabolic disturbances that have much larger fold-changes.  We suspected that some of the 

gene expression changes  were occurring in activated hepatic stellate cells, stem cell niches, or 

sub-populations of tumor cells.  When gene expression changes occur in cell populations that 

make up a small proportion of the total sample (as the above scenarios do), then overall signal 

strength will be fairly low compared to even modest gene expression changes that occur in the 

majority of cells in the sample.   Since standard analysis of microarray experiments focus on the 

largest magnitude mean expression changes, these comparatively suble signals may not be 

recognized. A targeted approach of specifically examining changes in important driver genes 

may allow a deeper understanding of tumor biology. 
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Chapter 2: Microarrays and processing methods 
 

2.1 Introduction to microarray technology 
 

 First introduced in 1995, microarray chips using hybridization of fluorescently labeled 

targets to cDNA probes have revolutionized the study of genomics.  There are several different 

microarray systems, but the two main chip types are the one-channel arrays (ie, Affymetrix) 

and two-channel arrays.  Two channel arrays are made by attaching pre-made oligonucleotides 

of fixed length onto slides and simultaneously hybridizing experimental and control samples 

which have been labeled with different color fluoresence. One channel arrays, which have 

become more popular in recent years, are made in situ and hybridize a single sample per slide, 

or GeneChip. The Affymetrix HGU133A2 chips used in this study use probes that are 25 bases 

long, with about 11 probes per probe set attached to random locations on the chip.  Many 

genes have multiple probe sets that map to different locations on the gene.  Each Perfect 

Match (PM) probe has an accompanying MisMatch (MM) probe formed by switching the 

middle base of the PM sequence.  This was intended to measure non-specific hybridization but 

is not generally used anymore.  The general experimental process is to extract messenger RNA 

(mRNA) from a sample, reverse-transcribe and convert to double-stranded complimentary DNA 

(cDNA), then amplify to complimentary RNA (cRNA) that is tagged with a fluorescent label that 
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can be detected with a scanning device.  The labeled cRNA is chemically fragmented then 

hybridized to the GeneChip. 

 Although microarray technology is a powerful tool for studying molecular biology, there 

are inherent limitations that limit the effectiveness of microarray experiments.  All microarray 

experiments have both biological and technical sources of variation.  Biological variation results 

from differences in tissue samples, cell type mix between samples, genetic polymorphisms, 

differences in mRNA levels among individuals and their cells due to gender, age, disease state, 

and genotype-environment interactions, among others.  This biological variation is the 

component that is of interest to researchers.  Technical variation, or “noise” that obscures 

detection of biological signals, results from differences in sample preparation, labeling, 

hybridization, and other steps of sample processing.  Even inconsistencies in the environmental 

conditions (room temperature, humidity, and ozone levels for example) can introduce technical 

variation.  

Further, microarray experiments have some biological limitations.  First, it only 

measures relative expression values in the form of intensity of fluorescence.  There is 

background fluoresence in every experiment, and the amount varies between chips.  This can 

be fairly well corrected for using statistical "background correction" models, described below, 

however, without an absolute measure of expression it is difficult to determine which RNA 

products have “no” expression vs. “low” expression.    A more serious problem is that the 

technology only measures the relative abundance of mRNA, which is not a direct indicator of 

corresponding protein abundance or activity.   mRNA expression is often assumed to  be low 
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because there is no demand for the corresponding protein, but differences in protein stability 

and turnover rates may affect the correlation between mRNA and protein abundance.  

However, several studies have demonstrated that most mRNA levels generally correspond to 

protein abundance [86, 87].  For this reason, microarray experiments are still quite useful but 

should be interpreted carefully. 

 

2.2   Microarray data preparation and analysis 
 

In order to maximize the measurement of actual biological variation between 

experimental and control groups, it is necessary to remove as much of the technical variability 

as possible.  This involves extensive pre-processing of the data.  Four or five separate steps are 

generally required:  

 Quality assessment of each chip must be done to remove chips (samples) with 

significant systematic bias caused by technical errors in one or more sample processing 

steps. 

 Background correction is intended to remove nonspecific background intensities of 

scanner images.   

 PM correction is to correct for the effect of nonspecific hybridization.  However, several 

algorithms ignore this step and only use the perfect match (PM) signals. 

 Normalization attempts to reduce most of the non-biological differences between chips 

so that the signal intensities are comparable across chips.   
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 Summarization is the final stage in pre-processing, where the expression values from all 

probes in a probe set are summarized into a single expression value.   

 

It has been shown elsewhere [14-17] that, for each step, using different methods can have a 

profound impact on the resulting list of differentially expressed genes (DEG) for an experiment.  

Moreover, no single technique has been shown to be superior to all others in all situations [88, 

89].  Differences in performance depend on several factors, including how well the data 

conforms to the assumptions of the statistical models employed, the degree of correlation 

between important and unimportant genes, and whether the kind of technical variation that a 

method is designed to correct is the dominant source of variation in the dataset of interest.  

Therefore care should be taken to choose the most appropriate techniques for each 

experiment. 

 

2.2.1  Quality Assessment metrics 

 

The measurement of gene expression by microarray technology, as with any laboratory 

procedure, possesses an associated error due to both random error and technical differences in 

sample processing.  There are many sources of technological error in microarray processing 

that can introduce significant bias into the statistical analysis if not recognized and corrected.  If 

a chip has systematic sources of technical variation it may dilute the ability to extract 

meaningful information from the sample, and could also distort the results of subsequent pre-
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processing steps, so such chips must be identified and excluded before proceeding with further 

processing. The quality of the chips strongly influences the diagnostic and predictive power 

obtained from the data, and a poor quality “training set” may lead to misclassification of future 

samples.  Investigators desire large sample sizes for maximum statistical power and biological 

information, but conservatively limiting one’s dataset to only include the chips with the least 

technical error will minimizes potential bias or false results.  The decision of how to balance 

quality and quantity varies widely among studies, and there is still no consensus regarding the 

best methods or objective criteria for assessing chip quality.   

In the case where technical replicates can be obtained (performing the microarray 

experiment 2-5 times on a single divided biological sample), technical variation can be fairly 

well modeled by a variety of techniques, assuming that the variation in conditions within the 

replicate groups is similar to the variation in conditions between samples.  However, it is not 

always possible to generate technical replicates.  Microarray technology is expensive, and the 

researcher faces the decision of whether to process more samples (higher N) or replicate 

samples simply to assess technical variance.  In addition, certain types of biological samples are 

difficult to obtain in quantity (i.e. biopsy tissue) and patient safety must be balanced with the 

desire to obtain large quantities of tissue for analysis.  Finally, early microarray experiments 

were run before the full extent of the impact that technical variability can have on results was 

realized, so older datasets may not have technical replicates available. 

Commonly used methods for Quality Assessment (QA) include metrics from the 

SimpleAffy package in the R programming system.  The “qc” function is applied to generate 
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scale factors, percent present calls, and min/max/avg background calculations, 3’ to 5’ ratios for 

GAPDH and β-actin, and values for spike-in controls.   The scale factor is used to scale all probe 

sets to a target value (usually arbitrarily set to 100).  Large-scale differences between chips may 

indicate cases where the normalization assumptions are likely to fail due to issues with sample 

quality or amount of starting material, or issues with RNA labeling, scanning or chip 

manufacture.   Affymetrix recommends that scale factors be within 3-fold of each other.   

Percent Present calls measure the difference between Perfect Match (PM) and MisMatch (MM) 

values for each probe pair in a probeset.  Probesets are only called present when the PM value 

is significantly above the MM probes.  Significant variation in the % Present call in an array 

compared to other arrays of the same type of tissue may indicate a problem in hybridization on 

that chip.  3’:5’ ratios of housekeeping genes such as GAPDH and β-Actin near one indicate 

successful cDNA and cRNA synthesis [90]. 

Reimers and Weinstein (2005) recommend further methods to examine quality of chips, 

including the correlation between a probe and its neighbor, correlation between rows on a 

chip, and the log(PM/MM) ratio, which are all generated using the bias.display R package [91].  

Because probes are placed randomly on a chip, the correlation in expression values between 

neighboring probes should be zero when no technical variation in present.  Less than 30% 

correlation is considered acceptable, 30-40% is of questionable value, and any chip with an 

average 40% correlation or more has considerable systematic bias which may be too severe to 

correct for in the normalization step.  Similarly, the correlation between rows should be close 

to 1.  Like the % Present calls, the log(PM/MM) should be comparable across chips. 



 

 

39 
 

2.2.2   Background correction and normalization 

 

 Background fluorescence can arise from many sources, such as deposits left after the 

wash stage and optical noise from the scanner [92].  There is also a good deal of non-specific 

hybridization of labeled mRNA, both to the chip surface and to probes with similar sequences.  

Removal of this ambient non-specific signal from the total intensity readings is called 

background correction.  Affymetrix and other modern high density chips have probes placed so 

densely that a "local" background measurement is not possible.  Instead, the background must 

be estimated from the probe signals themselves. 

 The two most commonly used background correction methods are MAS5 and RMA.  

MAS5 (Affymetrix Microarray Suite 5.0) is a commonly used regional adjustment method.  The 

entire array area is divided into 16 rectangular zones and the lowest 2nd percentile of the 

probe values are chosen to represent the background value in given zones [93].  The 

background value is computed as the weighted sum of the background values of the 

neighboring zones.  Robust Multi-array Average (RMA) is actually a three step process of 

background correction, normalization, and probe set summarization.  The background 

correction step uses a signal/noise convolution model in which PM intensity distribution is 

modeled as an exponentially distributed signal and a normally distributed background 

component [94].   
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 Normalization 

 The intent of normalization is to remove, as much as possible, the differences in signal 

intensity due to technical variation in the physical processing of the GeneChips so that values 

for particular probe sets can be effectively compared across chips.   Some of the sources of 

technical (systematic) variation include differences in the amounts of sample exposed to a 

particular chip, the fluorescent label used, differences in the settings of the equipment used, 

and a host of other environmental sources which may be difficult or impossible to completely 

control such as the local humidity and ozone levels on the day a chip is run.   

 It has been demonstrated that different normalization procedures can change modeled 

expression values enough to result in significant differences in what genes are called as 

significantly differentially expressed [95].   Because one of the hallmarks of good science is the 

reproducibility of results, this is a significant concern.  Several recent papers have compared a 

variety of pre-processing combinations in an effort to find the “best” procedure, or at least 

define guidelines as to appropriate usage of the different methods [94-97].  Normalization 

strategies of high density oligonucleotide array chips such as the Affymetrix GeneChip are 

different from that of spotted oligonucleotide or cDNA arrays.  The Affymetrix GeneChip uses 

multiple probes for a gene and a single-color detection system with one sample per chip.  

Therefore, GeneChip normalization is done between arrays and is the focus of this discussion.  

Hundreds of strategies have been proposed so only a few of the most commonly used 

techniques are briefly described here. 
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 RMA (Robust MultiArray Average) proposed by Irizarry et al performs three of the pre-

processing steps in one algorithm: first it does global background correction using Perfect 

Match probes only, then performs quantile normalization on the log-transformed values before 

summarizing the probes in the probe set [94].  Quantile normalization forces the probe 

intensities to have equal density distribution across sample by setting probes with the same 

ranked intensity in each sample to the same value.   It is by far the most common normalization 

technique in use today, primarily because it is conceptually simple and easily implemented via 

Bioconductor R packages.  Variance Stabilization and Normalization (vsn) is based on the idea 

that the variance of microarray data is dependent on the signal intensity and that a 

transformation based on "shift" and "scale" can be found to generate approximately constant 

variances [98].  The authors recommend using RMA background correction and normalization 

first, then applying the vsn transformation before summarizing the probesets.  GCRMA 

combines RMA with physical modeling of sequence information of the probes [99].   

Most normalization methods, including the ones described above, are constructed on 

the assumption that the majority of genes are not differentially regulated and/or the number of 

up-regulated genes is roughly equal to the number of down-regulated genes.  The bias 

introduced when these assumptions are not met, which often occurs when studying cancer, can 

be serious [100].   Several authors have compared the results from different algorithms and 

found very poor overlap in DEG lists [101-103] . 

A promising approach to the normalization problem is local regression on technical 

covariates, which derives from the observation that probes with similar physical characteristics 
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appear to be distorted by similar amounts.  Technical regression does not depend on 

assumptions regarding the number or direction of changed probes; instead, it uses physical 

information about the probes themselves.  Although all of the factors causing distortion cannot 

be known, some likely candidates are guanine-cytosine (GC) content, location of the probe on 

the chip, and the probe melting temperature.  Guanine-cytosine content relates to melting 

temperatures and thus its binding affinity [104], and is correlated with measured expression 

values [105].  Probe location is informative because there are often visible 'patterns' on the 

scanned chip image that likely relate to non-uniform washing, small smudges and scratches.  

Melting temperature is defined as the temperature at which 50% of all the molecules of a given 

DNA sequence are hybridized into a double strand.  Higher Tm correlates with the ease of 

forming a double strand, and is affected not only by the DNA sequence (G-C forms stronger 

bonds than A-T and thus has higher Tm), but probe length, DNA concentration (which is fixed 

for probes and variable for samples), and ion concentration in the solution. Because DNA 

concentration of the sample cannot be completely controlled for, Tm must be estimated and 

assumed to be equal across samples.  There are a number of methods for estimating Tm 

(http://www.entelechon.com/2008/08/dna-melting-temperature/). 

Even today after more than a decade of debate, there is no universal agreement as to 

which methods are best.  New microarray normalization methods continue to be published in 

September 2012 [106, 107], along with head to head method comparisons [108], while bloggers 

plaintively ask "When can we expect the last damn microarray paper?"  

(http://jermdemo.blogspot.com/2012/01/when-can-we-expect-last-damn-microarray.html) 

http://www.entelechon.com/2008/08/dna-melting-temperature/
http://jermdemo.blogspot.com/2012/01/when-can-we-expect-last-damn-microarray.html
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Summary expression methods 

Affymetrix GeneChips have several probe pairs for each probe set.  Summarization 

condenses the intensity measures from each of the probe pairs in a probe set into a single 

intensity for each gene.  It was originally thought that the signal intensity from each probe 

should be very similar since the same gene hybridizes to each of them.  In reality, there are 

large differences between individual probes in a probe set.  Differences in the proportion of 

nucleotides in probe sequences alter the thermodynamic binding affinity to each probe, 

meaning that the sample fragments will bind more efficiently to different probes at different 

temperatures.  Probe differences may also result from alternative splicing events that were 

unknown at the time the probes were designed. 

 MAS5 and Median Polish are the common probe summary techniques. MAS5 attempts 

to reduce the impact of outlier probes by replacing the value of those mismatch probes (MM) 

with higher intensity than the PM probe with a modeled MM value derived from the other MM 

intensities in the probeset.  MM values are then subtracted from PM values and a robust 

average of the probe intensities is calculated using Tukey’s biweight algorithm.  Most other 

models disregard MM values, as they have not proven to accurately measure cross-

hybridization [109].   

Median Polish is a popular summarization technique and has been incorporated into the 

RMA algorithm.  It improves over MAS5 by incorporating information from multiple arrays in an 

additive model.  Probe behavior is compared over many chips, and outliers are excluded from 
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the expression summary [101].  Median polish is an iterative process of removing outliers from 

the row and column medians until values stabilize. When considering probes as rows and 

samples as columns in a matrix, the row effect is defined as the median of each row subtracted 

from the row values, and the column effect is the column median subtracted from the column 

values. This is repeated until the row and column medians are 0, then the row effects and 

column effects are added to give the “all effect” variable that is subtracted from the row effect 

and column effect variables.   Because iterations are based on median values in each step, 

probes with extreme values (compared to other probes in the probe set or other samples) will 

not distort the summarized value. 

 

2.3 Conclusion 
 

 In this chapter we reviewed some technical considerations inherent in the performance 

and analysis of microarray experiments.  Our focus throughout this study was to maximize data 

quality, and our opinion is that one must understand the limitations and technical artifacts that 

can be introduced not only in the experiments themselves but also through the choice of pre-

processing techniques.  In particular, normalization technique has a considerable influence on 

which genes are ultimately identified as significantly changed between study groups.  Our 

intent here was to illustrate some of the important choices that must be made .  Chapter 3 

describes the pre-processing choices that we made as a result of careful consideration of the 

issues discussed here, including the application of strict Quality exclusion criteria and novel 

normalization techniques. 
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Chapter 3.   Analysis of developmental and regeneration gene expression 

in HCV-induced cirrhosis and HCC 
 

3.1 Introduction 
 

 In Chapter 3, we present details of the study population, data pre- processing, statistical 

methods, and initial results.  This addresses the first part of Aim 2, to identify those liver 

development, healing, and regeneration genes that were differentially expressed in cirrhosis 

and HCC.  Section 3.3 examines Aim 2 (identification of common patterns of activation of 

genes) using the approach of defining gene sets a priori based on knowledge of the genes 

involved in specific developmental stages and particular biological processes. 

 

3.2 Patients and data collection methods 

 

 Since 1997, HCV patients diagnosed with cirrhosis and HCC have been evaluated and 

treated at the Hume-Lee Transplant Center at VCUHS according to an Institutional Review 

Board approved study protocol [110].  Informed consent was obtained from all patients.  

Patients were clinically staged according to the American Tumor Study Group modified tumor-
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node-metastasis (TNM) classification, and histopathological classification was performed 

according to the Edmondson grading system where possible.  After staging, HCC patients had 

their tumors ablated and were evaluated for liver transplant according to the United Network 

for Organ Sharing criteria. Tissue samples were collected from biopsies and explanted livers 

according to protocols established by the Liver Tissue Cell Distribution System (Richmond, 

Virginia, funded by NIH Contract #N01-DK-7-0004 / HHSN267200700004C).   Control liver 

samples were obtained from explanted donor livers. Donor livers were shown to have normal 

function and were negative for hepatitis C virus antibodies.  Microarray studies were performed 

on 180 normal, cirrhosis, and HCC samples.  

 An independently published dataset of 75 samples with 10 normal controls, 13 HCV-

cirrhosis, 17 dysplastic nodules, 18 early stage HCC and 17 advanced HCC was also obtained for 

verification of results [30] (Wurmbach, et al, 2007; NCBI GEO database accession GEO6764).  

This dataset was pre-processed using the same methods used for our own data (described 

below). In addition, the absolute expression levels of target genes in a normal adult human liver 

were obtained from the BodyMap gene expression database [111], a tissue-specific database of 

gene expression generated on the Illumina HiSeq 2000 RNA sequencing platform. We aligned 

raw sequence reads to human reference sequence HG19 using the Burrows-Wheeler Alignment 

tool (BWA) with default parameters [105].  In cases where BodyMap results were inconclusive 

(counts of 0-40), a literature search was performed to confirm adult expression of target genes.  
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3.2.1 Sample preparation 

 

Pre-transplant biopsies and explanted livers were sectioned and grossly examined.  

Samples from tumors and cirrhotic liver tissue (according to diagnosis and pathological 

examination) were freshly snap-frozen and processed in the Hume-Lee Transplant Center 

Molecular Diagnostic Laboratory.    Liver tissue samples were collected in RNAlater solution 

(Ambion, Austin, TX, USA) and stored at -80° C until use.  Explanted livers were sliced at 

intervals of 4-5mm, and all nodules suspicious for HCC processed for light microscopy.  Only 

tumor samples with more than 85% tumor cell content were used for the microarray studies.  

Normal and necrotic tissues were macro-dissected from the sample.  

With minor modifications, the sample preparation protocol follows the Affymetrix 

GeneChip Expression Analysis Manual (Affymetrix, Santa Clara, CA).   After hybridization and 

scanning, the microarray images were checked for major chip defects or abnormalities in the 

hybridization signal.  Total RNA quality and integrity of each sample were analyzed using the 

Agilent 2100 Bioanalyzer (Agilent Technologies), and products of cDNA synthesis and in vitro 

transcription (IVT) were tested before being considered for microarray analysis using the 

Agilent 2100 Bioanalyzer (cDNA synthesis 1.5 kb < cDNA < 5.0kb; IVT 1.0kb < cRNA < 4.5 kb).   
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3.2.2 Data pre-processing methods 

 

Data files were read into the R (version 2.13) programming environment and first 

examined with several quality control tests [91, 112].   Any chip that fell well outside the 

recommendations for any of the quality assessment tests was excluded from further analysis.  

Affymetrix- recommended QA tests of hybridization quality which were examined included 

scale factor (should be near 1.00), percentage of probe sets called as “present” (>40%), and 

min/max/avg background [112].  The bias.display program [91] was then used to identify chips 

with unacceptable regional artifacts. Correlation in expression values between neighboring 

probes should be zero when no technical variation is present.  Any chip with an average 40% 

correlation or more has considerable systematic bias which may be too severe to correct for in 

the normalization step.  Similarly, the correlation between rows should be close to 1.  Chips 

with more than 40% average correlation between neighboring probes or less than 70% 

correlation between rows on the chip were excluded. Like the % Present calls, the log(PM/MM) 

should be comparable across chips, and chips with log(PM/MM) >50% higher or lower than the 

average of all samples were excluded (see Appendix B for list of excluded chips). 

As noted in Chapter 2, Robust Multichip Average (RMA) pre-processing is broadly 

accepted as robust, easy to implement, and widely applicable.  However, due to the 

heterogeneity of the cancer samples we were concerned that the assumptions of RMA may not 

be met [100]. Specifically, RMA assumes that a relatively small percentage of genes are 

differentially expressed (5-10%), and that roughly equal number of genes are over-expressed 

and under-expressed.  We processed a test dataset of 58 samples using RMA normalization and 
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assessed differential expression with a moderated t-test with FDR<0.05 using limma in the R 

environment. Comparison of group contrasts identified 25-45% genes that were called as 

differentially expressed, and two-thirds of those genes were over-expressed in tumors.  This 

suggested to us that RMA may not be an appropriate method for this dataset.  Instead, we first 

performed background correction, then normalized the data using non-parametric, 

distribution-free regression on technical covariates of probes (GC content, melting 

temperature, and the X-Y coordinates on the GeneChip for each probe) to estimate and correct 

for systematic bias [105].  Normalized expression probe values were saved as corrected .CEL 

files, then read back into the R environment using updated probe annotations from the 

BrainArray project (version 14.1.0, HGU133A2_Hs_REFSEQ), which have been shown to 

improve accuracy of probe – gene mapping over the standard Affymetrix annotation [113].  

Probe sets were summarized using Median Polish. 

 

3.2.3  Description of patient population 

 

 Microarray studies were obtained over a 10 year period from 180 samples of cirrhotic 

tissue and tumors collected from 140 patients with chronic HCV infection.   As described in 

section 3.2.2, stringent quality control criteria were applied to minimize technical artifacts.  73 

chips were excluded based on the following criteria: probe-neighbor correlation >40%, row-

neighbor correlation <70%, or log(PM/MM) >50% different from average log(PM/MM). 

Appendix B contains the list of the 73 excluded chips and their exclusion criteria.  The final 
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dataset included 30 HCV-cirrhosis (CIR) and 49 HCV-HCC  (HCC) tumors (31 stage T1 and T2, and 

17 stage T3 and T4).  These were compared to a control group of 12 non-diseased, deceased 

donor livers (NOR).  Twenty-nine HCC patients were transplanted, 6 died on the transplant 

waiting list and 14 were never listed for transplant due to age, stage of cancer, or other co-

morbidities.   

 

3.2.4 Statistical methods 

 

Dysregulated genes in cancer samples are often not normally distributed.  Poorly 

regulated genes may have a broad, flat distribution of expression values or long thick tails and 

high variability, while genes that are differentially expressed in a subset of tumor samples will 

have a skewed or bi-modal distribution. In these cases the mean expression over all cancer 

samples may not be significantly different from controls.  However, their variation (standard 

deviation) will be comparatively higher.  In order to identify either of these situations, we did 

group comparisons using both a t-test to identify shifts in mean expression, and Bartlett’s F-test 

of unequal variance to identify high-variance genes.  Combined significance was calculated for 

each gene using Fisher's combined p-value and FDR < 0.01 [114]. 

We used scaled Principal Components Analysis (PCA) on specific gene sets to explore the 

relationship between sets of differentially expressed genes and disease behavior [115].  PCA 

constructs components as linear combinations of the variables and identifies the genes that 

account for the most variance in the samples.   The PCA plot displays the clustering of samples 
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based on the principal components.  Because it is easily distorted by a few outliers in the data, 

we Winsorized the data by capping extreme values at 3 median absolute deviations above or 

below the median value for each gene.  Additionally, because variability between groups for 

each gene may not be the same, we scaled the data to have unit variance. We used the 

function “prcomp” with scale.=TRUE in the R environment [115].  

 

3.2.5 Identification of test genesets 

 

In this study, we investigated the hypothesis that genes critical to the development and 

maintenance of the liver are poorly regulated or preferentially activated in HCV-induced 

cirrhosis and HCV-induced HCC.   Genes were identified from an extensive literature review 

(summarized in Chapter 1), and biologically meaningful gene sets were created based on stage 

of development or participation in particular biological processes.  While many studies of 

coordinated gene activity are based on KEGG canonical pathways or GO Biological 

classifications, there is no such resource for the specific developmental processes that we 

wished to examine, so we manually curated our developmental gene sets from the genes 

contained in our review of liver development as described in Chapter 1.   See Appendix 1 for a 

complete list of liver development genes that had probe sets on the Affymetrix HG-U133Av2 

GeneChip and their inclusion in stage-specific genesets.  
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3.3 Results 

 

3.3.1 Expression of liver regeneration genes in cirrhosis and HCC 

 

 We first examined the expression of the liver regeneration genes reviewed in section 1.6 

in 30 cirrhosis (CIR),  31 early HCC (EHCC), and 17 late HCC (LHCC) compared to normal control 

samples (NOR).  Group contrasts were performed between CIR-NOR, EHCC-CIR, and LHCC-EHCC 

in order to assess the differential expression of each gene between progressively worse disease 

status. Early HCC was also compared to normal controls. 

 The molecular events in liver regeneration after acute hepatic injury have been well 

studied in animal models in the context of partial hepatectomy.  The “first responder” genes 

are IL-6 and TNFα.  IL-6 has increased expression in cirrhosis but not HCC, while TNFα is not 

differentially expressed in cirrhosis or HCC.  Early response genes stimulated by IL-6 and TNFα 

include c-FOS, c-JUN, c-MYC, and c-MET (FOS is involved but not required for normal liver 

development while JUN, MYC, and MET are crucial liver development genes).  Table 1 lists 

mean fold-change (compared to normal controls) of the differentially expressed regeneration 

genes in our data.  FOS, JUN, and MYC were up-regulated in cirrhosis and returned to normal 

levels in most HCC samples, while MET was slightly down-regulated in cirrhosis then up-

regulated in a subset of HCC samples. Early release growth signals that stimulate hepatocytes to 

enter mitosis include HGF, TGFα, and EGF, which were not differentially expressed in either 

cirrhosis or HCC, nor were their activators PLAU and PLAU receptor.  Furthermore, inhibitors of 
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hepatocyte proliferation that are down-regulated during liver regeneration (CDH1, MST1, TGFB, 

and BMP2) are over-expressed in cirrhosis.  These data suggest that cirrhotic livers, but not 

tumors, are signaling for regenerative repair but the downstream targets are not responding 

appropriately and that hepatocyte proliferation is being actively suppressed. 

 The proliferative phase might be hypothesized to be recapitulated in tumors, since 

tumors are characterized by uncontrolled proliferation.  Epithelial Growth Factor (EGR1) and 

TNFα, which initiate the proliferative phase, showed no change in expression or were down-

regulated in cirrhosis (q= 0.6, 0.02, respectively) and HCC samples (q=0.00001, 0.08).  This 

indicates that tumors are not “continuously initiating” hepatocyte proliferation, at least not 

using regenerative mechanisms.  However, proliferation inhibitors BMP2, CDH1, and TGFB1 are 

not expressed as highly in HCC and MST1 is down-regulated, while MET is no longer under-

expressed in tumors, which suggests that tumors may be capable of overcoming the 

suppression of hepatocyte proliferation present in cirrhosis. 

 

 Table 1.  Differentially expressed liver regeneration genes in cirrhosis, early HCC and late 
HCC compared to normal controls (Fold-change relative to normal controls). . * denote genes 
that are differentially expressed compared to normal (for CIR) or cirrhosis (for HCC) (FDR<0.01); 
** denotes genes with q<0.00001; V denotes genes that are significantly more variable by F-
test of variance.  
 

Gene CIR Early HCC Late HCC 

IL6 1.5* 1.2 1.0 

FOS 4.3* 1.7** 0.9 

JUN 2.3* 1.4** 1.1 

MET 0.8* 1.1** 1.2 

PLAU 1.2* 1.3 1.4 

EGR1 1.1 0.7* 0.5 
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CDH1 1.7* 1.4V 1.3 

MST1 0.9 0.6* .05 

BMP2 1.5* 1.2* 1.2 

TGFB1 2.7* 1.6 1.6 

REL 1.4* 1.4 1.2 

FOXM1 0.9* 1.0** 1.2** 

SAA1 0.1* 0.1 0.0 

SAA2 0.1* 0.1 0.0 

CRP 0.3* 0.2 0.1 

SOD2 0.4* 0.5 0.6 

SOCS3 1.2 1.0 0.9V 

NAMPT 0.6* 0.5 0.4 

 

 

3.3.2 Differential expression of liver healing genes 

 

 Liver wound healing is distinct from large-scale regeneration and is characterized by 

activation and proliferation of progenitor cells instead of hepatocytes.  We examined CIR, EHH, 

and LHH samples compared to normal controls for differential expression of the important 

wound healing genes identified in section 1.5.  This process is directed by activated HSCs, and 

several markers of activated HCSs are elevated in cirrhosis (Table 2). PDGFA/C, CCL2, VEGFC 

maintain the activated state of HSCs, while IL6, TGFB1, PDGFR, and TIMP1 respond to 

inflammatory mediators and contribute to HSC survival.  Early phase genes MMP3, MMP13, 

and PLAU are not differentially expressed in either cirrhosis or HCC, although injury-related 

collagens COL1A1, COL1A2, and COL3A1 are elevated in both cirrhosis and HCC.   Markers of 

progenitor cells (EPCAM, VIM, and KRT19).are highly over-expressed in both cirrhosis and HCC 

(Table 2). 
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During chronic hepatic injury, several types of liver cells can acquire a neuroendocrine 

phenotype, including proliferating cholangiocytes, oval cells, and activated HSCs.  None of the 

neuroendocrine proteins CHGA, NCAM, PTHLH, the neurotrophins, or their receptors are 

differentially expressed in cirrhosis or HCC.  However, several members of the S-100 protein 

family are dysregulated: S100A4, 6 , 10, 11, 14, and 16 are over-expressed, while S100A8, 9 and 

12 are under-expressed in cirrhosis and HCC (Table 2).  S100A4 and A6 promote apoptosis, 

S100A8, A9, A11, and A12 promote inflammation, and S100A8 and A9 promote chemotaxis.  

S100 proteins have been implicated in tumorogenesis in several cancer types, but have not 

previously been associated with liver cirrhosis.   

 Serotonin receptor HTR2B, associated with hepatocyte proliferation suppression, was 

increased in both cirrhosis and HCC.  Similarly, REL and CCL5 (which promote HSC proliferation 

and migration to sites of injury) are elevated in both cirrhosis and HCC (Table 2), perhaps 

indicating that sustained wound healing is active throughout cirrhosis and carcinogenesis.  

However, other hallmarks of hepatic wound healing are not differentially expressed, including 

hedgehog pathway genes, and the other NF-κB subunits.  

 

Table 2.  Differentially expressed liver regeneration genes (fold-change relative to normal 

controls). Genes that are differentially expressed compared to the earlier stage of disease 

(q<0.01) are indicated with an *. 

Gene CIR Early HCC Late HCC 

PDGFC 1.5* 0.9* 0.8 

CCL2 4.4* 1.8* 1.7 

PDGFRA 5.3* 1.6* 0.9 

VEGFC 1.8* 1.5 1.4 

IL6 1.5* 1.2* 1.0 
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TGFB1 2.7* 1.6 1.6 

TIMP1 1.7* 1.2* 1.2 

COL1A1 2.0* 2.2 2.4 

COL1A2 4.3* 4.7 5.4 

COL3A1 2.6* 2.8 2.7 

S100A4 1.6* 1.6 1.7 

S100A6 6.0* 3.1 4.0 

S100A8 0.4* 0.3 0.3 

S100A10 2.3* 2.1 2.5 

S100A11 2.5* 2.3 2.8 

S100A14 1.8* 1.4 1.3 

S100A9 0.5* 0.7 0.6 

S100A12 0.6* 0.5 0.4 

HTR2B 2.2* 2.0 1.8 

REL 1.4* 1.4 1.2 

CCL5 5.5* 4.2 3.1 

EPCAM 14.0* 7.1 2.9 

VIM 5.3* 4.1 4.6 

KRT19 5.0 2.1 1.6 

 

 

3.3.3  Potential covariate effects on developmental gene expression in HCV-cirrhosis 

and HCC 

 

Smoking, alcohol, advanced age and diabetes are independently associated with a 

higher risk of developing HCC, with synergistic acceleration of cirrhosis and HCC development in 

HBV and HCV patients  [116-119].  Our main question is whether these risk factors result in 

differential expression of our genes of interest within the cirrhosis and HCC cohorts. Most 

patients had at least one of these risk factors and many had several (Table 3).   

Although a role for Diabetes Mellitis (DM) in development and outcomes in viral 

hepatitis-induced HCC has been demonstrated [120], and genetic alterations in DM have been 

extensively studied [121],  the molecular impact of DM in HCC or in interactions with HCV have 

not.  In general, DM has been associated with alterations in mitochondrial phosphorylation and 
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oxidative metabolism (oxidative stress), up-regulation of pro-inflammatory genes, dysregulation 

of lipid metabolism, and sustained release of acute phase proteins [122].   

Similarly, several studies have shown that smoking increases the risk of developing HCC, 

particularly in patients infected with HBV or HCV.  However, the effect of smoking on gene 

expression in liver disease has not been studied. 

Mechanisms for synergistic activity of alcohol and HCV are best known and are thought 

to include four main mechanisms:  impaired adaptive immunity; reduced antigen presentation 

on viral infected cells; reactive oxygen species (ROS) induction by both HCV core protein and 

alcohol injury; and inflammation associated with both chronic HCV infection and alcohol.  Mas 

and others have noted that alcohol abuse is associated with reduced HCV clearance and an 

accelerated disease course [118, 123].    

At the molecular level, chronic alcohol consumption impairs the secretion of TNF, IFN-γ, 

and IL12 [118].  Alcohol consumption also increases IL10 production, which also shifts immune 

response to TH2-type.   Mas et al (2010) compared the mean fold change compared to normal 

control samples for HCV-cirrhosis , EtOh-cirrhosis, and HCV-EtOh cirrhosis samples and the 

significantly changed genes identified included some liver development genes (JUN, 2.43x;  

IGF2, 1.62x; FZD5, 1.56x; MMP25, 1.52x; LAMC2, 1.33x; TCF2, 1.43x; JAG1, 1.17x, SMAD6, 

1.67x; LAMA4, 2.02; TBX1, 1.4x).  However, this compared single-etiology samples rather than 

the additional effect of alcohol consumption on HCV-HCC gene expression. 
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Table 3.  Demographic characteristics of cirrhosis and early HCC patients. There were no 
significant differences between cirrhosis and early HCC.  Age is presented as mean ± sd. 
Minimum q-value is the smallest q-value of all results for the 202 developmental genes when 
analyzed separately for gender, age, alcohol abuse, history of smoking, and diabetes co-
morbidity. 
 
Covariate Cirrhosis (n=31) Early HCC (n=30) Minimum q-

value 

Gender  - male 23 (74%) 23 (77%) 0.79 

Mean age 52.4 ± 5.2 
(range 42-62) 

56.3 ± 5.5 
(range 48-68) 

0.26 

History of alcohol abuse 20 (64.5%) 19 (63%) 0.85 

History of cigarette smoking 18 (58%) 14 (47%) 0.99 

Diabetes 7 (23%) 5 (17%) 0.74 

 

Univariate effects of each covariate on each of the 202  developmental genes in 

Appendix A were tested using a moderated t-test with limma.  Age was categorized based on 

the mean age in the HCC group (55 and above vs. below 55) and also tested as a continuous 

variable.  KIT was the only developmental gene identified in the literature as potentially 

increased with advanced age [124] and appeared to have a slight effect in our data, but this 

turned out to be driven by 2 outliers (Sample T3_400 had FC 3.7 compared to normal and 

Sample T2_388 had FC 6.4, when these two samples were excluded, mean FC was 1.3 for HCC, 

compared to FC 1.7 when included).  Alcohol abuse was defined as a history of heavy drinking 

or a diagnosis of  alcohol-induced liver disease based on the patient’s transplant evaluation.  

History of social drinking was not included.   Smoking was defined as being a current smoker, or 

having a history of smoking, at the time of diagnosis of tumor or time of transplant evaluation 
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for cirrhosis.  Gender, mean age, history of alcohol abuse, history of smoking, and diabetes 

were not significantly different between cirrhosis and early HCC groups (p>0.05).  None of the 

developmental genes had differential expression in cirrhosis or HCC based on age, EtOh, 

tobacco use, or diabetes at FDR<0.25. 

 

3.3.4 Differential expression of liver development genes in HCV-cirrhosis and HCV-

HCC 

 

We then examined expression of the 202 liver development genes (listed in Appendix A) 

in HCV-CIR and HCV-HCC compared to normal control samples. Fifty-seven genes with low 

variance (standard deviation <0.3) were filtered out.  To capture changes in either mean or 

variation of the remaining genes, we assessed significance with a combined p-value from both t 

and F tests.  Of the remaining 118 genes, 37 were not significantly changed in any group 

compared to normal controls (94 total filtered or non-significant, see Appendix C1).   

In cirrhotic tissue compared to normal controls, 68 genes had a significant shift in mean 

expression by t-test, and 1 was highly variable by F-test.  Of those 69 differentially expressed 

genes (DEG) in cirrhosis, 42 (61%) had significant mean shift in early HCC compared to cirrhosis 

and 16 (23%) had similar mean expression to the cirrhosis samples but were significantly more 

variable.  The remaining 11 (16%) genes had the same expression pattern in early HCC as in 

cirrhosis by Fisher’s combined test (Table 4).  COL4A4, CSNK1D, and HNF1B were only up-

regulated in cirrhosis and returned to normal expression levels in HCC, while 18 genes were still 

over-expressed in HCC, but not as highly as in cirrhosis. These included EPCAM and several 
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extra-cellular matrix (ECM) genes (COL4A2, MMP7, Laminin-α2, Laminin-γ3) and members of 

the Wnt/BMP axis (SFRP5, FSTL3, FGFR2, and SMAD7). Transcription factors following this 

expression pattern include SOX9, GATA6, ARID5B, ID3, and CITED2. Additionally, tumor 

suppressor KLF6, growth suppressor Necdin, mesenchymal marker KRT19, and the heparin-

binding growth factor Pleiotrophin (PTN) were more highly expressed in cirrhosis than in 

tumors. 

Table 4. Liver development genes with significantly higher expression in cirrhosis than tumor 
samples. FC = Fold-change relative to normal samples. * denote genes that are differentially 
expressed compared to normal (for CIR) or cirrhosis (for HCC) (FDR<0.01); ** denotes genes 
with q<0.00001; V denotes genes that are significantly more variable by F-test of variance.  
Abbreviations: TF= transcription factor; ECM= Extra-cellular matrix; IF= intermediate filament; 
GF= growth factor; FC = Fold-Change. 

GENE GENE NAME GENE 
FUNCTION 

Mean FC CIR Mean FC 
Early HCC 

Mean FC 
Late HCC 

EPCAM Epithelial cell adhesion 
molecule 

ECM 14.0 ** 7.1V ** 2.9* 

MMP7 Matrix metalloproteinase 7 ECM 6.3 ** 3.0* 3.6* 

KRT19 Cytokeratin-19 
 

Epidermal IF 5.0** 2.1* 1.6* 

MMP2 Matrix metalloproteinase 2 ECM 4.9** 4.6V** 3.0* 

VIM Vimentin Mesenchymal 
IF 

5.5** 3.3* 2.7 

SOX9 SRY-box 9 
 

TF 4.7** 2.5** 2.8* 

LAMA2 Laminin alpha 2 
 

ECM 4.2** 1.9* 1.4* 

FGFR2 Fibroblast Growth Factor 
Receptor 2 
 

GF receptor 4.1** 2.0** 1.3* 

KLF6 Kruppel-like factor 6 
 

TF 3.9** 2.4** 1.6* 

COL4A2 Collagen IV alpha 2 
 

ECM 3.6** 2.3* 2.2* 

LAMB1 Laminin beta 2 ECM 3.2** 1.8V** 1.5* 

ARID5B  AT rich interactive domain 5B  
 

TF 3.4** 1.8** 1.6* 

FSTL3 Follistatin-like protein 3 
 

GF antagonist 2.9** 1.5** 1.5* 

SMAD7 SMAD family member 7 Signal 
transduction 

2.8** 1.5** 1.1* 

GATA6 GATA binding protein 6 
 

TF 2.7** 1.2** 0.7* 

CITED2 CBP/p300-interacting 
transactivator 
 

TF 2.5* 1.6* 1.5* 
SFRP5 secreted frizzled-related 

protein 5 
 

Wnt inhibitor 2.4** 1.6** 1.3* 

ID3 Inhibitor of DNA binding 3 
 

TF antagonist 2.3* 1.5* 1.2* 

LAMC3 Laminin gamma 3 ECM 2.2** 1.3** 1.2* 
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NDN Necdin TF 2.1** 1.2** 1.1* 
PTN pleiotrophin GF 2.0** 1.5** 1.3* 
ZBTB20 zinc finger and BTB domain 

containing 20 
TF 2.0** 1.3** 1.1* 

CDH1 Cadherin 1 ECM 1.7** 1.4V** 1.3* 
FGF7 Fibroblast growth factor 7 

 
GF 1.5** 1.2V* 1.1* 

COL4A4 Collagen IV alpha 4 
 

ECM 1.5** 1.1* 1.2* 
CSNK1D Casein kinase I isoform delta kinase 1.4** 1.0* 1.1* 

HNF1B Hepatic Nuclear Factor 1β TF 1.3* 1.0* 1.1 
 

Only five genes were more higly expressed in HCC than cirrhosis, including Osteoponton 

(SPP1), GPC3, Midkine, MMP9, and Integrin α-6 (Table 5).  

 

Table 5.  Genes over-expressed in cirrhosis and more highly over-expressed in HCC.  FC= Fold-
Change relative to normal controls. 
  
GENE GENE NAME GENE FUNCTION FC 

cirrhosis 
FC early 
HCC 

FC late HCC 

SPP1 Osteopontin Mediates integrins and 
CD44 signaling 

9.8 9.5 16.4 

GPC3 Glypican 3 BMP inhibitor 2.1 7.8 10.1 

MDK Midkine Regulates PTN 1.7 2.7 2.4 

MMP9 matrix 
metalloproteinase 9 

Type IV collagenase 1.2 2.5 4.4 

ITGA6 Integrin alpha 6 Cell-cell adhesion 1.4 1.8 1.8 

 

 

Seven genes were down-regulated in cirrhosis and remained low in tumors: 

transcription factors FOXA1, FOXA2, XBP1, and GATA4; Activin receptor ACVR2B, Retinoic Acid 

Receptor RXRA; and signaling molecule neurturin (NRTN). Originally identified as a neuron 

outgrowth factor, in 2007 neurturin was identified as a critical factor in directing embryonic 

liver bud migration [65].  Its function in adult liver tissue has not been studied.  BMP4, FOXM1, 
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NR5A2, and SRPK1 were down-regulated exclusively in cirrhosis. c-MET, the hepatocyte growth 

factor receptor, was the only developmental gene that was down-regulated in cirrhosis and up-

regulated in tumors. 

 

Table 6.  Genes down-regulated in cirrhosis and HCC. * denote genes that are differentially 

expressed compared to normal (for CIR) or cirrhosis (for HCC) (FDR<0.01). ; V denotes genes 

that are significantly more variable by F-test of variance.  

 

GENE GENE NAME Gene function in adult liver FC CIR FC early 
HCC 

FC late HCC 

BMP4 Bone morphogenic 
protein 4 

Maintains biliary differentiation 0.76* 0.88* 1.02 

FOXM1 Forkhead box M1 Activates cell cycle regulators 0.87* 1.02* 1.2V 

NR5A2 Liver receptor 
homolog 1 

Antagonizes progenitor cell 
proliferation; promotes 
hepatocyte maturation 

0.56* 0.85* 0.7 

SRPK1 Serine/threonine 
protein kinase 

Regulates alternative splicing 0.75* 0.85V 0.97 

MET Met proto-oncogene Hepatocyte growth factor 
receptor 

0.79* 1.08* 1.22 

FOXA1 Forkhead box A1 Regulates neoglucogenesis 0.4* 0.46V 0.37 

FOXA2 Forkhead box A2 Lipid metabolism, bile 
homeostasis 

0.58* 0.63 0.63 

XBP1 X-box binding protein 
1 

Regulates lipogenesis 0.65* 0.82* 0.69 

GATA4 GATA binding protein 
4 

Inhibit proliferation; tumor 
suppressor 

0.66* 0.74 0.79 

ACVR2B Activing receptor 2B Activin and BMP receptor 0.49* 0.57* 0.59 

RXRA Retinoic acid receptor 
α 

promotes hepatocyte survival 0.50* 0.51 0.52 

NRTN Neurturin Not yet determined 0.33* 0.38 0.35 
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Fifteen genes were differentially expressed uniquely in early HCC (Table 6).  Only 2 

genes were uniquely changed in late-stage tumors (IGF2 and YAP1 were down-regulated), while 

FOXM1, ITGA3, and CP were significantly more variable. 

 

 

Table 7.  Genes uniquely changed in HCC (FDR<0.01). Abbreviations: TF= transcription factor; 

GF= growth factor. Genes with significant mean change compared to normal and cirrhosis 

samples are marked with an *; genes that are significantly more variable in tumors than 

cirrhosis or normal samples are marked with a V. 

GENE GENE NAME PATHWAY GENE 
FUNCTION 

FC 
early 
HCC 

FC 
late 
HCC 

AFP Alpha FetoProtein  uncertain 1.8 1.6 

ATF2 Activating transcription factor 2 JUN,JNK TF 1.2 1.4 

CCNE2 Cyclin E2 Cell cycle  1.4V 1.7 

DKK1 Dickkopf 1 Wnt Wnt 
inhibitor 

1.3 1.3 

DKK4 Dickhopf 4 Wnt Wnt 
inhibitor 

1.2V 1.4 

GREM Gremlin BMP BMP 
inhibitor 

1.9v 1.5 

GSK3B Glycogen synthase kinase-3 Wnt kinase 0.6 0.6 

IGF2 Insulin-like growth factor 2 IGF2 GF 0.8 0.4* 

KRAS v-Ki-ras2 Kirsten rat sarcoma viral oncogene 
homolog 

multiple GTPase 0.7 0.7 

MMP12 matrix metalloproteinase 12   2.0 3.1 

MST1 Macrophage stimulating 1 (hepatocyte growth 
factor- like) 

Hippo, JNK GF 0.6 0.5 

NID1 Nidogen  ECM 0.8V 0.8 

NOTCH2 Neurogenic locus notch homolog protein 2 NOTCH JAG1 
receptor 

0.8 0.8 

STAT3 Signal transducer and activator of transcription 
3 

multiple TF 0.6 0.5 

TGFBR3 Transforming growth factor beta receptor 3 TGFB receptor 0.6 0.5 

WNT5A Wnt 5a Wnt  1.3V 1.6 

YAP1 Yes-associated protein 1 Hippo TF 0.9 0.7 
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3.4 Functional gene sets that discriminate between normal, cirrhosis, and 

tumor samples 
 

Since genes specific to a particular stage of development are working coordinately in the 

liver during development, we wished to investigate whether the genes dysregulated in cancer 

were specific to stage of development.  We defined five gene sets corresponding to the main 

phases of development: hepatic fate specification, liver bud formation (hepatoblast migration), 

liver bud growth, hepatocyte/cholangiocyte differentiation, and maturation (See Appendix A).  

We used PCA to evaluate the amount of variation between disease types that was explained by 

the stage-specific gene sets and looked at the loadings of the first few principal components to 

identify which genes were the most important contributors (Figure 3.1).  We found that genes 

from each stage of development appeared to separate normal, cirrhosis, and HCC samples, and 

that the PCs for each gene set were not dominated by only a few genes, but instead driven by 

several genes with modest fold-changes.  This fits our original hypothesis that small changes in 

multiple regulatory genes may be important drivers of tumor progression that might look 

unimportant in a genome-wide “smallest q-value” analysis. 
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        (A)                (B) 

 

 

 

 

 

 

 

 

 

     (C)                      (D)  

 

 

 

 

 

 

 

 

 

Figure  3.1.  PCA plots of first two principal components of stage-specific liver development genes.  

Green = normal; Blue = cirrhosis; Purple = cirrhotic tissue surrounding tumor; Red = early stage HCC; 

Black = late stage HCC.   (A)  Hepatic specification genes  (B)  Hepatoblast migration genes  (C)  Bud 

growth genes (D) Hepatocyte/cholangiocyte differentiation genes. 
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Since the important genes were not specific to particular developmental stages, we 

turned our attention to specific functional groups. Genes related to extra-cellular matrix (ECM) 

maintenance or remodeling demonstrated major changes in both cirrhosis and tumors.  PCA of 

the significantly changed genes demonstrate that these genes also independently discriminate 

between normal, cirrhosis, and tumor samples (Figure 3.2 (A)).  PC1 explained 30% of the total 

variance and the largest contributors were COL4A1, COL4A2, LAMA2, LAMB1, LAMBC3, MMP2, 

MMP7, and EPCAM. PC2 was dominated by MMP12, which is uniquely expressed in HCC and 

explained 13% of the total variance. 

The BMP signaling pathway is also highly dysregulated in HCV-cirrhosis and HCC.  BMP2, 

its receptors, and BMP inhibitors are all differentially expressed in cirrhosis and HCC. BMP2 was 

over-expressed in cirrhosis, while the BMP inhibitors (GPC3, GREM1, FST) were more highly 

expressed in HCC.   A PCA plot demonstrates the gene set's ability to discriminate most tumors 

from normal and cirrhosis samples (Figure 3.2 (B)).   
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A. Extra-cellular matrix genes B. BMP2, BMP receptors and inhibitors 

(GREM1, FST, FSTL3,GPC3) 

  

Figure 3.2. PCA plots of (A) ECM genes and (B) BMP2 and its receptors and inhibitors. Green = normal 

control livers; Blue = cirrhosis; Red = early stage HCC; Black = late stage HCC.  Normal tissues cluster well 

away from either cirrhosis or tumors. Both the  ECM genes (A) and BMP inhibitors (B) were able to 

discriminate between cirrhosis and many of the tumor tissues.  ECM geneset includes: CADM1, CDH1, 

COL4A1, COL4A2, COL4A5, EPCAM, ICMT, ITGA3, ITGA6, LAMA2, LAMA3, LAMA4, LAMB1, LAMC1, 

LAMC3, MMP1, MMP2, MMP7, MMP9 MMP12, MMP15, MMP17, MMP19, and NID1.  The BMP geneset 

includes BMP2, BMPR2, GREM1, GPC3, FST, FSTL3. 

 

 

Because the specific Wnt family members involved in liver development and disease 

have not been completely determined [39], Wnt genes were not included in the initial testing.  

However, because several of the differentially expressed genes related to regulation of the Wnt 

pathway, we tested differential expression of all Wnt pathway genes (Figure 3.3).  Most of the 

canonical Wnt effectors were low variance (not DEG), including APC, AXIN, GSK3A, DVL1/2/3, 

and most of the Frizzled receptors.  WNT5A, a ligand in the non-canonical pathway which has 

been suggested as a candidate liver development Wnt, was the only significantly changed Wnt 
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ligand.  Most of the Frizzled genes were dysregulated.  FZD4 and FZD5 were down-regulated in 

both cirrhosis and HCC, while FZD6 and FZD7 were over-expressed.  The biological implication 

of these changes is not clear.  FZD5 and FZD7 are specific to canonical Wnt signaling, while FZD4 

and FZD6 are specific to non-canonical signaling.  FZD6 and FZD7 have previously been reported 

to be over-expressed in primary HCC tumors [39].  The down-regulation of co-receptors LRP5 

and LRP6 may make the cells less responsive to Wnt signaling.   The significantly changed genes 

are shown in the table below, and PCA of these genes demonstrate that they can discriminate 

most HCC from cirrhosis and normal tissue.     

  

GENE CIR Early HCC Late HCC  

WNT5A 1.04 1.25 1.57 

FZD1 1.55 1.15 1.16 

FZD4 0.74 0.85 0.90 

FZD5 0.53 0.61 0.52 

FZD6 2.42 2.00 2.32 

FZD7 3.16 1.79 1.47 

TCF4 2.57 1.88 1.56 

LRP5 0.67 0.61 0.54 

LRP6 0.74 0.82 0.81 

DKK1 1.05 1.34 1.34 

DKK3 5.19 3.19 2.39 

DKK4 1.00 1.16 1.44 

GSK3B 0.78 0.58 0.62 

              

Figure 3.3.   Fold-change of differentially expressed Wnt pathway genes compared to normal controls 

and PCA plot comparing normal, cirrhosis, and tumor samples. 
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3.4 Discussion  
 

 In this chapter we presented results of differential expression of the genes critical for 

liver regeneration, liver wound healing, and liver development.  Many of the “early response” 

genes that initiate liver regeneration are also important liver development genes, and these 

genes were differentially expressed in cirrhosis.  However, the down-stream targets of these 

genes during regeneration were not differentially expressed. In a small study of five living 

donors undergoing partial hepatectomy, Ho et al (2007) identified several genes up-regulated 

five hours after resection, including SAA1, SAA2, CRP, SOD2, SOC3, and NAMPT (involved in 

immune response and cell growth) [125].  All of these genes were down-regulated in our data, 

providing further evidence that the processes active in cirrhosis and HCV- induced tumors do 

not share important characteristics with the regenerative processes in otherwise healthy livers. 

   Overall, 90 of the 202 (45%) genes critical to liver development had altered expression 

patterns in cirrhosis and HCC.  A complete list can be found in Appendix C.  EPCAM, an 

intermediate filament specific to epithelial cell types, is the most highly over-expressed 

development gene in cirrhosis (15x) and early HCC (14.4x), and less highly over-expressed in 

late HCC (5.7x).  Yoon et al (2011) suggest that EPCAM markers seen in cirrhosis represent 

immature hepatocytes that have recently derived from progenitor cells, which retain many 

characteristics of embryonic hepatoblasts [126].   Progenitor cell markers include KRT19, 

Vimentin (VIM),  and c-Kit (KIT).  Interestingly, KRT19 is an epithelial IF, while Vimentin is an IF 

marker of both mesenchymal cells and those undergoing Epithelial-Mesenchymal transition.  

The progenitor cell markers are also very highly expressed in cirrhosis:  KRT19 (5.0x), VIM (5.5x), 
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and KIT (1.9), but markers of hepatocyte proliferation were  not up-regulated (HGF) or down-

regulated (c-Met 0.8x).  This supports the idea that hepatocyte replacement in advanced 

cirrhosis is accomplished by proliferation and differentiation of progenitor cells [127] as a form 

of wound healing.  This process closely resembles the initial formation of the embryonic liver 

bud by hepatoblast migration through the STM and subsequent proliferation and 

differentiation into hepatocytes (as described in Section 1.4.2 and 1.4.3).   

 In healthy livers, hepatocyte turnover is very slow, and the liver expresses several 

inhibitors of hepatocyte proliferation including BMP2, MST1 and CDH1.  During liver 

regeneration after partial hepatectomy, all of these genes are down-regulated, and the 

promoters of hepatocyte proliferation are (MET and HGF) up-regulated.  In our cirrhosis 

samples, hepatocyte proliferation inhibitors were up-regulated (BMP2  1.5x, CDH1 1.7x) or 

expressed at normal levels (MST1), providing further evidence that HCV-induced cirrhosis is 

characterized by “wound healing” as opposed to regenerative processes.  BMP2 and CDH1 

were less higly over-expressed in tumors (BMP2  1.2x, CDH1 1.4x) and MST1 was down-

regulated (0.6x), suggesting that tumors may acquire hepatocyte proliferative capabilities in 

addition to progenitor cell proliferation. 

Aberrant wound healing has also been suggested as a mechanism in several types of 

cancer [128] including renal cell carcinoma [129] and lung cancer [130].   In our data, both early 

and late tumors also over-expressed markers of proliferating progenitor cells including VIM, 

KRT19, and EPCAM.    EPCAM has also been noted previously as highly expressed in pre-

malignant hepatic tissue and a subset of HCC with poor prognosis [131].  Budhu et al 
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distinguished a subtype of HCC that displayed a molecular signature with features of progenitor 

cell markers (EPCAM, c-KIT, KRT19, VIM, PROM1, and AFP) and the activation of Wnt signaling 

[132].  However, in our data EPCAM, KRT19, VIM, and PROM1 were over-expressed in every 

cirrhosis sample and less highly expressed in HCC.  Early HCC with poor prognosis (death or 

recurrence within 2 years) and late-stage HCC had EPCAM (<3x) loss in 6/9 and 12/19 (67%, 

63%) of samples, compared to 2/21 (9%) of early HCC with good prognosis, which seems to 

contradict the previous association of EPCAM+ subtype with poor prognosis.   However, Kumar 

et al (2011) distinguished an HCC EPCAM+/AFP- subtype that has good prognosis compared to 

EPCAM+/AFP+ [133], and our data is largely AFP- (the six AFP+ patients in our data had 

recurrence or died, regardless of EPCAM levels). It has also recently been shown by Wang et al 

(2012) that Hepatitis B virus X induces EPCAM expression and aggressive clinicopathologic 

features [134], so high EPCAM levels may be more prognostic for HBV than for HCV induced 

HCC. 

Other developmental genes that have recently been demonstrated to be either 

expressed by or activate progenitor cells include Midkine (MDK), pleotrophin (PTN), SOX9, 

FGF7, FGFR2b [135], which were all over-expressed in cirrhosis and tumor samples.  In the 

developing embryo, MDK regulates PTN expression, which is a hepatoblast growth factor.   

SOX9 has been previously associated with activated HSC, fibrosis, and cirrhosis [136] and 

recently associated with poor prognosis and tumor progression in HCC [137].   Embryonically, 

SOX9 guides hepatoblast differentiation towards a biliary fate.  It was in 2011 also suggested as 

a marker of liver progenitor cells or their recent progeny cells along with EPCAM and PROM1 

after liver injury [138-140]. 
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FGFR2 is a receptor for that is highly expressed on hepatocytes and progenitor cells and 

plays a role in liver homeostasis [141].  FGFR2 is capable of dimerizing when over-expressed, 

which could lead to ligand-independent signaling.  In cell lines, inhibition of FGFR2 signaling led 

to enhanced apoptosis, suggesting that FGFR2 over-expression may protect against apoptosis 

[142].  Interestingly, isoform IIIb is expressed exclusively on epithelial cells, whereas the IIIc 

isoform is expressed on mesenchymal cells, so isoform switching can indicate EMT and 

contribute to unbalanced autocrine signaling [142].  

Although microarray data cannot be used to evaluate alternative splicing events, several 

FGFR2 probe sets show differential expression from each other in cirrhosis and HCC, suggesting 

the possibility of isoform switching that we may be able to investigate in future RNA-seq 

studies.   The epithelial isoform FGFR2IIIb binds specifically to FGF7, while the mesenchymal 

isoform FGFR2IIIc has binding specificity to liver FGFs 2, 4, and 8.  FGF2 proteins are long-lived 

and present in significant levels in adult livers and maintain hepatocyte differentiation [143].  

FGF2 was not differentially expressed from normal samples in our data.   

MMP2 and MMP7, which have been shown to correlate with degree of fibrosis and liver 

function tests [144] were also highly over-expressed in cirrhosis compared to HCC.  However, 

MMP2 and MMP7 over-expression have also been associated with invasiveness and poor 

prognosis in HCC and other cancers [145-149], and no studies have addressed the difference in 

expression or role between cirrhosis and HCC.  Both MMP2 and MMP7 specifically degrade the 

type IV collagens that make up the basement membrane in healthy livers  both embryonically 

and in adulthood [150].  Several collagens and laminins that make up the ECM are up-regulated 
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in cirrhosis and HCC, along with their receptors (integrin α3 and α6) and the MMPs that 

degrade and remodel the matrix.  MMP12  and MMP9 were exclusively up-regulated in tumors.  

This is in agreement with Han et al (2004), who showed that MMP9 was not produced by fully 

activated HSC in cirrhosis, but present during early stages of fibrosis then again in early HCC 

[151].  MMP9 expression from damaged hepatocytes promotes the release of progenitor/stem 

cells from the bone marrow, which migrate to the liver and participate in ECM remodeling, and 

are capable of differentiating into hepatocytes [152-154].  It is thought to have multiple roles in 

the development of tumors, including activation of TGFB1, degradation of collagen IV, promote 

tumor invasion into blood and lymph vessels, and resistance to natural killer cells [155].  

MMP12  has been recently associated with venous infiltration and poor prognosis in HCC [156].  

In our data, MMP12 was either not over-expressed at all, or over-expressed at least 10-fold 

over normal controls.  Five of 30 (17%) early stage and 5/17 (30%) of late stage tumors over-

expressed MMP12. 

Embryonically, BMP signaling is antagonistic to FGF signaling and this balance is 

controlled by the DAN family of BMP antagonists from mesenchymal cells and GPC3 expressed 

by hepatocytes. BMP2, BMPR1A, FGF7, FGFR2, and ID3 were more highly expressed in cirrhosis 

than HCC, while the BMP inhibitors were more highly expressed in tumors. At least one of the 

inhibitors GPC3, GREM1, FSTL3, and/or FST were expressed nominally higher (FC>1.5) in 100% 

of tumor samples.  MST1 is a negative regulator of YAP1 in the Hippo pathway responsible for 

maintenance of organ size.  In the liver, it maintains hepatocyte quiescence and is considered a 

tumor suppressor, and loss of MST1 and MST2 (STK3) is sufficient to initiate hepatocyte 

proliferation and development of HCC [157]; however in our data, MST1 is down-regulated 
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while STK3 is up-regulated [158] .  YAP1 expresion is unchanged in cirrhosis and early HCC and 

down-regulated in late tumors. 

STAT3 is an oncogene, and overexpression or constitutive activation is generally 

associated with HCC  and tumor progression [159].  However, in our data STAT3 was highly 

expressed in normal and cirrhosis samples and down-regulated in HCC.  High levels of normal 

expression were confirmed in the BodyMap dataset (counts > 15,000).  STAT3 is an essential 

effector of acute phase response to IL-6 signaling in the liver, and STAT3 inactivation leads to 

serious impairment of the acute-phase response.  It is a complex protein with six functional 

regions that appears to play diverse and contradictory roles in different cell types within the 

liver, including inflammatory responses, promoting hepatocyte survival, regulating 

hematopoietic stem and progenitor cell proliferation and survival [160].  The apparent loss of 

STAT3 in tumor samples may reflect the difference in proportion of mature hepatocytes, or the 

presence of persistently activated STAT3 may lead to reduced transcript levels [161]. 

RXRA down-regulation has been reported in both HCV- and HBV- induced HCC [9, 29, 30, 

162, 163].  In healthy livers, RXRA is expressed by hepatoctyes and promotes their survival, as 

well as being involved in several metabolic functions.  It also mediates inhibition of cell cycle 

progression and induction of apoptosis by vitamin A derived retinoic acid [164].  Therefore, loss 

of RXRA expression in cirrhotic tissues may contribute to carcinogenesis.  The mechanism of 

RXRA down-regulation is not yet known, but a recent ChIP-Seq study by Chorley et al (2012) 

[165] implicates Nuclear Factor NRF2, which is activated by oxidative stress and inhibited by the 

Hepatitis C virus [166]. 
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Chapter 4.  CORRELATED EXPRESSION MODULES 
 

A main goal of microarrays is to identify genes or gene sets that are differentially 

regulated across biological conditions.  Even more interesting is to identify which genes are 

working together in health and disease, how patterns change as disease progresses or to 

identify diagnostic or prognostic sub-groups.   One approach to this question is to examine 

patterns of correlated expression within and between disease states.  Cluster analysis is 

frequently used, and can identify genes that have highly correlated patterns of expression, but 

if those genes are not highly correlated in another biological state then the genes would not be 

associated with another by a clustering algorithm [167].  Variation may exist in the expression 

of a gene in different sub-populations, leading to incorrect grouping.  In addition, cluster 

analysis identifies groups of genes that are correlated above a certain cutoff, but with no 

indication of which particular pairs are interacting.  Another potentially useful idea is that of 

differential co-expression (DC).  Two genes are DC if their correlation in one condition differs 

from their correlation in another condition [167].  Similarly, a set of genes is differentially co-

expressed if the correlation structure among the group’s genes in one condition differs from 

the correlation structure in another condition [168].   We examined both correlated expression 
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and differential co-expression to address Aim 2, identifying recurrent patterns and 

clinical/prognostic sub-types in cirrhosis and HCC. 

  

4.1 Methods 
 

 Correlation patterns were examined using Spearman’s correlation coefficient on 

Winsorized data (so that few extreme values did not drive results) for each pair of liver 

development genes, within cirrhosis and early HCC.   Functional gene sets and genes within the 

same pathway were examined for mutual correlation.   Any pair of genes with correlation 

|>0.5| was considered correlated.  To investigate what unanticipated changes may occur 

between cirrhosis and early tumors, we also built ‘naïve’ gene sets independent of known 

functional relationships (see Appendix D).  Any gene with at least five other genes correlated at 

least |>0.5| was defined as a gene set.   By doing this for both cirrhosis and HCC separately, we 

could identify those genes sets that “changed pattern” between cirrhosis and HCC, and 

determine what those changes were.   

We used Gene Set Co-expression Analysis (GSCA) to examine differential co-expression 

of these gene sets between cirrhosis and early tumors.   This method calculates a dispersion 

index from all of the pair-wise correlations in each gene set for each group (cirrhosis vs. early 

HCC).  Specifically, pairwise correlations were calculated for all gene pairs, then a dispersion 

index was defined as the Euclidean distance, adjusted for the size of the gene set under 

consideration: 
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,  

where , p=1,…,Pc =  indexes gene pairs with the gene set c of size nc, and 

denotes the co-expression calculated for the gene pair p within condition Tk, k=1,2.  

Samples were permuted across conditions to simulate the null of equivalent correlation 

between conditions.  A score was calculated from the permuted dataset and repeated on 

10,000 permuted datasets to yield gene set specific p-values.  The correlation method is chosen 

by the user and we used Spearman’s correlation for consistency. 

 

4.2 Correlated gene pattern results 
 

4.2.1 Correlated genes in cirrhosis 

 

 Expression analysis of developmental genes in Chapter 3 identified  markers of hepatic 

progenitor cells (EPCAM, KRT19, and VIM) as a consistent pattern in both cirrhosis and tumors.  

We were first interested in identifying what other developmental genes were correlated with 

expression of progenitor cell markers for two reasons:  first we wished to establish what 

processes were associated with the progenitor cell signature, and second to establish the 

“baseline” for comparison, so that we could identify what distinguishes tumor tissue from the 

cirrhosis samples that did not develop tumors.  It was recently suggested that EPCAM+ 

hepatocytes are the recent progeny of hepatic progenitor cells [126], while KRT and VIM are 
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markers of the progenitor cells themselves.  EPCAM was not correlated with any other 

developmental gene in cirrhosis, perhaps because it was highly over-expressed in all samples 

(FC range 5-24).  KRT19 and VIM had mutually correlated expression with SMAD7, FSTL3, and 

ECM genes COL4A2 and LAMB1.  VIM expression was also correlated with  TGBF1.  TGFB1 and 

SMAD7 are expressed at very low levels in normal tissue and up-regulated  in most cirrhosis 

tissues, and the degree of over-expression is correlated with VIM levels.  TGBF1/SMAD7 

signaling induces EMT and the expression of VIM in hepatocytes.  Vimentin is also correlated 

with MMP2 (which degrades Type IV collagens), and with a number of laminins, which are 

produced by activated HSCs and high levels are associated with more severe fibrosis and 

inflammation.  Thus, there appears to be a highly correlated network that show markers of 

proliferating progenitor cells, activated hepatic stellate cells, and possibly EMT of hepatoctyes.   

 Necdin is a growth suppressor that interacts with p53, and recent evidence suggests 

that it activates canonical Wnt signaling in activated HSCs to promote a myogenic phenotype 

[169].  In our data, Necdin is over-expressed only in cirrhosis, and expression is correlated with 

SMAD2, SMAD7, TGFB1, and TIMP2, supporting a Wnt connection.   

 Extra-cellular matrix genes are also highly expressed and highly correlated in cirrhosis, 

including LAMA2, LAMB1, LAMC1, LAMC3, COL4A1, COL4A2, ITGA3, and ITGA6. These ECM 

genes are co-expressed with a major component of ECM remodeling in cirrhosis, MMP2, and 

TGF-β signaling (TGFB3 and TGFBR3. 

 The other major characteristic of cirrhosis identified from differential expression 

analysis was the expression of hepatocyte proliferation inhibitors BMP2, CDH1, and MST1.  
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Surprisingly, these genes were not co-expressed with each other or their regulatory partners.  

MST1, which is highly expressed in normal tissue and cirrhosis but down-regulated in HCC,  was 

correlated in cirrhosis with Fibronectin, RXRA, Ceruplasmin, and ERBB2, but negatively 

correlated with KIT and ECM genes LAMA2, LAMB1, LAMC1, LAMC3, ITGA, and MMP9.  The 

biological interpretation of this pattern isn’t completely clear, but every cirrhosis sample either 

over-expressed BMP2 or CDH1 or maintained high expression of MST1, which may imply that 

any of the proliferation inhibitors is sufficient to maintain hepatocyte quiescence.   

 

4.2.2 Correlated genes in early HCC 

 

In tumors, the same markers of progenitor cells and ECM remodeling described above 

remain highly correlated (EPCAM, VIM, KRT19, MMP2, MMP7, COL4A1, LAMA2, LAMB1, 

LAMC3), but this network is no longer correlated with TGFB1 and SMAD7.  TGFB1 and SMAD7 

have been implicated in EMT, along with NOTCH signaling and loss of E-Cadherin (CDH1).  

NOTCH and TWIST are not differentially expressed in cirrhosis or HCC, while CDH1 is highly 

expressed in cirrhosis and most tumors.   Loss of CDH1 is associated with both EMT and 

acquisition of hepatocyte proliferation, and in a subset of tumors was correlated with 

expression of NOTCH2, SMAD7 and EPCAM, but not with VIM or KRT19. CDH1 and MST1 loss 

were also correlated in HCC 

 Of the genes that were uniquely over-expressed in HCC, only TBox3 (TBX3) had 

correlated expression with other developmental genes, including IRS1, LAMA3, NR5A2, HDGF, 

YAP1, CADM1, and ITGA6. TBX3 is a downstream mediator of β-catenin signaling that is closely 
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associated with β-catenin mutational status in HCC [170]. Insulin receptor substrate 1 (IRS1), is 

up-regulated by constitutively activated β-catenin [171], and NR5A2 is also a β-catenin target 

gene that may play a role in acquiring pluripotency [172].  IRS2 also interacts with YAP1 and is 

associated with YAP1 nuclear retention. YAP1 is the end-product of the Hippo signaling 

pathway and inhibits β-catenin signaling [173].  YAP1 expression is, in turn, correlated with 

Midkine expression, another Wnt inhibitor.  This correlated gene set may suggest the presence 

of mutationally activated β-catenin is a small subset of our HCC patients. 

  

4.3 Co-expression analysis 
 

 In the previous section, correlations among the most highly expressed genes were 

examined. We found that several genes without overall differential expression significance had 

correlated expression to DEG, and that some of these pairings had biological relevance.  In 

order to potentially discover other correlated gene sets that occur in HCC sub-populations, a 

naïve approach was also taken.  Rather than limiting our analysis to the expression patterns of 

the genes with overall significant changes in cirrhosis and tumors, all highly correlated genes 

were included.  Using gene co-expression analysis, gene sets that were highly correlated within 

one disease group were compared to their correlation structure in the other group, in order to 

identify what changes in gene expression patterns may accompany the transition from cirrhosis 

to HCC. 
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4.3.1  Co-expression patterns in cirrhosis  

 

Within cirrhosis, 30 genes were correlated | >0.5| with at least 5 other genes (some 

gene correlation groups were a subset of a larger group and these were disregarded).  19 of 

these gene sets were differentially co-expressed compared to early HCC, that is, the pattern of 

which genes were co-expressed together in cirrhosis was different than those genes that were 

co-expressed in HCC.  Several of the gene sets overlap to form a co-expression network that 

was differentially co-expressed compared to HCC (Table 8).  This network includes progenitor 

cell markers VIM and KRT19, and  Wnt-inhibitory genes SRPK1, FSTL3, and SMAD7. Casein 

kinase Iδ (CSNK1D) what highly correlated to each of them.  It interacts with both Wnt and 

YAP1 signaling as well as DNA-repair proteins.  TGF-β1 is commonly up-regulated in cirrhosis 

but hepatocytes are resistant to TGFB1-mediated apoptosis, and this may possibly be partly due 

to the co-expression of SMAD7, which blocks TGFB1 receptor binding. NFKB1 is a positive 

regulator of Wnt via direct binding to β-catenin. COL4A2 is induced by TGFB1. It is less clear 

how the other genes are biologically related in this grouping.   
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Table 8.  Network of co-expressed genes in cirrhosis. Empty cells are those not correlated at 
least 0.5. 

 

 

4.3.2 Co-expression patterns in Early HCC 

 

In general, there were many more groups of co-expressed genes in early HCC compared 

to cirrhosis: 42 genes had at least 5 genes correlated >0.5.  25 of these gene sets were 

differentially co-expressed in HCC compared to cirrhosis, and several sets are quite large: 

LAMA2 (40), MMP2 (38), NDN (37), MET (35),  CDH1 (32),  FSTL3 (32), STAT3 (30), LAMB2 (27), 

KIT (26), ZNHIT3 (21),  KLF6 (17).  Several of these gene sets overlap to form a large co-

expression network.  As in cirrhosis, the Wnt-related genes CSNK1D, TGFB1, FSTL3, SMAD7, 

PA2G4, and COL4A2 remain correlated in HCC, but also become part of a much larger network 

including genes that were not co-expressed in cirrhosis:  Necdin, several ECM genes including 

MMP2/7/19, LAMA2, LAMB1/2, LAMC3, and ITGA3/5, mesenchymal markers KLF6, EPCAM, and 

 CSNK1D SRPK1 FSTL3 TGFB1 PA2G4 SMAD7 COL4A2 NFKB1 BSG STAT3 YAP1 MAP2K4 ARF6 

CSNK1D 1.00 0.79 0.72 0.71 0.67 0.55 0.60 0.67 0.66 0.65 0.63 0.61 0.61 

SRPK1 0.79 1.00 0.52 0.54 0.58    0.52 0.52 0.54 0.59   

FSTL3 0.72 0.52 1.00 0.66 0.64 0.59 0.72 0.74  0.58   0.51 

TGFB1 0.71 0.54 0.66 1.00 0.79 0.77 0.72 0.58 0.75  0.58 0.61 0.60 

PA2G4 0.67 0.58 0.64 0.79 1.00 0.53 0.52 0.60 0.59 0.57 0.59 0.59 0.50 

SMAD7 0.55   0.59 0.77 0.53 1.00 0.65 0.53 0.50  0.50 0.52 0.58 

COL4A2 0.60   0.72 0.72 0.52 0.65 1.00 0.62 0.52     

NFKB1 0.67 0.52 0.74 0.58 0.60 0.53 0.62 1.00      

BSG 0.66 0.52   0.75 0.59 0.50 0.52  1.00     

STAT3 0.65 0.54 0.58  0.57      1.00 0.55   

YAP1 0.63 0.59   0.58 0.59 0.50    0.55 1.00 0.79 0.60 

MAP2K4 0.61     0.61 0.59 0.52     0.79 1.00 0.64 

ARF6 0.61   0.51 0.60 0.50 0.58     0.60 0.64 1.00 
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Vimentin, HGF receptor c-MET, FGF receptor 2, EGF receptor ERBB2, and several transcription 

factors (ARID5B, CITED, LHX2, GATA6) (Table 4.2).  Necdin is an imprinted gene associated with 

increased expression in hepatic progenitor cells (Chang 2009).  KIT, a stem cell factor receptor 

and marker for several types of stem cells, is highly correlated with NDN in early HCC but not 

cirrhosis.   

KLF6 is a nuclear protein thought to be a tumor suppressor.  In our data it is highly over-

expressed in cirrhosis and less highly over-expressed in HCC.  Although consistently over-

expressed in our cirrhosis tissues (FC range 2.1-5.9), its expression is not correlated with other 

developmental genes.   However, in early HCC KLF6 expression becomes much more variable 

and loss of expression is correlated to a subset of the NDN/KIT/MMP network, including  tumor 

suppressors GATA6 and ARID5B, STAT3, LAMB1/2, SFRP5, FSTL3, and MET (Table 10).  In 

addition, expression is positively correlated with ARF6, PIK3R1, and ID2. Early HCC patients who 

had recurrence/death had similar expression levels of KLF6, STAT3, and ID2 to late-stage HCC 

samples (lower than that of early HCC patients who did well), while GATA6, ARID5B, LAMB1, 

and LAMB2 were under-expressed compared to both Early HCC/good outcomes and Late HCC. 
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 Table 9.  Genes co-expressed with KLF6 in Early vs. Late HCC (compared to normal controls) 

 

 

 

 

 

 

c-MET, the Hepatocyte Growth Factor Receptor, promotes hepatocyte proliferation and 

is down-regulated in cirrhosis but not in HCC.  E-Cadherin (CDH1), ID2, and EGF receptor ERBB3 

are positively correlated to MET in cirrhosis but negatively correlated in tumors (Table 10).   E-

Cadherin is an inhibitor of hepatocyte proliferation up-regulated in cirrhosis and highly variable 

in HCC.  Co-expression analysis suggests that it “changes allegiance” in early HCC.  TGFBR3 and 

MET are positively correlated to CDH1  in cirrhosis and negatively correlated in tumors.  In 

tumors, CDH1 and MST1 are correlated, and these two genes are mutually correlated with 

several other developmental genes including receptors ERBB2, FGFR2, and NOTCH2, 

transcription factors STAT3, LHX2, GATA6, CITED2, and Wnt antagonists SFRP5 and SMAD7.  It is 

also negatively correlated with GREM1, CTNNB1, FOXM1, and ZNHIT3 expression (Table 9).  

Cirrhosis samples consistently up-regulated CDH1  while MET had normal or below normal 

expression.  The E-cadherin network appears to be protective in HCC patients: of the 16 early 

HCC with CDH1 up-regulated (and higher expression of associated genes), 15 were transplanted 

Gene Early HCC/ 
poor 
outcome 

Late HCC/ 
poor 
outcome 

Early HCC/ 
good 
outcome 

KLF6 1.9 1.9 3.0 

STAT3 0.4 0.5 0.6 

ID2 0.6 0.7 0.8 

GATA6 0.7 1.1 2.1 

ARID5B 1.4 2.0 2.4 

LAMB1 1.5 2.2 2.9 

LAMB2 0.8 0.9 1.0 

MET 1.4 1.2 1.0 
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and still alive 2-10 years post-tx (94%).  The other thirteen early HCC patients had normal or 

decreased expression of CDH1 and MST1 and increased expression of MET.  Of these, 8 (62%) 

died (4 due to recurrence, 4 from other causes).  Embryonically, E-cadherin expression is lost by 

hepatoblasts as they acquire a migratory phenotype.  It has a long-established role in malignant 

cell transformation and is regarded as a “suppressor of invasion” as loss of function correlates 

with increased invasiveness and metastasis in many cancer types [174].  Similarly, MET 

amplification has a well-established association with invasion and recurrence in HCC [175, 176].  

Lee et al (2009) identified a gene signature for lymph node invasion in mixed HBV/HCV-HCC 

that included MET overexpression and CDH1 under-expression [177].   This data appears to 

provide evidence that there is a sub-population of HCC samples that acquires the capacity for 

hepatocyte proliferation, and that this subgroup has poor outcomes compared to those HCC 

that maintain hepatocyte quiescence. 

YAP1 signaling stimulates growth of both hepatoblasts and maturing hepatocytes in the 

developing liver, and over-expression leads to liver overgrowth and tumors.   In our data, YAP1 

over-expression is associated with poor outcomes in early HCC and most of the long-term 

survivors have down-regulated YAP1.  However, samples taken from late-stage tumors also 

have low levels of YAP1.  MST1 is a key regulator of YAP1, and they might be expected to be 

correlated.  Surprisingly, this is not the case.  Not only are they un-correlated (ρ=0.06), they 

have non-overlapping sets of correlated genes.  MST1, which is down-regulated in HCC, is 

dicussed above.  YAP1 co-expresses with MDK, NR5A2, TBX3, ITGA6, MET, HDGF, SRPK1, and 

MAP4K4.  Several of these genes are associated with β-catenin mutational status as discussed 

in Section 4.2.2.  Thus it appears that YAP1 is part of a co-expression module associated with β-
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catenin mutations, while YAP1 inhibitor MST1 is associated with the CDH1 signature of samples 

with poor prognosis. 

Table 10.  Correlated gene network in early HCC.  Only correlations >0.5 are displayed. 

  NDN MMP2 KIT LAMA2 FSTL3 LAMB2 VIM EPCAM MMP7 JAG1 

NDN 1.00 0.84 0.80 0.80 0.65 0.67 0.65 0.60 0.56 0.65 

MMP2 0.84 1.00 0.74 0.74 0.71 0.66 0.71 0.57 0.62 0.72 

KIT 0.80 0.74 1.00 0.74 0.70 0.61 0.61   0.50 0.62 

LAMA2 0.80 0.74 0.74 1.00 0.69 0.56 0.63 0.58 0.51 0.70 

COL4A2 0.77 0.76 0.73 0.74 0.65 0.54 0.62 0.64 0.51 0.75 

ARID5B 0.76 0.78 0.73 0.80 0.66   0.86 0.63 0.66 0.81 

FGFR2 0.71 0.56   0.70       0.71   0.58 

ITGA5 0.70 0.67 0.65 0.58 0.64 0.67       0.59 

PTN 0.70 0.52 0.56 0.73     0.59   0.54   

SMAD7 0.70 0.62   0.60 0.56 0.75   0.52     

LAMC3 0.68 0.66 0.72 0.82 0.72 0.58       0.50 

LAMB2 0.67 0.66 0.61 0.56 0.69 1.00         

NOTCH2 0.65 0.75 0.58 0.64 0.73 0.70       0.57 

FSTL3 0.65 0.71 0.70 0.69 1.00 0.69       0.60 

LAMB1 0.65 0.74 0.65 0.73 0.54   0.75 0.67 0.71 0.74 

JAG1 0.65 0.72 0.62 0.70 0.60   0.79 0.72 0.68 1.00 

VIM 0.65 0.71 0.61 0.63     1.00 0.59 0.73 0.79 

CITED2 0.64 0.55 0.55 0.56 0.57 0.63         

TGFB1 0.61 0.54 0.56   0.60 0.57         

EPCAM 0.60 0.57   0.58     0.59 1.00   0.72 

GATA6 0.59 0.68 0.63 0.66 0.81 0.74         

CDH1 0.58     0.60       0.53     

MMP19 0.56 0.68 0.75 0.72 0.74   0.65   0.50 0.62 

MMP7 0.56 0.62 0.50 0.51     0.73   1.00 0.68 

ERBB2 0.56         0.54         

ITGA3 0.54 0.59   0.57 0.52 0.74         

STAT3 0.54     0.50   0.64         

NFKB1 0.53                   

KLF6 0.52 0.53 0.54   0.56 0.56         

COL4A1 0.52 0.57 0.57 0.56     0.70 0.52 0.51 0.71 

SFRP5 0.50 0.59   0.73 0.63 0.55   0.57     

KRT19 0.50 0.67 0.54 0.67 0.59   0.70 0.69 0.63 0.76 

FOXM1 -0.51     -0.51 -0.50 -0.61         

MET -0.61 -0.61 -0.51 -0.54   -0.74   -0.51     
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Chapter 5.  VALIDATION 
 

5.1   Comparison with moderated t-test using limma 
 

we confirmed 1,311 genes with no documented liver expression.  Of these, four were 

DEG in the limma analysis, which is well within the false discovery rate.  These four were 

CELA3A and PGC (digestive enzymes), ODF1 (a sperm protein), and PSG1 (a pregnancy-specific 

glycoprotein). 

More specifically, we wished to determine whether the general developmental 

pathways altered in HCC were using genes specific to liver development, or whether any 

member of the gene family might be engaged. To examine this, we identified 26 paralog genes 

that have highly related developmental functions in other tissues, that are not expressed in 

normal healthy livers (based on the RNA sequencing data  and verified with a literature search). 

In our data, no paralogs were expressed in disease compared to normal samples (FDR <0.01) 

(Table 10, column A).  We validated this to an independently collected HCV-HCC dataset from 

Wurmbach et al (see methods), which also had no expression of these paralog genes (Table 10, 

column B).  Density plots illustrating the common patterns seen in the liver development 

compared to non-liver paralog genes are shown in Figure 5.1.  Normal and HCC samples have 

no expression of the non-liver gene (RXRG and SOX1), which have narrow expression 
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distribution.  RXRA is expressed in normal tissue and down-regulated in HCC, while SOX9 is 

over-expressed compared to normal samples. 

Unfortunately there is currently no authoritative, comprehensive annotation of all 

tissue-specific expression. The liver has the ability to activate many metabolic and detoxifying 

mechanisms only when needed, and these would not be expressed in most “normal liver” 

samples used for comparison. However, we identified over a thousand genes that were not 

expressed in the reference healthy liver sample by RNA sequencing, and only 4 of them showed 

differential expression in our tumor samples.  These results suggest that the changes occurring 

in cirrhosis and HCC are driven by aberrant expression of genes normally expressed in the liver, 

or expressed at some time during the normal life history of the liver.  Activation of genes not 

normally expressed by the liver might be expected to occur via such processes as copy number 

variation or DNA replication damage to promoter regions of random genes, but we found no 

evidence of such activation. 

 

5.1.1 Genome-wide testing results  

 

  Low variance genes (st. dev. < 0.3) were filtered, leaving 11,731 probesets.  The 7,270 

probe sets with unique gene names and expression were retained.   3,170 probe sets (43.6%) 

were differentially expressed between cirrhosis and normal samples, and 1,543 were 

differentially expressed between early HCC and cirrhosis.  This is far too many to evaluate 
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individually, and these probe sets were evaluated using GSEA (results below).  All 90 

differentially expressed liver development genes were also identified in this analysis as well.   

Only 8 probe sets were differentially expressed between early and late HCC including 

IGF2, a developmental gene that was identified in our targeted analysis. The other late-stage 

genes were INS-IGF2 read-through, an open reading frame that contains alternative splicing 

regions for Insulin and IGF2; Aurora-A binding protein (AIBP), which is involved in chromosome 

alignment during cell division; DUSP6, which inactivates MAPK1; Inositol polyphosphate 1-

phosphatase (INPP1), a general signal transduction membrane protein; ATP10B, an ATPase; and 

Tetranectin, which stimulates muscle differentiation during embryonic development. 

Tetranectin is intriguing because it is involved with plasminogen activation and ECM 

remodeling, and is associated with poor prognosis in several cancer types, including oral [178], 

ovarian [179], bladder [180], and colorectal [181].  Although it has not been previously 

associated with HCC, it has recently been proposed as an important factor in the survival of 

pancreatic islet cells after transplantation into the liver [182, 183].  Since plasminogen and 

tetranectin are both produced by hepatocytes, this raises the tantalizing idea that tetranectin 

might have an un-recognized role in liver development.   

 

5.1.2   Differentially expressed genes are specific to liver development 

 

 We hypothesized that genes not normally expressed in adult livers are less likely to be 

transcriptionally activated in HCV-HCC.  To test this, we identified a set of genes with zero 
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counts in an RNA sequencing study on a normal liver sample from the BodyMap project.  1,399 

of these were represented on the Affymetrix U133Av2 genechip.  Genes that are not expressed 

in normal liver tissue have varied measured values caused by variations in background non-

specific hybridization and by technical noise that was not corrected by normalization.  Because 

these distributions are highly non-normal (a high peak around "zero" expression and narrow 

variation), we assessed expression of these genes in disease samples with a one-sided, non-

parametric two-sample Kolmogorov-Smirnov Test to test differences in both location and shape 

of the distributions.  

There were 36 genes with significant expression in cirrhosis samples and 31 DEG in HCC 

samples.  A search of online databases of tissue-specific expression (immunobase.org, 

nextprot.org, BioGps.org, and bGee.unil.ch) confirmed that 32 of these genes can be expressed 

in the liver, along with a further 22 genes that had no expression in either the BodyMap sample 

or our samples.  This is reasonable because not all possible genes will be expressed at all times 

in a given sample.   
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Table 11.  Liver development genes compared to their non-liver paralogs.  (A) one-sided K_S 

test of identical distribution comparing HCC to normal samples; (B) one-sided K-S test in the 

Wurmbach dataset; (C) K-S test comparing the liver development gene to its non-liver paralog. 

 

Liver  
development 
gene 

Expression  
in normal 
adult liver 

Non-
liver 
paralog 

Non-liver gene, 
tumor vs. normal  
VCU data 
A 

Non-liver gene, 
tumor vs. normal  
Wurmbach data 
B 

Liver vs. non-
liver gene in 
tumors  
VCU data 
C 

ACVR2A + AMHR2 0.18 0.009 0.14 

BMP2 + BMP3 0.014 0.57 9.9 x10-10 

BMP4 + BMP3 0.014 0.57 0.0091 

CDH1 ++ CDH3 0.20 0.007 1.7x10-6 

ELF5 - SPDEF 0.003 0.29 5.2x10-08 

FGF1 - FGF3 0.73 0.37 0.0023 

FGF2 + FGF3 0.73 0.37 1.7x10-6 

FGF7 + FGF12 0.81 0.20 1.7x10-6 

FGF8 - FGF17 0.90 0.69 0.14 

FOXA1 ++ FOXB1 0.02 0.97 2.2x10-16 

FOXA2 ++ FOXD2 0.06 0.72 1.2x10-12 

GATA4 ++ GATA1 0.05 0.18 2.4x10-10 

GATA6 + GATA1 0.05 0.18 1.7x10-6 

GPC3 - GPC4 0.29 0.22 1.1x10-11 

HHEX ++ VENTX 0.002 0.32 3.6x10-5 

HLX + BARX1 0.02 0.02 0.00049 

IL6ST +++ IL12RB2 0.25 0.59 7.3x10-6 

KIT + FLT3 0.87 0.09 0.0011 

KRT19 + KRT17 0.12 0.59 3.7x10-8 

LHX2 + LHX1 0.31 0.55 2.7x10-6 

MET ++ MST1R 0.19 0.006 0.00026 

MMP7 + MMP10 0.59 0.07 2.2x10-16 

MMP12 - MMP10 0.59 0.07 0.0012 

MMP14 + MMP10 0.59 0.07 1.2x10-7 

MMP19 + MMP10 0.59 0.07 0.0025 

MMP2 + MMP10 0.59 0.07 2.2x10-16 

NR5A2 ++ NR5A1 0.32 0.37 2.2x10-16 

NRTN + PSPN 064 0.36 2.2x10-16 

RXRA +++ RXRG 0..05 0.15 2.2x10-16 

SOX9 * SOX1 0.27 0.05 4.4x10-16 

SOX17 + SOX11 0.01 0.26 0.0005 

TBX3 ++ TBX2 0.34 0.02 5.6 x10-7 

WT1 - EGR4 0.14 0.009 3.6x10-5 
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Figure 5.1. Selected density plots of liver development vs. paralog non-liver development 

genes. Expression densities are shown for gene pairs in normal and HCC samples from our data 

and in the Wurmbach dataset.  Red = expression of the liver gene in HCC; Green = expression of 

liver gene in normal controls; Blue- expression of non-liver gene in HCC; Purple= expression of 

non-liver gene in normal controls.   Paralog genes (RXRG and SOX1) were not expressed in HCC 

or normal samples, while liver development genes  RXRA and SOX9 were differentially 

expressed in HCC. These patterns were  also observed in the Wurmbach dataset. 

  

 Normalized signal intensity 

  
 

  
  Normalized signal intensity 
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5.2 Comparison with Gene Set Enrichment Analysis (GSEA) 
 

GSEA generates scores based on possibly small-amplitude but coherent changes in the 

expression of sets of genes.  These gene sets can be based on pathways, common biological 

function, chromosomal location or common regulations.  GSEA works by determining whether 

members of a gene set S tend to occur near the top or bottom of the list L of ranked gene 

expressions from samples with two phenotypes, and comparing this to the null hypothesis that 

the genes are randomly distributed throughout the ranked gene list. 

Specifically, the method proceeds in three steps.  First, an enrichment score (ES) is 

calculated by taking a running sum across L of the scores of all the genes in S (increasing the 

score) and those genes not in S (decreasing the score).  If S is randomly distributed throughout 

L, it's enrichment score will be small, but if many members of S are clustered at the top or 

bottom of L, then the ES will be high.  ES corresponds to a weighted Kolmogorov-Smirnov- like 

statistic, where the weights correspond to the expression value for each gene.  The significance 

of ES is estimated by comparing to a null distribution generated by a permutation test, where 

the samples are permuted.  Finally, multiple hypothesis testing is accounted for by normalizing 

the ES against the size of the gene set and calculating the FDR by comparing the tails of the 

observed and permuted null distributions for the normalized ES. 

 We first filtered probe sets to only include those with standard deviation of greater than 

3 and excluded probe sets from the same gene that had identical expression values in all 

samples.  Using the Gene Set Enrichment Analysis Java interface (version 2.0), we submitted the 
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remaining 7,270 probe sets for GSEA analysis using several publically available and commonly 

used gene sets: GO terms for molecular function, GO terms for biological processes, Biocarta 

canonical pathways, and KEGG pathways.  Gene sets with at least 8 genes were included.  We 

also tested the liver development genes as a gene set for comparison. 

 

5.2.1  Analysis of public gene sets and pathways 

 

 GO molecular function (MF) terms describe the molecular tasks that gene products 

perform. MF gene sets include all the genes that are annotated with these functions.  Some 

examples of MF gene sets that might be predicted to be enriched include Antigen_binding, 

Integrin_binding, Interleukin_receptor_activity, Protein_kinase_binding, Cytokine_activity, 

Cytokine_receptor_binding, or Smad_binding, for example.  Analysis of 325 gene sets with an 

FDR<0.25 resulted in no significant genesets in any pairwise comparison of Normal, Cirrhotic, 

Early HCC, or Late HCC samples. 

 GO Biological Processes (BP) terms describe what type of process a gene product is part 

of , for instance, Cell Cycle, Development, Metabolic processes, Response to stimulus, or 

Signaling.  Some BP gene sets that might be predicted to be enriched are 

Activation_of_MAPK_activity, Intracellular_signaling_cascade, JAK_STAT_cascade, 

Regulation_of_angiogenesis, or Cell_cell_adhesion, to name a few.  598 BP sets with >8 genes 

were analyzed with an FDR<0.25.  Seven gene sets were significant when comparing Cirrhosis to 

Normal controls, 6 involving regulation of immune response, especially T-cell activation and 
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proliferation (Table 12).  The 7th gene set was “nuclear localization signal-bearing substrate 

into the nucleus”. Comparison of Early HCC to Normal tissue identified two significant gene 

sets, Endoplasmic Reticulum Nuclear Signaling, and Biogenic amine metabolism.  No gene sets 

were significantly different between Early or Late HCC and Cirrhosis samples. 

 

Table 12. GO Biological Processes with significant enrichment at FDR<0.25. 

Comparison Significant Gene Set q-value 

CIR-NOR T-cell proliferation 0.209 

CIR-NOR Positive regulation of immune response 0.019 

CIR-NOR Positive regulation of lymphocyte activation 0.09 

CIR-NOR Positive regulation of immune processes 0.239 

CIR-NOR T-cell activation 0.24 

CIR-NOR Regulation of lymphocyte activation 0.24 

CIR-NOR Response to virus 0.243 

CIR-NOR NLS substrate nuclear import 0.24 

 

  

Comparison of the canonical pathways from Biocarta identified 18 (of 215) significant 

pathways between Cirrhosis and Normal samples. As with the Biological Process GO terms, 

most of these pathways involved immune response and T-cell regulation. Two unexpected 

pathways were “Dream” (involved in repression of pain sensation), and “Vitamin C in the 

Brain”.  Comparison of Early HCC to Normal identified only the T-Cell Receptor activation 

pathway, and there were no differences between Early HCC and Cirrhosis, or Late HCC to Early 

HCC (Table 13). 
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Table 13. Biocarta pathways significantly enriched at FDR < 0.25 

Comparison Pathway q-value 

CIR-NOR CCR5 pathway 0.058 

CIR-NOR, Early-NOR T-Cell Receptor Activation pathway 0.071, 0.24 

CIR-NOR T-cytotoxic pathway 0.091 

CIR-NOR CTL pathway 0.099 

CIR-NOR IL17 pathway 0.138 

CIR-NOR T-helper pathway 0.138 

CIR-NOR Lym pathway 0.182 

CIR-NOR ArenRF2 pathway 0.166 

CIR-NOR B-lymphocyte pathway 0.154 

CIR-NOR Fibrinolysis pathway 0.196 

CIR-NOR Platelet app pathway 0.212 

CIR-NOR TC apoptosis pathway 0.247 

CIR-NOR CTLA4 pathway 0.24 

CIR-NOR Granuloctyes pathway 0.228 

CIR-NOR Monocyte pathway 0.234 

CIR-NOR VitC in the Brain pathway 0.235 

CIR-NOR AS B-cell pathway 0.24 

CIR-NOR DREAM pathway 0.228 

 

  

The Kyoto Encyclopedia of Genes and Genomes (KEGG) contains not only canonical 

pathways, but also processes and gene sets associated with particular diseases.  186 KEGG 

genesets were analyzed.  8 pathways were identified in the Cirrhosis-Normal comparison: 

Asthma, Allograft rejection, Type I Diabetes Mellitus, Intestinal Immunity, Graft Vs. Host 

Disease, Viral Myocarditis, the Leithmania Infection.  Some relevant genesets that had nominal, 

but not FDR-corrected significance, included Cell Adhesion, Extra-Cellular Matrix Receptors, 

Antigen Processing, and Leukocyte Migration.   The Early HCC vs. Normal comparison identified 

the same pathways as found in CIR-NOR, with the addition of Autoimmune Thyroid Disease and 

Folate Biosynthesis.  None of the other comparisons were significant at FDR<0.25, although the 

“Prostate Cancer” gene set was significant at p=0.009 between Early HCC and Cirrhosis. 
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5.2.2 GSEA of liver development genes 

 

 A gene set was constructed of all the liver development genes that passed the filtering 

of SD>0.3 (116 genes). The Cirrhosis-Normal, Early HCC- Normal, and Early HCC-Cirrhosis 

comparisons were significant (q=0.03, q=0.08, and q=0.078, respectively).  The 10 highest 

ranking genes discriminating Cirrhosis from Normal were EPCAM, KRT19, MMP7, SOX9, MMP2, 

SPP1, LAMA2, COL4A1, and FGFR2, TGFB1.  The highest ranking genes discriminating Early HCC 

from Cirrhosis were KRT19, MMP12, LAMA2, GREM1, GPC3, GATA6, SMAD7, FGFR2, FSTL3, and 

MMP7. 

 

5.3 Validation to the Wurmbach dataset 
 

 One of the frustrating outcomes after a decade of investigation into the molecular basis 

of HCC has been the lack of reproducibility.   We used a publicly available dataset of HCV-

induced cirrhosis and HCC from Wurmbach et al (2007) [30] to evaluate whether the patterns 

that we identified in our data were also evident in this independently collected dataset.    

 

5.3.1 Developmental gene sets 

 

As noted in Section 5.1.2 above, we have shown that the developmental genes 

dysregulated in HCC are specific to liver development in both our data and in the Wurmbach 

data.  Gene sets that we identified from our data were validated against the Wurmbach dataset 
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by applying the PCA loadings from our data to their dataset, and we observed similar patterns 

of separation between normal, cirrhosis, and HCC tissues (Figure 5.1, 5.2).   Normal vs. cirrhosis 

tissues were not as well distinguished but late stage tumors show better separation from early 

tumors.  As in our data, there were no major genes driving the principal components for each 

developmental stage, rather several genes contributed.  
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Figure 5.2 PCA plots of developmental gene sets by stage of development in the Wurmbach 
dataset. Green = normal; Blue = cirrhosis; Purple = cirrhotic tissue surrounding tumor; Red = 
early stage HCC; Black = late stage HCC.    
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  (A) ECM genes    (B)  BMP genes, receptors, and inhibitors 

 

  (C)  Wnt genes    (D) Progenitor-Hepatocyte Signature 

 

 

 

 

 

 

 

 

 

 

Figure 5.3.  PCA of gene sets identified in our data in the Wurmbach dataset. Green = normal; 

Blue = cirrhosis; Purple = cirrhotic tissue surrounding tumor; Red = early stage HCC; Black = late 

stage HCC.    
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The progenitor-cell signature (VIM, EPCAM, and KRT19) was also up-regulated in 

cirrhosis samples and in the dysplastic nodules in the Wurmbach data.  Inhibitors of hepatocyte 

proliferation CDH1 and BMP2 were up-regulated and MST1 expression remained an normal 

(high) levels in cirrhosis, as in our data.  However, expression of EPCAM and KRT19 was lost in 

most of the tumor samples, although secondary markers of progenitor cells were over-

expressed (SOX9, Midkine,  and Nidogen).  CDH1 and MST1 expression was much more down-

regulated in Wurmbach’s data compared to our data, while MET was over-expressed in a 

subset of tumors, suggesting that in the Wurmbach dataset hepatocyte proliferation is a more 

common HCC sub-type.  Since Wurmbach’s data contained more advanced tumors, and 

included more metastatic tumors than our data, this supports the observation that hepatocyte 

proliferation seems to signify poor prognosis.  

 

5.3.2 Regeneration genes 

 

 Genes involved with liver regeneration were also examined in the Wurmbach data.  As 

in our data, early response gene IL-6 was up-regulated in cirrhosis but not HCC, while TNF did 

not change expression compared to their normal controls. Several of the intermediated 

response genes are also liver development genes (STAT3, HGF, JUN, MYC, and MET) and are up-

regulated during regeneration.  In the Wurmbach dataset, HGF, JUN, MYC, and MET are down-

regulated in most of the HCC samples.  However, proliferation genes FOXM1, CCNB1, and 

CDC25C were up-regulated in late-stage HCC while signals thought to terminate the 

proliferative phase were down-regulated (SERPINE1, SERPINE2).  In our data, proliferative 
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signals were not present, however, Wurmbach’s data includes more metastatic late-stage 

samples. 

 

5.4 Discussion 
 

 Our approach in this project was to do an in-depth, focused analysis of genes likely to be 

engaged in liver dysfunction in an effort to address historical problems with high false positive 

rates, difficulty in interpretation of thousands of results, and reproducibility across datasets.   In 

order to assess our success in this endeavor, we compared our results to a “standard analysis” 

of moderated t-test of means using limma, and applying Gene Set Enrichment Analysis (GSEA) 

to the results.  We found that, as expected, several thousand genes were differentially 

expressed using this approach.  Although the liver development genes were among these 

significant results, it would have been impossible to highlight them as more important than the 

other significant genes except perhaps using GSEA to capture enrichment in particular 

pathways.  However, GSEA also failed to identify the pathways represented by the significant 

developmental genes, possibly because the KEGG gene set definitions include all members of a 

pathway without regard to tissue specificity.  Thus the contribution of the dysregulated liver 

genes may have been ‘diluted’ by the non-contributing genes that are specific to other tissue 

types.  

 The only gene sets identified by GSEA involved pathways involved in response to 

infection, which was expected in this population of patients with active, chronic HCV infection.   

However, GSEA applied to a gene set of all liver development genes was significant when 
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comparing cirrhosis to normal, early tumors to normal tissue, and early tumors to cirrhosis.  The 

highest ranking genes included some of the progenitor cell markers, cell adhesion genes, and 

BMP inhibitors discussed in previous sections. 

 We also attempted to validate our important results in the Wurmbach dataset, which is 

one of the few other publically available datasets of HCV-induced cirrhosis and HCC.   This 

dataset contains more late-stage tumors than our data, and we were interested in looking for 

differences between early and late tumors in their data since we found almost no differences 

between early and late tumors in our data.  We applied the PCA models (loadings) calculated 

from our dataset to the Wurmbach data, and in every case the patterns were similar.  In most 

cases, the advanced tumors had similar patterns but were the more extreme values (outliers) in 

the graphs.   The exception was found in the hepatocyte regenerative markers, which were up-

regulated in Wurmbach’s advanced tumors, which included more metatatic samples, in 

contrast to our dataset which contained large non-metastatic tumors.  Some of the surprising 

negative results, including the lack of p53 and Hedgehog pathway dysregulation, were also 

reproduced in the Wurmbach dataset.  
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Chapter 6. Discussion and conclusion 
 

6.1 Data quality 
  

The main theme of this dissertation was to look below the surface of the big changes 

common to all tumors – metabolic disturbances, cell turnover, inflammatory response, etc - and 

find the potentially subtle signals of master regulators that drive tumor initiation and 

progression.   Tumor biology is inherently variable, and the technical noise in microarray 

experiments can obscure actual transcript abundance.  Therefore it was critical to remove as 

much noise as possible from the data with careful attention to data quality and pre-processing 

in order to maximize the precision of the measured signals.   We chose “quality over quantity” 

and applied stringent quality control criteria, ultimately excluding almost 40% of the GeneChip 

results with unrecoverable technical artifacts.  We were also careful in our normalization in 

order to minimize adding bias to the results.  To test normalization success, we checked for 

apparent expression of Y-chromosome genes in samples from females, and also compared the 

density curves of genes known to have zero expression in the liver.  In our initial normalization 

strategy we found that HCC samples had apparent down-regulation of non-expressed genes, 

indicating that the model was over-correcting the data, and adjusted the model to remove this 

artifact. 
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6.2 Dysregulated genes are specific to those normally expressed by the liver 
  

Our main aim was to examine the role that liver development genes play in HCV-

induced HCC.  To justify this narrow focus on just a few hundred genes out of thousands, we 

also examined whether the genes activated are specific to the life history of the liver, and 

whether the patterns of gene expression recapitulate other processes that may occur in the 

liver such as wound healing and regeneration.  We addressed the issue of liver specificity by 

identifying genes (both developmental and otherwise) that are not normally expressed in the 

liver.  This was a non-trivial exercise because the liver has the ability to express thousands of 

genes to fulfill a multitude of functions including fat, glucose, iron, and amino acid homeostasis, 

combating infection, neutralizing drugs and  environmental toxins, and manufacturing many 

hormones and enzymes that are used elsewhere in the body.  Ultimately we found a set of 

about 1,400 genes (present on the Affymetrix HG-U133v2 GeneChip) that are not normally 

expressed in healthy livers or expected to be induced in response to infection or toxins.  

Twenty-nine of these genes were developmental genes that play highly paralogous roles in 

other organs (including BMP3, CDH3, FGF3, FGF12, FOXB1, GPC4, and others).  Sixty genes were 

non-liver members of developmental gene families with less obvious paralog functions, 

including ATF, FOX, BMP, FGF, TBX, CDH, CDX and MMP genes.   None of the 89 non-liver 

developmental genes and only three of the other non-liver genes were significantly 

differentially expressed, which is well within the number of false positives predicted by an FDR 

< 0.05.  This provides evidence that the processes involved in the development of liver tumors 
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in patients with chronic HCV does not involve random activation, but are more likely systematic 

responses to the stress of chronic infection and cirrhosis that may be poorly controlled or out of 

balance in tumors [184]. 

 

6.3 The role of liver regenerative processes in cirrhosis and HCC 
 

A healthy liver maintains hepatocyte quiescence, enforced by expression of CDH1 and 

MST1.  When injured, the liver regenerates mass by repressing these genes and inducing 

hepatocyte proliferation in a cascade triggered by IL-6 and TGFα. In our cirrhotic samples, the 

genes that normally maintain hepatocyte quiescence (CDH1 and MST1) are highly expressed, 

and inhibitors of hepatocyte proliferation (TGFB and BMP2) were up-regulated.  HGF and c-

MET, the final link in the chain of events leading to induction of hepatocyte proliferation, were 

not activated in cirrhosis.  However, in nearly half of the early tumors, c-MET was up-regulated 

and expression of proliferation inhibitors CDH1 and MST1 was lost, suggesting that there may 

be a sub-type of HCC that gains hepatocyte proliferative abilities.  This group has 38% two-year 

recurrence-free survival compared to 95% survival in patients with elevated CDH1 and low MET 

expression.  This is similar to a prognostic subtype proposed by Yamashita et al, 2009 for HBV-

induced HCC [132] . 

Li, et al (2010), compared publically available microarray datasets of mouse liver 

development and  mouse liver regeneration expression profiles to Wurmbach's HCV-induced 

HCC data [185].  Using hierarchical clustering and two-dimensional clustering techniques, they 

found that liver regeneration samples had very different expression profiles from both HCC and 
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liver development, while HCC and liver development had similar expression profiles.  Their 

results are interesting because the human HCC profiles were compared to mouse development 

and regeneration profiles.  One might expect that the mouse samples would be more similar to 

each other than to any human samples, and the cross-species agreement between 

development and tumors was stronger than the within-species differences between 

development and regeneration.    

 In the only study of its kind, Ho et al (2007) obtained gene expression profiles from the 

livers of five living donors for transplant at two points during the donor operation.  Biopsies 

were taken at the beginning and end of the partial hepatectomy procedure (about five hours 

later).    They identified a signature of cell growth and immune response genes including 

SAA1/2, CPR, CHST4, S11A8, SOD2, RASD1, PBEF1, RRS, and SOCS3 that are up-regulated, which 

is in good agreement with known targets of the immediate response genes TGFα and IL-6 [125].  

Interestingly, in our data, these genes were either not differentially expressed or were  down-

regulated.    This may suggest that the proliferation resulting from chronic injury is not triggered 

by the same mechanisms involved in response to acute injury. 

 

6.4 Progenitor cells and liver healing mechanisms recapitulate liver 

development and play important roles in cirrhosis and HCC 

 

 In contrast to the markers of hepatocyte-proliferation regenerative processes which 

were only present in a potentially prognostic subset of HCC, all of our cirrhosis and HCC samples 
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displayed markers of progenitor cells, including EPCAM, Vimentin, and KRT19, which are also 

putative markers of liver cancer stem cells [186].  Sell and Leffert (2008) point out that the 

activation and proliferation of putative liver stem and progenitor cells occurs in response to 

injury only when hepatocyte proliferation is inhibited [186].  Although these findings are largely 

based on animal models of acute liver injury, the patterns of gene expression in our data 

containing 79 cirrhosis and HCC patient samples fit this model. 

 There is growing acceptance of the idea that cancer stem cells arise from normal stem 

cells that have lost control of regulatory mechanisms [187].  The specific regulatory 

mechanisms are still unknown because liver stem cell research is difficult due to the rarity of 

hepatic stem cell niches and difficulty establishing cell cultures.  However, Hedgehog, Notch, 

and Wnt signaling are the most important regulators of other types of stem cells.   Mutations of 

stem-cell-related genes have been reported in some liver tumors, suggesting that disruption of 

the self-renewal process in hepatic stem cells may lead to carcinogenesis [188].  Majumdar et al 

(2012) suggest Wnt activation and loss of TGF-β signaling in hepatic cancer stem cell formation 

[189], and this appears to be supported by our data:  TGFBR3 is lost (<.8 fold) in 36 of 49  (74%) 

HCC samples compared to 6/30 (20%) cirrhosis; Wnt inhibitor SMAD7 was over-expressed in 27 

(90%) cirrhosis but only 15 (31%) of HCC, and was down-regulated in 13 HCC samples (27%).   

Similarly, Wnt inhibitor SFRP5 was over-expressed (>1.5 fold) in all cirrhosis samples but only 20 

HCC (41%). This is also consistent with the HCC subtype identified by Yamashita et al (2008) 

with over-expression of EPCAM, KRT19, KIT, and activated Wnt-β-catenin signaling [132]. 
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 c-MET is a high affinity receptor for HGF and has a well-established association with 

tumor growth, invasion, and metastasis in HCC [175, 176, 190].  In our data, MET was over-

expressed in a subset of tumors with poor 2-year recurrence free survival.  MET over-

expression was also correlated with loss of expression several tumor suppressors in HCC: KLF6, 

STAT3, ARID5B, GATA6, and ID2.  The correlated expression pattern of these genes in early 

stage tumors was similar to their expression pattern in late-stage tumors. 

 In summary, HCV-cirrhosis samples displayed a consistent pattern of markers of 

proliferating progenitor cells that is consistent with chronic wound healing processes and 

reminiscent of hepatoblast proliferation in embryonic develompent.  Even though some of the 

intermediate initiators of liver regeneration were mildly up-regulated, the down-stream 

effectors that would indicate hepatocyte proliferation were not in evidence, and several 

inhibitors of hepatocyte proliferation were up-regulated, including Wnt inhibitors, TBGF-β, and 

BMP2.   All of our HCC samples displayed the same markers of progenitor cell proliferation, 

however the tumors lost expression of Wnt inhibitors and up-regulated at least one BMP 

inhibitor, suggesting that the proliferative controls present in cirrhotic tissues may be overcome 

in tumors to allow uncontrolled proliferation of progenitor cells and possibly transformation to 

cancer stem cells, as proposed by Koike et al, 2012 [187]. This pattern was nearly universal in 

our HCC samples.  In addition, there was a sub-set of 13 (45%) of early stage tumors that also 

displayed a signature of MET over-expression and the loss of EPCAM, E-cadherin, and several 

tumor suppressors, and this subset had poor survival, as predicted by Yamashita et al, 2009 

[132]. 
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6.5 Not all HCC-associated pathways were engaged in our HCV-induced 

cirrhosis and HCC data 
 

 P53 and pRb are cell-cycle control pathways implicated in HCC that are not associated 

specifically with liver development.  The TP53 gene, is best known as a tumor suppressor but 

also plays roles in embryonic development, particularly differentiation of neurogenic, 

osteogenic, and myogenic, meatogoietic, and adipogenic cells [191].  Because it appears to be 

dispensable in liver development [192], it was not included in our developmental gene set, but 

since it is highly associated with HCV and HCC we did examine its behavior in our samples.  In 

our data TP53 is not differentially expressed in any sample (std. dev = 0.27).   Similarly, the pRb 

pathway controls cell cycle exit and expression is frequently lost during tumorogenesis but not 

altered in our HCV-cirrhosis or HCV-HCC samples.  These patterns were also seen in the 

Wurmbach dataset of HCV-induced cirrhosis and HCC. 

 The Hedgehog pathway is another HCC-associated pathway with important roles in body 

patterning in nearly every region of the body.   Hedgehog signaling is activated in response to 

epithelial-mesenchymal signaling from BMPs and FGFs, and in general promotes the survival of 

progenitor cells.  In adulthood, Hedgehog signals released from activated HSCs have a well-

established role in liver wound healing and regeneration [193], and strong HH signals have been 

found to persist in some sub-groups of HCC  as well [194-196], including HCV-induced HCC 

(24/60 HCV-HCC samples vs. 1/28 cirrhotic livers; Lemmer et al 2006, AACR Abstract #2676) 

[197].  However, none of the component genes of the pathway were differentially expressed in 
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cirrhosis or HCC samples, in our samples or in the Wurmbach dataset.   Chen et al (2012) have 

recently shown that sonic hedgehog signaling induces cell migration and invasion through 

production and activation of MMP2 and MMP9, which specifically degrade type IV collagens 

that are the major component of hepatic fibrosis and cirrhosis [198].  MMP2 and MMP9 are 

over-expressed in both cirrhosis and tumor samples in our data, however, they have other 

regulators including IL-8, TNFα, NF-κB, and SP1, so it may be that any of these are “sufficient 

but not necessary” to induce MMP2/9 activity. 

Some of the other surprising negative results include the lack of involvement of FGF2, 

and liver maturation factors HGF, Hepatic Nuclear Factors 1a, 1b, and 4a, Onecut 1 and 2, 

HHEX, and PROX1. FGF2 is a critical early detmininant of hepatic fate that plays important post-

natal roles in wound healing to stimulate angiogenesis and may help maintain hepatocyte 

differentiation and liver homeostasis.  The main FGF receptor FGFR2 is up-regulated in cirrhosis 

and many tumors. In adulthood the liver maintains substantial levels of inactivated FGF2 as 

stable proteins and low mRNA transcript levels [199], so it is possible that FGF2 is exerting some 

effect in cirrhosis and cancer by protein activation rather than increased transcription.  

However, none of the expected downstream targets of FGF signaling were dysregulated, so it is 

unclear what effect FGF signaling through up-regulated FGFR2  is having.  Similarly, Hepatocyte 

Growth Factor (HGF) is expressed by activated HSC and promotes hepatocellular regeneration, 

mediates epithelial-mesenchymal interactions, and is associated with the development and 

progression of several types of cancer including HCC.  However HGF levels remained stable 

throughout cirrhosis and all stages of HCC in both datasets.   k-Ras is an oncogene that can be 

directly activated by the HCV core protein and has been implicated in hepatic carcinogenesis in 
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mouse models [200, 201], however in human HCC mutations were more important than over-

expression in determining outcome, possibly explaining the lack of differential expression.  

 As critical regulators of liver maturation, we expected that hepatic nuclear factors 

HNF1A, HNF1B, HNF4A, ONECUT1, and ONECUT2 would be differentially regulated in HCC.  

However, this may be explained by the fact that they all require co-activation by FOXA1 and 

FOXA2 for transcription [202].  In our data both FOXA1 and FOXA2 were down-regulated in 

cirrhosis and HCC.  These transcription factors are inhibited by elevated insulin, so this may be a 

consequence of the insulin resistance and impaired glucose homeostasis caused by Hepatitis C 

core protein activity [203]. 

 

6.6 Summary and conclusion 
 

 Our major hypothesis in this study was that the mechanisms of carcinogenesis in HCV-

induced HCC may be unique compared to the development of other cancers.  Unlike other 

types of cancer, HCV-HCC arises against a background of decades of response of chronic 

infection, inflammation, and increasing fibrosis and ultimately cirrhosis.  HCV is also unique in 

that is it is an RNA virus that does not insert into the genome, so tumors might be expected to 

not be a result of random mutation to the same extent as other cancers.  Therefore we focused 

on the expression of genes that have been used in the life history of the liver, including 

embryonic development, healing, and regeneration. 
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 Early embryonic development is characterized by proliferation of bi-potential 

hepatoblasts, while proliferation of differentiated hepatocytes is the dominant growth 

mechanism in the final maturation stage of development.   In the adult liver, these mechanisms 

are recapitulated in specific instances.   Healing of small scale and chronic injury involves 

induction of niches of undifferentiated proliferative/stem cell populations which reside in the 

biliary ducts (Canals of Hering) and migrate to the site of injury, proliferate, and differentiate in 

a manner reminiscent of hepatoblast migration through the STM and subsequent 

differentiation.  In contrast, regeneration of lost liver mass, as occurs after acute toxicity or 

partial hepatectomy, involves the proliferation of differentiated hepatocytes that more closely 

resembles the final steps of liver maturation. 

 We found that cirrhotic and tumor samples universally expressed markers of 

proliferating progenitor cells and their offspring ( newly differentiated hepatocytes).  Cirrhosis 

samples also ubiquitously over-expressed Wnt inhibitors (which controls the rate of progenitor 

cell proliferation) and several inhibitors of hepatocyte proliferation.   Nearly all of the tumor 

samples continue to express markers of progenitor cells but lose expression of Wnt inhibitors, 

indicating that in tumors control of  progenitor cell proliferation may be lost.   In addition, we 

identified three sub-populations of early tumors.    A group of 13 early stage tumors 

characterized by loss of E-cadherin and EPCAM expression and over-expression of c-MET had 

38% 2 year recurrence-free survival.  The 16 early tumors that had levels of of these genes 

similar to that seen in cirrhosis samples had a 95% 2-year recurrence-free survival rate.   

Patients with good prognosis tended to express higher levels of BMP inhibitors as well.  

Interestingly, these signatures were not prognostic for late stage tumors.  However, there was a 
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set of 6 tumor supressors that were down-regulated to similar degrees in late stage tumors and 

those early stage tumors with poor outcomes.   We also identified a group of tumors that over-

expressed genes associated with β-catenin mutations, however this group was not associated 

with either good or poor prognosis.    

These patterns were identified using a focused analysis of genes that had either shifts in 

overall mean expression or high variability.  We found several high-variability genes with no 

change in mean expression, but that had correlated expression patterns that led to the 

identification of the HCC sub-populations.   None of these patterns could have been identified 

from a global gene expression analysis of “highest magnitude mean shift”.  We feel that we 

have proven the utility in using a knowledge-driven approach to identify important disease 

drivers, and that examining high-variability genes for shifts in co-expression has been a fruitful 

approach to understanding the heterogeneity inherent in the drivers of hepatocellular 

carcinoma.   
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Appendix A.  List of all liver development genes present on the Affymetrix HG-U133A v2 GeneChip. 
 

Gene Symbol 
Developmental 
stage 

Adult 
expression function 

Activin receptor type 1 ACVR1 FATE SPEC + Activin receptor 

Activin receptor type 1B ACVR1B FATE SPEC ++ Activin receptor 

Activin Receptor type 2, A/B ACVR2A/B FATE SPEC +/+ Activin/nodal receptor 

Adenomatous polyposis coli APC LVR MAT + regulates zonation post-natally 

 AT rich interactive domain 5B  ARID5B LVR MAT + coActivator of HNF4A 

ADP-ribosylation factor 6 ARF6 BUD GR ++ 
activated by HGF/c-MET to promote hepatoblast migration; regulates 
zonation of maturing liver 

Activating transcription factor 2 ATF2 BUD GR + negative regulator of HGF-initiated SEK1/MKK4 signaling 

Activating transcription factor 7 ATF7 BUD GR + Required to maintain hepatocyte differentiation 

ATG7 autophagy related 7 homolog  ATG7 MULTIPLE + 
required for autophagy of organelles; req for homeostasis of 
differentiated hepatocytes 

Bone morphogenic protein 2 BMP2 FATE SPEC + 
regulates regional identity of the endoderm; maintains GATA4/6 
expression 

Bone morphogenic protein 4 BMP4 FATE SPEC - 

regulates regional identity of the endoderm; maintains GATA4/6 
expression; later promotes differentiation of hepatoblast to biliary 
lineage 

Bone morphogenetic protein receptor, type IA BMPR1A FATE SPEC + Type 1 BMP receptor 

Bone morphogenetic protein receptor, type IB BMPR1B FATE SPEC + Type 1 BMP receptor 

Bone morphogenic protein receptor 2 BMPR2 FATE SPEC ++ Type 2 BMP receptor 

Basigen BSG HEPB MIGR ++ stimulates MMP2 and MMP14 

Cell adhesion molecule 1 CADM1 HEP DIFF ++ biliary epithelial adhesion; bile duct development 

cyclin D1 CCND1 LVR MAT ++ regulate hepatocyte proliferation 
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cyclin D2 CCND2 LVR MAT + regulate hepatocyte proliferation 

Cyclin E2 CCNE2 LVR MAT + regulate hepatocyte proliferation 

CCAAT/enhancer binding protein, alpha CADM1 HEP DIFF ++ promotes differentiation to hepatocyte 

E-cadherin  CDH1 HEPB MIGR ++ 
must be down-regulated to allow hepatoblast migration through the liver 
bud 

CCAAT/enhancer binding protein (C/EBP), alpha CEBPA HEP DIFF ++ hepatocyte transcription factor 

Cerebrus CER1 FATE SPEC - Nodal antagonist 

CBP/p300-interacting transactivator CITED2 LVR MAT + co-factor for HNF4A in maturing hepatocytes 

Collagen IV alpha 1 COL4A1 HEPB MIGR ++ forms basement membrane of hepatic endoderm 

Collagen IV alpha 2 COL4A2 HEPB MIGR ++ forms basement membrane of hepatic endoderm 

Collagen IV alpha 3 COL4A3 HEPB MIGR ++ forms basement membrane of hepatic endoderm 

Collagen IV alpha 4 COL4A4 HEPB MIGR + forms basement membrane of hepatic endoderm 

Collagen IV alpha 5 COL4A5 HEPB MIGR + forms basement membrane of hepatic endoderm 

Collagen IV alpha 6 COL4A6 HEPB MIGR - forms basement membrane of hepatic endoderm 

Ceruloplasmin CP FATE SPEC +++ copper transport; iron metastasis; marker of hepatoblast differentiation 

b-catenin CTNNB1 FATE SPEC ++ mediates Sox17 and Smad signaling 

Casein kinase I isoform delta CSNK1D BUD GR + activates HIF1A, P53, DVL2/3, DNMT1, and YAP1 

Desert hedgehog DHH BUD GR - Inhibits hepatoblast differentiation during bud growth 

Dickkopf-related protein 1 DKK1 FATE SPEC - 
Represses Wnt signaling to allow foregut specification into liver and 
pancreas 

delta-like 1 homolog (Drosophila) DLK1 BUD GR - Expressed by proliferating hepatoblasts 

DNA (cytosine-5)-methyltransferase 1  DNMT1 BUD GR + required for chromatin alterations  

dishevelled homolog 2 DVL2 BUD GR + part of Wnt signaling pathway 

dishevelled homolog 3 DVL3 BUD GR ++ part of Wnt signaling pathway 

E74-like factor 5 ELF5 BUD GR - Transcription factor activated by HGF-beta-catenin nuclear translocation 

Epithelial cell adhesion molecule EPCAM BUD GR - Required for hepatoblast proliferation 

Epidermal Growth Factor Receptor 2 ERBB2 HEP DIFF + Epidermal growth factor receptor 

Fibroblast Growth Factor 1 FGF1 HEPB MIGR + maintain hepatic progenitors in undifferentiated state 

Fibroblast growth factor FGF2 HEP DIFF + promote hepatoblast differentiation to biliary lineage 

Fibroblast growth factor 7 FGF7 HEP DIFF - 
promote hepatoblast differentiation to biliary lineage; induces branching 
of hepatic epithelium 

Fibroblast Growth Factor 8 FGF8 HEPB MIGR - maintain hepatic progenitors in undifferentiated state 

Fibroblast Growth Factor Receptor 1 FGFR1 
FATE SPEC, HEP 
DIFF + FGF receptor 
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Fibroblast Growth Factor Receptor 2 FGFR2 
FATE SPEC, HEP 
DIFF ++ FGF receptor 

Fibronectin FN1 
HEPB MIGR, 
HEP DIFF +++ forms basement membrane of hepatic endoderm 

Forkhead homeobox A1 FOXA1 FATE SPEC ++ 
regulates endoderm differentiation; de-compacts chromatin around 
Albumin 

Forkhead homeobox A2 FOXA2 FATE SPEC ++ 
regulates endoderm differentiation; de-compacts chromatin; regulates 
hepatocyte maturation 

Forkhead box M1 FOXM1 BUD GR + 
activates regulators of the G2/M phase of the cell cycle during 
hepatoblast proliferation 

Follistatin FST FATE SPEC + BMP Inhibitor 

Follistatin-like protein 3 FSTL3 FATE SPEC + BMP Inhibitor 

Frizzled 1 FZD1 MULTIPLE - Wnt receptors 

Frizzled 2 FZD2 MULTIPLE - Wnt receptors 

Frizzled 3 FZD3 MULTIPLE + Wnt receptors 

Frizzled 4 FZD4 MULTIPLE ++ Wnt receptors 

Frizzled 5 FZD5 MULTIPLE ++ Wnt receptors 

Frizzled 6 FZD6 MULTIPLE + Wnt receptors 

Frizzled 7 FZD7 MULTIPLE + Wnt receptors 

glucose-6-phophatase G6PC LVR MAT +++ Marker of terminal hepatocyte differentiation 

GATA binding protein 4 GATA4 MULTIPLE ++ 
de-compacts chromatin; binds albumin promoter; maintains STM during 
hepatoblast migration 

GATA binding protein 6 GATA6 MULTIPLE + maintains hepatoblast differentiation 

GDNF family receptor alpha 2 GFRA2 HEPB MIGR - Neurturn receptor 

Glypican 3 GPC3 FATE SPEC - BMP Inhibitor 

Growth factor receptor-bound protein 2 GRB2 MULTIPLE ++ signal transduction for MET, ERBB2, MST1R, and other receptors 

Gremlin GREM1 FATE SPEC + BMP Inhibitor 

Heart- and neural crest derivatives-expressed protein 
2 HAND2 BUD GR + 

Regulates remodeling of ECM to form the gut loop at the beginning of 
bud formation 

Hepatoma-derived growth factor HDGF BUD GR ++ stimulates hepatoblast proliferation 

Hepatocyte Growth Factor HGF MULTIPLE + promote hepatoblast proliferation via SEK1/MKK4 

Hairy/enhancer-of-split related HEYL HEP DIFF + NOTCH signaling protein 

Hematopoietically expressed homeobox HHEX 
FATE SPEC, 
BUD GR ++ promotes hepatoblast migration into STM 

Hypoxia-inducible factor 1a HIF1A BUD GR ++ induces angiogenesis to growing liver bud 

H2.0-like homeobox HLX BUD GR + promote hepatoblast proliferation, inhibit apoptosis 
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High-mobility group protein A2 HMGA2 BUD GR - 
regulates proliferation genes and maintains hepatoblasts in 
undifferentiated state 

High-mobility group protein B2 HMGB2 BUD GR + 
regulates proliferation genes and maintains hepatoblasts in 
undifferentiated state 

Hepatocyte nuclear factor 1 homeobox A HNF1A LVR MAT + regulates hepatocyte maturation 

Hepatic Nuclear Factor 1 beta HNF1B 
FATE SPEC, LVR 
MAT + 

stimulates expression of FOXA1 and FOXA2 in pre-hepatic endoderm; 
later regulates hepatocyte maturation 

Hepatic Nuclear Factor 4 alpha HNF4A 
HEP DIFF, LVR 
MAT ++ 

specifies hepatoblast differentiation into hepatocyte; regulates liver 
zonation post-natally 

Homeobox A7 HOXA7 MULTIPLE - regulated nuclear export of c-MYC, FGF2, CCND1 

Heparin sulfate proteoglycan HSPG2 HEPB MIGR ++ forms basement membrane of hepatic endoderm 

isoprenylcysteine carboxyl methyltransferase ICMT HEPB MIGR ++ remodels basement membrane to allow hepatoblast migration 

Inhibitor of differentiation 3 ID3 BUD GR + inhibits TCF3 to enhance hepatoblast proliferation 

Insulin-like Growth Factor 2 IGF2 BUD GR +++ promotes proliferation of hematopoietic cells in the liver 

Indian hedgehog IHH BUD GR - Inhibits hepatoblast differentiation during bud growth 
Interleukin 6 signal transducer (gp130, oncostatin M 
receptor) IL6ST LVR MAT +++ OSM receptor 

Inhibin, alpha INHA FATE SPEC - negative regulator of activing 

Activin INHBA FATE SPEC + initiates endoderm/mesoderm formation 

Inhibin, beta B INHBB FATE SPEC + subunit of both inhibin and activin 

Inhibin, beta C INHBC FATE SPEC ++ subunit of both inhibin and activin 

Inhibin, beta E INHBE FATE SPEC ++ subunit of both inhibin and activin 

insulin receptor substrate 2 IRS2 BUD GR ++ enhances hepatoblast survival during proliferation 

Integrin alpha 3 ITGA3 BUD GR + receptor for fibronectin, collagens, laminins, and cadherins 

Integrin alpha 5 ITGA5 BUD GR ++ receptor for fibronectin, collagens, laminins, and cadherins 

Integrin alpha 6 ITGA6 BUD GR ++ receptor for fibronectin, collagens, laminins, and cadherins 

Integrin beta 1 ITGB1 BUD GR ++ receptor for fibronectin, collagens, laminins, and cadherins 

Integrin beta 4 ITGB4 BUD GR - receptor for fibronectin, collagens, laminins, and cadherins 

Jagged 1 JAG1 HEP DIFF + NOTCH pathway ligand; induces expression of HNF1B and SOX9 

Jumonji JARID2 LVR MAT + activates OSM; promotes morphological maturation 

Jun protoncogene (c-JUN) JUN BUD GR + required for proliferation 

kinase insert domain receptor  (vegfr2) KDR HEPB MIGR ++ required for blood vessel formation as hepatoblasts migrate into STM 

c-kit KIT HEPB MIGR + cytokine receptor expressed in undifferentiated hepatic progenitors 
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Kruppel-like factor 6 KLF6 BUD GR ++ Required for hepatocyte proliferation 

k-RAS KRAS BUD GR ++ regulates proliferation and survival 

cytokeratin-19 KRT19 HEP DIFF + specifies hepatoblast differentiation into biliary epithelial cell 

Laminin alpha 2 LAMA2 HEPB MIGR + Structural component of the basement membrane 

Laminin alpha 3 LAMA3 HEPB MIGR + Structural component of the basement membrane 

Laminin alpha 4 LAMA4 HEPB MIGR + Structural component of the basement membrane 

Laminin beta 1 LAMB1 HEPB MIGR ++ Structural component of the basement membrane 

Laminin beta 2 LAMB2 HEPB MIGR ++ Structural component of the basement membrane 

Laminin beta 3 LAMB3 HEPB MIGR + Structural component of the basement membrane 

Laminin beta 4 LAMB4 HEPB MIGR - Structural component of the basement membrane 

Laminin gamma 1 LAMC1 HEPB MIGR ++ Structural component of the basement membrane 

Laminin gamma 2 LAMC2 HEPB MIGR - Structural component of the basement membrane 

Laminin gamma 3 LAMC3 HEPB MIGR + Structural component of the basement membrane 

Lymphoid enhancer-binding factor LEF1 LVR MAT - HNF4A cofactor 

LIM/homeobox protein LHX2 BUD GR + promote hepatoblast proliferation, inhibit apoptosis 

Mitogen-activated protein kinase kinase 4 (SEK1) MAP2K4 BUD GR ++ direct activator of MAP kinases including MAPK8 

p38 MAPK14 BUD GR ++ Activate ATF2/7 in response to HGF signaling 

Mitogen-activfated protein kinase 8 (JNK) MAPK8 BUD GR + Required for differentiation 

Mitogen-activated protein kinase kinase kinase kinase 
4 MAP4K4 BUD GR ++ activates JNK/MAPK8 

Midkine MDK BUD GR - 
regulates PTN expression in developing catecholemine and rennin-
angiotensin pathways 

Met proto-oncogene (c-MET) MET BUD GR ++ HGF receptor 

matrix metalloproteinase 1 MMP1 HEPB MIGR - Promotes invasion through the basement membrane 

matrix metalloproteinase 11 MMP11 HEPB MIGR - Promotes invasion through the basement membrane 

matrix metalloproteinase 12 MMP12 HEPB MIGR - degrades elastin 

matrix metalloproteinase 13 MMP13 HEPB MIGR - Promotes invasion through the basement membrane 

matrix metalloproteinase-14 MMP14 HEPB MIGR + activates MMP2; required for hepatoblast migration 

matrix metalloproteinase 15 MMP15 HEPB MIGR ++ Degrades fibronectin, nidogen, and laminin and activates MMP2 

matrix metalloproteinase 16 MMP16 HEPB MIGR - Degrades fibronectin, nidogen, and laminin and activates MMP2 

matrix metalloproteinase 17 MMP17 HEPB MIGR - 
Expressed at low levels but activity is unclear. May activate pro-form of 
MMP2 

matrix metalloproteinase 19 MMP19 HEPB MIGR + 
Degrades Collagen IV, fibronectin, nidogen, laminin to disrupt the 
basement membrane 

matrix metalloproteinase-2 MMP2 HEPB MIGR + required for hepatoblast migration; specific for Collagen IV 
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matrix metalloproteinase 23 MMP23A HEPB MIGR - Expressed at low levels but activity is unclear. 

matrix metalloproteinase 24 MMP24 FATE SPEC + Expressed in mesoderm and induce FOX and GATA expression 

matrix metalloproteinase 25 MMP25 HEPB MIGR + Expressed at low levels but activity is unclear. 

matrix metalloproteinase 7 MMP7 HEPB MIGR - 
degrades Collagen IV, laminin 1, fibronectin to disrupt the basement 
membrane 

matrix metalloproteinase 9 MMP9 HEPB MIGR - degrades Collagen IV AND v 

Macriogage stimulating 1 (hepatocyte growth factor- 
like) MST1 LVR MAT ++ regulates YAP; maintains hepatocyte quiesence in adult liver 

Metal-regulatory transcription factor MTF1 BUD GR + regulates proliferation and survival 

c-Myc MYC LVR MAT ++ regulated hepatocyte size and morphology 

N-myc MYCN BUD GR - promote hepatoblast proliferation, inhibit apoptosis 

Neuroblastoma, suppression of tumorigenicity 1 NBL1 FATE SPEC + BMP inhibitor 

Necdin NDN BUD GR + regulates hematopoietic stem cells 

Nuclear factor 1 NF1 FATE SPEC ++ initiates albumin transcription 

Nuclear factor of kappa light polypeptide gene 
enhancer in B-cells 1 NFKB1 BUD GR + protects hepatoblasts against TNF-induced apoptosis 

Nuclear factor of kappa light polypeptide gene 
enhancer in B-cells 2 NFKB2 BUD GR + protects hepatoblasts against TNF-induced apoptosis 

Nidogen NID1 HEPB MIGR ++ forms basement membrane of hepatic endoderm 

NK2 homeobox 8 NKX2-8 FATE SPEC - promotes AFP expression 

Nodal NODAL FATE SPEC - initiates endoderm/mesoderm formation; induces GATA4/6 and SOX17 

Noggin NOG FATE SPEC - BMP Inhibitor 

Neurogenic locus notch homolog protein 2 NOTCH2 HEP DIFF ++ JAG1 receptor 

Neurogenic locus notch homolog protein 3 NOTCH3 HEP DIFF + JAG1 receptor 

liver receptor homolog 1 NR5A2 
BUD GR, LVR 
MAT ++ 

antagonizes PROX1-promoted hepatoblast proliferation; regulates 
hepatocyte maturation 

Nuclear respiratory factor 1 NRF1 BUD GR + regulates proliferation and survival 

Neurturin NRTN HEPB MIGR + hepatoblast chemoattractant 

Onecut 1 ONECUT1 MULTIPLE + 

regulate expression of ECM and MMP genes; modulates gradient of TGFβ 
signaling during hepatoblast differentiation; regulates hepatocyte 
maturation 

Onecut 2 ONECUT2 MULTIPLE ++ 
regulate expression of ECM and MMP genes; modulates gradient of TGFβ 
signaling during hepatoblast differentiation 

Oncostatin M OSM LVR MAT - promotes terminal hepatocyte differentiation 

Proliferation-assocaited 2G4 PA2G4 BUD GR ++ negative regulator of PROX1 
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PHD finger protein 2 PHF2 LVR MAT + coActivator of HNF4A 

Phosphoinositide-3-kinase, catalytic, alpha 
polypeptide (Pi3K) PIK3CA BUD GR + Activates signaling cascades 

Phophoinositide-3-kinase, regulatory subunit 1 (alpha) PIK3R1 BUD GR ++ regulates proliferation and survival 

prospero homeobox 1 PROX1 
FATE SPEC, 
BUD GR + 

Promotes hepatoblast delamination from basement membrane; 
promotes hepatoblast proliferation 

pleiotrophin PTN BUD GR - 
required for development of catecholemine and rennin-angiotensin 
pathways 

v-raf-1 murine leukemia viral oncogene homolog 1 RAF1 BUD GR ++ decrease hepatoblast sensitivity to FasL apoptotic signals 

Retinoic Acid Receptor alpha RXRA 
FATE SPEC, 
BUD GR +++ Retinoic Acid Receptor 

SET domain bifurcated 1 SETDB1 BUD GR + chromatin remodeling 

secreted frizzled-related protein 5 SFRP5 FATE SPEC + Inhibits Wnt signaling to establish foregut identity 

Sonic hedgehog SHH  
BUD GR, HEP 
DIFF - Inhibits hepatoblast differentiation during bud growth 

Smad2 SMAD2 FATE SPEC ++ 
following Nodal stimulation, initiates transcription of Sox17 and FoxA1-3; 
later promote hepatoblast proliferation 

Smad3 SMAD3 FATE SPEC + 
following Nodal stimulation, initiates transcription of Sox17 and FoxA1-3; 
later promote hepatoblast proliferation 

Smad4 SMAD4 FATE SPEC ++ following Nodal stimulation, initiates transcription of Sox17 and FoxA1-3 

SMAD family member 5 SMAD5 HEP DIFF ++ Transduces BMP signals 

Smad6 SMAD6 FATE SPEC + antagonist of Smad signaling 

Smad7 SMAD7 FATE SPEC + antagonist of Smad signaling 

Sox17 SOX17 FATE SPEC + regulates endoderm differentiation 

SRY-box 9 SOX9 HEP DIFF + specifies hepatoblast differentiation into biliary epithelial cell 

Osteopontin SPP1 HEP DIFF ++ Mediates integrins and CD44 signaling 

Serine/threonine-protein kinase SRPK1 BUD GR ++ regulates alternative splicing 

Signal transducer and activator of transcription 3 STAT3 LVR MAT +++ activated by IL6ST to promote terminal hepatocyte differentiation 

STEAP family member 3, metalloreductase STEAP3 LVR MAT +++ inhibits apoptosis during rapid growth 

T-box transcription factor 3 TBX3 
HEPB MIGR, 
HEP DIFF ++ 

stimulates expression of PROX1 during hepatoblast migration; may 
determine timing of hepatoblast differentiation 

Transcription factor 3 TCF3 BUD GR + Associates with LEF1 in the Wnt pathway; inhibits proliferation 

Transforming growth factor, beta 1 TGFB1 BUD GR + 
promote hepatoblast proliferation; promote hepatoblast differentiation 
to biliary cells 

Transforming Growth Factor beta 2 TGFB2 HEP DIFF - specifies hepatoblast differentiation into biliary epithelial cell 
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Transforming Growth Factor beta 3 TGFB3 HEP DIFF + specifies hepatoblast differentiation into biliary epithelial cell 

Transforming growth factor receptor TGFBR1-3 BUD GR ++ TGF-beta receptors 

Transforming Growth Factor beta receptor 3 TGFBRIII HEP DIFF ++ TGFb receptor critical to hepatoblast differentiation into biliary cells 

TIMP metallopeptidase inhibitor  2 TIMP2 HEPB MIGR ++ MMP inihibitor 

TIMP metallopeptidase inhibitor  4 TIMP4 HEPB MIGR - MMP inihibitor 

Tumor Necrosis Factor TNF BUD GR - 
negative regulator of hepatoblast proliferation; maintains proliferative 
capacity of fetal hepatocytes 

regulator of nonsense transcripts homolog (yeast) UPF2 MULTIPLE ++ loss leads to activation of DNA damage response 

Vimentin VIM HEP DIFF ++ BEC marker; intermediate filament 

Wnt 5A WNT5A HEP SPEC + 
may inhibit Wnt signaling in the anterior endoderm to allow foregut 
identity to be established 

Wilms tumor protein WT1 BUD GR - controls retinoic acid signaling during liver bud growth 

X-box binding protein 1 XBP1 BUD GR +++ 
controls expansion of the endoplasmic reticulum in proliferating 
hepatoblasts 

Yes-associated protein 1 YAP1 LVR MAT ++ regulates organ size via cell contact inhibition of cell proliferation 

Zinc finger factor ZBTB20 LVR MAT + represses AFP and GPC3 post-natally 

Zinc finger and homeoboxes factor 2 ZHX2 LVR MAT + represses AFP and GPC3 post-natally 

thyroid hormone receptor interacting protein 3 ZNHIT3 LVR MAT + co-factor for HNF4A in maturing hepatocytes 
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Appendix B.  Quality Assessment results 
 

The seventy-three chips (listed below) were excluded for failing at least one of the following criteria: Nbr 

Corr >40%, Row Corr <70%, or log(PM/MM) >50% different from average (log(PM/MM)).  

Abbreviations: Nbr Corr = probe-neighbor correlation (ideally = 0); Row Corr = correlation between 

adjacent rows of probes (ideally = 1); log(PM/MM) avg = average log(PM/MM) for all probes on the chip 

(ideally should be nearly the same for all chips) 

Chip 
Nbr 
Corr 

Row 
Corr 

log(PM/MM) 
avg Chip Nbr Corr 

Row 
Corr 

log(PM/MM) 
avg 

 8-D-401 0.290 0.940 0.404  D712_T 0.572 -0.372 0.443 

 9-D-310 0.413 0.908 0.262  D-728T.1B 0.362 0.277 0.400 

 B-290 0.714 0.928 0.489  D787_A1 0.104 0.951 0.698 

 CIR122 0.204 0.811 0.330  D787_A7 0.128 0.938 0.733 

 CIR123 0.215 0.799 0.418  D-796T.A1 0.180 0.450 0.096 

 CIR128 0.212 0.800 0.326  D-817_N 0.504 -0.232 0.515 

 CIR129 0.161 0.939 0.234  D-819_N 0.338 0.229 0.515 

 CIR283 0.295 0.602 0.259  D-833 0.091 0.974 0.450 

 D-260 0.375 0.940 0.503  D834_T 0.461 -0.130 0.566 

 D-264 0.420 0.923 0.496  DC-679 0.167 0.943 0.531 

 D-265 0.362 0.845 0.469  HCC-I.125 0.222 0.801 0.368 

 D-269 0.286 0.800 0.359  R2858T 0.359 0.628 0.377 

 D-278 0.493 0.930 0.423  R2925T 0.269 0.254 0.228 

 D-345T 0.592 -0.213 0.232  R2926 0.202 0.888 0.411 

 D-357 0.186 0.941 0.292  R3394_T_III 0.195 0.892 0.522 

 D-363 0.285 0.933 0.506  R3399_T_II 0.514 -0.138 0.527 

 D-364 0.469 0.932 0.493  R3400_T 0.159 0.969 0.612 

 D-374 0.185 0.928 0.370  R3465.V.T 0.149 0.879 0.403 

 D-410 0.590 -0.265 0.270  R3465_T_VI 0.114 0.951 0.620 

 D-448 0.421 -0.058 0.160 
 
R3508_T_VIII 0.107 0.969 0.633 

 D513_TC1 0.547 -0.291 0.566  R3517_T_VII 0.184 0.933 0.689 

 D520_T2B 0.537 -0.148 0.485  R3520_T 0.140 0.951 0.732 

 D528_T1A 0.492 -0.124 0.491  R3548_T 0.176 0.967 0.678 

 D582_T 0.483 -0.113 0.488  R3551_T 0.179 0.970 0.622 

 D599_T2A 0.175 0.961 0.640  R3552_T 0.203 0.956 0.680 

 D-69 0.373 0.913 0.274  R3658_TA2 0.169 0.954 0.660 

 D691_T 0.367 0.004 0.545  R3659_T_III 0.280 0.590 0.545 
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Appendix C.  Differentially expressed liver development genes. 

 

Names 
Mean FC 
HCV-CIR 

q-value 
HCV-CIR 

Mean FC 
Early HCC 

q-value 
Early HCC 

Mean FC 
late HCC 

q-value 
Late HCC 

ACVR2B 0.49* 3.46E-11 0.57* 0.000182 0.59 0.038189 

AFP 0.87 0.086872 1.79* 4.48E-20 1.57 0.324027 

ARID5B 3.44* 1.50E-07 1.77* 4.61E-08 1.64 0.745184 

ATF2 0.91 0.176309 1.24* 1.06E-08 1.35 0.243972 

BMP2 1.53* 3.58E-06 1.23* 0.002834 1.19 0.935888 

BMP4 0.76* 0.001841 0.88* 2.52E-06 1.02 0.249444 

CADM1 1.55* 5.92E-06 1.51V 0.001003 1.73 0.502831 

CCNE2 1.16 0.003566 1.4V 2.53E-14 1.7 0.285766 

CDH1 1.71* 3.42E-05 1.35V 1.21E-06 1.29 0.85288 

CEBPA 0.57* 0.008095 0.79* 0.008635 0.86 0.598495 

CITED2 2.48* 0.000259 1.56* 0.000295 1.48 0.116526 

COL4A1 4.94* 2.53E-08 3.82 0.070348 3.84 0.548252 

COL4A2 3.56* 5.24E-11 2.32* 0.002803 2.19 0.255501 

COL4A4 1.47* 3.21E-11 1.13* 0.000266 1.16 0.241786 

COL4A5 1.36* 7.62E-07 1.36 1.13E-07 1.35 0.064255 

CP 0.85 0.335561 0.8 0.253454 0.54V 0.000669 

CSNK1D 1.42* 9.79E-08 1.02* 5.55E-05 1.06 0.820975 

DKK1 1.05 0.289909 1.34* 5.74E-15 1.34 0.382324 

DKK3 5.19* 5.88E-22 3.19* 1.66E-08 2.39 0.251674 

DKK4 1.0 0.041729 1.16V 1.06E-09 1.44 0.026289 

EPCAM 13.99* 3.88E-18 7.08V 3.97E-09 2.85 0.065963 

ERBB2 1.36* 1.81E-13 1.26 0.042029 1.31 0.106232 

FGF7 1.48* 2.98E-10 1.24V 0.000328 1.14 0.521088 

FGFR2 4.09* 5.32E-18 2.01* 1.42E-09 1.34 0.127774 

FOXA1 0.40* 3.74E-08 0.46V 0.000409 0.37 0.404135 

FOXA2 0.58* 2.01E-05 0.63 0.348996 0.63 0.958847 

FOXM1 0.87* 0.006229 1.02* 1.55E-05 1.2V 3.73E-05 

FSTL3 2.94* 9.41E-13 1.54* 3.40E-07 1.47 0.857174 

GATA4 0.66* 1.72E-06 0.74 0.02558 0.79 0.181081 

GATA6 2.73* 2.66E-15 1.19* 7.71E-13 0.72 0.044615 

GPC3 1.93* 7.19E-06 3.98* 2.23E-10 4.49 0.713219 

GREM1 1.16 0.002514 1.87V 3.10E-08 1.49 0.192348 

GSK3B 0.78 0.031171 0.58* 7.55E-05 0.62 0.576869 

HAND2 2.06* 8.92E-10 1.56 0.022322 1.27 0.152358 

HMGB2 2.37* 8.06E-05 2.8 0.016347 3.21 0.192274 

HNF1B 1.28* 0.000124 0.95* 0.00099 1.07 0.41923 
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ID3 2.27* 1.23E-11 1.54* 0.001166 1.22 0.058117 

IGF2 0.92 0.245092 0.75 0.008089 0.40* 0.000234 

ITGA3 1.35* 1.46E-05 1.17 0.019953 1.23V 0.0038 

ITGA6 1.41* 0.002155 1.71* 0.003043 1.69 0.573798 

JAG1 2.20* 1.02E-14 1.96 0.026299 1.82 0.742372 

JUN 2.32* 1.12E-05 1.41* 4.26E-07 1.15 0.005778 

KIT 1.88* 7.28E-12 1.46 0.072598 1.39 0.860014 

KLF6 3.9* 2.54E-09 2.39* 4.65E-08 1.61 0.007397 

KRAS 0.91 0.155308 0.73* 0.000112 0.66 0.643364 

KRT19 5.01* 3.74E-13 2.12* 5.45E-05 1.6 0.049275 

LAMA2 4.16* 1.34E-14 1.91* 1.34E-09 1.44 0.363741 

LAMA3 1.32* 0.002967 1.25V 0.003373 1.53 0.208111 

LAMB1 3.21* 4.72E-06 1.83V 1.41E-06 1.5 0.587399 

LAMC1 1.42* 2.13E-05 1.5V 0.000314 1.61 0.422084 

LAMC3 2.18* 5.15E-13 1.32* 1.36E-05 1.24 0.603517 

LRP5 0.67* 0.002842 0.61 0.690185 0.54 0.601217 

LRP6 0.74* 0.000792 0.82 0.275806 0.81 0.985316 

MDK 1.65* 4.89E-09 2.18V 1.08E-05 2.24 0.239585 

MET 0.79* 0.000278 1.08* 2.62E-10 1.22 0.321991 

MMP2 4.9 0.027847 3.29V 0.003952 2.69 0.001829 

MMP7 6.33* 2.33E-16 2.99* 0.000111 3.58 0.533479 

MMP9 1.1V 0.000558 1.44 0.012296 2.06 0.058299 

MMP12 1.07 0.001873 2.02* 8.82E-16 3.07 0.385854 

MMP15 0.71* 0.002287 0.7 0.954317 0.71 0.86459 

MMP19 1.43* 2.86E-06 1.14 0.010725 1.18 0.670128 

MST1 0.89 0.062756 0.57* 2.43E-06 0.47 0.292879 

MYC 1.77 0.032188 1.04* 0.002319 0.75 0.122622 

NDN 2.11* 3.14E-10 1.16* 8.35E-09 1.13 0.931531 

NID1 1.08 0.385875 0.81V 4.49E-08 0.82 0.18698 

NOTCH2 1.05 0.585906 0.78 * 6.89E-08 0.83 0.753159 

NR5A2 0.56* 2.83E-06 0.85* 1.57E-09 0.7 0.309775 

NRTN 0.33* 2.87E-15 0.38 8.85E-05 0.35 0.398713 

PTN 2.02* 1.38E-18 1.48* 0.000376 1.31 0.464926 

REL 1.39* 0.006132 1.37 0.033825 1.15 0.066352 

RXRA 0.50* 1.03E-12 0.51 0.528157 0.52 0.630088 

SFRP5 2.4* 1.36E-09 1.56* 4.62E-06 1.3 0.401281 

SMAD2 1.35* 2.86E-07 1.4 0.017922 1.43 0.92141 

SMAD7 2.76* 1.36E-05 1.47* 3.75E-06 1.11 0.116017 

SOX9 4.66* 8.08E-11 2.51* 7.30E-08 2.8 0.394532 

SPP1 7.63* 3.28E-06 5.63 0.042465 11.7 0.031642 

SRPK1 0.75* 0.00073 0.85V 0.000124 0.97 0.528191 
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STAT3 0.81 0.066163 0.54* 4.96E-07 .48 0.558456 

STK3 0.85* 0.000194 0.97* 2.02E-06 1.15V 0.000737 

TBX3 0.73 0.048728 1.0V 3.71E-06 1.05 0.698753 

TCF4 2.57* 1.72E-08 1.88* 0.000575 1.56 0.489453 

TGFB1 2.67* 3.94E-11 1.64 0.007678 1.57 0.746376 

TGFBR2 1.48* 2.93E-05 1.35 0.027346 1.14 0.08455 

TGFBR3 1.09 0.503817 0.60* 7.04E-06 0.50 0.461152 

TIMP2 1.39* 2.58E-06 1.39 0.109651 1.28 0.232708 

VIM 5.29* 8.28E-09 4.09 0.002167 4.61 0.504156 

WNT5A 1.04 0.518411 1.25V 1.04E-09 1.57V 0.001328 

XBP1 0.65* 1.95E-05 0.82* 2.41E-05 0.69 0.185357 

YAP1 1.03 0.051737 0.9 0.023557 0.73** 0.006019 

ZBTB20 1.99* 1.27E-06 1.25* 3.56E-10 1.14 0.749199 
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Appendix D.  Differential Co-expression modules 
 

Table 1.  Gene sets defined by >.5 correlation to the seed gene within cirrhosis, which have significantly 
different correlation patterns in early HCC. 
 
A.  BMP2, cyclin D1 (CCND1), E-cadherin (CDH1) 

P=0.0078 BMP2  0.0003 CCND1  P=0.0001 CDH1 

BMP2 1.0  PROX1 0.65  CDH1 1.00 

NFKB1 0.58  ONECUT1 0.60  MET 0.65 

MMP19 0.57  CDH1 0.58  CCND1 0.58 

TGFB3 0.57  KRAS 0.56  GPC3 0.52 

CSNK1D 0.53  GPC3 0.51  ID2 0.51 

LAMC3 0.53  UPF2 -0.52  TGFBR3 -0.56 

HAND2 -0.51  TGFBR2 -0.53  PROX1 1.00 

ATF2 -0.61  LAMA2 -0.65    

SFRP5        

PA2G4        

ZHX2        

 

B. c-Met (MET), SMAD2, SMAD5,  thyroid hormone receptor interactor 3 (ZNHIT3) 

P=0.000
1 MET 

 P=0.0003 

SMAD2 
 P=0.0001 

SMAD5 
 P=0.00

4 ZNHIT3 

CDH1 0.65  UPF2 0.65  SMAD5 1.00  ZNHIT3 1.00 

ID2 0.63  LAMA2 0.63  PIK3R1 0.67  NDN 0.66 

CP 0.59  NDN 0.62  OC1 0.66  FGF7 0.64 

FN1 0.56  SMAD7 0.56  PROX1 0.62  ID3 0.58 

NR5A2 0.56  ZNHIT3 0.56  IL6ST 0.52  SMAD2 0.56 

CADM1 0.51  LAMB1 0.52  SRPK1 -0.50  TIMP2 0.55 

ERBB2 0.50  YAP1 0.50  CSNK1D -0.51  FN1 -0.51 

ARID5B -0.53  ACVR2B -0.50  STAT3 -0.56  ATF2 -0.55 

GATA6 -0.54  FN1 -0.54       

TGFBR3 -0.57  ID2 -0.57       
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C.   Vimentin (VIM), Follistatin-like-3 (FST), ceruloplasmin (CP), proliferation-associated 2G4 (PA2G4), 

laminin B1 (LAMB1) 

P=0.012 VIM  P=0.0037 FSTL3  P=0.109 LAMB1 

VIM 1.00  FSTL3 1.00  LAMB1 1.00 

MMP2 0.75  NFKB1 0.74  LAMC1 0.73 

MMP9 0.73  CSNK1D 0.72  LAMA2 0.71 

KIT 0.71  COL4A2 0.72  MMP2 0.66 

TIMP2 0.70  TGFB1 0.66  COL4A1 0.64 

TGFBR2 0.68  COL4A1 0.64  JAG1 0.64 

TGFB1 0.66  PA2G4 0.64  TGFB3 0.61 

COL4A2 0.64  MMP19 0.61  COL4A2 0.61 

LAMA2 0.64  SMAD7 0.59  VIM 0.60 

LAMB1 0.60  VIM 0.58  KIT 0.60 

LAMC3 0.59  STAT3 0.58  LAMC3 0.54 

NDN 0.59  LAMA3 0.55  SMAD2 0.52 

SMAD7 0.58  SRPK1 0.52  ITGA3 0.51 

FSTL3 0.58  ITGA5 0.52  TGFBR3 0.50 

GREM1 0.57  LAMC3 0.51  KRT19 0.50 

ITGA3 0.57  ARF6 0.51  FSTL3 0.50 

LAMB2 0.56  TGFB3 0.51  ITGA6 0.50 

CITED2 0.56  KRT19 0.51  IRS1 -0.53 

KRT19 0.55  MMP2 0.51  CP -0.55 

ITGA6 0.53  ITGA6 0.50  MST1 -0.56 

LAMC1 0.50  LAMB1 0.50  CEBPA -0.58 

HMGB2 0.50  CADM1 -0.51  FN1 -0.58 

PTN 0.50  OC1 -0.52  PROX1 -0.59 

IRS1 -0.50  FST -0.55  RXRA -0.63 

CADM1 -0.61  CP -0.61    

CP -0.62  IRS1 -0.71    

FN1 -0.62  G6PC -0.73    
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Table 2.  Differentially co-expressed genes in early HCC.  (A) MET, CDH1, STAT3, LAMB2 

  MET   CDH1 STAT3   LAMB2 

MET 1.00  CDH1 1.00 0.73  LAMB2 1.00 

BMP4 0.63  STAT3 0.73 1.00  SMAD7 0.75 

GPC3 0.59  ERBB2 0.71 0.59  ITGA3 0.74 

CCNE2 0.58  FGFR2 0.69 0.51  GATA6 0.74 

NR5A2 0.58  LHX2 0.68 0.70  NOTCH2 0.70 

SRPK1 0.57  SFRP5 0.63 0.61  FSTL3 0.69 

ATF2 0.56  GATA6 0.62 0.60  NDN 0.67 

YAP1 0.55  SMAD7 0.61 0.53  ITGA5 0.67 

ITGA6 0.53  LAMA2 0.60 0.50  MMP2 0.66 

FOXM1 0.52  ZBTB20 0.59    STAT3 0.64 

NOTCH2 -0.50  CITED2 0.59 0.64  TGFBR3 0.64 

LAMC3 -0.50  NOTCH2 0.58 0.57  CITED2 0.63 

IGF2 -0.50  NDN 0.58 0.54  LHX2 0.62 

ITGA5 -0.50  COL4A2 0.58    KIT 0.61 

EPCAM -0.51  LAMC3 0.58    LAMC3 0.58 

KIT -0.51  HAND2 0.57    TGFB1 0.57 

KLF6 -0.52  MMP15 0.54    LAMA2 0.56 

COL4A2 -0.52  MST1 0.53 0.59  KLF6 0.56 

LAMB1 -0.53  EPCAM 0.53    MMP15 0.55 

LAMA2 -0.54  HNF1B 0.53    SFRP5 0.55 

ERBB2 -0.54  COL4A4 0.53    COL4A2 0.54 

SFRP5 -0.55  TGFBR3 0.50 0.56  ERBB2 0.54 

TGFB1 -0.56  CCNE2 -0.50 -0.60  ATF2 -0.50 

PTN -0.56  BMP4 -0.51 -0.60  CCNE2 -0.52 

NDN -0.61  ITGA6 -0.55 -0.56  SRPK1 -0.54 

MMP2 -0.61  GREM1 -0.59 -0.52  FOXM1 -0.61 

ID2 -0.61  MAP4K4 -0.59 -0.56  MET -0.74 

CDH1 -0.62  MET -0.62 -0.63    

GATA6 -0.62  CTNNB1 -0.64      

STAT3 -0.63  FOXM1 -0.67 -0.72    

TGFBR3 -0.64  ZNHIT3 -0.70 -0.55    

LHX2 -0.64  UPF2 -0.70      

ITGA3 -0.68  LAMB2  0.64    

LAMB2 -0.74  KLF6  0.63    

SMAD7 -0.79  ID2  0.61    

   CCND1  0.55    

   CP  0.55    

   GPC3  -0.50    
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(B)  KLF6, NR5A2, ITGA6 

  KLF6 

  

NR5A2 

  

ITGA6 

KLF6 1.00  NR5A2 1.00  ITGA6 1.00 

GATA6 0.71  YAP1 0.66  MAP4K4 0.72 

STAT3 0.63  IRS1 0.64  GPC3 0.71 

ARID5B 0.62  TBX3 0.62  LAMC1 0.59 

ARF6 0.60  HDGF 0.62  UPF2 0.58 

LAMB1 0.58  MET 0.58  BMP4 0.58 

LAMB2 0.56  ONECUT2 0.57  YAP1 0.55 

SFRP5 0.56  BMP4 0.50  CCNE2 0.55 

FSTL3 0.56  XBP1 0.50  TBX3 0.54 

LHX2 0.55  COL4A2 -0.50  LAMA3 0.53 

KIT 0.54  ARID5B -0.50  MET 0.53 

PIK3R1 0.53  LAMA2 -0.53  SRPK1 0.52 

MMP2 0.53  VIM -0.53  HAND2 -0.51 

NDN 0.52  MMP2 -0.53  CDH1 -0.55 

PTN 0.52  TIMP2 -0.58  STAT3 -0.56 

ID2 0.50  MMP7 -0.58  CP -0.56 

MET -0.52  LAMB1 -0.63  ID2 -0.61 

 

(C)  CCND1, CCNE2, MST1, YAP1 

 
CCND1   CCNE2   MST1   YAP1 

CCND1 1.00  CCNE2 1.00  MST1 1.00  YAP1 1.00 

MST1 0.63  FOXM1 0.77  CCND1 0.63  MDK 0.70 

G6PC 0.61  SRPK1 0.70  CP 0.61  NR5A2 0.66 

IRS2 0.59  MET 0.58  STAT3 0.59  TBX3 0.57 

FOXA2 0.56  GPC3 0.58  MMP15 0.59  ITGA6 0.55 

STAT3 0.55  ITGA6 0.55  ERBB2 0.59  MET 0.55 

PIK3R1 0.55  ZNHIT3 0.51  CDH1 0.53  HDGF 0.55 

MMP15 0.53  LAMC1 0.50  RXRA 0.53  SRPK1 0.52 

ZBTB20 0.50  CDH1 -0.50  MMP12 -0.51  MAP4K4 0.51 

GPC3 -0.51  ZBTB20 -0.51  SMAD2 -0.52  MMP7 -0.50 

HMGB2 -0.51  LAMB2 -0.52  ATG7 -0.53    

SPP1 -0.52  TGFBR3 -0.55  FOXM1 -0.54    

SRPK1 -0.57  STAT3 -0.60  SPP1 -0.54    

GREM1 -0.58  CCND1 -0.60  ACVR2B -0.60    

CCNE2 -0.60     LAMC1 -0.70    
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